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Abstract— 3D facial analysis attracts much interest recently
due to the fact that it provides solutions for mitigating con-
founding factors in 2D image analysis, such as pose, illumina-
tion. On the other hand, it also provides enriched representation
with more discriminative depth information for applications
such as expression or identity analysis. In this paper, we
investigate 3D face reconstruction based on sets of extracted
facial features in a multi-view camera setup. The reconstruc-
tion is done using Bilinear Face Models where identity and
expression are modelled independently in different modes. A
novel algorithm based on full-perspective projection model is
introduced. We validate our reconstruction method on synthetic
data in this study. Experiments show that the reconstruction
performance is significantly improved with multi-view inputs in
terms of point-to-point error, normal error, as well as errors in
model coefficients. We also show that the reconstruction method
based on full-perspective projection model produces superior
reconstruction accuracy comparing to weak-perspective model
in multi-view reconstruction. The robustness of reconstruction
against noise in the feature data is discussed and show the
proposed method is applicable on real data.

I. INTRODUCTION

Over the past years, scientists in computer vision field
have developed a growing interest in modelling the face with
3D data. The motivation behind this interest is to improve
facial analysis tool performance (i.e. face recognition) for
non-trivial case such as non-frontal images, bad illumination
condition. In this sense, Vetter et al. have presented the
concept of 3D Morphable Model (3DMM), a statistical
model where the 3D shape and the 2D texture are included
[2]. It is an extension of the well known Active Appearance
Model (AAM) [3] working with 3D shape scans instead of
2D. Such generative model is widely used in different type
of application ranging from face recognition [5] to facial
expression recognition and expression analysis [6]. The 3D
face structure is reconstructed by matching the 2D image
texture with the one generated by the model, which is also
called analysis by synthesis similar to AAM fitting [7].
The optimisation uses a modified gradient descent algorithm
and it is very slow; convergence time has been improved
by the use of image features and specular highlights by
Romdhani et al. [8]. For accurate surface reconstruction,
3DMM needs dense mesh and texture leading to large com-
putational time and may not be suited for all systems. The
processing time goes from 30 seconds [8] up to 5 minutes [5]
producing highly accurate shape reconstruction and texture,
given a reasonable initialisation.This method has a significant
processing time therefore it can only be considered for
application targeting animation or offline analysis.

The efficiency of 3DMM fitting has been improved using
featured-based and model parameter regularisation method

introduced in [11] by dropping the texture and reconstructing
the 3D object through the object-image correspondence.
Later that work was extended to a multi-view framework
with weak-perspective projection model in [12]. Vlasic et
al. goes even further by introducing Multilinear Morphable
Models [4] that embed multiple face attributes such as
identities, expressions and visemes (i.e. speech-related mouth
articulations) into one single model. Multilinear models are
powerful analysis tool because each attributes are modelled
as its own, this decoupling gives precise information through
model’s parameters unlike linear one (i.e. information about
mixture of expression and identity for instance).

In this work, we aim at reconstructing 3D human faces
with variations in identity and expression. For this, a Bilinear
3D Morphable Model is applied where the identity and the
expression are the two separate modes. We investigated dif-
ferent camera projection models for situation where cameras
are calibrated or not in a single or multiple view setup.
Experimental results show that multiple view system with
a full-perspective projection model helps to improve the
reconstruction accuracy especially for the expression.

The contribution of this work is three-fold: (a) We propose
a solution for fitting a Bilinear 3D Morphable Model to
multi-view image features with a coordinate-descent optimi-
sation framework under weak-perspective projection model.
This extends the work in [12] and [4] for recovering
multiple modes of facial variations in a multi-view setup.
(b) The full-perspective projection model is suggested for
better reconstruction accuracy in multiple cameras setup. We
present an iterative algorithm for accurate pose recovery with
an effective initialisation based on back-projection. (c) We
apply an adaptive feature data selection method for selecting
plausible 2D feature points for reconstruction. This removes
the points that are invisible in a 2D image to a specific
camera due to self-occlusion, and thus are inconsistent to
the corresponding vertices in the 3D model.

The rest of the paper is structured as follows : Section [I|
provides details on how to build a Bilinear Face Model and
fit it on images with one or multiple views with two types of
projection model. In Section [[II| we present the experiments,
and the results will be discussed and finally Section [[V| will
conclude this study.

II. METHODS

A. Notation

Through all this paper the following notation is used :
Italic capital letter 7 denotes tensor, bold capital letter M
denotes matrix, bold lower-case letter v denotes vector and
italic lower-case letter s stands for scalar value. Operation



on tensor such as mode-n product is denoted by .7 x,, M or

T Xp V.

B. Bilinear Face Models

Most of the Morphable Models used nowadays are linear.
Building a model that is able to handle different type of
variation such as identity and expression increase the com-
plexity and leads to a more complicated model. This training
issue can be avoided by moving toward multilinear 3D
Morphable Model assuming that the identity and expression
can separately parametrise the geometric variations [4].

The Facewarehouse database [1] recently introduced by
Cao et al. includes 3D blendshapes of different identities
in various expressions. The database holds a total of 47
expressions such as smiling, mouth-opening, winking, etc
(Fig[T). Those blendshapes are available for 150 individuals
aged between seven and eighty years old. The Bilinear
Face Model used in this work is built using this set of
blendshapes. All the face mesh from this database share the
same topology, therefore they can be arranged into a rank-
three tensor .7 € R4 *d2Xds where the first mode d; holds
the vertex variation (i.e. shape), the second ds, the identity
and the last one d3, the expression. To extract meaningfully
information from the training data, the tensor is decomposed
using the N-mode Singular Value Decomposition (N-SVD)
[9]. The decomposition of the tensor .7 produces a core
tensor ¢ and N singular matrices U,, (i.e. N = 3) that
rotate the mode space and can be expressed with the N-mode
product as shown in (T).

9:%X1U1X2U2~-~XnUn (1)

The singular matrix U,, is defined as the left singular
matrix of the tensor .7 unfolded along the n*" mode. Hence
computing the N-SVD of .7 yields to the computation of N
matrix Singular Value Decomposition (SVD), one for each
mode unfolded. Similarly to regular SVD, the variance inside
the core tensor ¥ is concentrated into one corner therefore
dimension can be reduced by truncating the singular matrices
without loosing much information (i.e. data compression).
Knowing the N singular matrices, the core tensor is defined
as the multiplication of the data tensor by each matrices
along the corresponding mode :

(greducedzyxl IVJI X2G;"'Xnﬁz~ (2)

The 3D surface needs a certain amounts of vertices to be
precise enough therefore it does not make sense to truncate
the data along this direction. Only dimension linked to other
variation will be reduced (i.e. identity or expression) yielding
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Fig. 1: FaceWarehouse expression examples

to the following decomposition (3)) where €. = € X1 Uyere-

T =~ (gr X2 Ivjid X3 Ijea:pr (3)

This truncation gives generally good approximation but
it is not optimal, using alternate least square method gives
better approximation by refining U,, and €,equcea [91[10].
Multiplying the core tensor with singular matrices regener-
ates the original dataset (i.e. set of faces) therefore using
the N-mode product and the corresponding i*" row of each
singular matrix will generate one specific face from the
training set. Moreover using a linear combination of rows
from each U, it is possible to generate an arbitrary face f
as in (4) where w;; and w/, . are column vector of identity
and expression weights.

f= (gr X9 W;(rj X3 W(J;pr (4)
The core tensor %, is what is called Bilinear Face Model.

C. Fitting Method

The feature-points based Morphable Model fitting method
[11] is based on two key assumptions. The first one states
that there is a direct correspondence between vertices (i.e.
Surface’s 3D points) and the features coming from the
images through the projection model, and secondly it is
possible to recover the model coefficient only using a subset
of feature points (i.e. sparse measurement) [12]. Given
a sparse measurement vector r € R2f composed of f
facial landmarks, (3) defines the relationship between the
reconstructed 3D surface and the facial landmarks. Where P
represents the sparse vertices selection going from N to f
vertices (P : R3N — R3f) and L models the projection of
this subset onto the image plane [11].

r=LPf=LP (%, X2 W,y X3 W/, ) - (5)

The selection operator P that selects a sparse subset of
vertices will be explicitly defined in Section[[I-D]and Section
[T-E) gives more details on how the projection operator L can
be estimated.

It is not possible to find a linear combination of shapes
from training set that match exactly (3), therefore the error
function defined in (6) is minimized to get the closest
solution.
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This type of optimisation problem where two variables
need to be estimated can be solved using coordinate-descent
[4]. The recovery of the identity and expression weights
is done considering one variation at a time and the other
being fixed, this way the multilinear problem ends up in a
linear one in a form of : arg min |Qw —Y||2. However

E (Wida We;zpv‘) = HLP (%7" X2 W;Ei X3 WeTxpr)

directly minimizing this problevrvn will not produce percep-
tually correct result as shown in [11]. The reason is that it
will only minimise the re-projection error between the 3D
model and the 2D features without constraining w to be in
the span of the 3D Morphable Model solution. A parameter
regularisation based on statistical approach is added to ensure



that the parameter w lays in the span of solution and
represents a face. Therefore to recover the identity w;; and
€Xpression Wy, the optimisation problem @ becomes :

E (Wia) = |[LPMegpowly —)* 4 mia [waal >, (D)
E (Weapr) = HLPMidw;rmpr - rH2 + Neapr Hwewpr||2 ; (8)

where Megpr = 6 X3 W, and Mg = %, x5 w;;. This
problem stands for single image but can be easily extended
to support multiple images. The coefficients of the Bilinear
Face Model are not dependant on the viewpoint because they
are characterising 3D object’s shape and not its projection on
the image plane. When looking at the object from a different
angle, the only variation in the optimisation problem is the
facial landmark location r, the projection operator L. and the
sparse selection P. Therefore if they are known it becomes
easy to extend previous problem to multiple view with the
cost function :
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where w stands for w;q or Wegpr, Q; for L;P;Mcgy,, or
L;P;M;; and 7 for 1;q OF Negpr. The coefficient % ensures
that all views have the same weight and balance the regu-
larization [12]. The optimal solution w* that minimises @)
can be found when its derivate with respect to w is null :
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The operator (A)" denotes the pseudo-inversion of the
matrix A.

Solving (E[) for w;q and Wy, into an iterative framework
ensures that the face model parameters get closer to the
optimal solution.

D. Landmarks Selection

The facial features used to reconstruct the 3D surface are
automatically detected from the image with the help of a
face tracker (i.e. based on the supervised descent method
[16]). In this work, we assume that the face tracker provides
a set of 68 facial landmarks such as eyes and mouth contour,
chin, nose and eyebrows. Using such tool, some distortion
can be introduced in particular when some part of the face
is occluded. For instance when the face has a half-profile
pose, part of the facial landmarks are not visible and even
though they are hidden, the tracker places them on the edge
of the face (i.e. Fig. |2] red dots). Therefore the given position
does not match the real position and using this information
in the reconstruction process will lead the introduction of
distortion since it is assumed direct correspondence between
3D vertices and 2D facial landmarks. From the set of 2D
points provided by the face tracker only landmarks corre-
sponding to visible vertices from the cameras are used in

Fig. 2: Face landmarks given by the tracker, where blue dots
are correctly matching the corresponding vertices and red do
not match

the reconstruction to avoid to introduce such errors. This sub-
selection of f features can be defined with the help of the
3D surface by determining whether or not a vertex is hidden
behind it. Therefore the selection operator P € R37*37 that
extracts the vertices corresponding to the facial landmarks
can be define with the 3D surface and the previous pose
estimation.

E. Pose Estimation

In real world situation the face model is not aligned with
the data therefore it is required to determined the rigid trans-
formation that matches both dataset. This transformation is
defined by a translation, a rotation and a scaling factor. In this
work, two situations has been investigated where the cameras
are un-calibrated and calibrated. From this configuration two
types of projection models are studied, weak-perspective for
un-calibrated case respectively full-perspective.

1) Weak Perspective: The weak-perspective projection
model holds when object lays close to the optical axis and the
depth variation is small against the distance to the camera.
With a small variation in depth, it is assumed that all points
stand onto the same plane located at an average distance to
the camera. For human faces standing in normal situation
in front of a camera, those constrains are fulfilled. The
final transformation is given by (TI) where R defines the
orientation of the face relative to the camera, t defines the
displacement on the image plane to align the points and s
acts as scaling factor.

p=sRx+t. (11)

In order to define the operator L the parameters s, R and t
have to be estimated. To achieve this, the method presented
in [11] has been used. The proposed algorithm uses extra
basis added to the linear model to recover the unknown rigid
transformation. Unfortunately with Bilinear Face Model and
multiple views, it is not possible to recover the rigid and
non-rigid parameters at the same time. However this basis
technique can be used to recover the rigid transformation.
The transformation is recovered by minimizing the projec-
tion error between basis and the facial landmarks. Using
the 3D shape simple basis can be defined to estimate the
transformation. The translation in the space can be retrieved



using basis defined with unit vector corresponding to the
correct direction : s;; = (1,0,0,1,0,0,...,1,0,0)" and
sty = (0,1,0,0,1,0,...,0,1,0)". The basis used for the
scaling and the rotation are based on the 3D surface, typically
the mean 3D shape coming form the training set. The rotation
is assumed to be for small angles, v, 6, ¢ < 1, therefore the
rotation matrix can be simplified by considering the cosine
terms equal to 1 and ignoring the product of sines. Finally
the contribution of each angle can be separated from each
other and the basis are define as in (I2). The scaling factor
uses the whole 3D mean shape as basis (I3).

S,y = (—gl,fl, O7 ceey _ynufny 0)T7

So = (0_21751,07'“70a —}n,@n)—r, (12)
S¢ = (zla 07 7f1; -"7271707 7E7L)T7
Ss = (fhylazh~'~7fnaynazn)—r (13)

Using the basis, the rigid transformation can be recovered
for each view by minimising the error between the basis
projection and the facial landmarks as defined in (14)

. . 2
E(w)) = HLZ»P,»SWI()’) x|, (14)

So | 8¢ | Stz | Sty | and w,(f)

[ S ‘ s -sin~y ‘ s5-sinf | s-sin¢ ‘ ty ‘ ty ] is the rigid pa-
rameters for the i*" view. To have a better estimation of
the parameters the minimisation is included in a multi-pass
approach where the operator L; is updated at each iteration
to have a better update at the next pass. once the rigid
transformation is estimated for each view, the projection
operator L; € R2/*3/ is define as block diagonal matrix
where each block is define as

1 00 } R,

where S = [ s, |s,

010 (15
where s; and R; correspond to the scaling factor and the
object orientation for the i*" view. The translation factor
t; is directly applied on the input vector r;. The scaling
factor s; englobes the effect of the object’s distance to
the camera as well as the physical size of the object. The
size of the head and the position can vary between each
individual and images, therefore the re-projection error range
will increase and the regularisation factor will not have the
same effect. To overcome this issue, the input vector r;
needs to be normalized to cancel the effect of the scaling
factor. The input normalization factor (20) is defined with
the face model’s projection (I6), the projection’s center of
gravity (I7), the input’s center of gravity and the centred

landmarks :

BeRM:si[

p;, = L;P (Cgr X2 W;[l%l X3 w;rrprn—l) ’ (16)
P; = (P, Dy Pas D) |- (17)
T, = (T, Ty, oo T, T) | (18)
r; =r;, — T, (19)
o, = P Pl (20)

]

The cost function slightly changes as shown in (2I)). For
the initialisation at the first pass, the 3D surface used is the
mean shape coming from the training set, then it uses the
shapes reconstructed at the previous iteration.

K
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Algorithm [I] summarises all the operation performed
by the reconstruction pipeline when the weak-perspective
projection model is used. If the face tracker provides a
rough estimation of the object’s pose Ry it can be used as
initialisation.

2) Full Perspective: If we consider the full-perspective
projection model, the coordinates on the image plane of
the 3D points are defined by (2Z) when using homogene
coordinates.

)‘p =K (Rcam (SRoij + Tobj) + Tcam)

The position onto the image plane depends on the char-
acteristics of the camera (i.e. focal length, image center)
called intrinsic parameters K and the location and orientation
of the camera called extrinsic parameters (i.e. Reqm s Team)-
The intrinsic and extrinsic parameters can be recovered by
calibrating the cameras.

In this case the rigid transformation is the same as earlier,
it is composed of a scaling factor s, a rotation matrix Ry,
and a translation vector Top; (i.e. orientation and position
are absolute values). The estimation of the unknown rigid
transformation is based on the method presented in [13].
Their approach uses the information from each view at the
same time and combine them to recover the pose, location
and scale of the object. The calibration of each camera
allows the consideration of the network of cameras as a
generalized one and move from each referential (i.e. one
for each view) to a global reference system. The camera’s
extrinsic parameter T; = (R() T ) is used to fuse all
information into a common reference system. Therefore it
becomes possible to find the pose T = (s,Ropj, Topj) of
the object by minimising the error between 3D object’s

(22)

Algorithm 1 Calculate w;q, Weyp, using weak-perspective
for it =0 to it = M do

if 7t = 0 then
t,‘ Zfi , S; — HI‘Z—EH/HE

(@)

,R; =R, or Lif
no initial estimation
Initialise S basis with meanshape, (I2)(I3)
Initialise L; and P;.
else
Update shape and S basis with new shape f
end if

Estimate pose (I4), update L;, P; and normalise r;,

(15)0)

Estimate w,j;, W/, (21)
end for
Update shape




projection (i.e. the 3D surface) and the facial landmarks.
The problem is define in ([23), where only the valid points
P; (i.e. vertex that are visible from the viewpoint i) included
in the vertices set corresponding to the facial landmarks P
are projected onto the corresponding image plane using the
full-perspective projection model.

T —argmlnzz

i=1P;cP

— proj(T;TP; )] , (23)

The solution to this type of minimisation problem can be
found using the Levenberg-Marquardt iterative solver [14].
Once the rigid transformation is known, the projection
operator L; can be defined for full-perspective projection
model. The u and v coordinates of the points are given by
the relation u = f,-x/z and w = f,-y/z which is not linear.
However if the z coordinate is known, the computation of
the image point coordinates become simpler and linear. A
good estimation of this z value is given by the reconstructed
surface at the previous iteration and for the initialisation the
mean shape is used. With the previous surface reconstruction
and the current rigid transformation, the new vertices position
can be defined by then a scaling factor can be computed
for each vertex : 8Y) = f,/PY) and {7 = f,/PY).
P(j) = (RcanL <SIRoij(j) + Tobj) + Tcam) (24)
Once those scaling factors are defined the projection
operator L; is defined as block diagonal matrix where each
block is define as in (25) and a translation vector define as
in is also included into the optimisation process.

. )
BU) — [ s gz S (,;U) 8 R R, (25)
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The cost function define in (9) is modified to included
the changes to use the full-perspective projection model.
However the effect of the head size (i.e. the coefficient s)
will also have an impact on the regularisation parameters,
therefore the input needs to be normalised to get ride of the
effect. In case of single-view application, the input normali-
sation by ratio describe previously can be used without any
modification. However this will introduced distortion since
scaling 3D object will not lead to the same transformation
onto the image plane. When working with multiple cameras
configuration, the solution to avoid to introduce such defor-
mations is to back-project the landmarks (i.e. recover the 3D
position of the landmarks from two distinct viewpoints) and
the normalise the size of the face using the scale estimated
previously and then projecting back those points. Finally the
cost function is :

KZHQW o/ =6 +nlwl®. @

Algorithm 2 Calculate w;q, We,)p, using full-perspective

for it =0 to it = M do
if it = 0 then
if #View = 0 then
Tobj = 0, S = ||I’1
initial estimation

,R:ﬁoorlifno

else
P = Backproj(r;), Top; =P and s = ||P|| / ||f]|
end if
else
Update shape and S basis with new shape f
end if

Update P; and estimate pose, (23)
Update L; (25)
if #View = 0 then

Normalise r;, (Z0)

else
Normalise r; using back-projection
end if
Estimate WZ.Td, wzrpr, 1'
end for

Update shape (@)

where r/ = «;r; (20) for single camera or r] =
(BackProj(r;) — Topj) /s + Top; for multiple cameras
setup.

Algorithm [] gives a compact summary of the different
steps included in the reconstruction process using the full-
perspective projection model. To have a better pose estima-
tion, the iterative optimiser is initialised too the solution.
Using the information provided by the back-projection of the
facial landmarks the position and the scale can be roughly
approximated.

III. RESULTS
A. Data and Experimental Setup

To assess the quality of the reconstructed face using a
Bilinear Face Model, synthetic data have been used. The
blendshapes used come from the FaceWarehouse database
therefore they are part of the model training set. The facial
expression database holds a total of 47 different expression
composed of one neutral and 46 FACS blendshapes (i.e.
shape including combination of action units) builded using
facial rigging algorithm presented in [15].

The Bilinear Face Model is built using those blendshapes
and has the following characteristics, 8260 vertices, 50
identity coefficients and 25 expression coefficients.

The image formation process is simulated using the full-
perspective projection model with real calibration informa-
tion in order to simulate realistic situation. The calibration
data come from a camera rig where three cameras are in
triangle on the structure. The triangle’s top side include two
cameras horizontally placed at 50 centimetres apart both
aiming at the same point in front of them. The last one
stands 45 centimetres below the two others and right in the



middle of them. The configurations tested are single-view
where only the camera in the middle is used, two views
using cameras from both side and three views where all of
them are used.

For real world application case, all the facial landmarks are
provided by a face tracker. To simulate the same behaviour
on synthetic data, zero mean gaussian noise is added to
the vertices projection. The standard deviation is adjusted
according to the eye distance to ensure that the same amount
of noise is added in every case, the range goes from 0% up
to 16%.

The testing set is composed of unique identity and ex-
pression pairs randomly picked blendshapes from the Face-
Warehouse database. The orientation of the face is uniformly
distributed between [—30°,30°] for every angle, the size
is picked in the range between [90,110], the position is
uniformly selected from a volume standing where all cameras
are in focus with a size of [—10, 10] x [—10,10] x [—10, 10]
centimetres.

Fig. 3] shows the evolution of identity and expression
parameter update over the iteration, at the beginning both
projection model give significant parameters update (i.e.
identity and expression). However the gain after four iter-
ations becomes much smaller therefore doing more iteration
does not bring a significant improvement therefore the max-
imum number of iteration for the reconstruction pipeline is
set to 4.

The reconstruction quality is analysed with three qual-
ity estimators, the average normalised point-to-point error
per vertex Ep, = 1 DO [x) — x*@|] /[|x* —X*[|, the
average normal difference defined as E,, = + Zfil 1-

nSQc . n((,i.)g‘ and the norm of the identity and expression

weights error ||w — w*|| where w is the estimated parameter
for the identity or expression and w* is the corresponding
ground truth extracted from singular matrices U;q/cqpr- The
region of interest is the face and not the whole head therefore
only the vertices on this particular region are considered in
the error computation. Furthermore those regions (i.e. ears,
neck and forehead) do not have any constrain during the
fitting and can be discarded from the reconstruction quality
estimation. When the surface reconstruction is based on the
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Fig. 3: Evolution of the parameters update over the iteration
for weak-perspective (W) and full-perspective (F) projection
model

full-perspective model the rigid transform error is computed
as well.

B. Shape Estimation

The experiments have been performed for static image,
given a specific identity/expression pairs the 3D surface
is reconstructed with one of the configuration explained
previously and quality estimators are computed. Moreover
the reconstruction pipeline does not include any kind of
tracking between each surface reconstruction.

Fig. fia] shows the average normalised point-to-point error
for the reconstruction using the weak-perspective projection
and it can be seen that adding extra views improves the
overall quality of the reconstruction. What appends is that
more control points are part of the optimisation which
adds more constrains to the surface therefore leads to a
smaller average error per vertex. For instance in case of
maximum noise it goes from almost 1.12 x 10~3 with one
view down to 1.03 x 1073, It also shows that the speed
at which the relative error increases is slower when using
multiple view based reconstruction which means that the
system is more robust against noise. Comparing the same
reconstruction using the full-perspective projection model
instead (Fig. [4b), the first thing to notice is that for a single
view the result is not improved as it would be expected, it
is even worst. The reason is that the rigid-transformation is
not properly estimated even when no noise is added due to
poor initialisation and confusion between object’s position
and scale, more details will be provided in section [[II-E
However for multiple view the average normalised point-to-
point error is consistent and adding extra views decreases
it down to 0.7 x 1073, However this result can not be
directly compared to the weak-perspective reconstruction
since not both methods include the rigid-transformation in
the reconstruction. Comparing the normal of reconstructed
surface and the original one provides information about the
surface independently of the vertices location therefore it
can be used to tell if there is an improvement between
both technics. Fig. [5] shows the normal’s difference between
each reconstruction methods where the dashed lines stand for
the weak-perspective model and the solid one for the full-
perspective model. In average the normal’s difference when
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Fig. 4: Average point-to-point normalised error



using full-perspective model with multiple views is smaller
indicating that the topology of the reconstructed surface is
closer to the original, therefore its quality is better. Again
for single input, it highlights that full-perspective model is
not suited for the reconstruction.

C. Model Weights Estimation

The last quality estimator investigated is the error made on
the face model parameters itself. This comparison is possible
since the ground truth is available form the training set,
therefore it can be compared with the coefficients estimated
by the reconstruction pipeline.

Fig. [6] confirms again that full-perspective projection
model is not well suited for single-view fitting. The left graph
shows the error on the identity parameters, and using full-
perspective model do not bring a significant improvement.
However when looking at the expression coefficients, using
such model reduces the error on the coefficient leading to a
better reconstruction. Since the projection model is closer to
the physical phoneme it is able to better catch small changes
related to the expression.

D. Error Distribution

The first line of Fig. from the left to the right,
shows the face ground truth (Fig[7a) where each red dot
indicates the position of the landmarks used during the
synthesis, the normalised point-to-point error (Fig[7b) and
the normal difference (Fig[7c) for the weak-perspective pro-
jection model. The second line shows the same errors in
the same order for the full-perspective projection (Fig[7d|[7e)).
The simulated input is for three cameras where reasonable
amount of noise is added (i.e. o, = 8%). Reconstruction
with weak-perspective considers projection information from
each view independently therefore the alignment error will
be stacked in the reconstruction minimization. Moving to
calibrated camera allows to consider the rigid transformation
estimation in a global system and it provides a much better
alignment. Including full-perspective projection model in the
reconstruction pipeline as well also lead to a more accurate
reconstruction (i.e. expression more marked).
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Fig. 5: Average eerror in surface normal for weak-perspective
(W) and full-perspective (F) projection model
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Fig. 6: Error on face model coefficient for weak-perspective
(W) and full-perspective (F) projection model

TABLE I: Rigid transformation average error and standard

deviation with no noise on landmarks, o, = 0% and
significant amount of noise o,, = 12%
on = 0% on = 12%
1 View 2 Views 3 Views 1 View 2 View 3 View
wto wto Wt o wto Wt o wto
s 11.4+7.9 5.0+4.0(4.7+ 3.6 10.9 £ 7.9 5.2+4.4[5.1+4.4
¥ 4.4 + 12.4 1.3+ 1.4[1.0+ 1.2 4.8 + 13.4 1.3+1.4[1.1+1.8
[ 0.3 + 5[4.9+3.9[3.7+£2.9[10.0+18.2[4.7+3.9[3.7+3.1
P 7.9+ 15.4 [2.5+3.3[1.9+ 2.3 7.0+ 13.6 2.44+3.0[1.9+2.5
ty | 13.3 £20.7[2.5+3.0[1.94£2.1[12.7+20.7[2.4+3.0[2.1+*2.6
ty 13.6 £20.3[4.6 £3.9[3.8£3.0[12.9+20.3[4.8£3.9[3.9+£3.1
t, | 50.3 £31.9[4.0+3.6[3.6+3.3[49.3 +31.3[4.0+3.6[3.8+ 3.3

E. Rigid Transformation Estimation

When the reconstruction pipeline work with full-
perspective projection model during the face model fitting,
the estimation of the absolute pose of the 3D object is part of
the process. Working with synthetic data provides the ground
truth of the transformation and it is possible to define how
precise is the estimation. Table [l shows the average error and
the standard deviation across all views with no noise and
significant amount of noise (i.e. o, = 0% and o, = 12% of
the eye distance). The amount of noise added to the facial
landmarks (i.e. up 1o 16% of the eye distance) does effect the
non-rigid reconstruction but does not have a major impact on
the rigid transformation approximation.

e

(a) Source (b) Pt-to-pt error (W) (c) Normal (W)

(d) Pt-to-pt error (F) (e) Normal (F)

Fig. 7: Error distribution for weak-perspective and full per-
spective projection model



The values given for the angles are in degrees and the
distances are in millimetres. The s value is the error for the
scaling factor, ¢, , . are the position error and the 7,0, ¢
are the error for the roll, pitch and yaw angles. It clearly
shows that the single camera model is not well suited to
estimate properly the absolute pose and scale of the object.
This makes perfect sense since there is a confusion between
the scale and the position variation. A change of size or
position will have the same impact from the viewpoint of
the camera. However as soon as there is a second viewpoint
involved in the estimation, the confusion disappears and it
becomes possible to properly defined the pose and scale of
the object.

IV. CONCLUSIONS

In this work we investigated the reconstruction of 3D
face using 2D facial landmarks and Bilinear 3D Morphable
Model in a multi-view setup. The modes included in the
model are the identity and the expression of the individual.
A reconstruction pipeline for fitting Bilinear 3D Face Model
in multi-camera images is proposed, in which coordinate-
descent optimisation and weak-perspective projection model
is applied. It has also be shown how the pipeline can be
extended to use the full-perspective projection model in a
multi-view setup. Principle for dynamic features selection
have been mentioned to select only appropriated landmarks
to be include in the reconstruction optmisation. We conduct
quantative evaluation on synthetic data for assessing the
proposed reconstruction approach. Results show that Bilinear
Face Model fitted with multiple views/inputs improves the
quality of the reconstructed surface. Moreover using a full-
perspective projection model during the fitting process also
helped to improve the reconstruction accuracy especially for
the expression.
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