Progress in simulating SOL plasma turbulence
with the GBS code
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Introduction Plasma shaping effects on SOL turbulence

» In the tokamak SOL, magnetic field lines » Fully-turbulent non-linear simulations with same physical parameters, in different magnetic
intersect the walls of the fusion device geometries [Riva et al., PPCF, submitted]
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plasma, core limited geometry used to study plasma » Good agreement between non-linear simulations and Gradient Removal theory [Ricci et al., PoP
turbulence in the SOL 2013]
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Two-fluid drift-reduced Braginskii equations, k2 > k , d/dt < wgj
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» Linear scan over x and ¢ allows to
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» Equations implemented in GBS, a flux-driven plasma turbulence code with limited geometry to study
SOL heat and particle transport

» System completed with first-principles boundary conditions applicable at the magnetic pre-sheath
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» Generalized Poisson equation, V - (nV | ¢) = Q — 7V2 p;

» Ampere’s equation from Ohm’s law, (V2 550 L n) Vie = % TUje— @ﬂ”VH/

» Stencil based parallel multigrid implemented in GBS

» The elliptic equations are separable in the parallel direction leading to independent 2D solutions for
each perpendicular plane

The kinetic neutral atoms equation

» Self-consistent GBS simulations with neutral dynamics that include closed flux surface region
» Neutral density peaks around the limiter due to recycling and ionization follows plasma fluctuations
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» Method of characteristics to obtain the formal solution of #, [Wersal et al., NF 2015]

system for each perpendicular plane

» Linear integral equation for neutral density obtained by integrating f, over v
» Spatial discretization leading to a linear system of equations
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