

Methodology for streams definition and graphical representation in Total Site Analysis

Elfie Méchaussie Stéphane Bungener, François Maréchal, Greet Van Eetvelde

ECOS 2016 | 19-23.06.2016 - Portorož

context	methodology overview
methodology step by step	example & outlook

context	methodology overview
methodology step by step	example & outlook

European context

continuous evaluation - improvement - monitoring

Total Site Analysis (TSA)

- powerful method to identify energy efficiency improvements
- pinch analysis applied to large industrial sites
 - 50 to > 500 MW of thermal power demand

state of the art:

- important body of work on TSA (since the 90's)
- many aspects/limitations adressed in literature
- in-detpth explanations for practical applications hard to find
- recurrent practical issues
 - large data size, system complexity, lack of time & skills

presented methodology:

- step-by-step approach to properly define main heat flows
- temperature-enthalpy profiles

context	methodology overview
methodology step by step	example & outlook

methodology for streams definition

context	methodology overview
methodology step by step	example & outlook

streams classification

process - utility HEX listing and classification

- heaters
- reboilers
- stripping
- tracing/storage
- building heating
- losses

process streams characterisation

- dual representation: easier calculations from utility side

• if not available, additional data need to be collected

- mass & energy balances, modelling... ⇒ context dependent

- injections
 - minimum P required (process/equipment constraints)
- reactor cooling
 - X_r, reaction conversion; ΔH_r , heat of reaction
 - intermediate cooling system (security constraints)
- building heating
 - usually a black-box
 - more detailed methods can be used (heating degree-day)

objective is to define minimum process requirements

utility streams characterisation

- defined simultaneously to the process demand
 - dual representation
- no additional data collection needed!

other important utility flows:

- letdowns & turbines
- intermediate utility systems
- deaerator venting

cogeneration potential

security/technical constraints

preheating & gas removal

graphical representation - phase change

graphical representation - special cases

ECOLE POLYTECHNIQUE ECOLE POLYTECHNIQUE ECOLE POLYTECHNIQUE

graphical representation - mechanical power

representation of electricity produced in steam turbines

context	methodology overview
methodology step by step	example & outlook

total site composite curves of an industrial cluster

key points - outlook

methodology for streams definition in TSA

- support for practical application
- systematic approach (3 steps)
- reduce time and complexity

• outlook:

- input to high level energy review
 - in the framework of energy audit and EnMS
- development of the full methodology and output required
 - performance evaluation
 - energy saving opportunities
 - monitoring

Thank you for your attention...

