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ABSTRACT
Data processing systems offer an ever increasing degree of
parallelism on the levels of cores, CPUs, and processing
nodes. Query optimization must exploit high degrees of par-
allelism in order not to gradually become the bottleneck of
query evaluation. We show how to parallelize query opti-
mization at a massive scale.

We present algorithms for parallel query optimization in
left-deep and bushy plan spaces. At optimization start, we
divide the plan space for a given query into partitions of
equal size that are explored in parallel by worker nodes.
At the end of optimization, each worker returns the opti-
mal plan in its partition to the master which determines
the globally optimal plan from the partition-optimal plans.
No synchronization or data exchange is required during the
actual optimization phase. The amount of data sent over
the network, at the start and at the end of optimization, as
well as the complexity of serial steps within our algorithms
increase only linearly in the number of workers and in the
query size. The time and space complexity of optimization
within one partition decreases uniformly in the number of
workers. We parallelize single- and multi-objective query op-
timization over a cluster with 100 nodes in our experiments,
using more than 250 concurrent worker threads (Spark ex-
ecutors). Despite high network latency and task assignment
overheads, parallelization yields speedups of up to one or-
der of magnitude for large queries whose optimization takes
minutes on a single node.

1. INTRODUCTION
Moore’s law [15] is breaking and computer systems be-

come more powerful by increasing their number of process-
ing units (be it cores, CPUs, or cluster nodes) rather than by
increasing clock rates. This means that all stages of query
evaluation must exploit parallelism in order not to become
the bottleneck in future systems.
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Research on parallelizing query evaluation has so far mainly
focused on how to parallelize the actual query processing
stage, i.e. how to parallelize the execution of query plans.
This is however insufficient as noted in prior work [9, 10,
26, 18]: in order to parallelize query evaluation, we must
not only parallelize the execution of query plans but also
the generation of query plans, i.e. we must develop parallel
algorithms for the query optimization problem.

Query optimization is an NP-hard problem and even find-
ing guaranteed near-optimal query plans is NP-hard [3].
The run time of all known algorithms increases exponen-
tially in the number of joins and novel application scenar-
ios (e.g., SPARQL query processing [6]) motivate queries
with many joins. Furthermore, the complexity of the sys-
tems on which query processing takes place increases: the
number of system components keeps increasing (as discussed
before), flexible provisioning models and novel processing
operators introduce new parameters by which query pro-
cessing can be tuned (e.g., the number of machines to rent
is such a parameter in a cloud scenario [14] or the sam-
pling rate of a scan operator in the context of approximate
query processing [1]). All those developments make query
optimization harder since the size of the plan search space
increases. In addition, many of the aforementioned develop-
ments motivate new cost metrics for comparing query plans
(e.g., monetary fees in a cloud scenario or result precision
in approximate query processing) in addition to execution
time. Having multiple plan cost metrics makes query opti-
mization however harder as well [22, 23, 24]. In summary,
there are many ongoing developments that make query op-
timization harder and hence increase the need for parallel
query optimization algorithms.

We propose a novel, parallel algorithm for query optimiza-
tion in this work. Our goal is to obtain a query optimization
algorithm that is future-proof in that it is able to exploit the
ever-growing degree of parallelism forced by the breakdown
of Moore’s law. While prior parallel query optimization al-
gorithms have been primarily designed for shared-memory
architectures, we aim at parallelizing query optimization on
shared-nothing architectures as well. Query plans are often
executed on large clusters and, as query optimization must
precede query execution, it is preferable to use all cluster
nodes for query optimization rather than leave them idle
until optimization has finished. Even for queries that are
executed repeatedly on a single node, a cluster can be used
for optimization before run time if optimization is expen-
sive. The algorithm that we propose is however not specific
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to shared-nothing architectures and can be applied in differ-
ent scenarios as well.

Prior approaches for parallelizing query optimization as-
sume that worker threads share common data structures [9,
10, 26, 5, 18], in particular big memotables storing sub-
sets of query tables optimal join plans. They assume that
a central master node distributes fine-grained optimization
tasks to workers and that many interactions between master
and worker threads take place during the optimization of a
single query. In a shared-nothing architecture, sharing data
between worker threads results in high communication over-
head and each task assignment incurs setup overhead. We
target extremely high degrees of parallelism, at least sev-
eral hundreds of cluster nodes (while prior algorithms have
not been evaluated on more than eight cores). Orchestrat-
ing that many nodes on the level of micro optimization tasks
results in prohibitive communication and computation over-
head on the master node.

Achieving our goals requires a radically different approach
compared to prior work: instead of decomposing the query
optimization problem into many small optimization tasks,
we realize the most coarse-grained problem decomposition
possible: the optimization of one query is mapped into ex-
actly one task per worker node.

On a high level, our algorithm works as follows. Given a
query to find an optimal plan for, the master optimizer node
sends that query together with a plan space partition ID to
each worker node. The partition ID is simply an integer be-
tween one and the number of workers such that each worker
obtains a different number. Each worker node translates its
partition ID into a set of constraints on join orders and only
considers query plans that comply with those constraints.
Each worker node therefore searches for an optimal plan
within a plan space that is smaller than the original plan
space. The worker nodes search the optimal plan within
their respective plan space partition in parallel. No commu-
nication between workers or between workers and master
node is required during that stage. Afterwards, the workers
send the optimal plans back to the master node. The orig-
inal plan space is the union over all plan space partitions.
Comparing the plans returned by the workers, which are op-
timal within their respective partition and whose number is
linear in the number of workers, yields therefore the globally
optimal plan.

Our algorithm is designed to exploit very high degrees
of parallelism. The time complexity of all serial processing
steps, executed by the master node, is linear in the number
of workers and in the query size. The amount of data sent
over the network is also linear in the number of workers and
in the query size. All plan space partitions have the same
size which guarantees skew-free parallelization. For a fixed
query, the run time as well as the consumption of main mem-
ory space per worker node decreases monotonically in the
number of worker nodes. Furthermore, the number of parti-
tions into which the plan space can be divided and therefore
the maximal degree of parallelism grows in the query size
and is in principle unlimited.

Our algorithm parallelizes one of the most popular dy-
namic programming schemes for query optimization [17].
It treats table sets of increasing cardinality and constructs
optimal join plans for each table set out of optimal plans
for table subsets that were previously generated. As it has
been noted in prior work [9], this dynamic programming

scheme belongs to the class of non-serial polyadic algorithms
and is therefore difficult to parallelize. Certainly it is eas-
ier to parallelize randomized query optimization algorithms
such as iterated improvement or simulated annealing [21,
12]. We nevertheless focus on parallelizing the dynamic
programming approach. There are two reasons. First, un-
like randomized algorithms, the dynamic programming ap-
proach formally guarantees to return optimal query plans.
Second, by parallelizing Sellinger’s classical dynamic pro-
gramming scheme [17] we parallelize at the same time many
query optimization algorithms that have been based on the
same scheme and cover a multitude of scenarios (e.g., multi-
objective query optimization [22, 23] or parametric query
optimization [11]).

The time and space complexity of the classical dynamic
programming algorithm depend on the number of table sets
for which optimal join plans need to be found. We decom-
pose the query optimization problem by introducing con-
straints on the join order that ultimately allow to reduce
the number of table sets to consider.

We propose a partitioning scheme for the space of left-
deep query plans and one partitioning method for bushy
query plans. Left-deep query plans are characterized by the
order in which tables are joined. We restrict join orders by
constraints of the form x ≺ y where x and y are query ta-
bles: the semantics is that table x needs to be joined before
table y. The constraint excludes any query plan producing
an intermediate join result containing table y but not table
x and hence we can neglect table sets containing y without
x during dynamic programming. This reduces the number
of table sets to consider by a factor of 3/4. If we assign the
constraint x ≺ y to a first worker node and the complemen-
tary constraint y ≺ x to a second worker then the entire
search space is covered. Furthermore, we can recursively
decompose the resulting plan space partitions by applying
similar constraints to other (disjoint) table pairs.

Bushy query plans are binary trees and cannot be repre-
sented as join orders anymore. However, if we fix an arbi-
trary table and follow its way from a leaf node in the plan
tree to the root then we can order the other tables based on
when they first appear in the sequence of intermediate re-
sults we encounter. Hence we restrict join orders for bushy
plan spaces by constraints of the form x � y|z with the
semantics that x appears no later than y when following ta-
ble z to the plan tree root. This excludes join results that
contain tables y and z but not table x.

We formally analyze time and space complexity and the
network bandwidth required by our algorithm. We show
that each constraint reduces time complexity by factor 3/4
for linear and by factor 21/27 for bushy plan spaces. We
show that those reduction factors are actually optimal within
a restricted design space of partitioning methods. Prior al-
gorithms achieved near linear speedups until a low number of
threads within a shared-memory architecture. Our speedups
are not linear but very steady up to very high degrees of par-
allelism and within a shared-nothing architecture. In our
experiments, we demonstrate continuous scaling up to more
than 250 concurrent worker threads on a large cluster over
various query sizes and for single as well as multi-objective
query optimization. As our algorithm scales even in this
challenging scenario, we believe that it scales on many other
architectures as well.
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The original scientific contributions of this paper are in
summary the following:

• We propose a novel algorithm for massively-parallel
query optimization on shared-nothing architectures.

• We formally evaluate that algorithm in terms of time
and space complexity and in terms of the required net-
work traffic.

• We evaluate the algorithm experimentally on a large
cluster, demonstrating its scalability for up to more
than 250 concurrent worker threads.

The remainder of this paper is organized as follows. We
compare against related work in Section 2. In Section 3,
we introduce our formal problem model. We present our
algorithms for parallel query optimization in left-deep and
bushy plan spaces in Section 4. In Section 5, we analyze
time and space complexity as well as the growth in network
traffic. In Section 6, we experimentally demonstrate the
scalability of our algorithms on a large cluster.

2. RELATED WORK
The term parallel query optimization sometimes refers to

serial optimization algorithms generating plans that are ex-
ecuted in parallel [4]. We use the term in a different sense:
we propose a parallel algorithm for generating query plans.

Our work connects to prior work that parallelizes the clas-
sical dynamic programming based query optimization algo-
rithm [9, 10, 26, 27, 5, 18]. Prior algorithms have however
implicitly been designed for shared-memory architectures
that do not scale beyond a certain degree of parallelism [20].
Prior algorithms have been evaluated on up to maximally
eight cores while we demonstrate scalability of our algorithm
on a shared-nothing architecture using over 250 workers. We
outline some of the factors that distinguish prior algorithm
from our algorithm and limit their scalability.

Prior algorithms assume that all threads share common
data structures (e.g., the memotable containing partial plans)
and can access data generated by other threads. This would
lead to huge communication overhead on shared-nothing ar-
chitectures (e.g., the size of the memotable is exponential
in the query size) while our algorithm does not require any
communication between workers. Furthermore, prior algo-
rithms use a central coordinator which assigns rather fine-
grained optimization tasks to worker threads (e.g., the mas-
ter thread assigns specific pairs of join operands to generate
plans for). This has two disadvantages. First, a lot of com-
munication is required between master and workers. Sec-
ond, the time complexity for managing the workers is high,
so the master itself will eventually become the bottleneck as
the degree of parallelism increases.

We assign tasks at the coarsest possible level: each worker
receives exactly one task per query. The time complexity of
the algorithm executed on the master is linear in the num-
ber of worker nodes and in the query size and so is the
total amount of data that needs to be sent over the net-
work. Finally, only one round of communication between
workers and master is required per query by our algorithm
while prior algorithms usually require many rounds of com-
munication. Having only one round of communication is ad-
vantageous in scenarios where distributing tasks to workers
and receiving the results is associated with overheads. We

compare against a typical representative of prior algorithms
in our experimental evaluation.

Our work is generally relevant for all areas of query op-
timization in which algorithms based on dynamic program-
ming have been proposed. This includes, for instance, multi-
objective query optimization [22, 24], parametric query op-
timization [7, 13], and multi-objective parametric query op-
timization [24]. Our method of partitioning the join order
space is generic and can be applied to all of those scenarios.

3. PROBLEM MODEL
As it is standard in query optimization, we use a simplified

query and query plan model to describe our algorithms. Ex-
tending the model and the algorithms towards richer query
languages and plan spaces is however straightforward and
can be achieved via standard techniques [17].

A query is a set Q of tables that need to be joined. We
denote by Scan(q) for q ∈ Q a query plan that scans a single
table and call such a plan a scan plan. By Join(pL, pR) we
designate a plan that joins the result produced by plan pL
with the result produced by pR and uses pL as outer and pR
as inner operand. We use the terms left and right operand
as synonyms for outer and inner operand respectively. We
do not incorporate alternative scan and join operator imple-
mentations into our model to simplify the presented pseudo-
code. The extension is however easy and our implementation
of our algorithm considers all standard operators.

We distinguish two types of query plans. Left-deep plans
are plans in which the right operand of every join is a scan
plan. All other plans are bushy plans. Bushy plans can be
represented as labeled binary trees where leaf nodes corre-
spond to single tables and inner nodes correspond to join
results. The tree shape of left-deep plans is fixed and the
join order of a left-deep plan is fully described by the order
in which table leaf nodes are encountered in a traversal (e.g.,
in post-order) of the plan tree. This is why we can represent
left-deep plans by a sequence of query tables.

For a fixed query, the set of all bushy plans is the bushy
plan space and the set of all left-deep plans is the left-deep or
linear plan space. We assume that a cost model is available
that associates query plans with cost estimates. Our pseudo-
code encapsulates that cost model in a pruning function that
discards the plan with higher cost among several compared
plans. The goal of query optimization is to find the cost-
optimal plan either in the space of left-deep or in the space
of bushy plans.

4. ALGORITHM
We present an algorithm for massively-parallel query op-

timization. The algorithm is well suited for shared-nothing
architectures as it minimizes the amount of sychronization
and communication overhead. The same properties are how-
ever beneficial in shared-memory scenarios. Our algorithm
is not specific to shared-nothing architectures and can be
used to parallelize query optimization over the nodes of a
cluster or over the cores of a single computer all the same.

The presented algorithm solves the traditional query op-
timization problem, meaning that it compares alternative
query plans according to single point cost estimates in one
cost metric. The method by which we partition the plan
space is however very generic and it is in fact straight-
forward to extend our algorithm to handle multiple plan cost
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metrics [22, 23] or plan cost functions that depend on un-
known parameters [13, 7] or both together [24]. This is possi-
ble since algorithms have been proposed for all of the afore-
mentioned query optimization variants that use the same
dynamic programming scheme as the classical algorithm by
Selinger [17]; only the pruning function, the way in which
different query plans are compared, differs between them.
The algorithm presented next can therefore easily be trans-
formed into an algorithm handling other query optimization
variants by essentially replacing the pruning function.

We present two variants of our algorithm: the first vari-
ant finds the optimal left-deep query plan for a given query
while the second variant finds the optimal plan within a
bushy plan space. Before discussing the pseudo-code, we
illustrate informally how our algorithm works by means of
a simplified example. This example refers to the algorithm
variant searching left-deep plan spaces.

Example 1. Assume we want to find the optimal left-
deep plan for answering the join query R 1 S 1 T 1 U .
Further assume that four worker nodes are available over
which query optimization is parallelized. Upon reception of
the query, the master nodes sends the query together with
the total number of plan space partitions (four) and the re-
spective partition ID (between one and four) to each worker
node. Consider the worker node that partition three is as-
signed to. Knowing that the total number of partitions is
four, the worker node derives that it should use log2 4 = 2
constraints to restrict the join order space. The two con-
straints refer to the order in which the four tables are joined.
The first constraint refers to the ordering between the first
pair of tables, R and S, and establishes which of them ap-
pears first in the join order. The second constraint refers
to T and U . The binary representation of the partition ID
encodes the concrete set of constraints to use. For the con-
sidered worker node, the partition ID is 10 in binary repre-
sentation. The first bit of the binary representation is zero so
the worker node orders R before S. As the second bit is one,
the worker orders U before T . Note that other workers will
use complementary constraint sets based on their respective
partition ID such that the whole join order space is covered.
The worker that we focus on finds the best plan whose join
order complies with the given constraints. It returns that
plan to the master which compares the plans returned by all
workers to determine the globally optimal plan.

We present pseudo-code for the high-level algorithm that
is executed by the master and the worker nodes in Sec-
tion 4.1. The code of the sub-functions that the workers
use to infer constraints on the join order from the partition
ID and to find join orders that comply with the constraints
are discussed in Section 4.2.

4.1 High-Level Algorithm
We present pseudo-code for the high-level algorithms that

are executed on the master node and on the workers. As
it is common in the area of query optimization, we sim-
plify the presented pseudo-code by considering only SPJ
queries. There are however standard methods by which
such algorithms can be extended to support richer query lan-
guages [17] (e.g., queries with aggregates or nested queries).

1: // Parallelizes optimization of query Q over m machines.
2: function Master(Q,m)
3: // Generate best plan for each partition in parallel
4: parfor partID ∈ {1, . . . ,m} do
5: bestInPart[partID]←Worker(Q, partID,m)
6: end parfor
7: // Prune plans and returns best plan
8: bestP lan← bestInPart[1]
9: for partID ∈ {2, . . . ,m} do

10: FinalPrune(bestP lan, bestInPart[partID])
11: end for
12: return bestP lan
13: end function
Algorithm 1: Function executed by master node for parallel
query optimization on shared-nothing architectures.

As announced before, we present two algorithm variants,
one treating the space of left-deep plans, the other one treat-
ing the space of bushy plans. The pseudo-code that we dis-
cuss in this subsection is however the same for both variants
such that we do not need to distinguish between them.

Our algorithm consists of two parts: the first part is ex-
ecuted by the master node which orchestrates the worker
nodes. The second part of our algorithm runs on the worker
nodes. Algorithm 1 shows the code that is executed on the
master. The input is a query Q, for which we want to find an
optimal query plan, and the number m of available worker
nodes. We assume in the following that m is a power of
two (the reason will become apparent in the following). The
output of the Master function is the optimal plan for Q.

The master node executes two phases. In the first phase,
the master sends the query together with a unique partition
ID to each of the workers1. We discuss the pseudo-code of
the Worker function a bit later. All worker invocations
happen in parallel as indicated by the keyword parfor. The
partition ID identifies a partition of the plan search space.
The task of each worker is to find the optimal plan within
its respective partition and to return it to the master. The
master collects the returned plans in the array bestInPart
(we use the standard notation bestInPart[x] to represent an
access to the x-th field of that array). In the second phase,
the master node compares all collected plans to identify
the globally-optimal plan. Function FinalPrune, whose
pseudo-code we do not specify, represent a standard pruning
function that replaces bestP lan by the better plan among
the two input plans. Having considered all plans returned
by the workers, the best plan must be globally optimal.

Note that workers need access to metadata (e.g., cardi-
nality and value distribution statistics) to estimate plan ex-
ecution costs. Either the master node sends query-specific
statistics to the workers together with each query (e.g., se-
lectivity estimates for the query predicates) or all relevant
statistics are regularly distributed to and stored on the worker
nodes. Which approach is preferable depends on the amount
of metadata and its update frequency.

Algorithm 2 shows the code of the function that runs on
worker nodes and is invoked by the master. The input is
the query Q to optimize, the total number m of plan space
partitions, and the identifier partID of the partition that is

1If worker nodes are heterogeneous then the number of par-
titions treated by a worker should be proportional to its
performance.
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1: // Generate best plan for query Q in partition with
2: // ID partID out of m partitions.
3: function Worker(Q, partID,m)
4: // Decode partition ID into a set of constraints
5: constr ←PartConstraints(Q, partID,m)
6: // Generate admissible intermediate results
7: joinRes←AdmJoinResults(Q, constr)
8: // Initialize best plans for single tables
9: for q ∈ Q do

10: P [q]←Scan(q)
11: end for
12: // Iterate over join result cardinality
13: for k ∈ {2, . . . , |Q|} do
14: // Iterate over admissible join results
15: for q ∈ joinRes : |q| = k do
16: // Try splits of q into two join operands
17: TrySplits(q, constr, P )
18: end for
19: end for
20: // Return best plan for query Q
21: return P [Q]
22: end function
Algorithm 2: Generate best query plan within specific par-
tition of either linear or bushy plan space.

assigned to the respective worker. The output is the optimal
plan within the corresponding partition. Each worker node
executes the following three steps. First, knowing the total
number m of partitions, the specific partition ID partID
can be translated into a set of constraints on the join order.
Function PartConstraints, whose code is discussed later,
accomplishes the translation. Second, function AdmJoin-
Results translates the set of constraints into an admissible
set of table sets that can appear as join results within a query
plan whose join order respects the constraints. Finally, the
worker node uses a dynamic programming approach to find
the optimal query plan among all plans that produce only
admissible join results. We assume, without explicitly writ-
ing out the corresponding code, that the result sets gener-
ated by function AdmJoinResults have been indexed by
their cardinality such that Algorithm 2 can efficiently re-
trieve all sets with a given cardinality k.

Variable P is an array storing optimal query plans and
P [Q] designates the optimal query plan for joining the table
set Q. We initialize P by inserting the scan plan for each
single query table q ∈ Q. We simplify the pseudo-code by
assuming only one scan plan per table but the generalization
is straight-forward. After that, the algorithm calculates op-
timal plans for table sets of increasing cardinality, using the
optimal plans that were stored in prior iterations. The algo-
rithm considers only table sets that represent admissible join
results. For each admissible join result, function TrySplits
tries all ways of splitting the join result into two admissible
operands and stores the best resulting plan in P .

4.2 Plan Space Partitioning
We discuss the sub-functions invoked by the Worker

function. In contrast to the previous subsection, we now
need to distinguish between the two algorithm variants that
we present. In the following pseudo-code, we use the nota-
tion F[LINEAR] to indicate that function F is specific to
the algorithm searching linear (or left-deep) search spaces.
Analogously, F[BUSHY ] indicates a function that is spe-

1: // Generate constraint on i-th table pair of
2: // query Q using precedence order precOrd.
3: function Constraint[Linear](Q, i, precOrd)
4: if precOrd = 0 then
5: return Q2·i ≺ Q2·i+1

6: else
7: return Q2·i+1 ≺ Q2·i
8: end if
9: end function

10: // Generate constraint on i-th table tuple of
11: // query Q using precedence order precOrd.
12: function Constraint[Bushy](Q, i, precOrd)
13: if precOrd = 0 then
14: return Q3·i � Q3·i+1|Q3·i+2

15: else
16: return Q3·i+1 � Q3·i|Q3·i+2

17: end if
18: end function

19: // Decode partition ID partID into a set of constraints
20: // restricting the plan space for query Q. The total
21: // number of partitions is m and partID ≤ m.
22: function PartConstraints(Q, partID,m)
23: // Initialize constraint set
24: constr ← ∅
25: // Iterate over constraints
26: for i ∈ {0, . . . , log2(m)− 1} do
27: // i-th bit encodes precedence order
28: precOrd←Bit(partID, i)
29: // Generate constraint on i-th subset of Q
30: c←Constraint(Q, i, precOrd)
31: // Add new constraint into set
32: constr ← constr ∪ c
33: end for
34: return constr
35: end function
Algorithm 3: Translate the partition ID into a set of con-
straints that restrict the plan search space.

cific to the algorithm generating bushy plans. The code of
all other functions is the same for both variants.

Algorithm 3 shows the code for translating a partition
ID into a set of constraints. Function PartConstraints
obtains as input the query, the number of partitions, and the
partition ID. The output is a set of constraints on the join
order that define the plan space partition that the current
worker needs to treat.

When generating constraints, we use the notation Qx with
x ∈ N to designate the x-th table in query Q. This nota-
tion assumes that query tables have been numbered consec-
utively from 0 to |Q|−1. The algorithm can use an arbitrary
table numbering but it is important that all workers use the
same numbering in order to guarantee that the whole plan
space is covered by the ensemble of workers.

The form of the generated constraints differs depending on
whether we search for left-deep or bushy plans. Constraints
for the left-deep plan space are defined on table pairs while
constraints on bushy plans are defined on triples of tables.
Constraint restricting the linear plan space are of the form
Qx ≺ Qy. This means that the x-th table must appear
before the y-th table in an admissible join order (the join
order of a left-deep plan can be represented as a sequence
of tables and the constraints refer to that representation).
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Constraints restricting bushy plan spaces are of the form
Qx � Qy|Qz with the semantic that when considering the
intermediate join results containing table Qz in ascending
order of cardinality, table Qy must not appear before table
Qx. We assume that constraints have been indexed such
that all constraints concerning a given set of tables can be
retrieved efficiently.

In case of a left-deep plan space there are two complemen-
tary constraints for each pair of tables, namely Qx ≺ Qy and
Qy ≺ Qx. In order to guarantee that the whole plan space
is covered by the ensemble of workers, we need to consider
complementary constraints by different workers. All work-
ers use constraints on the same table pairs but the direction
of those constraints (which of the two tables to join first)
differs among workers. Each worker uses the binary rep-
resentation of the partition ID to derive which of the two
possible constraints to consider for each table pair. We use
the notation Bit(partID, i) to represent the i-th bit of the
binary representation (it does not matter whether we start
with the lowest order bits or with the highest order bits).
Each bit determines the direction for one constraint.

The treatment of bushy plan spaces is analogue. Con-
straints are defined on table triples but for each triple of ta-
bles there are still just two complementary constraints and
each worker picks between them based on the partition ID.
We define two variants of the function Constraint that
generates the actual constraints: one for the linear and one
for the bushy plan space. The high-level algorithm for gen-
erating constraint sets does not differ between them.

Note that we have assumed that the number of workers
is a power of two and that the number of query tables is a
multiple of two for left-deep plans and a multiple of three
for bushy plans. Those assumptions simplify our pseudo-
code while the extension to the general case (i.e., using only
a subset of workers whose cardinality is a power of two)
are straight-forward. The number of workers that can be
efficiently exploited by our algorithm is however indeed re-
stricted to powers of two and the maximal number of workers
is additionally restricted as a function of the query size. We
analyze those restrictions in more detail in Section 5.

Constraints restrict the admissible join orders and join
trees. We are however ultimately interested in restricting
the number of intermediate results, i.e. join result table sets,
that can appear in admissible plans. The time and space
complexity of the dynamic programming algorithm executed
by the workers depends on that.

We must translate sets of constraints into sets of inter-
mediate results that admissible plans can use. Algorithm 4,
more precisely function AdmJoinResults, accomplishes the
translation. The input is the query and a set of constraints.
The output is the set of intermediate results that can appear
in plans that comply with those constraints.

Function AdmJoinResults iterates over all subsets of
query tables that constraints can refer to. For left-deep
plans those are all pairs of tables with consecutive num-
bers. For bushy plans those are all triples of consecutive
tables. In each iteration of the for loop, the function ex-
tends the admissible table sets stored in R by subsets of the
table pair (or table triple) considered in the current iteration
using a Cartesian product for the extensions. The auxiliary
function ConstrainedPowerSet returns for a given pair
(respective triple) or tables all subsets that comply with
the constraints. More precisely, if table Qx needs to be

1: // Returns pairs of consecutive tables in query Q
2: function Subsets[Linear](Q)
3: return {{Q2·i, Q2·i+1}|0 ≤ i ≤ |Q|/2− 1}
4: end function

5: // Returns triples of consecutive tables in query Q
6: function Subsets[Bushy](Q)
7: return {{Q3·i, Q3·i+1, Q3·i+2}|0 ≤ i ≤ |Q|/3− 1}
8: end function

9: // Part of power set of S respecting constraints C
10: function ConstrainedPowerSet[Linear](S,C)
11: return Power(S)\{{Qy}|(Qx ≺ Qy) ∈ C}
12: end function

13: // Part of power set of S respecting constraints C
14: function ConstrainedPowerSet[Bushy](S,C)
15: return Power(S)\{{Qy, Qz}|(Qx � Qy|Qz) ∈ C}
16: end function

17: // Returns all potential join results (table subsets
18: // of query Q) that comply with constraints C.
19: function AdmJoinResults(Q,C)
20: // Initialize result sets
21: R← {∅}
22: // Iterate over subsets of Q
23: for S ∈Subsets(Q) do
24: // Extend join results using Cartesian product
25: R← R×ConstrainedPowerSet(S,C)
26: end for
27: return R
28: end function
Algorithm 4: Generate all table subsets that comply with
the constraints defining a search space partition.

joined before table Qy in case of left-deep plans then (non-
singleton) table sets containing Qy but not table Qx do not
need to be considered. Equally for bushy plans, if table Qx

must appear before table Qy when enumerating all table sets
containing Qz then table sets containing Qy and Qz but not
Qx are not admissible as join results.

Example 2. Assume that Q = {Q1, Q2, Q3, Q4} and that
we have the two constraints C = {Q1 ≺ Q2, Q4 ≺ Q3},
hence we consider left-deep plans. Then the set of admis-
sible join result sets is generated in function AdmJoinRe-
sults as follows. In the first iteration of the for loop, we
extend the elements contained in R (initially this is only the
empty set) with the admissible subsets of the first table pair
{Q1, Q2}. The admissible subsets are {{}, {Q1}, {Q1, Q2}}
and this is at the same time the content of R after the
first iteration. The algorithm considers admissible subsets
of {Q3, Q4} in the second iteration (which are the sets {},
{Q4}, {Q3, Q4}) and extends each element with all of the
admissible subsets. Hence R = {{}, {Q1}, {Q1, Q2}, {Q4},
{Q1, Q4}, {Q1, Q2, Q4}, {Q3, Q4}, {Q1, Q3, Q4},
{Q1, Q2, Q3, Q4}} after the second iteration.

Note that the admissible table sets generated by func-
tion AdmJoinResults do not include all singleton table
sets. While all singleton sets must be considered to gener-
ate any plan (since we need to select scan plans for each
table), singleton sets are treated separately in Algorithm 2
and it does not matter which of them are included in the
result of function AdmJoinResults.

Algorithm 5 shows the function trying out different splits
and generating corresponding plans that applies for left-deep
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1: // Try all splits of U ⊆ Q into two operands respecting
2: // constraints C, generate associated plans and prune.
3: function TrySplits[Linear](Q,U,C, P )
4: // Iterate over potential inner operands
5: for u ∈ U do
6: // Check if operand choice satisfies constraints
7: if @v ∈ U : (u ≺ v) ∈ C then
8: p←Join(P [U \ u], P [u])
9: Prune(P, p)

10: end if
11: end for
12: end function

13: // Try all splits of U ⊆ Q into two operands respecting
14: // constraints C, generate associated plans and prune.
15: function TrySplits[Bushy](Q,U,C, P )
16: // Determine admissible operands
17: A← {∅}
18: // Iterate over set of table triples
19: for T ∈Subsets[Bushy](Q) do
20: // Restrict triple to tables in join result
21: S ← T ∩ U
22: // Form power set of remaining triples
23: S ←Power(S)
24: // Take out sets violating constraints
25: S ← S \ {{Qy, Qz}|(Qx � Qy|Qz) ∈ C}
26: // Remove complement of inadmissible sets
27: S ← S \ {{Qx}|(Qx � Qy|Qz) ∈ C;Qy, Qz ∈ U}
28: // Extend admissible splits by Cartesian product
29: A← A× S
30: end for
31: // Full set and empty set do not qualify as operands
32: A← A \ {∅, U}
33: // Iterate over admissible left operands
34: for L ∈ A do
35: // Generate plans associated with splits
36: p←Join(L,U \ L)
37: // Discard suboptimal plans
38: Prune(P, p)
39: end for
40: end function
Algorithm 5: Generate and prune query plans that corre-
spond to different splits of a join result into two operands.

plans. This function is called by Algorithm 2 for each ad-
missible join result. The function iterates over all tables
in the join result set U and tries all of them as inner join
operands as long as none of the constraints is violated. Plans
corresponding to admissible splits are generated and func-
tion Prune, whose pseudo-code we do not specify, compares
the newly generated plan against the best plan known so far
that produces the same tuples in the same order [17] as the
new one. Sub-optimal plans are discarded. The pruning
function used by the workers might differ from the one used
by the master (called FinalPrune in Algorithm 1) as the
tuple ordering is for instance only relevant as long as it can
reduce the cost of future operations and does not need to be
taken into account anymore for completed plans.

There are actually two mechanisms by which partition-
ing reduces the time complexity per worker. So far we have
focused on the first one: partitioning reduces the time com-
plexity per worker since fewer potential join results need
to be considered. An additional advantage of partitioning

is however that it allows to reduce the number of splits of
join results into two join operands, leading to different query
plans that need to be generated and compared.

The potential for saving computation time by reducing
the number of splits is higher for bushy plan spaces since
the number of possible splits grows exponentially in the size
of the join result. For left-deep plans, the number of splits
grows only linearly in the cardinality of the join result as
the right join operand is limited to singleton table sets.

This is why we invest more effort in case of bushy than
in case of left-deep plans into properly exploiting the re-
duction of admissible splits. For left-deep plans, we basi-
cally enumerate all possible splits and check whether they
comply with the constraints. The complexity of that ap-
proach remains linear in the number of possible splits and
not in the lower number of admissible splits. The algorithm
for bushy plans is more sophisticated as it avoids generat-
ing non-admissible splits for bushy plans in the first place.
Hence its complexity is linear in the number of admissible
rather than possible splits.

Function TrySplits[Bushy] generates all admissible splits
in a bushy plan space and generates and prunes the asso-
ciated query plans. The algorithm first generates all ad-
missible join operands and stores them in variable A. Each
admissible join operand corresponds to the union of one ad-
missible subset for each table triple (constraints are defined
on triples of tables). This is why we iterate over all table
triples, determine all admissible subsets of the current triple,
and combine in each iteration each operand in A with each
admissible subset of the current triple (using a similar ap-
proach as in Algorithm 4). For a given triple of query tables,
we only consider the ones that are included in the join result
U that needs to be split. If no constraints are defined on
the current triple then the entire power set of the contained
table is admissible. Otherwise, we must remove subsets vio-
lating the precedence constraints (line 25) but we must also
remove subsets whose complement (in the contained triple
tables) violates the precedence constraints (line 27) as the
second join operand is the complement of the first one.

Having determined all admissible join operands (whose
complement is admissible, too), we iterate over all of them,
generate plans and discard sub-optimal plans.

In principle, our partitioning method can parallelize query
optimization algorithms that do not implement the classi-
cal dynamic programming scheme. The classical dynamic
programming scheme seems however particularly amenable
to partitioning since run time is guaranteed to be propor-
tional to the number of intermediate results. This means
that run time does not vary significantly across workers,
thereby avoiding skew. It is a-priori unclear by how much
query optimization algorithms without that property, e.g.
the Volcano algorithm [8], benefit from partitioning.

5. COMPLEXITY ANALYSIS
We analyze the asymptotic amount of data sent over the

network in Section 5.1, the consumed amount of main mem-
ory in Section 5.2, and the execution time in Section 5.3.

Throughout Sections 5.1 to 5.3, we simplify the analy-
sis by assuming only one scan and join operator, one cost
metric, and no interesting orders. We generalize the anal-
ysis in Section 5.4. In Section 5.5, we discuss the question
of whether our partitioning methods can be improved and
show that they are optimal at least within a restricted space.
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We denote by n = |Q| the number of query tables to join
and by m the number of worker machines. We assume that
m ≤ 2bn/2c for linear plan search spaces and m ≤ 2bn/3c for
bushy plan spaces. We denote by l = blog2(m)c the number
of constraints per plan space partition. By bq we designate
the byte size of the input query. By bp we denote the byte
size of a corresponding plan.

5.1 Network Communication
We analyze the communication overhead per query.

Theorem 1. The amount of data sent over the network
is in O(m · (bq + bp)).

Proof. Different workers do not communicate with each
other so data is only sent between master and workers. Ini-
tially, the query and two integer numbers are sent to each
worker. If statistics are sent with the query, we assume that
their size is proportional to the query size. Hence, the input
size per worker is in O(bq). We consider one plan cost met-
ric and no interesting orders (while extensions are discussed
later). The output of each worker is therefore a single query
plan with space consumption bq.

5.2 Main Memory
We analyze the amount of main memory that each worker

requires during optimization. Note that the main memory
consumption of the master is negligible as it delegates op-
timization. The main memory consumed per worker node
depends on the number of admissible join results.

Theorem 2. Each linear plan space partition restricted
by l constraints has O(2n · (3/4)l) admissible join results.

Proof. The proof is an induction over the number of
constraints l. For l = 0 (induction start), all subsets of
Q are admissible and their number is in O(2n). Assume
the induction holds up to L constraints. We will see that
it holds for L + 1 constraints as well. All constraints refer
to different tables. Hence the first L constraints do not
influence the occurrence frequency of the two tables x and y
that the L+1-th constraint refers to. More precisely, among
the table sets that remain admissible after considering the
first L constraints, the fraction of table sets containing x
and y, x but not y, y but not x, and neither x nor y, is
always 1/4. Denote by x ≺ y the L+1-th constraint stating
that we must join x before y. Then join results containing y
but not x are inadmissible, the number of admissible table
sets is reduced by factor 3/4, and the induction holds.

Theorem 3. Each bushy plan space partition restricted
by l constraints has O(2n · (7/8)l) admissible join results.

Proof Sketch. The proof follows closely the one of The-
orem 2 with the difference that each constraint of the form
x � y|z excludes all table sets that contain y and z but
not x and their fraction is always 1/8 among the table sets
satisfying all other constraints.

Theorem 4. The main memory consumption per node is
in O(2n · (3/4)l) for linear plan spaces and O(2n · (7/8)l) for
bushy plan spaces.

Proof. The main memory consumption per worker dom-
inates the consumption of the master. The variable with
dominant space consumption are the ones storing admissi-
ble join results (variable joinRes in Algorithm 2) and the

one assigning table sets to optimal plans (variable P ). We
currently assume one plan cost metric and therefore only
one plan is optimal per table set. Storing plans generally
takes O(n) space but here each plan can be represented by
at most two pointers to optimal sub-plans stored for table
subsets which requires only O(1) space. The total main
memory consumption follows from Theorems 2 and 3.

5.3 Execution Time
We analyze time complexity. Note that the pseudo-code

presented in Section 4 is rather abstract and does not con-
tain certain steps that are crucial for efficiency: as we men-
tioned in Section 4, we assume for instance that constraints
are indexed such that we can find all constraints in which
a given table appears in constant time. For the analysis,
we assume that such commonsense optimizations have been
applied. We first analyze execution time on the master.

Theorem 5. The master requires O(m · (bq + bp)) time.

Proof. The master distributes the query and the parti-
tion ID to all m workers. Assuming that the required time
is proportional to the amount of data being sent, distribut-
ing tasks takes O(mbq) time and collecting plans from the
workers is in O(mbp). After receiving all plans, the master
iterates over the m plans that were returned from the work-
ers (and whose cost was already calculated) and determines
the one with minimal cost. This has complexity O(m).

We analyze time complexity on the worker nodes.

Theorem 6. The time complexity for processing a linear
plan space partition by one of the workers is O(n·2n ·(3/4)l).

Proof. A worker performs three main steps per invoca-
tion: translating the partition ID into constraints, translat-
ing constraints into admissible join result sets, and determin-
ing the optimal plan among the plans using only admissible
join results. The operation with dominant time complexity
is the determination of the optimal plan. For each admis-
sible join result set, we iterate over less than n inner join
operands. The number of admissible join result sets is in
O(2n · (3/4)l) according to Theorem 2. Generating a plan
from two sub-plans, calculating its cost via recursive for-
mulas, and comparing it with the best previously generated
plan joining the same tables requires only constant time.

Theorem 7. The time complexity for processing a bushy
plan space partition by one of the workers is O(3n ·(21/27)l).

Proof. Finding an optimal plan in a plan space parti-
tion is the operation with dominant time complexity. Its
complexity is proportional to the number of considered join
operand pairs. For each table there are in general three
possibilities for how it appears in a pair of join operands:
either it appears in the left operand or in the right operand
or it does not appear (neither in the operands nor in the
join result). Join operands are constructed from admissible
subsets of table triples. If no constraint is defined on a given
triple then all splits are admissible which makes 33 = 27 pos-
sible pairs. If a constraint is defined on a triple then some
of those 27 possibilities are not admissible. If the constraint
is x � y|z then the following six splits of triple {x, y, z} are
excluded: all splits whose union contains y and z but not x
(this applies to four splits) and all splits that assign y and z
to one operand and x to the other one (this applies to two
splits). The ratio of admissible to possible splits is therefore
21/27 for each triple with a constraint on it.
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As the time complexity of the worker processes dominates
the complexity of the master process and as all workers ex-
ecute in parallel, the time complexity of a single worker is
the complexity of the entire optimization process.

5.4 Extensions
So far we considered one plan cost metric, no interesting

orders, and no alternative operator implementations. Now
we sketch out how to generalize the analysis.

Considering multiple alternative operator implementations
for scan and join operations influences only time complexity.
Time complexity grows linearly in the number of operators
as each join operator implementation must be considered
for each possible pair of join operands. Annotating the op-
erations within query plans by an operator ID does neither
change asymptotic main memory consumption nor asymp-
totic communication overhead.

Considering interesting orders means that we have to store
one optimal plan per interesting order and per table set.
Considering multiple cost metrics has a similar effect as we
need to store a set of Pareto-optimal plans for each table set.
The number of plans sent from workers to master, and there-
fore communication overhead, increases linearly in the num-
ber of plans stored per table set. Main memory consumption
also increases linearly in the number of plans. Time com-
plexity increases proportionally to the cube of the number
of plans per table set: when searching for the optimal plan
within each plan space partition, we need to consider all
pairs of optimal plans for each split of a table set into two
join operands [22]. This accounts for a quadratic increase in
complexity. Additionally, pruning might take longer as we
need to compare plans not against one but multiple optimal
plans. This implies a cubic complexity growth.

5.5 Optimality of Partitioning
Execution time and main memory consumption both de-

pend on the number of intermediate join results that need
to be treated by each worker. With our partitioning scheme,
the number of join results per worker reduces by factor 3/4
in case of linear plan spaces and by factor 7/8 for bushy
plans, each time that the number of workers doubles. As
the ideal factor of 1/2 is not reached there must be join re-
sults that are assigned to multiple workers. This raises the
question of whether we can do better and reduce the number
of intermediate results per worker node by a lower factor.

We answer that question for partitioning methods that are
similar to the one we apply. Those are methods that divide
the power set of query tables into subsets based on which out
of two, respective three, fixed tables are present. Each of the
resulting subsets is assigned to part of the workers and each
worker generates all plans whose join results are contained
in its assigned subsets (each worker constructs scan plans
for all single tables, independently from the assigned join
results). Workers do not exchange partial plans and hence
must generate completed plans and start optimization from
scratch. We study the case of two workers in the following
but the reasoning can be generalized.

Theorem 8. Doubling the number of workers cannot re-
duce the maximal number of join results per worker by less
than factor 3/4 in linear plan spaces.

Proof. For a fixed pair of tables {x, y} out of all query
tables, we denote by xy the set of table sets containing y

but not x, by xy the sets containing both tables, by xy sets
containing neither x nor y, and by xy the remaining sets.
Each worker must obtain subset xy in order to generate
complete plans. The cardinality of the set of joined tables
can only increase by one from one join to the next in a left-
deep plan space. Each worker needs therefore either join
results from xy or from xy in order to generate any valid
plan. Set xy must be assigned to at least one worker since
the plan space partitioning is otherwise incomplete.

Theorem 9. Doubling the number of workers cannot re-
duce the maximal number of join results per worker by less
than factor 7/8 in bushy plan spaces.

Proof Sketch. For a triple of tables {x, y, z}, we use
a similar notation as before to characterize join result sets
and denote for instance by xyz all sets containing x and z
but not y. Both workers require xyz for the same reason
as before. Assume that we do not assign the set xyz to
both workers. The worker to which xyz is assigned is the
only worker that can consider plans joining the other tables
besides x, y, and z independently before joining with the
triple tables. This means that this worker needs to cover all
possible join orders for x, y, and z. Hence it requires all join
result sets which defeats the purpose of partitioning.

Assume now that we do not assign the set xyz to the
first worker. Then the second worker is the only one that
can consider plans of the form (x 1 . . .) 1 (y 1 . . .) and
hence requires xyz and by analogue reasoning also xyz in
addition to xyz in order to make sure that the whole plan
space is covered. As the second worker is at the same time
the only one that can consider plans of the form ((x 1 . . .) 1
y) 1 . . ., it requires at the same time xyz and xyz. Since
only the second worker can treat plans of the form (x 1

. . .) 1 (y 1 z), it requires also xyz. So the second worker
obtains at least 7 sets of join results. The same happens
when not assigning xyz or xyz to the first worker. We have
the option of not assigning one of the three sets containing
two out of the three tables {x, y, z} to the first worker in
which case we need to assign the other two to the second
worker. The maximal number of intermediate result splits
per worker remains 7/8.

6. EXPERIMENTAL EVALUATION
We evaluate the scalability of our query optimization algo-

rithm on a large cluster with 100 nodes. Parallelizing query
optimization on clusters is useful if query plans are also ex-
ecuted on a cluster: it is preferable to use all available re-
sources for optimization instead of leaving nodes idle until
serial optimization finishes. While parallelizing query opti-
mization on a cluster is hence a relevant application scenario,
we also selected it specifically because it is a very challeng-
ing scenario for parallelization due to high communication
cost and setup overhead. The fact that our algorithm scales
even on a cluster provides strong evidence for that it scales
in a multitude of other scenarios, too.

Section 6.1 describes our experimental setup and Sec-
tion 6.2 our experimental results.

6.1 Experimental Setup
We evaluate our algorithm on a cluster with 100 nodes.

Each node is equipped with two Intel Xeon E5-2630 v2 CPUs
featuring six cores each running at 2.60GHz; 128 GB of main
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memory and 20 TB of hard disk capacity are available per
node. The cluster runs Ubuntu Linux, version 14.04.

All benchmarked algorithms use Spark 1.5 on Yarn 2.7.1
and are implemented in Java 1.7. Master and worker nodes
send serialized Java objects over the network. We imple-
mented the algorithm from Section 4 and abbreviate it by
MPQ (for massively parallel query optimization). We com-
pare against an algorithm representing the fine-grained ap-
proaches to parallelizing query optimization proposed so
far. They were targeted at shared-memory architectures
and moderate degrees of parallelism [9, 10]. We call that
algorithm SMA (for shared-memory approach). In this al-
gorithm, the master node assigns to each worker a set of
join results for which to find optimal plans using the opti-
mal plans that were generated by other workers. This means
that intermediate results need to be shared between workers
and that the master needs to assign multiple rounds of tasks
to the workers. For both algorithms, the master initially
sends query-specific statistics (e.g., predicate selectivity val-
ues) to each worker. The comparison between MPQ and
SMA is unfair as both were developed for different architec-
tures. We are however unaware of other query optimization
algorithms for shared-nothing architectures.

We use up to 256 Spark executors and reserve up to 40 GB
of main memory per executor (query optimization requires
large amounts of memory, in particular in case of multiple
plan cost metrics [22]). We set the maximum message size
to 1 GB (SMA needs to send large messages).

We compare algorithms in linear and bushy plan spaces.
We do not heuristically restrict the use of cross products
as this might miss optimal plans [16]. As we allow cross
products, the number of intermediate results to consider
and hence performance of our optimization algorithms does
not critically depend on the structure of the query join
graphs. We generate queries with equality predicates and
star-shaped join graphs (unless noted otherwise). We choose
table cardinalities and attribute domain sizes by the method
introduced by Steinbrunn et al. [19] which is commonly used
for query optimization benchmarks [2, 23, 24]. In a first se-
ries of experiments, we consider execution time as only cost
metric and use standard cost formulas [19] to estimate the
cost of standard join operators such as block-nested loop
join, hash join, and sort-merge join. In a second series of
experiments, we consider two plan cost metrics and the goal
is hence to approximate the set of Pareto-optimal plans (a
plan is Pareto-optimal if no other plan has better cost ac-
cording to all cost metrics [22]). Our second cost metric (in
addition to execution time) is the buffer space consumption.
Those two cost metrics are frequently used for benchmarking
multi-objective query optimization algorithms [22, 23].

For the series of experiments with two plan cost metrics,
we replace the standard pruning function by a pruning func-
tion that was used in prior work for multi-objective query
optimization with formal near-optimality guarantees [22, 23].
That pruning function is parameterized by an approxima-
tion factor α, we set α = 10 unless noted otherwise.

6.2 Experimental Results
We show only an extract of our full experimental results.

The presented results are however representative and we ob-
served the same tendencies in additional experiments.

We start by discussing the results for traditional query
optimization with one plan cost metric. Figure 1 shows a
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Figure 1: MPQ outperforms SMA by up to four
orders of magnitude in terms of optimization time;
scalability of MPQ is limited due to the query sizes.

comparison between MPQ and SMA in terms of optimiza-
tion time and in terms of the amount of data exchanged
between cluster nodes. Each data point in the plots cor-
responds to the median of the results for twenty randomly
generated queries. We compare algorithms for different plan
spaces (linear and bushy) and for different query sizes (num-
ber of joined tables). We try different degrees of parallelism
for each plan space, adapting the maximal parallelism to
the search space size (we scaled up to the maximal degree
of parallelism that MPQ can exploit based on the number
of disjoint table pairs or triples) up to a maximum of 128
workers. We try smaller query sizes for the bushy plan space
than for the linear plan space as the size of the bushy search
space grows faster in the number of query tables. Note that
we also consider Cartesian product joins in contrast to prior
evaluations of parallel query optimization algorithms. This
makes the plan space much larger for the same number of
tables. Still the search spaces treated in Figure 1 are of mod-
erate size and we try larger search spaces in the following.

MPQ outperforms SMA by up to four orders of magni-
tude in optimization time. The reason is the large amount
of data that SMA has to send over the network, due to the
need for sharing intermediate results between workers, and
the overheads on the master node by fine-grained task man-
agement. The amount of data sent by SMA reaches several
hundreds of megabytes while our algorithm sends at most
234 kilobytes and in most cases significantly less than that.
SMA is not designed for shared-nothing scenarios and the
performance gap between the algorithms is expected.

The search space sizes in Figure 1 represent approximately
the limit of what the competitor algorithm SMA can treat
within reasonable amounts of time. For our MPQ algorithm,
the considered search spaces are actually too small to jus-
tify parallelization. This is why we see in most plots in
Figure 1 no decrease in optimization time for MPQ with
growing degree of parallelism. The network traffic and the
management overhead increase for both algorithms in the
number of workers. SMA can only benefit in few cases from
parallelization and only up to a degree of parallelism of four.

The computation time of SMA increases quickly in the
query size and in the degree of parallelism as well (reaching
more than 15 minutes per test case for 16-table joins). This
is why we exclude it from the following series of experiments.
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Figure 2: MPQ scales steadily for sufficiently large
search spaces and one plan cost metric.

Figure 2 shows results for larger search spaces and only for
MPQ. The figure shows total optimization time (measured
on the master node) as well as the maximal optimization
time measured over all workers (“W-Time” in the figure).
The fact that the difference between both is small indicates
that the management overhead on the master node is neg-
ligible. We show network traffic and additionally the maxi-
mal main memory consumption over all of the workers (the
master does not perform optimization itself and its main
memory consumption is negligible). We scale for each query
size up to the maximal degree of parallelism supported by
our algorithm (determined by the number of table pairs for
linear plans and the number of table triples for bushy plans)
and maximally up to 128 workers.

As search space sizes are large enough, we see steady
scaling for all degrees of parallelism that are theoretically
supported by our algorithm without diminishing returns for
higher number of workers. The scaling is slightly better for
linear plans than for bushy plans which matches precisely
our theoretical predictions from Section 5 (execution time
decreases by factor 3/4 for linear plans but only by factor
21/27 for bushy plans, each time that the degree of paral-
lelism doubles). Unlike for SMA, the network traffic created
by MPQ depends only marginally on the query size as no
intermediate results have to be exchanged between work-
ers or between workers and master. Only the query itself
and the final plan generated by each worker are sent. The
maximal main memory consumption on the workers (mea-
sured by the number of relations for which to store optimal
plans) equally decreases steadily with increasing paralleliza-
tion. Here the decrease for bushy plans is slower than for
linear plans which again matches our theoretical results.

If we use one worker then MPQ is equivalent to the classi-
cal query optimization algorithms [25] as it treats the same
table sets in the same order. Hence we compare the op-
timization time when executing our algorithm on a single
worker (not measuring master computation time and com-
munication overheads) to the optimization time of the paral-
lel version (including master computation time and commu-
nication overheads) to obtain the speedup of our algorithm
compared to serial query optimization. With 128 workers,
we obtain for left-deep plans a speedup of 8.1 for 24 query
tables and a speedup of 7.2 for 20 tables. With 32 workers
we have a speedup of 3.2 for 15-table joins and bushy query
plans and a speedup of 4.8 for 18-table joins and 64 workers.

All results presented so refer to queries with star-shaped
join graphs generated according to the method by Stein-
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Figure 3: Query properties like the join graph struc-
ture have negligible impact on optimization time.
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Figure 4: MPQ outperforms SMA but its scalability
is limited by small query sizes.

brunn et al. [19]. There are query optimization algorithms
for which optimization time depends heavily on query prop-
erties such as join graph and predicate types. The two
algorithms that we compare are however both based on a
classical dynamic programming scheme that examines for a
given query size always the same number of intermediate
results, independently of other query properties. Figure 3
shows for instance optimization time (arithmetic averages
and 95% confidence intervals) for different join graph struc-
tures. Corroborating theoretical guarantees, the impact of
the join graph structure on optimization time is negligible.

Note finally that our Java-based implementation is not
optimized for maximum efficiency. It is rather optimized for
modularity, allowing to “plug-in” different search spaces and
cost metrics. This enables us to execute experiments over a
broad range of scenarios. We believe that optimization time
can be reduced by specializing the algorithm.

We discuss the results for multi-objective query optimiza-
tion. Figure 4 shows a comparison between multi-objective
versions of SMA and MPQ (both algorithms use the same
pruning function that we reconfigured to consider two cost
metrics). The tendencies are similar as for single-objective
query optimization. Optimization times and network traffic
are significantly lower for MPQ than for SMA. The net-
work traffic of MPQ has however increased when comparing
to the results for single-objective query optimization. The
reason is that each worker must now send the set of all
Pareto-optimal plans in its respective plan space partition
back to the master instead of only one plan. The median
number of complete Pareto-optimal plans per query was 21
for 12-table joins when considering left-deep plans and 16
for 9-table joins in a bushy plan space.

Instead of exploiting a high degree of parallelism, SMA
suffers significantly once the number of workers increases
due to network traffic and coordination overhead. The max-
imal degree of parallelism that was beneficial to SMA is
eight. This is also the number of threads that prior algo-
rithms were maximally evaluated on. MPQ benefits from
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Table 1: Minimal parallelism required to reach pre-
cision α within fixed optimization time budget.

Time (s) Tables Approximation Precision α

1.01 1.05 1.25 1.5 2 5 10

10 14 16 4 1 1 1 1 1

16 ∞ ∞ 64 64 32 16 8

18 ∞ ∞ ∞ ∞ ∞ ∞ ∞

20 ∞ ∞ ∞ ∞ ∞ ∞ ∞

30 14 1 1 1 1 1 1 1

16 64 16 4 2 1 1 1

18 ∞ ∞ 128 128 64 32 32

20 ∞ ∞ ∞ ∞ ∞ ∞ ∞

60 14 1 1 1 1 1 1 1

16 8 1 1 1 1 1 1

18 ∞ 128 32 16 16 8 4

20 ∞ ∞ ∞ ∞ ∞ ∞ 128

parallelism up to 32 workers for 10-table joins and left-deep
plans, for up to 64 workers for 12-table joins, and for up to
eight workers for 9-table joins and bushy plan spaces which
corresponds to the number of disjoint table pairs respective
triples. The absolute run times of MPQ are however so low
that parallelization is unnecessary.

Figure 5 shows results for MPQ on queries that are suf-
ficiently large to exploit large degrees of parallelism. The
scaling is steady and without noticeable diminishing returns
effects up to the maximal number of 256 workers. Note that
the run times of MPQ in Figure 5 are lower than the run
times of SMA in Figure 4, even though we consider signifi-
cantly larger search spaces in Figure 5. We tested scalability
for bushy plans and more than 9 query tables and saw steady
scaling up to the number of table triples in the query. We
omit those results due to space restrictions.

Our algorithm is for one worker equivalent to a classical
algorithm for multi-objective query optimization [22]. We
calculate speedups in a similar way as before and obtain
a speedup of 5.1 for 16-table joins, 5.5 for 18-table joins,
and 9.4 for 20-table joins. We have seen that parallelization
can decrease optimization time. Alternatively, paralleliza-
tion can increase result quality for a given optimization time
budget. Table 1 shows the degree of parallelism that is re-
quired to reach a certain approximation factor α within a
given optimization time window for two cost metrics and lin-
ear plans (i.e., it shows the minimal degree of parallelism for
which at least eight out of 15 test cases were solved). The
entry ∞ indicates that the maximal degree of parallelism
that we tried (128 workers) was insufficient. As in prior
work [22], approximation quality improves as α approaches
1 and the algorithm guarantees to generate a plan with cost
vector at most ~c× α if a plan with cost vector ~c is possible.
Table 1 shows that a higher degree of parallelism results in
higher approximation quality for a fixed time budget.

Increasing the degree of parallelism using our algorithm
is not always helpful if optimization time on a single node
is significantly below one second. Otherwise, in all our ex-
periments, the lowest optimization time (respective highest
quality) was obtained by choosing the highest degree of par-
allelism that can be exploited by our algorithm for a given
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Figure 5: MPQ scales steadily using up to 256 work-
ers for linear plan spaces and two plan cost metrics.

query size (denoting by n the number of tables, this is 2n/2

for linear and 2n/3 for bushy plans).

7. CONCLUSION
We presented a generic plan space decomposition method

for query optimization that is applicable for single- and
multi-objective query optimization and for other variants.
We demonstrated scalability using up to 256 workers.
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