
Distributed Synthesis and Stability of Cooperative Distributed Model
Predictive Control for Linear Systems ?

Christian Conte a, Colin N. Jones b, Manfred Morari a, Melanie N. Zeilinger c

aAutomatic Control Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
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Abstract

This paper presents a new formulation and synthesis approach for stabilizing cooperative distributed model predictive control (MPC) for
networks of linear systems, which are coupled in their dynamics. The controller is defined by a network-wide constrained optimal control
problem, which is solved online by distributed optimization. The main challenge is the definition of a global MPC problem, which both
defines a stabilizing control law and is amenable to distributed optimization, i.e., can be split into a number of appropriately coupled
subproblems. For such a combination of stability and structure, we propose the use of a separable terminal cost function, combined with
novel time-varying local terminal sets. For synthesis, we introduce a method that allows for constructing these components in a completely
distributed way, without central coordination. The paper covers the nominal case in detail and discusses the extension of the methodology
to reference tracking. Closed-loop functionality of the controller is illustrated by a numerical example, which highlights the effectiveness
of the proposed controller and its time-varying local terminal sets.
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1 Introduction

Control of large-scale networks of dynamic systems is a
challenging problem, in particular if the systems in the net-
work are subject to communication constraints as well as
constraints on states and inputs. MPC is a well-established
methodology for the control of constrained systems. Its
application under communication constraints has been a
field of active research in recent years, with applications in
fields such as power networks (Venkat, Hiskens, Rawlings
& Wright 2008) and building automation (Ma, Richter &
Borrelli 2012). Two key challenges in distributed MPC
are closed-loop stability and controller synthesis under
distributed computations. This paper addresses these chal-
lenges and proposes a less restrictive solution approach
compared to methods currently available in the literature.

In order to obtain a distributed MPC formulation with sta-
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bility guarantees, results from unconstrained decentralized
and distributed control can be used. In decentralized con-
trol, the controllers in the network do not exchange infor-
mation, while in distributed control they do. Important find-
ings related to the analysis of decentralized systems are
summarized in (Šiljak 1991), where especially vector Lya-
punov functions are used for stability analysis. Synthesis ap-
proaches for distributed control laws based on linear matrix
inequalities have been proposed, e.g., in (Langbort, Chandra
& D’Andrea 2004) and (Zečević & Šiljak 2010).

The literature on distributed MPC mainly distinguishes
between non-cooperative and cooperative approaches.
In non-cooperative distributed MPC, e.g. (Farina &
Scattolini 2012), neighboring systems typically communi-
cate once per time-step and each system is equipped with a
local MPC controller that acts selfishly and is robust against
coupling to neighboring systems. While requiring less com-
munication, non-cooperative approaches can become very
conservative or even infeasible in presence of strong dy-
namic coupling. In cooperative distributed MPC, as e.g.
in (Venkat, Rawlings & Wright 2005) or more recently
(Giselsson & Rantzer 2013), neighboring systems typically
communicate several times per time-step in order to solve a
globally defined MPC problem by distributed optimization.
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A key requirement is for the MPC problem to be structured
such that distributed optimization methods are applicable.

While some cooperative distributed MPC approaches derive
stability guarantees based on long horizons (Giselsson &
Rantzer 2013), most approaches rely on terminal costs and
terminal invariant sets (Mayne, Rawlings, Rao & Scokaert
2000). However, standard terminal costs and invariant sets
are based on global Lyapunov stability and invariance con-
cepts and do not exhibit a structure which is amenable to dis-
tributed optimization. In order to obtain such a structure for
the terminal cost, vector Lyapunov functions (Šiljak 1991)
or linear matrix inequality (LMI) based methods (Langbort
et al. 2004), (Zečević & Šiljak 2010) can be used. As for a
structured terminal cost, however, the available methods are
limited. One possibility is the use of a trivial terminal set, i.e.
a point, as suggested in (Stewart, Venkat, Rawlings, Wright
& Pannocchia 2010), which will, however, reduce the size
of the region of attraction of the resulting MPC controller.
Another option is to resort to robust positively invariant sets
(Maestre, Muñoz de la Peña, Camacho & Alamo 2011),
considering dynamic coupling as a disturbance. In presence
of strong coupling however, the resulting terminal sets tend
to be small or may even be empty. Another possibility is
the use of time-varying local sets, as suggested in (Raković,
Kern & Findeisen 2010), the synthesis of which is however
non-obvious and not discussed in the paper.

The contribution of this paper is twofold and builds on
(Conte, Voellmy, Zeilinger, Morari & Jones 2012). The first
contribution, based on (Jokić & Lazar 2009), is a novel con-
cept for time-varying local terminal sets leading to a coop-
erative distributed MPC controller with closed-loop stability
guarantee. The proposed methodology can be used to con-
struct terminal sets for both regulation and reference track-
ing MPC. As opposed to the concept presented in (Raković
et al. 2010), the set dynamics advocated in this paper are di-
rectly linked to the system dynamics and stability properties.
The second contribution is a practical distributed synthesis
method for networks of linear systems with quadratic costs
and polytopic constraints. This method can be executed in
a completely distributed way, a feature which is particularly
beneficial in case of changing network topologies, where
new controllers have to be synthesized on the fly without
central coordination. This case has received considerable at-
tention in the context of plug-and-play MPC (Riverso, Farina
& Trecate 2013), (Zeilinger, Pu, Riverso, Ferrari-Trecate &
Jones 2013).

In Section 2, preliminaries on distributed systems and MPC
are introduced. In Section 3, the formulation of the nominal
cooperative distributed MPC controller is presented and in
Section 4, its distributed synthesis is discussed. Section 5
summarizes the nominal case and Section 6 covers the ex-
tension to reference tracking. In Section 7, a numerical ex-
ample is provided and Section 8 concludes the paper.

2 Preliminaries

2.1 Notation

The set {1, . . . ,M} ⊆ N is denoted asM. A block-diagonal
matrix S with blocks Si, where i ∈ M, is denoted as S =
diagi∈I(Si) or S = diag(S1, . . . , SM ), depending on the
context. Similarly, a vector which consists of the stacked
subvectors xi, i ∈ I ⊆ N, is denoted as coli∈I(xi) or
col(x1, . . . , xM ). If a matrix S is positive definite, we write
S > 0 and if it is positive semi-definite, we write S ≥ 0. The
n-dimensional identity matrix is denoted as In. A function
β(·) : R+ → R+ is of class K if it is continuous, strictly
increasing and if β(0) = 0. It is of class K∞ if additionally
it holds that lims→∞ β(s) =∞.

2.2 Distributed Linear Time-Invariant (LTI) Systems

We consider a network of M linear time-invariant systems,
where each system i ∈ M has a state xi ∈ Rni , an input
ui ∈ Rmi and an output yi ∈ Rpi . We consider systems that
are coupled in the state and in the output. The dynamics of
the local systems can thus be written as

x+i =

M∑
j=1

Aijxj +Biui, yi =

M∑
j=1

Cijxj ∀i ∈M , (1)

where Aij ∈ Rni×nj , Bi ∈ Rni×mi and Cij ∈ Rpi×nj .
Note that additional coupling in the inputs could be easily
reformulated into the form in (1) by defining the original
inputs as additional states and the changes in the original
inputs as the new inputs. The coupling in states and outputs
is used to define the notion of neighboring systems.

Definition 1 (Neighboring Systems) System j is a neigh-
bor of system i if Aij 6= 0 or Cij 6= 0. The set of all neigh-
bors of i, including i itself, is denoted asNi. The states of all
systems j ∈ Ni are denoted as xNi = colj∈Ni(xj) ∈ RnNi .

The local systems (1) can thus, with matrices of appropriate
dimensions, be equivalently written as

x+i = ANi
xNi

+Biui , yi = CNi
xNi

∀i ∈M . (2)

Throughout the paper, it is assumed that neighboring systems
can communicate with each other.

Assumption 2 (Communication) Two systems i and j can
communicate, in a bidirectional way, if i ∈ Nj or j ∈ Ni.

Both the local states and inputs are subject to constraints

xi ∈ Xi , ui ∈ Ui ∀i ∈M , (3)

where for each i ∈M, Xi ⊆ Rni and Ui ⊆ Rmi are convex
sets which contain the origin in their interior.
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By combining the local system dynamics in (1), the linear
dynamics of the global system result in

x+ = Ax+Bu, y = Cx , (4)

where x = coli∈M(xi) ∈ Rn, u = coli∈M(ui) ∈ Rm
and y = coli∈M(yi) ∈ Rp. At some points in the pa-
per, the equivalent notation xt+1 = Axt + But will be
used to emphasize the current time index. The global sys-
tem matrix A ∈ Rn×n and the global output map C ∈
Rp×n are block-sparse with entries Aij and Cij for each
(i, j) ∈ M2, provided j ∈ Ni, and the global input map
B = diagi∈M(Bi) ∈ Rn×m is block-diagonal. Similarly,
combining the local state and input constraints (3), the global
constraints for system (4) result in

x ∈ X := X1×..×XM ⊆ Rn, u ∈ U := U1×..×UM ⊆ Rm.
(5)

In order for the methodology in this paper to apply, we make
the following assumption on the stabilizability of (A,B).

Assumption 3 (Structured Linear Controller) There ex-
ists a linear control law of the form

κf(x) := Kfx = coli∈M(KNixNi) , (6)

where Kf ∈ Rm×n and KNi ∈ Rmi×nNi ∀i ∈ M, such
that the system x+ = Ax+Bκf(x) is asymptotically stable.

Given a stabilizing controller κf(x), the notion of a positively
invariant set can be defined.

Definition 4 (Positively Invariant (PI) Set) A set Xf is PI
for the dynamics x+ = Ax+Bκf(x), if x ∈ Xf ⇒ x+ ∈ Xf.

It is important to note that even if κf(x) is structured as in
(6), any PI set according to Definition 4 is globally defined
and does not generally exhibit structure. In particular, it is
generally not a Cartesian product of local sets.

2.3 Nominal Centralized MPC

The nominal MPC control law for regulation is defined
through the finite horizon optimal control problem

V ∗(x) = min
x,u

Vf(x(N)) +

N−1∑
k=0

l(x(k), u(k)) (7a)

s.t. x(0) = x , (7b)
x(k + 1) = Ax(k) +Bu(k)∀k ∈ {0, .., N − 1}, (7c)
(x(k), u(k)) ∈ X × U ∀k ∈ {0, .., N − 1} , (7d)
x(N) ∈ Xf , (7e)

which is in the following referred to as the nominal MPC
problem. We define XN ⊆ Rn as the set of initial states
x, for which (7) is feasible. Both the stage cost l(x, u) and

the terminal cost Vf(x) are positive definite convex func-
tions and the terminal set Xf ⊆ Rn is convex, compact
and contains the origin in the interior. Furthermore, u =
{u(0), . . . , u(N − 1)} denotes an input sequence over the
finite horizon N and u∗(x) = {u∗(x, 0), . . . , u∗(x,N −1)}
denotes the sequence minimizing (7) for the initial state x.
The first element of u∗(x) defines the state feedback control
law κMPC(x) := u∗(x, 0). Sufficient conditions for asymp-
totic stability under κMPC(x) are given in the following.

Theorem 5 ((Mayne et al. 2000)) Let β1(·) and β2(·) be
K∞ class functions. If Xf ⊆ X and (8) holds ∀x ∈ Xf, then
the closed-loop system x+ = Ax+BκMPC(x) is asymptot-
ically stable on the domain XN :

κf(x) ∈ U , Ax+Bκf(x) ∈ Xf , (8a)
β1(||x||2) ≤ Vf(x) ≤ β2(||x||2) , (8b)
Vf(Ax+Bκf(x))− Vf(x) ≤ −l(x, κf(x)) (8c)

By (8a), Xf is required to be a feasible PI set and by (8b)
and (8c), Vf(x) is required to be a Lyapunov function for
x+ = Ax+Bκf(x) on the domain Xf.

2.4 Synthesis of Nominal Centralized MPC Controllers for
LTI Systems and Polytopic Constraints

The main difficulty in the synthesis of stabilizing nominal
MPC controllers is the construction of a terminal cost Vf(x)
and a terminal set Xf satisfying (8). Synthesis methods for
these components are outlined in the following and will form
the basis for the distributed synthesis techniques in Section 4.

2.4.1 Centralized Terminal Cost Synthesis

For linear systems, the terminal cost is typically chosen to
be quadratic, i.e. Vf(x) = xTPfx, and the terminal controller
to be linear, i.e. κf(x) = Kfx. Given a quadratic stage cost
l(x, u) = xTQx+uTRu, withQ ≥ 0 andR > 0, conditions
(8b) and (8c) can be reformulated as an LMI in (Pf,Kf), i.e.

E EAT + Y TBT EQ
1
2 Y TR

1
2

AE +BY E 0 0

Q
1
2E 0 I 0

R
1
2Y 0 0 I

 ≥ 0 , (9)

where E := P−1f and Y := KfE, for details see (Boyd,
Ghaoui, Feron & Balakrishnan 1994). Note that (9) is ob-
tained from the Lyapunov decrease condition (8c) by apply-
ing Schur complement techniques. In combination with a
suitable objective function, e.g. minimization of− log detE
for maximizing the volume of the 1-level set ellipsoid E :=
{x ∈ Rn|xTPfx ≤ 1}, Pf can be computed by efficient nu-
merical tools for semi-definite programming.
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2.4.2 Centralized Terminal Set Synthesis

In the following, a design method for ellipsoidal PI termi-
nal sets is given. Ellipsoidal PI sets are superior compared
to polytopic sets in terms of scalability of the synthesis
methods. Consider state and input constraints X = {x ∈
Rn | Hxx ≤ hx} and U = {u ∈ Rm | Huu ≤ hu}, with
Hx ∈ Rlx×n, hx ∈ Rlx , Hu ∈ Rlu×m, hu ∈ Rlu . Consider
furthermore a linear terminal control law κf(x) = Kfx and
a quadratic terminal cost Vf(x) = xTPfx. If the terminal
cost fulfills (8), it is a Lyapunov function and its level sets
Xf = {x ∈ Rn|xTPfx ≤ α} are PI for the system dynamics
x+ = (A+BKf)x (Blanchini 1999). The problem of find-
ing the largest feasible level set of Vf(x) can be posed as

max
α

α (10a)

s.t. σE(HT
x,i)

2α ≤ h2x,i ∀i ∈ {1, . . . , lx} , (10b)

σE(K
T
f H

T
u,j)

2α ≤ h2u,j ∀j ∈ {1, . . . , lu} , (10c)

where (Hx,i, hx,i) and (Hu,j , hu,j) correspond to the ith and
jth halfspace constraint of the polytopes X and U respec-
tively. Furthermore, the function σE(a) := maxx∈E a

Tx =

‖P−
1
2

f a‖2, where a ∈ Rn, is the support function of the 1-
level set E defined above and is available in explicit form
since E is ellipsoidal. Note that the equivalence aTx ≤
b ∀x ∈ E ⇔ σE(a) ≤ b holds. Problem (10) is a linear
program (LP) in only one variable, for which a variety of
efficient solution methods are available.

3 Stability of Nominal Cooperative Distributed MPC

3.1 Problem Statement

In cooperative distributed MPC, the global MPC problem
(7) is solved online by distributed optimization. A variety of
distributed optimization algorithms are available in the liter-
ature, e.g. the dual decomposition based subgradient method
or the alternating direction method of multipliers (ADMM),
see (Bertsekas & Tsitsiklis 1989). Most distributed optimiza-
tion algorithms work conceptually similar:

• The network-wide optimization problem is decomposed
into a number of subproblems, each of which is assigned
to one system in the network.
• In consecutive rounds, the subproblems are solved, lo-

cal solutions are shared among neighbors, and local first-
order steps towards the global optimizer are taken.

In presence of communication constraints according to As-
sumption 2, the key requirement for the application of dis-
tributed optimization is thus, that (7) is decomposable into
M subproblems, each of which involves variables (xNi

, ui)
only. Inspecting problem (7), we recognize that the con-
straints (7b)-(7d) fulfill this property, and the stage cost
l(x, u) can be chosen separable, i.e. as a sum of terms

li(xNi , ui). The main challenge is the construction of a sep-
arable terminal cost Vf(x) and a structured terminal set Xf,
fulfilling (8) for stability. In this paper, we impose the par-
ticular structure

Vf(x) =

M∑
i=1

Vf,i(xi) , (11a)

Xf(αi, . . . , αM ) = Xf,1(α1)× . . .×Xf,M (αM ) , (11b)

where Xf(αi, . . . , αM ) ⊆ Rn is a Cartesian product of
parametrized local sets Xf(αi). In Section 3.2 we show how
a separable terminal cost (11a) can be formulated and in Sec-
tion 3.3 we show how a terminal set (11b) can be defined.

3.2 Separable Terminal Cost

A simple approach to construct a terminal cost function of
form (11a), fulfilling (8b) and (8c), would be to require each
function Vf,i(xi) to decrease at every time step under a given
terminal control law. Such an approach would, however, be
very conservative. Consider for instance a system i whose
state xi rests in the origin, where Vf,i(xi) = 0. If the state
xj of a neighboring subsystem j ∈ Ni is nonzero, xi will
necessarily be driven out of the origin, causing Vf,i(xi) to
increase. Therefore, as proposed in (Jokić & Lazar 2009), it
is desirable to allow the local terminal cost to increase, as
long as at the same time the global terminal cost decreases,
which is formalized in the following theorem.

Theorem 6 (Theorem III.4 in (Jokić & Lazar 2009))
Let there be a structured control law κf(x) according to
Assumption 3. Let Xf ⊆ Rn be a PI set as defined in Defi-
nition 4. If there exist, ∀i ∈ M, functions Vf,i(xi), γi(xNi

)
and li(xNi

, κNi
(xNi

)), as well as functions β1,i(·), β2,i(·)
and β3,i(·) ∈ K∞, such that ∀x = coli∈M(xi) ∈ Xf the
following conditions (12) hold, then Vf(x) =

∑M
i=1 Vf,i(xi)

is a Lyapunov function for the system x+ = Ax + Bκf(x)
on Xf.

β1,i(||xi||) ≤ Vf,i(xi) ≤ β2,i(||xi||) ∀i ∈M, (12a)
β3,i(||xNi

||) ≤ li(xNi
, κNi

(xNi
)) ∀i ∈M, (12b)

Vf,i(x
+
i )− Vf,i(xi) ≤
−li(xNi

, κNi
(xNi

)) + γi(xNi
) ∀i ∈M, (12c)

M∑
i=1

γi(xNi) ≤ 0. (12d)

Conditions (12c) and (12d) ensure that while single terms
Vf,i(xi) may increase in some time steps, where the increase
is bounded by functions γi(xNi), the global function Vf(x)
decreases in every time step. This property can be used to
define time-varying local terminal sets, as shown in the next
section.
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3.3 Time-Varying Local Terminal Sets

The main idea is to define local terminal sets as level sets
of the local terminal cost functions, i.e. Xf,i(αi) = {xi ∈
Rni |Vf,i(xi) ≤ αi}, where 0 ≤ αi, ∀i ∈ M. For static
local values αi such level sets are, however, not invariant.
In particular, assuming (12), xi ∈ Xf,i(αi) ; ANixNi +
BiκNi(xNi) ∈ Xf,i(αi) since, as time evolves, the state
of any system i might leave Xf,i(αi) due to an increase in
Vf,i(xi). The key idea for addressing this issue is to update
the size of the local terminal sets in each time step, using
the previously introduced relaxation functions γi(xNi

).

Definition 7 (Local time-varying terminal sets) Let
κf(x

t) be a terminal control law satisfying Assump-
tion 3 and let there be a separable terminal cost
Vf(x

t) =
∑M
i=1 Vf,i(x

t
i), with corresponding relaxation

functions γi(x
t
Ni

) ∀i ∈ M, satisfying (12). Define α

such that X glob
f := {x ∈ Rn|Vf(x) ≤ α} ⊆ X and

∀x ∈ X glob
f : κf(x) ∈ U . Local terminal sets are defined as

Xf,i(α
t
i) := {xi ∈ Rni |Vf,i(xi) ≤ αti} ∀i ∈M , (13)

where the sizes αti are defined by the set dynamics

αt+1
i = αti + γi(x

t
Ni

) ∀i ∈M , (14)

with
∑M
i=1 α

0
i ≤ α and 0 ≤ α0

i ∀i ∈M. A global terminal
set for the MPC problem (7) is then defined as

Xf(α
t
1, . . . , α

t
M ) := Xf,1(αt1)× . . .×Xf,M (αtM ) . (15)

As the global terminal set (15) is a Cartesian product, it is
amenable to distributed optimization, it does however not
obviously fulfill the MPC stability conditions (8) due to
its time-varying nature. Therefore, in the following, it is
shown that Definition 7 provides sufficient conditions for (8),
i.e., (i) the local system states remain within the local time-
varying terminal sets under the terminal control law, and
(ii) the Cartesian product of these local terminal sets(15) is
recursively feasible. Property (i) is shown in the following.

Lemma 8 If there are sets Xf,i(α
t
i) ∀i ∈ M, as defined in

Definition 7, then the following holds:

xti ∈ Xf,i(α
t
i)⇒ xt+1

i ∈ Xf,i(α
t+1
i ) ∀i ∈M (16a)

0 ≤ αt+1
i ∀i ∈M , (16b)

where xt+1
i = ANi

xtNi
+BiκNi

(xtNi
) ∈ Xf,i(α

t+1
i ).

Proof: By Definition 7, Vf,i(xi) fulfills (12a) and is therefore
positive definite. Thus, xti ∈ Xf,i(α

t
i) implies 0 ≤ Vf,i(x

t
i) ≤

αti. By Definition 7, there exist Vf,i(xi), γi(xNi
), κNi

(xNi
)

and li(xNi
, κNi

(xNi
)), such that by (12c) it holds that

0 ≤ Vf,i(ANi
xtNi

+BiκNi
(xtNi

))

≤ Vf,i(x
t
i)− li(xtNi

, κNi
(xtNi

)) + γi(x
t
Ni

)

≤ Vf,i(x
t
i) + γi(x

t
Ni

) ≤ αti + γi(x
t
Ni

) = αt+1
i ,

which proves properties (16). �

Even if, as shown above in Lemma 8, the local system states
remain within the time-varying local terminal sets (13), it
is not obvious that the Cartesian product (15) of these sets
is recursively feasible w.r.t. the global state and input con-
straints. It can, however, be shown that if the global ter-
minal set in (15), at t = 0, is a subset of X glob

f , which,
as a level set of the Lyapunov function Vf(x) is PI w.r.t.
xt+1 = Axt+Bκf(x

t), then it remains in X glob
f at all future

time steps. This property is shown in the following Lemma.

Lemma 9 If there exist sets X glob
f and Xf,i(α

t
i) ∀i ∈M, as

defined in Definition 7, then property (17) holds:

Xf,1(αt1)× . . .×Xf,M (αtM ) ⊆ X glob
f ∀t ≥ 0 . (17)

Proof: The proof is done by induction. By Definition 7,
it holds that

∑M
i=1 α

0
i ≤ α and thus Xf,1(α0

1) × . . . ×
Xf,M (α0

M ) ⊆ X glob
f . Assuming

∑M
i=1 α

t
i ≤ α at any time

t ≥ 0, due to (14) and (12d) it holds that

M∑
i=1

αt+1
i =

M∑
i=1

αti +

M∑
i=1

γi(x
t
Ni

) ≤
M∑
i=1

αti ≤ α ,

which concludes the induction step and implies (17). �

The results presented in Theorem 6, Lemma 8 and Lemma 9
provide the ingredients to prove recursive feasibility and
asymptotic stability of the global closed-loop system xt+1 =
Axt+BκMPC(xt) in XN using standard arguments (Mayne
et al. 2000). Recursive feasibility follows from Lemma 8
and Lemma 9, asymptotic stability follows from Theorem 5,
as κf(x), Vf(x) and X glob

f together fulfill (8).

4 Distributed Synthesis of Cooperative Distributed
MPC Controllers for Networks of Linear Systems

In the previous section, a general formulation of a separa-
ble terminal cost and time-varying local terminal sets for
the MPC problem (7) have been proposed, such that (7) is
amenable to distributed optimization and stability and con-
straint satisfaction in closed-loop are guaranteed. In this sec-
tion, a synthesis approach for the proposed terminal cost and
set is presented, which consists of two parts. First, a dis-
tributed procedure to construct a separable quadratic Lya-
punov function Vf(x) = xTPfx, i.e., with Pf block-diagonal,
is presented in Section 4.1. Second, a distributed procedure
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to find X glob
f as the largest feasible level set of Vf(x) is pre-

sented in Section 4.2. Local terminal sets (13) follow from
Definition 7 in a straightforward way.

Throughout this section, we consider linear systems, poly-
topic state and input constraints, as well as quadratic
cost functions. In particular, the local constraints are
of the form Xi = {xi ∈ Rni |Hxi

xi ≤ hxi
} and

Ui = {ui ∈ Rmi |Hui
ui ≤ hui

} for all i ∈ M, where
Hxi

∈ Rlx,i×ni , hxi
∈ Rlx,i , Hui

∈ Rlu,i×mi and
hui
∈ Rlu,i . Moreover, local stage cost functions are de-

fined as li(xNi
, ui) = xTNi

QixNi
+ uTi Riui, and local

terminal cost functions are defined as Vf,i(xi) = xTi Pf,ixi
for all i ∈ M. We define local relaxation functions
γi(xNi

) = xTNi
ΓNi

xNi
for all i ∈ M. Note that the matri-

ces Qi, Ri and Pf,i are all positive definite, while ΓNi
is

allowed to be indefinite. Finally, we consider a structured
linear terminal control law κf(x) according to Assumption 3.

In order to simplify the notation, we introduce lift-
ing matrices Ti ∈ {0, 1}ni×n, Vi ∈ {0, 1}mi×m and
Wi ∈ {0, 1}nNi

×n for each i ∈ M. These lifting matrices,
similar to permutation matrices, have in each row exactly
one entry equal to 1, such that xi = Tix, ui = Viu and
xNi

= Wix.

4.1 Distributed Synthesis of Separable Terminal Cost

In this section, a distributed synthesis method for a separable
terminal cost is presented, which relies on the centralized
synthesis tools introduced in Section 2.4.1. The main idea
is to formulate a global synthesis problem such that it can
be solved by distributed optimization without central coor-
dination. In Section 4.1.1, a set of LMI conditions with one
global coupling constraint is derived. In Section 4.1.2, a suf-
ficient condition for this constraint is presented, exhibiting
only neighbor-to-neighbor coupling.

4.1.1 Structured LMIs with Global Coupling

As discussed in Section 3.2, a sufficient condition for Vf(x)
to be a Lyapunov function, is for the local cost terms to
satisfy the conditions stated in (12). For the considered linear
systems and quadratic functions, conditions (12c) and (12d)
are equivalent to the matrix inequalities

(ANi
+BiKNi

)TPf,i(ANi
+BiKNi

)− P̄f,i ≤
−(Qi +KT

Ni
RiKNi) + ΓNi , ∀i ∈M , (18a)
M∑
i=1

WT
i ΓNi

Wi ≤ 0 , (18b)

where P̄f,i := WiT
T
i Pf,iTiW

T
i is Pf,i lifted into the space of

neighboring states. In the following, it will be demonstrated
that conditions (18) can equivalently be written as a set
of M neighbor-to-neighbor coupled LMIs with one global
constraint.

Lemma 10 Condition (18) is equivalent to the set of LMIs


Ēi + FNi ENiA

T
Ni

+ Y T
Ni

BT
i ENiQ

1/2
i Y T

Ni
R

1/2
i

ANiENi + BiYNi Ei 0 0

Q
1/2
i ENi 0 INi 0

R
1/2
i YNi 0 0 Imi


≥ 0 ∀i ∈M ,

(19a)
M∑
i=1

WT
i FNiWi ≤ 0 , (19b)

where Ei := P−1f,i , Ēi := WiT
T
i P
−1
f,i TiW

T
i , ENi

:=

WiEW
T
i , FNi

:= ENi
ΓNi

ENi
and YNi

:= KNi
ENi

∀i ∈M.

Proof: The equivalence (18a) ⇔ (19a) is shown by left
and right-multiplication of (18a) with ENi and apply-
ing the Schur complement twice. The equivalence (18b)
⇔ (19b) follows from the fact that

∑M
i=1W

T
i ΓNi

Wi ⇔∑M
i=1W

T
i FNi

Wi, highlighting the role of FNi
as a sub-

stitution for ΓNi
to achieve convexity in (19a). For details,

see proof of Theorem IV.3 in (Conte et al. 2012). �

Remark 11 The fact that distributed unconstrained con-
trollers can be synthesized by distributed optimization meth-
ods has been recognized already in (Langbort et al. 2004).
The synthesis problem presented here is however different
in the sense that the increases in the local cost functions
are explicitly bounded by quadratic functions γi(xNi

) =
xTNi

ΓNi
xNi

, which are synthesized together with the termi-
nal cost. These functions are important for the design of
local time-varying terminal sets according to Definition 7.

Remark 12 Conditions (19) provide a constructive test for
existence of a distributed unconstrained controller stabi-
lizing the global system. Conservatism, compared to cen-
tralized linear controller synthesis, is introduced by (i) the
choice of a block-diagonal quadratic Lyapunov function and
(ii) the structured gain matrix Kf. The derivation of general
conditions for the existence of solutions to (19) is beyond the
scope of this paper. Related literature includes (Šiljak 1991),
where conditions on decentralized stabilizability are pre-
sented, and (Ho & Chu 1972), where it is shown that for
networks of partially nested systems, a distributed linear
controller is optimal, provided the network is stabilizable.

In order to add a cost metric to the conditions in (19), we
propose the maximization of the volume of the 1-level set of
Vf(x). Maximizing this volume corresponds to minimizing
the determinant of Pf, which is equivalent to maximizing the
determinant of E = P−1f , which in turn can be achieved by
maximizing the concave operator log det(E). This operator,
as stated in the following proposition, is separable for a
block-diagonal E and thus directly amenable to distributed
optimization.
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Proposition 13 For a matrix E = diagi∈M(Ei), it holds
that

log det(E) =

M∑
i=1

log det(Ei) . (20)

The synthesis of a structured Lyapunov function according
to Theorem 6 can thus be posed as a decomposable convex
optimization problem.

4.1.2 Structured LMIs with Neighbor-to-Neighbor Cou-
pling

The main difficulty in the synthesis LMIs (19) is constraint
(19b), which couples all systems in the network in one sin-
gle constraint, as similarly recognized in (Hermans, Lazar
& Jokić 2010). In the following, we will describe a suffi-
cient condition for (19b), which is based on neighbor-to-
neighbor coupling. Consider upper-bounding the matrices
FNi

by block-diagonal matrices SNi
, resulting in the con-

ditions

FNi
≤ SNi

∀i ∈M , (21a)
M∑
i=1

WT
i SNi

Wi ≤ 0

⇔
∑
j∈Ni

TjW
T
j SNj

WjT
T
j ≤ 0 ∀i ∈M , (21b)

where the equivalence in (21b) is due to SNi
being block-

diagonal. The set of constraints (21) is clearly sufficient
for (19b). Moreover, (21a) involves only local variables and
the right hand side of (21b) represents M LMIs, each of
which involves variables of neighboring systems only, as
exemplified in Fig. 1. Consequently, (21) provides sufficient
conditions for replacing (19b), which renders the terminal
cost synthesis problem amenable to distributed optimization
under the given communication constraints.

Fig. 1. Illustration of constraint (21) for a network of three systems
with N1 = {1, 2}, N2 = {1, 2, 3} and N3 = {2, 3}.

4.2 Distributed Synthesis of Structured Terminal Sets

Given a separable terminal cost function Vf(x) = xTPfx
fulfilling condition (12), a feasible level set thereof can be

used as a global set X glob
f = {x ∈ Rn|xTPfx ≤ α} ⊆ X , as

required in Definition 7. Once such a global level set with
size α is given, the initial local set sizes α0

i can be allocated
according to

∑M
i=1 α

0
i ≤ α. The largest feasible level set

of Vf(x) can be found, analogously to the centralized case
described in Section 2.4.2, by solving the linear program

αmax := max
α

α (22a)

s.t. σE(HT
xi,j)

2α = ‖P−
1
2

f,i H
T
xi,j‖

2
2α ≤ h2xi,j

∀i ∈M , j ∈ {1, . . . , lx,i}, (22b)

σE(K
T
Ni
HT
ui,j)

2α = ‖P−
1
2

f,Ni
KT
Ni
HT
ui,j‖

2
2α ≤ h2ui,j

∀i ∈M , j ∈ {1, . . . , lu,i} , (22c)

where Pf,Ni
:= WiPfW

T
i ∀i ∈ M. The constraints (22b)

and (22c) represent conditions on the support function of
the α-level set of Vf(x). In particular, (22b) ensures that
any point x ∈ X glob

f fulfills the polytopic state constraints
x ∈ X and (22c) ensures that the polytopic input constraints
Kfx ∈ U are satisfied. The structure in problem (22) allows
for its solution by distributed optimization methods, e.g., as
proposed in (Schizas, Ribeiro & Giannakis 2008).

5 Summary of Distributed Synthesis and Closed-Loop
Operation of Nominal Cooperative Distributed MPC

In this section, we briefly summarize the main steps of the
proposed nominal cooperative distributed MPC for networks
of linear systems. The procedure for distributed controller
synthesis is described in Algorithm 1. In Step 1, a separable
quadratic terminal cost Vf(x) =

∑M
i=1 x

T
i Pixi, a struc-

tured linear terminal control law κf(x) = coli∈M(KNixNi)
according to Assumption 3, and relaxation functions
γi(xNi

) = xTNi
ΓNixNi ∀i ∈ {1, . . . ,M} are computed,

which satisfy condition (12). Subsequently, in Step 2, the
maximum feasible level set of the global terminal cost
function Vf(x) is found to serve as an outer bound X glob

f for
the Cartesian product (15) of local terminal sets. Finally, a
feasible initial configuration for the local terminal sets (13)
is obtained in Step 3. The components constructed during
the execution of Algorithm 1 can then directly be used in
the MPC problem (7) to operate a stabilizing cooperative
distributed MPC controller in closed-loop.

The main steps required for distributed closed-loop opera-
tion are summarized in Algorithm 2. Note that in Algorithm
2, u∗i (x

t, 0) and x∗Ni
(xt, N) are obtained from the optimal

solution of the global MPC problem (7), which is solved by
distributed optimization in Step 2, for the current state mea-
surement xt. In particular, given optimal finite-time input
and state sequences u∗(xt) = {u∗(xt, 0), . . . , u∗(xt, N −
1)} and x∗(xt) = {x∗(xt, 0), . . . , x∗(xt, N)}, it holds that
u∗i (x

t, 0) = Viu
∗(xt, 0) and x∗Ni

(xt, N) = Wix
∗(xt, N).
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Algorithm 1 Offline synthesis of local terminal costs and
time-varying local terminal sets as defined in Definition 7

1: Maximize (20) subject to (19a) and (21), by distributed
optimization, to find Vf,i(x, i) = xTi Pf,ixi as well as
κNi(xNi) and γi(xNi) = xTNi

ΓNixNi fulfilling (12),
locally at each i in {1, . . . ,M}.

2: Solve LP (22) by distributed optimization to find the
largest feasible level set X glob

f = {x ∈ Rn|Vf(x) ≤
αmax}, where αmax is found locally at each system.

3: Find α0
i ∀i ∈ {1, . . . ,M}, such that

∑M
i=1 α

0
i ≤ αmax

(e.g. by setting α0
i = α/M for all i), to define initial

local terminal sets (13).

Algorithm 2 Online distr. MPC, executed at every time step
1: Each system i ∈ {1, . . . ,M} measures local state xti.
2: Solve MPC problem (7) by distributed optimization,

where systems in Ni iteratively communicate.
3: Each system i ∈ {1, . . . ,M} applies the local control

input u∗i (0) obtained in step 2.
4: Each system i ∈ {1, . . . ,M} updates the local

terminal set to Xf,i(α
t+1
i ), where αt+1

i = αti +
x∗TNi

(xt, N)ΓNi
x∗Ni

(xt, N), according to (14).

6 Extension of Cooperative Distributed MPC to Refer-
ence Tracking

This section presents the main steps for extending the ideas
presented in Section 3 and Section 4 to the problem of track-
ing piecewise constant references. The discussion covers
common reference tracking formulations with focus on con-
vergence guarantees. Offset-free techniques such as (Mäder,
Borrelli & Morari 2009) are not considered, but could be
added to the proposed problem setup. In tracking MPC, the
system output is required to follow a given reference yt. We
assume that for a given yt, there exist points (xs, us) satis-
fying the global equilibrium condition[

A− In B
C 0

][
xs

us

]
=

[
0

yt

]
. (23)

Due to the structure in the matrices A, B and C defined
in (1), (23) can be used, given a reference yt and using
a separable objective function, to find an equilibrium pair
(xs, us) by distributed optimization.

If an equilibrium pair (xs, us) is given, a distributed track-
ing MPC can be directly reformulated as distributed regu-
lation MPC by defining the system state as ∆x := x − xs.
For stability, as in the regulation case, a separable terminal
cost and a structured terminal set are required. The main
difficulty is the fact that the terminal set is centered around
the target steady state xs. Thus, if xs changes online, a new
terminal set needs to be synthesized online, which may be
prohibitively time-consuming. A solution to this problem,
which will be further investigated in the following, is the

use of a parameterized terminal set, as proposed in (Limon,
Alvarado, Alamo & Camacho 2008).

Definition 14 (Parametrized Invariant Set for Tracking)
Let (xs, us) be an equilibrium point satisfying (23). Consider
a control law κf(·) : Rn → Rm, which stabilizes the linear
system x+ = Ax+Bκf(x). A set Xtr ⊆ R2n+m is a feasible
invariant set for tracking, if the following conditions hold
for each (∆x, xs, us) ∈ Xtr: ∆x+xs ∈ X , us +κf(∆x) ∈
U , (∆x, xs, us) ∈ Xtr ⇒ (A∆x+Bκf(∆x), xs, us) ∈ Xtr.

6.1 Formulation of Parametrized Local Time-Varying Ter-
minal Sets for Cooperative Distributed Tracking MPC

A separable terminal cost Vf(∆x) satisfying (12) under the
assumptions of Theorem 6 can be defined and computed as
proposed in Section 3 and Section 4. A parametrized set
according to Definition 14 can then be defined as a level set
of the function

Vtr(∆x,xs, us) := Vf(∆x) + Vx(xs) + Vu(us)

= ∆xTPf∆x+ xTs Pxxs + uTs Puus , (24)

where Pf := diagi∈M(Pf,i), Px := diagi∈M(Px,i), Pu :=
diagi∈M(Pu,i), and where Pf,i, Px,i ⊆ Rni and Pu,i ⊆ Rmi

∀i ∈M. Note that under the assumptions of Theorem 6 and
due to the properties (12) of Vf(∆x), any feasible level set
X glob

tr := {(∆x, xs, us) ∈ R2n+m | Vtr(∆x, xs, us) ≤ α} is
invariant in the sense of Definition 14, independent of how
Vx(xs) and Vu(us) are chosen.

Due to the block-diagonal property of Pf, Px and Pu, local
time-varying terminal sets for tracking, which are locally
parametrized in (xs,i, us,i) ∀i ∈M, can be defined as

Xtr,i(α
t
i) = {(∆xi, xs,i, us,i) ∈ R2ni+mi |

∆xTi Pf,i∆xi + xTs,iPx,ixs,i + uTs,iPu,ius,i ≤ αti} ∀i ∈M,

(25)

where αti is time-varying according to (14). Similarly as
in the regulation case in Lemma 8, it can be shown that
if the point (∆xi, xs,i, us,i) is contained in Xtr,i(α

t
i), then

the point (ANi∆x + BiκNi(∆xNi), xs,i, us,i) will be con-
tained in Xtr,i(α

t+1
i ). Furthermore, as in the regulation case

in Lemma 9, given a feasible global invariant set for track-
ing X glob

tr , it can be shown that if α0
1 + . . .+ α0

M ≤ α, then
the Cartesian product Xtr,1(αt1) × . . . × Xtr,M (αtM ) of lo-
cal time-varying terminal sets will remain within X glob

tr at
all times t ≥ 0. Thus, the main nominal results from Sec-
tion 3 extend to the reference tracking case, see also (Conte,
Zeilinger, Morari & Jones 2013) for more details.

7 Numerical Examples

In this section, the methodology for cooperative distributed
MPC presented in this paper is illustrated by a numerical
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example simulating the behavior of a chain of masses m =
1 kg, connected by springs with k = 3 N/m and dampers
with b = 3 Ns/m, see Fig. 2. The continuous-time ODEs
describing the dynamics are discretized by the forward Euler
method with a sampling time of 0.2 s. The resulting linear
discrete-time system is of form (1), with xi containing the
position and velocity of mass i and ui being a force applied
to mass i. Constraints are imposed as ‖xi‖∞ ≤ 10 and
‖ui‖∞ ≤ 1, QNi and Ri are identity, and the MPC horizon
is N = 5. The local terminal cost terms Vf,i(xi) as well
as the local relaxation functions γi(xNi) are designed to be
quadratic functions as introduced in Section 4.

Fig. 2. Chain of masses, connected by spring and damper elements.

The closed-loop behavior for basic regulation to the origin
is investigated on a chain ofM = 5 masses, comparing three
controller setups: (i) centralized MPC with a terminal set de-
fined by the maximum volume feasible ellipsoid character-
ized by a dense Lyapunov matrix P , (ii) distributed MPC as
proposed in this paper and (iii) distributed MPC with the ori-
gin as a trivial terminal set. The initial states are zero for all
systems except for the first one, i.e., x1 = [0.27 m, 0 m/s]T .
The system is simulated for 15 steps, its closed-loop behav-
ior is illustrated in Fig. 3. Note that the trajectories for se-
tups (i) and (ii) are quite similar, illustrating the proximity
in performance between (i) and (ii). Furthermore, Fig. 3(c)
depicts the terminal set sizes of masses 1, 2 and 5 under dis-
tributed MPC as proposed in this paper. Note that the local
terminal set sizes change considerably during convergence
of the closed-loop system.

The region of attraction (RoA) of the closed-loop system is
analyzed in Fig. 4, showing that for short prediction hori-
zons, there is a significant advantage in terms of RoA size
when non-trivial, locally time-varying terminal sets are used
instead of single-point terminal sets. For long prediction
horizons, the RoAs of both controllers converge to the max-
imum RoA for the given constrained system. Note that each
data point in Fig. 4 is a relative estimate of the extension of
the RoA, either for controller (ii) or (iii) under a given hori-
zon length N . Each estimate is obtained as the average of
RoA extensions in 100 random directions. The estimate is
relative as the averages for setup (ii) and (iii) is normalized
by the respective average for controller setup (i).

8 Conclusions

In this paper, two contributions regarding stability and syn-
thesis of cooperative distributed MPC were presented: (i)
the formulation of a cooperative distributed MPC controller,
which is stabilizing and suitable for distributed optimiza-
tion in closed-loop and (ii) the synthesis procedure for such
a controller, which can be executed in a purely distributed
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manner. The combination of (i) and (ii) yields a framework
for cooperative distributed MPC without central coordina-
tion, both for a nominal and for a reference tracking setup.
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