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Verification is the fundamental step that any turbulence simulation code has to be

submitted to in order to assess the proper implementation of the underlying equa-

tions. We have carried out a cross comparison of three flux tube gyrokinetic codes,

GENE [F. Jenko et al., Phys.Plasmas 7,1904 (2000)], GKW [A.G. Peeters et al., Com-

put.Phys.Commun, 180, 7053 (2009)] and GS2 [W. Dorland et al., Phys.Rev.Lett.

85, 5579 (2000)], focusing our attention on the effect of realistic geometries described

by a series of MHD equilibria with increasing shaping complexity. To simplify the ef-

fort, the benchmark has been limited to the electrostatic collisionless linear behaviour

of the system. A fully gyokinetic model has been used to describe the dynamics of

both ions and electrons. Several tests have been carried out looking at linear stability

at ion and electron scales, where for the assumed profiles ITG/TEM and ETG modes

are unstable. The capability of the codes to handle a non-zero ballooning angle has

been successfully benchmarked in the ITG regime. Finally, the standard Rosenbluth-

Hinton test has been successfully carried out looking at the effect of shaping on Zonal

Flows (ZFs) and Geodesic Acoustic Modes (GAMs). Inter-code comparison as well as

validation of simulation results against analytical estimates have been accomplished.

All the performed tests confirm that plasma elongation strongly stabilizes plasma

instabilities as well as leads to a strong increase in ZF residual and GAM damping.
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I. INTRODUCTION

The level of realism reached today by certain gyrokinetic codes and the computational

power that has become available in the last decade have allowed the usage of numerical

simulations to model and to some extent also reproduce the behaviour of magnetically

confined plasmas, e.g. Ref.1. It is fundamental for such codes to verify that they correctly

implement and solve the underlying gyrokinetic model, regardless of the specific numerical

algorithm adopted to solve the corresponding equations. The work by Dimits et al.2 can

be considered among the first systematic benchmark effort of gyrokinetic codes based on a

standard test case, the so-called Cyclone Base Case (CBC). Since then, various efforts have

already been successfully carried out involving different codes, both in the local (flux tube)

limit as well as considering a global representation, i.e. retaining the radial dependence in

all equilibrium quantities.3–10 With some exceptions, e.g. Refs. 6–8, these comparisons often

use an approximate analytical circular model to describe the plasma equilibrium and ad-

hoc temperature and density profiles. Moreover a simplified adiabatic model for describing

the electron dynamics has usually been considered, with the main purpose of reducing the

overall required computational cost.

However, because of the continous evolution of the gyrokinetic codes, which are now

mostly electromagnetic, multi-species, interfaced to realistic MagnetoHydroDynamic (MHD)

equilibria and used to address transport at both ion and electron scales, a more sophisticated

series of benchmarks than the standard CBC case is required to test the codes in all these

various regimes. This paper can thus be viewed as a contribution to the current emphasis

on validation and verification of fusion-relevant simulations11.

We benchmark the three codes GENE,12,13 GKW14,15 and GS216 in the linear flux tube

limit including non-adiabatic electron dynamics and a non-circular plasma shape. We there-

fore consider here fully gyrokinetic ions and electrons, and we look at geometrical effects by

interfacing the codes with realistic numerical MHD equilibria. Carrying out such a bench-

mark might appear quite straightforward at first glance. Such an effort requires, however,

not only to correctly handle the equilibrium provided by an MHD equilibrium solver (we

shall make use of the CHEASE code17 for the cases considered here), but also to understand

how to cast the results from each code specific coordinate system to a common representation

format. This is particularly important when dealing with non-circular plasmas.
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This benchmark effort is in fact a natural extension of what has already been published

in Ref. 18, where the five numerical equilibria that are considered here have been intro-

duced. As already pointed out in this original paper, these equilibria are explicitly built to

potentially allow both local and global benchmarks and relative comparison between these

two representations. In particular, an effort was made to have similar q-profiles at all radial

positions and not only at a specific location. In this paper any finite machine size effect

on instabilities is neglected and left for future study. In carrying out the benchmarks, we

proceed in a first stage according to a double blind approach, where an attempt was made

with each code results to converge within a certain relative variance level, typically 2− 3%,

before being confronted with results from the other codes. Then, whenever differences were

found, the convergence effort was further pursued. This way of proceeding allowed to reach

a 1% agreement between different codes and also to identify and correct a limited number

of code issues, which is exactly the purpose of this benchmark effort.

We put a particular effort in writing this paper to clearly explain all the relevant details,

such that anyone can carry out the same series of benchmarks. All the input data, as well

as the results, are publicly available online19.

The rest of the paper is organized as follows: in Section II we describe the MHD equi-

libria and the setup of the simulations; in Section III results for the linear stability at both

ion and electron scales are compared. In Section IV we benchmark the effect of a finite

ballooning angle on the linear stability and finally in Section V the Rosenbluth-Hinton test

is carried out looking at the linear dynamics of Zonal Flows (ZFs) and at the properties

of the Geodesic Acoustic Mode (GAM). A brief description of the GENE, GKW and GS2

codes is given in Appendix A, B and C, respectively containing a derivation of the relevant

geometrical quantities necessary to carry out the benchmarks.

II. THE BENCHMARK CASES

For this benchmark we consider five different numerical plasma equilibria obtained using

the ideal MHD solver CHEASE17, which provides the axisymmetric equilibrium magnetic

field B with a pressure profile obtained from given density and temperature profiles for

the different plasma species. A detailed description of the cases can already be found in
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Ref. 18. For the sake of clarity we briefly present them again here. These equilibria are

inspired by the DIII-D shot underlying the Cyclone Base Case2 which was a fully shaped

plasma corresponding to a Single Null Diverted (SND) configuration. The CBC benchmark,

however, just considers circular concentric flux surfaces with only plasma and safety factor

profiles taken from the experiment. Among the shapes we consider here, Case I has the

most complex geometry and is derived directly from the DIII-D experimental equilibrium

i.e. a plasma with up-down asymmetry, positive triangularity δ, elongation κ greater than

unity and realistic Shafranov shift ∆. The shape complexity is then progressively reduced by

removing one shaping effect in each subsequent equilibrium. This is achieved by modifying

the Last Closed Flux Surface (LCFS) shape. Therefore Case II is an up-down symmetric

triangular plasma, Case III corresponds to an elongated geometry (triangularity δLCFS=0),

Case IV is a circular plasma (elongation κLCFS = 1), and finally Case V is a zero β plasma

with almost concentric flux surfaces (Shafranov shift ∆LCFS ' 0). The flux surface contours

for the five equilibria are depicted in Figure 1, while the geometrical parameters describing

the LCFS are reported in Table I.

Regarding the triangularity of the up-down asymmetric Case I, this shaping parameter has

been estimated separately for the upper and lower halves of the corresponding magnetic

geometry. This was carried out by considering two separate up-down symmetric equilib-

ria, respectively based on the upper and lower half of the LCFS of Case I, and providing

δLCFS(upper) = 0.15 and δLCFS(lower) = 0.35 (see also Table I ). Note that the triangularity

of Case II is set to δLCFS = 0.15, i.e. the upper value of Case I.

Case q95 κLCFS δLCFS ∆LCFS

I 3.92 1.68 0.15(u)/0.35(l) -0.0443

II 3.87 1.68 0.15 -0.0531

III 3.70 1.68 -0.002 -0.0534

IV 3.66 1.00 0.015 -0.0752

V 3.72 1.00 0.0 -0.0262

Table I. Parameters characterizing the Last Closed Flux Surface of the five equilibrium cases. For

the up-down asymmetric geometry of Case I, the values of upper (u) and lower (l) triangularity

are provided.
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In order to completely describe the plasma equilibrium it is necessary to specify, in

addition to the shape of the LCFS, the safety factor profile as well as the total pressure

profile. This is done by choosing similar profiles with respect to the minor radius r for the

different equilibria and built such that at the radial position r/a=0.5, the local values of

safety factor qs, magnetic shear ŝ = (r/q)(dq/dr) and of temperature and density gradients

are as close as possible to the CBC ones (qs=1.4 and ŝ=0.8, R0/Ln=2.22 and R0/LT=6.91

respectively). Throughout all the paper, r indicates the geometric local minor radius of

a given flux surface, defined as r = [Rmax −Rmin] /2, Rmax and Rmin being respectively

the maximum and minimum major radius of the flux surface evaluated at the elevation of

the magnetic axis. One defines the minor radius a of the LCFS as a = r(LCFS). The

geometric center of a given flux surface is defined as Rgeom = [Rmax +Rmin] /2, such that

the major radius of the machine is given by R0 = Rgeom(LCFS) while the position of the

magnetic axis corresponds to Raxis = Rgeom(0). The local aspect ratio is therefore defined as

ε(r) = r/R0. For all the cases, a = 0.6 m and R0 = 1.68 m have been taken, corresponding

to an inverse aspect ratio a/R0 = 0.36, and the flux tube considered in the gyrokinetic

simulations has been centered at r/a=0.5, such that ε=0.18. For all the simulations, a
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Figure 1. MHD equilibrium Cases I to V. Shown are constant contours of the poloidal magnetic

flux function ψ/ψ(LCFS) . The contour of the flux surface at r/a = 0.5 considered for the local

simulations is depicted in black (Color online).

deuterium plasma is considered (assuming real mass ratio mD/me=3670, mD and me being

respectively deuterium and electron masses), and as the benchmark is carried out in the

flux tube limit, only the values of normalized inverse temperature and density gradient

lengths R0/LT,n = R0d log(T, n)/dr at the position of interest are required. As already

mentioned, these values are set to R0/LT=6.91 and R0/Ln=2.22 for all the five cases. The

same temperature is assumed for ions and electrons (τ = Te/Ti = 1). Collisions are neglected
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and no background flows are considered. Note that the inverse gradient lengths R0/LT,n are

evaluated as derivatives of the profiles with respect to the geometric minor radius r. The

true normalized gradients driving the instabilities at a given position on a magnetic surface

are however given by R0|∇ log(T, n)| = R0d log(T, n)/dr|∇r|, where the geometrical factor

|∇r| is in general different from unity and not constant on a magnetic surface in a shaped

plasma. One may thus estimate on a given flux surface an effective flux-surface-averaged

gradient given by 〈R0|∇ log(T, n)|〉 = R0/LT,n〈|∇r|〉. Here 〈A〉 indicates the flux surface

average of a quantity A and is defined by

〈A〉 = lim
∆ψ→0

1

∆V

∫
∆V

A d3x, (1)

where ∆V (ψ) is the volume between the flux surface ψ=const and ψ + ∆ψ = const. The

corresponding values of 〈|∇r|〉 evaluated at r/a=0.5 are listed in Table II and shown as a

function of elongation in Figure 2. Note that in all the graphs comparing results pertaining

to different geometries, the same color coding has been used to help the reader (color online):

red for Case I, blue for Case II, black for Case III, green for Case IV and magenta for Case V.

The nice alignment of the data in this plot already hints towards elongation being the most

important shaping parameter considered here. Note that for all the Cases with elongation,

the mid-radius values differ while the edge elongations are kept constant κLCFS = 1.68 (see

Tables I and III). Elongation penetrates differently with different edge triangularities, as

noted in Ref. 20, and a lower δ leads to a larger κ in the core (Case III).

Case I II III IV V

〈|∇r|〉 0.907 0.871 0.864 1.040 1.003

〈R0|∇ log n|〉 2.014 1.933 1.918 2.308 2.226

〈R0|∇ log T |〉 6.269 6.017 5.969 7.184 6.929

Table II. Values of flux surface averaged 〈|∇r|〉 and the corresponding values of effec-

tive flux-surface averaged temperature and density gradient lengths for the five Cases

(R0〈|∇ log(T, n)|〉=R0/Ln,T 〈|∇r|〉).

Of particular interest in this benchmark is the possibility to study the effect of the usual

shaping parameters on plasma behaviour by simply comparing the five Cases. We note that

when moving from one case to another, although one specific edge shaping parameter is
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Figure 2. Flux surface averaged 〈|∇r|〉 evaluated at r = 0.5 versus elongation κ. Numbers identify

the corresponding case.

sensibly varied intentionally, all the other parameters change to some degree as well.

In order to facilitate the understanding of the effect of the various shaping parameters, an

interface with Miller’s equilibrium21 will be exploited in a few cases (results shown in Figs. 6

and 15) using the GENE code. The Miller parametrization considered in GENE parametrizes

in a poloidal plane ϕ = const the contour of a given magnetic surface with geometric minor

radius r = const by a poloidal angle θ (in general different from the geometric angle) and is

given in cylindrical coordinates (R,Z, ϕ) by22

R(r, θ) = Rgeom(r) + r cos {θ + arcsin [δ(r) sin θ]} , (2)

Z(r, θ) = Zgeom(r) + κ(r)r sin [θ + ζ(r) sin(2θ)] , (3)

where the elongation κ, triangularity δ and squareness ζ have been introduced. Zaxis

Case qs s κ δ ζ ∆ αMHD dRgeom/dr dκ/dr dδ/dr dζ/dr

I 1.382 0.804 1.3015 0.0812 9.01 10−4 -0.0127 0.515 -0.1383 -0.0765 0.1065 -0.02

II 1.382 0.778 1.4287 0.0260 5.22 10−4 -0.0132 0.5338 -0.1488 -0.0766 0.0437 -0.054

III 1.389 0.751 1.4723 -0.0070 2.83 10−3 -0.0139 0.5425 -0.1569 -0.0728 -0.0140 0.003

IV 1.450 0.764 1.0443 0.0065 5.13 10−4 -0.0206 0.5552 -0.2269 -0.0239 0.0001 0.01

V 1.427 0.847 1.0124 0.0014 1.04 10−4 -0.0045 0.0 -0.0587 -0.0036 0.0148 0.002

Table III. Parameters characterizing the five flux surfaces of interest computed according to Eqs.(2)

and (3).
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Figure 3. Values of the usual shaping parameters: (a) Shafranov shift ∆, (b) elongation κ and

(c) triangularity δ evaluated at the position r/a = 0.5 for the five test cases. The same quantities

measured at the LCFS are shown with empty symbols. The values of κ and δ are computed

according to the Miller parametrization given in Eqs.(2) and (3), and therefore shown only for the

plasma boundary of the up-down symmetric geometries (cases II to V), whereas for all equilibria

the Shafranov shift ∆ is evaluated as ∆ = [Rgeom −Raxis]/Raxis.

indicates the elevation of the magnetic axis with respect to the equatorial mid-plane. In

order to evaluate these parameters, the global CHEASE equilibrium is fitted according to

Eqs. (2) and (3) and the radial derivatives of the shaping parameters [κ′(r), δ′(r), ζ ′(r)],

also required for implementing the Miller equilibrium in the gyrokinetic equations, are

evaluated in the neighborhood of the flux surface of interest. The parametrization given

by Eqs. (2) and (3) does not require to specify the value of the Shafranov shift, instead

it requires the value of dRgeom/dr to build all the geometrical quantities required to solve

the gyrokinetic equations. The actual parameters characterizing the flux surface r/a = 0.5

are listed in Table III for the five equilibria considered. For completeness the values of the

Shafranov Shift ∆, defined as [Rgeom(r)−Raxis] /Raxis, and αMHD = −q2
sR0(dβ/dr) where

β = 2µ0p/B
2
mag, p and B2

mag/2µ0 being respectively the local thermal pressure provided by

the MHD equilibrium and the magnetic pressure estimated with the magnetic field Bmag

on axis, are tabulated as well. As depicted in Figure 3 and quantified in Table III, the

different shaping parameters have different radial penetration depths. In particular it is to

be noted for Case II, with finite triangularity δLCFS = 0.15 at the LCFS, that the remaining

triangularity at r/a=0.5 is reduced by more than 80% to δ = 0.026, illustrating the weak

penetration depth of this shaping parameter. We also remark that the higher triangularity
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that characterises Case I is due to an effectively higher δLCFS of the fully shaped plasma

compared to Case II. Elongation however, which remains finite down to the magnetic axis

and as noted above is favored by small δ, is for example reduced only by ≈ 10% in Case III,

going from κLCFS=1.68 to κ=1.47 at r/a = 0.5.

III. LINEAR kθ-SPECTRA

First, a linear electrostatic benchmark is performed, considering instability spectra with

wave-numbers up to the electron Larmor radius scales. All the five cases described in Sec.

II are characterized by a mixed Ion Temperature Gradient (ITG) - Trapped Electron Modes

(TEM) regime at the ion Larmor radius scale, as already shown in Ref. 18, while Electron

Temperature Gradient (ETG) driven modes dominate the spectra at electron Larmor radius

scales. The finite pressure gradient contribution is kept in computing the curvature drift vc

for a given species j:

vc =
v2
‖

Ωj

(
∇× B

B⊥

)
=
v2
‖

Ωj

B

B
×
(
∇ lnB +

β

2
∇ ln p

)
(4)

having made use of the MHD equilibrium force balance ∇p = j × B and Ampére’s law

∇×B = µ0j, j standing for the plasma current and Ωj = qjB/mj the cyclotron frequency

for species j with mass mj and electric charge qj. The value of β is computed consistently

with the CHEASE equilibrium. The effect of the pressure gradient is small but not negligible,

especially at the ITG to TEM transition, which is shifted to lower wave-numbers when this

pressure term is accounted for.

A. The GENE code

At ion scales, the GENE code has been run in its eigenvalue (spectral) version23–25 in order

to recover not only the most unstable mode but the subdominant branches of the dispersion

relation as well. At ETG scales, because of the absence of strong subdominant modes, the

initial value (time evolution) approach was used for being significantly more effective than

the eigenvalue procedure in determining the growth rates of the most unstable modes. The

GENE code employs a field-aligned coordinate system (x, y, z) to represent the fluctuation
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fields in configuration space. Here x defines the radial direction, y the binormal and z

parametrizes a field line, thus the latter is usually referred to as the “parallel” direction.

Parallel velocity v‖ and magnetic moment µ are the velocity space variables. For a more

detailed description, the reader is referred to Appendix A and Refs. 12 and 26. In the flux-

tube limit, both the radial x and binormal y directions are Fourier transformed. For the

considered axisymmetric system, linear modes have a fixed ky Fourier mode (axisymmetry

corresponds to invariance in the y direction), which is related to a toroidal mode number n

according to Eq. A5. All the simulations have been carried out using nkx = 32 radial modes

connected because of the parallel boundary condition, while nz = 64 points have been used

to discretize the “parallel” direction z. For the velocity space, unless specified differently,

a uniform grid composed of nv‖=128 points between 0 < v‖ < 4.24vj was used to discretize

v‖ direction, while nµ=32 Gauss-Laguerre integration points between 0 < µ < 9Tj/B0 were

used for the µ direction. Here vj =
√
Tj/mj stands for the thermal velocity of species j

(we note that the different codes use different normalization rules, the reader is referred

to Appendixes A 3, B 2 and C 2 for more details regarding GENE, GKW and GS2 codes

respectively).

B. The GKW code

The GKW code also considers a field-aligned coordinate system noted (r, ζ, s) built from

the Hamada coordinates. Here r is the radial direction, ζ the binormal and s (one of the

Hamada coordinates) is referred to as the “parallel” direction; as for the GENE code, parallel

velocity v‖ and magnetic moment µ are used for discretizing the velocity space. The GKW

coordinate system is briefly presented in Appendix B, a detailed description is given in

Ref. 14. Again a Fourier decomposition is used for the flux-tube representation in both r

and ζ directions. The simulations have been carried out considering nkr=25 radial modes kr

connected via the parallel boundary condition, while ns=35 points were used to discretize

the s direction. Uniform grids in both v‖ and µ, with the same upper limits as considered

for GENE, have been adopted for the velocity space and discretized using nv‖×nµ = 128×8

points respectively.
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C. The GS2 code

The GS2 coordinate system (X, Y, θ) and its Fourier representation are directly related

to the ballooning representation of a fluctuating field (see Appendix C and Ref. 16 for the

details). All the simulations shown here have been performed considering nkX=15 connected

radial modes, while a parallel resolution of nθ = 32 has been used to discretize a magnetic

field line along one poloidal turn. Differently from GENE and GKW, in the GS2 code

energy E and pitch angle λ = v2
⊥/(v

2B0) are used as velocity space variables to represent

the distribution function, while the integration is carried out according to a Gauss-Legendre

distribution of points. For these simulations nλ = 24 points are used to discretize the λ

direction while nE = 18 for E . The maximum value of the E-grid is set to 11.3 mjv
2
j/2.

D. Results

We point out that the simulations performed with the GENE code have been carried out

with an higher resolution in both the radial and “parallel” directions with respect to GKW

and GS2 with the aim of providing reference results well converged in all directions. We

nevertheless remark that using a lower resolution e.g. nkx×nz×nv‖×nµ = 32×32×64×16

in GENE is sufficient to provide growth rates and frequencies converged within 5% for all

the microturbulence regimes and plasma shapes being considered here. We also note that

the efficient parallelization scheme adopted in GENE allows to carry out the most resolved

runs without a significant increase of the computational cost. A similar strategy was used

for setting the discretization of the velocity space, which as will be shown turns out to be

crucial, especially as one needs to correctly resolve the trapped-passing particle boundary.

The choice of (v‖, µ) naturally requires a higher number of points to resolve this boundary

compared to a discretization along (E , λ), which explains the difference between the GENE

and GKW setups with respect to GS2. The trapped-passing boundary is indeed aligned to

a Cartesian (E , λ) grid while it is diagonal to a (v‖, µ) grid.

One of the main difficulties arising when comparing different codes is the dependence of

the corresponding results on code-specific coordinate systems. This is particularly critical

when considering plasmas with non-circular shapes, as differences between various coordinate

systems become significant. We recall that for linear modes in an axisymmetric systems, n is
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an exact mode number, while this is not the case for poloidal mode numbers m. Nonetheless,

as the fluctuations are field aligned, poloidal wave numbers can be estimated as kθ ∼ m/r

with m ∼ nqs. Therefore we plot the real frequencies ωr and the growth rates γ of the modes

(in units of vi/R0) with respect to the effective poloidal mode number estimate kθ = nqs/r0

normalized to the ion Larmor radius ρi = vi/Ωi. This quantity can be evaluated from each

code’s specific representation (see Appendix A, B and C for details respectively to codes

GENE, GKW and GS2):

n = kyCy for GENE (5)

n =
kζ
2π

for GKW (6)

n = kY
1

Ba

dψ

dr
for GS2 (7)

Throughout the paper we conform to GENE conventions on the sign of the real frequency of

the mode: a positive value indicates a propagation in ion diamagnetic drift direction while

a negative value corresponds to propagation in the electron diamagnetic direction.

The results obtained for the kθ-spectra using the three codes are shown in Figure 4 at the

ion scales (kθρi ∼ 1), while in Figure 5 the linear spectra at the electron scales (kθρe ∼ 1) are

compared for Case I. All results shown here consider zero ballooning angle χ0 = 0, where χ

is the straight field-line poloidal angle as defined in Eq. (A2). With the previously specified

setup, GENE, GKW and GS2 agree between each other within 3% on both real frequency

ωr and growth rate γ of the most unstable modes, at all scales and independently from

shaping. Separate convergence studies have been performed at the different scales and the

difference between the codes was further reduced to 1% when higher resolutions, similar to

the GENE ones, were considered by the different codes. We note that the transition from

ITG to TEM cannot be taken as a practical benchmark point as its position is very sensitive

to the resolution used and a convergence study is particularly expensive.

As already discussed in Sec. II, when going from one equilibrium case to the other, all the

parameters characterizing the actual local flux surface geometry are changed. The interface

to the Miller equilibrium given in Eqs. (2) and (3) has therefore been used to study the effect

of each parameter separately. Starting from the representation of the flux surface of Case V,

one geometrical parameter is changed at the time, until reaching the values characteristic of

Case I. The results, obtained with GENE for kyρi = 0.3, are presented in Figure 6, where

the labels indicate the particular parameter being changed (either qs, ŝ, ε, κ, δ or dR/dr).
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Figure 4. (Color online) Real frequency ωr and growth rates γ normalized to R0/vi as a function

of the effective poloidal mode number kθρi = nqsρi/r0 for the five CHEASE equilibrium test cases.

Shown are the results obtained with the GENE (red stars), GKW (blue diamonds) and GS2 (green

circles) codes. Sub-dominant modes are only provided for GENE results.
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Figure 6. (Color online) Variation of growth rate γ and real frequency ωr for fixed kyρi = 0.3

(according to GENE convention) continuously increasing shaping complexity from Case V (circular,

β = 0) to I (SND, β 6= 0) making use of the Miller equilibrium representation. Labels indicate

the parameter being changed at each step. Results obtained for the five cases with the MHD

equilibrium are shown for comparison and labeled “CHEASE” (green diamonds). All results have

been obtained with the GENE code.

Dashed lines are used for illustrating the combined variation related to parameters inducing

only smaller effects. We note that having performed this scan at fixed kyρi, the equivalent

kθρi as defined in Eqs. (5-7) is not constant because of the variation in both n and qs (kθρi

varies between 0.296 and 0.451).

From Figure 6 it appears, as expected, that any variation of the parameters used to describe
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the plasma equilibrium contributes to a change in the linear spectra. For each change of

equilibrium between Cases V and III it is possible to identify one parameter which leads to

the most significant variation: αMHD going from Case V to IV (responsible for the Shafranov

shift), elongation κ going from Case IV to III. Note that going from Case III to II, very

little variation arises from the change in triangularity, while the effect of the variation of

κ is comparable to the results of changing all the other parameters. Going from Case

II to I, where despite the up-down asymmetry the Miller parametrization still is a good

approximation, elongation appears once again as the main reason for change in growth rate

and frequency of the mode. Triangularity δ, despite the significant relative variation at the

considered reference surface (see table III), has only a little effect.

Considering the relative variation of the growth rate for a given relative variation of the
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Figure 7. Maximum linear growth rate in ITG regime for all five Cases versus the flux surface av-

eraged temperature gradient length. Values in units of R0/vi. Numbers identify the corresponding

case. Results from the GENE code.

various shaping parameters considered here, elongation appears the most important, and

the change in linear stability from Case IV to I can be explained mainly by a variation in κ.

As an example, in Figure 7 we plot γ of the most unstable mode in the ITG regime for the

five test Cases versus the corresponding effective temperature gradient (which is determined

mainly by elongation, as shown in Fig. 2). A trend is clearly recovered; we plot also the

result obtained for Case V which appears not as much aligned as the other points. This

happens because of the strong effect exerted by αMHD = 0 and dRgeom/dr in going from

Case IV to V.
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IV. BALLOONING ANGLE SCAN

A. Mode frequency and growth rate

The effect of a finite ballooning angle χ0 is usually neglected in linear studies and

benchmarks, which are normally carried out under the assumption of zero χ0. However,

linearly27–29 and non linearly correctly taking into account ballooning angle is crucial to ac-

curately predict the transport level, thus the reason for benchmarking this effect. We recall

that the ballooning angle is the angle at which turbulent eddies point radially.

A finite ballooning angle can be introduced in the Fourier representation of all the codes

used. For a given ky (resp. kζ , kY ) linear mode, GENE (resp. GKW, GS2) code couples

the radial Fourier modes kx = δkx + p∆kx (resp. kr = δkr + p∆kr, kX = δkX + p∆kX),

p ∈ Z, where δkx, δkr and δkX are related to the straight field poloidal ballooning angle

χ0 by the relations (see Appendix A, B and C for details on GENE, GKW and GS2 codes

respectively):

χ0 = −δkx
kyŝ

for GENE (8)

χ0 = −2π
δkr

kζdq/dr
for GKW (9)

χ0 = −δkX
kY ŝ

for GS2 (10)

For each of the five test cases, a scan of χ0 has been carried out at given toroidal mode num-

ber, kθ|GKW ρi = 0.2 according to GKW definitions, the corresponding values of nqsρi/r0

are listed in Tab. IV. For the sake of completeness the input values of kyρi|GENE and

kY ρi|GS2 used for the equivalent GENE and GS2 runs are reported as well. The resolution

nkx×nz×nv‖×nµ = 32 × 64 × 128 × 32 has been used for the simulations performed with

the GENE code, while GKW runs have been carried out considering nkr × ns × nv‖ × nµ =

27×35×128×32. GS2 runs have been performed using nkX×nθ×nλ×nE = 63×48×24×18

grid points. The results obtained are shown in Figure 8, where growth rates and frequencies

are plotted as a function of χ0 for the five geometries.

We note that increasing the ballooning angle the ITG mode, which is the most unstable

one associated to χ0 = 0, is first stabilized. Then at larger values of χ0 (χ0 ∼ ±0.3) a

transition to TEM is found for all Cases except Case IV, where the mode is stable. With

the GENE code, used in its initial value mode of operation, we resolved the mode transition
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Case I II III IV V

nqsρi/r0 0.180 0.222 0.308 0.312 0.276

kyρi|GENE 0.231 0.246 0.251 0.227 0.179

kθρi|GKW 0.2 0.2 0.2 0.2 0.2

kY ρi|GS2 0.197 0.196 0.201 0.223 0.183

Table IV. Equivalent poloidal mode number nqsρi/a used for the finite ballooning angle scan in the

five test Cases. The corresponding GENE, GKW and GS2 input binormal wave vectors kyρi|GENE,

kθρi|GKW and kY ρi|GS2, are tabulated as well.

systematically for all geometries. As can be seen from Fig. 8 a good agreement is again

recovered between the codes, within 3% on both frequency and growth rate. As for the

kθ-spectra, the transition point is strongly dependent on the resolution adopted and cannot

be taken as an exact benchmark point (a convergence study being too costly).

We also remark that for this particular value of nqsρi/r0 in spite of the up-down edge

asymmetry, the most unstable modes for Case I are indeed associated to an almost zero

ballooning angle (the difference between growth rates at positive and negative χ0 is of the

order of ' 2%, with more unstable modes at positive angles). This is because the flux

surface of interest is far inside the plasma cross section, such that the effective up-down

asymmetry is very weak.

B. Mode structure

Finally, we benchmark the mode structure of the electrostatic potential φ associated to

some of the modes for which frequency and growth rate have been computed in the previous

section. In order to compare the results from different codes, amplitudes and phases of the

fields must be appropriately renormalized; we therefore plot φ(χ) renormalized such that

<{φ(χ = 0)} = 1 and ={φ(χ = 0)} = 0.

Benchmarking the ballooning structure turns out to be very challenging, more than the

growth rate and frequency of the mode. In particular, we note that when growth rate and

frequency of the mode are converged within few percents (∼ 5%), then the most ballooned

part of the mode, i.e. −π ≤ χ ≤ π is also converged and a good agreement between the
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Figure 8. Ballooning angle scan for the five test cases. From Case I to V growth rates and frequency

in units of vi/R0 are shown for the GENE code (red) code, GKW (blue) and GS2 (green).

codes is recovered. An example is given in Figure 9, where the eigenfunction of the mode

nqsρi/r0 = 0.276, computed considering the magnetic geometry of Case V and χ0 = 0, is

compared. The results of Fig. 9 have been obtained using the same resolutions as adopted

for computing real frequency and growth rate of the mode, and one observes differences in

the tails of the eigenfunction, for χ > 2π. We nevertheless remark that even if the local

differences can be up to 30%, they remain small compared to the maximum amplitude of
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Figure 9. (Color online) Ballooning representation of the electrostatic potential φ computed with

GENE (red), GKW (blue) and GS2 (green) for the mode nqsρi/r0 = 0.276 and χ0 = 0. Magnetic

geometry of Case V.

the mode.

In order to converge the mode structure and have the same good match between codes

over a wider range of χ values, the resolution has to be significantly increased. Besides

a sufficiently large number of connections along the field line, corresponding e.g. to the

number of kx modes in GENE, the velocity space resolution turns out to be crucial for

recovering a good agreement over the complete ballooning structure. This is especially true

for the TEM modes, for the same reasons as described in Sec. III. This turns out to be a

challenging and computationally significant effort, therefore it has been limited to GENE

and GKW codes only. No particular reason prevents from doing the same also with GS2.

Also, this benchmark is carried out considering only Case V and I, viz. the circular and the

fully shaped geometry, while values of χ0 have been selected such that both ITG and TEM

regime are studied.

The results obtained are shown in Figure 10 for Case V and Figure 11 for Case I. All these

simulations have been performed using 64 nkx modes in GENE and 64 nkr in GKW, while

70 points have been used to discretize along the magnetic field line. The runs associated to

ITG modes have been carried out discretizing the phase space with nv‖×nµ=128×32 points

in both codes, while for TEM modes the velocity space resolution has been further increased

to 192× 48 in GENE and 256× 64 in GKW. With these grids the frequency obtained from

the two codes agree within less than 1%. The different number of grid points required for

velocity space is explained by their different distribution. We note that the two codes adopt
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different boundary conditions at the beginning and end of a magnetic field line: in GENE,

the default setting is assuming zero perturbation at the domain boundaries (other options

are available). In GKW a zero derivative condition is applied (see Refs. 14 and 26 for more

details on the actual implementation). We have verified by further increasing the number

of connected radial modes that the boundary condition is not affecting the results. We also

note that reducing parallel dissipation in GKW appears to further improve the agreement.

However, this requires to set a smaller time step increasing the cost of the runs, so we have

carried out all the simulations setting the dissipation to 0.02 without further pushing the

convergence.
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Figure 10. (Color online) Ballooning representation of the electrostatic potential φ computed with

GENE (red) and GKW (blue) for three different values of ballooning angle χ0. Shown are the

results obtained for (a) zero ballooning angle, (b) finite χ0 in the ITG regime and (c) finite χ0 for

TEM. The value of χ0 is reported in each plot.
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Figure 11. Same as Figure 10, but for Case I.
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V. ROSENBLUTH - HINTON TEST

Correctly describing Zonal Flows is essential for any turbulence simulation as they are

one of the main mechanisms of saturation in non-linear regime, at least in ITG dominated

plasmas. The Rosenbluth-Hinton test30 allows to study linear dynamics of ZFs by computing

the residual level of e.g. the potential and at the same time characterize the properties (real

frequency ωGAM and damping γGAM) of the Geodesic Acoustic Mode (GAM)31. Several

theoretical works are available providing estimates for both the residual level and the GAM

properties under various limits. Thus in addition to code benchmarking it is also possible

to validate simulation results against such estimates, in their proper limit.

In order to avoid the numerical problem of small recurrence time due to light electrons,

this particular test has been carried out considering the adiabatic response of the electrons.

Fully kinetic simulations show the same level of residual potential, confirming the validity

of the approach.

GENE simulations have been performed evolving an ion density perturbation associated

to the mode kxρi = 0.05, ky = 0 and solved on grids involving up to nz × nv × nµ =

64 × 400 × 32 points. No hyperdiffusion has been used in order to avoid any effect on the

frequency of the GAM.32 Density and temperature gradients have been set to zero. The

same set up was used for carrying out GKW simulations, which have been performed using

ns × nv‖ × nµ = 140 × 256 × 27 grid points. Hyperdiffusion has been switched off as well.

GS2 adopts a different initial condition for Zonal Flow investigations, consisting in evolving

in time an initial zonal electrostatic field without initiating any density perturbation. These

different initial conditions are found to lead to the same final results. The runs performed

with GS2 have been carried out considering nθ × nλ × nE = 64× 32× 48 grid points.

A. Zonal Flow residual potential

We benchmark the value of the residual potential 〈φ(∞)〉/〈φ(0)〉, defined as the flux sur-

face averaged electrostatic potential 〈φ〉 normalized to its initial value 〈φ(0)〉. This quantity

is computed after the GAM oscillation is completely damped. Simulations are run well be-

yond this limit, typically up to 150R0/vi, to ensure a true stationary state and check that

the recurrence problem is not affecting the results. The obtained residual levels computed
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with GENE, GKW and GS2, are shown in Figure 12, and compared with several theoretical

estimates available in the literature. These are all of the form

〈φ(∞)〉
〈φ(0)〉

=
1

1 + Sq2
s/
√
ε

(11)

where S is a shaping function dependent on the model used for describing the magnetic

geometry. For circular concentric magnetic surfaces in large aspect ratio Tokamaks, Eq. (11)

reduces to the well known expression by Rosenbluth and Hinton 1/(1 + 1.6q2
s/
√
ε) valid to

first order in ε. For shaped Tokamaks, Xiao and Catto33 derived a shaping function valid

up to second order in ε in which all shaping parameters explicitly appear

SXC =
1

1 + κ2

(
3.27 +

√
ε+ 0.722 ε− 1.44 δ − 2.945

∆

ε

+
0.692k2 − 0.722

q2
s

ε

) (12)

while Zhou and Yu34 adopted a Miller equilibrium to obtain

SZY =
1

κ2 (1 + 3δε/8)2 I0

{
25

16
− 53

256
δ +

√
ε

2
− ε

×
[

3

64
− 93

256
δ +

9κ2

8q2
s

(
3I0

4
+ I1

)]} (13)

I0 and I1 are two geometrical quantities defined in Ref. 34, qs,ε, κ, δ and ∆ are the local

values at q = qs. We note that the definition of ε, elongation κ triangularity δ and Shafranov

shift ∆ appearing in equations (12) and (13), depend on the particular parametrization used

for describing the flux surface. Therefore their value is computed by fitting the CHEASE

equilibrium accordingly to each specific magnetic geometry model.

The agreement obtained between the codes is very good, within 1% and independent from

shaping. A systematic deviation from analytic estimates is found in all shaped cases (Case

I to IV), among which the one by Zhou and Yu (Eq. (13)) is found to give the estimate

closest to our numerical simulation (≈ 10% lower).

B. GAM properties

When performing the Rosenbluth-Hinton test, the GAM is excited and its real frequency

and damping can be extracted from the time trace of the simulated potential. The damping

γGAM is obtained upon fitting the maxima and minima of the residual to an exponential en-

velope. The frequency is subsequently extracted via inverse Hilbert transform. An example
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Figure 12. Residual potential computed with GENE (red stars), GKW (blue diamonds) and GS2

(green circles) normalized to its initial value for each equilibrium Case, I to V. For comparison,

the theoretical estimates given by Rosenbluth-Hinton30 (R-H), Xiao-Catto33 (X-C) and Zhou-Yu34

(Z-Y) are shown as well with cyan squares, black triangles and magenta stars respectively (color

online).

is shown in Figure 13. When comparing different codes the same time window is used. This

is necessary especially when evaluating the damping which is strong in the cases considered

here and therefore only few GAM oscillations are contained in the simulated time trace. The
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Figure 13. Time trace of electrostatic potential normalized to its initial value for Case V (values

obtained with the GENE code). The points used to estimate GAM real frequency and damping

are shown with green circles together with the corresponding estimated exponentially decaying

envelope (color online).

three codes agree between each other on ωGAM within 1%. The numerical results, together

with the numerical solution to the dispersions relations proposed in Refs. 35 and 36 are
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shown in Figure 14. The first analytical estimate, valid only for circular plasmas, agrees

with the simulation only for Case V, while the latter which retains shaping effects, matches

the simulation in all Cases with less than 5% difference. The strong GAM damping found

in all shaped plasmas (Cases I to IV) makes its estimation from the simulation difficult.

Nevertheless the codes agree between each other, while a sensible difference is found when

comparing to analytical estimates.
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Figure 14. GAM real frequency ωGAM and damping rate γGAM for the five test Cases. Shown

are GENE results (red stars), GKW ones (blue diamonds) and GS2 (green circles). The analytic

predictions by Sugama35 (cyan triangles) and the one from Gao36 (magenta pentagrams) are shown

as well (color online).

The same analysis as described in Section III of interfacing the flux surfaces with the

Miller equilibrium for studying the effect of all parameters, has been repeated for the

Rosenbluth-Hinton test. Figure 15, showing the residual potential level and the GAM prop-

erties, confirms that when going from one case to the other all the parameters play a role

but whenever κ is varied, it is responsible for the major part of the change. This is true in

particular for Case II where, despite considering a triangular plasma, most of the difference

is originated by a variation of elongation from Case II, and also for Case I. Note that in Fig.

15 the values have been normalized to Rgeom(r)/vi for simplicity. We can therefore plot the

results of this test with respect to elongation, as shown in Figure 16. The results are nicely
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Figure 15. Effect of the shaping parameters on (a) ZF residual, (b) GAM frequency ωGAM and (c)

GAM damping γGAM. Results obtained with the GENE code performing the RH test after fitting

the equilibria according the parametrization given by Eqs. (2) and (3). One parameter is varied

at each time as indicated by labels, the values are listed in Table III. For comparison, the values

obtained when using the CHEASE equilibrium are reported as well (green, color online).

aligned and show how an increase of κ leads to an increase of the residual level while at the

same time the GAM frequency is reduced and the mode is more strongly damped.
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Figure 16. Results of the Rosenbluth-Hinton represented versus elongation κ of each test Case.

Shown are (a) the residual level, (b) the GAM real frequency ωGAM and (c) the damping γGAM .

Numbers indicate the corresponding test case.

VI. CONCLUSIONS

We have developed a series of benchmarks with the aim of testing the interface of gyroki-

netic codes with kinetic ions and electrons and realistic shaped MHD equilibria, the latter

being provided by the MHD equilibrium code CHEASE. These tests have been used to suc-
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cessfully benchmark against each other the three gyrokinetic codes GENE,12,13,26 GKW14

and GS216 in the linear flux-tube limit. A fully gyrokinetic model for describing the electron

dynamics was considered, while collisions and electromagnetic effects have been neglected.

This exercise, which at first glance might appear trivial, requires in fact to pay attention to

several subtleties that normally do not need to be faced when carrying out similar bench-

marks but adopting circular analytic geometry. In particular, one has to be very careful

regarding the particular choice of coordinates used within each code, not only to correctly

define the location of the flux tube volume, but also because it determines how to correctly

recast the results in a common representation for comparison. We have put a specific effort

in writing this paper to provide all the details that have to be taken into account such as

any other code can undergo the same benchmarks without uncertainties. All codes inputs

and outputs, together with all useful information, are made public available in Ref. 19 for

any other code interested in carrying out the same series of tests.

Several benchmarks have successfully been carried out looking at linear kθ spectra, at the

effect of a finite ballooning angle and studying the linear dynamics of ZFs and GAMs via the

standard Rosenbluth-Hinton test. In all the tests that we have performed, the codes agree

within 3%, a difference that can be further reduced by properly increasing the resolution.

This benchmark cannot be considered an exhaustive study of plasma shaping effects, but

nevertheless it has demonstrated that among the parameters that we have considered, elon-

gation plays the strongest stabilizing role and at the same time it increases the ZF residual

level and reduces GAM frequency.

The natural extension of this benchmark exercise is towards global simulations. The equi-

libria that we have considered have already been designed for carrying out this kind of

simulations and are explicitly built such that local and global results can be compared. We

recognize that carrying out the same exercise, with possibly also non-linear global simula-

tions, is a long and computationally expensive effort. However, we consider this as one of

the fundamental next steps to be undertaken in order to validate gyrokinetic codes.
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Appendix A: The GENE code

1. GENE coordinate system

The GENE code12,13,26 uses a field-aligned coordinate system (x, y, z), expressed in terms

of the magnetic straight field line coordinate system (ψ, χ, ϕ) as follows:
x− x0 = Cx(ψ),

y = Cy [q(ψ)χ− ϕ] ,

z = χ.

(A1)

Here, ψ is the poloidal flux function ψ = (2π)−1
∫
V
B · ∇θd3x where V is the volume

enclosed by a magnetic surface, χ is the straight field-line poloidal angle, defined in terms

of the geometrical poloidal angle θ as

χ = 2π

∫ θ

0

B · ∇ϕ
B · ∇θ′

dθ′
/∮

B · ∇ϕ
B · ∇θ′

dθ′

= 2π

∫ θ

0

1

R2

1

B · ∇θ′
dθ′
/∮

1

R2

1

B · ∇θ′
dθ′

=
F (ψ)

q(ψ)

∫ θ

0

1

R2

1

B · ∇θ′
dθ′,

(A2)

and ϕ is the toroidal angle.

In the GENE coordinate system, the x coordinate defines the radial direction, while y is

called the binormal direction. Finally, z parametrizes the position along a field line and
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therefore is referred to as the “parallel” direction. It is to be noted that in practice the

choice of the radial coordinate x is dependent on the magnetic equilibrium used: when

interfacing with CHEASE equilibria x = ρtor =
√
φtor/πB0 is normally considered, φtor =

(2π)−1
∫
V
B · ∇ϕ d3x being the toroidal flux, while when interfacing to Miller’s equilibria

x = r is assumed. Cy is a normalization constant, chosen as Cy = x0/qs in the flux tube

version of the code in order to establish y as a length rather than an angle-like quantity.

qs = q(x0) indicates the local safety factor evaluated at x = x0, the reference magnetic

flux surface for the flux tube simulations. Note that both (ψ, χ, ϕ) and (x, y, z) are non-

orthogonal coordinate systems.

The magnetic field B can be written with respect to either (ψ, χ, ϕ) or (x, y, z) as follows

B = F∇ϕ+
1

2π
∇ϕ×∇ψ = C(∇x×∇y), (A3)

where F (ψ) = RBϕ, withBϕ the toroidal component of the magnetic field, and C = 1/ [2π(dCx/dψ)Cy].

It is clear from Eq. A3 that B · ∇x = B · ∇y = 0, so that x = const and y = const define a

magnetic field line, and (x, y, z) indeed defines a field-aligned coordinate system.

In the flux tube version of the code, any fluctuating field quantity A(x, y, z) (e.g. A = φ, the

electrostatic potential) is Fourier transformed with respect to both x and y. In (x, y, z) co-

ordinates, axisymmetry translates to invariance with respect to y, so that linear fluctuation

eigenmodes have an exact wave-number ky with respect to y. The corresponding Fourier

representation therefore reads

A(x, y, z) = eikyy
∑
kx

Âkx(z)eikxx ∼ e−inϕ (A4)

yielding together with Eq. (A1) the relation between ky and the toroidal mode number n:

n = kyCy ky =
n

Cy
=
nqs
x0

∼ kθ, (A5)

where kθ is an estimate of the effective poloidal wave number for field-aligned fluctuations.

Again using Eq. (A1), periodicity with respect to the toroidal direction A(ψ, χ, ϕ + 2π) =

A(ψ, χ, ϕ) translates in (x, y, z) coordinates to periodicity in the y direction:

A(x, y, z) = A(x, y + 2πCy, z). (A6)

It should be noted that flux-tube simulation volumes do not necessarily account for the full

toroidal angle, so that the simulation box length Ly does not necessarily coincides with 2πCy.
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One nonetheless imposes periodicity in y, which therefore in general reads A(x, yx, z) =

A(x, y + Ly, z). In turn, periodicity in the poloidal direction A(ψ, χ + 2π, ϕ) = A(ψ, χ, ϕ)

implies the following in z direction:

A(x, y, z + 2π) = A(x, y − 2πqCy, z). (A7)

As a result of Eq. (A7), and after linearizing the safety factor profile, q(x) = qs(1+ ŝx/x0) =

qsŝ/x0 (x + x0/ŝ) around the reference position x0, one can show that for a given δkx and

ky, the set of radial Fourier components

kx = p∆kx + δkx, p ∈ Z, (A8)

are coupled together, with ∆kx = 2πŝky, such that any linear fluctuation mode in the

flux-tube limit reads:

A(x, y, z) = eikyyeiδkxx
∑

p Âδkx+p∆kx(z)eip∆kxx,

with Âδkx+p∆kx(z + 2π) = Âδkx+(p+1)∆kx(z).
(A9)

In deriving Eq. (A9), it has been assumed that the phase factor ei2πnqs(x0) = 1, which in fact

corresponds to centering the simulation domain around the mode rational surface nearest

to x0 for the considered ky = n/Cy (the distance between two neighboring rational surfaces

∆MRS being 1/kyŝ).

2. Ballooning angle

The ballooning representation of a given fluctuating field A(x, χ, ϕ) in straight field line

coordinate system reads

A(x, χ, ϕ) = Â(χ)e−in{ϕ−q(x)[χ−χ0]}. (A10)

The exponential term in (A10) represents the fast phase factor for field-aligned fluctuations,

while χ0 corresponds to the so-called ballooning angle, angle at which the fast phase does

not vary radially through q(x). Â(χ) is the so-called ballooning envelope and accounts for

the slow variation of the fluctuation along the magnetic field line. Any radial modulation of

the envelope has already been neglected. Equation (A10) does not ensure periodicity with
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respect to χ which is therefore enforced by expressing the actual field A(x, χ, ϕ) in terms of

A(x, χ, ϕ) as follows:

A(x, χ, ϕ) =
+∞∑
p=−∞

A(x, χ+ p2π, ϕ)

= e−in[ϕ−q(x)χ]

+∞∑
p=−∞

Â(χ+ p2π)einq(x)[p2π−χ0] (A11)

Identifying kyy = −n [ϕ− q(x)χ] according to Eqs. (A1) and (A5), and after again lineariz-

ing the safety factor profile, one obtains

A(x, χ, ϕ) = eikyy

+∞∑
p=−∞

Â(χ+ p2π)eiky ŝx(p2π−χ0),

= eikyye−iky ŝχ0x

+∞∑
p=−∞

Â(χ+ p2π)eip2π∆kxx.

(A12)

In deriving equation (A12) the radial coordinate has again been radially shifted, i.e.

x+ x0/ŝ→ x. Comparing equation (A9) to (A12), one thus identifies
χ0 = −δkx

kyŝ
,

Â(χ+ p2π) = Âδkx+p∆kx(z).

(A13)

3. Normalization

The normalization in the GENE code is chosen such that all dimensionless quantities

are of order unity. Therefore, in configuration space independent variables x and y used for

representing fluctuating fields are normalized to a reference gyroradius ρref , while the already

dimensionless field connection length along z is kept to be 2π ∼ O(1). A macroscopic length

Lref is used to normalize gradients of equilibrium quantities. In velocity space however, in

order to account for potentially differing temperatures, the normalization has to be species

dependent. Furthermore magnetic fields, temperatures, densities and masses are normalized

with respect to the reference values Bref , Tref , nref and mref . The user is free to specify these

reference values. Derived reference quantities such as the sound velocity cref and the Larmor

frequency Ωref and radius ρref are defined as

cref =
√
Tref/mref , Ωref = eBref/mref , ρref =

cref

Ωref

.
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Indicating the normalized quantities with a tilde, one has for the j-th species

x = x̃ρref , y = ỹρref , z = z̃,

v‖,j = ṽ‖ṽth,jcref , µj = µ̃ T̃j
Tref

Bref

, t = t̃
Lref

cref

,

where the thermal velocity vth,j of the j−species is defined as

vth,j =
√

2Tj/mj. (A14)

Applying these normalization rules to Eq. (A4) one obtains:

Ã(x̃, ỹ, z̃) = eik̃y ỹ
∑
k̃x

ˆ̃Ak̃x(z̃)eik̃xx̃. (A15)

We note that typical choices are Tref = Te, nref = ne and mref = mi, such that cref = cs,

while Bref is typically the magnetic field on axis, Bref = Bmag. The macroscopic distance

Lref is usually taken to be either the major radius R0 or the minor radius a of the Tokamak.

Appendix B: The GKW code

1. GKW coordinate system

The GKW code14 employs a field aligned coordinate system (r, ζ, s) similar to the (x, y, z)

system considered in GENE. The r coordinate corresponds to the geometric minor radius

r = (Rmax −Rmin) /2, while ζ is equivalent to the y coordinate in GENE defined in Eq. (A1)

within a scaling factor 2πCy:

ζ =
1

2π

[
q
(
ψ̄
)
χ− ϕ

]
=

1

2πCy
y, (B1)

Similar to Eq. (A3), the magnetic field can thus be written as

B = F
(
ψ̄
)
∇ϕ+∇ϕ×∇ψ̄ = 2π

dψ̄

dr
∇r ×∇ζ, (B2)

Comparing Eq. (A3) to (B2) one notes that the definitions for the poloidal magnetic fluxes

ψ and ψ̄ considered in GENE and GKW respectively differ by a factor 2π, ψ̄=ψ/2π. In

general, caution must be taken regarding the different definitions and orientations of the

coordinates considered in various codes for representing the magnetic field. A detailed de-

scription of this issue is given in Ref. 37, together with practical indications for conversion
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between different choices characterized by a so-called COCOS value.

The “parallel” coordinate s considered in GKW is however different from the straight field

line angle poloidal angle χ in GENE. The s coordinate is in fact one of the Hamada coor-

dinates
(
ψ̄, s, γ

)
, defined as s = s

(
ψ̄, θ

)
, γ = γ

(
ψ̄, θ, ϕ

)
, and such that the corresponding

contravariant component of the magnetic field

Bs = B · ∇s Bγ = B · ∇γ (B3)

are flux functions, i.e. Bγ = Bγ
(
ψ̄
)
, Bs = Bs

(
ψ̄
)
.

From these conditions one can derive

s
(
ψ̄, θ

)
=

∫ θ

0

dθ′

B · ∇θ′

/∮
dθ′

B · ∇θ′
, (B4)

γ
(
ψ̄, θ, ϕ

)
=

ϕ

2π
+ g(θ, r) (B5)

and

Bs
(
ψ̄
)

=

[∮
dθ′

B · ∇θ′

]−1

, (B6)

Bγ
(
ψ̄
)

=
F

2π
〈 1

R2
〉, (B7)

with

g
(
ψ̄, θ

)
=
F
(
ψ̄
)

2π

∫ θ

0

dθ′

B · ∇θ′

[
〈 1

R2
〉 − 1

R2

]
. (B8)

Here 〈·〉 stands for the flux surface average defined by (1), which can in fact also be rewritten

as

〈A〉 =

∮
dsA =

∮
dθ′ A

B·∇θ′∮
dθ′

B·∇θ′
(B9)

for a quantity A 6= A
(
ψ̄
)
. One notes that the safety factor can be expressed as

q
(
ψ̄
)

=
Bγ
(
ψ̄
)

Bs
(
ψ̄
) =

F

2π

∮
1

R2

dθ

B · ∇θ
. (B10)

One can also show that the ζ coordinate defined in Eq. (B1) can be written as

ζ = q
(
ψ̄
)
s− γ, (B11)

from which one derives the relation between s and χ

χ = 2π

[
s− g

q
(
ψ̄
)] . (B12)
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As in the flux-tube version of GENE, any fluctuating field quantity A(r, ζ, s) is Fourier

transformed with respect to r and ζ. The corresponding Fourier representation therefore

reads

A(r, ζ, s) = eikζζ
∑
kr

Âkr(s)e
ikrr ∼ e−inϕ, (B13)

yielding together with Eq. (B1)

n =
kζ
2π
. (B14)

2π-periodicity with respect to χ in (ψ̄, χ, ϕ) coordinates translates in (r, ζ, s) coordinates to

the pseudo-periodic condition with respect to s:

A(r, ζ, s+ 1) = A(r, ζ − q(r), s) (B15)

For a given kζ mode, this condition leads to coupling between the set of considered kr modes,

kr = δkr + p∆kr with ∆kr = kζdq/dr, so that Eq. (B13) becomes, after having furthermore

linearized the safety factor

A(r, ζ, s) = eikζζeiδkrr
+∞∑
p=−∞

Âδkr+p∆kr(s)e
ip∆krr,

Âδkr+p∆kr(s+ 1) = Âδkr+(p+1)∆kr(s).

(B16)

It is to be noted that when specifying the input parameters, kθ|GKW is given instead of kζ

itself. The value of kζ is then determined from kθ|GKW =
√
gζζk2

ζ evaluated at the outer

midplane (s = 0), gζζ = ∇ζ · ∇ζ being the diagonal metric tensor related to ζ. In a similar

way, the value of kr is specified via kR =
√
grrk2

r .

In the same way as one derived Eq. (A12) from (A11), one can express the ballooning

representation given in (A12) in terms of GKW-specific variables:

A(r, ζ, s) = eikζζ

+∞∑
p=−∞

Â(χ+ p2π)ei
kζ
2π

dq
dr (r+

r0
ŝ )(p2π−χ0)

= eikζζe−i
kζ
dq
dr
χ0

2π

+∞∑
p=−∞

Â(χ+ p2π)eip∆krr
dq
dr ,

(B17)

having again shifted the radial coordinate r + r0/ŝ→ r. Comparing Eq. (B17) to Eq. (B16)

one can identify 
χ0 = −2π

δkr

kζ
dq
dr

Â(χ+ p2π) = Âδkr+p∆kr(s).

(B18)
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2. Normalization

As in the GENE code, all quantities are normalized to be order unity and again species-

dependent normalization factors are adopted for the velocity space. The specific choices are

however different, and are discussed here. In the GKW code, reference mass mref , density

nref , temperature Tref and major radius Rref are defined, and the user is free to choose

their value. When interfacing with the CHEASE code, Rrref = Rgeom(LCFS) it is assumed

and the reference value of the magnetic field Bref is evaluated at the same location. These

quantities are related via the definition of the reference thermal velocity vth,ref

vth,ref =

√
2Tref

mref

(B19)

and used to compute the reference gyroradius ρref = vth,ref/Ωref . These reference values are

then used to compute for each species a dimensionless mass m̃, thermal velocity ṽ, density

ñ and temperature T̃

m̃ =
m

mref

, ṽ =
vth

vth,ref

, ñ =
n

nref

, T̃ =
T

Tref

.

With these choices, the GKW phase space coordinates are all normalized according to

r = r̃Rref , ζ = ζ̃ , s = s̃

v‖,j = ṽ‖vth,j, µ = µ̃
mv2

th,j

Bref

, t = t̃
Rref

vth,ref

,

where vth,j is the thermal velocity of the j−species as defined in Eq.(B19).

We explicitly remark the different definition of the reference velocity with respect to what

is done in the GENE code, which is responsible, within a factor
√

2, for a different nor-

malization of the microscopic scales quantities as well as of time. On the other hand, the

normalized velocity space variables are the same. Furthermore, the normalization of the

radial direction with respect to the macroscopic length Rref causes a factor ρ̄ = ρref/Rref

to explicitly appear in the normalized equivalent of the Fourier representation given in e.g.

Eq. (B13) which then reads

Ã(r̃, ζ̃ , s̃) = e
ik̃ζ ζ̃

ρ̄

∑
k̃r

ˆ̃Ak̃r(s̃)e
ik̃r r̃
ρ̄ . (B20)
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Appendix C: The GS2 code

1. GS2 coordinate system

The GS2 code16 employes a Clebsch formulation to express the magnetic field as

B = ∇α×∇ψ, (C1)

where ψ is the poloidal flux function, defined as in the GENE code. The function

α = α(ψ, θ, ϕ) is determined by comparing Eq. (C1) to the equivalent representation

B = F (ψ)∇ϕ+∇ϕ×∇ψ as

α = ϕ− qχ (C2)

The GS2 field-aligned coordinate system (X, Y, θ) is directly based on the function α defined

in Eq. (C2). In particular it is assumed for the radial direction X

X =
qs
r0Ba

ψ, (C3)

while for the binormal Y coordinate

Y =
dψ

dr

α

Ba

, (C4)

where Ba is the toroidal magnetic field measured at the geometric center of the flux surface of

interest: Ba = F (Rgeom)/Rgeom. We point out that in the GS2 code, the geometric poloidal

angle θ is used to parametrize a field line, therefore defining a “parallel” direction equivalent

to the z coordinate in GENE or the s direction in GKW. Also the binormal direction Y is

again equivalent, within a sign and different scaling factors, to both the y coordinate defined

in Eq. (A1) for the GENE code and the ζ coordinate defined in Eq. (B1) for the GKW code:

y = −CyBa
dr

dψ
Y, (C5)

and

ζ = −Ba

2π

dr

dψ
Y, (C6)

As for the GENE and GKW codes, fluctuating field quantities A(X, Y, θ) are Fourier trans-

formed with respect to both the radial and binormal directions. The corresponding Fourier

representation in GS2 variables therefore reads

A(X, Y, θ) = eikY Y
∑
kX

ÂkX (θ)eikXX ∼ einϕ (C7)
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where we note the different sign appearing in the eikonal with respect to the ones in GENE

and GKW representations given in equations (A4) and (B13) respectively, yielding together

with Eq.(C4)

n =
1

Ba

dψ

dr
kY . (C8)

The set of radial kX modes, kX = δkX + p∆kX , with ∆kX = 2πŝkY , are again coupled as

a consequence of 2π-periodicity with respect to χ in (ψ, χ, ϕ) coordinates Equation (C7),

after linearizing the safety factor, can thus be rewritten as

A(X, Y, θ) = eikY Y eiδkXX
+∞∑
p=−∞

ÂδkX+p∆kX (θ)eip∆kXX ,

ÂδkX+p∆kX (θ + 2π) = ÂδkX+(p+1)∆kX (θ).

(C9)

Proceeding as already explained in Appendix A 2 for the GENE code, one derives the bal-

looning representation given in Eq. (A12) in terms of GS2-specific variables:

A(X, Y, θ) = eikY Y

+∞∑
p=−∞

Â(χ+ p2π)eikY ŝ(X+
X0
ŝ )(p2π−χ0)

= eikY Y e−ikY ŝχ0X

+∞∑
p=−∞

Â(χ+ p2π)eip∆kXX .

(C10)

having once again shifted the radial coordinate X +X0/ŝ→ X. Comparing Eq. (C10) to

Eq. (C9) one finds: 
χ0 = −2π

δkX
kY ŝ

Â(χ+ p2π) = ÂδkX+p∆kX (θ).

(C11)

2. Normalization

In the GS2 code, one chooses a reference value for temperature, density and mass,

respectively Tref , nref and mref , while the reference thermal velocity vth,ref is defined as

vth,ref =
√

2Tref/mref . These values are used to compute the reference Larmor radius and

frequency ρref and Ωref , where we note that the magnetic field Bref is in this case defined as

the toroidal field at the location of geometric center of the flux surface of interest, Bref = Ba.

All the macroscopic lengths are normalized to the minor radius a. In the same way as in

the GENE and GKW codes, the velocity space variables are species-dependent normalized.

Therefore, the GS2 coordinate system can be written as

X = X̃ρref , Y = Ỹ ρref , θ = θ̃,
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E = ẼTj, λ = λ̃Bref , t = t̃
vth,ref

a

We note that with the aforementioned choices, the reference Larmor radius is the same as

in the GKW code, while a factor
√

2 remains compared to the GENE code. However time

and gradients of equilibrium quantities, because of the different choice of the macroscopic

reference length, are normalized to a different value with respect to both GENE and GKW.
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