
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. M. Q. Tran, président du jury
Prof. E. Kapon, directeur de thèse

Prof. A. Auffèves, rapporteuse
Prof. V. Zwiller, rapporteur

Prof. R. Houdré, rapporteur

Cavity quantum electrodynamics with systems of site-
controlled quantum dots and photonic crystal cavities

THÈSE NO 7039 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 15 JUILLET 2016

 À LA FACULTÉ DES SCIENCES DE BASE
LABORATOIRE DE PHYSIQUE DES NANOSTRUCTURES

PROGRAMME DOCTORAL EN PHYSIQUE 

Suisse
2016

PAR

Clément William Tendaï JARLOV





En bas, les rouleaux s’éventraient sur les saillies. Le rocher déchirait la pulpe salée.
Des paquets d’embruns aspirés par l’ouragan explosaient contre le phare.

Le rai de lumière déchirait l’obscurité, indifférent.
—Sylvain Tesson

Le Phare, Une vie à coucher dehors

A mes parents et papi Bob. . .





Remerciements/Acknowledgements
L’accomplissement de ces quatre années de travail et de recherche, résumées dans
cette thèse, aura nécessité bien plus qu’un effort personnel, et n’aurait pas été possible
sans l’aide d’un grand nombre de personnes que je souhaite remercier ici.

Tout d’abord, je remercie le professeur Elyahou Kapon qui m’a donné la chance de
pouvoir travailler au Laboratoire de Physique des Nanostructures (LPN) sur ce sujet
de recherche passionnant. Il a supervisé mon travail avec patience et enthousiasme,
et m’a transmis sa passion pour la physique. Son expertise, son intuition et ses con-
seils ont été indispensables à l’aboutissement de cette thèse mais ont aussi constitué
une aide précieuse pour la rédaction de publications scientifiques et la préparation
d’exposés oraux.

Je voudrais aussi exprimer ma gratitude aux membres du jury, Prof. Auffèves, Prof.
Houdré et Prof. Zwiller pour l’intérêt qu’ils ont porté à ce travail, leur relecture minu-
tieuse et leurs remarques très constructives.

Cette aventure n’aurait bien sûr pas été possible sans tous les collaborateurs du LPN. Je
tiens à remercier Pascal Gallo qui m’a accueilli lors de mon premier stage il y a sept ans
déjà et qui m’a accompagné pendant les premières années de ma thèse. Il m’a guidé
lorsque j’ai fait mes premiers pas dans un laboratoire d’optique, toujours avec bonne
humeur et bienveillance. Sa passion débordante pour la science et la recherche a été
une inspiration pour moi, pendant ces quatre années passées au LPN à ses côtés. Un
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Abstract
The study of light-matter interactions holds an important place in physics and many
fields of science including biology, medicine and chemistry. Understanding and ex-
ploiting light-matter interactions has become ever more relevant in our modern society
which strives for sustainable energy sources and efficient transfer and storage of infor-
mation. In this context, the realization of novel light harvesting or emitting devices, as
well as novel information and computing platforms will demand a thorough under-
standing and control of nanoscale light-matter interactions. This involves studying
the fundamental interactions between quantum emitters and modes of the electro-
magnetic field, which is undertaken by the field of cavity quantum electrodynamics
(cavity-QED). Although initially interactions between isolated atoms and optical cav-
ity modes were investigated, it has recently become possible to realize cavity-QED
experiments with solid-state platforms, facilitating the transfer from fundamental
studies to applications and device fabrication. In such solid-state platforms, atoms
can be substituted by semiconductor quantum dots (QDs), which are nanostructures
engineered to have atom-like optical and electronic properties, made to interact with
semiconductor nanocavities. The subject of this thesis is the study of semiconductor
QDs coupled to optical modes of photonic crystal (PhC) cavities.

One of the challenges faced when studying QD-cavity interactions is understand-
ing the impact of the QD environment on its interaction with the cavity mode (CM).
Unlike atoms, QDs are embedded in a crystal lattice with which it can interact, lead-
ing to quantum decoherence. In this work we rely on site-controlled pyramidal QDs
integrated in PhC cavities to study the impact of decoherence on their photolumines-
cence (PL). Most previous experiments used self-assembled QDs that interact with
delocalised electronic states formed in their vicinity during their growth process. This
grants them complex electronic states that influence the QD-cavity interaction, over-
shadowing the impact of solid-state decoherence mechanisms. In contrast, pyramidal
QDs possess simpler electronic states that are closer to ideal atom-like states. Using
site-controlled pyramidal QDs, we probe the spectral features of a coupled QD-cavity
system using PL measurements, and compare them to a theoretical model of a two-
level system (TLS) coupled to a CM, providing new insights into the influence of the
QD environment on its interaction with a confined CM.
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Abstract

A prerequisite demanded of QD-photonic structures to realize on-chip quantum infor-
mation and computing devices is the possibility to scale-up the system. This requires
a good control of the QDs position within the photonic structure as well as a good
control of the QDs emission energies. On the one hand this allows the coupling of
several QD emitters with the same CM, enabling collective or lasing effects. On the
other hand, the QDs can be precisely positioned in an extended photonic structure,
permitting the transfer of information, mediated by light, between distant emitters.
Within the framework of this thesis, we study such complex photonic structures com-
prising of multiple quantum emitters embedded in arrays of coupled PhC cavities. We
demonstrate the coupling of site-controlled quantum wires (QWRs) to delocalized
modes of linear and 2D arrays of cavities. Relying on the high uniformity of pyramidal
QDs, we evidence the coupling of the delocalized mode of two coupled cavities to two
site-controlled QDs, embedded in each cavity.

Key words: cavity quantum electrodynamics, nanophotonic, semiconductor, quantum
dot, optical cavity, photonic crystal, Jaynes-Cummings model, Purcell effect, decoher-
ence, dephasing, phonon, optical supermode.
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Résumé
L’étude de l’interaction lumière-matière tient une place important en physique et
dans d’autres disciplines comme la biologie, la médecine ou la chimie. Comprendre
et exploiter l’interaction entre la lumière et la matière est devenu primordial dans
notre société qui est à la recherche d’énergies renouvelables et demande toujours plus
d’espace de stockage et de rapidité de transfert pour l’information. Dans ce contexte,
la fabrication de nouveaux dispositifs collectant ou émettant de la lumière, ainsi que le
développement de nouvelles plateformes permettant le transfert d’informations et le
calcul quantique, passera par une compréhension profonde de l’interaction entre la
lumière et la matière à l’échelle nanoscopique. Cela nécessite d’étudier d’un point de
vue fondamental, l’interaction entre des émetteurs quantiques et des modes optiques
du champ électromagnétique, ce qui représente le domaine d’étude de l’électrodyna-
mique quantique en cavité. Alors qu’à l’origine cette étude était pratiquée avec des
atomes dans des cavités optiques, il est devenu possible de réaliser des expériences
d’électrodynamique quantique en cavité à l’aide de constituants appartenant aux
technologies cristallines, facilitant le passage de l’étude fondamentale à l’application
pratique. L’atome est alors remplacé par une boîte quantique (BQ) semi-conductrice,
une nanostructure modelée de façon à ce qu’elle ait des propriétés électroniques et
optiques semblables à celles des atomes, interagissant avec une nanocavité semi-
conductrice. Le sujet de cette thèse est l’étude de l’interaction entre une BQ semi-
conductrice et les modes optiques d’une cavité à cristaux photoniques.

Lors de l’étude de l’interaction entre une BQ et une cavité optique, comprendre quel
est l’impact de l’environnement de la BQ sur son interaction avec le mode optique
de la cavité peut s’avérer être un défi. En effet, contrairement aux atomes, les BQs
sont incorporées dans un environnement cristallin avec lequel elles peuvent interagir,
entraînant des effets de décohérence quantique. Dans ce travail, nous utilisons des
BQs pyramidales, dont la position spatiale est contrôlée, incorporées dans des cavités
à cristaux photoniques afin d’étudier l’impact de la décohérence induite par l’envi-
ronnement de la BQ sur la photoluminescence du système BQ-cavité. La majorité des
expériences sur ce sujet repose sur l’utilisation de BQ auto-assemblée, interagissant
avec des états électroniques délocalisés apparaissant lors de leur processus de crois-
sance. Cela les dote d’états électroniques complexes qui peuvent avoir une influence
sur les mécanismes d’interaction BQ-cavité, empêchant l’étude approfondie de l’im-
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Résumé

pact des mécanismes de décohérence. En revanche, les BQs pyramidales possèdent
des états électroniques se rapprochant de ceux d’atomes isolés. Ceci nous permet
d’étudier, à l’aide de mesures spectrales, l’impact des mécanismes de décohérence sur
l’interaction d’une BQ et d’un mode optique, en comparant les résultats expérimen-
taux à un modèle théorique.

La fabrication de dispositifs d’informations et de calcul quantique intégrés, à l’aide de
BQs couplées à des systèmes photoniques, nécessite d’avoir la possibilité d’augmenter
leur taille et leur complexité. Ceci demande un contrôle suffisant de la position des BQs
au sein du dispositif photonique, ainsi qu’un contrôle de l’énergie d’émission des BQs.
D’un côté cela permet de coupler plusieurs BQs au même mode optique, donnant la
possibilité d’étudier l’émission collective d’objets quantiques ou d’atteindre le régime
d’émission laser. D’un autre côté, cela rend possible la création de dispositifs permet-
tant l’échange d’information entre des émetteurs quantiques distants, en utilisant la
lumière comme vecteur d’information. Dans le cadre de cette thèse, nous étudions
des structures photoniques constituées de plusieurs BQs incorporées dans des réseaux
de cavités à cristaux photoniques. Nous démontrons le couplage de fils quantiques,
dont la position spatiale est contrôlée, à des modes optiques délocalisés de réseaux
de cavités unidimensionnels et bidimensionnels. De plus, à l’aide de l’importante
uniformité des BQs pyramidales, nous mettons en évidence le couplage d’un mode
optique délocalisé appartenant à un réseau formé de deux cavités, avec deux BQs
incorporées dans l’une et l’autre des deux cavités formant le réseau.

Mots clefs : électrodynamiques quantique en cavité, nanophotonique, semiconducteur,
boite quantique, cavité optique, cristal photonique, modèle de Jaynes-Cummings, effet
Purcell, décohérence, déphasage, phonon, mode optique délocalisé.
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cavity-QED cavity quantum electrodynamics
QD quantum dot
QWR quantum wire
QW quantum well
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lh light-hole
MOVPE metal-organic vapor phase epitaxy
MBE molecular beam epitaxy
PECVD plasma-enhanced chemical vapor deposition
PMMA poly(methyl methacrylate)
HSQ hydrogen silsesquioxane
MIBK methyl isobutyl ketone
EBL electron beam lithography
RIE reactive ion etching
ICP inductively-coupled-plasma
TMGa trimethylgallium
TEGa triethylgallium
X neutral exciton
2X biexciton
X− negatively charged exciton
X+ positively charged exciton
FWHM full width at half maximum

vii



Résumé

PL photoluminescence
μ-PL micro-photoluminescence
DOLP degree of linear polarization
HBT Hanbury Brown and Twiss
APD avalanche photodiode
FDFD finite-difference-frequency-domain
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1 Introduction

The field of photonics is very broad and deals with the emission, absorption, harvesting,
handling and processing of light. Photonics already had a great impact on our mod-
ern society by increasing data transmission rates to tens of Gbit/s with optical fiber
technologies and memory storage capacities to 1000 Gbit/cm2 with optical memory
systems, leading to the advent of modern communication and modern internet. To
keep up with the exponential expansion of internet and increasing demands of commu-
nication technologies, data transmission rates of tens of Tbit/s and memory storage
capacities greater than tens of Tbit/cm2 are needed, requiring the optical industry to
process light on sub-wavelength scale. This has led to the recently emerged field of
nanophotonics which studies the interaction of light and matter on a nanometer scale.

1.1 Nanophotonics

The present thesis is situated within nanophotonics, a field of science and technology
that deals with light and matter on a nanoscale level, and engages many disciplines
including optics, physics, chemistry, biology and material science. It is often defined as
a field of study that aims to overcome Abbe’s diffraction limit by developing innovative
technologies that handle light on a deep sub-wavelength scale. Nanophotonics can be
conceptually divided into three parts[1, 2] :

• Nanoscale confinement of radiation: inducing light-wave confinement at the
nanoscale using near-field optical propagation, photonic crystals (PhC), surface
plasmons, nanocavities etc.

• Nanoscale confinement of matter: inducing electron confinement at the nanoscale
by developing nanostructured materials such as nanoparticles, semiconductor
heterostructures etc.

1



Chapter 1. Introduction

• Quantum optics of nanostructures: inducing light-matter interactions in nanos-
tructures with confined light-waves.

The research in these three directions has made a lot of progress in the past decades.
We give here a non-exhaustive list of materials and devices involved in this research:

• Metamaterials: artificial materials composed of ordered or disordered arrays of
nanoscale metallic or dielectric elements, used to generate superlenses, perfect
absorbers or negative refractive index materials[3, 4].

• Plasmonic materials: noble metals with negative dielectric constants sustain-
ing surface plasmon polaritons consisting of hybridised photons and electrons
oscillations. These materials have been used to achieve ultra-strong light con-
finement[5] and exploited to realize plasmon nanolasers[6] and nanoantenas[7].

• Photonic crystals: high-refracting index materials engineered to have a periodic
dielectric constant leading to the formation of photonic band gap prohibiting
the propagation of light in chosen directions.These novel materials can be used
to guide[8] or slow down light[9].

• Nanocavities: nanostructures designed to confine light on a nanometer scale.
Nanocavities include nanodisk cavities[10], micropillar cavities[11], PhC cavi-
ties[12] and plasmonic cavities[13]

• Semiconductor heterostructures: nanostructures fabricated by juxtaposing
semiconductors with different band gap energies, resulting in the confinement
of electrons on a scale of the order of their De Broglie wavelength, leading to
quantum effects. Such nanostructures are called quantum wells (QWs), quantum
wires (QWRs) and quantum dots (QDs) when the confinement occurs in one,
two or three dimensions of space. Their capacity to interact with light has been
exploited to realize nanolasers[14, 15] or efficient sources of single indistinguish-
able photons[16].

The study presented in this thesis is related to the quantum optics of nanostructures.
The possibility to confine both light and matter on a nanoscopic scale, enabled by
the progress made in the field of nanophotonics, gave the opportunity to study the
interaction of light and matter on a quantum level. Most notably, it became apparent
that the possibility to control the confinement of light in nanostructures allowed to
engineer the photon density of states in order to modify light-matter interactions.
This aspect of nanophotonics was brought forward in 1946 by the seminal paper of
E. Purcell[17] that predicted the modification of the spontaneous emission lifetime
for an emitter placed in a cavity. In this work we investigate the interaction between
semiconductor QD emitters and a PhC nanocavity. This study falls in the more general

2



1.2. Cavity quantum electrodynamics

field of cavity quantum electrodynamics (cavity-QED), presented in the next section,
which deals with the interaction of a two-level system (TLS) emitter coupled to an
optical cavity.

1.2 Cavity quantum electrodynamics

Cavity-QED is the study of the interaction between a TLS and the mode of an optical
cavity (Fig. 1.1). It was after the initial discovery of E. Purcell that the spontaneous
emission of an emitter could be modified by the presence of a resonator, that the
need for a formalism describing the quantum interaction between an emitter and
a quantized cavity electromagnetic field became apparent. In 1970, the theory of
quantum electrodynamics was used to calculate the modified spontaneous emission
of a TLS inside a Fabry-Perot cavity[18, 19], initiating a long series of papers on the
subject. A detailed description of the theoretical formalism used to model the open
quantum system formed by a TLS interacting with a cavity mode (CM) is given in
chapter 3. We summarize here the most essential results.

Figure 1.1: Schematic depiction of a TLS interacting with an optical mode of a mirror cavity.
The coupling constant g describes the strength of the light-matter interaction. γ is the decay
rate of the TLS in modes other than the cavity mode and κ the decay rate of the confined optical
mode.

A simple model of a cavity-QED system consists of a TLS placed within the electro-
magnetic field confined between two reflective mirrors as sketched in Fig. 1.1. The
interaction between the TLS and the field is described by a coupling constant

g ∼ μ

√
ωc

2h̄V
(1.1)

with μ the TLS dipole moment, V the confined optical mode volume and ωc its fre-
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Chapter 1. Introduction

quency. The spontaneous emission of the isolated TLS is described by a decay rate γ,
and the mirror losses of the cavity by a rate κ. Depending on the relative values of g, γ
and κ, two main regimes can be observed:

• weak coupling regime (κ � g, γ): the cavity dissipative losses are greater than
the coupling strength, leading to a modification of the TLS emission rate by a
factor Fp =

3λ3

4π2
Q
V , with Q = ωc/κ the cavity quality factor and λ the wavelength

of the emission. This modification factor is called the Purcell factor and first
appeared in the paper of E. Purcell[17].

• strong coupling regime (g � κ, γ): the coherent interactions between the TLS
and the confined field dominate over the system dissipations. This leads to a re-
versible exchange of energy between the TLS and CM known as Rabi oscillations.
In the strong coupling regime, new entangled states of the system are formed,
split in energy by 2h̄g (vacuum Rabi splitting). In this regime the dynamics is
dictated by single quanta, such that the interaction can be nonclassical and
nonlinear on a single photon level[20].

The first cavity-QED experiments were carried by sending beams of Rydberg atoms
through a millimeter-wave Fabry-Perot cavity. This led to the first experimental demon-
stration in the 1980s of spontaneous emission enhancement[21] and inhibition[22]
for an atom weakly coupled to a CM. The increase of the Fabry-Perot cavities quality
factor enabled in the 1990s to reach the strong coupling regime, leading to the first
observation of vaccum Rabi splitting[23]. Shortly after, Rabi oscillation of Rydberg
atoms in high-finesse cavities were observed and provided a direct evidence of field
energy quantization in a cavity mode[24]. Since then many experiments, facilitated
by atom trapping, led to the investigation of one-atom lasers[25] and single photon
emission[26], and were extended to arrays of optically trapped atoms in cavities[27].
Although atom-cavity experiments provide an important resource for the investiga-
tion of fundamental cavity-QED aspects, the potential applications of cavity-QED in
opto-electronics and quantum information science have led to an ongoing search for
scalable, on-chip emitter-cavity systems.

An example of on-chip emitter-cavity system can be engineered using superconduct-
ing circuits. The atom is replaced by a Josephson-junction qubit and the cavity by a
Josephson-junction microwave resonator. This constitutes the basic elements used to
perform circuit-QED[28] experiments. This solid-state system provides emitter-cavity
coupling strengths order of magnitude greater than atom-cavity structures, and was
shown to undergo vacuum Rabi splitting[29], Rabi oscillations[30] and provide on
demand single-photon emitters[31].
Another promising platform for realizing cavity-QED experiments uses surface plas-
mon polaritons to achieve subwavelength and subdiffraction confinement of light[32].
The small mode volumes of confined plasmonic mode have been used to increase the
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1.2. Cavity quantum electrodynamics

spontaneous emission of various emitters such as molecules[33], QDs[34] or nitrogen-
vacancy centers[35]. Although vacuum Rabi splitting has been observed with ensem-
bles of molecules interacting with surface plasmon polaritons, the inherent large
ohmic losses of confined plasmonic modes prevented up to now the observation of the
strong coupling regime with single emitters. Theoretical predictions however suggest
that this regime is not far from reach[36, 37].
The most studied solid-state cavity-QED platform consists of solid-state QDs incorpo-
rated in semiconductor nanocavities and is presented in the following section.

1.2.1 Semiconductor quantum dots and nanocavities

Cavity-QED experiments can be realized using solid-state QDs incorporated in semi-
conductor nanocavities. QDs are heterostructures that provide a three-dimensional
confinement to electrons, resulting in a discrete, "atom-like" energy spectrum (see
section 1.3). They can be incorporated in semiconductor nanocavities that provide
a three-dimensional sub-micrometer confinement for optical modes. These cavities
are generally fabricated using high refractive index semiconductor materials like GaAs
or Si (n ∼ 3.5). The main semiconductor cavities used in cavity-QED experiments are
listed bellow[38]:

(a) (b) (c) 200 nm

Figure 1.2: (a) Scanning electron micrograph image of a micropillar cavity with GaAs/AlAs
distributed Bragg reflectors. Reprinted by permission from Macmillan Publishers Ltd: Nature
[39], copyright (2004). (b) Scanning electron micrograph image of a silica microdisk. Reprinted
by permission from Macmillan Publishers Ltd: Nature [40], copyright (2003). (c) Scanning
electron micrograph image of a GaAs PhC slab defect cavity. Adapted from [41].

• Micropillar cavities: Micropillars are Fabry-Perot style cavities that confine light
between two high reflective mirrors made of distributed Bragg reflectors (DBRs)
(Fig. 1.2 (a)). Lateral confinement is obtained using total internal reflexion on side
walls of the etched cylinders. These cavities provide a highly directional output
in the axial direction. Micropillar cavities have mode volumes V ∼ 16 (λ/n)3

and typical quality factors Q ∼ 10000 although record values of Q ∼ 160000 have
been achieved[42].
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Chapter 1. Introduction

• Microdisk cavities: In microdisk cavities (Fig. 1.2 (b)), the light is confined by
continuous total internal reflection leading to the formation of whispering gallery
modes. These cavities exhibit mode volumes V ∼ 8 (λ/n)3 and quality factors of
Q ∼ 10000 although record values of Q = 109 have been obtained[40, 43]. These
cavities do not provide directional emission but light can be extracted using side
coupling fiber-taper waveguides[44].

• Photonic crystal cavities: PhC cavities are formed by introducing a defect in the
periodic dielectric constant of a PhC structure. The most commonly used PhC
cavities consist of hole defects in 2D PhC slabs (Fig. 1.2 (c)). The light is confined
inside the defect by the PhC band gap in the slab plane, and by total internal
reflection in the out-of-plane direction (see section 1.4). These cavities provide
directional output coupling[45] and are of particular interest due to their small
mode volumes V ∼ 0.1 (λ/n)3 and high quality factors Q ∼ 20000 with record
values of Q = 2 · 106[46].

The first observation of the increased spontaneous emission of QDs weakly coupled to
semiconductor nanocavities was realized in 1998 using micropillar cavities[47, 48]. The
same effect was later observed with microdisk cavities[49] and PhC cavities[50].The
strong coupling regime was reached in 2004 with the first observation of vacuum Rabi
splitting with single QD coupled to a micropillar cavity[39] and a microdisk[51] cavity.
Soon after, vacuum Rabi splitting was observed with a single QD coupled to a PhC slab
cavity[52]. Since then, multiple cavity-QED experiments have been performed using
QDs and semiconductor nanocavities, bringing to light new phenomena specific to
solid-state platforms. These are discussed in section 1.5.

1.3 Semiconductor quantum dots

In this thesis, the emitters used for performing cavity-QED experiments are semicon-
ductor QDs[53]. The two main types of QDs are colloidal QDs[54] and epitaxial QDs[55].
The former is formed by evaporation and crystallization of colloidal solutions resulting
in the synthesis of spherical nanocrystalline cores, typically composed of cadmium
sulfide (CdS) or cadmium selenide (CdSe). Epitaxial QDs are formed using bottom up
epitaxial growth of different semiconductor layers, relying on lattice-mismatch or pat-
terned substrates to induce the formation of three dimensional QD islands. Colloidal
QDs have been exploited to improve the emission of light-emitting diodes[56] and are
of interest for applications in bio-imaging, displays[57] and solar power devices[58].
Although cavity-QED have been performed with colloidal QDs[59], they present large
inhomogeneous broadenings (∼ 100meV ) and additional steps are required to position
them in semiconductor nanocavities, limiting their use for single QD experiments. On
the other hand, epitaxial QDs can be straightforwardly incorporated in semiconductor
nanocavites during the cavity fabrication process and present lower inhomogeneous
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1.3. Semiconductor quantum dots

broadenings (< 50 meV ). Epitaxial QDs are the most extensively used emitters in
solid-state cavity-QED experiments and their fundamental properties and fabrication
process are summarized here.

1.3.1 Semiconductors

Semiconductors are the raw materials used in the fabrication of solid-state QDs. Semi-
conductors belong to the class of solid crystals, along with metallic and insulating
solids. Solid crystals are formed by atoms tightly bound together and arranged in a
periodic lattice. The orbital wave functions of the atoms forming the lattice overlap,
resulting in the formation of energy bands separated by energy band gaps. The energy
bands that govern important properties of the solid are the valence band (VB) and
conduction band (CB). At 0K the highest energy level occupied by crystal electrons
is called the Fermi level. Metals have a Fermi level overlapping with the CB while the
Fermi level of insulators is in between the valence and conduction bands. Semicon-
ductors are a special kind of insulator, with a band gap energy sufficiently small to
allow the promotion of electrons from the VB to the CB for finite temperatures. When
an electron is excited to the CB, it leaves an empty state in the VB called a "hole". The
electron in the CB (and the hole in the VB) have a sufficient amount of energy to escape
the covalent bounds of the atoms and become mobile. The CB electron can relax
into the VB annihilating a hole, which is commonly referred to as an electron-hole
recombination. This energy relaxation can lead to the emission of a photon with an
energy given approximately by the energy of the band gap.

Semiconductors are formed of elements belonging to the groups I to VII of the peri-
odic table[60]. Silicon (Si) and Germanium (Ge) constitute the category of elemental
semiconductors. Silicon is the most commonly used semiconductor with many ap-
plications in electronic circuits. However, like Germanium it possesses an indirect
band gap which is not suited for optoelectronic applications. Two-element, binary
or three-element, ternary, semiconductors can be formed by combining elements
from different groups of the periodic table[61]. Binary compound materials can be
constituted of II-VI elements like zinc selenide (ZnSe) or cadmium sulfide (CdS), I-VII
elements like sodium chloride (NaCl) or lithium fluoride (LiF) and III-V elements like
gallium arsenide (GaAs), indium phosphide (InP) or gallium nitride (GaN). The III-V
semiconductor listed here have superior light-emitting properties compared to Si or Ge
due to their direct band gaps, which makes them particularly suited for optoelectronic
and photonic studies and applications. Ternary semiconductors are formed by com-
bining three-elements from the periodic table and include InxGa1−xAs and AlxIn1−xAs

where x denotes the indium (In) and aluminum (Al) mole fraction respectively[62].
These semiconductors are more flexible and allow the fabrication of more complex
structures through band gap engineering. We focus here on structures based on GaAs
for which the band structure is sketched in Fig. 1.3.
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Figure 1.3: Illustration of band structure of GaAs in the effective mass approximation near the
band extrema (wavevector k = 0).

Although the exact calculation of semiconductor band structures is extremely difficult
to implement since it requires solving an N body problem, approximations such as the
effective mass approximation[63] can be used to get a simplified picture of the electron
energy dispersion. In the effective mass approximation, the electrons are modeled
by free effective particles with a parabolic energy dispersion and an effective mass
that accounts for the effect of the crystal’s periodic potential. This approximation is
valid when considering band extrema and is used to portray the band structure of
GaAs in Fig. 1.3. For GaAs and most III-V semiconductors, the VB is composed of
three sub-bands[64] (Fig. 1.3). The two bands degenerate at the VB extremum are the
heavy-hole (hh) and light-hole (lh) bands. They are associated to holes with different
effective masses. The third band is the spin-orbit split-off band which can be neglected
if the spin-orbit interaction is important.

1.3.2 Semiconductor heterostructures

The progress of epitaxial growth techniques such as metal-organic vapor phase epi-
taxy (MOVPE) and molecular beam epitaxy (MBE) have made possible the fabrication
of heterostructures using ternary compound semiconductors. During the epitaxial
growth, the composition of the ternary semiconductor can be tuned to vary the band
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1.3. Semiconductor quantum dots

gap profile along the growth direction. Using this technique, layers of different semi-
conductors with different energy bang gaps can be grown on top of each other with
atomically sharp interfaces. This requires the semiconductor layers to have similar
lattice constants in order to avoid strain at the interfaces. The lattice constant a of a
ternary alloy, for example AlxGa1−xAs, is given by Vegard’s law[65]

a = aAlAsx+ aGaAs(1− x). (1.2)

Given the similar lattice constants of GaAs (aGaAs = 0.565 nm) and AlAs (aAlAs =

0.566 nm) it is possible to grow alternative layers of GaAs and AlAs with nearly strain
free interfaces. For InxGa1−xAs, however the difference in lattice constants of GaAs
and InAs (aInAs = 0.606 nm) will induce strain during the growth.

This method is used to fabricate quantum confined semiconductor heterostructures
such as QWs, QWRs and QDs. An example of QW heterostructure made of a 5− 50 nm

InGaAs layer in between two GaAs semiconductor barriers is sketched in Fig. 1.4 (a).
The associated variation in band gap energy along the z axis is shown in Fig. 1.4 (b).

x

y z
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kxy

EGaAs InGaAs GaAs

GaAs InGaAs GaAs
InGaAs band

1st sub-band

2nd sub-band

GaAs band

InGaAs 
band gap

GaAs 
band gap

(a)

(b)

(c)

Conduction 
band edge 

Valence
band edge 

Figure 1.4: (a) Sketch of an GaAs/InGaAs/GaAs QW heterostructure. (b) Corresponding band
diagram along the z axis of the QW. (c) Illustration of the QW band structure for carriers
propagating in the xy plane. The confinement in the InGaAs layer leads to the formation of
energy sub-bands.
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Chapter 1. Introduction

When the effective mass approximation is valid, the electrons in the InGaAs layer
can be seen as nearly free particles confined in a potential well. Since the De Broglie
wavelength of electrons in the InGaAs layer (20 − 40 nm) is of the same order as the
confinement length of the potential well, the electron motion is restricted in the z

direction leading to quantum confinement. This results in the formation of energy
sub-bands as illustrated in Fig. 1.4 (c). In addition, the strain induced by the lattice
mismatch of the heterostructures modifies the band structure of the semiconductor.
For uniaxial compression, the hh and lh bands split with the hh band above lh band.
In general, mixing occurs between the two VBs leading to a deviation from parabolic
dispersion relations[66].
The same principle applies to heterostructures confining the electrons in two directions
of space (QWRs) and three directions of space (QDs). The quantum confinement leads
to a redistribution of the number of states per interval of energy and per volume
available for the electrons. This quantity is the electronic density of states and is
shown in Fig. 1.5 for free electrons, 2D, 1D and 0D confinement. Interestingly, the 3D
quantum confinement for QDs results in a discrete distribution of allowed energies,
similar to the energy spectrum of atoms.

Bulk 2D 1D 0D
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ρ

Energy Energy Energy EnergyEG EG EG EG

Figure 1.5: Illustration of the electronic density of states for carriers in the bulk, for 2D confine-
ment (QW), 1D confinement (QWR) and 0D confinement (QD). EG is the band gap energy.

1.3.3 Semiconductor quantum dot properties

For QDs, the energy of the confined particles can be estimated, in the effective mass
approximation, by solving the following Schrödinger equation[66][

− h̄2

2m∗∇+W (r)

]
φ(r) = Eφ(r) (1.3)

where φ(r) is the slow varying (compared to the crystal lattice) envelope wave function
(the effect of the crystal lattice is included in the effective mass) and W (r) is the con-
fining potential which has, in most real cases, a complicated dependence on r. Most
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1.3. Semiconductor quantum dots

epitaxially grown QDs have an asymmetric shape leading to a stronger confinement in
the growth direction. A simple but reasonably good approximation for the potential
confinement of such QDs is an infinite barrier confinement along the growth axis (z-
axis), and parabolic confinement in plane (x-y plane). The infinite barrier confinement
gives a contribution to energy equal to

Ez
l =

h̄2π2

2m∗
l2

L2
z

, l = 1, 2, . . . for infinite rectangular barriers, (1.4)

with Lz the size of the confinement in the z direction. Since the confinement is stronger
in the growth direction, we can restrict to the lowest energy level l = 1 and solve the
Schrödinger equation separately for the transverse parabolic confinement. Note that,
as a rough approximation, we consider here noninteracting electrons and holes (single
particle picture). In the wafer plane the Schrödinger equation becomes[67][

− 1

2m∗ (p̂
2
x + p̂2y) +

1

2
ω2(x̂2 + ŷ2)

]
|φ〉 = E |φ〉 (1.5)

with ω relates the strength of the confinement, x̂ is the position operator of the particle
and p̂ its momentum operator. This is the Schrödinger equation of a 2D isotropic
harmonic oscillator. The eigenvalues are given by En+,n− = h̄ω(n+ + n− + 1). The cor-
responding eigenstates are |n+n−〉, to which are associated the angular momentums
Lz
n+,n− = n− − n+ due to the circular symmetry of the parabolic confinement. The

energy states of the confined CB electrons are thus

Ee
n+,n− =

Eg

2
+ h̄ωe(n+ + n− + 1) +

h̄2π2

2m∗
e

1

L2
z

, Lz,e
n+,n− = n− − n+ (1.6)

n+ = 0, 1, 2, ...

n− = 0, 1, 2, ...

whereωe relates the strength of the confinement for the electrons and m∗
e is the effective

mass of the CB electrons. Lz,e
n+,n− denotes the angular momentum number of the

electron. The energy reference is taken in the center of the band gap. If we assume
a sufficiently large hh-lh band splitting, which is a reasonably good approximation
for strongly confining heterostructures, the lh and spin-orbit split-off bands can be
neglected and the energy states of the confined hh are

Ehh
n+,n− =

Eg

2
+ h̄ωhh(n+ + n− + 1) +

h̄2π2

2m∗
hh

1

L2
z

, Lz,hh
n−,n+

= n+ − n−.

These energy levels are indicated in figure 1.6 for n = n+ + n− = 0 (s-like states), 1 (p-
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Figure 1.6: Energy level of electron and holes confined in a parabolic QD. They are equally
spaced in energy and labeled by the quantum numbers n and Lz. The red arrow indicates an
example of allowed optical transition.

like states) and 2 (d-like states)1. The angular momentum number Lz,e (Lz,hh) denotes
a certain orbital symmetry of the envelope wave function |φ〉. Each state is two-fold
degenerate due to total angular momentum inherited from the semiconductor crystal.
Indeed, the CB of III-V semiconductors with zincblend structure has, close to k = 0, a
total angular momentum j = 1

2 . The electrons can thus have total angular momentum
projections of jcz = ±1

2 . The hh and lh bands have a total angular momentum of j = 3
2 .

The holes total angular momentum projections are jhhz = ±3
2 for the hh band, and

jlhz = ±1
2 for the lh band. The ± are indicated in Fig. 1.6 by arrows pointing up or down.

Radiative recombinations between electrons and holes can occur only if they follow
certain selection rules. First of all, the overlap of the particles envelope wave functions
must be non zero. This is the case only if they have the same quantum numbers n+

and n−, which is equivalent to say they must have opposite angular momentums Lz.
The photon acquires the difference of the electron and hole total angular momentum
given by jph = jcz − jhhz . Photons can only have total angular momentums projections
equal to 0 (linear polarization) or ±1 (circular polarization). Radiative recombination
thus involves electron and heavy-holes of positive or negative angular momentum jz.
An example of allowed transition is indicated by an arrow in figure 1.6. The energy of

1The s,p,d,... labels are chosen in analogy to atomic physics.
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the emitted photon, in the single particle picture, is

Ephoton
n+,n− = Eg +

∑
α=e,hh

h̄2π2

2m∗
α

1

L2
z

+
∑

α=e,hh

h̄ωα(n+ + n− + 1) (1.7)

where Eeff ≡ Eg +
∑

α=e,hh
h̄2π2

2m∗
α

1
L2
z

can be treated as an effective band gap.

QD excitonic species

The above discussion is valid when considering a single particle picture. When more
than one electronic particle is confined in the QD, Coulomb interactions between
the charges will modify the the QD energy levels. The Coulomb interaction energy
between two particles with charges q1,2 at positions r1,2 is given by

V 1,2
Coul =

q1q2
4πε0εr

1

|r1 − r2| (1.8)

where ε0 and εr are the vacuum and semiconductor dielectric constants respectively.
In a bulk semiconductor a CB electron and a VB hole, excited for example by an optical
intra-band transition, can form a bound state referred to as exciton. An exciton can
also be formed in a QD structure either by trapping of diffusing bulk electron and
hole particles in attractive QD potential or resonant excitation of a an electron-hole
pair in the QD. If the effective Bohr radius[62] of the exciton is smaller than the QD
confinement length (weak confinement regime), the Coulomb interaction energy
dominates over the single particle energy levels, and the exciton is confined as a whole
"quasiparticle". On the other hand, if the exciton effective Bohr radius is larger than
the QD confinement length (strong confinement regime), the Coulomb interaction
energy is small with respect to the single particle confinement energies. In other words,
the electron and hole are bound by the QD confinement potential rather than by the
Coulomb interaction. In the strong confinement regime, applicable to most small QD
structures, the Coulomb interaction can be treated perturbatively, and the confined
exciton (X) energy approximated by[66]

EX = Ee
0,0 + Ehh

0,0 − V e,h
Coul. (1.9)

An QD excitonic state composed of one electron and one hole is often referred to as
the neutral exciton. In total, four bright excitonic states are allowed in the QD s-state
energy levels depicted in Fig. 1.7. The arrows indicate the spin orientation of the
particle (see Fig. 1.6). If in addition to the neutral exciton (Fig. 1.7 (a)) an additional
electron (hole) is confined in the QD, the excitonic state is a negatively (positively)
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charged exciton denoted X− (X+) (Fig. 1.7 (b) and (c)). If, as shown in Fig. 1.7 (d), an
additional exciton is confined in the QD, the excitonic state is a biexciton (2X).

Conduction band 
s-states

Valence band 
s-states

X 2XX+X -

(a) (b) (c) (d)

(e) (f)

Bright states

Dark states

Figure 1.7: Bright excitonic states of the QD s-states levels. (a) Neutral exciton (X). (b) Nega-
tively charged exciton (X−). (c) Positively charged exciton X+. (d) Biexciton (2X). (e) and (f)
Dark excitonic states.

The energies associated with these excitonic species are[66]

EX− = 2Ee
0,0 + Ehh

0,0 + V e,e
Coul − 2V e,h

Coul (1.10)

EX+ = Ee
0,0 + 2Ehh

0,0 + V h,h
Coul − 2V e,h

Coul (1.11)

E2X = 2Ee
0,0 + 2Ehh

0,0 + V e,e
Coul + V h,h

Coul − 4V e,h
Coul. (1.12)

The corresponding radiative energy transitions are given by the difference in energy
between the initial and final excitonic states (conservation of energy)

Ephoton
X = EX (1.13)

Ephoton
X− = EX− − Ee

0,0 = Ee
0,0 + Ehh

0,0 + V e,e
Coul − 2V e,h

Coul (1.14)

Ephoton
X+ = EX+ − Ehh

0,0 = Ee
0,0 + Ehh

0,0 + V h,h
Coul − 2V e,h

Coul (1.15)

Ephoton
2X = E2X − EX = Ee

0,0 + Ehh
0,0 + V e,e

Coul + V h,h
Coul − 3V e,h

Coul. (1.16)
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This leads to an s-state energy spectrum with four discrete transitions having in general
different energies. The shift in energy of the excitonic species transition energy with
respect to the neutral exciton transition energy is called the binding energy, and is
given by

EB
X− = Ephoton

X − Ephoton
X− = V e,h

Coul − V e,e
Coul (1.17)

EB
X+ = Ephoton

X − Ephoton
X− = V e,h

Coul − V h,h
Coul (1.18)

EB
2X = Ephoton

X − Ephoton
2X = 2V e,h

Coul − V e,e
Coul − V h,h

Coul. (1.19)

In addition to these four bright state excitons, two "dark state" excitons can populate
the QD s-states. They are obtained from the excitonic state of Fig. 1.7 (a) by inverting
either the electron or hole spin (Fig. 1.7 (e) and (f)). These dark states have total
angular momenta of ±2 which makes them nonradiative.

1.3.4 Fabrication of semiconductor quantum dots

A large number of methods are used to fabricate QD structures. The most commonly
used QDs are self-assembled In(Ga)As QDs, fabricated using the Stranski-Krastanov
growth mode. This fabrication method relies on the ∼ 7% lattice mismatch between
the InAs and GaAs bulk semiconductors. A thin wetting layer of InAs is grown on a GaAs
substrate (typically with a (100) orientation), using MBE or MOVPE. As the thickness of
the InAs layer increases, the lattice mismatch induces a build up of strain, increasing
the elastic energy of the crystal. Once a critical thickness is reached (typically a few
monolayers), the crystal minimizes its energy by forming small InAs islands randomly
distributed on a 2D wetting layer. The InAs islands are finally capped with a GaAs
upper layer forming In(Ga)As/GaAs QD structures. These QDs have typical heights of
5− 10 nm and in-plane diameters of 20− 30 nm.

Self-assembled QDs are widely used in cavity-QED experiments because they can
be easily fabricated and exhibit thin QD spectral linewidths below 10μeV . The size
distribution of self-assembled QDs leads to poor control of the QD emission energy,
characterized by an inhomogeneous broadenings of 30 − 50 meV . Along with their
inherent random nucleation, this prevents a straightforward deterministic integration
of self-assembled QDs in photonic structures. Current QD-cavity experiments rely
either on large or low densities of self-assembled QDs. The former case ensures that at
least one QD will couple to the optical field of the cavity but is not suitable for single QD
experiments. The latter case requires the fabrication of a large number of structures,
relying on statistics and long systematic measurements to find a QD with a sufficient
spatial and spectral overlap with the optical field of the cavity.

The deterministic integration of single self-assembled QDs can be achieved by posi-
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tioning the cavity structure around a randomly positioned QD[68–70]. This requires
a pre-characterization step to locate the QD, followed by a lithography step to align
the cavity structure with the designated QD. Although these methods are suited for
fundamental cavity-QED studies, they are not viable for applications in quantum
information science which require the upscalling of nanophotonic devices. Note
that growth modes other than Stranski-Krastanov exist such as droplet epitaxy[71] or
monolayer fluctuation control in quantum wells[72], but they suffer from the same
drawbacks.

(a) (b)

(c)

(d)

(f)

(e)

(g)

Figure 1.8: (a) Atomic force microscopy image showing part of a QD array in which the original
hole diameter before buffer layer growth was 60 nm (top), and 85 nm (bottom). Representative
height profiles reveal the formation of QDs inside the holes. (b) Growth scheme of the vertically
coupled site-controlled QDs. The seeding layer is shown in medium grey. The site-controlled
QDs on the surface are shown in red. GaAs is light grey and the AlGaAs barrier is dark grey.
(c) Scanning electron microscope image of an array of site-controlled QDs (see (b)) with a
period of 500 nm. This image was acquired under a tilted angle of view to increase the contrast.
(d)-(e) Scanning electron microscope images of a GaN/AlGaN nanowire containing a single
GaN QD grown on a patterned AlN/sapphire substrate. (f) High-resolution transmission
electron microscopy image of a GaN QD embedded in a nanowire. (g) Schematic illustration
of a GaN/AlGaN nanowire. (a) Reprinted with permission from[73]. 2012 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim. (b)-(c) Reprinted from Publication [74], Copyright (2011), with
permission from Elsevier. (d)-(g) Reprinted with permission from [75]. Copyright [2013], AIP
Publishing LLC.

The fabrication of high yield, scalable photonic devices requires a nearly perfect con-
trol of the QD position. Several strategies have been developed to control the position
of QDs on a substrate. The most commonly used methods involve epitaxial growth of
InAs self-assembled QDs on patterned GaAs substrates with (100) orientation. Regular
arrays of holes are defined on the substrates using either electron beam lithography
(EBL) combined with ion etching, nano-imprint lithography or atomic force lithog-
raphy. The holes can be used as surface deformations that localize diffusing indium
atoms during the growth, inducing the spontaneous nucleation of QDs inside the
holes[73] (Fig. 1.8 (a)). Using this method, site-controlled QDs with linewidths as
low as 60 μeV were fabricated[76]. Another approach is to overgrow the patterned
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substrate with a GaAs layer, partly filling the holes. This induces strain in the regions
of the overgrown layer located above a nano-hole of the substrate. By growing a sub-
sequent InAs layer, self-assembled QDs form preferential above a filled nano-hole
due to vertical strain coupling[74] (Fig. 1.8 (b) and (c)). This methods presents the
advantage of distancing the QDs from the defects of the hole’s etched surface, leading
to improved QD linewidth of 10− 40 μeV [77, 78]. This controlled QD nucleation also
improves the size distribution of the QDs leading to inhomogeneous broadenings as
low as 15meV for the emission of ensembles of QDs[79]. Although these site-controled
QDs present good optical properties, their nucleation, like self-assembled QDs, relies
on strain. Strain being orientation dependent on the substrate, self-assembled QDs
form with an asymmetric, elongated shape. This induces polarization anisotropy of
the emission and fine-structure splitting of the exciton state (∼ 60 μeV ), which can
be detrimental for certain applications including the emission of entangled or indis-
tinguishable photons. In addition, the presence of a 2D wetting layer adds spurious
effects in cavity-QED experiments as discussed in more details in section 1.5.

Although we focus here on arsine based semiconductors, other semiconductor ma-
terials can be used to fabricate QDs. An example is given by GaN QDs embedded in
site-controlled nanowires[75, 80] (Fig. 1.8 (d)-(g)). The nanowires can be fabricated
using either a top-down or or bottom-up approach to incorporate InGaN/GaN or
GaN/AlGaN QDs near the top of the nanowire. The large band energies of nitride based
ternary alloy allows to reach QD emission energies above 4 eV . Furthermore, emission
from single QDs was observed up to room temperature with these structures[75].

The site-controlled QDs used in this work are obtained by MOVPE growth of InGaAs/-
GaAs on a (111)B-oriented GaAs substrate patterned with pyramidal pits[81, 82]. The
QDs obtained with this method are referred to as pyramidal QDs. Regular arrays of
pyramidal recesses are etched on the GaAs subtrate by means of EBL and wet chem-
ical etching. This results in the formation of uniform inverted pyramids with well
defined (111)A facets (Fig. 1.9 (a)). What distinguishes these QDs from site-controlled
self-assembled QDs is that their nucleation process is not governed by strain. During
MOVPE growth, the forces driving the nucleation of the pyramidal QDs are growth
rate anisotropy and capillarity effects, resulting in the formation of lens-shaped QDs
at the appex of the pyramidal pits. These QDs have a height to width ratio similar to
self-assembled QDs (∼ 20nm in plane and ∼ 5nm in the growth direction), but present
a high hexagonal symmetry induced by the self-limited growth mechanism[83, 84] and
symmetry of the inverted pyramids (Fig. 1.9 (b)-(d)). Furthermore, no 2D wetting layer
is formed during the growth of the QD. However, under certain growth conditions,
InGaAs/GaAs QWRs can form on the three wedges of the inverted pyramid.

Using this technique, highly uniform site-controlled QDs with promising optical prop-
erties were fabricated, yielding reproducible single QD spectra (Fig. 1.9 (e)). The
emission of pyramidal QD ensembles is characterized by an average inhomogeneous
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broadening of 10meV with record low spread of the neutral exciton line of ∼ 1meV

from QD to QD[85] (Fig. 1.9 (f)). Single QDs exhibit thin excitonic lines with linewidths
of 80− 100 μeV [86]. The high symmetry of pyramidal QDs results in low fine-structure
splitting of the exciton state[82] (20 μeV in average).

0nm
(c)

(d)
22nm

(b)(a)

(e) (f )

Figure 1.9: (a) Scanning electron microscope image of an ensemble of etched pyramids prior
to growth. (a)-(d) Arrays of site-controlled pyramids with a 300 nm base side, overgrown with
a nominally 27 nm thick GaAs layer. (b) Top-view tapping mode atomic force microscopy
image of a single pyramid. The dashed lines indicate the initial boundaries of the pyramid.
(c) Schematic illustration of the overgrown pyramid. (d) Top-view phase mode atomic force
microscopy image of a 500 nm pitch array of overgrown pyramids. (e) Low-temperature (10 K)
photoluminscence spectra from 15 different single QDs, which show the ground-state emis-
sion from different excitonic species (identified by excitation- and temperature-dependence
studies[87]). (f) Statistical distribution of X emission energies from 60 different QDs, with a
fit to a Gaussian distribution revealing a narrow FWHM of only 1.4 meV. (a) Reprinted with
permission from[81]. 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.. (b)-(d) Reprinted
with permission from [88]. Copyright [2008], AIP Publishing LLC.. (e) and (f) Reprinted with
permission from[85]. 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim..

1.3.5 Linewidth broadening of semiconductor QDs

The spectral signature of an isolated ideal atom is given by a sharp Lorentzian function
with a full width at half maximum (FWHM) γ (Fig. 1.10 (a)) given by the inverse of
the atom radiative lifetime τ . This natural broadening is a consequence of the uncer-
tainty principle and is often referred to as lifetime broadening. All quantum emitters,
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including atoms, are never truly isolated from their environment. Interactions with the
environment leads to quantum decoherence which destroys quantum mechanical in-
terference effects. It is convenient to describe a quantum emitter and its environment
by a Hamiltonian made of three parts[89]: the system Hamiltonian (the emitter), the
bath Hamiltonian (the environment) and the system-bath coupling Hamiltonian. The
latter can be composed of off-diagonal and diagonal elements. Off-diagonal coupling
terms lead to a population relaxation of the emitter. An example is given by the cou-
pling of an atom to the electromagnetic field that induces radiative emission. Diagonal
coupling terms do not produce population relaxation but lead to pure dephasing which
introduces additional linewidth broadening. These coupling terms can be viewed as
providing time-dependent fluctuations to the system eigenenergies, introducing a
"dephasing" between the phases of the system states.
For semiconductor QD emitters, which are embedded in a crystal lattice, the interac-
tion with the environment can be important, leading to linewidth broadening beyond
the radiative lifetime limit. We review here the two main decoherence mechanisms
responsible for linewidth broadening in semiconductor QDs.
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Figure 1.10: Illustration of decoherence processes in semiconductor QDs. (a) Lifetime limited
spectral signature of a QD isolated from its environment. (b) Spectral signature of a QD
broadened by pure dephasing- γd is the pure dephasing rate. (c) Spectral signature of a QD
modified by the interaction of the QD with LA phonons.

Pure dephasing induced by fluctuating charges

The typical lifetime measured for InAs QDs are on the order of 1ns. This corresponds to
a lifetime broadening of 0.7μeV . This is well below the 10−100μeV linewidths reported
in the literature for these QDs. This discrepancy is explained by the interaction of the
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QD excitonic states with the fluctuating electric field generated by charges in the
vicinity of the QD. Defects present in the bulk material or generated during the growth
of the QDs can capture and release charges at a given rate, generating a fluctuating
field, which modifies the energy of the excitonic states. As explained by Berthelot et
al.[90], if these energy shifts occur at rate slower then the QD radiative decay rate,
this leads to spectral jumps of the emission known as spectral diffusion. When the
integration time of the luminescence signal is much longer than the time scale on
which these spectral jumps occur, the recorded QD emission has a Gaussian line-shape,
with a width determined by the density of defects surrounding the QD. However if
the energy shift induced by the fluctuating charges occur at a rate faster than the QD
radiative lifetime, spectral jumps are inhibited and the QD Lorentzian spectral feature
is homogeneously broadened. This situation corresponds to a pure dephasing of the
QD transition, which is broadened by γd (Fig. 1.10 (b)).
Spectral diffusion of the QD emission has been observed with energy shifts occurring
on a time scale of 1 s[91] up to 100 s[92] for CdSe self-organized QDs. For InAs QDs,
the energy shifts occur on a much more smaller time scale of ∼ 10 ps[93, 94], leading
to pure dephasing induced broadening. In general, the effects of spectral diffusion and
pure dephasing are pronounced when the QD is excited non-resonantly, resulting in
the generation of diffusing charges in the QD barrier material which can be trapped
and released by neighboring defects[74] or wetting layer states[95]. Pure dephasing
can be inhibited by exciting the QD resonantly and thus preventing the generation of
carriers in the QD barriers[96]. However it was recently shown that fluctuations of the
QD electrostatic environment can persist even under resonant excitation, leading to
pure dephasing[16]. In this experiment, non-resonant excitation was used as a mean
to stabilize the electrostatic environment by filling the traps in the QD vicinity.
The decoherence induced by pure dephasing can hinder the observation of cavity-
QED effects. Observing the strong coupling regime can then be more difficult since
pure dephasing induces a damping of the Rabi oscillations and broadens the emitter
emission, smearing out the vacuum Rabi splitting[97, 98]. On the other hand, as
emphasised by Auffèves et al. [99], pure dephasing can also enhance the effective
coupling between a QD and the optical mode of a cavity when they are detuned in
energy. Pure dephasing can also be used to increase the indinstiguishability of photons
emitted by a QD coupled to a CM[100, 101], serving as an additional degree of freedom
that can prove beneficial for cavity-QED experiments.

Phonon scattering

An important source of decoherence in semiconductor QDs comes from their interac-
tion with the crystal lattice vibrations known as phonons. The impact of QD-phonon
interaction on the spectra of semiconductor QDs has been observed in several pho-
toluminescence experiments[102–107]. It translates into a temperature dependent
broadening of the QD Lorentzian feature, referred to as the zero phonon line (ZPL), as
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well as the appearance of an asymmetric broadband emission superposed on the ZPL
(Fig. 1.10 (c)).

There have been many attempts to describe theoretically these observations of phonon
induced QD dephasing. The most successful ones use a generalized Huang-Rhys theory
of localized exciton-phonon interactions[102, 108, 109]. In these theoretical descrip-
tions, longitudinal acoustic (LA) phonon scattering is described by an exciton-phonon
interaction Hamiltonian with diagonal and off-diagonal elements. The diagonal el-
ements are responsible for a fast decay of the coherence on a few picosecond time
scale[110]. This pure dephasing mechanism is the result of the coupling of the QD exci-
tonic states with a continuum of acoustic phonons. In essence, the phonon interaction
induces a shift of the excitonic state to lower and higher energies, corresponding to
the "emission" and "absorption" of a phonon respectively. At low temperatures, the
broadband emission, often referred to as phonon sidebands, is thus asymmetric due
to the low population of the phonon bath, which inhibits the absorption of a phonon.
When the temperature is increased this asymmetry becomes less pronounced. The
energy of the acoustic phonons interacting efficiently with the confined exciton states
is proportional to the inverse of the QD confinement length[102]. For QDs with a size
of 5− 10 nm, this leads to sidebands extending up to ±3meV . On the other hand, the
off-diagonal elements induce both population relaxation and pure dephasing that
mainly result in a long time decay of the excitonic population, resulting in a tempera-
ture dependent broadening of the ZPL given by Γ(T ). This broadening is negligible at
low temperatures (< 1 μeV ) and increases to ∼ 50μeV at 50K[109].
Phonon scattering has recently been shown to play an important role in cavity-QED
experiments by increasing the effective coupling of an off-resonant CM and a QD[111–
115].

1.4 Photonic crystal cavities

A photonic crystal (PhC) is a macroscopic medium with a periodic dielectric function
that modifies the propagation of light. The periodicity of the dielectric material can be
one, two or three dimensional as illustrated in Fig. 1.11. In a macroscopic, isotropic
dielectric medium in the linear regime, the electric field E(r) and magnetic field H(r)

are governed by

∇×
(

1

ε(r)
∇H(r)

)
=

ω2

c2
H(r) (1.20)

∇ ·H(r), ∇ · [ε(r)E(r)] (1.21)
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with ω and c the frequency and speed of light and ε(r) the dielectric function of the
medium. Equation (1.20) is the master equation and constitutes an eigenvalue prob-
lem. When the dielectric function is periodic in space, the master equation presents

1D photonic crystal 2D photonic crystal 3D photonic crystal

Figure 1.11: illustration of 1D, 2D and 3D PhCs formed of a dielectric material (grey) surrounded
by air.

similitudes to the Schrödinger equation describing the motion of electrons in the
periodic potential of a crystal. In essence, given the wavelike properties of electrons in
the quantum regime, these two problems describe the motion of waves in a periodic
medium. In crystals, the electrons scatter coherently on the periodic potential of the
crystal lattice leading to formation of a band structure describing the directions of
propagation allowed for given electron energies. This leads to a set of continuous band
functions En(k) that specifies the energies of the electrons as a function of their wave
vectors. In between two bands, there is a range of energies for which the propagation
is forbidden regardless of the direction of propagation. Such an energy band gap can
be found for example between the conduction and valence bands of a crystal.
In PhCs, the electrons are substituted by electromagnetic waves and the crystal lattice
by a periodic dielectric medium. The electromagnetic field then scatters coherently
at the interface of two dielectric regions of different refractive index. The periodicity
of the dielectric medium allows to write the solutions of equation (1.20) in the Bloch
form, in analogy to the Bloch functions of electrons in a periodic crystal

Hk(r) = uk(r)e
ik·r (1.22)

where uk(r) has the same periodicity as the dielectric function. The energies of the
these harmonic modes are given by continuous band functions ωn(k) that specify the
energies of the electromagnetic field as a function of its direction of propagation. The
range of energies for which the propagation is forbidden are called photonic band gaps.
An example of a band structure for a 3D PhC is shown in Fig. 1.12 (a). Photonic band
gaps can only appear for light propagating in the direction of the medium’s periodicity.
This means that complete photonic band gaps preventing the propagation of light in
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all three directions of space can only occur in 3D PhCs.
The initial mentions of the possibility to control light propagation with periodic di-
electric date back to 1887[116] and 1972[117]. However the intensive study of PhC
structures was initiated by the papers of E. Yablonovitch[118] and S. John[119] in 1987.
Soon after, the first 3D PhCs with a complete photonic bang gap were realized ex-
perimentally in the microwave[120] and infrared[121] energy regions. Despite these
achievement it was clear that the fabrication of 3D PhCs is technologically challeng-
ing. Lower dimensional, easier to fabricate, PhC structures have thus triggered some
interest. Among those are PhC slabs that are presented in the following section.

(a) (b)

(c)

Figure 1.12: (a) The photonic band structure for the lowest bands of a woodpile structure (inset)
with ε = 13 logs in air. The photonic band gap is indicated in yellow. (b) Band diagrams for
photonic crystal hole slab suspended in air (inset). The blue shaded area is the light cone.
TE-like bands are shown in red and TM-like bands in blue. The TE-like photonic band gap
is indicated by the red shaded region. (c) Illustration of an L3 PhC slab cavity. (a) and (b)
Republished with permission of Princeton University Press, from [122]; permission conveyed
through Copyright Clearance Center, Inc.

1.4.1 Photonic crystal slab

Photonic crystal slabs rely on a 2D PhC and index guiding to confine light. A PhC
crystal slap consisting of a triangular lattice of holes in a dielectric material of finite
thickness surrounded by air is illustrated in the inset of Fig. 1.12 (b). In this geometrical
configuration, the propagation of electromagnetic waves with certain energies will be
forbidden in plane by the 2D PhC. In addition, the finite thickness of the slab will limit
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the propagation of electromagnetic waves in certain directions due to total internal
reflexions. This leads to the band structure shown in Fig. 1.12 (b) that displays an
incomplete band gap. The band gap is incomplete because the slab confines only
modes satisfying ω < ck‖, where k‖ is the component of the wavevector parallel to
the PhC slab. When ω > ck‖, Snell’s law is satisfied, leading to a continuum of modes
indicated by the shaded region in Fig. 1.12 (b) that can escape the slab. This modes
are said to be in the light cone. The limit of the light cone corresponding to ω = ck‖ is
indicated by a thick dark line. Below the light line is the band structure corresponding
to modes localized within the PhC slab. These modes can be classified according to
their mirror symmetry with the z = 0 plane into TE-like (even) and TM-like (odd)
modes[122]. As can be seen in Fig 1.12 (b), a band gap exists only for TE-like modes.
The TE bands located above and below the band gap are generally referred to as the
dielectric and air bands because they correspond to modes with electric field localized
in the dielectric and air regions of the PhC respectively.

Photonic crystal slab defect cavities

Localization of light can be achieved in PhCs by introducing a defect in the periodicity
of the dielectric function. In a PhC slab, this can be achieved for example by removing
one or several holes of the triangular lattice as illustrated in Fig. 1.12 (c), forming a
cavity-like structure. Due to the additional dielectric material present where the hole
was removed, a mode from the air band will be pulled down into the band gap. This
implies that the cavity mode electromagnetic field will be bound to the defect since
it propagation is prohibited by the PhC and index guiding. For a perfect 3D PhC, a
defect mode is completely confined. For a 2D PhC slab however, the localized mode
has intrinsic radiative losses due to the incomplete PhC band gap. The losses of such
a defect cavity mode are generally described by the ratio of the mode frequency ωm

to its loss rate κm, known as the cavity quality factor Q = ωm/κm. Q represents a
dimensionless number that quantifies the number of optical periods occurring before
the mode energy decays by e−2π. A large quality factor thus characterises a cavity with
low radiative losses. PhC slab defect cavities are appealing for cavity-QED experiments
because of their small mode volumes and high quality factors. Reaching high quality
factors requires an optimization of the cavity design to reduce losses[46, 123].
In this work we coupled pyramidal QDs to L3 defect cavity modes[124]. L3 cavities are
obtained by removing three holes of a triangular PhC slab as depicted in Fig. 1.12 (c).
The properties and mode structures of the L3 cavities used in this work are presented
in subsection 2.2.3.
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1.5 Cavity quantum electrodynamics with semiconductor quan-
tum dots

The important progress in the fabrication of semiconductor QDs and nanocavities have
enabled the study of cavity-QED effects in solid-state based devices. After the initial
observation of enhanced QD spontaneous emission in micropillar cavities, multiple
experiments studied the influence of the Purcell effect on QDs in PhC[69, 111, 125–132]
or micropillar[16, 133–137] cavities by measuring the lifetime dynamics or spectra of
QDs interacting with a CM. Time-resolved measurements give a direct estimation of
the Purcell enhancement by comparing the QD lifetime when coupled to the CM to
the QD lifetime in the bulk semiconductor. On the other hand, measuring the intensity
of the QD spectra for different QD-cavity energy detunings can also give access to the
Purcell factor; but this is not straightforward since the increased intensity of the QD
emission when in resonance with the CM can be dependent on the structure geometry
and QD pumping rate[133].
In section 1.2, the Purcell factor was defined as Fp =

3λ3

4π2
Q
V , which describes the ratio

between the bare emitter lifetime τ0 and the lifetime τcav of the emitter optimaly
coupled to the CM: Fp = τ0/τcav. This expression assumes an ideal cavity, and results
in a Purcell factor of 0 (complete suppression of the emitter emission) when the emitter
is not coupled to the CM, for example if it is placed on a node of the cavity confined
electric field. Real cavities, in particular semiconductor nanocavities, can support
leaky modes, which allow for the emitter to emit even when uncoupled to the CM[138].
This leaky mode emission is characterised by a lifetime τleak and leads to modified
ratio between the bare and coupled emitter lifetimes[47, 133].

τ0
τ(δ)

=
τ0

τcav(δ)
+

τ0
τleak

= Fp(δ) +
τ0

τleak
(1.23)

where a dependence on the emitter-CM detuning δ is introduced. Note that for δ → ∞,
Fp = 0 and τ(δ = ∞) = τleak.

Table 1.1 summarizes measured decay times τ , τ0 and τleak for QDs coupled to PhC
and micropillar cavities reported in the litterature. The corresponding Purcell factor
calculated with (1.23) and the inhibition factor τleak/τ0 are also indicated in table
1.1. For PhC cavities the inhibition factor varies from 2− 9, indicating an important
inhibition of the QD spontaneous emission by the PhC band gap. For self-assembled
QDs, controlling the inhibition of the spontaneous emission is difficult because it is
highly dependent on the position of the QD in the cavity. Inhibition factors > 1000 have
been predicted for H1 cavities but require specific positioning of the emitter dipole
inside the cavity[139]. In these experiments the enhancement of the emission by the
CM was observed on single QD spectral lines, with Purcell factors up to ∼ 15. Although
these values are encouraging, they are well bellow the theoretical maximal Purcell
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Table 1.1: Non exhaustive list of QD decay rates reported in the literature measured for QDs
coupled to PhC and micropillar cavities. τ0 is the bulk QD decay rate, τ(δ = 0) the decay rate of
the QD in resonance with the CM transition and τleak the decay of the QD when far-off resonant
from the CM. The last two columns show the corresponding Purcell factors and inhibition
factor τleak/τ0.

PhC cavity
τ0 [ns] τ(δ = 0) [ns] τleak [ns] Fp(δ = 0) τleak/τ0

Chang et al. [126] 0.65 0.21 2.52 2.8 3.9
Gevaux et al. [127] 0.98 0.086 4.38 11.2 4.5
Balet et al. [128] 1.2 0.15 3.6 7.7 3
Hennessy et al. [69] 1 0.06 8.7 16.5 8.7
Luxmoore et al. [130] 1.1 0.64 2.5 1.3 2.3

Micropillar cavity
Munsch et al. [133] 0.8 0.2 - 3 -
Jakubczyk et al. [135] 0.422 0.063 - 5.7 -
Gazzano et al. [16] 1.3 0.265 - 3.9 -

factors for PhC defect cavities (Fp ∼ 400 for Q ∼ 6000 and mode volume 0.04(λ/n)3).
This discrepancy is generally explained by a non-ideal alignment of the QD exciton
dipole and cavity electric field vector or a poor spatial overlap between the QD and CM
field pattern[125, 128]. For micropillar cavities, the inhibition factor is not indicated
because the decay times into the leaky modes is generally assumed to be equal to
bulk QD decay time, which signifies that the micropillar structure does not alter the
uncoupled QD emission significantly[133]. For micropillar cavities the Purcell factor is
expected to be lower than for PhC cavities, due to the larger optical mode volumes of
micropillar structures. This can explain the slightly lower Purcell factors reported in
table 1.1.

The strong coupling regime has also been studied in semiconductor QD-nanocavity
systems[44]. This was an important step since it allowed to enter the single quanta
regime in which single-photon non-linear effect arise, and was an opportunity to get
direct measurements of QD-cavity coupling strengths. In the strong coupling regime,
an anti-crossing is observed between the QD and CM transitions when the QD-CM
detuning is varied. This minimum splitting between the two transitions corresponds
to the vacuum Rabi splitting ΔERS and is related to the coupling strength g by[147]

g =

√
ΔE2

RS

4h̄2
+

(κ− γ)2

16
(1.24)

with κ and γ the cavity and QD decay rates. Table 1.2 summarizes coupling strength
values reported in the literature, extracted from measurements of vacuum Rabi split-
ting, along with the cavity Q factors and QD linewidths. The coupling strength values
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Table 1.2: Non exhaustive list of Q factors, QD linewidths and QD-cavity coupling strength g
reported in the literature and obtained experimentally in the strong coupling regime.

PhC cavity
Q factor QD linewidth [μeV ] g [μeV ]

Yoshie et al. [52] 6000 89 85
Hennessy et al. [69] 13300 35 76
Thon et al. [140] 9200 53 71
Laucht et al. [141] 17600 20 59
Englund et al. [142] 11200 9 86
Luxmoore et al. [130] 8000 30 106
Ota et al. [143] 20000 3 40

Micropillar cavity
Reithmaier et al. [39] 7350 72 80
Press et al. [144] 15200 54 35
Münch et al. [145] 11000 37 43
Keldysh et al. [146] 12000 50 60

range from 40μeV to 100μeV and are higher in average for PhC cavities. The coupling
strength being proportional to the inverse of the cavity mode volume, higher values
are easier to reach with the smaller mode volumes of PhC cavities.

These weak coupling and strong coupling cavity-QED effects observed with semicon-
ductor QD-cavity systems were an indication that they are, at least to some extent,
analogous to atom-cavity systems. However, significant differences with atomic sys-
tems were observed in experiments. One of the most striking features of solid-state
QD-cavity systems is the pronounced spectral signature of the CM that persists even
when the spectral overlap of the QD and CM transitions become negligible[148–152].
Furthermore, in the strong coupling regime, some experiments reported the obser-
vation of a triplet in the QD-cavity spectrum[69, 143] instead of the usual vacuum
Rabi splitting doublet observed in atom-cavity experiments. These surprising results
sparked a series of ongoing theoretical and experimental investigations to find expla-
nations for these puzzling novel phenomena.

The off-resonant CM emission was found to be persistent for detunings extending
to 45meV [153] for self-assembled QD systems. In addition, this far-off resonant CM
emission was found to be anti-correlated with the QD emission, proving that the CM
feeding is mediated by the QD transition[69, 148]. However, the CM emission did
not show any significant quantum correlations[153]. The ideal representation of a
QD with a discrete density of states owing to its 3D confinement fails to account for
these observations. Indeed, the QD can host a large number of electron-hole pairs
in its higher energy state (for example p-states or d-states), that undergo Coulomb
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interactions. For self-assembled QDs, the 3D-confined carriers can efficiently interact
with delocalized electrons and holes in the 2D wetting layer. This interaction leads
to the formation of extended QD excitonic states that go beyond the atomistic pic-
ture[154]. The hybridisation of localized QD states with delocalized wetting layer states
leads to the formation of a broadband quasi-continuum of states that give rise to a
QD background emission[148, 153, 155]. This broadband background emission can
sustain the CM emission for large detunings and also manifests in the time-domain
by a fast decaying CM emission, uncorrelated with the s-state transitions, that decays
with a rate of the same order as QD excited states[152]. The hybridisation of QD and
wetting layer state is an elaborate N-body problem that complicates the interpretation
of cavity-QED experiments. In order to diminish its effects the QD s-states or p-states
can be pumped resonantly without populating the 2D wetting layer[115, 142]. The
application of a electric field bias to the QD-cavity structure has also been shown to
strongly suppress off-resonant CM emission by depopulating high energy and wetting
layer states[156].

This far-off resonant CM emission is not intrinsic to semiconductor QDs. It is a feature
specific to self-assembled QDs nucleating on top of a 2D wetting layer. As mentioned
earlier, no 2D wetting layer is formed during the growth of the pyramidal QDs used
in this work. This results in the absence of QD background emission and far-off
resonant QD-cavity coupling in their photoluminescence spectra[113]. In section 5.1.3
we show that this absence of background emission also manifests in the dynamics of
the coupled QD-cavity system, in the form of a strong temporal correlation between
the CM and s-states QD transitions emission[157]. Although pyramidal QDs nucleate
in the vicinity of 1D QWR states, their influence of the QD emission is shown to be
nonexistent for low excitation powers, owing to the large energy difference and absence
of hybridization between the localised QD states and 1D delocalized state.

Although the continuum of states generated by the interaction of self-assembled QD
states with wetting layer states has been shown to be beneficial to achieve lasing
with single QD-cavity structures, it overshadows other interesting effects intrinsic to
solid-state QD-cavity systems. In particular, the pure dephasing and phonon scattering
decoherence mechanisms mentioned in subsection 1.3.5 are expected to greatly impact
the QD-cavity interaction, leading to optical properties differing from atomic-cavity
systems. Even in the weak coupling regime, decoherence effects lead to off-resonant
CM emission and influence the QD polarization. Working with wetting-layer free
semiconductor QDs is thus a necessity to conduct a proper investigation of these
solid-state effects.

The pure dephasing induced by rapidly fluctuating electrical charges in the vicinity of
the QD (see subsection 1.3.5) was predicted to alter the QD-cavity coupling mecha-
nism[97–100, 158]. Several theoretical studies showed that pure dephasing modifies
the spectrum of a QD-cavity system in the weak coupling regime, shifting the intensity
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distribution from the QD peak to the off-resonant CM peak[98, 100]. The QD-cavity
effective coupling rate is increased by pure dephasing, leading to a more efficient off-
resonant cavity feeding[99]. This results in a pronounced CM off-resonant emission
for detunings extending to a few meV . In the strong coupling regime, the vacuum
Rabi splitting is blurred by the damping of the coherent Rabi oscillations induced by
pure dephasing[97, 98], and the emission intensity is shifted towards the cavity energy
for finite detunings. Pure dephasing combined with the multi-excitonic nature of
semiconductor QDs was also brought forward as an explanation for the observation of
a spectral triplet at resonance in the strong coupling regime[158, 159]. Pure dephasing
induced by the charged environment of the QD thus plays an important role the QD-
cavity interactions. A quantitative analysis of its impact remains however difficult with
self-assembled QDs as additional decoherence mechanisms related to wetting layer
continuum states can come into play even when pumping the system resonantly[160].

Another source of off-resonant cavity feeding comes from the interaction of the QD
states with acoustic phonons. As mentioned in subsection 1.3.5, phonon scattering
generates a broadband background emission around the discrete QD transition. This
broadband emission can be enhanced by the Purcell effect, leading to a significant
off-resonant CM emission. In some studies, phonon-mediated cavity feeding was
taken into account in an effective manner by adding a pure dephasing rate to the QD
dynamics[142, 161]. This effective treatment however is not sufficient to explain the
asymmetry of phonon scattering with respect to detuning. As mentioned in subsection
1.3.5, this asymmetry stems from different efficiencies of phonon absorption and
emission at low temperatures. In a coupled QD-cavity system, a detuned QD transition
can overcome the energy mismatch by absorbing or emitting a phonon leading to the
emission of a photon at the CM frequency[115]. At low temperatures, this process is
less efficient when the QD is red-shifted from the CM since the absorption of a phonon
is inhibited by the low population of the phonon bath. The off-resonant CM emission
is limited by the extent of the phonon sidebands resulting in cavity feeding over a small
detuning range of ±3meV . The influence of phonon scattering on the off-resonant CM
emission was observed in several semiconductor QD-cavity experiments[113–115, 162]
and thoroughly investigated theoretically[112, 163–170]. This phonon scattering was
shown to induce a pulling of the cavity frequency towards the QD transition energy[171]
and give rise to an asymmetry with respect to detuning of the QD decay rate[111, 131].
In recent works, phonon scattering was shown to assist the population inversion of
a single QD[131] and relax the QD-cavity resonant condition required to obtain high
brightness single photon sources in micropillars[172]. As emphasized by the work of
Valente et al. [171], observing the fine features of phonon scattering requires a full
control of the QD-cavity coupling. Wetting-layer-free site-controlled emitter such
as pyramidal QDs are thus promising candidates to continue the investigation of
QD-cavity phonon-mediated coupling.
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1.6 Thesis goals and outline

The goal of this thesis is to present an experimental study of a solid-state cavity-
QED platform comprising of site-controlled QDs and PhC cavities. This study was
initiated by the article of Gallo et al.[88] that demonstrated the coupling of a site-
controlled pyramidal QD to an L3 PhC cavity. The fabrication technique was then
optimized by M. Calic, enabling a statistical optical study of up to two or more site-
controlled QDs embedded in a PhC cavity[173–175]. In this work we continue the
investigation of these promising structures, starting with the fundamental component
of cavity-QED system: a single quantum emitter inside an optical cavity. As reported
by M. Calic et al.[113], unlike previous cavity-QED systems based on self-assembled
QDs, site-controlled QDs embedded in PhC cavities corresponds to a single confined
exciton interacting with a CM, making it closer to an ideal TLS emitter interacting
with an optical mode. We rely on this feature to investigate the impact of solid-state
decoherence mechanisms on QD-cavity coupling. The study is then extended to more
complex QD-cavity structures. This is made possible by the deterministic fabrication
approach that enables a controlled positioning of each QDs in the photonic structure,
as well as a record control of the QD emission energy. This gives the opportunity to
study structures with multiple QDs coupled to the same CM or multiple QDs coupled
to arrays of optical cavities. The thesis is therefore organized as follows.

Chapter 2 provides a description of the experimental and modelling techniques used
in this work. The optical setups used to perform photoluminescence measurements
are presented, along with the modeling tools used to analyse the optical properties
of PhC structures. This chapter also provides a description of the fabrication steps
involved in the realization of pyramidal QDs and their integration in PhC cavities.

Chapter 3 briefly reviews the theoretical formalism used in cavity-QED to describe
the interaction of a TLS with a CM. The extension of the ideal TLS-cavity model to a
more realistic model describing the interaction of a QD with a CM in the presence of
solid-state decoherence mechanisms is discussed. Owing to the TLS-like properties of
pyramidal QDs, a theoretical model including QD dephasing processes and aiming to
reproduce the spectra of one or more pyramidal QDs embedded in L3 PhC cavities is
proposed.

Chapter 4 presents an optical study of single, isolated site-controlled pyramidal QDs
that aims to establish the characteristics of their luminescence. The QD spectral
features are probed with photon-correlation and time-resolved measurements and
particular attention is paid to the binding energies of QD excitons. This study provides
a rigorous identification of the QD s-state features and demonstrates the high repro-
ducibility of the QD emission. The 2X binding energy is found to be either positive or
negative depending on the QD size and QDs with vanishing 2X binding energies are
evidenced.
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Chapter 5 presents a study of site-controlled pyramidal QDs embedded in the same
PhC cavity. The polarization resolved emission of a single QD coupled to a PhC cavity
mode is investigated as a function of QD-cavity detuning. Although this experiment
is performed in the weak coupling regime, the emission of the coupled system ex-
hibits complex polarization features that are influenced by solid-state decoherence
mechanisms. The emission spectra is compared to the theoretical model exposed in
chapter 3, giving important insights into the impact of pure dephasing and phonon
scattering on the QD-cavity coupling mechanism. A structure comprising of two QDs
embedded in the same PhC cavity is then investigated showing that although both
QDs are simultaneously coupled to the CM, no collective effects are registered.

Chapter 6 explores more complex photonic structures comprising of linear and 2D
arrays of PhC cavities. Delocalized optical modes are evidenced by using a novel
approach that consists in exciting the photonic structure with site-controlled QWR light
sources. The impact of fabrication-induced disorder in these structures is discussed.
The coupling of two site-controlled QDs embedded in two coupled PhC cavity is
demonstrated.
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2 Experimental and modelling tech-
niques

This chapter presents the experimental and modelling tools used in this work, as well
as the fabrication process of the QD-cavity structures investigated in chapters 4, 5 and
6. Section 2.1 details the photoluminescence measurement techniques used to study
the QD-cavity structures. The numerical simulation methods used to calculate the
field pattern and energies of photonic crystal (PhC) cavity modes are briefly presented
in section 2.2. Finally, the fabrication of site-controlled pyramidal QDs and their
integration in L3 PhC cavities are explained in section 2.3.

2.1 Photoluminescence spectroscopy

Optical spectroscopy relies on the interaction of a sample or structure with light to
extract the structure’s spectral or dynamical characteristics. A commonly employed
technique to study semiconductor nanostructures is photoluminescence (PL) spec-
troscopy. It requires the excitation of the nanostructure by a resonant or off-resonant
laser source followed by the collection of the structure’s luminescence, thus gaining
insights on its optical properties.

2.1.1 Principle of micro-photoluminescence measurements

The study of sub-micron sized semiconductor nanostructures such as QDs, QWRs or
nanocavities requires the possibility to adresse individual devices, which is achieved
by focusing the laser-source to a μm sized spot using a microscope objective. The
photons emitted by the nanostructure are then collected through the same objective.
This procedure is called micro-photoluminescence (μ-PL) and is detailed here for the
specific case of semiconductor QDs.

The excitation of the QD can be done using either a resonant or non-resonant laser
source. The former presents the advantage of targeting specific electronic states
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Non-radiative relaxation
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hole

Conduction band 
edge

Valence band
edge

Figure 2.1: Single QD photoluminescence measurement. Electron and hole pairs are excited
above band gap with an incident laser beam of energy hνl. The electron and holes relax non-
radiatively in the lower energy states of the QD and recombine emitting a photon of energy
hνQD.

and allows the coherent manipulation of states[176, 177]. It this thesis we rely on
non-resonant excitation which uses a laser source with incident photon energy hνl
greater than the band gap of the QD barrier material (Fig. 2.1). In this way electronic
carriers are generated in the vicinity of the QD nanostructure. Those free electrons
and holes relax to the QD band edge with a 1 ps time scale by interacting with lattice
phonons[178]. The carriers can then be captured by the QD, and thermalize through
phonon interaction into the low energy QD states. The intra-QD relaxation of carriers
occurs at a slower rate because of the mismatch between the spacing of the discrete
QD levels (∼ 10meV ) and the phonon energy dispersion. Indeed longitudinal-acoustic
(LA) phonons efficiently interacting with the QD carriers have energies in the meV

range (related to the inverse of the QD size) and longitudinal-optical (LO) phonons
have an energy peak around 37meV (in GaAs based materials). This was believed to
lead to a large reduction of the relaxation rate referred to as the phonon-bottleneck
effect[179]. However, it was shown that the interaction of LO phonons and carriers
leads to the formation of polarons that relax efficiently inside the QD[180] on time
scales of ∼ 10ps. This is consistent with most QD PL experiments that observed a rapid
turn-on of the luminescence after non-resonant excitation.

Once the electrons and holes occupy the lower energy states of the QD, they recombine
and a photon with energy hνQD is emitted by the structure (Fig. 2.1). This light is
collected by the microscope objective and sent towards the detection path, were the
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2.1. Photoluminescence spectroscopy

luminescence can be analyzed in different ways. The light frequency spectrum can
be analyzed with the help of a spectrometer (subsection 2.1.2) or its photon statistics
and temporal evolution can be investigated with photon correlation measurements
(subsection 2.1.3) and time-resolved PL measurements (subsection 2.1.4), respectively.

2.1.2 Micro-photoluminescence setup

The experimental setup used for μ-PL measurements is sketched in Fig. 2.2. The excita-
tion path consists of a Ti:sapphire laser (Spectra Physics Tsunami) in continuous wave
(cw) mode optically pumped at 532 nm by a Nd:Yag laser (Spectra Physics Millenia).
The Ti:sapphire laser beam set at λl = 730 nm passes through a set of neutral density
filters that allow a precise control of the laser beam power (∼ 0.1μW resolution). The
laser beam is then reflected on a 50:50 beam splitter, passes through a 90:10 beam
splitter and is then focused on the sample’s surface by a microscope objective (Zeiss,
50× magnification, numerical aperture NA = 0.55 and focal length f = 3.6mm), to a
circular spot with a 1 μm radius.1

Sample
x

y

Ti:sapphire laser

Nd:YAG laser

Spectrometer

CCD

Polarizer

Half-wave
 plate

Neutral density 
filters

Mirror

Beam splitter

Cryostat

x-y stage

Figure 2.2: Schematic of our μ-PL setup. The optical excitation path is indicated in red and the
optical detection is indicated in orange.

The sample is glued using silver paste to the cold finger of a helium flow cryostat
(Janis ST-500 or Cryo Vac). The sample temperature is adjusted using a temperature
controller (Lakeshore 331). The cryostat is placed on an XY stage which allows to
control the sample’s position in the horizontal plane with a spatial resolution better
than 0.1μm. A camera placed above the beam splitters and microscope objective allows
to monitor the magnified image of the sample, helping with the in-plane alignment of

1The excitation powers in this thesis are measured after the set of neutral densities, such that an
indicated power of 1 μW corresponds to a power density of 0.5W/cm2 on the sample’s surface.
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the sample and focused laser beam spot.
The sample’s luminescence is collected by the same microscope objective and sent to
the detection path. The signal is analysed by a a spectrometer (Jobin Yvon Triax 550 -
55 cm focal length, 1200 grooves/mm grating and 1.55 nm/mm dispersion) equipped
with a nitrogen-cooled CCD (Jobin Yvon Spex Spectrum One - silicon photon detector
with a 2048 × 512 pixel array), giving the PL signal’s energy spectrum with a 80 μeV

resolution.

Polarization resolved PL measurements

The PL spectrum can be resolved in linear polarization by placing a half-wave plate
followed by a linear polarizer on the detection path. Given a polarized plane wave with
electric field described by the Jones vector

E =

[
EV e

iφ

EH

]
(2.1)

where φ the phase difference between the vertical and horizontal field components
EV and EH , respectively. The electric field intensity after it propagates through the
half-wave plate and polarizer, with the half-wave plate fast axis forming an angle θ with
the axis of the polarizer (see Fig. 2.3), is given by

I(θ) =
1

2
(|EV |2 − |EH |2) cos(4θ) + 1

2
(|EV |2 + |EH |2) +EV E

∗
H cos(φ) sin(4θ). (2.2)

Figure 2.3: Schematic drawing of the polarization setup used to perform PL measurements
resolved in linear polarization. The light path is indicated in red.
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In the experiment, the spectra are resolved in linear polarization by measuring the
spectrum for θ = 0 and θ = π/4

IV ≡ I(0) = |EV |2 and IH ≡ I(π/4) = |EH |2 (2.3)

giving access to the vertical and horizontal electric field intensities. The degree of
linear polarization (DOLP) is defined as

DOLP =
IV − IH
IV + IH

. (2.4)

Note that DOLP = 1 if the light is fully vertically polarized and DOLP = −1 if it is
horizontally polarized.

2.1.3 Photon correlation measurements

Studying the statistic of the light emitted by QDs provides an additional way to investi-
gate their complex behaviour. The statistic nature of the light can be quantified by the
second order correlation function which is introduced below[181, 182].

The second order correlation function

The second order correlation function is introduced as a way to quantify intensity
correlations or intensity fluctuations. It is defined as

g(2)(τ) =
〈E∗(t)E∗(t+ τ)E(t)E(t+ τ)〉
〈E∗(t+ τ)E(t+ τ)〉〈E∗(t)E(t)〉 =

〈I(t+ τ)I(t)〉
〈I(t+ τ)〉〈I(t)〉 (2.5)

where E(t) and I(t) are respectively the electric field and the intensity of the light at
time t. This expression of g2(τ) serves to quantify temporal coherence of a classical
light beam. It can be shown that this function has to satisfy the following conditions

g(2)(τ = 0) ≥ 1 and g(2)(0) ≥ g(2)(τ). (2.6)

However, to describe the emission of quantum emitters such as atoms or QDs, this
classical framework is not sufficient. To account for the quantum nature of light, the
correlation function has to be rewritten in terms of quantum electric field operators
ε̂±(r, t) with positive and negative frequencies. The second order correlation function
becomes

g(2)(r1, r2; t1, t2) =
〈ε̂−(r1, t1)ε̂−(r2, t2)ε̂+(r1, t1)ε̂+(r2, t2)〉
〈ε̂−(r2, t2)ε̂+(r2, t2)〉〈ε̂−(r1, t1)ε̂+(r1, t1)〉 . (2.7)

This expression can be qualitatively understood as the probability of joint detection of
one photon at space-time point (r1, t1) and one photon at space time point (r2, t2). If
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we consider the simple case of a single mode of the quantized electric field with corre-
sponding creation and annihilation operators â† and â, the second order correlation
function for τ = t2 − t1 = 0 reads

g(2)(0) =
〈n| â†â†ââ |n〉

n2
= 1− 1

n
(2.8)

where n is the number of photons in the mode corresponding to the Fock state |n〉. It
becomes apparent from (2.8) that the second order quantum correlation function can
take values smaller than one, in contrast to its classical counterpart.
The statistical nature of non classical light can be classified according to the value of
g(2)(τ) as follows

• g(2)(0) = 1 coherent light,

• g(2)(0) > 1 bunched light,

• g(2)(0) < 1 antibunched light.

2

 [ns]

g2 (
)

 

 

Poissonian
Bunched
Antibunched

Figure 2.4: Second order photon correlation function g2(τ) for Poissonian, bunched and
antibunched light.

The corresponding second order functions are illustrated in Fig. 2.4. Perfectly coherent
light has Poissonian photon statistics, meaning that the time interval between the
detection of two photons is random. Bunched light on the other hand has photons
clamped together in bunches. The probability to detect a photon is then greater
short times after the detection of a previous photon. This is the case for thermal light
emitted by, for examples, candles or gaz discharge lamps. The second order correlation
functions of coherent and bunched light satisfy the classical limitations given by
(2.6) and can thus be explained by considering only classical electromagnetic waves.
Antibunched light, which has no classical counterpart, is characterised by a stream of
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photons spread out in regular time intervals. This reduces the probability of detecting
simultaneously two photons, leading to g(2)(0) < 1. Single photon emitters like atoms
or QDs exhibit antibunched light statistics[183–186]. Indeed, after the emission of a
photon by an atom (or QD), it takes a finite duration of time to re-excite the atom and
for the atom to emit the next photon. The rate at which the photons are emitted is thus
the sum of the capture and emission rates, leading to a stream of photons separated by
regular time intervals. For an ideal single photon emitter, the second order correlation
function vanishes at τ = 0.

Correlation measurement setup

The second order correlation function can be measured using a Hanbury Brown and
Twiss (HBT) detection setup[187]. The HBT setup used for the measurements presented
in this thesis is sketched in Fig. 2.5. Only the detection path of the setup described in
subsection 2.1.2 is modified. The detection path now consists of 50:50 beam splitter
that divides the QD emission into two output channels. Each channel leads to a
spectrometer2 equipped with an avalanche photodiode (APD) used for single photon
detection (Perkin Elmer AQR series with a dark count rate of ∼ 200Hz and a detection
efficiency of approximately 45%). Each APD is connected to a modulation domain
analyser (Hewlett Packard 53310A) that generates a cumulative correlation histogram.
The setup time response is ∼ 700 ps.

During an HBT experiment, the stream of photons generated by the emitter is divided
equally by the beam splitter such that half the photons impinge on APDA and the other
half on APDB. Once a photon is detected by one of the APDs, the module domain

2The second spectrometer used in this experiment is a Jobin Yvon Triax 320 with 32 cm focal length,
1200 grooves/mm grating and a dispersion of 2.64 nm/mm.
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Figure 2.5: Schematic of the HBT setup used for photon correlation measurements. The optical
excitation path is indicated in red and the optical detection is indicated in orange.
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analyser records the time before a photon is detected by the other APD. The number
of events corresponding to the detection of a photon on APDA at time t followed by
the detection of photon by APDB at time t + τ is registered by the module domain
analyser. These events are accumulated in a histogram for each delay τ , giving a
quantity proportional to the second order correlation function.

2.1.4 Time-resolved photoluminescence measurements

The time-resolved measurements shown in this thesis were obtained by modifying
the PL setup described in section 2.1.2 in the following manner. The Ti:sapphire laser
was operated in mode-locked mode, generating laser pulses at 80MHz repetition rate
and 3 ps pulse width. With the help of a beam splitter, a part of the excitation laser
beam was sent to a photodiode. On the detection path, the spectrometer was equipped
with a Picoquant APD (τ-SPAD-FAST with 150− 200 ps photon timing resolution and
a detection efficiency of 20% at 890 nm) for single photon counting. The APD and
photodiode are both connected to a time-correlated single photon counting unit (Time
Harp 260 TCSPC board with a 25 ps time bin width). This optical setup is sketched in
Fig. 2.6
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y

Ti:sapphire laser

Nd:YAG laser

Neutral density 
filters

Mirror

Beam splitter

Cryostat

x-y stage

Spectrometer

APD

Photodiode

Figure 2.6: Schematic of our time-resolved PL setup. The optical excitation path is indicated in
red and the optical detection is indicated in orange.

This setup allows to record the time dependent profile of the light emitted by the
QD. After excitation of the QD by the laser pulse, the APD records the emission of
a photon by the QD. The APD is synchronised with the photodiode that provides a
reference timing for the laser pulse. The time-correlator unit records the delay between
the laser pulse and the detection of a photon by the APD. This process is repeated
many times during the integration window due to the high repetition rate of the laser,
forming a histogram of the number of photon arrivals per time bin, which represents

40



2.1. Photoluminescence spectroscopy

the time-resolved emission of the emitter. This requires a low probability of registering
more than one photon per cycle, which is generally the case for QDs. This process is
schematised in Fig. 2.7.

Laser pulse

Luminescence 
photon

tstart tstop tstart tstop tstart tstop

First event

Second event

Third event

Time bin histogram 
after many cycles

Time

tstop-tstart

Figure 2.7: Schematic of the time-correlated single photon counting method used to measure
the time-resolved emission of QDs.
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2.2 Photonic crystal numerical simulations

The fabrication of QD-PhC cavity structures and the interpretation of their spectral
features requires some knowledge of the PhC cavities properties. In particular, it
is necessary to know the CM energies and electric field distributions. This can be
achieved using several computational methods which can be separated in two main
categories:

• Frequency domain eigenproblems: the problem is expressed as an eigenvalue
problem Mx = ω2x which is solved to obtain the band structure ω(k) and associ-
ated electric fields for a given PhC geometry.

• Time-domain problems: the solutions of the problem are obtained by iterating
the Maxwell equations to find the time evolution of the electromagnetic fields
for a given PhC geometry.

In this thesis the PhC simulations are performed in the frequency domain for 2D
problems and in the time-domain for 3D problems as detailed below.

2.2.1 2D finite-difference method

We apply the finite-difference method[188] to a PhC slab defect cavity surrounded by
air (Fig. 2.8 (a)). The electromagnetic field is calculated only on the z = 0 symmetry
plane of the slab (the calculation is limited to a 2D plane; see Fig. 2.8 (b)). The effect
of the slab thickness is then accounted for by an effective dielectric constant εeff (r)
for the dielectric material of the z = 0 symmetry plane, which is approximated by
calculating the effective index of TE modes guided by a 1D slab with the same thickness
as the PhC slab[189].

x
y

z

z=0 plane
(b)(a)

Figure 2.8: (a) Illustration of a PhC slab defect cavity. (b) z = 0 plane of the PhC slab.
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The mirror symmetry with respect to the z = 0 plane implies that for r = (x, y, 0), the
electromagnetic field can be classified into even and odd modes3 [122]

• Even modes (TE):

E(x, y, 0) = (Ex(x, y, 0), Ey(x, y, 0), 0)

H(x, y, 0) = (0, 0, Hz(x, y, 0))

• Odd modes (TM):

E(x, y, 0) = (0, 0, Ez(x, y, 0))

H(x, y, 0) = (Hx(x, y, 0), Hy(x, y, 0), 0).

Furthermore, as discussed in subsection 1.4.1, for a triangular lattice only TE modes
have a photonic band gap, which implies we can restrict here to the determination
of the TE mode field components to describe the modes localized inside the PhC
cavity. These field components are obtained by solving the Maxwell eigenequation
(see section 1.4)

∇× 1

εeff (r)
∇×H =

(ω
c

)2
H (2.9)

for the Hz component using a 2D finite-difference-frequency-domain (FDFD) solver.
This implies that the unknown functions of the problem f(x) are given by their values
at discrete points on a cartesian grid fn,m = f(nΔx,mΔy) and the derivatives are
approximated by dfn,m/dx = (fn+1,m − fn−1,m)/2Δx. Equation (2.9) is written in
the matrix form and solved using a numerical eigenvalue solver∗, yielding the TE
modes energies and Hz(x, y) field distribution. The corresponding Ex and Ey field
distributions are calculated using the Maxwell equations. The CM energies calculated
with this 2D method depend on the approximated dielectric constant εeff (r). An exact
determination of the CM energies and the field distributions away from the z = 0 plane
requires a 3D model. Nevertheless, the 2D finite-difference method is faster than a 3D
simulation and provides in a single run a good approximation of the mode dispersion
and field distributions.

∗The code used in this thesis to perform 2D FDFD simulations was implemented on
the Matlab platform by Dr. K. F. Karlsson.

3Even modes satisfy (Ex(x, y, z), Ey(x, y, z), Ez(x, y, z)) = (Ex(x, y,−z), Ey(x, y,−z),−Ez(x, y,−z)),
(Hx(x, y, z), Hy(x, y, z), Hz(x, y, z)) = (−Hx(x, y,−z),−Hy(x, y,−z), Hz(x, y,−z)) and odd
modes satisfy (Ex(x, y, z), Ey(x, y, z), Ez(x, y, z)) = (−Ex(x, y,−z),−Ey(x, y,−z), Ez(x, y,−z)),
(Hx(x, y, z), Hy(x, y, z), Hz(x, y, z)) = (Hx(x, y,−z), Hy(x, y,−z),−Hz(x, y,−z)). The difference in the
signs between E and H comes from the fact that H is a pseudovector[190].
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2.2.2 3D finite-difference-time-domain method

The most common method used for solving time-domain problems is the finite-
difference-time-domaine (FDTD) method[122]. This method is used to compute the
time dependent propagation of the electromagnetic field. This requires to divide space
and time into a grid of discrete points. The Maxwell equations are then solved on this
grid iteratively by approximating the spatial and temporal derivate using finite differ-
ences. A "leap frog" scheme is used for the propagation in time, in which the electric
field E at time t is calculated from its value at time t−Δt and the value of the magnetic
field H at a time t−Δt/2 and vice-versa for the calculation of the H field. The structure
of the Maxwell equations also implies that the electric(magnetic) field components
are calculated from magnetic(electric) field components on different grid points. The
most common spatio-temporal grid used for the numerical implementation of this
iterative calculation is the Yee grid[191].

In a 3D computation, the PhC slab cavity is defined by the dielectric function ε(r)

associated with each grid point. In contrast to the 2D method described in subsec-
tion 2.2.1, the 3D grid allows to compute the field components at any point of the
PhC slab and even above and under the slab. To avoid undesired reflexions at the
grid boundaries, the computational domain has to be large enough, or appropriate
boundary conditions implemented at the boundary. The simulation than consists in
applying a short pulse inside the cavity using one or several grid points as a source
of electromagnetic field, and iterating the Maxwell equation for a sufficient number
of time steps n so that only confined modes remain in the simulation. The Fourier
transform of a field component f(r, nΔt) then gives the frequency response f(r, ν) of
the system. Localized modes appear as strong peaks in the frequency spectrum. Their
losses can be obtained by measuring the peaks full width at half maximum (FWHM)
Δν, related to the quality factor by Q = ν/Δν. This method also allows to observe the
time evolution of a CM field pattern.

The code used in this thesis to perform 3D FDTD simulations was implemented on
the Matlab platform by Dr. K. F. Karlsson, using MUR absorbing boundary conditions
[192]. The source was either a grid point located near the center of the cavity and at
the center of the slab with an Hz field amplitude following a Gaussian modulated sin
function, or an ensemble of grid points with Hz amplitudes given by one of the CM Hz

field distribution computed using the 2D finite difference method.

2.2.3 L3 photonic crystal cavities

The simulation methods presented in subsections 2.2.1 and 2.2.2 were used to compute
the mode energies and electric field pattern of L3 PhC defect cavities. These cavities
are formed by removing three holes in a triangular PhC pattern, creating a linear defect
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Figure 2.9: (a) Schematic of a modified L3 PhC membrane cavity. (b) L3 CM energies computed
using a 2D finite-difference method. (c)-(e) Electric field and intensity spatial distributions
of the three lowest energy CMs M0, M1 and M2, calculated in the center of the slab using 3D
FDTD. (f) Ey field amplitude of the M0 as a function of the simulation iteration step in the
center of the PhC slab cavity. (g) Simulated energy spectrum of the M0 mode.
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capable of confining light. In this work we use a modified cavity design in which
the cavity side holes are shrunk and shifted as indicated in Fig. 2.9 (a) to increase
the light confinement. The TE mode distribution of an L3 cavity calculated using 2D
finite-differences for a PhC pitch a = 200 nm, hole diameter r = 110 nm and slab
thickness hslab = 265nm is shown in Fig. 2.9 (b). The closely spaced modes correspond
to delocalized modes belonging to the dielectric and air bands that define the limit
of the PhC band gap. The modes localized inside the cavity lie within the PhC band
gap. In this simulation, 5 CMs denoted M0, M1, ... ,M5 were identified. Note that the
number of confined mode can depend on the PhC parameters. The three lowest energy
modes electric field and intensity spatial distributions, calculated using 3D FDTD (3000
iterations), are summarized in Fig. 2.9 (c)-(e). The Ex and Ey fields correspond to the
projection of the electric field on the x and y directions. These field distributions are
taken at the center of the PhC slab for which only the Ex and Ey components of the
electric field are non-zero.

Fig. 2.9 (f) shows the evolution of the M0, Ey field amplitude as a function of the
number of 3D FDTD iteration steps. The losses of the cavity are responsible for the
slow decrease of |Ey| as the number of iteration steps increases. The Fourier transform
(FT) of the field amplitude temporal evolution yields the energy spectrum of the M0

mode shown in Fig. 2.9 (g). The theoretical Q factor, reflecting the radiation losses and
extracted by fitting the peak associated to the M0 resonant energy with a Lorantzien
function, is Q=30000.

The out of plane emission of the M0 CM is investigated in Fig. 2.10. Fig. 2.10 (a)
and (b) show the absolute value of the Ex and Ey electric fields above the PhC slab.
They correspond to the field profiles taken along the white dashed line indicated in
the figures insets. Both fields display evanescent tail above the slab, but they are
more pronounced for the Ey field. The far-field patterns of both components of the
electric field are shown in Fig. 2.16 (c) and (d). Their are obtained by calculating the
Fourier transform (FT) of the fields near-field pattern several nanometers (15 nm)
above the slab[193] (yellow line in Fig. 2.16 (a) and (b)). These far-field patterns
show the distribution of reciprocal space wavevectors k‖ = (kx, ky) for the Ex and
Ey fields. Large k‖-vectors corresponds to propagation directions below the light
cone (red circle) and lead to internal reflexions that confine the light inside the cavity.
k‖-vectors components inside the light cone, however lead to out of plane losses.
Although Fig. 2.16 (c) and (d) indicate the losses are low for the M0 modes, a finite
amount of photons escape the cavity. Part of this emission, corresponding to reciprocal
space components inside the white circle in Fig. 2.16 (c) and (d), is captured by the
microscope objective used to collect the light emitted from the sample. The ratio of
the Ey and Ex k‖-vectors components captured by the microscope objective is 0.98,
meaning that the far-off emission from the cavity is strongly polarized along the y

direction. In PL measurements, the cavity emission will be registered as a narrow peak
with a DOLP close to 1.
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2.3 Fabrication

The fabrication of site-controlled pyramidal QDs embedded in L3 PhC cavities is
a complex process that requires multiple fabrication steps and optimization runs
described in the following sections.

2.3.1 Quantum dot fabrication process

The fabrication of InGaAs/GaAs pyramidal QDs consists of two main steps: fabrication
of the patterned substrate and growth of the QD semiconductor layers.

Patterned substrate

To fabricate a regular, triangular array of inverted pyramids on the substrate, a 40 nm

thick SiO2 layer is deposited on a (111)B GaAs substrate by means of plasma-enhanced
chemical vapor deposition (PECVD), followed by a spin-coated 200nm thick poly(methyl
methacrylate) (PMMA) layer. Arrays of equilateral triangles are then written with
nanometer resolution on the PMMA layer using electron beam lithography (EBL). A
methyl isobutyl ketone (MIBK) solution is used to develop the exposed parts of the
PMMA and the triangular pattern is transferred onto the SiO2 mask using reactive ion
etching (RIE). Wet-chemical etching performed with a bromine-methanol solution
defines inverted pyramidal recesses on the GaAs substrate due to the anisotropic re-
moval of GaAs material through the SiO2 openings. The inverted pyramidal pits consist
of three {111}A gallium terminated planes. Using this process, homogeneous arrays
(typically 300 μm × 300 μm square arrays) of pyramidal pits with pyramid size spyr
(∼ 10 nm accuracy) and pitch p were fabricated. This fabrication steps are illustrated
in Fig. 2.11.

Quantum dot growth

QDs are grown inside the inverted pyramids by metalorganic chemical vapor depo-
sition (MOCVD). This growth method relies on vaporized metalorganic precursors,
for example trimethylgallium (TMGa) or trimethylindium (TMIn) , to carry the de-
sired semiconductor constituent to the substrate’s surface. The heated surface of the
substrate then induces a thermal decomposition of the precursor, realising the semi-
conductor adatoms and resulting in the epitaxial growth of crystalline semiconductor
layers[173].
The growth sequence starts with 5nm thick GaAs buffer layer, followed by an InxGa1−xAs

layer of thickness h = 0.2− 0.8 nm. The QD is then capped with a 2− 3 nm thick GaAs
layer leading to the planarization of the pyramid. All thicknesses refer to equivalent
growth on (100) unpatterned GaAs substrates and are considerably thicker for the
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(a)

(b)

(c)

(d)

(e)

(f)

PMMA
SiO2

GaAs

Figure 2.11: Illustration of the inverted pyramid arrays fabrication steps. (a) GaAs substrate
coated with SiO2 and PMMA. (b) Pattern inscription in PMMA using EBL and MIBK. (c) Pattern
transfer in SiO2 using RIE. (d) After removal of PMMA. (e) Wet-chemical etching of pyramid
pits using bromine-methanol. (f) After removal of SiO2.

actual structures. During the growth, either trimethylgallium or triethylgallium (TEGa)
precursors were used for the buffer and QD layer while TMGa precursor were used for
the cap layer[86]. The formation of the QD inside the pyramid is governed by several
mechanisms[194]. First, the precursors decompose predominantly on the {111}A facets,
limiting the growth on the (111)B surface. Secondly, the growth rate is more important
on the {111}A orientation than the (111)B orientation, such that the growth occurs
mostly inside the pyramid[195, 196]. Furthermore, the crystallographic plane are main-
tained during the growth, conserving the narrow tip and wedges of the pyramid[197].
Lastly, the adatoms, brought on the surface by the precursors, undergo a diffusion
process that leads to a build up of adatoms on the concave apex and wedges of the
pyramid caused by capillarity[198]. During the growth of the InGaAs layer, this results
in the formation of a QD at the apex of the pyramid and three QWRs along the pyramid
wedges[173]. Due to those growth mechanisms and the structural symmetry of the
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inverted pyramid the QD formed at the bottom of the pyramid is highly symmetric[199,
200]. The triangular symmetry in the growth plane translates in C3v symmetry for the
QD states[201], resulting in an isotropic polarization of the emission along the growth
direction. This growth procedure is illustrated in Fig. 2.12.

Cross 
section

Top view

GaAs

GaAs buffer layer QD GaAs cap layer

QWR(111)B

{111}A

{111}A

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.12: Illustration of the MOCVD QD growth steps in side view (a)-(d) and top view
(e)-(h).

This QD fabrication method offers several advantages. The QD nucleation process
is deterministic, ensuring that only one QD forms inside each pyramid. The QD
nucleation site fully determined by the position of the pyramid, which allows to control
the QD location on the substrate with a 5 nm accuracy. The growth of QDs on regular,
dense arrays of pyramids ensures a great reproducibility of MOCVD growth inside each
pyramid, resulting in a high uniformity of the QD optical properties. This leads to a
small inhomogeneous broadening of the QD array emission ranging from 6− 20meV .
Furthermore, the QD emission energy can be tailored by changing the thickness h or
indium composition x of the InGaAs layer. It is also important to note that the growth of
pyramidal QDs does not generate a 2D wetting layer, as it is the case for self-assembled
QDs, making it closer an ideal 0D system and removing spurious multi-excitonic
effects which can be detrimental to cavity quantum electrodynamics (cavity-QED)
experiments.
A more detailed description of the QD fabrication and growth can be found in reference
[173].

PL characterization of QD arrays

The optimization of the QD fabrication process requires multiple iterations between
growth and PL characterization to achieve the targeted QD wavelength, homogeneous
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broadening and excitonic linewidth. Fig. 2.13 shows the photoluminescence of QD
arrays after this optimization process. These measurements were performed using the
μ-PL setup described in section 2.1.2. Given the 1 μm diameter of the laser excitation
spot, approximately 20 QDs of the array are probed in this experiment. Fig. 2.13 (a)
shows the QD ensemble PL spectrum at low (P = 10 μW ) and high (P = 500 μW )
excitation powers. At low excitation powers, only the sum of the QDs s-state lumines-
cence is visible (1.4 eV ). For higher excitation powers, additional features appear in
the spectrum: the QD excited hole states emission at 1.41 eV , associated to an electron
in the lowest energy state of the conduction band and a hole in the first excited state of
the hole band[200, 201], the QDs p-state emission (1.445 eV ), the emission from the
three wedge QWRs (1.467 eV ), the emission from the carbon impurity incorporated in
the GaAs matrix (1.496 eV ) and the emission from the GaAs barriers (1.515 eV ). The
emission spectrum of the QDs s-states for two different QD growth runs is shown
in Fig. 2.13 (b) and (d). The ensemble emission is fitted by a Gaussian function to
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Figure 2.13: (a) PL spectra of a QD array for low (P = 10 μW ) and high (P = 500 μW ) excitation
powers. (b) and (d) PL spectrum of the s-state emission of a QD array grown on a "dummy"
GaAs substrate. Red line: Gaussian fit of the emission. Inset: Close-up of a single peak fitted
by a Lorentzian function (red dashed line). (e) PL spectrum of the s-state emission of a QD
array grown on a GaAs membrane substrate using the same growth parameters as in (d). (c)
Polarization resolved top-view emission of a QD array. The QDs presented in this figure were
grown with TMGa precursors.
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retrieve the inhomogeneous broadening of the QD array. It is important to note that
this inhomogeneous broadening of 15 and 19 meV is not related to the fluctuation
of only the neutral exciton, but also reflect the emission and fluctuations of charged
excitons and biexciton. The figures insets show a close up of one of the thin lines
corresponding to the emission of a single QD. Polarization resolved PL measurements
(Fig. 2.13 (c)), showing the QD ensemble integrated intensity versus the angle of the
half-wave plate (see section 2.1.2), show the isotropy of the QDs top view emission,
which is a result of the in-plane symmetry of the QDs.

Although the QD growth optimization is performed with GaAs "dummy" substrates,
the final step requires to grow the QDs on a GaAs membrane wafer in view of their
integration in PhC structures. These membrane wafers consist of a GaAs layer on top
of an AlGaAs sacrificial layer. Fig. 2.13 (e) shows the PL spectrum of a QD array grown
on a membrane substrate, with the same growth parameters used for the growth of
the QD array probed in Fig. 2.13 (d), illustrating that QD fabrication procedure can
be transferred to membrane substrates without any degradation of the QD emission.
The QD ensemble mean emission energy, however, is shifted by 35 meV . This shift
is the consequence of fluctuations from growth run to growth run in our system
(∼ 10meV ) combined with the different precursor and adatom mobilities on dummy
and membrane substrate surfaces which results in different effective growth rates. This
shows the need to recalibrate some of the growth parameters when going from dummy
to membrane GaAs substrates if controlling the absolute emission energy of the QDs is
essential.

Fig. 2.14 summarizes characteristics of the QD ensembles gathered during the opti-
mization process. Fig. 2.14 (a), (b) and (c) shows the QD ensemble center wavelength
(s-state emission) as a function of pyramid size spyr, QD layer nominal thickness h and
nominal indium mole fraction x. These results were gathered from 64 different growth
runs performed during a one year time-span. Although the dispersion is important,
due to long term variations of the MOCVD growth system, trends are visible, such as
the decrease of the QD energy with the increase of the indium mole fraction and the
increase of the QD layer thickness. Although these dependences are straightforward,
the increase of the QD energy with increasing pyramid size is less trivial. Indeed the
pyramid size influences the effective thickness of the QD in the growth direction. A
smaller pyramid size will lead to a thicker QD because of the growth rate at the apex of
the pyramid is influenced by the size of the {111}A facets[81]. The QD emission energy
also depends on the actual indium mole fraction in the InAs QD layer, which is subject
to important In-As segregation effects[202]. These graphs illustrate how the QD energy
can be tuned using these three parameters. Fig. 2.14 (d) shows the distribution of
linewidth of single QD lines measured for different QD arrays. The distribution peaks
at 80 μeV , which is the maximal resolution of our spectrometer, indicating a low defect
density in the vicinity of the QDs. Linewidth values as low as 40 μeV were measured
more recently using a higher resolution spectrometer. These numbers remain higher
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however than those obtained for self-assembled QDs (linewidth ∼ 10 μeV ).
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Figure 2.14: (a), (b) and (c) QD ensemble center energy as a function of pyramid size spyr, QD
layer thickness h and indium mole fraction x, respectively. (d) Distribution of FWHM measured
on single QD lines. Each point in (a)-(c) represents a different QD growth run. In total results
from 64 different growth runs performed during a one year time-span are presented here. The
QDs analysed here were grown with TEGa precursors.

2.3.2 QD integration in photonic crystal cavities

Cavity-QED experiment require to couple the emitter with the optical field of a cavity.
In this study, pyramidal QDs are embedded inside modified L3 PhC defect cavities.
These cavities have been widely used in QD-cavity experiments due to their small
mode volumes (V ∼ 0.1 μm3) which ensure a strong emitter-field interaction[44]. The
high quality factors obtained experimentally with L3 PhC cavities (Q ∼ 10000− 30000)
were used to reach the strong coupling regime and obtain high Purcell factors in QD-
cavity experiments[127, 140]. Self-assembled QDs are used in most QD-cavity coupling
experiments reported in the literature. Due to the random positioning of these QDs,
their alignment with the optical field of the cavity, which dictates the strength of the
QD-cavity interaction, can be a challenging task (see subsection 1.3.4). The fabrication
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method presented here ensures a near ideal positioning of the QD inside the cavity
and offers a scalability only achievable with site-controled QDs.

(a) (b)

Figure 2.15: (a) Illustration of the alignment of the PhC array on the pyramid array. (b)
Schematic of the pyramidal QD in the center of the PhC slab cavity.

The fabrication of the QD-cavity structures is done on a membrane substrate consisting
of a 265 nm thick GaAs layer on top of a 1 μm thick sacrificial AlGaAs layer. Prior to
the fabrication of the QDs, alignment marks are defined on the substrate using a
combination of EBL and inductively-coupled-plasma (ICP) etching. The QD arrays
are positioned on the sample using these alignment marks, with a 25 nm accuracy
(relative to the position of the alignment marks). After the QD growth (see subsection
2.3.1) the GaAs substrate is coated with SiO2 and PMMA resist. A triangular array of
circles, indicating the location of the PhC holes, with pitch a equal to exactly half the
pitch of the QD array (a = p/2) is written with EBL on the PMMA resist using the same
alignment marks used to write the pyramid arrays (Fig. 2.15 (a)). The pattern is then
transferred to the SiO2 mask using RIE. ICP is used to etch the PhC holes into the
GaAs layer before removing the AlGaAs sacrificial layer with a 4% HF : H2O solution,
releasing the GaAs PhC membrane.
Using the same alignment marks to write the QD and PhC pattern allows to position
the PhC array such that every QD is removed from the substrate during the ICP etching
of the PhC holes. By introducing a 3 hole defect in the PhC array, this procedure allows
to position a single QD in the center of an L3 cavity with an alignment accuracy better
than 50 nm (Fig. 2.15 (b)). A more detailed description of the integration of QD in L3

PhC cavities can be found in references [88, 173].

In these experiments, we are mainly interested in coupling the QD to the fundamental
mode M0 of the L3 cavity. This requires to match the QD emission energy to the M0

mode energy. Although in principle, a single PhC design with a target CM energy
matching the energy of the QD emission could be implemented, uncertainties on the
exact values of the system parameters after fabrication such as the hole diameter or slab
thickness could lead to an offset of the mode energy rendering the sample obsolete. To
avoid such a situation, series of PhC cavities with systematically-varied hole diameters
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Figure 2.16: (a) M0 mode energy calculated using 3D FDTD as a function r/a. The grey shaded
region corresponds to the inhomogeneous broadening of QD arrays. (b) and (c) Ey electric
field distribution along the z = 0 plane and y = 0 plane respectively. (d) Ey field amplitude
along the white dashed line indicated in (b). The green shaded region spans the possible QD
positions for a QD-cavity alignment accuracy of 50 nm.

are implemented on the sample. The expected dependence of the M0 mode energy on
the hole radius to pitch ratio (r/a) is shown in Fig. 2.16 (a). Furthermore, as mentioned
in subsection 2.3.1, the QD energy also fluctuates around the mean energy of the QD
array, characterized by a deviation of ∼ 15meV (indicated by the light grey region on
Fig. 2.16 (a)). Implementing series of r/a ratios on the sample thus also allows to span
the QD energy distribution.

Apart from spectral matching, spatial matching between the QD and CM field distri-
bution is necessary to efficiently couple the QD to the CM. Moreover, the QD-cavity
coupling strength is proportional to the scalar product between the QD dipole and
cavity electric field (see section 3.1.3 of chapter 3). Inspecting the spatial distributions
of the Ex and Ey component of the electric field (Fig. 2.9 (c)) shows that a QD located
at the center of the cavity can couple only with the Ey component of the field. Indeed,
the center of the cavity overlaps with a node of the Ex field distribution and a lobe
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of the Ey field distribution. Although the QD is nominally positioned in the center
of the cavity, the finite alignment accuracy of the fabrication process (< 50 nm) can
reduce the overlap with the electric field. Fig. 2.16 (d) shows the profile of the Ey field
along the white dashed line of Fig. 2.16 (b). The green shaded region indicates the
possible locations of a misaligned QD, showing that the overlap with the field remains
important. A QD with a 50 nm misalignment couples with 65% of the maximum field
amplitude. The profile of the Ey field along the y = 0 plane is presented in Fig. 2.16
(c). The position of the QD along this direction depends on the growth parameters
(mainly the GaAs buffer thickness and pyramid size) and can vary for different QD
arrays. Given the rather smooth profile of the field along the growth direction, the
uncertainty on the height of the QD should not strongly influence the coupling to the
CM.

The QD-cavity structures studied in chapters 4 and 5 were fabricated using the proce-
dure presented in this section. They belong to two different samples with parameters
summarized in table 2.1. These samples were fabricated by M. Calic, A. Lyasota and
co-workers.

Table 2.1: Summary of the fabrication parameters of the two samples studied in chapter 4 and
5. The thicknesses refer to equivalent growth on (100) unpatterned GaAs substrates.

Sample A Sample B
Pyramid size (spyr) [nm] 300 300
Pyramid pitch (p) [nm] 400 400

Growth parameters
Buffer thickness [nm] 4.3 4.1
InGaAs layer thickness [nm] 0.2 0.268
Induim mole fraction (x) 0.2 0.2
Cap thickness [nm] 2.5 2.5

PhC parameters
membrane thickness (hslab) [nm] 265 265
PhC pitch (a) [nm] 200 200

In some experiments, probing the optical modes of a system of cavities can be achieved
using light sources with broad spectral features. If the goal is not the study of the
interaction between a QD and a CM, but simply probing the optical modes of the
photonic structure, having a light source with a broader energy distribution relaxes
the spectral matching condition. This is the case in chapter 6 that deals with optical
modes of arrays of cavities. Site-controlled QWRs[203] are then embedded in the
coupled cavity structure, providing a broader (FWHM∼ 10meV ) light source capable
of exciting multiple optical modes of the structure. The fabrication of these structures
follows similar steps as those described here for QDs integrated in PhC cavities, and is
presented in subsection 6.1.1.
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2.3. Fabrication

Detuning dependent measurements

The PhC cavity structures fabricated on the samples are designed to obtain a spectral
match between the QD and CM resonant energies. However, due to fabrication related
fluctuations and uncertainties, this condition is often not met precisely in fabricated
structures. There is thus a need to be able to control the energy difference between
the QD and CM detuning. This would increase the number of useful structures on
the sample and allow the study of their optical properties as a function of QD-cavity
detuning.
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Figure 2.17: Calculated dependence of the CM and QD energy on the sample temperature.

The first method used to control the QD-cavity detuning relies on the different depen-
dences on temperature of the QD and CM energies. The energy of the CM depends
on the refractive index of the GaAs slab, which in turn is a function of the sample
temperature. The energy of the M0 mode is plotted as a function of temperature in Fig.
2.17. The energy was calculated using 2D finite differences for a = 200 nm, r = 110 nm

and hslab = 265 nm, and assuming the following dependence for the refractive index of
GaAs[204]

n(T ) =
√

a0 + a1T + a2T 2 +B (2.10)

with a0 = 5.96, a1 = 7.2 · 10−4 · K−1, a2 = −0.95 · 10−6 · K−2 and B = 6.3. This
dependence is to be compared with the variation of the QD energy with temperature.
Assuming the QD transition energy E(T ) can by approximated by E(T ) = E0−ΔEg(T )
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with E0 the low temperature QD energy and

ΔEg(T ) = −5.408 · 10−4 T 2

T + 204
(2.11)

the temperature dependent energy offset of the GaAs bandgap[205], the QD energy
varies with temperature as shown in Fig. 2.17 for E0 = 1.394 eV . This shows that the
CM and QD energies do not vary with the same rate as a function of temperature
which allows to bring a red-shifted CM in resonance with a QD transition by increasing
the sample temperature. Using this method, the QD-cavity energy detuning can be
tuned by at most 5meV (above 70K, the QD emission degrades, limiting the available
temperature range).

The second method relies on the condensation of water vapour on the sample’s surface.
Water deposited on the PhC slab and on the surface of the PhC holes reduces the
confinement of the CM electric field which in turn reduces the mode energy. This
condensation occurs during the cool-down of the sample prior to the PL experiment.
Before cooling down the sample using liquid helium, the pressure inside the cryostat
is 10−6 mbar. Once the the sample temperature reaches 10 K, the sample acts as a
cryogenic pump that causes the residual gas molecules to condense on its surface,
forming a thin dielectric layer, and the pressure inside the cryostat drops to 10−7 mbar.
Similar techniques involving condensation of gases such as Xenon[206] have been used
to tune the CM energy, achieving shifts up to 5meV . Using water vapour condensation,
we observed redshifts of the CM energy as large as 20 meV . The drawback of this
method is the irreversibility of the energy shifts (the sample has to be heated up to
remove the condensation) and, in our case, the lack of fine tuning.

2.3.3 QD isolation using mesas

We present here a fabrication method used for isolating a single pyramidal QD out of
an array of QDs. This method does not rely on the implementation of PhC patterns, as
it was the case in subsection 2.3.2, but instead makes use of mesa structures to isolate
the QDs.

The fabrication process starts with a grown QD array (see section 2.3.1) coated with a
Hydrogen silsesquioxane (HSQ) negative resist (thickness ∼ 120 nm). A circle is then
written using EBL on top of a single QD. A Microposit MF-CD26 solution is used to
develop the unexposed parts of the HSQ resist, leaving a hard mask layer on top of the
designated QD. A 200 nm thick layer of the unprotected GaAs surface is then removed
using ICP etching, leaving a single mesa with a diameter of approximately 500 nm

incorporating the QD. The fabrication steps are illustrated in Fig. 2.3.3 (a)-(e). An SEM
image of a fabricated mesa is shown in Fig. 2.18 (f).
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These QDs, isolated using mesa structures, were used in PL experiments discussed in
section 4.2.

200 nm

GaAs

HSQ Planarized pyramid pit 

mesa

SEM

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.18: Illustration of fabrication process used to isolated pyramidal QDs using mesas. (a)
and (b) GaAs substrate coated with HSQ. (c) EBL writing of the HSQ resist. (d) Development of
the HSQ negative resist. (e) After ICP etching. (f) SEM image of mesa incorporating a single
pyramidal QD. Courtesy of Dr. Kulkova.

2.4 Chapter summary

In this chapter we presented the basics of photoluminescence measurements and
the optical setups that were used to perform μ-PL measurements, photon-correlation
measurements and time-resolved PL measurements. The modeling tools used to
calculate the electric field patterns and mode distributions of PhC structures were
described. We explained the fabrication process of site-controlled pyramidal QDs
and presented PL measurements of QD ensembles. Finally, we briefly presented the
fabrication steps involved in the integration of pyramidal QDs in PhC cavities and
mesa structures.
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3 Cavity quantum electrodynamics
with semiconductor quantum dots

Semiconductor quantum dots (QDs) coupled to nanocavities provide a promising
platform to study cavity quantum electrodynamics (cavity-QED) in a solid-state en-
vironment. As already mentioned in chapter 1, experimental studies of QD-cavity
coupling have brought to light new interesting phenomena not observed in atom-
cavity systems. In particular the pronounced cavity mode (CM) emission persisting
for large QD-cavity detunings was puzzling at first[148]. It soon became apparent that
the simplistic picture of a QD behaving like a perfect two-level atomic transition was
not sufficient to explain these observation. On the one hand, the QD is subject to
decoherence induced by the solid-state environment. As explained in chapter 1, the
main sources of decoherence come from the interaction of the QD with the crystal
fluctuating electrostatic environment[74, 90] and phonon vibrations[102, 162]. On the
other hand, the self-assembled QDs used in most QD-cavity experiments present com-
plex electronic properties. The interaction of the QD localized states with delocalized
2D wetting layers states leads to a background emission[154, 155] that complicates the
interpretation of cavity-QED experiments, leading for example to a far-off resonant
cavity feeding[153]. This effect, intrinsic to self-assembled QDs, can overshadow the
previously mentioned decoherence effects, preventing a quantitative analysis of their
impact on QD-cavity coupling.

In this context, comparing experimental results to theoretical modeling of QD-cavity
systems can be difficult. For pyramidal QDs, the absence of 2D wetting layer states
simplifies the picture, bringing them closer to two-level system (TLS) like emitters.
Modeling these QDs as two-level systems interacting with the semiconductor environ-
ment, as proposed in several theoretical studies[98, 100, 115, 164, 166], should then be
sufficient to interpret the experimental measurements. In this chapter, we review in
section 3.1 the well known Jaynes-Cummings model used to describe the interaction
of a TLS with a CM. Section 3.2 presents the open Jaynes-Cummings model that was
initially used to model the behavior of an atom with a leaky cavity. In section 3.3, we
show how the open Jaynes-Cummings model is usually extended in the literature to

61



Chapter 3. Cavity quantum electrodynamics with semiconductor quantum dots

describe a realistic QD interacting with its environment. Finally, in section 3.4, we
present the theoretical model used in this work to compute the photoluminescence
spectra of pyramidal QDs coupled to L3 PhC cavities in the presence of solid-state
decoherence mechanisms.

3.1 Jaynes-Cummings model

The Jaynes-Cummings model was initially proposed by Jaynes and Cummings in
1963[207] to describe the interaction between a TLS and a quantized single mode
radiation field. This model introduces three Hamiltonians that describe the TLS, the
quantized electric field and the interaction between the TLS and the electric field. The
TLS system Hamiltonian can be used to describe an atom inside an optical cavity when
the quantized intra-cavity field is resonant with a single atomic transition. Hence, the
Jaynes-Cummings model has been widely used as a tool to understand the physics
behind atom-cavity experiments[20, 208]. Given the similar spectral characteristics of
atoms and QDs, this model has also been used more recently, to understand cavity-
QED experiments performed with semiconductor QDs[69, 160, 209].
Derivation of the Jaynes-Cummings model can be found in most quantum optics
textbooks (see for example references [210, 211]).

3.1.1 Two-level system Hamiltonian

We consider a TLS with a ground state level |g〉 of energy Eg and a excited-state level
|e〉 of energy Ee (see Fig. 3.1). In the context of QD cavity-QED the two-level system
models a simplified QD, where the ground state represents an unoccupied QD and the
excited state a QD populated with an exciton as illustrated in Fig. 3.1. The Hamiltonian
of this TLS is

Ĥ0 = Eg|g〉〈g|+ Ee|e〉〈e|. (3.1)

Expressed as a function of Pauli matrices, the Hamiltonian becomes

Ĥ0 = Egσ̂−σ̂+ + Eeσ̂+σ̂− = Eg�̂+ (Ee − Eg)σ̂+σ̂−. (3.2)

where σ̂+ and σ̂− are the creation and annihilation operators of the TLS system, with
σ̂+ |g〉 = |e〉 and σ̂− |e〉 = |g〉. The first term can be ignored because the choice of zero
energy is arbitrary, giving

Ĥ0 = h̄ω0σ̂+σ̂− (3.3)
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3.1. Jaynes-Cummings model

where h̄ω0 = Ee − Eg is the energy difference between the excited and ground state
levels.

Figure 3.1: TLS with ground state level |g〉 of energy Eg and a excited-state level |e〉 of energy
Ee (h̄ω0 = Ee − Eg). Next to the ground and excited levels, the corresponding QD state is
illustrated in a picture where the TLS represents a simplified QD.

3.1.2 Theoretical description of a cavity mode

A quantized electromagnetic field with a single mode is described by the harmonic
oscillator Hamiltonian

Ĥrad =
1

2
(p̂2 + ωcq̂

2) (3.4)

with ωc the harmonic oscillator frequency. q̂ and p̂ are the coordinate and momen-
tum operators respectively, obeing the canonical commutation [q̂, p̂] = ih̄�̂. After
introducing the creation and annihilation operators for the cavity photons

â =
ωcq̂ + ip̂√

2h̄ωc
and â† =

ωcq̂ − ip̂√
2h̄ωc

(3.5)

the Hamiltonian reads

Ĥrad = h̄ωc(â
†â+

1

2
) = h̄ωc(n̂+

1

2
) (3.6)
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where n̂ is the number operator. When applied to the Fock state |n〉, the operators â†

and â raise and lower the occupation number by 1

â† |n〉 =
√
n+ 1 |n+ 1〉 (3.7)

â |n〉 =
√
n |n− 1〉 . (3.8)

The term h̄ωc
1
2 in (3.6), associated with the vacuum state (n = 0) and often called

"vaccum field energy", will be neglected in the rest of this chapter because the average
of the electric field in this state is null. The variance of the field in the vacuum state
however is finite and corresponds to vacuum field fluctuations which are responsible
for the spontaneous emission of atoms.
The Hamiltonian Ĥrad = h̄ωcâ

†â will be used to describe the single mode intra-cavity
electric field with energy h̄ωc of a TLS-cavity system.

3.1.3 Hamiltonian of the coupled system

The Jaynes-Cummings model uses the particle-radiation interaction Hamiltonian
under the dipole approximation which reads

Ĥint = −d̂ · ê(r) (3.9)

with

d̂ = μ(σ̂+ + σ̂−) and ê(r) = −ε

√
h̄ωc

2V
ψ(r)(â† + â) (3.10)

where d̂ is the TLS dipole operator and ê(r) is the electric field operator. μ = q 〈e| r |g〉
is the dipole matrix element with q = −e the charge of an electron and ε is the field
polarization vector at the location of the TLS. ψ(r) is the normalized electric field
spatial function given by

ψ(r) =
|E(r)|√

ε(rm)|E(rm)|2 (3.11)

with E(r) the classical electric field at the position of the TLS, ε(r) the dielectric con-
stant of the medium and rm the position of the maximum field intensity. The effective
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3.1. Jaynes-Cummings model

mode volume V is defined as

V =

∫
ε(r)ψ(r)2d3r, (3.12)

with ψ(r) the field spatial function. The dipole approximation is valid when the dis-
placement of the charges interacting with the field is much smaller than the radiation
wavelength. By substituting the expressions of d̂ and ê(r) in (3.9), we get

Ĥint = μ · ε
√

h̄ωc

2V
ψ(r)(â† + â)(σ̂+ + σ̂−) (3.13)

⇒ Ĥint = h̄g(â†σ̂− + âσ̂+ + â†σ̂+ + âσ̂−) (3.14)

with

g = μ · ε
√

ωc

2h̄V
ψ(r) (3.15)

the TLS-field coupling strength. The coupling strength depends on the alignment of
the TLS dipole and electric field polarization, the spatial positioning of the TLS with
respect to the field spatial distribution and the field mode volume.

In a situation where the TLS and electric field mode energies are similar (near-resonance),
the last two terms of (3.14) oscillate much faster then the first two terms. Neglecting
these last to terms is called the rotating wave approximation (RWA) and is equivalent
to keeping only the terms conserving the number excitations in the Hamiltonian. In
the RWA, the Jaynes-Cummings interaction Hamiltonian reads

Ĥint = h̄g(â†σ̂− + âσ̂+). (3.16)

The total Hamiltonian of the system is then

Ĥtot = Ĥ0 + Ĥrad + Ĥint = h̄ω0σ̂+σ̂− + h̄ωcâ
†â+ h̄g(â†σ̂− + âσ̂+). (3.17)
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Uncoupled Hamiltonian
The eigenstates of the uncoupled Hamiltonian (g=0) are the uncoupled states |i, n〉 =
|i〉 ⊗ |n〉 with i = e, g and n = 0, 1, 2, . . . . Their eigenenergies are

(Ĥ0 + Ĥrad) |g, n〉 = h̄nωc |g, n〉 (3.18)

(Ĥ0 + Ĥrad) |e, n〉 = h̄(ω0 + nωc) |e, n〉 . (3.19)

Sinceω0 ≈ ωc, the eigenenergies are arranged in closely spaced doubletsDn : {|g, n〉 , |e, n− 1〉}
separated by h̄δ = h̄(ω0 − ωc). Successive doublets are separated by h̄ω0 as illustrated
in Fig. 3.2 (a).

Energy
(a) (b)

Figure 3.2: Energy levels for the uncoupled (a) and coupled Jaynes-Cummings Hamiltonian.
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Coupled Hamiltonian
If we now consider the interaction Hamiltonian, we see that its matrix elements in the
|i, n〉 = |i〉 ⊗ |n〉 basis consist of

〈i, n| Ĥin |i′, n′〉 = h̄g(〈i, n| â†σ̂− |i′, n′〉+ 〈i, n| âσ̂+ |i′, n′〉) (3.20)

which only couples the states inside a subspace Dn, which tells us the total Hamilto-
nian can be diagonalised separately in each subspace Dn. In the subspace Dn, the
Hamiltonian can be written in matrix form

Ĥtot = h̄

[
nωc g

√
n

g
√
n δ + nωc

]
. (3.21)

The corresponding eigenvalues are

En
± = h̄nωc + h̄

δ

2
± h̄

2
Rn (3.22)

with Rn =
√
δ2 + 4g2n the generalized Rabi frequency. The corresponding eigenstates

are

|+, n〉 = cos(θn) |g, n〉+ sin(θn) |e, n− 1〉 (3.23)

|−, n〉 = − sin(θn) |g, n〉+ cos(θn) |e, n− 1〉 (3.24)

with tan(2θn) = −2g
√
n

δ . These eigenstates are often called the dressed states of the
system, while the eigenstates of the uncoupled system are called bare states. It is inter-
esting to note that when |δ| → ∞, θn tends to 0 or π

2 and the two dressed eigenstates
tend to the bare states |g, n〉 and |e, n− 1〉. In the special case ω0 = ωc, the eigenstates
become

|±, n; δ = 0〉 =
1√
2
(± |g, n〉+ |e, n− 1〉) (3.25)

with eigenenergies En
±,δ=0 = h̄nωc ± h̄g

√
n. The dressed states are thus split by h̄2g

√
n

as depicted in Fig. 3.2 (b), which means the energy separation of the state doublets
increases with

√
n. This nonlinear scaling of the energy separation is a quantum effect

not observed for two classical coupled oscillators. When only one excitation is present
in the system (n = 1), the eigenstates are split by h̄2g which is called the vacuum Rabi
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splitting.

3.2 Open-system Jaynes-Cummings model

Up to now we have considered a closed quantum TLS-cavity system that does not
interact with the environment. A more realistic description of QD-cavity systems
requires to take into account the spontaneous emission of the QD exciton and the
radiation losses of the CM. These relaxation processes can be seen as an interaction
between the TLS and cavity quantum systems with large reservoirs consisting of an
ensemble of harmonic oscillators with which a continuum of Bohr frequencies is
associated. This defines a new system comprised of open TLS and cavity quantum
systems interacting with large reservoirs, governed by the Hamiltonian[212]

ĤOS+R = ĤOS + ĤR + ĤOS,R (3.26)

with ĤOS the open system Hamiltonian, ĤR the Hamiltonian of the reservoir and
ĤOS,R the interaction Hamiltonian between the open system and the reservoir. In
contrast to a closed system, this new system can only be described by a density matrix
ρ̂, for which the time evolution is described by the von-Neumann master equation[213]

dρ̂

dt
= − i

h̄
[ĤOS+R, ρ̂]. (3.27)

This problem can be solved for the reduced density matrix ρ̂r = trR{ρ̂} with the
following assumptions

- on a time scale Δt, the coupling between the open system and the reservoir
is assumed small enough to comply with 2nd order perturbation theory (Born
approximation).

- a coarse grain derivative for the density matrix dρ̂
dt ≈ ρ̂(t)−ρ̂(t0)

t−t0
can be used, with

Δt = t − t0, because Δt is supposed to be long compared to the correlation
variables of the phonon bath and the density matrix does not change significantly
on that time scale because of the weak system-reservoir coupling hypothesis.

- the phonon bath is assumed to be Markovian on a time scale Δt (the memory
effect of the reservoir are neglected).
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These approximations give the master equation in the Lindblad form[214]

˙̂ρr = − i

h̄
[Ĥtot, ρ̂r]− 1

2

{∑
l

L̂†
l L̂l, ρ̂r

}
+
∑
l

L̂lρ̂rL̂
†
l (3.28)

where the first term describes the coherent part of the dynamic. The second and
third terms account for the incoherent relaxation processes expressed by the Lindblad
operators L̂l. The spontaneous emission of the TLS at rate γ is given by the operator

L̂γ =
√
γσ̂− (3.29)

and the cavity losses at rate κ are described by the operator

L̂κ =
√
κâ. (3.30)

By restricting ourselves to the subset {|g, 0〉 , |e, 0〉 , |e, 1〉}, which is valid in the limit of
weak excitation of the system, it is possible to compute the eigenvalues of the system
given by

Ω± = ωc − i
1

2

κ+ γ

2
±

√√√√g2 −
(
κ− γ

4

)2

. (3.31)

with δ = 0. Depending on the relative weight of the parameters g, κ and γ, the above
expression leads to the definition of strong and weak coupling.

3.2.1 Strong coupling

The strong coupling regime is reached when the TLS-cavity coupling strength is greater
than any losses of the system (g � κ, γ). This implies that the term under the square
root of (3.31) is positive and the system spectrum consists of two peaks with frequencies

Re(Ω±) = ωc ±

√√√√g2 −
(
κ− γ

4

)2

(3.32)

split in frequency by 2

√√√√g2 −
(

κ−γ
4

)2

and broadened by κ+γ
2 . This result is similar to

what was obtained for a closed system: the two lines correspond to new states which
are entangled states of the TLS and electric field. This situation is illustrated in Fig.
3.3 for the parameters h̄γ = 0.6 μeV (1 ns lifetime), h̄κ = 70 μeV and h̄g = 200 μeV .
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Fig. 3.3 (a) shows the computed power spectrum1 of the TLS, consisting of two peaks
separated by 2h̄g = 400 μeV . The FWHM of each peak is equal to the average of the
TLS and cavity linewidths. Fig. 3.3 (b) shows the time evolution of the TLS and cavity
occupation numbers when the system is initially in the state |e, 0〉. Since the losses are
much weaker than the coupling strength, the excitation oscillates coherently between
the TLS and the cavity field at a frequency given by the Rabi frequency Rn. These
oscillations are called Rabi oscillations. The oscillations are damped due to the finite
losses of the system.
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Figure 3.3: Example of a strongly coupled TLS-cavity system (a) TLS power spectrum. (b)
Time evolution of the TLS (blue) and cavity (green) occupation numbers with the system is
initially in the state |e, 0〉. Parameters: h̄γ = 0.6 μeV (1ns), h̄κ = 70 μeV and h̄g = 200 μeV .

3.2.2 Weak coupling

When the losses are much greater than the TLS-cavity coupling strength (κ � g),
the system is in the weak coupling regime. In that case, the term under the square
root of (3.31) is negative, which implies the two peaks of the spectrum have the same
frequency ωc, but a damping (imaginary part of the frequency) given by

D± =
1

2

(
κ+ γ

2
∓
√

(κ+ γ)2

4
− 4g2

)
=

Γ±
2
. (3.33)

In this regime the spectrum consists of the superposition of two peaks broadened by
Γ±. In the special case (κ � γ) which constitutes the "bad cavity" regime, the new

1The power spectrum and occupation number shown in Fig. 3.3 are obtained by solving the master
equation using a numerical solver[215]. The TLS power spectrum is defined as the Fourier transform
of the correlation function 〈σ̂+(t)σ(0)〉. The simulation of the power spectrum required to add a small
incoherent pumping of the TLS with the Lindblad operator L̂P =

√
P σ̂+ (P � κ, γ).
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decay rates associated with the damping simplify to

Γcav ≡ Γ+ = κ (3.34)

ΓTLS ≡ Γ− =
4g2

κ
. (3.35)

The peak associated with the cavity retains the decay rate of the cavity, while the second
peak, associated with the TLS has a modified decay rate. This modified decay rate
can be compared to the spontaneous emission rate of the same emitter placed in an
homogeneous medium without the effect of the cavity given by

Γ0 =
nμ2ω3

0

3πh̄ε0c3
. (3.36)

The ratio ΓTLS/Γ0 gives the Purcell factor, using the value of g given by (3.15)

FP ≡ ΓTLS

Γ0
=

3

4π2

(
λ

n

)3
Q

V
(3.37)

with Q = ωc/κ the cavity quality factor and λ the wavelength associated with the TLS
transition. For most systems, FP > 1 and the Purcell factor quantifies the increase of
the TLS emission rate under the influence of the interacting cavity field. This translates
the fact that the spontaneous emission of an emitter is proportional to the density
of electromagnetic states of its environment, which is modified here by placing the
emitter inside a cavity. This situation is illustrated in Fig. 3.4 for the parameters
h̄γ = 0.6 μeV (1ns lifetime), h̄κ = 700 μeV (Q = 2000) and h̄g = 50 μeV . The modified
decay rate of the TLS emission reflects in the simulated power spectrum shown in Fig.
3.4 (a) which has a FWHM of h̄4g2

κ = 14μeV , different from the linewidth h̄γ expected
for g = 0. Fig. 3.4 (b) shows the time evolution of the TLS and CM occupation numbers.
In contrast to the strong coupling regime (Fig. 3.3 (b)), no Rabi oscillations are visible.
The weak coupling regime corresponds to an overdamping of the Rabi oscillations
caused by the important losses of the cavity. The TLS population decays exponentially
with characteristic decay time of 46 ps. The decay time is drastically reduced when
compared to the 2π/γ = 1 ns decay time of the TLS for g = 0. The ratio of the decay
time corresponds to the Purcell factor FP = 4g2

κγ = 24 for these parameters.

Note that the Purcell factor was calculated for a TLS positioned at the maximum of
the field (r = rm), with a dipole moment collinear with the field polarization vector
(μ · ε = 1) and in resonance with the CM (δ = 0). The general Purcell factor expressed
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Figure 3.4: Example of a weakly coupled TLS-cavity system (a) TLS power spectrum. (b) Time
evolution of the TLS (blue) and cavity (green) occupation numbers with the system is initially
in the state |e, 0〉. Parameters: h̄γ = 0.6 μeV (1ns), h̄κ = 700 μeV (Q = 2000) and h̄g = 50 μeV .

as a function of detuning is[181]

FP (δ) =
3

4π2

(
λ

n

)3
Q

V
ψ(r)2

(μ · ε)2
|μ|2

κ2

4δ2 + κ2
. (3.38)

The Purcell factor is thus expected to be smaller if the QD is not positioned at the
maximum of the electric field or if its dipole moment is not collinear with the field
polarization vector. As a function of detuning, the Purcell factor follows a Lorentzian
function with a FWHM given by κ/2.

3.3 Modeling semiconductor dephasing effects

In the previous section, relaxation processes were added to the description of the TLS-
cavity system to account for the losses experienced by a "real" emitter-cavity system,
i.e., spontaneous emission of the emitter and radiation losses of the CM. This model
would be sufficient to describe the dynamics and spectral features of an isolated atom
coupled to an optical cavity. When the emitter is a semiconductor QD exciton, however,
additional interaction processes with the environment have to be taken into account.
As explained in chapter 1, semiconductor QD excitons interact with the surrounding
crystal lattice leading to additional incoherent processes: spectral diffusion of the QD
which leads to pure dephasing and the interaction of the QD excitons with crystal
lattice vibration leading to phonon-assisted mechanisms.
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3.3.1 Pure dephasing

The interaction of the QD exciton with the fluctuating electric field generated by
randomly trapped charges in defects located in the vicinity of the QD leads to energy
shifts of the exciton transition[93]. When the energy shifts are weak and occur at a
rate slower than the exciton emission rate, they lead to spectral diffusion which is
manifested by spectral jumps of the emission peak following a Gaussian distribution.
However when the exciton energy shifts occur at a faster rate than the exciton emission
rate, spectral jumps are inhibited and the broadening become homogeneous, following
a Lorentzian distribution[90, 216]. This last process is indicated to be predominant
for InGaAs QDs[93, 217] and can be effectively modeled by adding a pure dephasing
Lindblad term to the master equation of the TLS-cavity system[99]

L̂d =

√
γd
4
σ̂z (3.39)

with γd the pure dephasing rate and σ̂z = 2σ̂+σ̂− − 1. In contrast to relaxation terms,
this dephasing term does not modify the population of the TLS but provides time-
dependent perturbations to the eigenstates of the system, causing the phase relation
of the two-level system states to become uncorrelated[218]. This additional Lindblad
term causes a broadening of the TLS spectral feature by γd.

3.3.2 Phonon cavity feeding

The QD exciton also interacts with phonon lattice vibrations. This interaction has
been shown to introduce phonon sidebands such that the emission features of QDs
deviate from a Lorentzian shaped peak[102, 107]. The sidebands originate from QD
dephasing induced by the interaction of the exciton electrons and holes with phonons.
These phonon sidebands, unique to semiconductor QDs, were shown to increase the
detuning range for which coupling occurs between QDs and CM: the energy mismatch
between the exciton and the CM can be compensated by the absorption or emission
of a phonon, resulting in a transfer of excitation from the exciton to the cavity mode
field[115, 165]. This process is known as off-resonant phonon cavity feeding and can
be included in the TLS-cavity model by adding another Lindblad term[219]

L̂ph =
√
Γphσ̂−â† (3.40)

with Γph the phonon-scattering rate. This expression neglects back-scattering (the
absorption of a cavity photon by the TLS mediated by the phonons) which is valid in
the bad cavity regime. The physics of the exciton-phonon interaction is then included
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in the phonon scattering rate which is a function of the detuning δ and the temperature
T . It can be expressed using Fermi’s Golden rule[164] as

Γph(δ) =
2π

h̄2

(
g

δ

)2

D(δ) (3.41)

with D(Ω) the effective phonon density of states that includes the information of about
the phonon modes interacting with the TLS. We assume the QD interacts only with
longitude acoustic (LA) phonons and we neglect the contribution of longitude optical
(LO) phonons because of their large energies (∼ 37meV )[166]. The effective phonon
density of states[166] is given by

D(Ω) = π
∑
k

|Mk|2[n(ωk)δ(Ω + ωk) + (n(ωk) + 1)δ(Ω− ωk)] (3.42)

where the TLS is assumed to interact with a continuum of phonon modes, k denoting
the kth phonon mode. n(ωk) = [exp(h̄ωk/kBT )− 1]−1 is the Bose-Einstein distribution
and Mk is the electron-phonon interaction matrix element[166] written

Mk =

√
h̄k

2ρcsV
D

∫
d3r|φ(r)|2e−ik·r. (3.43)

Here D = De −Dg is the difference of the TLS excited and ground state deformation
potentials, V is the phonon quantization volume, cs is the speed of sound in the
material and ρ is the mass density. We assume here the same Gaussian wave function
for the ground and excited states, i.e., for a confined electron in the valance and
conduction bands, given by

φ(r) =
1√

π
3
2 l2lz

e−(x2+y2)/2l2e−z2/2l2z . (3.44)

with l the confinement length of the electrons in the (x, y) plane and lz their con-
finement length in the z direction. This anisotropic confinement is consistent with
site-controlled pyramidal QDs that exhibit a stronger confinement in the growth direc-
tion (z direction). By combining expressions (3.42), (3.43) and (3.44) we computed the
following expression for the effective phonon density of states (see appendix A.1 for
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details)

D(Ω) =
h̄D2

16ρc4s
√
π
Ω2[n(Ω)− n(−Ω) + 1]e−Ω2l2/2c2s

erf[ Ωcs

√
l2z−l2

2 ]√
l2z−l2

2

(3.45)

which finally gives for the phonon scattering rate

Γph =
2π

h̄2
Ag2[n(δ)− n(−δ) + 1]e−δ2l2/2c2s

erf[ δcs

√
l2z−l2

2 ]√
l2z−l2

2

(3.46)

with A = h̄D2

16ρc4s
√
π
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Figure 3.5: Effective phonon density of states for different temperatures (a), in-plane (b) and
out-of-plane (c) confinement lengths. (d) Phonon scattering rate calculated for different
temperatures. Parameters: cs = 5110m/s, D = −10 eV and ρ = 5370Kg/m3.
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The behaviour of the phonon density of states and phonon scattering rate with de-
tuning is illustrated in Fig. 3.5 using realistic parameters for InAs/GaAs QDs[220]:
cs = 5110m/s, D = −10 eV and ρ = 5370Kg/m3. Fig. 3.5 shows the effective phonon
density dependence on detuning for different temperatures and confinement lengths.
The asymmetry of the phonon scattering process, with respect to detuning, is visible
and more pronounced for low temperatures. For low temperatures, the phonon bath
is less populated, which renders the emission of a phonon (δ = ω0 − ωc > 0) during
the interaction process more efficient than the absorption of a phonon (δ < 0). The
phonon density of state is null for δ < 0 at T = 0K because the phonon bath is not
populated. When the temperature is increased, this asymmetry is quenched due to
the thermal excitation of phonons. The effective density exhibits two peaks centered
on ∼ ±2meV , indicating that phonons with an energy around 2meV interact more
significantly with the QD exciton. The effective phonon density of state was measured
in a recent experimental and theoretical study[131]. Fig. 3.5 (b) and (c) show that
the energy associated with the peaks of D(δ) is inversely proportional to the exciton
confinement length. In fact it can be estimated by 2h̄cs/l ∼ 1.7 for l = 4nm[102]. The
phonon scattering rate Γph is displayed in Fig. 3.5 (d) for different temperatures.

3.4 Simulating photoluminescence spectra

Now that we have a master equation in the Lindblad form describing the dynamics of
a cavity coupled to a TLS undergoing pure dephasing and phonon scattering, we apply
it to our system comprising of a single pyramidal QDs coupled to the fundamental
mode of an L3 photonic crystal cavity illustrated in Fig. 3.6 (the fabrication of these
QD-cavity structures is detailed in chapter 2 and the photoluminescence experiments
presented in chapter 5). This requires several assumptions listed bellow

V

H

0.5
1

0

QD

Figure 3.6: Schematic of the experimental QD-cavity system.

• Since the higher order mode of the L3 cavity are separated by more than 80meV ,
when δ ∼ 1− 3meV , we can approximate the L3 cavity by a single mode cavity
described by the Hamiltonian given by Hrad.
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3.4. Simulating photoluminescence spectra

• We assume the site-controlled pyramidal QD to be perfectly aligned with the
PhC pattern, such that the QD exciton is located at the center of the cavity:
E(r) = E(rm) and ε collinear with the V direction.

• Given the high in-plane symmetry of pyramidal QDs[221], the two QD exciton
bright eigenstate are degenerate leading to a superposition of right and left
circular polarization[222, 223]. This leads to a random orientation of the exciton
dipole which gives

gθ ≡ g = cos(θ)μ

√
ωc

2h̄ε(rm)V
= cos(θ)g0 (3.47)

where θ is the angle between the V direction, with θ ∈ [0, 2π]. This random dipole
approximation was shown to be in good agreement with experiments[47].

• In the experiments the QD is excited by a cw-laser pump with an energy greater
than the GaAs bandgap. This incoherent pumping is described by the Lindblad
term

L̂P =
√
Pσ̂+ (3.48)

with P the incoherent pumping rate.

We summarize below the master equation of the system:

˙̂ρr = − i

h̄
[Ĥθ

tot, ρ̂r]−
1

2

{∑
l

L̂†
l L̂l, ρ̂r

}
+
∑
l

L̂lρ̂rL̂
†
l (3.49)

with

Ĥθ
tot = h̄ω0σ̂+σ̂− + h̄ωcâ

†â+ h̄ cos(θ)g0(â
†σ̂− + âσ̂+) (3.50)

and the Lindblad operators L̂γ , L̂κ, L̂d, L̂ph and L̂P given by (3.29), (3.30), (3.39), (3.40)
and (3.48) respectively. A schematic of the model is given in Fig. 3.7 (a).

The master equation is solved numerically, through the Wiener-Khintchine theo-
rem[215], yielding the steady-state power spectra for the TLS (Sθ

TLS) and cavity mode
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Figure 3.7: Model of QD-cavity interactions: (a) Schematic of the model describing the TS-
cavity system. The decay rates of the two TLS and the cavity mode are γ and κ respectively. The
coupling strength between the TLS and the CM is g0. The TLS pure dephasing rate is γd and the
phonon scattering rate Γph. (b) Computed PL spectrum Ntotal, NV

TLS , NH
TLS and Ncav (see text

for parameter values). (c) PL spectra with the same simulation parameters as in (b), with (solid
line) and without (dashed line) TLS-phonon interaction.(d) Computed PL spectrum linearly
resolved in polarization along the directions indicated in Fig. 3.6 (same simulation parameters
as in (b).

(Sθ
cav) emissions:

Sθ
TLS(ω) =

∫ ∞

−∞
lim
t→∞〈σ̂+(t+ τ)σ̂−(t)〉e−iωtdτ (3.51)

Sθ
cav(ω) =

∫ ∞

−∞
lim
t→∞〈â†(t+ τ)â(t)〉e−iωtdτ. (3.52)

Following Auffèves et al.[224], we computed the following quantities

N θ
TLS(ω) = |Fat|2γSθ

TLS(ω) (3.53)

and

N θ
cav(ω) = |Fcav|2κSθ

cav(ω). (3.54)
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3.4. Simulating photoluminescence spectra

that correspond to the QD exciton and CM spectra. The geometry of PhC systems
prevents the straight-forward separation of the QD and cavity contributions in the PL
spectrum since the sum of the QD and CM emission is collected by the microscope ob-
jective placed above the PhC. Furthermore, it is interesting to compare the simulations
to spectra resolved in linear polarization along the V and H directions, which leads to
the following definition of the V and H components of the simulated spectra

NV
total(ω) =

∑
θ

[N θ
cav(ω) + cos(θ)2N θ

TLS(ω)

+ cos(θ)F ∗
cavFTLS

√
κγSθ

cav;TLS(ω)

+ cos(θ)F ∗
TLSFcav

√
γκSθ

TLS;cav(ω)]

(3.55)

and

NH
total(ω) =

∑
θ

sin(θ)2N θ
TLS(ω) (3.56)

where the coefficients Fat and Fcav describe coupling efficiencies to the photon detec-
tor and relative phases of the TLS and cavity mode decay channels, respectively, and
the last two terms of the sum in (3.55) account for the interferences between the TLS
and cavity decay channels[143, 161] with

Sθ
cav;TLS(ω) =

∫ ∞

−∞
lim
t→∞〈â†(t+ τ)σ̂−(t)〉e−iωtdτ (3.57)

Sθ
TLS;cav(ω) =

∫ ∞

−∞
lim
t→∞〈σ̂+(t+ τ)â(t)〉e−iωtdτ. (3.58)

We find that these interference terms do not modify the qualitative conclusions of our
study and thus neglect them in the rest of this report. Fat and Fcav describe coupling
efficiencies to the photon detector and relative phases of the TLS and cavity mode
decay channels, respectively. We take the sum over all values of theta to account for all
possible QD exciton dipole orientations, since the PL integration time is much larger
than the TLS radiative lifetime. The total spectrum is then given by

Ntotal = NV
total(ω) +NH

total(ω). (3.59)

Fig. 3.7 (b) shows the computed spectraNtotal(ω), Ncav(ω), NV
TLS(ω) =

∑
θ cos(θ)

2N θ
TLS(ω)

and NH
TLS(ω) =

∑
θ sin(θ)

2N θ
TLS(ω) for the following realistic simulation parameters:

h̄δ = 1 meV , h̄κ = 400 μeV , h̄γ = 0.2 μeV , h̄γd = 200 μeV , h̄g0 = 50 μeV , 2π
h̄2A =

0.8 nm/meV , T = 10K, h̄P = 0.1 μeV , � = 4 nm, �z = 2 nm, Fcav = 0.4 and Fat = 0.3.
Fig. 3.7 (c) shows Ntotal(ω) without (A = 0) and with (2π

h̄2A = 0.8 nm/meV ) phonon
assisted cavity feeding (other parameters are as in Fig. 3.7 (b)). Resolution of the
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Chapter 3. Cavity quantum electrodynamics with semiconductor quantum dots

simulated emission spectra into V and H components is shown in Fig. 3.7 (d).

3.4.1 Photoluminescence spectra for N quantum dots

Small modifications to the master equation allow to compute the spectrum of N QDs
coupled to the same CM. For N QDs, the master equation reads

˙̂ρr = − i

h̄
[Ĥθ,N

tot , ρ̂r]−
∑
N

(
1

2

{∑
l

L̂N†
l L̂N

l , ρ̂r

}
−
∑
l

L̂N
l ρ̂rL̂

N†
l

)
(3.60)

with

Ĥθ,N
tot =

∑
N

h̄ω0σ̂
N
+ σ̂N

− + h̄ωcâ
†â+

∑
N

h̄ cos(θ)gN0 (â†σ̂N
− + âσ̂N

+ ) (3.61)

which is essentially the Tavis-Cummings Hamiltonian[225]. The N th QD power spectra
becomes

Sθ,N
TLS(ω) =

∫ ∞

−∞
lim
t→∞〈σ̂N

+ (t+ τ)σ̂N
− (t)〉e−iωtdτ (3.62)

The V and H components of the total simulated spectra are then

NV
total(ω) =

∑
N

∑
θ

[N θ
cav(ω) + cos(θ)2N θ,N

TLS(ω)] (3.63)

and

NH
total(ω) =

∑
N

∑
θ

sin(θ)2N θ,N
TLS(ω) (3.64)

with

N θ,N
TLS(ω) = |Fat|2γNSθ,N

TLS(ω). (3.65)

The Tavis-Cummings Hamiltonian describe the interaction of N TLSs with a single
mode of a radiation field. Although the N TLSs are not interacting with each other (no
dipole-dipole interactions), their mutual coupling to the same optical mode can lead
to cooperative behavior[226]. In particular, under certain conditions, the collective
coupling of the TLSs to the radiation field can lead to an increase of the decay rate.
This collective spontaneous emission, referred to as super-radiance, has been the
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3.4. Simulating photoluminescence spectra

subject of many theoretical and experimental studies[227] since the pioneering article
of Dicke[228]. Recently, the progress of solid-state cavity-QED system, in which several
emitters can be coupled to the same optical mode, renewed the interest for the Tavis-
Cummings Hamiltonian. Recent experimental studies of multiple solid-state emitters
coupled to nanocavities are reviewed in chapter 5.

One striking feature of the Tavis-Cummings Hamiltonian is the non-linear scaling of
the vacuum Rabi splitting with the number of emitters. In the strong coupling regime,
when the N TLSs are resonant with the CM, the cavity absorption spectrum consists of
two peaks separated by 2h̄

√
Ng[229]. When N = 1 this corresponds to the result found

in subsection 3.1.3 for a single TLS interacting with a CM.
This situation is illustrated in Fig. 3.8 (a) that shows the CM spectrum N θ

cav(ω) calcu-
lated with the model presented above for N = 1 and θ = 0. The CM spectrum for
N = 2 is also shown in Fig. 3.8 (a) and exhibits a larger splitting given by approxi-
mately 2h̄

√
2g. The vacuum Rabi splitting extracted from the simulations for N = 1− 5

is compared to the theoretical Rabi splitting 2h̄
√
Ng in Fig. 3.8 (b), showing a good

agreement between the simulations and the exact solution. A similar situation in the
weak coupling regime is illustrated in Fig. 3.8 (c) for N = 2. Here the high losses of
the cavity damp the vacuum Rabi oscillations and the total spectrum of the TLS-cavity
system consists of a single peak. The spectrum for N = 2 is compared to the sum of
the spectrum of two independent TLS-cavity systems. Interestingly, the peak intensity
is larger for N = 2, indicating the TLSs are collectively coupled to CM, resulting in an
increase of the emission rate. This effect is even more pronounced for 3 TLSs as shown
in Fig. 3.8 (d). This increase of the emission intensity when the TLSs are collectively
coupled to the CM is a sign of super-radiant emission. For N TLS initially inverted, the
super-radiant emission translates in a peak intensity and decay rate N times larger
than the emission of N independent TLSs[230]. In Fig. 3.8 (c) and (d) this ratio is not
respected, probability because the pumping rate is not high enough to fully invert
the TLSs and introduces decoherence detrimental to the super-radiant behavior. The
simulations in Fig. 3.8 (a)-(d) were performed without pure dephasing and phonon
scattering.
Fig. 3.8 (e) shows the spectra of 2 TLSs detuned by ±0.5meV from the CM transition
in the presence of pure dephasing and phonon cavity feeding. The off-resonant CM
emission is fed by both QDs. However, due to the asymmetry of phonon cavity feeding,
the contribution from the blue-shifted TLS is more important, as shown by the spec-
trum of each TLS, individually coupled to the CM (blue and green lines). The sum of
the individual TLS spectra (dark line) reproduces the spectrum of the 2 TLS coupled to
the CM, indicating the absence of super-radiant emission. The decoherence induced
by the dephasing processes and the finite TLS-CM detunings destroy the coherent
interaction of the TLSs with the optical field.
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Figure 3.8: (a) Simulated CM spectrum Nθ
cav(ω) for N = 1 and 2 TLSs resonant with the CM

transition in the strong coupling regime (γd = 0 and A = 0). (b) Vacuum Rabi splitting extracted
from the simulations as a function of the number of TLSs, compared to the analytic expression
2
√
Ng. (c) Calculated total spectrum of the TLS-CM system for N = 2 (red line) in the weak

coupling regime, compared to the sum of spectra of 2 TLSs individually coupled to the CM
(dark line). (d) Same as (d) with N = 3. (e) Spectrum of 2 TLSs detuned by ±0.5meV from the
CM transition compared to the spectra of 2 TLSs sequentially coupled to the CM (blue and
green lines), including pure dephasing and phonon scattering. (a)-(e) Simulation performed
for θ = 0. To simplify the notation, the factor h̄ was omitted in this figure. For each simulation,
the TLSs are assumed identical and coupled to the CM with the same coupling strength g.
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3.5 Chapter summary

In this chapter we reviewed the theoretical formalism describing the quantum in-
teraction of a TLS and the confined electric field of a cavity. The dynamics of the
open-system Jaynes-Cummings model in the Lindblad form was presented, leading
to the definition of the strong and weak coupling regimes. Motivated by the possibil-
ity to model a QD excitonic transition by a TLS transition, the interaction of the QD
with the solid-state environment was included in the open-system Jaynes-Cummings
model by adding appropriate Lindblad terms. The interaction of the QD with the
fluctuating electrostatic environment was modeled by a pure dephasing Lindblad term.
The interactions of the QD exciton with acoustic phonons were taken into account
by an effective cavity feeding Lindblad term, with a characteristic phonon scattering
rate calculated for pyramidal QDs using a microscopic description of the QD-phonon
interaction. Finally, the procedure used to calculate the spectrum of site-controlled
pyramidal QDs coupled to the fundamental mode of an L3 photonic crystal cavity
was explicited, and extended to general case of N QDs coupled to the same CM. In
chapter 5, this QD-cavity model is used to fit the spectrum of one and two pyramidal
QDs embedded in an L3 PhC cavity.
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4 Exciton complexes in site-
controlled pyramidal quantum
dots
Interpreting the photoluminescence (PL) spectrum of quantum dots (QDs) coupled
to nanocavities can be a challenging task given the complex electronic properties
of semiconductor QDs. In chapter 1 we saw that QD s-states can be populated by
several excitonic species with different transition energies, that can all potentially
interact with the cavity mode (CM). Comparing a QD-cavity system to a single two-level
system (TLS) interacting with a CM, as presented in chapter 3, thus requires a detailed
knowledge of the QDs electronic properties. In particular, knowing which excitonic
species populate the QD and what are their spectral and dynamical characteristics is
essential for interpreting properly the luminescent features of a QD-cavity system.

Apart from these practical considerations, the study of excitonic complexes in semi-
conductor QDs revealed fascinating physics and opened the way to many potential
applications in quantum information processing and quantum communication pro-
tocols. Several schemes relying on spins of excitons (X) and biexcitons (2X) confined
in QDs, called forth the need to control the biexciton binding energy. In particular,
large binding energies are desired for realizing quantum logic gates[231] and vanishing
binding energy is of particular relevance for producing entangled pairs of photons
through time reordering of 2X-X radiative cascaded emission[232]. The 2X binding
energy is determined by the interplay of quantum confinement, Coulomb correlations
and exchange interactions[233], and therefore strongly depends on the QD geometry,
composition and environment. Since the conjecture of their existence by Lampert[234]
and their observation by Haynes[235], extensive work has been performed on these
excitonic molecules. After establishing the existence of 2X states in QDs [236], ef-
forts were made to control their binding energy, in particular with an external electric
field[237]. However, application of an electric field is detrimental to spin relaxation,
which is enhanced through the Rashba effect [238, 239]. Dependence on QD size[240–
244] or piezoelectric fields [245] were exploited in the same perspective, but these
studies were performed on a limited number of QDs, forbidding to realize statistical
studies.
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Chapter 4. Exciton complexes in site-controlled pyramidal quantum dots

In this chapter, we present a detailed study of excitonic complexes formed in single,
site-controlled pyramidal InGaAs/GaAs QDs integrated into non-resonant photonic
crystal (PhC) slab cavities. Their fabrication procedure is explained in chapter 2. This
chapter is divided into two sections. In section 4.1 we start by presenting the general
spectral properties of single site-controlled pyramidal QDs. We then investigate more
complex features of the QD luminescence by performing power dependent (subsection
4.1.1) and photon correlation (subsection 4.1.2) measurements, which also provide a
rigorous identification of the QD’s s-state excitonic features. Subsection 4.1.3 presents
a statistical study of the excitonic binding energies, followed in subsection 4.1.4 by
an investigation of QDs exhibiting a null 2X binding energy. Finally, time-resolved PL
measurements of single pyramidal QDs are studied in section 4.2.
Some of the results presented in this chapter were published in reference [246].

4.1 Pyramidal quantum dots spectral properties

This section presents PL measurements performed on single pyramidal QDs embedded
inside an L3 PhC cavity, using the fabrication method presented in chapter 2. This
chapter focuses on QDs with a transition energy inside the PhC band gap, but far
detuned from the CM. An example of high excitation power, single QD spectrum is
shown in Fig. 4.1. Compared to the QD ensemble spectra discussed in subsection 2.3.1,
the single QD emission consists of fewer peaks. For this QD, the s-state emission is
centered on 1.42 eV and consists of thin lines that will be discussed below. Due to the
high excitation power (1000 μW ), the QD excited hole states, associated to an electron
in the lowest energy state of the conduction band and a hole in the first excited state
of the hole band, are populated and emit at 1.43 eV . At higher energies, the emission
from the InGaAs quantum wires (QWRs) and carbon impurity of the GaAs material is
visible, as was the case for QD ensemble spectra.
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Figure 4.1: Spectrum of an isolated site-controlled pyramidal QD, embedded in an L3 PhC
cavity. The CM is far-off resonant from the QD emission and not visible in the spectrum.
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Systematic polarisation resolved PL measurements were performed on a large number
of similar structures. A few typical spectra are presented in Fig. 4.2. The upper panel
of each spectra shows the DOLP of the emission. No polarized emission is visible in
the DOLP, indicating that no CM is present in the vicinity of the QD transitions and
that the QD emission is unpolarized. This absence of linear polarization in the QD
s-state emission is a consequence of the high structural symmetry of pyramidal QDs
(see subsection 2.3.1) which results in a random in-plane statistical orientation of the
exciton dipole moment. The absence of a 2D wetting layer in pyramidal QDs also
ensures that no far-off resonant coupling with a far-detuned CM can occur.
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Figure 4.2: PL spectra of single pyramidal QDs in non-resonant L3 PhC cavities. The spectra
are resolved in linear polarisation along the axis perpendicular (V) and collinear (H) with the
cavity elongation. The upper panel displays the corresponding DOLP.

The s-state emission of these QDs consists of only three peaks. As will be evidenced
below, these three transitions correspond to the neutral exciton X, the biexciton 2X

and the negatively charged exciton X−. The excited-hole state emission is blue shifted
from the s-state emission by 10− 15meV . For this low excitation power of 100 μW , the
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Chapter 4. Exciton complexes in site-controlled pyramidal quantum dots

QD spectrum is dominated by the s-state emission. The reproducibility of pyramidal
QDs is already visible in Fig. 4.2, but becomes even more apparent in Fig. 4.3 (a) which
displays the spectrum of 15 QDs. Three s-state transitions are systematically present
in the s-state emission. The QDs transitions can be fitted by Lorentzian functions to
retrieve their full width at half maximum (FWHM) as illustrated in Fig. 4.3 (b). This
procedure was repeated for 30 QDs grown with TMGa precursors. The distribution of
linewidth for the X, 2X and X− transitions is summarized in Fig. 4.3 (c). The FWHM
distribution is centered on 150 μeV for the X− and 2X transitions, while the FWHM
distribution of the neutral exciton is centered on 225 μeV . These values are much
larger than the lifetime limited linewidth (see chapter 1). Indeed, the transitions are
broadened due to dephasing induced by carbon-related impurities incorporated in
the bulk material during the growth process or by PhC hole surface states. The smaller
linewidth observed for the 2X may be explained by its smaller lifetime with respect
the neutral exciton[247, 248], which minimizes its interactions with the fluctuating
electric field induced by fluctuating charges trapped in nearby defects or impurities.
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single QD. Lorentzian fits of the QD transitions (red dashed lines) were used to retrieve the
peaks FWHM. (c) Distribution of the X, 2X and X− FWHMs measured on 30 QDs.
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4.1. Pyramidal quantum dots spectral properties

4.1.1 Power dependent measurements

The excitonic species were identified by means of power dependent measurements[241,
242]. Such measurements performed on two pyramidal QD structures are summarized
in Fig. 4.4. The PL spectra of the s-state emission is shown as a function of excitation
power in Fig. 4.4 (a) and (b). For both QDs, the X and X− transitions appear first
for low excitation powers. Their intensity increases with incrising excitation power.
When the pump power is further increased, the 2X transition appears and dominates
the spectra for large excitation powers. The peaks integrated intensities are displayed
as a function of pump power in Fig. 4.4 (c) and (d). The peaks integrated intensities
increase linearly in loglog scale with increasing excitation power. For both QDs, the X
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Figure 4.4: (a) and (b) Spectra displayed as a function of excitation power for two QDs. (c) and
(d) Integrated intensities of s-state features of QDs (a) and (b) as a function of excitation power
in loglog scale. Linear fits (dashed line) give the slopes indicated on the figure. Saturation
powers Psat are indicated in the figure’s legend.

feature integrated intensity grows linearly with increasing excitation power as expected,
while the 2X feature is characterized by a steeper slope[242, 249] and a saturation
excitation power which is about twice that of the X. The third feature also shows a
superlinear pump power dependence (slope of 1.85 and 1.5 for the QDs of Fig. 4.4 (c)
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Chapter 4. Exciton complexes in site-controlled pyramidal quantum dots

and (d) respectively), indicating that it belongs to a charged excitonic species, and
saturates with the X line. Given the residual n-type background doping of our sample,
its emission energy lower than the neutral exciton and the previous identifications
made on similar pyramidal QDs[250–253], we attribute this third line to the X−.

4.1.2 Photon correlation spectroscopy

The nature of the excitonic species is further investigated using photon correlation
spectroscopy[186]. As explained in subsection 2.1.3, correlation measurements give
access to the second order photon correlation function g2(τ). Fig. 4.5 shows the
measured second order correlation histograms acquired for the QD shown in Fig. 4.4
(a). For this QD, the complete correlation picture of the s-state emission requires 6
photon correlation measurements: the auto-correlation of the 2X , X and X− (Fig. 4.5
(a), (b) and (d) respectively) as well as their cross-correlations 2X −X, 2X −X− and
X −X− (Fig. 4.5 (c), (e) and (f) respectively).

The corresponding g2 functions can be calculated using the following three-level rate
equation model

dp0(t)

dt
=

p1(t)

tX
− p0(t)

teh

dp1(t)

dt
=

p2(t)

t2X
+

p0(t)

teh
− p1(t)

(
1

tX
+

1

teh

)
(4.1)

dp2(t)

dt
=

p1(t)

teh
− p2(t)

t2X
p0(t) + p1(t) + p2(t) = 1.

were pn(t) is the time dependent probability of the QD being occupied with n = 0, 1

and 2 e-h pairs. t2X and tX are the 2X and X decay rates respectively and teh is the e-h
pair capture time. The solution to those three coupled differential equations are linked
to the second order correlation function as follows:

• τ ≥ 0 : g2X,X(τ) =
p1(τ)

p1(∞)

τ < 0 : g2X,X(τ) = g2X,X(−τ)

90



4.1. Pyramidal quantum dots spectral properties

with initial conditions p0(0) = 1, p1(0) = 0 and p2(0) = 0, for which:

p1(t) =
tehe

− 1
2
t(
√

4tehtX+(tX−t2X)2+2teh+tX+t2X)

2(t2eh + t2X(teh + tX))

[
((2t2eh + t2X(tX − t2X))(et

√
4tehtX+(tX−t2X)2 − 1)

2
√

4tehtX + (tX − t2X)2
(4.2)

−t2Xet
√

4tehtX+(tX−t2X)2 + t2X(2e
1
2
t(
√

4tehtX+(tX−t2X)2+2teh+tX+t2X) − 1)
]
.

• τ ≥ 0 : g22X,2X(τ) =
p2(τ)

p2(∞)

τ < 0 : g22X,2X(τ) = g22X,2X(−τ)

with initial conditions p0(0) = 0, p1(0) = 1 and p2(0) = 0, for which:

p2(t) =
tehe

− 1
2
t(
√

4tehtX+(tX−t2X)2+2teh+tX+t2X)

2(t2eh + t2X(teh + tX))

[
− teh(1 + et

√
4tehtX+(tX−t2X)2)

+2tehe
1
2
t(
√

4tehtX+(tX−t2X)2+2teh+tX+t2X) (4.3)

−(tehtX − t2X(teh + 2tX))(et
√

4tehtX+(tX−t2X)2 − 1)√
4tehtX + (tX − t2X)2

]
.

• τ ≥ 0 : g22X,X(τ) =
p1(τ)

p1(∞)
, with p0(0) = 0, p1(0) = 1 and p2(0) = 0

τ < 0 : g22X,X(τ) =
p2(−τ)

p2(∞)
, with p0(0) = 1, p1(0) = 0 and p2(0) = 0.

These initial conditions give the probability functions:

p1(t) =
e−

1
2
t(
√

4tehtX+(tX−t2X)2+2teh+tX+t2X)

2(t2eh + t2X(teh + tX))

[
(−(t2ehtX + t2X(teh + tX)2 − tXt22X)(et

√
4tehtX+(tX−t2X)2 − 1)√

4tehtX + (tX − t2X)2
(4.4)

+(t2eh + tXt2X)et
√

4tehtX+(tX−t2X)2

+2teht2Xe
1
2
t(
√

4tehtX+(tX−t2X)2+2teh+tX+t2X) + t2eh + tXt2X)
]
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p2(t) =
t2ehe

− 1
2
t(
√

4tehtX+(tX−t2X)2+2teh+tX+t2X)

2(t2eh + t2X(teh + tX))

[
((2teh + tX + t2X)(−(et

√
4tehtX+(tX−t2X)2 − 1))√

4tehtX + (tX − t2X)2
(4.5)

−et
√

4tehtX+(tX−t2X)2 + 2e
1
2
t(
√

4tehtX+(tX−t2X)2+2teh+tX+t2X) − 1
]
.

Background photon detection is taken into account following reference [254] by con-
sidering the noise influenced correlation function:

g2N
A,B(τ) = ρ2g2A,B(τ) + (1− ρ2), (4.6)

with A = X, 2X, B = X, 2X and ρ = S
S+N , with S the X or 2X photon detection rate

and N the uncorrelated background photon detection rate. The finite response time of
the HBT setup is taken into account by convoluting this function with a gaussian of
FWHM equal to tres=700 ps, giving:

g2,convA,B (τ) =

∫ ∞

−∞
g2N
A,B(t)

e−
(τ−t)2

2σ2

σ
√
2π

dt (4.7)

with σ = tres
2
√
2 ln 2

.

These correlation functions were used to fit the correlations histograms of Fig. 4.5 and
Fig. 4.6 (red dashed lines). Anti-bunching is observed in the 2X-2X, X-X and X−-X−

autocorrelations, indicating that these QDs are single-photon sources. Indeed, after
deconvolution of the HBT setup response time (700 ps) on the fits of Fig. 4.5 (b) and (d),
we obtain g2N

X,X(0) = 0.22 and g2N
X−,X−(0) = 0.01. A high value of ρ > 0.9 was obtained

for all the fits. The auto-correlation of the 2X feature shows antibunching for τ = 0,
followed by bunching shoulders for delay times of τ ≈ ±2 ns. Since we are not in a
regime of high carrier density for which such a behavior can be expected for neutral
excitons[255], this bunching is specific to the 2X-X radiative cascade. Indeed, when
the probability of the QD being occupied by 1 e-h pair is lower than unity, the QD is
more likely to be occupied by an exciton after the detection of the 2X emission, which
increases the reexcitation probability of the 2X state[184]. This bunching behavior,
specific to the 2X-X radiative cascade, is reproduced by the second order correlation
function g2X,X(t) obtained by solving the rate equation model described previously.
The cross-correlation of the 2X and X features (Fig. 4.5 (c)) shows antibunching for
negative delay time, and bunching for positive delay times, which is expected for the
2X −X radiative cascade. The fitting procedure gives e-h pair capture times varying
between 2 and 4.8ns. This variation can be due to the uncertainty on the exact position
of the laser excitation spot during the measurement, which results in an uncertainty
on the exact excitation power. The ratio of ∼ 2 between the 2X and X decay times
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Figure 4.5: Second order correlation histograms for the QD of Fig. 4.4 (a) and (c) measured for
an excitation power of 100 μW . Autocorrelation histograms of the 2X (a), the X (b) and the
X− (d) spectral features. Cross-correlation histograms of (c) the 2X and X features, (e) the
2X and X− features and (f) the X and X− features. The histograms are normalized so as to
correspond to the second order correlation function g2(τ). A rate equation model describing
the population dynamics of the QD was used to fit the data (red lines). After deconvolution of
the HBT setup response time, the fits of (b) and (d) give g2 N

X,X(0) = 0.22 and g2 N
X−,X−(0) = 0.01.

obtained from the fits is in agreement with calculated values[256]. The correlation
histograms featuring the X− transition are shown in Fig. 4.5 (d)-(f). They were fitted
using the same second order correlation functions used for the X and 2X correlations.
Although a more complete system of rate equations would be preferable to fit the
exact dynamic of the X− transition, the simpler rate equation model used here is
sufficient to understand the important features of the correlations. For example, the
cross-correlation between the 2X and X− lines show a less pronounced bunching for
positive delay times than for the 2X −X cross-correlation. A possible explanation is
the additional electron that has to be captured after the emission of the 2X photon,
which reduces the probability of having subsequent X− emission. This also explains
the longer X− decay times obtained from the fits, which include here the capture time
of this additional electron. These measurements and fits were repeated for the QD of
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Fig. 4.4 (b) and present a similar behaviour.
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Figure 4.6: Second order correlation histograms for the QD of Fig. 4.4 (b) and (d) measured
for an excitation power of 50 μW . Autocorrelation histograms of the 2X (a), the X (b) and the
X− (d) spectral features. Cross-correlation histograms of (c) the 2X and X features, (e) the
2X and X− features and (f) the X and X− features. The histograms are normalized so as to
correspond to the second order correlation function g2(τ). A rate equation model describing
the population dynamics of the QD was used to fit the data (red lines). After deconvolution of
the HBT setup response time, the fits of (b) and (d) give g2 N

X,X(0) = 0.15 and g2 N
X−,X−(0) = 0.01.

4.1.3 Exciton binding energies

The X−, X and 2X features were identified on the PL spectrum of 83 site-controlled
pyramidal QDs using the power dependent and photon correlation measurements pre-
sented in sections 4.1.1 and 4.1.2. This allowed to measure for these QDs the binding
energies of the 2X and the X− excitonic species defined as EB

2X = Ephoton
X − Ephoton

2X

and EB
X− = Ephoton

X − Ephoton
X− respectively, where Ephoton

X , Ephoton
2X and Ephoton

X− stand for
the X, 2X and X− transition energies (see subsection 1.3.3). These binding energies
are reported in Fig. 4.7 as a function of the energy of the X excitonic transition. The
X− binding energy shows very little dispersion with a mean value of 4.9 meV and
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X−) as a function of the energy
of the X feature. The linear fits (black and red line) serve as guides to the eye. The red diamonds
correspond to QDs assumed to have zero 2X binding energy. Reprinted with permission from
[246]. Copyright 2012, AIP Publishing LLC.

remarkably small standard deviation of 0.33 meV. Most of the QDs studied exhibit
negative 2X binding energy, including the QD of Fig. 4.4 (a). However, the dispersion
of the 2X binding energy makes it possible to select dots with positive 2X binding
energies in our sample (an example is given by the QD of Fig. 4.4 (b)). Moreover, the
2X binding energy increases slightly as the X emission energy increases. The variation
in emission energy of the neutral exciton is attributed to fluctuations of the QD size,
which impact the confinement of electrons and holes. An increase of the emission
energy reflects a reduction of the QD size. It has been established previously from
spectra of pyramidal QD ensembles that the QD emission yields a standard deviation
of ∼ 6 meV[81], which indicates a very good homogeneity of the QDs size. However,
here, we rely on long range fluctuations of QD thickness due to long scale diffusion of
the precursor during metalorganic chemical vapor deposition (MOCVD) growth, to
achieve a more important variation of their emission energy (∼ 30 meV). This made
possible the observation of a reduction of EB

2X, from 1 meV to -4 meV, as the QD size
increases. Furthermore, we observe remarkably small binding energies of ± 200 μeV
for some of the QDs. For 10% of the QDs, we observed only two s-state features in
their PL spectra instead of the three usual ones (X , X− and 2X). We attribute the peak
at lower energy to the X− and the other at higher energy to the overlapping X and
2X transitions (denoted hereafter X/2X transition). This attribution will be justified
in the following section. The absolute emission energy of those dots is in the range
corresponding to zero 2X binding energy. They are indicated by red diamonds in Fig.
4.7.
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A simple expression for the 2X binding energy is EB
2X = 2V e,h

Coul − V e,e
Coul − V h,h

Coul, where
V e,e
Coul, V

h,h
Coul and V e,h

Coul are respectively the energies associated with electron-electron,
hole-hole, and electron-hole Coulomb interactions (see subsection 1.3.3). The relative
weight of these attractive and repulsive contributions is strongly dependent on the dis-
tribution of the electron and hole wave functions within the QD. The decrease of EB

2X

for larger QDs is believed to be caused by charge separation within the QD induced by
increasing piezoelectric fields. Strain is more important in large QDs and is responsible
for the presence of piezoelectric fields that affect the charge distribution. Separation of
the electron and hole wave functions results in a reduction of V e,h

Coul and can also lead to
an increase of V e,e

Coul and V h,h
Coul. The 2X binding energy is thus reduced as the QD size,

along with strain, is increased. This trend was also observed with site-selected InAs/InP
QDs and was also attributed to the increase of piezoelectric fields with increasing QD
size[240]. The opposite trend was observed with self-assembled InAs/GaAs QDs, where
the decrease of the 2X binding energy with decreasing QD size was attributed to a
quenching of particle correlation and exchange interactions[243]. In a different study
relying on InGaAs/AlGaAs pyramidal QDs, no significant dependence of the 2X binding
energy on the QD emission energy was observed[257]. This shows that the binding
energy, which depends on few particle interaction effects, is strongly dependent on
the QD geometry and chemical composition[258].
Effect of strain on the binding energies of excitonic complexes has been recently es-
tablished[245]. In this simple model, the attractive and repulsive contributions can
eventually compensate, giving rise to vanishing binding energies, which is consistent
with the observation of zero 2X binding energy for 10 QDs of our sample (within the
resolution of our PL setup, i.e., 80 μeV). In a recent article, the effect of strain and
electric fields on the X and 2X energies was combined to tune the 2X binding energy
from binding to anti-binding while maintaining a constant X emission energy[259].

96
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4.1.4 Null binding energy biexciton

We used power dependent measurements to clearly identify the zero 2X binding
energy QDs and evidence the spectral overlap of the X and 2X features. If indeed the
X line is spectrally superposed with the 2X transition, we expect their luminescence
contributions to sum up in the power dependence of the X/2X transition. Fig. 4.8 (a)
shows the spectra of one of these QDs as a function of excitation power. Two main peaks
are visible in the spectra. The lowest energy peak belongs to the X− transition. The
second peak, labelled X/2X, appears before the X−, for low excitation powers, which
would indicate it belongs to the X transition. However, this peak does not saturate with
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Figure 4.8: PL spectra (a) and peak integrated intensities (b) of a QD with null biexciton binding
energy displayed as a function of excitation power. (c) QD of Fig. 4.4 (b) peaks integrated
intensities versus pump power. The curve corresponding to the feature X/2X (stars) is simply
the sum of the X and 2X curves. Inset figure: PL spectrum of the corresponding QD. (d) QD
with null 2X binding energy: the dotted lines X and 2X were retrieved from the fit of the
X/2X data (stars) with a rate equation model. Linear fits of the X, 2X and X− curves before
saturation were performed to retrieve the slopes indicated in the figure’s legend. Inset figure:
PL spectrum of corresponding QD where X/2X denotes the spectrally overlapping X and 2X
lines.
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the X− transition and behaves at high excitation powers like a 2X transition. Fig. 4.8
(b) shows the peaks integrated intensities as a function of pump power. In logarithmic
scale, the integrated intensity of the X− transition has a linear slope similar to what we
observed for the QDs of Fig. 4.4 (a) and (b). The behaviour of the integrated intensity of
the second peak is more peculiar. Indeed, although the integrated intensity increases
with a slope of 0.87, above P = 80 μW , the slope increases to 1.1. Furthermore, this
line saturates for P = 300 μW , which is approximately twice the saturation power of
the X− transition(Psat = 140 μW ). This behaviour is identical to what is observed for
the sum of the X and 2X integrated intensities of a QD with finite 2X binding energy
(Fig. 4.8 (c)). This indicates that the peak blue-shifted by 5meV from the X− in Fig.
4.8 (a) is very likely to be the superposition of the X and 2X features.

To confirm this assumption, we used the following four level rate equation model[133]
to compute two analytical expressions giving the emission intensities of the X and 2X

transitions as a function of pump power,

dp0
dt

=
p1
tX

− p0
teh

(4.8)

dp1
dt

=
p0
teh

+
p2
t2X

− p1(
1

tX
+

1

teh
) (4.9)

dp2
dt

=
p1
teh

+
p3
tex

− p2(
1

t2X
+

1

teh
) (4.10)

dp3
dt

=
p2
teh

− p3
tex

(4.11)

1 = p0(t) + p1(t) + p2(t) + p3(t) (4.12)

where pn, n = 0, 1, 2 are the time dependent probabilities for the QD to be occupied
by 0, 1 and 2 e-h hole pairs. p3 is the probability for the QD to be in an excited state of
higher energy. tX and t2X are the decay rates of the X and 2X levels respectively, while
tex is the decay rate associated with the excited state. The e-h pair capture time is given
by teh. Since the QD is pumped in cw mode, we can simplify this set of equations by
taking the stationary limit. Assuming the pumping rate to proportional to the inverse

98



4.1. Pyramidal quantum dots spectral properties

of the e-h pair capture time 1
teh

= αP , the rate equations simplify to

0 =
p1
tX

− p0αP (4.13)

0 = p0αP +
p2
t2X

− p1(
1

tX
+ αP ) (4.14)

0 = p1αP +
p3
tex

− p2(
1

t2X
+ αP ) (4.15)

0 = p2αP − p3
tex

(4.16)

1 = p0 + p1 + p2 + p3. (4.17)

By solving this set of equations, we get the power dependent probabilities for the QD
to be occupied by 1 and 2 e-h pairs

p1(P ) =
αP

1/tX + αP + t2X(αP )2 + t2Xtex(αP )3
(4.18)

p2(P ) =
t2X(αP )2

1/tX + αP + t2X(αP )2 + t2Xtex(αP )3
. (4.19)

These probabilities can be used to express the X and 2X emission intensities IX and
I2X , respectively, as

IX = β
1

tX
p1(P ) (4.20)

I2X = β
1

t2X
p2(P ) (4.21)

with β a proportionality constant. We used the sum of these two analytical expressions,
IX/2X = IX + I2X , to fit the power dependence of the X/2X feature shown in Fig. 4.8
(d). Using the knowledge acquired from the correlation measurements, the X and
2X decay times were fixed to tX = 1.6 ns and t2X = 0.8 ns. The result of the fit gave
tex = 0.5 ns, α = 8.7 · 10−4 (s · μW )−1 and β = 4.7. This fitting procedure allowed us to
recover the individual X and 2X integrated intensities which are indicated by dotted
lines in Fig. 4.8 (d). Their behavior as a function of power is consistent with what we
observed on non-zero 2X binding energy QDs: the X transition follows a linear slope
and saturates together with the X− line while the 2X feature follows a super linear
dependence in logarithmic scale and dominates the spectrum for higher excitation
powers. This brings further proof that this QD has a null biexciton binding energy,
within the 80 μeV resolution of our setup. These QDs with zero 2X binding energy
represent 10% of the QDs investigated in this study, and could be useful for several
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applications, such as the emission of entangled pairs of photons using time reordering
as was proposed by Avron et al.[232].

4.2 Exciton dynamics

In this last section, we present time-resolved PL measurements of isolated site-controlled
pyramidal QDs. Unlike the QDs presented in the previous sections, the QDs inves-
tigated here were isolated using mesa etching (see subsection 2.3.3 for details on
fabrication process). This makes them more similar to QDs placed in a bulk matrix,
which allows to investigate their dynamics when they are not affected by the presence
of the PhC band gap.

PL spectra from the QDs s-state emission is shown in Fig. 4.9 (a). The X, 2X and
X− transitions are once again present in the s-state luminescence. Both binding and
anti-binding 2X QDs were found on the sample. Fig. 4.9 (b) shows a close up of the
s-state transitions. The transitions were fitted with lorentzian functions to retrieve
the lines FWHMs, which are similar to those observed for the QDs investigated in the
previous sections. The power dependence of the transitions integrated intensities is
shown in Fig. 4.9 (c). The increase of the peaks integrated intensity with increasing
pump power is consistent with what was observed in section 4.1.1. Some important
fine-structure splitting (FSS) of the X and 2X lines is visible for some of the QDs. For
QD4 the FSS is as large as 200 eV . Due to high symmetry of pyramidal QDs, the FSS is,
on average, 20 μeV when they are placed in the bulk GaAs matrix, and is not resolved
in the PL spectrum. Here, important electric fields generated by surface states of the
mesa structure is most probably responsible for this increase of the FSS[260].

We performed time-resolved PL measurements on these QDs to investigate the dy-
namics of the s-state transitions. The QDs were excited with 3 ps width laser pulses
at a 80 MHz repetition rate. More details on the measurement setup can be found
in subsection 2.1.4. The time-resolved PL traces of the s-state transitions for QD1
and QD3 are shown in Fig. 4.10 (c) and (d) respectively. The energy resolution of
the time-resolved setup is 300 μeV , which means that for the X and 2X of QD3, the
FSS split lines both contribute to the PL traces shown in Fig. 4.10 (d). We observe a
sharp increase of the emission intensity following the excitation of the QDs by the laser
pulse at t = 1 ns. This increase of the emission is followed by a clamping at maximum
intensity, which is caused by the relatively high power levels that had to be used for this
experiment due to low intensity of the QDs, and for which the 2X state is already popu-
lated. A bi-exponential decay of the emission is then registered. The fast component
constitutes the QD transition radiative decay (yellow dashed line in Fig. 4.10 (c) and
(d)), while the slow component could arise either from spin-flipped dark excitons[261]
or from a refilling process from neighbouring defect states[247]. We observe a ratio
of ∼ 2 between the X and 2X decay times for both QDs, consistent with what was

100



4.2. Exciton dynamics

1.34 1.35 1.36
Energy [eV]

In
te

ns
ity

 [a
.u

.]

2X

2X

2X

2X

X

X

X

X

X-

X-

X-

T=10K

P=20μW

P=20μW

P=20μW

P=8μWQD1

QD2

QD3

QD4

1.34 1.345 1.35

0

100

200

300

400

Energy (eV)

In
te

ns
ity

 [a
.u

.]

 

 

103μeV

X-

152μeV

X

154μeV

2X

P=8μW
T=10K

T=10K

100 101 102

10

10

10

10
0

P [μW]

In
te

gr
at

ed
 in

te
ns

ity
 [a

.u
.]

 

 

X 

X-
slope=1.6 2X slope=2.5

slope=0.8

(a) (b)

(c)

QD1

QD1

Figure 4.9: (a) PL spectra of 4 QDs isolated using mesas. (b) Close-up of the s-state emission
of QD1. Lorentzian fits of the transitions (red dashed lines) were used to retrieve the peaks
FWHM. (c) Integrated intensities of QD1 X, 2X and X− transitions as a function of the laser
pump excitation power.

obtained in section 4.1.2. The X− decay time is similar to that of the neutral exciton.
Surprisingly, the decay times of QD1 are about twice as long as those of QD3. This
difference in lifetime could result from different non-radiative decay rates. Indeed, the
decay times of semiconductor QDs is the sum of radiative and non-radiative lifetimes,
the latter being related to the rate at which carriers escape the QD non-radiatively. In
particular, non-radiative centers in the vicinity of the QD can cause this carrier escape,
and their density may vary from QD to QD, explaining the difference in decay times
observed for QD1 and QD3. Furthermore, the decay times measured here are similar
to the ones estimated from the photon correlation measurements presented in section
4.1.2. In section 4.1.2, the QDs were embedded in a PhC, so one would expect their
radiative lifetimes to be longer due to the inhibition of the emission by the PhC band
gap. However, since the quantity we measure is the decay time, inhibition of the QD
emission, which increases the radiative lifetime, may not reflect in PL measurements if
the non-radiative lifetimes are comparable to the bulk radiative lifetimes. The fact we
measure similar decay times for QDs in the bulk and QDs embedded in a PhC indicates
it is the case.
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4.3 Chapter summary

In this chapter we investigated the spectral and temporal characteristics of the pho-
toluminescence of single site-controlled pyramidal QDs. The QD s-state emission
spectrum was found to be very reproducible from QD to QD, exhibiting three excitonic
transitions at low excitation powers. The three excitonic complexes populating the
QD were identified as the X, X− and 2X by performing excitation power dependent
measurements. Their emission was analysed by means of photon correlation measure-
ments, showing in particular pronounced single photon emission for the X and X−

transitions. Particular attention was paid to the exciton binding energies which were
measured on 83 different QDs. Although the binding energies were reproducible from
QD to QD, an increase of the 2X binding energy was observed with increasing QD
absolute emission energy, and explained by the dependence of the electron and hole
Coulomb interaction on the QD size and strain induced piezoelectric fields. About
10% of the QDs have vanishing 2X binding energies, leading to a superposition of the
X and 2X spectral features. Finally, the dynamics of QDs isolated using mesa etching
was investigated using time-resolved PL measurements, giving a good estimation of
the decay rates of pyramidal QDs placed in a bulk GaAs matrix. This study showed
that site-controlled pyramidal QDs present good optical properties nearly matching
those of self-assembled QDs, and provide a control and reproducibility promising
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102



4.3. Chapter summary

for quantum information applications. Informations such as typical linewidths and
decay rates provided by this study are important to analyse the QD-cavity coupling
experiments presented in chapter 5.
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5 Site-controlled quantum dots in
Ln photonic crystal cavities

Atom-cavity systems are an excellent platform to study light-matter interactions at a
fundamental level. However, in the past decades, researchers have been seeking to
reproduce, with semiconductor quantum dots (QDs), cavity quantum electrodynamic
(cavity-QED) experiments originally performed with atoms. Indeed, working with
solid-state systems offers control and scalability that atomic systems cannot provide.
The electrical properties of quantum dots can be tailored by altering their fabrication
process and they are suitable for on-chip integration. There is however a fundamental
difference between atoms and QDs. As explained in chapter 1, unlike their atomic
counterparts, semiconductor QDs interact with the surrounding crystal matrix, which
ultimately leads to decoherence and linewidth broadening. Interactions with crys-
tal lattice vibrations, known as phonon scattering, and pure dephasing induced by
the fluctuating electrostatic environment are among the mechanisms responsible for
decoherence (Fig. 5.1). These decoherence processes drastically alter the physics
of QD-cavity coupling[69, 97, 98, 100, 143]. Either strong or weak coupling can be
obtained depending on the magnitude of pure dephasing, and phonon scattering has
been shown to be responsible for off-resonant cavity emission[113–115]. Although
dephasing processes can be detrimental to the observation of QD photon indistin-
guishability[16], the observation of the strong coupling regime or the implementation
of quantum gates[231], they can also be used as a tool to enhance QD-cavity cou-
pling[99], cavity feeding effects[100] or resonant single QD spectroscopy[150]. In both
cases, it is crucial to get a better understanding of how dephasing processes affect the
coupling between a QD and a nano-cavity.

Exploring the details of the impact of solid-state decoherence mechanisms on the
photoluminescence (PL) of QD-cavity systems requires a full control of the QD-cavity
coupling. This involves positioning a single QD in a specific location of the semicon-
ductor nanocavity, and ensuring that the QD behaves as much as possible like a single
atomic transition. These prerequisites are essential to compare the experiment with
the two-level system (TLS)-cavity model presented in chapter 3. In most previous QD-
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Phonons Fluctuating charges

Cavity

Crystal 
lattice

Two-level 
system

Figure 5.1: Schematic of a two-level system in an optical cavity embedded in a crystal lattice.

cavity experiments relying on self-assembled QDs, these conditions are not met. The
random nucleation of self-assembled QDs prevents a straight forward deterministic
positioning of the QD in the cavity. Furthermore, it is difficult to rule out the possibility
that more than one QD interacts with the cavity mode (CM), especially when photonic
crystal (PhC) cavity are involved. Deterministic positioning of single self-assembled
QDs inside micropillar cavities was demonstrated relying on the pre-characterisation
of the QD emission to locate its position[70]. However, the nucleation position of the
QDs is still governed by a random process, preventing the scaling up of the study to
the coupling of multiple QDs with multiple cavities, which is required to realize dis-
tributed quantum computation schemes. Furthermore, self-assembled QDs electronic
states were shown to deviate from fully confined atomic-like electronic states[154].
The interaction of the QD confined excitonic states with delocalized 2D wetting layer
states leads to the formation of a quasi-continuum of states[148, 153, 155] (see section
1.5). This results in a broadband emission that can interfere with the observation of
off-resonant CM emission induced by QD pure dephasing and phonon scattering.

Motivated by these observations, we rely here on site-controlled pyramidal QDs em-
bedded in PhC cavities to deterministically couple one and two QDs to a single mode of
the cavity. The full control of the QD-cavity coupling and the absence of wetting layer
states in pyramidal QDs, making them closer to ideal atomic-like emitters, enables
the comparison of the system optical features with simulated spectra obtained by
modeling the QD by a TLS coupled to a CM in the presence of solid state decoherence
mechanisms. This allows a quantitative analysis of the impact of pure dephasing
and phonon mediated cavity feeding on the spectral features of the weakly coupled
QD-cavity system.

In this chapter the coupling of a single pyramidal QD to an L3 PhC cavity is studied
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in section 5.1. Temperature dependent experimental PL spectra are presented in
subsection 5.1.1 and compared to simulations in subsection 5.1.2. The detuning
dependent QD-cavity dynamics are analysed in subsection 5.1.3. In section 5.2, the
coupling of two pyramidal QDs to the same CM of an L3 PhC cavity is investigated.

5.1 One quantum dot coupled to an L3 photonic crystal cavity

In this section, we study the luminescence of site-controlled pyramidal QDs coupled
to the fundamental mode of a modified L3 PhC cavity to elucidate the role of quantum
decoherence on CM feeding[149] and exciton emission co-polarization[113, 262] at
finite CM-QD energy detuning. Relying on the theoretical modeling of polarization-
resolved PL spectra presented in chapter 3, we provide a comprehensive analysis of
the impact of pure dephasing and phonon scattering on cavity feeding and the co-
polarization effect in these systems, yielding insight crucial for QD-based integrated
quantum photonics applications.

The QD-cavity system under investigation is schematized in Fig. 5.2 (a). It consists
of a single InGaAs/GaAs pyramidal QD aligned (within ∼ 50 nm) with the maximum
of the field intensity distribution of the fundamental mode of an L3 PhC cavity (Fig.
5.2 (b)). Details of the fabrication process can be found in chapter 2. The measured
spectra of two different QD-cavity structures QD A and QD B, coming from samples
A and B respectively (see table 2.1 of chapter 2 for the sample parameters) are shown
in Fig. 5.2 (c) and (d). For both QDs, the ground state transitions consist of the X, 2X
and X− excitonic species. The upper panels of Fig. 5.2 (c) and (d), show, for the two
selected structures, the luminescence of the X− and the red shifted CM. For these
measurements, the samples temperature was adjusted to get a QD-cavity detuning
δ ∼ 1meV . Since the binding energies (with respect to X) of X− and 2X in these dots
are ∼ 5meV and < 1meV [246], respectively, this system well represents an isolated
QD transition coupled to a CM. The absence of fine structure splitting (FSS) for the
X− transition[263, 264] further facilitates interpretation of the observations. The
QD and CM peaks are fitted with Lorentzian functions, giving the full width at half
maximum (FWHM) of the CM line (κA = 590 μeV and κB = 440 μeV ) and the exciton
line (ΓA = 450 μeV and ΓB = 450 μeV ). Differences in CM and exciton linewidth stem
from variations in cavity Q-factor and exciton dephasing from sample to sample. The
lower panels show the emission spectra resolved in linear polarization along the V and
H directions indicated in Fig. 5.2 (b). Both structures show signatures of QD-cavity
coupling. Indeed, QDs A and B have a finite V polarization, quantified by the degree of
linear polarization (DOLP) spectra displayed in the center panels. Although initially
unpolarized, the presence of the CM transition forces the excitonic line to acquire
the CM polarization, i.e., become co-polarized. Furthermore, a pronounced emission
at the CM energy is observed for the detuned QD-cavity systems. This off-resonant
CM emission is referred to as cavity feeding and is a signature of coupling specific to
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solid-state systems undergoing dephasing.
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Figure 5.2: (a) Schematic of the QD positioned at the center of a modified L3 PhC cavity: a=200
nm, d=130 nm, dm=110 nm and s=30 nm. (b) Computed field intensity distribution of the
fundamental mode of the L3 cavity. The nominal position of the QD is indicated by a red dot.
(c) [(d)] Top: PL spectrum of QD A [QD B] coupled to the fundamental mode of an L3 cavity.
Lorentzian fits (dashed lines) yield the linewidths κ and Γ of, respectively, the CM and X−

transitions. Bottom: PL spectrum resolved in linear polarization along the vertical (V) and
horizontal (H) directions indicated in (b). Center: Degree of linear polarization of the PL.

5.1.1 Detuning dependent photoluminescence

Off-resonant CM emission and QD co-polarization are studied in this section with
the help of detuning dependent PL spectra. Observing how these effects vary over a
large detuning range is necessary to understand how they are related to dephasing
mechanisms.

Figure 5.3 displays temperature dependent PL spectra obtained for QDs A and B.
Changing the sample temperatures allows to vary the energy detuning between the
QD and CM lines. Indeed, the QD energy follows the (In)GaAs bandgap variation with
temperature, while the CM transition energy changes due to the temperature depen-
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dence of the refractive index. This results in a redshift of the QD and CM transition
with increasing temperature, but occurring at a faster rate for the QD than for the CM,
giving the opportunity to tune a red-shifted CM into resonance with an excitonic line.
A change in temperature from 10 K to 70 K corresponds to a shift of the detuning
by approximately 3.5meV . The spectra of QDs A and B as a function of temperature
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Figure 5.3: (a) [(c)] PL spectra of QD A [B] displayed as a function of the sample temperature.
(b) [(d)] Polarization resolved spectra of QD A [B] for different sample temperatures. For each
temperature, the spectra are nomalized by their maximum intensity.

are shown in Fig. 5.3 (a) and (c). The spectra are normalized by the total recorded
intensity to remove the drop in emission intensity of the structure with increasing
temperature due to the onset of non-radiative recombination processes. As the temper-
ature increases, the CM and X− peaks are brought into resonance, eventually merging
into a single peak at 45 K for QD A and 60 K for QD B. For both structures, the QD
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and CM lines cross (rather than anti-cross), indicating that both systems are in the
weak coupling regime. When approaching resonance, the CM and X− peaks increase
in intensity, a consequence of the Purcell reduction of the QD exciton lifetime. The
maximum intensity output is reached for zero detuning. Fig. 5.3 (b) and (d) show the
corresponding polarization resolved spectra. They are also displayed as a function of
the sample temperature, but each spectrum is now normalized by its maximum inten-
sity. The evolution of the X− and CM transition energy with temperature is highlighted
in Fig. 5.3 (b). These detuning dependent polarization resolved measurements bring
to light two important behaviors, present for both QDs. First, the co-polarization of
the X− transition varies with detuning. As the QD-cavity detuning is reduced, the QD
transition gradually acquires the CM polarization, until it becomes fully co-polarized
for zero detuning. Second, the cavity feeding effect also appears to be dependent on
the magnitude of the detuning. Indeed, a close inspection of Fig. 5.3 (d), reveals that
the relative CM peak intensity first increases and then decreases as the detuning is
reduced.
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110



5.1. One quantum dot coupled to an L3 photonic crystal cavity

A quantitative analysis of these behaviors for QD B is summarized in Fig. 5.4. The
spectra were fitted with the sum of two Lorentzian functions. The transition energies of
the CM and X− transitions as a function of temperature (Fig.5.4 (a)) show a clear cross-
ing, a signature of the weak coupling regime. Fig 5.4 (b) and (c) show respectively the
integrated and maximum peak intensities as a function of detuning. A clear increase
of the X− emission intensity is visible. The X− integrated and maximum peak intensi-
ties undergo a tenfold enhancement at resonance. The behavior of the CM intensity
is more complex. The CM peak intensity does not vary significantly with detuning,
whereas the CM peak integrated intensity reaches a maximum for δ = ±0.7 meV ,
and decreases near resonance. A similar behavior was recently observed in a similar
experiment performed with micro pillars[171]. This reduction of the CM integrated
intensity can be understood by considering the results of Fig. 5.4 (d) that displays the
peak FWHMs as a function of detuning. A clear decrease of the CM FWHM is observed
for small detunings, which is a consequence of the interaction between the CM and
the QD phonon sidebands[171]. Given the nearly constant CM peak intensity, this
reduction of the FWHM induces a decrease of the CM integrated intensity. Fig. 5.4
(e) shows the DOLP of the X− and CM peak as a function of detuning. As expected
the CM polarization is not affected by changes in the detuning. The X−, however,
becomes co-polarized with the CM as both transitions are brought into resonance. At
zero detuning, both peaks have a DOLP of 0.8. Whereas off-resonant CM emission
is observed for detuning as large as ± 3meV , co-polarization of the X− transition is
visible only for detuning as large as ±1meV , in agreement with previous reports[113].
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5.1.2 Modeling of photoluminescence

To get a better understanding of the co-polarization and cavity feeding effects with
QD-CM detuning, we now compare the temperature dependent experimental spectra
discussed in the previous section to simulations performed with the theoretical model
presented in chapter 3. The parameters used in the simulations are summarized in
table 5.1. γd and κ were retrieved from the fits of Fig. 5.2 (c) and (d). γ, the intrinsic
QD linewidth in the PhC band-gap, was obtained from time-resolved measurements
performed on nominally identical pyramidal QDs inside the PhC band gap and corre-
sponds to a lifetime of 3 ns. Fcav and Fat were computed using 3D FDTD simulations.
The values used for � and �z are suitable for InGaAs QDs with confinement dimensions
of 10 nm in plane and 5 nm in the growth direction. The remaining three parameters
(g, A and P ) were adjusted to fit the experimental data.

Table 5.1: Table of parameters used for the simulations of Figs. 5.5 (b) and (d). The fitting
parameters are indicated in blue. The other parameters were retrieved from independent
measurements or estimated from typical pyramidal QD characteristics.

Parameter Symbol [unit] QD A QD B
TLS loss rate h̄γ [μeV ] 0.2
CM loss rate h̄κ [μeV ] 590 440

Pure dephasing rate h̄γd [μeV ] 450 200
TLS-CM coupling strength h̄g0 [μeV ] 20 50

Phonon density of
state constant

2π
h̄2A [nm/meV ] 1.3 1.4

Incoherent pumping rate h̄P [neV ] 10 5
Wave function standard

deviation (in plane)
� [nm] 4

Wave function standard
deviation (vertical)

�z [nm] 2

CM coupling efficiency
to detector

Fcav 0.4

TLS coupling efficiency
to detector

Fat 0.3

The comparison between the experimental and simulated spectra is displayed in Fig.
5.5. The results of the modeling reproduce remarkably well the spectral features of QD A
and B over a large detuning and temperature range. Discrepancies between experiment
and simulation appear above 65K. They are attributed to non-radiative recombination,
such as thermally activated non-radiative recombination in barriers[265] and thermally
induced escape of carriers[266], that were not accounted for in the model. For lower
temperatures, the CM off-resonant emission is reproduced by the simulations, as well
as the co-polarization of the QD line close to resonance.
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Figure 5.5: Experimental (a) and simulated (b) temperature dependent PL spectra of the cavity-
QD systems, resolved in linear polarization along the directions indicated in Fig. 5.2 (b) for QD
A. (c) and (d): same for QD B.

Fig. 5.6 displays a more quantitative comparison between the simulations and the
experiment for QD B. The simulated spectra were fitted with two Lorentzian functions,
following the same procedure used to fit the experimental data. Fig. 5.6 (a) shows
the evolution of the peaks integrated intensities as a function of detuning retrieved
from the experiment and the simulation. The experimental and simulated integrated
intensities are normalized by the CM peak maximum integrated intensity, to allow
a comparison. The increase of the X− intensity at resonance is reproduced by the
simulation as well as the decrease of the CM emission for zero detuning. Fig. 5.6 (b)
compares the experimental and simulated FWHM of the CM and QD peaks. Again the
reduction in the CM FWHM at resonance is accounted for by the simulation.
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FWHM obtained from the experiment and the simulation by fitting the spectra with two
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Given the good fit between the model and the experiment, we can extract from the
simulations information hidden in the experimental spectra. Figure 5.7 (a) shows
the simulated spectra obtained with the simulation parameters of QD B, including
QD-phonon interactions (2πh̄ A = 1.4nm/eV ) and neglecting phonon scattering (A = 0).
It becomes apparent that phonon scattering is responsible for most of the CM off-
resonant emission. Indeed, as it can clearly be seen for T = 55K, phonon scattering
causes a redistribution of the emission probability from the QD transition to the
off-resonant CM transition, resulting in an increase of the CM intensity, but also an
inhibition of the QD emission. Without phonon scattering (A = 0), there is neverthe-
less a finite emission of photons at the CM energy. Indeed, the QD is subject to pure
dephasing, which acts as a cavity feeding mechanism[100]. Pure dephasing combined
with QD-phonon coupling are thus the mechanisms responsible for off-resonant CM
emission. Fig. 5.7 (b) shows how pure dephasing and phonon scattering contribute to
the CM peak intensity as a function of detuning. The quantity displayed as a function
of detuning is the ratio between the CM peak integrated intensity when A = 0 and
2π
h̄ A = 1.4 nm/eV . This reveals that the contribution of pure dephasing to the CM off-

resonant emission approaches 50% at resonance. In contrast, it reaches a minimum for
±2meV detuning, leaving phonon scattering as the main mechanism responsible for
off-resonant cavity feeding. This is consistent with the phonon scattering rate calcu-
lated in chapter 3 which showed that transfers of excitation from the QD to the CM via
phonons was important within the ±2meV detuning range. Although the contribution
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of phonon scattering remains important at resonance (> 50%), it is reduced compared
to detunings of ±2meV because it is in competition with pure dephasing.
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Figure 5.7: (a) [(c)] Simulated spectra obtained with the simulation parameters of QD B[QD
A], including QD-phonon interactions ( 2πh̄ A = 1.4 nm/eV ) and neglecting phonon scattering
(A = 0). (b)[(d)] Ratio between the CM simulated peak integrated intensity when A = 0 and
2π
h̄ A = 1.4 nm/eV as a function of detuning for QD B[QD A].

A similar overall behavior is observed for the spectra obtained with the simulation
parameters of QD A shown in Fig. 5.7 (c). However, the pure dephasing rate used to
model QD A is higher than for QD B (h̄γAd = 450 μeV and h̄γBd = 200 μeV ). Indeed, the
linewidth of the X− is twice larger for QD A than for QD B. This translates in the simu-
lations into a more important contribution of pure dephasing to the CM off-resonant
emission. This is clearly visible in Fig. 5.7 (d) that shows the ratio between the CM
peak integrated intensity when A = 0 and 2π

h̄ A = 1.3 nm/eV . This ratio is higher
than for QD B, and indicates a contribution of pure dephasing to the CM off-resonant
emission above 50% near resonance. This observation shows that both phonon scat-
tering and pure dephasing contribute to the CM off-resonant emission. However the
contributions of each dephasing mechanism varies with detuning. Phonon scattering
is predominant in the ±(1− 3)meV detuning range and pure dephasing can overcome
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phonon scattering for a sufficiently high γp close to resonance.

The simulations also give access to the individual contributions of the CM and TLS
decay channels to the total photoluminescence. As explained in chapter 3, the total
simulated emission spectrum corresponds to the sum of the CM spectrum Ncav, the
projection of the TLS spectrum on the V axis NV

TLS and the projection of the TLS
spectrum on the H axis NH

TLS . The simulated emission spectra of the CM and TLS
decay channels are shown in Fig. 5.8 for QD A and B. For each QD, the simulations were
performed with the simulation parameters of table 5.1 and are shown for three different
CM-TLS detunings. For a positive detuning (Fig. 5.8 (a) and (d)), the interaction of the
TLS with the CM has two interesting effects. On the first hand, it inhibits the TLS V
polarized emission. This is caused by the transfer of excitation from the TLS to the CM,
preferentially occurring for TLSs with dipoles collinear to the V direction, ensuring a
high coupling with the V polarized near field at the center of the L3 PhC cavity. On the
other hand, a second peak appears in the CM spectrum, centered on the TLS transition
energy. This means the TLS peak is the sum of the luminescence originating from the
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Figure 5.8: Calculated spectrum for different TLS-CM detunings using the simulation parame-
ters of QD B (a)-(c) and QD A (d)-(f). The total spectrum is shown, as well as the contribution
from the cavity Ncav and the projections of the TLS spectrum on the V and H axes (NV
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TLS respectively.)

TLS as well as the cavity decay channel. The additional peak centered on the energy
of the TLS in the CM spectrum can be understood by considering the definition of
the power spectrum. As explained in chapter 3, the power spectrum is the Fourier
transform of the field first order correlation function. In the weak coupling regime,
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5.1. One quantum dot coupled to an L3 photonic crystal cavity

when the TLS is initially inverted, the TLS-cavity coupling leads to a transfer of the
excitation from the TLS to the CM which is rapidly lost by the cavity due to its important
decay rate. This means the dynamics of the cavity population is closely related to the
TLS population. Consequently, the cavity first order correlation function will be similar
to the TLS system first order correlation function, leading to a Lorentzian feature
centered on the TLS energy in the CM power spectrum. The contribution from the
cavity decay channel is important due to the high decay rate of the cavity. Since it is V
polarized, this additional contribution of the cavity decay channel to the QD emission
is responsible for the co-polarization of the coupled QD line. The intensity of the CM
peak centered at the TLS transition energy increases near resonance, resulting in the
increase of the QD line co-polarization observed in Fig. 5.4 (e). At resonance, when
the CM and TLS peaks merge into a single line (Fig. 5.8 (b) and (e)), the CM spectrum
dominates and the TLS emission is almost completely inhibited. At resonance, the
coupling strength between the CM and the TLS is maximum, and the transfer of
excitations from the TLS to the CM becomes very efficient. In the "bad cavity" regime
(κ � γ), nearly all these excitations are lost through the CM decay channel, resulting
in an almost completely V-polarized emission. For a small negative detuning (Fig. 5.8
(c) and (f)), the CM spectrum still dominates the emission. However, two peaks can be
identified in the total emission spectrum, although the higher pure dephasing rate of
QD A makes the distinction between the CM and TLS peak more difficult.

Since in the weak coupling regime no anti-crossing of the QD and CM emission is
observed, a direct measurement of the QD-cavity coupling strength is not possible.
However from this fitting procedure, we were able to extract coupling strengths of
h̄g0 = 20 μeV for QD A and h̄g0 = 50 μeV for QD B (see Table 5.1). These values
are in line with those reported in the literature for InGaAs/GaAs QDs[39, 69, 145].
Note that these values of the coupling strength correspond to a QD dipole moment
collinear to the electric field polarization vector, the actual coupling strength entering
in the simulation being g0 cos (θ), where θ is the angle between the dipole moment
and the electric field vector. Furthermore, the deterministic positioning of the QD
ensures an overlap with at least 60% of the electric field maximum amplitude. This
tends to show that the small QD-cavity coupling strengths measured for InAs/GaAs
QDs is not necessarily the result of a misalignment between the dipole and field or
poor spatial overlap between the QD and field distribution, as often expressed in the
literature[125], but might stem from small dipole moments of InGaAs QDs[51, 267].
Another possible explanations for the relatively small g0 values reported here may
come from the assumption that the QD dipole moment lies in-plane. Taking into
account in the simulations a finite out-of-plane component of the dipole moment
would result in larger g0 values extracted from the fitting procedure.
The phonon density of states constant A extracted from the fit (see Table 5.1) is related
to the deformation potential D by A = h̄D2

16ρc4s
√
π

. This allows us to get an estimate of the
deformation potential felt by both QD, D = −7.6 eV for QD A and D = −7.9 eV for QD
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B, which are consistant with values of the deformation potential for GaAs[164].
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Figure 5.9: (a) Simulated spectrum with simulation parameters as in Fig. 5.5 for QD B, except
that h̄g = 105μeV . Peak integrated intensities evaluated using Lorentzian lineshapes ICM and
ITLS. (b) Relative CM peak intensity for various coupling strengths g and TLS-CM detunings. (c)
Intensity of the CM peak without phonon scattering ICM,A=0 relative to ICM including phonon
scattering. (d) TLS peak DOLP for various pure dephasing rates γd and TLS-CM detunings.

The more general trends of the evolutions of the cavity feeding and CM-exciton
co-polarization versus phonon scattering and pure dephasing are presented in the
maps of Fig. 5.9. Fig. 5.9 (b) shows the calculated relative intensity of the CM peak
ICM/(ICM + ITLS) as a function of detuning and QD-cavity coupling strength. The
relative CM peak intensity reaches a maximum for detunings of 1.7meV and increases
with g. The decrease in relative CM emission for detunings smaller than 1.7meV is
in agreement with our measurements and experimental observations reported in the
literature[150]. Fig. 5.9 (c) presents the intensity of the CM peak without phonon
scattering ICM,A=0, where the only decoherence mechanism is pure dephasing, rel-
ative to ICM , which includes phonon scattering. The relative contribution of pure
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dephasing is small in the range of detunings of 1−3meV , for which phonon-scattering
is most efficient. However, the contribution of pure dephasing to the off-resonant CM
emission becomes comparable to that of phonon scattering for detunings greater than
5meV . The behavior of the co-polarization effect is summarized in Fig. 5.9 (d), where
the calculated DOLP is plotted versus detuning and pure dephasing rates. The DOLP is
larger than 0.5 for detunings in the range 0− 1meV .
In conclusion, using a TLS-like QD system embedded in a solid-state environment
coupled to a single mode photonic cavity we elucidated the roles of phonons and pure
dephasing on exciton-cavity interaction in the weak coupling regime. Besides provid-
ing insight into weak-coupling mechanisms in solid-state cavity-QED phenomena, the
results yield useful information for designing integrated quantum photonic systems
for quantum information technology.

5.1.3 Detuning dependent QD-cavity dynamics

QD-cavity systems are of interest for their applications in quantum information tech-
nologies, e.g., as sources of single, indistinguishable photons[16, 96, 268]. In this
context, understanding their dynamics, including the Purcell effect[17] and the dy-
namics of CM feeding at finite cavity-QD energy detuning[149, 269] is important for
realizing efficient sources of quantum light. Most studies of cavity-QD coupling in-
volved Stranski-Krastanov QDs, in which parasitic wetting layer states hybridizing with
QD multi-excitonic complexes were shown to promote cavity feeding not related to
the intrinsic QD single exciton dynamics[152, 156]. Similar studies demonstrated the
reduction of the QD lifetime at resonance but did not clarify its behavior as a function
of QD-cavity detuning, nor investigated the dynamics of the CM emission[69, 126,
138]. Most studies of the dynamics of the QD and CM lines as a function of detuning
were performed with micropillar cavities[133, 134] for which the cavity mode volume
is large compared to PhC membrane cavities. A study of the exciton-CM dynamics was
performed with PhC cavities as well[111], but effects of temperature and non-radiative
recombination channels were not included. Hence, there is a need for elucidating
exciton dynamics in cavity-QD model systems that closely resemble two-level systems
embedded in a solid-state matrix and unveiling the impact of dephasing and non-
radiative processes on the Purcell effect and CM dynamics.
Some of the results presented in this section were published in reference [157].

Here, we study the exciton and CM dynamics of QD B. The PL spectrum of QD B for
δ = 2meV is shown in Fig. 5.10 (a). Fig. 5.10 (b) shows the dynamics of the X− and CM
emissions corresponding to the detuning situation of Fig. 5.10 (a). The time-resolved
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PL traces were fitted with the following 3-level system rate equation model:

dpe
dt

= −pe
τe
,
dpX
dt

= −pX
τX

+
pe
τe
,
dpg
dt

=
pX
τX

(5.1)

where pe, pX and pg are the occupation probabilities of the excited states level, excitonic
level and ground state level respectively (see Fig. 5.11). pX is given by

pX(t) =
1

τe

e
−( 1

τX
− 1

τe
)(e

1
τX −e

t
τe )

1
τe

− 1
τX

. (5.2)

By fitting (5.2) to the time-resolved data, accounting for the finite response of our
detectors (175 ps), we obtain a decay time of τX− = 1.25 ns for the X− emission and
τCM = 1.26 ns for the CM peak emission. We use the same expression to fit the X− and
CM time-resolved emission because they are expected to have the same behavior in
the weak coupling regime[149], since in the absence of parasitic background emission,
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e

X

g

Figure 5.11: Schematic of the 3-level system used to fit the time-resolved PL traces. It consists
of an excited state level (e), an excitonic state level (X) and a ground state level representing an
empty QD (g).

the CM is fed only by the QD. We repeated this measurement for different sample
temperatures to investigate the dependence on detuning.

Figure 5.12 (a)-(d) shows the time-resolved PL traces of the X− and CM peaks for
different detunings. The decay times τX− and τCM as a function of detuning, and hence
temperature, are summarized in Fig. 5.12 (e). These measurements were performed
for excitation powers bellow the QD saturation regime (Psat ∼ 400 μW ), for which only
ground state emission was observed in the spectra. A clear decrease of τX− and τCM

is observed near resonance. The two decay times follow the same trend, indicating
that the CM is fed solely by the QD transition (for small detunings, the X− and CM
emission could not be spectrally resolved in the measurements, so a single decay time
value was measured and attributed to the X− emission in Fig. 5.12 (e)). Furthermore,
we observe a global decrease of the decay times with increasing temperature, which we
attribute to a reduction of the lifetime due to the onset of non-radiative recombination
channels[265, 266].

The decay time of a spectrally broadened QD exciton coupled to a CM as a function of
detuning can be written, according to [47, 138], as follows

τ0
τX(δ)

=
FP (1 + 2Qγd)

8 δ2

Δω2
c
+ 2(1 + 2Qγd)2

f2 +
τ0

τleak
+ τ0Γnr(T ) (5.3)

where FP is the Pucell factor, Q the cavity quality factor, Δωc the cavity linewidth, γd
the inverse exciton quality factor, proportional to the emitter linewidth, broadened by
dephasing, τ0 the bulk exciton lifetime and τleak the exciton lifetime when off-resonant
with the CM (inhibited by the photonic bandgap), and f a dimensionless constant
describing the field intensity at the position of the QD. This expression assumes a
random in-plane QD dipole orientation. The last term of the equation Γnr(T ) is the QD
non-radiative decay rate, and was added to account for the decrease of the decay time
with temperature[127]. The non-radiative decay rate was assumed to increase linearly
with temperature as Γnr = αT + β. This dependence is an approximation and does
not describe the physical processes responsible for the decrease of the decay time with
temperature. The solid line in Fig. 5.12 (e) shows the fit of τX(δ) for fixed parameters
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Q = 3500, Δωc = 400 μeV , γd = 1.5 × 10−4, τ0 = 1 ns, f = 0.6 and fit parameters
1/τleak + β = 0.5 ± 0.06 ns−1, FP = 17 ± 5 and α = 0.02 ± 0.003 (ns · K)−1 and is in
very good agreement with the experimental data. The fixed parameters were obtained
from the spectral characteristics of the CM and X− peaks in Fig. 5.10 (a), except for the
bulk radiative lifetime τ0 = 1 ns which is a typical value obtained from independent
measurements on similar isolated QDs in bulk GaAs, and f = 0.6 which corresponds
to the QD being coupled to 60% of the maximum field intensity. We extract from the
fit a Purcell factor of FP = 17 ± 5, in line with values reported in the literature[69,
127]. However it is far from the theoretical maximal value of 220 for this structure,
probably due to the misalignment between the exciton dipole and the cavity electric
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5.1. One quantum dot coupled to an L3 photonic crystal cavity

field. From the fit, we also obtain the following relation between the non-radiative
lifetime τnr = 1/Γnr and τleak

τnr =
1

0.02T + 0.5− 1
τleak

(5.4)

Estimating τleak is not trivial without a direct measurement of the non-radiative decay
rates. If we assume τleak = 3 ns we can compute using (5.4) non-radiative lifetimes
of τnr = 2.7 ns at 10 K and τnr = 0.6 ns at 70 K. This important decrease of the
non-radiative lifetime with temperature reduces the visibility of the Purcell effect in
temperature scanning experiments, as opposed to gas condensation detuning scan
experiments[111]. To highlight the impact of non-radiative effects, τX(δ) can be com-
pared to τPf

X (δ) (dark dashed line in Fig. 5.12 (e)), given by

τ0

τPf
X (δ)

=
FP

2

1 + 2Qγd

4 δ2

Δω2
c
+ (1 + 2Qγd)2

f2 + 1 (5.5)

which corresponds to the case τleak = τ0 and Γnr = 0, and gives access to the isolated
contribution of the Purcell effect on the lifetime reduction at resonance, showing
explicitly the impact of non-radiative effects on the visibility of lifetime reduction at
resonance. Furthermore, this effect is not present in similar experiments performed
with micropillar cavities[133, 134] suggesting it is specific to PhC structures. This might
be explained by the larger surface to volume ratio of PhC structures, exposing the QD
to more pronounced surface effects that can induce non-radiative recombinations.

Above the saturation power of the QD ground state transitions, we observe qualita-
tively different dynamics. Figure 5.13 (a) displays the panoramic PL spectrum of the
structure at such high pump level, revealing transitions related to the QD as well as the
quantum wire (QWR) barrier states. Figure 5.13 (b) shows the X− dynamics measured
for different excitation powers and a detuning δ = 16meV (obtained with water vapor
condensation). Under these conditions no QD polarization was observed indicating
that the QD was not coupled to the CM. For P = 100 μW (< Psat), the X− emission
exhibits a fast rise time, limited by the carrier capture and relaxation dynamics. For
P = 500 μW (P > Psat), the rise time increases due to the finite p-state occupation.
The maximum emission intensity is delayed by as much as 3.5 ns at P = 2000 μW . The
recombination lifetime of the X− inside the PhC band gap (τ ∼ 1.6 ns), on the other
hand, is not affected by changes in P up to 5000 μW . When compared to τ0 = 1 ns,
this corresponds to an apparent increase of the spontaneous emission lifetime by
a factor 1.6. However, without a better knowledge of the non-radiative decay rate,
it is not possible to conclude on the actual inhibition of the spontaneous emission
by the PhC band gap. Above P = 2000 μW , an additional peak appears at short de-
lay times with a small decay time of ∼ 270 ps. Similar effects have been reported in
self-assembled QD systems and attributed to wetting layer state continuum[156] or
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multiexcitonic background emission[270]. To investigate the origin of this additional
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Figure 5.13: (a) Spectrum of QD B at high excitation power. Low energy tail of QWRs emission
is highlighted in yellow. (b) Time-resolved PL of the X− transition of QD1 for different laser
excitation powers and far-detuned from the CM. The decay times corresponding to each powers
are τ100 = 1.58 ± 0.04 ns, τ500 = 1.68 ± 0.03 ns, τ2000 = 1.55 ± 0.05 ns, τ5000 = 1.65 ± 0.05 ns
(c) Time-resolved PL of different features highlighted in (a). Lifetimes: τX− = 1.61± 0.04 ns,
τX−,phonon tail = 2.47± 1 ns, τexcited hole = 0.54± 0.04 ns, τQWRs = 0.268± 0.008 ns. Reprinted
with permission from [157]. Copyright 2015, AIP Publishing LLC

peak in our system, we measured the dynamics of several key features of the spec-
trum in Fig. 5.13(a). For high excitation powers (above 2000 μW ), additional features
are observed in the QD spectrum beside its ground state emission. Emission from
the excited hole states is observed at 1.432 eV , and bright emission from the three
wedge QWRs is observed centered at 1.47 eV . Figure 5.13 (c shows the dynamics of the
different transitions observed at high P . Three subsequent emissions are observed:
first the emission of the QWRs delayed by 0.5 ns (decay time τ = 0.268 ns), then the
emission of the p-states delayed by 0.9 ns (τ = 0.54 ns) and finally the emission of
the ground state delayed by 3.5 ns (τ = 1.61 ns). By comparing the emission from
the QWRs with the fast dynamics feature observed at high power in the X− emission,
we conclude that the latter represents emission from the low energy tail of the QWRs
(see Fig. 5.13 (b)). Apart from the QWR tails at high excitation powers, no additional
parasitic emission is observed at the energy of the QD ground states at high P . Indeed,
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5.1. One quantum dot coupled to an L3 photonic crystal cavity

we do not see evidence of background emission related to the hybridization of excited
state manifolds with delocalized barrier state, as observed for self-assembled QDs[152,
153]. No emission correlated with the population of excited states is observed either in
the dynamics of the X− emission.

Finally, we investigated the dynamics of the X− and CM for a detuning of δ = 2.5meV

under low (40μW ) and high (2000μW ) excitation powers (see PL spectra in Fig. 5.14 (a)
and dynamics of the X− and CM transitions in Fig. 5(b)). For P = 40 μW , the X− and
CM lines exhibit similar decay times of 1.56± 0.09 ns and 1.63± 0.09 ns respectively,
consistent with a detuning of δ = 2.5 meV . A single exponential decay is visible in
the dynamics of both transitions. For an excitation power of 2 mW , above the QD
saturation, the X− emission is delayed due to the finite p-state occupation, and the
emission of the QWR background appears at short delay times. The CM line exhibits
once again a dynamic similar to the X− transition to which it is coupled. The delayed
emission of the X− is visible at the CM frequency. The same holds for the QWR
background emission that is now the dominant contribution to the CM emission.
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Figure 5.14: (a) Spectra of QD B at low (40 μW ) and high (2mW ) excitation powers. (b) Time-
resolved PL of the X− and CM emission for low and high excitation powers. The decay times at
low excitation powers are τCM = 1.63 ± 0.09 ns and τX− = 1.56 ± 0.09 ns. At high excitation
powers the decay time are τCM = 1.49 ± 0.08 ns and τX− = 1.35 ± 0.12 ns. Reprinted with
permission from [157]. Copyright 2015, AIP Publishing LLC
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Chapter 5. Site-controlled quantum dots in Ln photonic crystal cavities

5.2 Two quantum dots coupled to an L3 photonic crystal cav-
ity

Up to now, most solid-state QED studies have been performed with single emitters,
whether it be superconducting qubits or semiconductor QDs. Recently, two research
groups investigated a system made of two emitters, atoms in one case[271] and ions
in the other[272], interacting with a single cavity. For the first time, they observed
subradiant and superradiant behaviour for exactly two emitters coupled to a cavity. In
the past decade, scientists have been trying to achieve similar results in solid-state sys-
tems. The study of systems comprising of two or more solid-state emitters coupled to
single optical cavity has been motivated by various quantum information applications.
Systems comprising of two qubits embedded in a microcavity have been proposed
for realizing long distance interaction between spin qubits[273] and multi particle
entanglement[274, 275]. Quantum computing schemes requiring multiple emitters
communicating through their interaction with a confined optical field have also been
proposed[276, 277] to carry out parallel quantum logic operations. Such systems
are also of interest to study collective behavior[230] and are promising candidates to
realize low threshold nanolasers[278].

Superconducting qubits coupled to microwave cavities are promising candidates to
investigate collective interactions of few emitters embedded in a cavity. The determin-
istic nature of superconducting qubits as well as the high quality factors of microwave
cavities facilitate the investigation of collective states in such systems. In 2009, J.M.
Fink et al. demonstrated the coupling of N = 1, 2 and 3 superconducting qubits with a
microwave cavity, evidencing the presence of bright and dark Tavis-Cummings collec-
tive multiqubit states[279] along with the

√
N scaling of the collecting dipole coupling

strength. More recently, they achieved with the same system W-type entanglement of
Dicke states[280].

Semiconductor QDs coupled to PhC or micropillar cavities offer an interesting alter-
native due to their higher operating temperature (10− 80K) and larger dipole-cavity
coupling strength originating in part from smaller cavity mode volumes (1− 6 (λ/n)3).
The first report of cavity mediated coupling of two emitters was published in 2006 by
Reitzenstein et al. They demonstrate the coherent coupling of two energy separated
self-assembled QDs by the optical mode of a micropillar cavity[281]. Soon after, the
coupling of two QDs to the same CM of a micropillar cavity was demonstrated using a
deterministic far-field optical lithography technique[70]. In 2010, cavity-mediated cou-
pling was reported in a weakly coupled system comprising of two self-assembled QDs
coupled to a PhC cavity[282]. Soon after, the collective behavior of two self-assembled
QDs strongly coupled to a PhC cavity by tuning two exciton spin states into reso-
nance using an electric field[283] and a magnetic field[147] was evidenced. In 2012,
Majumdar et al. observed up- and down-frequency conversion of light via phonons
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5.2. Two quantum dots coupled to an L3 photonic crystal cavity

in a system made of two self-assembled QDs coupled to a PhC cavity[219]. Finally,
intertalk between two remote self-assembled QDs coupled to the same PhC cavity was
demonstrated in 2013[284]. All these studies were performed with self-assembled QDs
randomly distributed in position inside the cavity. As a consequence, the exact posi-
tion of the QDs was not known and parasitic emission from additional QDs cannot be
neglected. Controlling the position of the QDs within the cavity is essential to achieve
radiative coupling between distant emitters[285]. As for the case of one QD coupled
to a cavity, the presence of delocalized 2D wetting layer states in the vicinity of self-
assembled QDs influences QD-cavity coupling mechanisms, adding complexity to the
interpretation of coupling experiments. Furthermore, systems using randomly located
emitters are not suitable for the realization of on-chip scalable quantum information
networks[286].
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Figure 5.15: (a) Illustration of the two pyramidal QDs positioned on the secondary antinodes of
the CM spatial intensity distribution. (b) Spectrum of the two QD-cavity structure resolved in
linear polarization along the V and H directions indicated in (a).

The structures studied in this section consists of two site-controlled QDs embedded
in an L3 PhC cavity. The two QDs, labeled QD1 and QD2, are positioned on the two
secondary antinodes of the fundamental CM (Fig. 5.15 (a)). They are separated by
subwavelenght distance of ∼ 350 nm. A full description of the fabrication method
of these structures as well a systematic investigation of their PL characteristics can
be found in reference [173]. This section focuses on one structure for which the CM
transition is coupled to the X− transition of QD1 and the X transition of QD2 (Fig.
5.15 (b)). A previous study demonstrated the simultaneous coupling of those two QDs
to the same CM[173]. Here we apply the theoretical formalism presented in chapter 3
to the case of two QDs coupled to a CM and compare the PL properties of these two
QD structures to simulations.
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5.2.1 Detuning dependent photoluminescence

Fig . 5.16 (a) and (b) shows the temperature dependent PL measurement of the struc-
ture presented in Fig. 5.15. In Fig. 5.16 (b), the spectra are normalized by their maxi-
mum intensity for each temperature. At T = 10K, the CM transition is near-resonant
with the X−

1 transition of QD1. As the temperature is increased, the CM transition
blueshifts with respect to X−

1 and at 40K is located in between X−
1 and the neutral

exciton X2 of QD2. At 55K, the CM is brought in resonance with X2. Fig. 5.16 (c) shows
the peaks transition energies as a function of temperature. No anti-crossing is visible
between either of the QD line and the CM. However, Purcell enhancement of the emis-
sion at resonance is clearly visible in Fig. 5.16 (d) that displays the integrated intensity
of X−

1 and X2 as a function of detuning. Furthermore, a strong co-polarization of the
emission is visible in Fig. 5.16 (e) that summarizes the transitions DOLP as a function
of detuning. Both QDs are thus weakly coupled to the CM. In the 35−40K temperature
range, when the CM transition is in between the two QD lines, both X−

1 and X2 are
strongly co-polarized, indicating that both QDs are simultaneously coupled to the CM.

5.2.2 Modeling of photoluminescence

The theoretical model presented in chapter 3 and used to reproduce the PL emission of
a single QD-cavity system is applied here to the case of two QDs coupled to the same
CM. As detailed in chapter 3, the model can easily be extended to describe a system
with more than one QD. Simulations were performed using the list of parameters
summarized in Table 5.2. As for the 1 QD simulations, the only fitting parameters
are the TLS-CM coupling strength g, the phonon density of state constant A and the
incoherent pumping rate P . Two TLS-CM coupling constants are however required to
account for the coupling of each QD to the CM. The results of the simulation are shown
and compared to the experimental temperature dependent measurement in Fig. 5.17.
The experimental and simulated spectra are normalized by their maximum intensity
for each temperature.The simulations are in good agreement with the experimental
measurements over a large detuning range. The off-resonant feeding of the CM by the
two QD lines and strong co-polarization of their emission are well accounted for by
the simulations.

The un-normalized simulated spectra are displayed as a function of temperature
in Fig. 5.18 (a), revealing the increased emission of the TLSs when resonant with
the CM. The evolution of the TLS’s maximum intensity with detuning is compared
to the experimental data in Fig. 5.18 (b). The profiles of the maximum intensities
are remarkably well reproduced by the simulations for both QD lines. The Purcell
enhancement of the emission at resonance is well accounted for by the model. Fig.
5.18 (c) shows the evolution of the peak integrated intensities as a function of detuning.
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Figure 5.16: (a) PL spectra of the two QDs coupled to the CM displayed as a function of temper-
ature. (b) PL spectra centered on the QD energies displayed as a function of the temperature.
Each spectra is normalized by its maximum intensity. (c) Transition energies of the CM, X−

1

and X2 as a function of temperature. Integrated intensity (d) and DOLP (e) of the X−
1 and X2

lines as a function of detuning.

The profile is once again well reproduced by the simulation of the X−
1 of QD1. For QD2,

however, the increase of the integrated intensity at resonance is underestimated by
the simulation. This might by explained by the high sample temperature for which the
resonance occurs. Indeed, above 50K, the linewidth of the QD lines start to increase
due to thermally induced dephasing[102]. This phenomenon is not included in the
model and the deviation from the simulation observed in Fig. 5.18 (c) may result from
an underestimation of the X2 linewidth at higher temperatures. The DOLP of the QD
lines and TLSs extracted from the experiment and simulation, respectively, is shown
in Fig. 5.17 (d). The simulations reproduce the general trend of the DOLP. Both TLSs
reach a DOLP of 0.9 at resonance, as do the X−

1 and X2 QD transitions.

The best simulation results were obtained using the same TLS-CM coupling strength
h̄g0 = 50 μeV for both QDs. This is consistent with the position of the QDs on the
two secondary antinodes of the fundamental CM, which ensures that both QD couple
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Table 5.2: Table of parameters used for the simulation of Fig. 5.17. The fitting parameters are
indicated in blue. The other parameters were retrieved from independent measurements or
estimated from typical pyramidal QD characteristics.

Parameter Symbol [unit] QD1 QD2
TLS loss rate h̄γ [μeV ] 0.2
CM loss rate h̄κ [μeV ] 650

Pure dephasing rate h̄γd [μeV ] 230 104
TLS-CM coupling strength h̄g0 [μeV ] 50 50

Phonon density of
state constant

2π
h̄2A [nm/meV ] 1.4

Incoherent pumping rate h̄P [μeV ] 1
Wave function standard

deviation (in plane)
� [nm] 4

Wave function standard
deviation (vertical)

�z [nm] 2

CM coupling efficiency
to detector

Fcav 0.4

TLS coupling efficiency
to detector

Fat 0.3
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1 and X2 transitions with the
simulations (dashed lines).

equally with the mode electric field (Fig. 5.15 (a)). A phonon coupling constant
2π
h̄2A = 1.4 nm/meV was obtained from the fit, identical to the one obtained for QD
B (see subsection 5.1.2). The fact that the spectra of single and double QD-cavity
structures are fitted using nearly identical simulation parameters indicates the good
control of the QD-cavity coupling in these experiments and consolidates the TLS-cavity
model presented in chapter 3.

These results clearly demonstrate that both QDs are coupled to the same CM. However,
a point that needs to be clarified is wether or not collective coupling of the QDs
occurs via the CM. In the case of weak QD-cavity coupling, the PL spectrum does not
give sufficient information to answer this question. The results of the simulations
however can give some insight as to whether or not collective effects are hidden in
the experimental spectra. Indeed, the simulations give access to the individual TLS
contributions of the total PL spectrum. Fig. 5.19 (a)[(b)] shows detuning dependent
simulations including only TLS1 [TLS2] performed with the parameters of table 6.5.
These results show the behaviour of each TLS when coupled independently to the CM,
which can be compared to the two TLS system simulations of Fig. 5.17. As can be
seen from Fig. 5.19 (a) and (b), each TLS contributes to the off-resonant CM emission.
These contributions are labeled CM1 and CM2.

In the presence of collective coupling, one would expect the CM off-resonant emis-
sion to differ from the case of sequential coupling of two QDs. For example, under
superradiant conditions, more light should be collected at the energy of the CM. In
our system this can be investigated by comparing the integrated intensity of the CM
peak when both QDs are coupled to the CM, the sum of integrated intensities of CM1
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and CM2. This is summarized in Fig. 5.19 (c) that shows the evolution of the CM
peak integrated intensity of the different systems as a function of detuning. The CM
intensity when both QDs are simultaneously coupled to the CM (red dots) presents
two dips corresponding to temperatures of T = 22K and T = 33K, corresponding
to the resonances with TLS1 and TLS2 respectively. The individual contributions to
the CM off-resonant emission of TLS1 and TLS2 correspond to the blue and green
line respectively. The sum of these contributions (dashed line) matches perfectly the
CM intensity of the 2 QD system in the temperature range for which the CM stands in
between both QDs (T = 30− 40K), corresponding to an equal coupling of the CM to
both QDs. This shows that for this structure, both QDs are sequentially coupled to the
CM, and no collective coupling of the QDs occurs.

5.3 Chapter summary

In this chapter we investigated the coupling of pyramidal QDs to the CM of an L3

PhC cavity. The polarization resolved spectra of a single QD interacting with a single
CM were compared to simulations of a single TLS couple to a CM in the presence
of pure dephasing and phonon scattering. The off-resonant CM emission and QD
co-polarization induced by the QD-cavity coupling were reproduced by the model
over a large detuning and temperature range. By fitting the experimental spectra of
two different QDs, we extracted coupling strengths of h̄g0 = 20 μeV and h̄g0 = 50 μeV ,
corresponding to a weak QD-cavity coupling. We also obtained detuning dependent
values of the phonon cavity feeding rate which allowed a quantitative analysis of the
impact of phonon scattering and pure dephasing on the CM off-resonant emission.
This showed that although exciton-phonon interactions are mainly responsible for off-
resonant CM emission, both decoherence mechanisms contribute to the CM emission,
but with efficiencies that strongly depend on QD-cavity detuning. The study of the
dynamics of the excitonic and CM transitions revealed that the CM is fed only by the
coupled QD for weak above band gap excitation. The QD decay rate was measured on a
large detuning range showing an increase of the decay rate at resonance corresponding
to a Purcell factor of 17. This enhancement of the QD spontaneous emission was
partially masked by a decrease of the QD decay rate with temperature, attributed to
thermally activated non-radiative recombination channels. Measurements of the time-
resolved QD emission for high pump powers revealed a non negligible contribution
of the low energy tail emission of QWRs located in the vicinity of the QD. This fast
dynamics emission occurs before the pyramidal QD emission and strongly contributes
to the off-resonant CM emission. No other parasitic emission was observed even for
high excitation powers, confirming the absence of the broadband emission observed
for self-assembled QDs due to the presence of the 2D wetting layer.
This study was extended to a more complex structure comprising two QDs coupled to
the same CM. Polarization resolved spectra acquired for different sample temperatures
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Figure 5.19: Spectrum of TLS1 (a) and TLS2 (b) individually coupled to the CM. The simulation
of both TLSs simultaneously coupled to the CM is shown in Fig. 5.17. (c) CM peak integrated
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dashed line corresponds to the sum of these two integrated intensities. The red dots show the
CM peak integrated intensity when both TLSs are simultaneously coupled to the CM.

evidenced that both QDs were coupled to the CM. By comparing the simulations to a
model describing the interaction of two TLSs with the same CM, we showed that the
coupling was sequential, i.e., no collective coupling occurs. This absence of collective
emission is understandable given the energy difference of 2 meV between the two
coupled QDs and important dephasing effects that inhibit superradiant emission.
Observing collective coupling could be achieved by increasing the number of QDs as
shown in Fig. 5.20. Coupling of up to four pyramidal QDs to the same CM of an L7
cavity was reported[175]. Although the magnitude of the QD-cavity coupling is reduced
in these structures due to the larger cavity mode volume, increasing the number of QDs
could facilitate the observation of collective effects as the intensity of superradiant
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Chapter 5. Site-controlled quantum dots in Ln photonic crystal cavities

emission scales with N2 for N emitters initially inverted (see chapter 3). However,
achieving collective emission with multiple pyramidal QDs embedded in Ln cavities
remains challenging and has yet to be reported.

Figure 5.20: ((a)–(c)) Scanning electron microscope images of the L7 PhC cavities incorporating
different numbers of pyramidal QDs. ((d)–(f)) calculated near field patterns of the first confined
modes of the PhC cavities (pitch a = 200 nm and hole radius r = 60 nm. The resonance
energies are indicated. Reprinted from Publication [175], Copyright (2014), with permission
from Elsevier.
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6 Supermodes in 1D and 2D coupled
cavity arrays

The study of cavity quantum electrodynamics (cavity-QED) using solid-state imple-
mentations has been motivated by potential applications in quantum information
processing[287] and quantum computing[288]. In this context, the coupling of semi-
conductor quantum emitters to nanocavities has been studied extensively, leading
to the realization of quantum information circuits building blocks such as all-optical
switching gates[289] or single quanta selection devices[290]. These systems exploit
the interaction between a quantum emitter and a single optical cavity. However, the
need for scalability in quantum circuits has motivated the extension of this study to
multiple cavities. Coupled cavity arrays (CCAs) are promising candidates for realizing
quantum networks[291, 292], enabling the transfer of information between spatially
separated quantum objects via transmission of confined photons. They are also an
ideal platform to pursue the implementation of quantum simulators[293, 294], moti-
vated by the observation of quantum phase transitions with ultra-cold atoms in optical
lattices[295].

The simplest CCA system comprising two nominally identical cavities, has been
demonstrated with micropillars[296–298], microdisks[299] and photonic crystal (PhC)
structures[300–305]. The two cavities interact via their overlapping evanescent local-
ized electro-magnetic fields. The interaction is characterized by a coupling strength,
which if sufficient, leads to the formation of new non-degenerate delocalized su-
permodes. Optical coupling in larger scale CCAs is more difficult to realize since
fabrication-induced optical disorder prevents the realization of identical cavities. This,
in turn, results in mode localization, which effectively prevents optical coupling be-
tween sufficiently remote cavities. To counteract disorder effects, cavity configurations
with large enough optical coupling are necessary. Nevertheless, ultra slow light pulse
propagation has been achieved in large scale linear CCAs coupled to waveguides[306,
307], and more recently, 2D arrays of coupled cavities have also been investigated[308].
However, these experiments employed either passive optical excitation or randomly
positioned emitters to probe the optical modes. While the first approach is less suited
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Chapter 6. Supermodes in 1D and 2D coupled cavity arrays

for the realization of on-chip devices, the second one renders the identification of delo-
calized coupled modes difficult. Indeed, if light emitters are inserted in all the cavities
of the CCA, frequency shifts of individual cavities caused by disorder[309] rather than
cavity coupling can explain the observation of multiple optical modes in the spectrum
of the array. A more direct method of identifying mode delocalization consists in
observing the field distribution by performing optical near-field measurements[310].

In this chapter, we investigated experimentally 1D and 2D arrays of coupled L3 pho-
tonic crystal cavities. In section 6.1, the optical modes of the coupled cavity arrays are
fed by a site-controlled quantum wire (QWR) light source. By performing photolumi-
nescence measurements and relying on near-field calculation of the cavity modes, we
evidence optical coupling between the cavities as well as supermode delocalization. In
particular, for small cavity separations, fabrication induced disorder effects are shown
to be negligible compared to optical coupling between cavities. In section 6.2, we
demonstrate the coupling of two site-controlled pyramidal quantum dots (QDs) to the
delocalized optical mode of two coupled L3 PhC cavities.

6.1 1D and 2D arrays of coupled cavities with site-controlled
quantum wire light sources

We present in this section the first demonstration of coupling between a localized QWR
emitter and arrays of three and five coupled PhC membrane cavities. By performing
photoluminescence (PL) spectral measurements, we show that short site-controlled
QWRs[15], located in one cavity of the coupled array, are sufficient to excite all the
supermodes of the CCA. This renders the identification of delocalized optical modes
straightforward, removing the need to rely on statistical arguments or near field mea-
surements. Furthermore, the study of the optical modes is made easier by using QWRs
rather than QDs. The broader emission spectrum of the QWRs facilitates spectral
matching with the supermodes of the arrays, thus requiring less control over their
spectral characteristics.
Some of the results presented in this section were published in reference [311].

6.1.1 Fabrication of photonic crystal cavity arrays with integrated quan-
tum wire light sources

The structures investigated in this chapter consist of V-groove quantum wires coupled
to arrays of L3 PhC cavities. First, a (100)-oriented 200 nm thick GaAs membrane on
top of a 1μm Al0.7Ga0.3As was patterned with a 10μm pitch V-groove grating using e-
beam lithography as depicted in Fig. 6.1 (a). Vertical stacks of five In0.15Ga0.85As/GaAs
QWRs were then grown on the patterned substrate (Fig. 6.1 (b)). After the QWR
growth, the planarized sample had a total membrane thickness of 260− 265 nm. Using
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(a)

(b)

(c)

(d)

AlGaAS

GaAS
V-groove trench

Alignement mark

PhC pattern

QWR

Figure 6.1: Schematics of the fabricated structure after (a) V-groove patterning, (b) growth of the
five In0.15Ga0.85As/GaAs QWRs (inset: cross-section of the stacked QWRs), (c) PhC patterning
using e-beam lithography and (d) PhC membrane release.

high-precision alignment (∼40 nm accuracy), PhC cavity patterns were produced in a
polymethyl methacrylate layer (PMMA), transferred into a SiO2 hard mask and then
etched into the GaAs layer using an optimized BCl3/N2 ICP recipe[312] to produce
straight cylindrical PhC holes (Fig. 6.1 (c)). The GaAs membrane was released by etch-
ing the sacrificial Al0.7Ga0.3As layer using a 4% HF: H2O solution at slightly elevated
temperature (∼30◦C) in order to exclude the formation of cracks (Fig. 6.1 (d)). Before
characterization, the samples were etched by a 1 mol citric acid solution[313] in order
to remove GaAs oxide and residues of SiO2. The sample investigated in this section
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Chapter 6. Supermodes in 1D and 2D coupled cavity arrays

was fabricated by K. A. Atlasov and co-workers. Schematics of the final structures are
shown in Fig. 6.2 (a) and (b). They consist of a fully suspended PhC GaAs slab with L3

defect cavities. The alignment of the cavity pattern with the V-groove grating allows for
the QWR stacks to be inserted only in the central cavity of the CCA.

(a) (b)

QWRs

QWRs

V

H

Figure 6.2: Schematics of PhC coupled cavity array with integrated QWR light sources made of
three (a) and five (b) cavities. The inset of (a) shows the position of the QWRs.

(a)
(b)

(c)

QWR-PhC patterns

QWR-PhC structure

QWR-PhC sample design

Figure 6.3: Design of the investigated sample. (a) Map of the sample containing 21 QWR-PhC
patterns. (b) Close up of one pattern containing 13 QWR-PhC structures. (c) Close up on one
structure comprising three PhC L3 cavities with an integrated QWR light source.
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The structure of the sample is shown in Fig. 6.3 (a). It contains 21 patterns, each
consisting of up to 22 QWR-PhC structures with different r/a ratio. This was obtained
by keeping the PhC pitch constant (a=200nm) and by varying the hole radius from 43.5
nm to 52.5 nm in steps of 1.8 nm. Examples of a QWR-PhC pattern and structure are
given in Fig. 6.3 (b) and (c) respectively. Schematics of the coupled cavity structures
studied in this chapter are given in Fig. 6.4. The cavities are diagonally positioned
to increase the overlap between the evanescent tails of their localized optical field.
This configuration optimizes their optical coupling[314] and helps counteract the
impact of optical disorder on mode localization. Fig. 6.4 (a) and (b) correspond to
1D CCAs with inter-cavity separations (distance between the centers of two adjacent
cavities) of 0.8μm and 1.4μm which is equivalent to the cavities being separated by 1
row and 3 rows of PhC holes along the y direction. Fig. 6.4 (c) corresponds to a 1D CCA
comprising of 5 cavities with 1.4μm inter-cavity separation. Fig. 6.4 (d) corresponds to
a 2D CCA with 1.4μm inter-cavity separation.

3 coupled cavities - 1 row separation 3 coupled cavities - 3 rows separation

5 coupled cavities - 3 rows separation
   Matrix disposition

0.8 μm 1.4 μm

(d)

(a) (b)

(c)
y

x

5 coupled cavities - 3 rows separation
   Linear disposition

Figure 6.4: Designs of the structures present on the sample: Three linearly coupled cavities
with QWRs integrated in the central cavity of the array with 1 (a) and 3 (b) row separation
(Refers to the number of rows of PhC holes in between the cavities along the y direction). (c)
Five linearly coupled cavities with 3 rows separation and a QWR light source in the central
cavity of the array. (d) 2D array comprising of five cavities with QWRs integrated in the central
cavity of the array.
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Chapter 6. Supermodes in 1D and 2D coupled cavity arrays

6.1.2 Supermode finite difference simulations

The notion of supermode mentioned in the previous section can be better understood
by calculating the electric field distributions of CCAs. They can be obtained by per-
forming 2D finite difference simulation for the different CCA designs of Fig. 6.4 and
Fig. 6.13 (b). Our 2D simulation relies on an effective index method which allows to
compute with great efficiency the electric field distribution at the symmetry plane of
the PhC slab (see section 2.2). This method also allows us to obtain an estimation of
the energy distribution of the optical mode, which will help interpret the CCA emission
spectra.

M01

M02

0 0.5 11-1 0
Electric field amplitude [a.u.] Electric field intensity [a.u.]

r=48.9 nm   a=200 nm   neff=3.258

(a) (b) (c)

(d) (e) (f)

x

y

Ey Ex

1.351 eV

1.359 eV

Figure 6.5: Computed near-field distributions for the modes of two coupled cavities. (a) and
(b) y and x component of the electric field for M01. (c) Electric field intensity distribution for
M01. (d) and (e) y and x component of the electric field for M02. (f) Electric field intensity
distribution for M02. The green horizontal line indicates the position of the QWR light source.

The result of these simulations for two coupled cavities is shown in Fig. 6.5. The
simulations shown in this section focus on the fundamental TE modes of the CCAs.
For the particular case of two coupled cavities, only two fundamental modes, M01 and
M02, are predicted by the simulations and were observed in the experimental spectrum
(Fig. 6.13 (b)). Both modes have a similar electric field intensity distribution (Fig. 6.5
(c) and (d)) and are delocalized over the two cavities forming the array. However, the
supermodes M01 and M02 are not completely identical as revealed by closely inspecting
the electric field amplitude distribution. Indeed, for M01 the sign of the electric field
amplitude taken at the center of the cavities is identical, while for M02 it is opposite.
For this reason, the M01 mode is often referred to as the even mode, and the M02 mode
as the odd mode. The difference in parity between the two modes can be understood
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and generalized to larger arrays of cavity with coupled mode theory.

Coupled mode theory

We consider the system illustrated in Fig. 6.6, consisting of a chain of N cavities
separated by a distance R. In the spirit of Tight Binding theory, we write the electric
field of this coupled cavity system, following coupled mode theory[315, 316], as

Eν(r) =

N∑
n=1

AnEω(r − nRez) (6.1)

where Eω is the electric field of an individual cavity and An is the amplitude and phase
of the nth cavity. The coefficients An can be calculated by imposing that Eν satisfies
Maxwell’s equations and using the boundary conditions A0 = AN+1 = 0, giving for the
qth supermode[317]

Aq
n =

√
2

N + 1
sin

(
πq

N + 1
n

)
(6.2)

where only nearest neighbour interactions are considered. In this case, the frequency
of the qth supermode is[317]

νq = Ω

√
Cq − β

Cq − α+ CqΔα
(6.3)

with

β =

∫
drε0(r − (m± 1)Rez)Eω(r −mRez) ·Eω(r − (m± 1)Rez) (6.4)

α =

∫
drε(r)Eω(r −mRez) ·Eω(r − (m± 1)Rez) (6.5)

Δα =

∫
dr[ε(r)− ε0(r −mRez)]Eω(r −mRez) ·Eω(r −mRez) (6.6)

where ε0(r) and ε(r) are the dielectric function distributions of an individual cavity
and the coupled cavity system respectively.

n=1 n=2 n=3 n=4 n=N-1 n=N

R

Figure 6.6: Schematics of chain of N cavities separated by a distance R.
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Chapter 6. Supermodes in 1D and 2D coupled cavity arrays

For N = 2, the corresponding superposition coefficients are summarized in table 6.1.
For the first supermode (q = 1), the superposition coefficients are identical, while for
the second supermode (q = 2), they have an opposite sign. This result can be seen in
the field patterns of Fig. 6.5 (a) and (d). The supermode field pattern in each cavity
is very similar to the field pattern of the M0 mode of an individual L3 cavity. This
is a necessary condition to apply coupled mode theory which is valid only for weak
inter-cavity coupling.

Table 6.1: Coupled mode theory superposition coefficients calculated for N=2.

n = 1 2

A1
n

1√
2

1√
2

A2
n

1√
2

− 1√
2

This simple analysis can help understand what to expect for three linearly coupled
cavities with 1.4μm inter-cavity separation. In this case we expect three supermodes,
with superposition coefficients summarized in table 6.2. Once again the sign of the
superposition coefficients correspond the the sign of the y- component of the electric
field at the center of cavity of the array (Fig. 6.7 (a)-(c)). Furthermore, in contrast to
the case of two coupled cavities, the amplitude of the coefficients varies from cavity to
cavity. For M01, the electric field is more intense in the center cavity of the array (Fig.
6.7 (g)). For M02, the electric field intensity is equal to zero in the center cavity (Fig. 6.7
(h)).

Table 6.2: Coupled mode theory superposition coefficients calculated for N=3.

n = 1 2 3

A1
n

1
2

1√
2

1
2

A2
n

1√
2

0 − 1√
2

A3
n

1
2 − 1√

2
1
2

Although the same general trends are reproduced for three linear cavities with 0.8μm

inter-cavity separation, the electric field patterns are different. This inter cavity sepa-
ration does not correspond to weak inter-cavity coupling and coupled mode theory
starts to break down. Indeed, for the M02 supermode, the field intensity in the center
cavity deviates from zero.
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Figure 6.7: Computed near-field distributions for the modes of three coupled cavities with
3 rows separation. (a)-(c) y component of the electric field for M01, M02 and M03. (d)-(f) x
component of the electric field for M01, M02 and M03. (g)-(i) Electric field intensity distribution
for M01, M02 and M03. The green horizontal line indicates the position of the QWR light source.
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Figure 6.8: Computed near-field distributions for the modes of three coupled cavities with
1 row separation. (a)-(c) y component of the electric field for M01, M02 and M03. (d)-(f) x
component of the electric field for M01, M02 and M03. (g)-(i) Electric field intensity distribution
for M01, M02 and M03. The green horizontal line indicates the position of the QWR light source.
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Chapter 6. Supermodes in 1D and 2D coupled cavity arrays

The case of 5 linearly coupled cavities with 1.4μm inter-cavity separation follows the
same logic as for 3 cavities. The superposition coefficients calculated using coupled
mode theory are summarized in table 6.3. The electric field patterns of the five su-
permodes computed using 2D finite differences are shown in Fig. 6.9. For this longer
chain of coupled cavities it becomes apparent that the field intensity in each cavity is
modulated by a sine function, which is consistent with equation (6.2).

Table 6.3: Coupled mode theory superposition coefficients calculated for N=5.

n = 1 2 3 4 5

A1
n

1
2
√
3

1
2

1√
3

1
2

1
2
√
3

A2
n

1
2

1
2 0 −1

2 −1
2

A3
n

1√
3

0 − 1√
3

0 1√
3

A4
n

1
2 −1

2 0 1
2 −1

2

A5
n

1
2
√
3

−1
2

1√
3

−1
2

1
2
√
3

With five cavities, it is also possible to form a 2D CCA, while maintaing an optimal
inter-cavity coupling (Fig. 6.4 (d)). The calculated electric field patterns for this
structure are summarized in Fig. 6.10. The superposition coefficients calculated using
coupled mode theory for a linear chain of cavity do not apply here. However, a similar
calculation for 2D arrays of cavities[318] can explain the mode patterns observed here.
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Figure 6.9: Computed near-field distributions for the modes of five linearly coupled cavities
with 3 rows separation. (a)-(e) y component of the electric field for M01, M02, M03, M04 and
M05. (f)-(j) x component of the electric field for M01, M02, M03, M04 and M05. (k)-(o) Electric
field intensity distribution for M01, M02, M03, M04 and M05. The green horizontal line indicates
the position of the QWR light source.
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Figure 6.10: Computed near-field distributions for the modes of 2D array made of five coupled
cavities with 3 rows separation. (a)-(e) y component of the electric field for M01, M02, M03,
M04 and M05. (f)-(j) x component of the electric field for M01, M02, M03, M04 and M05. (k)-(o)
Electric field intensity distribution for M01, M02, M03, M04 and M05. The green horizontal line
indicates the position of the QWR light source.
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Figure 6.11: TE modes of coupled cavity arrays calculated with 2D finite difference for (a) two
coupled cavities, (b) three coupled cavities with 3 rows separation, (c) three coupled cavities
with 1 row separation, (d) five linearly coupled cavities and (e) a 2D array of five coupled
cavities.

The mode energy distribution of the five CCA presented in this section are shown
in Fig. 6.11. The localized supermodes lie within the PhC band gap, between the
dielectric and air bands (see subsection 1.4.1). The fundamental supermodes (labelled
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M01, M02, etc.), stemming from the interaction of the M0 modes of the individual L3

cavities are located right above the dielectric band. Their field pattern distributions
are shown in Figs. 6.5 and 6.7-6.10. Higher order localized modes were also predicted
by the simulations. These higher energy modes result from interaction of the higher
order modes (M1, M2, etc.) of the individual L3 cavities of the array. However, the
QWR growth and PhC design were optimized to match the QWR emission with the
fundamental mode energies. We also see from Fig. 6.11 that for a given design, the
fundamental modes are not at the same energy. In particular, for two cavities (Fig. 6.11
(a)), the modes M01 and M02 are split in energy. Indeed this system is analog to two
coupled oscillators of frequency ω1 and ω2, interacting with a coupling strength G. The
Hamiltonian for this system in matrix form is

H =

[
a† b†

]⎡⎢⎣ω1 G

G ω2

⎤
⎥⎦
⎡
⎢⎣a
b

⎤
⎥⎦ . (6.7)

The eigenvalues of this system are

Ω± =
ω1 + ω2

2
± 1

2

√
(ω1 − ω2)2 + 4G2. (6.8)

For two identical cavities (ω1 = ω2) we get Ω± = ω±G, which corresponds to an energy
splitting Δ = 2G between the two modes. For PhC CCAs, the mode energy separation
is dependent on the inter-cavity coupling strength G, which is related to the overlap
between the evanescent fields of each cavity, and thus the inter-cavity separation.
Indeed, as can be seen in Fig. 6.11 (b) and (c), the three coupled cavities with a smaller
inter-cavity separation of 0.8μm have a greater mode energy splitting (Fig. 6.11 (c)).

6.1.3 Photoluminescence measurements

Optical characterization of the CCA arrays was conducted using a standard micro-PL
setup (see subsection 2.1.2 for details). The samples were placed inside a He-flow
cryostat and excited optically with a Ti:sapphire laser at 700 nm wavelength under
continuous wave operation. A single microscope objective was used to focus the laser
beam on the sample surface (spot diameter of 1 μm) and collect the luminescence. A
half-wave plate and a linear polarizer were placed in the detection path for polarization-
resolved measurements.
Fig. 6.12 (b) shows the PL of bare QWRs, resolved in polarization along the V and H
directions indicated in Fig. 6.12 (a). The energy width of the QWR emission spectrum
is approximately 10meV . A few sharp features can be seen in the luminescence of the
wires. They correspond to the luminescence of localized excitons, trapped in disorder
induced potential traps along the QWR[319, 320]. Fig. 6.12 (b) also displays the DOLP
of the luminescence. The QWR emission is H-polarized, reaching a maximum of -0.5 at
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Figure 6.12: (a) Schematics of the cross-sectional view of the stacked QWRs light sources inte-
grated in the cavities. (b) Photoluminescence measurement of isolated QWRs linearly resolved
in polarization along the V and H directions indicated in (a). Upper panel: Corresponding
degree of linear polarization shown in grey.

the center of the QWR emission. This polarization anisotropy is consistent with mixing
between heavy-hole and light-hole bands induced by the two-dimensional quantum
confinement[321].

The PL of typical structures consisting of a stack of 5 QWRs integrated in the center
of an L3 PhC cavity is shown in Fig. 6.13 (a). The photoluminescence is resolved
in linear polarization and displayed in semilogarithmic scale. The enhancement of
the QWR emission by the fundamental mode of the cavity can be clearly seen in
the luminescence. This is a consequence of the Purcell effect, and a signature of
QWR-cavity coupling. At the emission energy of the CM, the polarization anisotropy
has been reversed, and the emission is now V-polarized. Indeed, QWR excitations
spectrally and spatially overlapping with the CM are more efficiently channeled into
the microscope objective by the fast decaying and V-polarized CM, than non coupled
QWR excitations. Fig. 6.13 (b) shows similar results for a structure with two L3 cavities.
The QWRs are integrated only in the bottom cavity. The two fundamental modes of
the cavities denoted M01 and M02 are clearly visible in the spectra. The fact that two
CM are excited by the QWRs is already an indication that the two cavities are coupled,
hosting two fundamental supermodes delocalized over both cavities. Indeed, in the
case of uncoupled cavities, only the fundamental mode of the bottom cavity would be
coupled to the QWRs and thus visible in the spectra. This CCA made of two cavities is
often referred to as a photonic molecule.

Fig. 6.14 (a) and (b) show typical PL spectra of CCAs comprising of three cavities,
corresponding to the designs of Fig. 6.4 (a) and (b). Here, three optical modes (M01,
M02 and M03) are visible in the spectra. The QWRs are integrated only in the center
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Figure 6.13: (a) Measured spectra of QWRs integrated in an L3 PhC cavity, linearly resolved
along the V and H directions. (b) Measured spectra of two coupled cavities with 3 rows
separation and QWRs integrated in the bottom cavity only (cf. schematic). The spectra are
resolved in linear polarization along the V and H directions.
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Figure 6.14: Measured spectra of three coupled cavities with 3 rows (a) and 1 row (b) separation.
The QWR light source is integrated in the central cavity of the array (cf. schematics). The
spectra are resolved in linear polarization along the V and H directions.
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cavity. Once again, the presence of three CM in the spectra is an indication of inter-
cavity coupling and optical mode delocalization. A striking difference between the
spectra of Fig. 6.4 (a) and (b) is the much larger CM energy separation observed for Fig.
6.4 (b), which is in qualitative agreement with the finite difference calculations (Fig.
6.11 (b) and (c)). For Fig. 6.4 (b), the larger mode separation is a consequence of larger
inter-cavity coupling, which is consistent with the smaller inter-cavity separation
(0.8μm as opposed to 1.4μm). A more detailed analysis of mode energy separation will
be given in section 6.1.4.
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Figure 6.15: (a)-(c) M02 y component of the electric field with hole radius disorder characterized
by a standard deviation σ = 0, σ = 3 nm and σ = 7.3 nm, for r = 48.9 nm and a = 200 nm. (d)
Integrated intensity of the M02 mode along the QWRs position within the central cavity as a
function of σ.

It might seem surprising that we observe coupling between the QWRs and the super-
mode M02 in the spectra of Fig. 6.4 (a), which, for an ideal structure, has a vanishing
field intensity at the central cavity (Fig. 6.7 (h)). This observation is explained by
the effect of fabrication-induced structural disorder. Indeed, structural disorder is
expected to alter the envelope function shapes, causing increasing localization at
either one of the cavities with increasing disorder and/or increasing distance between
the cavities (lower coupling). To get a qualitative picture of this effect on the mode
distributions, we artificially introduced disorder in our numerical simulation by chang-
ing randomly the PhC hole sizes, following a normal distribution characterized by
an average radius r = 48.9 nm and a standard deviation σ. Fig.6.15 (c) displays the
calculated y-component of the M02 field distribution for σ = 3 nm. Compared to the
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Chapter 6. Supermodes in 1D and 2D coupled cavity arrays

case of vanishing disorder (Fig.5.2 (b)), it is apparent that the disorder significantly in-
creases the electric field amplitude in the central cavity. In addition, we calculated the
integrated intensity of the M02 mode along the QWRs position within the central cavity
as a function of σ (Fig.6.15 (d)). For each σ, this value was averaged over 150 repetitions
of the simulation. We observe a clear enhancement of the central cavity near-field
intensity as σ is increased. In our structures, hole size variations of a few nanometers
are expected, explaining the observation of mode M02 in the PL measurements.
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Figure 6.16: Schematics of five linearly coupled cavities with 3 rows separation. (b) Measured
spectrum linearly resolved in polarization along the V and H directions indicated in (a). Upper
panel: corresponding DOLP showed in grey. (c) CCA supermodes and localized QWR exciton X
energies as a function of sample temperature. (d) Measured spectra showing the supermode
intensities as a function of excitation laser spot position.

Fig. 6.16 shows results of PL measurements for a larger linear CCA made out of five L3

PhC cavities (Fig. 6.16 (a)). The polarization resolved PL spectra of the structure are
shown in Fig. 6.16 (b). Four CMs, labelled M01, M02, M03 and M04, can be identified by
their different polarization, with respect to the background QWR emission. They can
be more clearly identified by examining the DOLP of the luminescence in the top panel
of Fig. 6.16 (b). Here only four modes were identified instead of the five fundamental
supermodes expected for such a structure. This can happen if one of the mode field
pattern does not have a significant overlap with the QWRs located in the central cavity.
By examining the field patterns of this structure (Fig. 6.9), we can see that two of the
five supermodes do not overlap with the QWRs. However, as for the case of three
linearly coupled cavities (see Fig. 6.15), we expect the structural disorder to alter the
field distribution and induce a finite coupling between these two modes and the QWRs.
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For this particular structure, the modification of the field pattern by the fabrication
induced disorder may be insufficient for one of these modes, which would explain its
absence in the PL spectrum. To confirm the mode identification, the energy of the
modes was monitored while the temperature of the sample was scanned from 10K to
50K as shown in Fig. 6.16 (c). As expected the mode energies shift with temperature,
but at a different rate than the localized QWR excitons. To prove that all CMs are indeed
fed by the QWRs in the central cavity of the CCA, we scanned the laser excitation spot
across the CCA. The spectra are shown as a function of the laser spot position in Fig.
6.16 (d). The maximum CM intensities are registered when the laser spot is centered
on the cavity incorporating the QWRs, corresponding to a spot position of 0 μm. The
CM intensities rapidly decrease when the laser spot is moved away from the central
cavity, and become negligible for a distance greater than 1 μm corresponding to the
laser spot diameter. When the laser spot is directly above the other cavities of the array,
no emission from either the QWRs are the modes is registered as expected. This gives
further evidence that the QWRs in the central cavity of the array couples to, in this case,
four CMs of the array.
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Figure 6.17: (a) Schematics of a 2D array of cavities with 3 row separation. (b) [(c)] Measured
low temperature spectrum resolved in linear polarization along the V and H directions with
[without] water vapor condensation. Upper panel: corresponding DOLP shown in grey.

Finally, PL measurements performed on a 2D CCA, comprising of five cavities are
shown in Fig. 6.17. The cavities are arranged in a matrix form, maximizing the inter-
cavity coupling (Fig. 6.16 (a)). Fig. 6.16 (b) shows the polarization resolved PL of the
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Chapter 6. Supermodes in 1D and 2D coupled cavity arrays

structure. Five modes are clearly visible in the DOLP of the luminescence (upper panel).
The CMs are not centered on the QWR emission but have a sufficient spectral overlap
to allow coupling. Fig. 6.16 (c) shows the spectrum of the same structure after water
vapor condensation (see subsection 2.3.2 for details on water vapor condensation
technique). The condensation results in a 15 meV redshift of the modes, bringing them
in resonance with the QWR emission.

6.1.4 Coupled cavity mode delocalization

Incorporating a site-controlled light source in a CCA allows to unambiguously deter-
mine via PL spectral measurements whether or not the cavities are coupled and if the
supermodes are delocalized. Fig.6.18 (a) and (b) display the low temperature (10K) PL
spectra for the three-cavity CCAs with 3 rows (see Fig.6.3 (b)) and 1 row (see Fig.6.3
(a)) cavity separations, respectively. In Fig.6.18 (a), Purcell enhancement of the QWRs
emission[15] is clearly observed in the form of three thin peaks (quality factor ∼ 3800)
at distinct energies, suggesting that the QWRs in the central cavity emit into three
confined optical modes. Note that the DOLP of these mode peaks is opposite in sign to
that of the QWR background emission, including the sharp PL lines of the QWR that
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arise from localized exciton recombination. These cavity modes correspond to the
three supermodes of the array M01, M02 and M03, as will be shown more quantitatively
below. In case of complete localization of the modes at different cavities, only the mode
localized in the center cavity, incorporating the localized QWR light source, would have
a signature in the PL. The observation of more than one cavity peak in the PL spectrum
is a proof that mode delocalization and thus optical coupling among cavities occurs.

Table 6.4: Calculated mode energies associated to the modes of Fig.5.2 for three coupled
cavities separated by 3 rows (top) and 1 row (bottom). The energy separations Δ12 and Δ32 are
the energy differences between the modes M02 and M01, and M03 and M02.

3 row M01 M02 M03

Energy [eV] 1.3688 1.3722 1.3754

Energy separation [meV] Δ12 = 3.4 Δ32 = 3.2

1 row M01 M02 M03

Energy [eV] 1.3444 1.3708 1.3917

Energy separation [meV] Δ12 = 26.3 Δ32 = 20.9

Fig.6.18 (b) shows the PL spectra of a CCA with 1 row separation, where the inter-cavity
coupling is expected to be larger than for 3 rows separation. The three delocalized
supermodes can be clearly identified here as well, and their spectral separation is
much greater than for the 3 rows separation. This is in qualitative agreement with the
calculations of the mode splitting in a three-element coupled system which scales with
the coupling strength as Δ =

√
2G, as well as the 3D FDTD mode energy computations

summarized in table 6.4. Note the different polarization of mode M03, believed to
occur due to the stronger optical coupling in this case.

Further evidence for the occurrence of delocalized modes in the three-element CCAs
was obtained by observing similar PL spectra for 17 other nominally identical structures
on the same sample. For each of these structures, we recorded the mode energies EM01 ,
EM02 , EM03 which are displayed as a function of the mean energy (EM01 + EM03)/2 in
Fig. 6.19 (a) and (b). From these measurements, we computed the mode separations
Δ12 = EM02 −EM01 and Δ23 = EM03 −EM02 . The fabrication-induced disorder present
in real CCAs prevents a straightforward estimation of the coupling strength G from
mode splitting measurements. Indeed, in the case of two coupled cavities, the mode
separation can be expressed as

Δ =
√
Δ2

0 + 4G2 (6.9)

where Δ0 is the energy difference between the two cavities induced by disorder[308].
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Figure 6.19: Measured energies of the M01, M02 and M03 supermodes as a function of their
mean energy value (dotted lines) for three cavity CCAs with a cavity separation of 3 rows (a) and
1 row (b). The vertical yellow lines indicate the set of points belonging to the same structure.
The mean value of the supermodes energy separation Δ̄ as well as its standard deviation σ are
indicated in (c) and (d) for respectively the 3 rows and 1 row separations. Δ̄ is compared to the
values computed using 3D FDTD.

Although Δ0 is difficult to estimate, the relative weight between the contributions
of the disorder and the coupling strength to the total mode splitting can be derived
from a statistical analysis. Indeed, as explained in Ref [308], these contributions
can be estimated by considering the ratio between the mean mode separation Δ̄ of
nominally identical CCAs and its corresponding standard deviation σ. In particular, a
ratio σ/Δ̄ � 1 indicates a dominant contribution of the coupling strength to the mode
separation.

Fig.6.19 (c) and (d) list the average mode separations and corresponding standard
deviations as well as the mode splittings computed with 3D FDTD simulations for the
3 rows separation and 1 row separation configurations. For the smaller inter-cavity
separation, we get a ratio σ/Δ̄ ∼ 0.1 which indicates a strong inter-cavity coupling and
a relatively negligible disorder effect. This is confirmed by comparing the average mode
separations to the mode splitting of the system without disorder calculated with 3D
FDTD simulations. As expected, the FDTD simulations reproduce the measured mode
splitting since the disorder effect in that case is negligible. For the 3 rows configuration,
the CCA no longer satisfies the condition σ/Δ̄ � 1, meaning that the contribution of
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the coupling strength is now comparable to the contribution of the disorder to the
total mode splitting. As a result, the measured average mode separation is now more
important than the value obtained from the FDTD simulation of the system without
disorder. As explained in the previous section, this disorder modifies the modes field
distribution and explains why the M02 supermode is excited by the QWRs located in
the central cavity. However, we show here that even when the fabrication-induced
disorder is comparable to the inter-cavity coupling strength, mode delocalization still
occurs, as evidenced by the observation of the three supermodes in the spectrum. In
other words, the formation of supermodes in a CCA is surprisingly robust to disorder.

One-dimensional CCAs are useful because of their relative simplicity and use in appli-
cations such as slow light propagation. However, to achieve the necessary scalability
required to implement quantum networks, CCAs of higher dimensionality have to be
fabricated. We investigated also the five-cavity 2D cross-shaped CCAs (Fig. 6.3 (d)),
with the QWRs inserted at the center cavity alone, by performing PL-measurements.
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in figure 1 for a structure consisting of 5 coupled cavities (refer to inset for design). (b)-(f)
Calculated intensity distributions for the M01, M02, M03, M04 and M05 supermodes.
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Fig.6.20 (a) shows the PL spectra of a structure for which we could identify 5 modes
fed by the QWR emission. We observe the Purcell enhancement of the QWR emis-
sion for 5 distinct energies, together with a change in the far-field polarization of the
luminescence clearly visible in the DOLP (see top panel of Fig.6.20 (a)). Polarized
mode emission, a consequence of the Purcell effect, has been observed previously
in QD-cavity systems[113, 262]. The QWR emission that is resonant with the cavity
modes acquires their polarization properties, explaining the difference in polarization
between the coupled and uncoupled QWR emission. This adds further proof that the
QWR light source feeds the first 5 delocalized modes of the 2D CCA: M01, M02, M03, M04

and M05. Their calculated near-field distributions are shown in Fig.5 (b)-(f). In Table
6.5, the energy spacing between the modes is reported and compared with the calcu-
lated mode spacing. The difference between the calculated and experimental mode
separations is explained by the finite amount of structural disorder present in the fab-
ricated CCA. The average difference between the calculated and experimental values
amounts to 3.08 meV and is comparable to the difference obtained for the 3 coupled
cavities with 3 rows separation (Fig.6.20 (c)). Indeed, the optical inter-cavity coupling
and fabrication-induced disorder are nominally the same for these two designs, thus
we expect similar contributions of the coupling strength and disorder to the total mode
splitting. However, despite this fabrication-induced disorder, the QWR light source of
the central cavity feeds the 5 CCA modes, indicating that cavity modes are delocalized.
The coupling of QWRs to the M02, M03 and M04 is also explained by an increase of the
near-field intensity in the central cavity of the array caused by structural disorder. The
experimental demonstration of coupling between a single site-controlled light source
and the supermodes of a 2D CCA is an important step towards the realization of larger
scale cavity arrays incorporating site-controlled emitters such as QDs in each cavity.

Table 6.5: Calculated and experimental mode splitting for the five-cavity 2D CCA.

Mode splitting Δ12 Δ23 Δ34 Δ45

Calculated 4.83 0.25 0.02 4.40

Experimental 2.57 3.19 6.86 4.66

In summary, we reported the fabrication of 1D and 2D CCAs with an embedded site-
controlled QWR light source. The QWR light source was placed only in one of the
cavities of the CCA structure. This design allowed us to distinguish between structures
for which optical coupling was sufficient to allow for mode delocalization from struc-
tures for which fabrication-induced disorder dominated over the optical coupling,
using simple PL characterization. We studied photonic crystal CCAs with different
cavity separation and showed that mode delocalization persists even when the disorder
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6.2. Site-controlled quantum dots coupled to photonic crystal molecules

is comparable to the optical coupling strength. Mode delocalization was observed
for 2D PhC cavity arrays. Such advanced emitter-cavity configurations could enable
solid-state quantum simulators in the future[322]. Incorporating site-controlled QWR
light sources in CCA structures is a first step towards the integration of site-controlled
QDs in multiple cavity systems, which will provide the optical nonlinearities[323]
required for quantum simulations.

6.2 Site-controlled quantum dots coupled to photonic crystal
molecules

In this section, we present the optical study of two coupled L3 PhC cavities incorpo-
rating site-controlled pyramidal QDs. This study was conducted jointly with B. Rigal
and published in reference [86]. In the previous section we evidenced supermode delo-
calization in CCAs using QWR light sources. Using QWR light sources facilitated the
spectral matching of the emitter emission with the CM transitions, due the QWR broad
emission (∼ 10 meV ). However, the realization of quantum networks with coupled
cavity arrays requires large intra-cavity nonlinearity only achievable with two-level
system like emitters strongly coupled to the cavities[308]. In addition, transfer and
storage of information between distant sites of a quantum network, which can be
achieved by coupling distant cavities, also requires two-level system like emitters with
well defined electronic and optical properties[291, 292]. This shows that, ultimately,
QDs have to be integrated in coupled cavity arrays to provide the solid-state structures
most suited for solid-state quantum information applications. Coupling QD emitters
to arrays of cavities is a challenging task since it requires positioning the QDs inside the
cavities of the array, while spectrally matching the QD narrow spectral features with
the CM transitions. This has been achieved with randomly positioned self-assembled
QDs, demonstrating the coupling of single QD to the optical modes of a photonic
molecule consisting of two coupled L3 PhC cavities[303]. However, it is evident that
scaling this system to multiple QDs deterministically coupled to multiple cavities can
only be achieved using site-controlled emitters.
We present here the coupling of two site-controlled pyramidal QDs, deterministically
positioned in the center of two coupled L3 PhC cavities, to the delocalized optical
mode of the coupled cavity structure. These structures were fabricated on sample A
(see table 2.1).

6.2.1 Structure design and photonic molecule properties

The coupled cavity structure consisting of two diagonally coupled L3 PhC cavity with
an inter-cavity separation of 0.8 μm is illustrated in Fig. 6.21 (a). A single pyramidal QD
is located in the center of each cavity with an alignment accuracy better than 50 nm.
More details of the fabrication these QD-cavity structures can be found in chapter
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Figure 6.21: Two pyramidal QDs integrated in a photonic molecule. (a) Sketch of the structure.
In the real structure, the pyramidal recesses are fully planarized. (b) Bonding (even mode)
and (c) anti-bonding (odd mode) electric field intensity spatial distributions computed with
3D FDTD (refractive of the GaAs membrane is 3.52, slab thickness is 265 nm, PhC pitch is
a = 200 nm and PhC hole radius is r = 57 nm). Black and red arrows indicate, respectively, the
horizontal and vertical polarization directions. Reprinted with permission from [86]. Copyright
2015, AIP Publishing LLC.

2. These structures were fabricated on sample A (see table 2.1 for fabrication and
growth parameters). Fig. 6.22 (a) displays the spectra resolved in linear polarization of
a structure with PhC hole radius r = 61 nm. For this high excitation power conditions
(P=5 mW), the QDs s-state and excited states are visible in the spectrum. Furthermore,
the broadband emission of the low energy tail of the three wedge QWRs (see subsection
5.1.3) reveals the CMs of the photonic molecule. Two CM modes, labelled M0b and
M0a, were identified by means of temperature dependent measurements and from
their pronounced linear polarization visible in the top panel of Fig. 6.22 (a) showing
the DOLP of the emission spectrum. These CMs are the fundamental even and odd
modes of the photonic molecule and originate from the interaction of the M0 modes of
the individual L3 cavities. Their electric field intensity spatial distributions are shown
in Fig. 6.21 (b) and (c). The transition energies of M0b and M0a were measured on 60
different structures and are displayed in Fig. 6.22 (b) as a function of the PhC hole
radius. The measured transition energies are in good agreement with the energies
calculated using 3D FDTD simulations for a disorder free PhC molecule. The mean
energy separation between the even and odd modes is Δ̄ = 32.6meV , corresponding to
a strong inter-cavity coupling consistent with the small inter-cavity separation (0.8μm).
The standard deviation σ of the mean energy separation is σ = 1.07 meV , which
result in a standard deviation to mean value ratio of σ/Δ̄ = 0.033 � 1. As explained
in subsection 6.1.4, σ/Δ̄ � 1 indicates a weak impact of the fabrication-induced
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6.2. Site-controlled quantum dots coupled to photonic crystal molecules

disorder on the inter-cavity coupling and is characteristic of a system for which mode
delocalization occurs. The coupled PhC L3 cavities studied here are thus strongly
coupled, with CMs delocalized over both cavities of the array. This is a necessary
condition to couple either of these two CMs to both site-controlled QDs.

(b)

Hole size, r [nm]
50 55 60 65

E
ne

rg
y 

[e
V

]

1.32

1.34

1.36

1.38

1.4

1.42

1.44

M
0b

, FDTD

M
0a

, FDTD

M
0
, FDTD

exp

exp

1(a)

Energy [eV] 
1.4 1.42 1.44

−1

0

D
O

P

V
H

M
0aM

0b
In

te
g
ra

te
d
 I

n
te

n
si

ty
 [

a.
u
.]

0

1

r=61nm

X-

X and XX

excited 
states

MMMM

Figure 6.22: (a) Polarization spectrum resolved in linear polarization of a structure with r =
61nm (see Fig. 6.21 for H and V definition) at high optical excitation level (P = 5mW , T = 10K),
DOLP in grey is defined as DOP = (IV − IH)/(IV + IH). (b) Energies of the even M0b (red) and
odd M0a (blue) modes of a photonic molecule computed with 3D FDTD (slab width = 265 nm;
a = 200 nm, and n = 3.52) as a function of r, compared to the mode energies measured on
samples with different PhC hole radius values. The calculated energies of L3 cavities (M0) are
also given (dashed line). Reprinted with permission from [86]. Copyright 2015, AIP Publishing
LLC.

6.2.2 Optical signatures of coupling between two quantum dots and the
supermode of a photonic molecule.

One QD-cavity structure with a PhC hole radius r = 61 nm was selected for further
investigation. The two QDs are separated by a distance of 0.69 μm allowing a pref-
erential excitation of each QD by properly positioning the excitation laser spot. The
QDs s-state emission spectra are shown in Fig. 6.23 (a), with the laser spot position
indicated in the figure’s inset. The QDs spectrum consists of X, 2X and X− excitonic
transitions, which is characteristic of these pyramidal QDs (see chapter 4). This selec-
tive excitation method allows to clearly identify the excitonic transitions of each QD,
which is clearly visible here for the QDs X− transitions. The spectra presented in Fig.
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Figure 6.23: (a) Selective excitation of QD1 (green) and QD2 (violet); the green and violet disks
in the inset indicate the excitation spot position (P = 100μW ; T = 10K). (b) H and V polarized
spectra of the photonic molecule recorded at different temperatures (P = 250 μW ); r = 61 nm.
Dashed lines show the calculated band gap variation of In0.2Ga0.8As with temperature. Orange
line serves as guide to the eye for following the M0a mode energy (Q = 1600). A fit of the cavity
and excitonic lines for T = 50 K and V polarization is shown in the inset. Reprinted with
permission from [86]. Copyright 2015, AIP Publishing LLC.

6.23 (a) provide a good example of the uniformity of pyramidal QDs. As emphasized
in chapter 2, pyramidal QDs have a small energy distribution which is characterized
for this sample by a QD ensemble emission with a FWHM of ∼ 10 meV . This value
is actually an upper bound for the energy distribution of single excitonic transitions
since it includes the energy distribution and fluctuations of multiple s-state transitions.
When studying structures with multiple QDs, having a small energy distribution and
reproducible spectral features increases the probability to find structures with closely
spaced excitonic transitions originating from different QDs. Here for example, the
X− features of the QDs (X−

1 and X−
2 ) are separated in energy by 600 μeV , giving the

opportunity to couple both transition to the same CM.

The structure’s polarization resolved spectra is displayed in Fig. 6.23 (b) for differ-
ent sample temperatures. For T = 10K the odd mode M0a is blue shifted by 1meV

from the X− transitions of the QDs. The CM quality factor is Q = 1600 resulting
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6.2. Site-controlled quantum dots coupled to photonic crystal molecules

in a weak QD-cavity interaction. Nevertheless, the transitions X−
1 and X−

2 have a
slightly more pronounced V-polarized emission than H-polarized emission, indicating
a co-polarization behavior induced by the coupling with the delocalized CM. As the
temperature is increased, the CM is moved further away in energy from the X− transi-
tions, and the co-polarization behavior is reduced. The CM then enters in resonance
with the X and 2X transitions, which in turn acquire a linear vertical polarization.
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Figure 6.24: (a) Polar plots of the polarization for the two X− lines at small (T = 10K) and
large (T = 55K) cavity detuning. (b) Degree of linear polarization versus detuning for the two
X− lines, extracted from polar diagrams as in (a). P = 200 μW . Reprinted with permission
from [86]. Copyright 2015, AIP Publishing LLC.

The polarization behavior of the X−
1 and X−

2 transitions with QD-cavity detuning
is investigated in more details in Fig. 6.24. The polarization resolved spectra are
acquired by placing a half-wave plate followed by a polarizer in the detection path
(see subsection 2.1.2 for details). The intensity of the X− emission as a function of
the angle between the half-wave plate fast axis and polarizer axis is shown in polar
plots in Fig. 6.24 (a). For large detunings δE, no significant linear polarization is
visible in the X− emission of both QDs, which translates in an isotropic out of plane
emission expected for QDs presenting a high in-plane symmetry[199, 200]. For smaller
detunings, the emission presents a more pronounced linear component corresponding
to an elliptic shaped polar plot with a major axis oriented along the 90◦ direction (V
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Chapter 6. Supermodes in 1D and 2D coupled cavity arrays

direction). This asymmetric out-of plane emission is induced by the coupling with
the linearly polarized CM. The DOLP defined here as

√
S2
1 + S2

2/S0, where Si are the
Stokes parameters, is shown as a function of detuning for the X−

1 and X−
2 transitions

in Fig. 6.24 (b). When the detuning is reduced, the DOLP of both excitonic transitions
increases. For detunings |δE| < 2 meV , both QD lines exhibit a DOLP above 0.3

indicating that both QDs are simultaneously coupled to the same supermode of the
PhC molecule.

6.3 Chapter summary

In this chapter, we studied arrays of coupled cavities, which are known to host optical
modes delocalized over the entire structure. These extended optical modes have
brought up a lot of interest in the past decades as they provide the means to transfer
information between distant quantum objects and realize quantum simulators. Large
arrays of coupled cavities remain however difficult to realize because they are sensible
to fabrication-induced disorder, that can prevent mode delocalization. Although the
progress in fabrication techniques recently enabled the realization of large scale arrays
of PhC cavities[308], probing mode delocalization can prove challenging.

We presented here a method relying on site-controlled QWRs emitters that allows for a
straightforward assessment of mode delocalization. The site-controlled emitters were
integrated in a single cavity of the array and positioned to have a significant spatial
overlap with several delocalized optical modes. We performed polarization resolved
PL measurements to obtain the spectral signatures of the CCA excited by a determin-
istically positioned light source. Although a single cavity of the array was excited by
the QWR emitter, we observed the optical signatures of multiple modes, providing
a direct proof of mode delocalization. The measurements were repeated on a large
number of structures, which allowed to perform a statistical study of the supermode
energy separation, giving an estimation of the impact of fabrication-induced disorder
on inter-cavity coupling. In particular, we observed that mode delocalization was still
occurring when the influence of disorder on the supermode energy separation was
comparable to the inter-cavity coupling strength. The finite disorder present in these
structures allowed the coupling of a supermode with the QWRs, even though it had
no significant overlap with the QWRs in the absence of disorder. Fabrication induced
disorder can then be used as a means to even out the field distributions of supermodes,
facilitating the coupling of emitters located inside the cavities to a maximum of modes
of the CCA.

Finally, we demonstrated the coupling of two pyramidal QDs to the same delocalized
optical mode of a photonic molecule. This was achieved by deterministically posi-
tioning a single site-controlled QD in the center of each cavity of the coupled cavity
structure. This represents a first step in the realization of arrays of cavities incorporat-
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6.3. Chapter summary

ing two-level system like emitters, which have been proposed to construct quantum
networks[291] or quantum simulators[322].

The next step of this study would be to increase the number of cavities, and conse-
quently QDs, forming the array. Although site-controlled QDs enable the realisation of
such complex structures, several problems arise when scaling up the system. Firstly,
fabrication-induced disorder has to be minimized to obtain efficient mode delocaliza-
tion in large scale cavity arrays. Secondly, as the number of QDs increases, ensuring a
nearly identical emission energy for all the QDs is extremely challenging. This requires
either to achieve a high level of uniformity during the QD growth, or to individually
control the energy of each QD, for example by applying a local electric field[259, 324].
Thirdly, in a CCA, the amplitude of the electric field of a supermode varies from cavity
to cavity. To achieve the same magnitude of coupling between each QD and a given
supermode, the field envelop function has to be tailored. This can be achieved by
modifying either the inter-cavity coupling strength or the cavity effective refractive
index across the array and represents an interesting research direction.
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7 Conclusions and outlook

During the course of this thesis, we studied systems of site-controlled quantum dots
(QDs) integrated in photonic crystal (PhC) cavities. We relied on InGaAs/GaAs pyrami-
dal QDs, grown in inverted pyramids defined by a combination of e-beam lithography
and wet chemical etching on GaAs substrates. This deterministic fabrication method
yields reproducible, symmetric QDs that can be positioned on the substrate with an
accuracy higher than 50 nm. This allows a precise positioning of the QD inside the
cavity, maximizing the overlap between the QD and the cavity mode (CM) electric
field distribution. This method reduces the number of uncertainties in the QD-cavity
coupling parameters, and enables a quantitative analysis of the coupled system photo-
luminescence. In addition, pyramidal QDs exhibit an inhomogeneous broadening well
bellow 20meV . Combined with the control of their position, this property enables the
fabrication of larger scale photonic structures comprising multiple QDs and cavities.
In particular, we investigated the coupling of two QDs to the CM of one PhC cavity and
two coupled PhC cavities. The optical modes of larger arrays of coupled cavities were
probed using site-controlled quantum wire (QWR) light sources.

In the first part of the study, we investigated the optical properties of single pyramidal
QDs. The reproducibility of the QDs spectra, systematically showing three s-state
features, was highlighted in this study. We reported the full correlation picture of the
s-state transitions by performing photon correlation measurements. The transitions
auto- and cross-correlation measurements were reproduced by a rate equation model,
providing a clear identification of the QD excitonic species and evidencing single
photon emission. In addition to single photon emission, most quantum computation
schemes relying on quantum emitters also require photon indistinguishability[96, 325].
It could be useful to perform two-photon interference measurements with pyramidal
QDs using a Hong-Ou-Mandel[326] optical setup to quantify the degree of indistin-
guishability of their emission. Obtaining a high degree of indistinguishability could be
achieved by reducing the transition dephasing which is detrimental to the two-photon
interference[327], or by coupling the transition to a CM, making use of the Purcell
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effect to overcome the exciton fine-structure splitting[16].
By performing a statistical analysis of the QD exciton binding energies, we observed a
transition from negative to positive biexciton (2X) binding energies with increasing
neutral exciton (X) emission energy. This indicates the presence of internal piezolectric
fields induced by strain. Approximately 10% of the QDs investigated had vanishing
2X binding energies. We also presented time-resolved photoluminescence (PL) mea-
surements of pyramidal QDs isolated using mesa etching. Differences up to a factor of
two were observed between the decay times of two nominally identical QDs. Further-
more, the decay times of these QDs were found to be similar to decay times of QDs
embedded in a PhC crystal. This indicates an important contribution of non-radiative
recombinations, as confirmed by temperature dependent time-resolved measure-
ments performed for a QD-coupled to a CM. To get access to the intrinsic QD radiative
lifetime, additional measurements are required, preferably on a large number of iso-
lated QDs to get a quantitative analysis of the impact of non-radiative decay channels
on the QD decay rate and its dependence on the sample temperature.

In the second part of this work, we analysed polarization resolved PL measurements of
a single pyramidal QD coupled to the fundamental mode of an L3 PhC cavity. Although
the QD was weakly coupled to the CM, rich polarization features were observed in the
temperature dependent spectra. One of the important results of this thesis was the
simulation of QD and CM spectral features on a large detuning range using a theoretical
model that takes into account the influence of solid-state decoherence mechanisms on
the QD-cavity coupling dynamic. This was made possible by the electronic properties
of pyramidal QDs that resemble those of an ideal two-level system-like emitter. The
absence of extended wetting layer states in the QD vicinity results in a background
free QD emission even for high intensity incoherent pumping as was evidenced by
excitation power dependent time-resolved PL measurements. By comparing the CM
off-resonant emission with simulations, we identified the impact of pure dephasing
and phonon scattering on the cavity feeding mechanism. In particular, we showed
that pure dephasing efficiently contributes to the CM off-resonant emission for small
detunings (< 1meV ) and phonon scattering is the main cavity feeding mechanism for
detunings ranging from 1meV up to 3meV . Identifying the source of the off-resonant
CM emission and the detuning range of action of the corresponding decoherence
mechanism is an important step towards the full comprehension of semiconductor
QD-cavity interaction. The co-polarization of the QD feature for small detunings was
found to result from the emission of cavity photons at the energy of the QD transition,
resulting in an additional Lorentzian feature in the CM spectrum centered on the
QD transition. This additional peak has the polarization properties of the CM and
can lead to a strong co-polarization of the QD feature at resonance, together with a
Purcell enhancement of its emission intensity. Additional measurements on QD-cavity
structures with different dephasing rates and cavity quality factor could be useful to
investigate different weak coupling regimes: for example the "good cavity" regime[224].

168



By comparing the experimental results to simulations, we extracted QD-cavity coupling
strengths values of h̄g0 = 20 μeV and h̄g0 = 50 μeV . To give a precise explanation for
these small coupling strengths values, a study of the dipole moments of excitons in
pyramidal QDs should be undertaken. The dipole moment orientation can be obtained
form polarization resolved cross-sectional PL measurements. An important out-of-
plane dipole moment component could explain the coupling strengths values reported
here, as well as the Purcell factor of 17 obtained from time-resolved PL measurements
which is far below its maximum value. Increasing the QD-cavity coupling strength, for
example by modifying the aspect ratio of the QD to align the exciton dipole moment
with the CM electric field, could also help to reach the strong-coupling regime. In
addition, reducing the QD linewidth, increasing the cavity Q factor by optimizing
the PhC fabrication process or increasing the wavelength of the CM to minimize
absorption losses[173], and working with thinner membranes and thus smaller optical
mode volumes, could also facilitate the observation of strong QD-cavity coupling in
our system. Encouraging QD linewidths as low as 40 μeV have been obtained in recent
sample using triethylgallium (TEGa) precursors during the QD growth process.

In the third part of this work we investigated systems of multiple QDs and cavities. We
studied a structure comprising of two QDs simultaneously coupled to the same CM
of an L3 cavity. However, by comparing the structure’s PL spectrum to simulations,
we showed that no signs of collective effects were visible. Possible explanations for
this absence of collective emission are the presence of important dephasing effects
responsible for the large linewidths of the QDs (> 100μeV ) and the finite QD-cavity
detunings that are enforced by the energy difference of 2meV between the QDs tran-
sitions. Reducing QD pure dephasing and increasing the size homogeneity of the
QDs could help achieving an ideal situation in which the transitions of both QDs are
resonant with the CM, increasing the chances of observing collective effects.
The optical modes of larger cavity arrays were probed by placing site-controlled quan-
tum wire (QWR) light sources inside chosen cavities of the array. This enabled the
first observation of mode delocalization in large coupled cavity arrays excited by
site-controlled quantum emitters. The first observation of coupling between the su-
permode of a photonic molecule and two site-controlled QDs located in each cavity
of the array was also demonstrated. This represents an important step towards the
realization of quantum network devices[292], enabling the transfer of information,
mediated by light, between distant emitters. These structures are also candidates
to realize quantum simulators[322], although each QD should be strongly coupled
to its host cavity which still represents an important challenge. Another interesting
direction that is currently being explored is the deterministic integration of QDs into
waveguides as illustrated in Fig. 7.1. Coupling multiple emitters to the same optical
mode is easier in those structures due to the broader energy distribution of photonic
waveguide modes. By embedding QDs of different sizes in those structures, wavelength
multiplexing and signal propagation could be explored.
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waveguide: 111a=25um

20a=4.5um

outcouplerQDs

Position [μm] 1020 0

Figure 7.1: Scanning electron microscope image of a waveguide and an out-coupler incorpo-
rating site-controlled QDs. The position of the QDs is indicated by red triangles. Courtesy of B.
Rigal.
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A Appendix

A.1 Effective phonon density of states calculation

This is a complement to the derivation of the effective phonon density of states pre-
sented in chapter 3. The effective phonon density of states is given by[166, 220]

D(Ω) = π
∑
k

|Mk|2[n(ωk)δ(Ω + ωk) + (n(ωk) + 1)δ(Ω− ωk)] (A.1)

where n(ωk) = [exp(h̄ωk/kBT ) − 1]−1 is the Bose-Einstein distribution and δ(ω) the
Dirac function. Mk is the electron-phonon interaction matrix element given by

Mk =

√
h̄k

2ρcsV
D

∫
d3r|φ(r)|2e−ik·r (A.2)

where ρ is the mass density, cs is the speed of sound in the material and V is the phonon
quantization volume. We assume here the same Gaussian wave function φ(r) for the
ground and excited states, i.e., for a confined electron in the valance and conduction
bands. D = De −Dg is the difference of the two-level system excited and ground state
deformation potentials.
We consider an isotropic confinement length l in the x-y plane and a confinement
length lz in the z-direction. The electronic wave function becomes

φ(r) =
1√

π
3
2 l2lz

e−(x2+y2)/2l2e−z2/2l2z . (A.3)
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The electron-phonon interaction matrix element then becomes

Mk =

√
h̄D2

2ρcsV

1

π
3
2 l2lz

(
√
πl)2

√
πlz

√
ke−(k2x+k2y)l

2/4e−k2z l
2
z/4 (A.4)

=

√
h̄D2

2ρcsV

√
ke−(k2x+k2y)l

2/4e−k2z l
2
z/4. (A.5)

To compute the effective phonon density, the sum overk is transformed into an integral.
Cylindrical coordinates are used to account for the isotropic confinement in the x-y
plane.

∑
k

→ V

(2π)3

∫
d3k =

V

(2π)3

∫ ∞

0

∫ ∞

−∞

∫ 2π

0
ududkzdθ =

V

(2π)2

∫ ∞

0

∫ ∞

−∞
ududkz (A.6)

with u =
√
k2x + k2y . The effective phonon density can be written as follows

D(Ω) =
h̄D2

2ρcsV

πV

(2π)2

∫ ∞

−∞

∫ ∞

0
dudkzu

√
u2 + k2ze

−u2l2/2e−k2z l
2
z/2 · · ·

· · · [n(csk)δ(Ω + csk) + (n(csk) + 1)δ(Ω− csk)]

(A.7)

where we used ωk = csk. Lets rewrite the deltas as a function of the new integration
variable u. We know that δ(f(u)) =

∑
i
δ(u−u0)
|f ′(u0)| . Here f(u) = Ω ± cs

√
u2 + k2z and the

zeros of the function are given by

Ω

cs
= ∓

√
u20 + k2z ⇒ u0 = ±

√
Ω2

c2s
− k2z (A.8)

which gives

δ(
Ω

cs
± k) =

∑
±

∣∣∣∣∣
√
u2i + k2z

ui

∣∣∣∣∣δ(u− ui). (A.9)

Since u is always positive, only the second term of the sum will contribute. Finally we
get

δ(
Ω

cs
± k) =

| Ωcs |√
Ω2 − c2sk

2
z

δ

(
u−

√
Ω2

c2s
− k2z

)
(A.10)

Since u ∈ �, we get the following condition on kz: Ω2

c2s
> k2z ⇒ −| Ωcs | < kz < | Ωcs |.

We can see in equation (A.7) that the term in n(k)δ( Ωcs + k) will only contribute for
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Ω < 0 and the term in (n(k) + 1)δ( Ωcs − k) for Ω > 0 (k is always positive). We will thus
separate the computation for Ω > 0 and Ω < 0.

Ω < 0

D(Ω < 0) ∝
∫ ∞

−∞

∫ ∞

0
dudkzu

√
u2 + k2ze

−u2l2/2e−k2z l
2
z/2n(csk)δ(

Ω

cs
+ k) (A.11)

∝
∫ ∞

−∞

∫ ∞

0
dudkzu

√
u2 + k2ze

−(u2)l2/2e−k2z l
2
z/2n(cs

√
u2 + k2z) · · ·

· · · | Ωcs |
cs

√
Ω2

c2s
− k2z

δ

(
u−

√
Ω2

c2s
− k2z

) (A.12)

∝ | Ω
c
3
2
s

|2n(|Ω|)
∫ | Ω

cs
|

−| Ω
cs

|
dkz e

−(Ω
2

c2s
−k2z)l

2/2
e−k2z l

2
z/2 (A.13)

∝ √
π| Ω
c
3
2
s

|2n(|Ω|)e−Ω2l2/2c2s
erf[| Ωcs |

√
lz2−l2

2 ]√
lz2−l2

2

(A.14)

∝ √
π| Ω
c
3
2
s

|2n(−Ω)e−Ω2l2/2c2s
erf[− Ω

cs

√
lz2−l2

2 ]√
lz2−l2

2

(A.15)

∝ √
π
Ω2

c3s
[−n(−Ω)]e−Ω2l2/2c2s

erf[ Ωcs

√
lz2−l2

2 ]√
lz2−l2

2

. (A.16)

Ω > 0

D(Ω > 0) ∝
∫ ∞

−∞

∫ ∞

0
dudkzu

√
u2 + k2ze

−u2l2/2e−k2z l
2
z/2[n(csk) + 1]δ(

Ω

cs
− k) (A.17)

∝
∫ ∞

−∞

∫ ∞

0
dudkzu

√
u2 + k2ze

−(u2)l2/2e−k2z l
2
z/2[n(cs

√
u2 + k2z) + 1] · · ·

· · · | Ωcs |
cs

√
Ω2

c2s
− k2z

δ

(
u−

√
Ω2

c2s
− k2z

) (A.18)
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∝ | Ω
c
3
2
s

|2[n(|Ω|) + 1]

∫ | Ω
cs

|

−| Ω
cs

|
dkz e

−(Ω
2

c2s
−k2z)l

2/2
e−k2z l

2
z/2 (A.19)

∝ √
π
Ω2

c3s
[n(Ω) + 1]e−Ω2l2/2c2s

erf[ Ωcs

√
l2z−l2

2 ]√
l2z−l2

2

. (A.20)

We now look for a unique expression describing the behavior of D(Ω). We start by
showing that 1

2 [n(Ω)− n(−Ω) + 1] = −n(−Ω):

1

2
[n(Ω)− n(−Ω) + 1] =

1

2

(
1

eΩ/T − 1
+

eΩ/T

eΩ/T − 1
+

eΩ/T − 1

eΩ/T − 1

)

=
eΩ/T

eΩ/T − 1
= eΩ/Tn(Ω) (A.21)

n(−Ω) =
1

e−Ω/T − 1
= − eΩ/T

eΩ/T − 1
= −eΩ/Tn(Ω) (A.22)

By combining (A.21) and (A.22) we get

1

2
[n(Ω)− n(−Ω) + 1] = −n(−Ω). (A.23)

We can also show

n(Ω) + 1 = n(Ω) + 1 + n(−Ω)− n(−Ω) (A.24)

= n(Ω)− n(−Ω) + 1− 1

2
{n(Ω)− n(−Ω) + 1} (A.25)

=
1

2
[n(Ω)− n(−Ω) + 1]. (A.26)
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We now rewrite D(Ω > 0) and D(Ω < 0) using (A.23) and (A.26)

D(Ω < 0) =
h̄D2

2ρcsV

πV

(2π)2
√
π
Ω2

c3s
[[−n(−Ω)]e−Ω2l2/2c2s

erf[ Ωcs

√
l2z−l2

2 ]√
l2z−l2

2

(A.27)

=
h̄D2

16ρc4s
√
π
Ω2[n(Ω)− n(−Ω) + 1]e−Ω2l2/2c2s

erf[ Ωcs

√
l2z−l2

2 ]√
l2z−l2

2

(A.28)

D(Ω > 0) =
h̄D2

2ρcsV

πV

(2π)2
√
π
Ω2

c3s
[n(Ω) + 1]e−Ω2l2/2c2s

erf[ Ωcs
√
lz2 − l2]√

l2z − l2
(A.29)

=
h̄D2

16ρc4s
√
π
Ω2[n(Ω)− n(−Ω) + 1]e−Ω2l2/2c2s

erf[ Ωcs

√
l2z−l2

2 ]√
l2z−l2

2

. (A.30)

This provides a single expression for D(Ω)

D(Ω) =
h̄D2

16ρc4s
√
π
Ω2[n(Ω)− n(−Ω) + 1]e−Ω2l2/2c2s

erf[ Ωcs

√
l2z−l2

2 ]√
l2z−l2

2

. (A.31)

A.2 Contributions

The author, Clément Jarlov, did all the optical measurements and data analysis pre-
sented in this work, expect for the studies presented in sections 5.2 and 6.2 that were
conducted jointly with M. Calic and B. Rigal, respectively. The author did all the finite-
difference time-domain modeling presented in this study using a Matlab code written
by Dr. K. F. Karlsson. The physical model presented in section 3.4 was developed
jointly with E. Wodey, based on well established results published in the literature, and
implemented in Python by the author, relying on the quantum toolbox QuTip. The
samples investigated in this work were fabricated by M. Calic, A. Lyasota and K. Atlasov,
along with P. Gallo, L. Ferrier, I. Kulkova, B. Dwir and A. Rudra. The author participated
in the elaboration of the sample’s design and performed optical measurements during
the quantum dot growth optimization process. The work presented in this thesis was
conducted under the supervision of the thesis director, Professor E. Kapon.
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dynamics with a single quantum dot coupled to a photonic molecule. Phys. Rev.
B 86, 045315 (2012).

304. Bose, R., Cai, T., Solomon, G. S. & Waks, E. All-optical tuning of a quantum dot in
a coupled cavity system. Appl. Phys. Lett. 100, 231107 (2012).

195



Bibliography

305. Cai, T., Bose, R., Solomon, G. S. & Waks, E. Controlled coupling of photonic
crystal cavities using photochromic tuning. Appl. Phys. Lett. 102, 141118 (2013).

306. O’Brien, D. et al. Coupled photonic crystalheterostructure nanocavities. Opt.
Express 15, 1228–1233 (2007).

307. Notomi, M., Kuramochi, E. & Tanabe, T. Large-scale arrays of ultrahigh-Q cou-
pled nanocavities. Nature Photon. 2, 741–747 (2008).

308. Majumdar, A. et al. Design and analysis of photonic crystal coupled cavity arrays
for quantum simulation. Phys. Rev. B 86, 195312 (2012).

309. Matthews, C. J. & Seviour, R. Effects of disorder on the frequency and field of
photonic-crystal cavity resonators. Appl. Phys. B 94, 381–388 (2009).

310. Vignolini, S. et al. Near-field imaging of coupled photonic-crystal microcavities.
Appl. Phys. Lett. 94, 151103 (2009).

311. Jarlov, C. et al. 1D and 2D arrays of coupled photonic crystal cavities with a
site-controlled quantum wire light source. Opt. Express 21, 31082–31091 (2013).

312. Atlasov, K. A., Gallo, P., Rudra, A., Dwir, B. & Kapon, E. Effect of sidewall passiva-
tion in BCl3/N2 inductively coupled plasma etching of two-dimensional GaAs
photonic crystals. J. Vac. Sci. Technol. B 27, L21–L24 (2009).

313. Hennessy, K. et al. Tuning photonic crystal nanocavity modes by wet chemical
digital etching. Appl. Phys. Lett. 87, 021108–021108–3 (2005).

314. Atlasov, K. A., Rudra, A., Dwir, B. & Kapon, E. Large mode splitting and lasing in
optimally coupled photonic-crystal microcavities. Opt. Express 19, 2619–2625
(2011).

315. Marcuse, D. Coupled mode theory of optical resonant cavities. IEEE J. Quantum
Electron. 21, 1819–1826 (1985).

316. Haus, H. A. & Huang, W. Coupled-mode theory. Proc. IEEE 79, 1505–1518 (1991).

317. Ding, W., Chen, L., Tang, D., Li, W. & Liu, S. Supermodes of photonic crystal CCWs
and multimode bistable switchings with uniform thresholds. Opt. Commun. 265,
500–505 (2006).

318. Yoo, H.-J., Hayes, J. R., Paek, E. G., Scherer, A. & Kwon, Y.-S. Array mode analysis of
two-dimension phased arrays of vertical cavity surface emitting lasers. Quantum
Electronics, IEEE Journal of 26, 1039–1051 (1990).

319. Lomascolo, M., Ciccarese, P., Cingolani, R., Rinaldi, R. & Reinhart, F. K. Free
versus localized exciton in GaAs V-shaped quantum wires. J. Appl. Phys. 83,
302–305 (1998).

320. Glennon, J. J. et al. Exciton localization and migration in individual CdSe quan-
tum wires at low temperatures. Phys. Rev. B 80, 081303 (2009).

321. Bockelmann, U. & Bastard, G. Interband Optical Transitions in Semiconductor
Quantum Wires: Selection Rules and Absorption Spectra. EPL 15, 215 (1991).

196



Bibliography

322. Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase
transitions of light. Nat. Phys. 2, 856–861 (2006).

323. Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. Strongly interacting polari-
tons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006).

324. Bennett, A. J. et al. Electric-field-induced coherent coupling of the exciton states
in a single quantum dot. Nature Physics 6, 947–950 (2010).

325. Weiler, S. et al. Highly indistinguishable photons from a quantum dot in a mi-
crocavity. physica status solidi (b) 248, 867–871 (2011).

326. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals
between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

327. Close, T., Gauger, E. M. & Lovett, B. W. Overcoming phonon-induced dephasing
for indistinguishable photon sources. New Journal of Physics 14, 113004 (2012).

197





Publications and conferences

Journal publications

• B. Rigal, C. Jarlov, A. Rudra, P. Gallo, A. Lyasota, B. Dwir and E. Kapon, Site-
controlled InGaAs/GaAs pyramidal quantum dots grown by MOVPE on patterned
substrates using triethylgallium, Journal of Crystal Growth 414, 187-191 (2015)

• B. Rigal, C. Jarlov, P. Gallo, B. Dwir, A. Rudra M. Calic and E. Kapon, Site-controlled
quantum dots coupled to a photonic crystal molecule, Appl. Phys. Lett. 107,
141103 (2015)

• A. Lyasota, S. Borghardt, C. Jarlov, B. Dwir, P. Gallo, A. Rudra and E. Kapon, Inte-
gration of multiple site-controlled pyramidal quantum dot systems with photonic-
crystal membrane cavities, Journal of Crystal Growth 414, 192-195 (2015)

• C. Jarlov, A. Lyasota, L. Ferrier, P. Gallo, B. Dwir, A. Rudra and E. Kapon, Exciton
dynamics in a site-controlled quantum dot coupled to a photonic crystal cavity,
Appl. Phys. Lett. 107, 191101 (2015)

• C. Jarlov, K. A. Atlasov, L. Ferrier, M. Calic, P. Gallo, A. Rudra, B. Dwir, and E.
Kapon, 1D and 2D arrays of coupled photonic crystal cavities with a site-controlled
quantum wire light source, Opt. Express 21, 31082-31091 (2013)

• C. Jarlov, P. Gallo, M. Calic, B. Dwir, A. Rudra and E. Kapon, Bound and anti-
bound biexciton in site-controlled pyramidal GaInAs/GaAs quantum dots, Appl.
Phys. Lett. 101, 191101 (2012)

199



Conference presentations

• C. Jarlov, E. Wodey, A. Lyasota, M. Calic, P. Gallo, A. Rudra, B. Dwir and E. Kapon,
Effect of Pure Dephasing and Phonon Scattering on the Coupling of Semiconductor
Quantum Dots to Optical Cavities, OECS 2015, Jerusalem, Israel, October 2015
(Contributed poster presentation)

• C. Jarlov, E. Wodey, A. Lyasota, M. Calic, P. Gallo, A. Rudra, B. Dwir and E. Kapon,
Effect of Pure Dephasing and Phonon Scattering on the Coupling of Semiconductor
Quantum Dots to Optical Cavities, CLEO 2015, San Jose, California, USA, June
2015 (Contributed oral presentation)

• C. Jarlov, E. Wodey, A. Lyasota, M. Calic, P. Gallo, A. Rudra, B. Dwir and E. Kapon,
Effect of Dephasing on the Coupling of Quantum Dot Excitons & Optical Cavities,
32nd International Conference on the Physics of Semiconductors, ICPS 2014,
Austin, Texas, USA, August 2014 (Contributed oral presentation)

• C. Jarlov, E. Wodey, A. Lyasota, M. Calic, P. Gallo, A. Rudra, B. Dwir and E. Kapon,
Effect of dephasing on the coupling of quantum dot excitons and optical cavities,
8th International Conference on Quantum Dots, QD 2014, Pisa, Italy, May 2014
(Contributed poster presentation)

• C. Jarlov, L. Ferrier, M. Calic, P. Gallo, V. Belykh, A. Rudra, B. Dwir, N.N. Sibeldin
and E. Kapon, Observation of Purcell effect with a site-controlled pyramidal quan-
tum dot coupled to a photonic crystal cavity mode, 16th International Conference
on Modulated Semiconductor Structures, MSS-16, Wroclaw, Poland, July 2013
(Contributed poster presentation)

• C. Jarlov, K. Atlasov, L. Ferrier, P. Gallo, A. Rudra, B. Dwir and E. Kapon, 1D and
2D arrays of coupled cavities with a site-controlled light source, 4th International
Topical Meeting on Nanophotonics and Metamaterials, Nanometa 2013, Seefeld,
Austria, January 2013 (Contributed poster presentation)

• C. Jarlov, P. Gallo, M. Calic, B. Dwir, A. Rudra and E. Kapon, Bound and Anti-
Bound Biexcitons in site-controlled pyramidal quantum dots, 7th International
Conference on Quantum Dots, QD 2012, Santa Fe, New Mexico, USA, May 2012
(Contributed poster presentation)



Route de Genève 103
1026 Denges

Canton de Vaud
Switzerland

French Citizen
Born April 14th 1989, Zimbabwe
Mobile: +41 (0)79 934 01 37
Email: clement.jarlov@epfl.ch

EDUCATION

2012 - 2016

2010 - 2012

2007 -  2010

2005 - 2007

Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

PhD, Physics (Thesis director: Prof. Eli Kapon) 
• Experimental and theoretical study of systems of semiconductor site-

controlled quantum dots and nanocavities.
• Measured optical spectra of quantum dots in cavities to study light-

matter interactions at a fundamental level.
• Performed simulations with Matlab and Python to analyse experimental 

data.

Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Master of Science MSc in Physics
• Classes: Quantum optics, Optics, Statistical physics, Solid-state physics, 

Experimental methods in physics.
• Master project:  Performed optical experiments to study semiconductor 

quantum dots (Laboratory of Physics of Nanostructures)

Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Bachelor of Science BSc in Physics 
• Classes: Classical physics, Quantum physics, Solid-state physics, 

Optics, Numerical Physics, Mathematics (Algebra, Analysis).

French International School of Singapore
French baccalaureate, Scientific section, Physics speciality, with special 
honours (mention Très bien)

Clément Jarlov

TECHNICAL SKILLS

Experimental

Computer

Optical spectroscopy: photoluminescence (PL) measurements, time-
resolved PL measurements, photon correlation measurements, cryogenics.

Matlab and basic knowledge of Python and C++. Microsoft Office and Latex. 
Adobe illustrator and Blender 

LANGUAGE SKILLS

French

English

Fluent (mother tongue)

Professional proficiency (C1)
201


