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Introduction

I In the tokamak SOL, magnetic field lines
intersect the walls of the fusion device

I Heat and particles flow along magnetic field lines
and are exhausted to the vessel

I Turbulence amplitude and size comparable to
steady-state values

I Neutral particles interact with the plasma

The Global Braginskii Solver (GBS) code:
a 3D, flux-driven, global turbulence code in

limited geometry used to study plasma
turbulence in the SOL

[Ricci et al., PPCF 2012; Halpern et al., JCP 2016]

I GBS solves 3D fluid equations for electrons and ions, Poisson’s and Ampere’s equations, and a
kinetic equation for neutral atoms.

The Global Braginskii Solver (GBS) code
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I Equations implemented in GBS, a flux-driven plasma turbulence code with limited geometry to study
SOL heat and particle transport

I System completed with first-principles boundary conditions applicable at the magnetic pre-sheath
entrance where the magnetic field lines intersect the limiter [Loizu et al., PoP 2012]

I Parallelized using domain decomposition (MPI and OpenMP), excellent parallel scalability up to
∼ 10000 cores

I Gradients and curvature discretized using finite differences, Poisson Brackets using Arakawa scheme,
integration in time using Runge Kutta method

I Code fully verified using method of manufactured solutions [Riva et al., PoP 2014]
I Note: L⊥→ ρs, L‖→ R0, t → R0/cs, ν = ne2R0/(miσ‖cs) normalization

The Poisson and Ampere equations
I Generalized Poisson equation, ∇ · (n∇⊥φ) = Ω− τ∇2

⊥pi

I Ampere’s equation from Ohm’s law,
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I Stencil based parallel multigrid implemented in GBS
I The elliptic equations are separable in the parallel direction leading to independent 2D solutions for

each perpendicular plane

The kinetic neutral atoms equation
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I Method of characteristics to obtain the formal solution of fn [Wersal et al., NF 2015]
I Two assumptions, τneutral losses < τturbulence and λmfp, neutrals� L‖,plasma, leading to a 2D steady state

system for each perpendicular plane
I Linear integral equation for neutral density obtained by integrating fn over ~v
I Spatial discretization leading to a linear system of equations[
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I This system is solved for neutral density, nn, and neutral particle flux at the boundaries, Γout, with the
threaded LAPACK solver.

Achievements of GBS

I Characterization of non-linear turbulent
regimes in the SOL [Mosetto et al., PoP 2015]

I SOL width scaling as a function of
dimensionless / engineering plasma parameters
[Halpern et al., PPCF 2016]

I Origin and nature of intrinsic toroidal plasma
rotation in the SOL [Loizu et al., PoP 2014]

I Mechanisms regulating SOL equilibrium
electrostatic potential [Loizu et al., PPCF
2013]
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Plasma shaping effects on SOL turbulence

I Fully-turbulent non-linear simulations with same physical parameters, in different magnetic
geometries [Riva et al., PPCF, submitted]
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I Mitigation of turbulence by ∆′, κ, and negative δ; enhancement of turbulence by positive δ

I Good agreement between non-linear simulations and Gradient Removal theory [Ricci et al., PoP
2013]

(κ, δ)
Non− linear sim.
ε ' 0.25, ∆(0) ' 7

Gradient Removal Theory
ε ' 0.25, ∆(0) ' 7

Non− linear sim.
ε = 0, ∆(0) = 0

Gradient Removal Theory
ε = 0, ∆(0) = 0

(1.0,0.0) 25± 1 27.4 37± 2 38.9
(1.8,0.0) 20± 1 20.7 26± 3 30.3

(1.8,−0.3) 15± 1 18.1 20± 1 26.2
(1.8,0.3) 23± 1 26.8 43± 3 36.8

I Linear scan over κ and δ allows to
predict the SOL width for non-circular
magnetic geometries

I It is possible to generalize the
analytical first-principle Lp scaling to
include shaping effects
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Simulation of TCV SOL

I GBS simulation of TCV discharge # 49170
I Full size simulation with realistic TCV input parameters
I Simulation parameters at the LCFS given by flush-mounted

Langmuir probes
I Comparison with infrared imagining of heat flux [Nespoli et

al., JNM 2015]

I Double scale length in heat flux profile as in TCV
measurements

I Good agreement for what concerns the scale
lengths

I Heat flux fall-off in the near SOL smaller with
respect to experiments

I Non ambipolar current at the limiter observed in
near SOL as in the experiment

Simulation with neutral atoms and closed flux surface region

I Self-consistent GBS simulations with neutral dynamics that include closed flux surface region
I Neutral density peaks around the limiter due to recycling and ionization follows plasma fluctuations

I SOL quasi-steady state balance in the electron temperature
equation

I The perpendicular drifts (S) and the neutral interaction terms
(N) are balanced by the parallel advection (A) and the
parallel diffusion (D) [Wersal et al., NF 2015]
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Summary and Outlook

I GBS is a tool to carry out SOL turbulence simulations of medium size tokamaks
I Recent developments concern the implementation of shaping effects, neutral atom dynamics, the

open-closed field lines interface, and validation agains TCV measurements
I A more flexible algorithm to simulate diverted SOL is being implemented
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