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Converse effect of pressure on the quadrupolar and magnetic transition in Ce3Pd20Si6
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The heavy fermion compound Ce3Pd20Si6 displays unconventional quantum criticality as the lower of two
consecutive phase transitions is fully suppressed by magnetic field. Here we report on the effects of pressure as
an additional tuning parameter. Specific heat and electrical resistivity measurements reveal a converse effect of
pressure on the two transitions, leading to the merging of both transitions at 6.2 kbars. The field-induced quantum
criticality is robust under pressure tuning. We rationalize our findings within an extended version of the global
phase diagram for antiferromagnetic heavy fermion quantum criticality.
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I. INTRODUCTION

Quantum criticality in heavy fermion systems continues
to attract great attention [1–4]. The ground state of these
materials is determined by the competition between the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and the
Kondo interaction. When the RKKY interaction dominates a
magnetic, typically antiferromagnetic, ground state is realized.
The opposite case results in a paramagnetic heavy fermion
state. By applying a nonthermal control parameter such as
pressure or magnetic field, transitions between the two phases
can frequently be realized. If the suppression of the finite-
temperature phase transition remains continuous a quantum
critical point (QCP) is accessed.

Various scenarios have been proposed to describe quan-
tum critical behavior. The spin-density wave scenario [5–7]
attributes all effects to the suppression of the order parameter
and the critical fluctuations associated with it. Other scenarios
assume that a second mode is critical at the QCP. In the
theory of local quantum criticality [8] this is the Kondo
interaction. This Kondo breakdown scenario was argued to
describe the quantum criticality of various heavy fermion (HF)
compounds [1,2,4] much better than the spin-density wave
scenario. The Kondo breakdown at the border between an
antiferromagnetic (AF) and paramagnetic (PM) state requires
the presence of quasi-two-dimensional spin fluctuations. These
are not unlikely to be present in systems such as YbRh2Si2
[9,10], CeRhIn5 [11], or CeCu6−xAux [12], which show strong
magnetic anisotropy. More recently, signatures of Kondo
breakdown were observed in the magnetic-field-induced QCP
of the cubic system Ce3Pd20Si6 [13]. Since this system is
isotropic at the QCP, this raised questions about the role
of dimensionality in Kondo breakdown quantum criticality.
One way to reconcile the experimental observation with
the suggested global phase diagram for AF heavy fermion
quantum criticality [3] is to assume that field-induced magnetic
order is present within the putative antiferroquadrupolar phase
below TQ(B) [4,13]. In this case, the Kondo breakdown
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transition could be seen as a small Fermi surface to large
Fermi surface transition within the AF portion of the global
phase diagram at low values of the frustration parameter G

that corresponds to the three-dimensional (3D) limit [13].
The cubic HF compound Ce3Pd20Si6 crystallizes in a

Cr23C6-type structure with space group Fm3m [14]. The Ce
atoms in Ce3Pd20Si6 occupy two sites with different cubic
point symmetry. At the 4a site (Oh symmetry) the Ce atoms
are positioned inside a cage of 12 Pd atoms and 6 Si atoms,
whereas at the 8c site (Td symmetry) the Ce atoms are
surrounded by 16 Pd atoms. In polycrystalline samples, two
successive phase transitions are observed at TN = 0.3 K and
TQ = 0.5 K and have tentatively been attributed to AF and
to antiferroquadrupolar (AFQ) order, respectively [15]. The
crystal electric field (CEF) scheme at the two Ce sites is
still a matter of debate [16–18]. The suppression of TN to
zero at BC ≈ 0.9 T leads to a field-induced QCP with Kondo
breakdown [13]. In polycrystalline samples, signatures of TQ

can be discerned in magnetic fields up to at least 10 T [13].
Recent investigations on single crystals under magnetic field
(B) revealed that at fields above 1 T, TQ(B) is anisotropic with
respect to the direction along which B is applied [16,17,19,20].

An alternative route to quantum criticality in Ce3Pd20Si6
might be to use pressure as a control parameter. The critical
pressure necessary to fully suppress TN was estimated to be
5 kbars [21]. Electrical resistivity and specific heat investiga-
tions on a lower quality polycrystalline Ce3Pd20Si6 sample up
to 80 kbars (8 GPa) in temperatures down to 0.5 K revealed
an increase of the Kondo temperature (TK ) with pressure
[22]. However, no information about the pressure evolution
of TN or TQ could be inferred from those measurements. More
recently, electrical resistivity measurements up to 40 kbars in
the isostructural germanide compound Ce3Pd20Ge6 revealed
that both the AF (TN = 0.75 K) and the ferroquadrupolar
(TFQ = 1.2 K) transition show a tendency to disappear at
pressures higher than 50 kbars [23].

Here we present a study of the pressure–magnetic field–
temperature phase diagram of Ce3Pd20Si6 using hydrostatic
pressure conditions. Our aim is to investigate how TN and TQ

evolve with pressure in the range where the pressure-tuned
AF QCP was predicted [21]. We also explore whether the
field-induced quantum criticality is modified under pressure.
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II. EXPERIMENT

Polycrystalline Ce3Pd20Si6 samples were synthesized by
melting Ce, Pd, and Si in a horizontal water-cooled copper
boat using high-frequency heating. Details on the synthesis
and characterization are described elsewhere [21]. The sample
used for the present study is of the same quality as those
reported in previous works [13,15,21]. Electrical resistivity
and specific heat measurements were performed in a CuBe
piston-cylinder pressure cell for pressure up to 6.2 kbars,
with kerosene as a pressure transmitting medium and Pb
as an in situ manometer. All electrical contacts were spot
welded onto the same piece of sample with dimensions
3.0 mm × 2.0 mm × 0.25 mm. The conventional four-probe
ac method was used to measure electrical resistivity. Specific
heat was measured by ac calorimetry. For the latter, a
constantan wire and a pair of Au-Fe(0.07%) and chromel wires
of 25 μm diameter were used as a heater and thermocouple,
respectively. An oscillating excitation current with ω = 0.5 Hz
and I = 0.2 mA was applied to the sample heater. The sample
modulation temperature was read out by a lock-in amplifier in a
second harmonic mode and recorded as pick-up voltage (Vac).
The inverse of this quantity is approximately proportional to
the sample’s specific heat [24]. The sample temperature was
corrected for a dc offset due to Joule heating by separately
measuring the temperature signal with a dc nanovoltmeter.
This correction was found to be at maximum 0.02 K at the
lowest temperature. The pressure cell was inserted into a
3He / 4He dilution refrigerator with a superconducting magnet
to measure both ρ(T ) and Cp(T ) down to 0.05 K and under
magnetic field up to B = μ0H = 14 T. The magnetoresistance
measurements at constant temperature and pressure were
carried out with a field sweep of 50 mT/min and with a
temperature stabilization of ±1 mK.

III. RESULTS AND DISCUSSION

A. Electrical transport

The temperature dependence of the electrical resistivity
ρ(T ), normalized to the room temperature value ρ295 K at
different pressures p, is shown in Fig. 1. For clarity data
are shifted by fixed amounts (see caption). With decreasing
temperature, for all pressures, ρ first decreases until it reaches
a local minimum around ∼120 K, then increases roughly as
−lnT until it develops a broad maximum around Tmax. Below
Tmax, ρ(T ) falls rapidly, showing an S-shaped profile below
3 K, with a broad hump around 1 K. This profile is similar to
ρ(T ) data previously reported for p < 80 kbars and T > 0.5 K
in a sample that showed a lower TN and no clear sign of
quadrupolar order [22].

The maximum and the kink might either be due to Kondo
scattering from the excited and ground state crystal electric
field levels, respectively, as expected in the Cornut and
Coqblin scenario [25], or due to Kondo scattering from the
two different Ce sites of the crystal structure as suggested
previously [22,23]. In either case, we expect the temperature
of the maximum (Tmax) to contain information on the Kondo
temperature of at least one site. We determine Tmax in Fig. 1
as the temperature where dρ(T )/dT is zero. Tmax increases
slightly with pressure, in particular above 4 kbars [Fig. 4(a)].

FIG. 1. Temperature dependence of the electrical resistivity nor-
malized to the room temperature value ρ/ρ295 K at different pressures.
For better readability the data are shifted by +0.1 at 0 kbar, +0.075
at 2.8 kbars, +0.025 at 3.2 kbars, −0.025 at 3.6 kbars, −0.075
at 4.9 kbars, and −0.1 at 6.2 kbars. The arrows indicate Tmax, the
temperature where dρ/dT is zero.

A positive slope dTmax/dP was also reported at higher
pressures [22]. Assuming that the relatively low pressure
does not sizably affect the CEF level scheme, the increase
of Tmax with p may be associated with an increase of the
Kondo interaction due to an enhancement of the effective
hybridization between the Ce 4f and the conduction electrons.

The electrical resistivity at different pressures at the lowest
temperatures is shown in Fig. 2(a). For all pressures, ρ(T )
first decreases gradually with decreasing temperature down
to ∼0.6 K, then more steeply below 0.6 K, and finally
tends to saturate below ∼0.15 K. This behavior is typical of
antiferromagnetic heavy fermion metals where the magnetic
ordering temperature is associated either with the position
of a kink in ρ(T ) or with the temperature where the first
derivative of the electrical resistivity dρ/dT shows a maximum
[1]. Here we use the latter criterion to determine T

ρ

N , as is
shown in Fig. 2(b). At p = 0 kbar, we can distinguish a clear
maximum at T ρ

N = 0.3 K and a shoulder at T ρ

Q = 0.5 K. T ρ

N and
T

ρ

Q are tentatively assigned to the onset of antiferromagnetic
and antiferroquadrupolar order, respectively. With increasing
pressure up to 3.6 kbars, these two features follow converse
trends, i.e., T

ρ

N is enhanced, whereas T
ρ

Q is reduced [Fig.
4(d), open symbols]. For pressures above 4.9 kbars, dρ/dT

broadens. This is likely due to the fact T
ρ

N and T
ρ

Q are too close
to be distinguished. TN (p) increases in the whole investigated
pressure range, with a small steplike feature at 3.2 kbars. At the
same pressure a pronounced increase of the residual resistance
ratio RRR = ρ295 K/ρ0.05 K is observed [Fig. 4(a)].

The relative change of electrical resistivity from T → 0
to T

ρ

N , �ρN/ρ0 = [ρ(T ρ

N ) − ρ0]/ρ0, as well as the residual
resistivity ρ0 [Fig. 2(a)] are plotted as a function of p in
Fig. 4(b). ρ0 was determined by least-squares fitting of the
data below 0.2 K to ρ(T ) = ρ0 + AT 2 (Fig. 3). The values for
A coefficient are plotted in Fig. 4(c). As the size of �ρN/ρ0

is generally considered to be a measure of the strength of the
AF order [1,11,24,26,27], its increase with pressure confirms
that pressure stabilizes the AF order, at least up to 6.2 kbars.
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FIG. 2. (a) Electrical resistivity ρ below 1 K at different pressures.
ρ(T ) data are shifted by −0.5 at 2.8 kbars, −0.75 at 3.2 kbars, −1.4
at 3.6 kbars, −2.2 at 4.9 kbars, and −1 at 6.2 kbars (μ� cm). ρ0 is
the residual resistivity at T = 0 and �ρN is the resistivity change
up to T

ρ

N . (b) Temperature dependence of the first derivative of the
electrical resistivity dρ/dT . The curves were subsequently shifted
by +2 μ� cm/K and at 6.2 kbars by +16 μ� cm/K. The downward
and upward arrows indicate the temperature where dρ/dT shows
a maximum T

ρ

N and shoulder-type feature T
ρ

Q , which are ascribed
tentatively to the onset of antiferromagnetic and antiferroquadrupolar
order, respectively.

FIG. 3. Difference of electrical resistivity and residual resistivity
plotted versus T 2 for 0 kbar (open symbols) and 6.2 kbars (full
symbol). The lines are linear fits (see text).

FIG. 4. (a) Pressure dependence of Tmax of Fig. 1 and the residual
resistance ratio (RRR) (see text). (b) Pressure variation of the residual
resistivity ρ0 determined by fitting ρ = ρ0 + AT 2 to the data below
0.2 K and of �ρN /ρ0, the relative change of ρ(T ) up to T

ρ

N estimated
as shown in Fig. 2(a). (c) Fermi liquid A coefficient as a function of
pressure obtained from fitting as in (b). (d) Temperature-pressure
phase diagram, where TN and TQ are estimated from electrical
resistivity (open symbols, T

ρ

N and T
ρ

Q) and Cp data (full symbols).
Dashed lines are guides to the eyes.

To determine the pressure–magnetic field–temperature
phase diagram, isothermal magnetoresistance (MR)
measurements were done at different pressures (Fig. 5).
For all pressures and for the lowest temperature T = 0.05 K,
MR(B) first increases up to a maximum and then decreases. In
Ref. [13] BN was determined by fitting a phenomenological
function to MR(B). Here, for simplicity, we define the position
of the maximum as the magnetic field BN for the suppression
of AF order at constant temperature. As temperature increases,
BN is reduced and completely suppressed above TN . BN (T )
isobars define the boundary of the AF phase for different
pressures (Fig. 6).

We can interpret these BN (T ) data also as TN (B) data and
use them to estimate the critical field BC = BN (T = 0) with
the mean field expression TN (B) ∝ (BC − B)1/2 (full lines in
Fig. 6). BC increases from 0.75(8) T at p = 0 to about 0.91(2) T
at 4.9 kbars. This increase of BC with pressure supports the
strengthening of the AF order with pressure.

B. Specific heat

Our specific heat measurements provide valuable inde-
pendent information about the evolution of the two phase
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FIG. 5. (a) Isothermal magnetoresistance �ρ/ρ at selected pres-
sures. The arrows show the magnetic field where �ρ/ρ is maximum
BN at T = 0.05 K. The value of BN at different temperatures and
pressures is plotted in Fig. 6.

transitions under pressure. According to the heat dissipation
equation, the sample’s specific heat Cp is either proportional to
the inverse of the ac-pick up voltage signal Vac or to the phase
shift φ measured directly by ac calorimetry [28–30]. In the

FIG. 6. Pressure–magnetic field–temperature phase diagram of
Ce3Pd20Si6 determined from our magnetoresistance (◦, �, �), elec-
trical resistivity (�), and specific heat (•, �, �, �, �) measurements.
All dashed lines are guide to the eyes.

FIG. 7. Temperature variation of the specific heat Cp at different
pressures. The upward and downward arrows indicate the transitions
at TN and TQ, respectively.

pressure range investigated here, the employed thermocouple
and heater have negligible pressure variation [31] and we can
detect the absolute value of phase transition temperatures with
an accuracy of 4%. An independent specific heat measurement
was performed at 0.1 Hz to estimate the addenda contribution.
The specific heat measured in the pressure cell at p = 0 kbar
agrees with the one measured under adiabatic conditions [21]
(below 0.2 K) if Cp is scaled by a factor 1.5. This calibrates
the absolute values of the ac specific heat for all pressures.

Figure 7 shows the temperature dependence of the sample’s
specific heat at different pressures. At p = 0 kbar, two
anomalies are observed at TN = 0.3 K and TQ = 0.5 K,
associated tentatively with an antiferromagnetic and an an-
tiferroquadrupolar transition, respectively. TN and TQ are
determined as the temperatures where dCp(T )/dT has local
maxima (not shown). TN (p) and TQ(p) are plotted in Fig. 4(d).
The increase of p has opposite effects on the two anomalies: TN

increases, whereas TQ decreases. At 6.2 kbars, both transitions
seem to merge, being essentially undistinguishable at pressures
close to 6.2 kbars.

The application of magnetic field helps to identify both
transitions because field is known to suppress TN and to
enhance TQ at 0 kbar and low fields [13]. Figure 8 shows
1/Vac ∼ Cp at 4.9 and 6.2 kbars, in different magnetic fields.
The frequency of the excitation current for our ac calorimeter
was kept constant for all temperature scans. No measurements
were done at lower frequencies to estimate the addenda
contribution. Thus, Fig. 8 depicts isofield Cp curves without
the substraction of an addenda contribution. As we only extract
phase transition temperatures from these data this procedure is
fully justified. At 4.9 kbars and 0 T [Fig. 8(a)], Cp shows two
different anomalies at 0.37 and 0.43 K. The lower anomaly is
monotonically shifted to lower temperatures and is completely
suppressed at a field slightly above 0.8 T. The upper transition
is continuously shifted to higher temperatures. In analogy with
the data at p = 0 this identifies the lower and upper transitions
as TN and TQ, respectively. Similar behavior is observed at
6.2 kbars [Fig. 8(b)] which confirms that the single broadened
anomaly indeed still contains both transitions. TN (B) and
TQ(B) are plotted in the pressure–magnetic field–temperature
phase diagram in Fig. 6. TN (B) obtained from our Cp
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FIG. 8. Temperature dependence of the inverse of the pick-up
voltage signal Vac ∼ Cp at different magnetic fields and at constant
pressures (a) p = 4.9 kbars and (b) p = 6.2 kbars. All these isofield
data are shown with the addenda contribution. The solid and dashed
arrows show the two observed anomalies at TN and TQ, respectively
(see text).

measurements is in good agreement with the results from
our MR measurements. For 6.2 kbars, where no MR data are
available, we use the same mean field fit (solid line in Fig.
6) as above, TN (B) ∝ (B − BC)1/2 and obtain a critical field
BC = 1.32(3) T. Thus, the AF order is strengthened under
pressure up to at least 6.2 kbars.

C. Quantum criticality under B and p

The pressure–magnetic field–temperature phase diagram
(Fig. 6) hosts a line of zero temperature phase transitions
BC(p) from which quantum critical behavior might emerge.
This has been shown to be the case for BC(p = 0) 	 0.9 T
[13]. Here we investigate the behavior at 4.9 kbars, a pressure
where TN and TQ are close to each other (0.37 and 0.41,
respectively) in zero magnetic field. Figure 9(a) shows the
corresponding electrical resistivity data at different magnetic
fields. Similar to ρ(T ) in Fig. 2(a), an S-shaped ρ(T ) curve
below 0.7 K indicates the presence of AF order below TN (B)
from 0 up to 0.8 T. TN (B) is estimated as the temperature
where dρ(T )/dT has a maximum [marked with solid arrows
in Fig. 9(b)]. The TN (B) values are in good agreement with
the values extracted above from MR and Cp measurements
(Fig. 6). For B = 1 T, the low temperature maximum in
dρ(T )/dT is absent. Thus 1 T is above the critical field for

FIG. 9. (a) Temperature variation of the electrical resistivity at
different magnetic fields for p = 4.9 kbars. For better readability,
ρ(T ) data are shifted by +0.5 at 0.6 T, +1 at 0.7 T, +2 at 0.8 T, and
+3 at 1 T (μ� cm). The straight line indicates the most extended
linear temperature range ascribed to non-Fermi liquid behavior.
The arrows indicate the Landau-Fermi liquid temperature TFL (see
text). (b) Temperature dependence of the first derivative of electrical
resistivity dρ/dT . Solid and dashed arrows indicates putative TN and
TQ, respectively.

the suppression of the AF order. TQ is seen as a shoulder in
dρ(T )/dT at higher temperatures and finite fields [dashed
arrows in Fig. 9(b)]. It shifts to higher temperatures with
increasing field, in agreement with TQ(B) extracted above
from Cp at 4.9 kbars [Fig. 8(a)].

To search for signs of field-induced quantum criticality
at p = 4.9 kbars we first analyze the Landau-Fermi liquid
(LFL) behavior. ρ(T ) = ρ0 + AT 2 best explains the lowest
temperature electrical resistivity, indicating the absence of
significant magnon scattering and the dominance of LFL
behavior in the various phases. The A coefficient is determined
by a least-squares linear fit of ρ plotted vs T 2 (not shown) up
to the temperature where the fit deviates by more than 0.2%
from the data. This temperature (TFL) is indicated by arrows in
Fig. 9. The values A and ρ0 obtained from these fits are plotted
in Figs. 10(a) and 10(b). For comparison we also show the A

and ρ0 values of a sample at ambient pressure, which has a
slightly higher AF transition temperature (TN = 0.35 K) [32].

At p = 4.9 kbars, the strong enhancement of A from 0 to
0.8 T and the smaller A value at 1 T point to a QCP between
0.8 and 1 T. A fit using the expression A(B) ∝ |BC − B|η [7]
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FIG. 10. (a) Landau-Fermi liquid A coefficient as a function of
magnetic field for 4.9 kbars, and for 0 kbar [32] for comparison.
The solid curves are fits using the expression A(B) ∝ |BC − B|η (see
text). (b) Residual resistivity ρ0 as a function of magnetic field for 4.9
and for 0 kbars. Dashed curves are guide to the eyes, whereas straight
dashed lines indicate the critical field at BC .

describes the enhancement of A(B) below 1 T very well [solid
line in Fig. 9(a)] with BC = 0.91 T and η ≈ −0.42. A similar
value of η and BC = 0.87 T was reported for A(B) at ambient
pressure [Fig. 10(a)] [32]. Moreover, at p = 4.9 kbars, the
residual resistivity ρ0 is only slightly enhanced towards BC ,
with 4.92 μ� cm at 0 T and 5.6 μ� cm at 0.8 T [Fig. 10(b)].
We observe that the relative enhancement from 0 up to 0.8 T
is �ρ0

ρ0(B = 0) = 0.03 and �A
A(B = 0) = 2.3 for 0 kbar, and �ρ0

ρ0(B = 0) =
0.13 and �A

A(B = 0) = 1.2 for 4.9 kbars.
Finally, we analyze deviations from the LFL behavior. ρ(T )

at 4.9 kbars and B = 1.0 T is linear in temperature from below
0.18 to 0.6 K. The range of linear T dependence slightly
shrinks at 0.8 T, where it persists from below 0.2 up to 0.56 K.
The non-Fermi liquid temperature dependence ρ ∼ T has fre-
quently been observed in systems with Kondo breakdown QCP
[1,33]. The latter together with the enhancement of A(B) and
ρ0(B) towards BC = 0.91 T indicates a field-induced QCP for
p = 4.9 kbars, that is similar to one seen at ambient pressure.

D. Temperature-pressure phase diagram

The temperature-pressure (T -p) phase diagram in Fig. 4(d)
shows the converse effects of pressure of TN and TQ:
TN increases with pressure [�TN (p) = TN (p = 6.2 kbars) −
TN (p = 0) ≈ +0.1 K], whereas TQ decreases with pressure

[�TQ(p) ≈ −0.1 K]. This phase diagram is distinctly different
from the T -p phase diagrams reported for the related com-
pounds CeB6 [34] and Ce3Pd20Ge6 [23]. These are cubic heavy
fermion compounds that were shown to undergo magnetic and
quadrupolar transitions [35]. In CeB6, TN decreases, whereas
TQ increases with pressure up to 10 kbars [34], which is
a trend opposite to what we observe for Ce3Pd20Si6. For
Ce3Pd20Ge6, TN and TQ at first increase and subsequently
decrease with pressure [23]. In spite of the similarities of the
zero-pressure–temperature–field phase diagrams of all these
compounds, this points to different origins thereof.

We now try to rationalize our findings within the framework
of the global phase diagram for antiferromagnetic heavy
fermion compounds [3,13]. This is a T = 0 two-dimensional
phase diagram spanned by the magnetic frustration parameter
G and the Kondo coupling constant JK . In systems with
antiferromagnetic order, the antiferromagnetic phase expands
with decreasing G. It has been previously shown that the
ground state of Ce3Pd20Si6 at p = 0 and B = 0 is located in the
AF ordered regime with small Fermi surface (AFS). At p = 0,
B drives Ce3Pd20Si6 to another ordered (presumably still AF)
state with a large Fermi surface (AFL), passing through a
Kondo breakdown QCP. This AF-QCP has been associated
with an increase of JK at constant G [13]. Our experiments
revealed that the field to reach this QCP is increased with
pressure. This suggests that pressure drives Ce3Pd20Si6 even
deeper into the antiferromagnetic phase (Fig. 11). Simulta-
neous application of pressure and field induces a quantum
critical point with quantum critical resistivity characteristics

FIG. 11. Global T = 0 phase diagram (GPD) for heavy fermion
compounds close to an antiferromagnetic instability spanned by the
magnetic frustration parameter G and the Kondo coupling JK [3,13].
Lines of quantum critical points separate antiferromagnetic (AF)
from paramagnetic (P) (thick red lines), and regions of small (S) and
large (L) Fermi surfaces (brown line). The latter represents quantum
critical points accompanied by Kondo breakdown. The diamond
solid symbol represents the position of Ce3Pd20Si6 in the GPD at
ambient conditions (p = B = 0). The solid and dashed arrows
represent the direction that Ce3Pd20Si6 follows under pressure and
magnetic field, respectively. The thick dashed line tentatively locates
the boundary between a phase with (AFQ) and a phase without (PQ)
antiferroquadrupolar order.
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very similar to the p = 0 case. This indicates that the criticality
remains dominated by TN even though TQ is sizably decreased
by pressure. The quadrupolar phase boundary is not captured
by the present version of the theoretical global phase diagram.
Our experiments reveal that its dependence on G and JK is very
different from the phase boundary between AFS and AFL. To
visualize this, we tentatively draw a line of quantum critical
points between an AFQ phase and a phase without quadrupolar
order (PQ, Fig. 11). It shows that pressure tuning ultimately
exposes a quadrupolar QCP within an AF background, which
is an exciting prospect for future research.

IV. CONCLUSIONS

To summarize, we have investigated the pressure evolution
of the putative antiferromagnetic and antiferroquadrupolar
orders in Ce3Pd20Si6 using electrical resistivity, magnetore-
sistance, and specific heat measurements. Our results reveal
an increase of the antiferromagnetic TN and a decrease of the
antiferroquadroplar TQ ordering temperatures with pressure
and the merging of both transitions at about 6.2 kbars. This
converse effect of pressure on TN and TQ is rather unique in
cubic heavy fermion compounds.

At pressures where TN ≈ TQ, the application of magnetic
field induces a QCP, with a critical field BC that is larger

than at p = 0 but with the same quantum critical ρ(T )
behavior. Our findings are consistent with pressure moving
the location of Ce3Pd20Si6 in the global phase diagram for
quantum critical heavy fermion compounds towards lower
values of the frustration parameter G and the Kondo coupling
JK . This would imply that the role of pressure is to enhance
the three-dimensional character of the low-lying magnetic and
quadrupolar interactions.

Finally, our experimental findings qualify pressure as
an ideal tool to disentangle effects of dipolar and higher
multipolar ordering, and quantum criticality emerging from
their suppression. This will likely trigger further experiments
in higher pressures.

ACKNOWLEDGMENTS

We acknowledge the European Research Council (ERC
Advanced Grant No. 227378) and the Austrian Science Fund
(FWF Grant No. I623-N16) for financial support. J.L.J. ac-
knowledges the FRC/URC of UJ for funding of a Postdoctoral
Fellowship under joint supervision of S.P. and A.M.S. J.L.J.
also acknowledges the CNPq/MCTI-Brazil for an “Attracting
Young Talent Grant” under the “Science Without Borders”
program and V.M. acknowledges FAPERJ (Nota 10).
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