A High-Throughput Microfluidic Platform for Mammalian Cell Transfection and Culturing

Mammalian synthetic biology could be augmented through the development of high-throughput microfluidic systems that integrate cellular transfection, culturing, and imaging. We created a microfluidic chip that cultures cells and implements 280 independent transfections at up to 99% efficiency. The chip can perform co-transfections, in which the number of cells expressing each protein and the average protein expression level can be precisely tuned as a function of input DNA concentration and synthetic gene circuits can be optimized on chip. We co-transfected four plasmids to test a histidine kinase signaling pathway and mapped the dose dependence of this network on the level of one of its constituents. The chip is readily integrated with high-content imaging, enabling the evaluation of cellular behavior and protein expression dynamics over time. These features make the transfection chip applicable to high-throughput mammalian protein and synthetic biology studies.


Published in:
Scientific Reports, 6, 23937
Year:
Mar 31 2016
Publisher:
London, Nature Publishing Group
ISSN:
2045-2322
Note:
This article is licensed under a Creative Commons Attribution 4.0 International License
Laboratories:


Note: The status of this file is: Anyone


 Record created 2016-07-19, last modified 2020-05-19

Final:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)