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Abstract (German)

Computernetzwerke sind ein wichtiger Teil unseres Lebens. Doch es ist schwie-
rig, sie zu verwalten und zu betreiben. Der Paradigmenwechsel zu Software-
Defined Networking (SDN) verspricht Netzwerkadministratoren einen neuen
Weg dazu. SDN ist jedoch noch in der Anfangsphase. Im Vergleich mit tra-
ditionellen Netzwerken mangelt es an Korrektheit und Zuverlassigkeit. Diese

Eigenschaften sind fiir Netzwerkbetreiber unabdingbar.

SDN entstehen zu einer Zeit, in der Rechenkapazitat giinstig ist wie nie zuvor.
Wir profitieren von Moores Gesetz und von verbesserten Algorithmen, und

verfiigen heute iiber mehr Rechenkapazitat denn je.

Mit dieser Dissertation will ich die Liicke verkleinern zwischen der Korrektheit
und Zuverléssigkeit von traditionellen Netzwerken und SDN. Diese Arbeit soll
zur Annahme von SDN beitragen und Werkzeuge bieten, mit denen Program-
mierer und Operatoren Vertrauen in ihre Netzwerke erlangen konnen. Diese
Werkzeuge nutzen die Tatsache, dass grosse Mengen Rechenkapazitat zuneh-
mend allgemein verfiighar sind. Sie verbinden diesen Trend mit Forschungs-
ergebnissen in systematischer Validierung, in Optimierung, und im Losen von

logischen Erfiillbarkeitsproblemen.

Das erste Werkzeug in dieser Dissertation, NICE, dient zur Fehlersuche in ei-
nem SDN-Kontroller. Obwohl SDN konzeptuell ein zentralisiertes System ist
und von einem zentralisierten Kontroller gesteuert wird, ist es dennoch ein
verteiltes System. Dadurch miissen Programmierer alle moglichen Ereignis-
reihenfolgen und Race Conditions bedenken, die zu Fehlern fithren kénnten.
NICE findet solche Fehler, indem es die moglichen Netzwerkzustédnde syste-
matisch erforscht. NICE kombiniert dazu auf neuartige Weise zwei Techniken:

symbolische Programmausfiihrung und Model Checking. Mit dieser Kombina-
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tion und SDN-spezifischen Heuristiken kann NICE die méglichen Szenarien

tiefer erforschen als bestehende Techniken.

Als Zweites prisentiert diese Arbeit Monocle, ein Werkzeug, das die Zuver-
lassigkeit von SDN-Switches garantiert. Monocle stellt laufend sicher, dass
die Switches in der Data-Plane geméss den Bestimmungen des Kontrollers
arbeiten. Solch eine Uberwachung ist wichtig, denn Fehler in der Firmware,
Speicherzugriffsfehler oder voriibergehende Probleme konnen sonst unentdeckt
bleiben. Monocle iiberpriift das Verhalten der Data-Plane-Switches, indem es
Datenpakete konstruiert und diese ins Netzwerk einspeist. Dies ist kein ein-
faches Problem, denn ein Switch folgt einem komplizierten Mechanismus zum
Verarbeiten eines Pakets, insbesondere wenn mehrere Regeln auf das selbe Pa-
ket zutreffen. Diese Arbeit beschreibt formelle Bedingungen, welche die gene-
rierten Pakete erfiillen miissen. Sie zeigt, wie ein handelsiiblicher Satisfiability

Solver diese Bedingungen l6sen kann.

Als Drittes stellt diese Arbeit ESPRES vor, ein Werkzeug zum Dirigieren von
Netzwerk-Updates. Ich stelle fest, dass grosse Updates wie z.B. Traffic Engi-
neering oder storungsbedingte Umleitungen aus vielen Teil-Updates bestehen.
Diese sind haufig unabhéngig (z.B. wenn sie unterschiedliche Datenstrome
betreffen). Die Dauer des gesamten Updates wird vom langsamsten Switch
bestimmt und kann nicht verbessert werden. Ich behaupte jedoch, dass die
Mehrheit der Teil-Updates wesentlich schneller fertiggestellt werden kann. ES-
PRES erreicht dieses Zeil ohne vorherige Planung. Es passt die Reihenfolge
der Update-Befehle mit einem Greedy-Algorithmus laufend an, unter Bertick-

sichtigung des aktuellen Zustandes der Switches.

Keywords: Software-Defined Networking, OpenFlow, Zuverldssigkeit, Netz-

werkmanagement, Monitoring, Effiziente Updates
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Abstract (English)

Computer networks are an important part of our life. Yet, they are tradi-
tionally hard to manage and operate. The recent shift to Software-Defined
Networking (SDN) is promised to change the way in which the networks are
run by their operators. However, SDN is still in its initial stage and as such it
lags behind traditional networks in terms of correctness and reliability; both

the properties being vitally important for the network operators.

Meanwhile, general purpose computers were following Moore’s law for years
and as a result, together with algorithmic improvements, the costs of comput-
ing have been declining — we have more processing power available to us than

anytime before.

In this dissertation I strive to reduce the correctness and reliability gap of SDN
and help speed up the adoption of SDN by providing tools that help program-
mers and operators gain confidence in their networks. These tools leverage the
today’s trend in the increasing availability of vast amounts of computing power
and combine it with the past research on systematic validation, optimization

and satisfiability solving.

The first tool this thesis introduces, NICE, focuses on debugging of an SDN
controller. In particular, while SDN is conceptually a centralized system with
the controller in the command, SDN is still a distributed system. As such, pro-
grammers might miss various event interleavings and race conditions that lead
to a buggy behavior. NICE uncovers such insidious bugs by systematically
exploring possible network states by a novel combination of two techniques
— symbolic execution and model checking. The combination of the two tech-
niques and SDN-related heuristics let NICE explore possible scenarios deeper

than any existing technique alone.
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This thesis also introduces Monocle, a tool aimed at ensuring reliability of
SDN switches. Specifically, Monocle continuously verifies that a switch data
plane processes packets as configured by the SDN controller. Such monitoring
is important in the presence of silent errors ranging from switch firmware bugs,
through memory corruption, to transient inconsistencies. To verify that the
switch data plane works as intended, Monocle constructs data plane packets
and injects them into the network. Such packet construction is, however, a
rather intricate problem when considering a complicated nature of the switch
packet matching mechanism in the presence of multiple overlapping rules. In
the thesis I formally describe the constraints that the generated packets need

to satisfy, and I leverage an off-the-shelf satisfiability solver to solve them.

Finally, this thesis introduces ESPRES, a tool focused on scheduling network
updates. I first observe that big network updates such as traffic engineering
or failure re-routing usually contain many subupdates that are independent
(e.g., updates of different flows). Then I conjecture that while the length
of the total update is bottlenecked by the slowest switch, the time when an
individual subupdate finishes can be greatly improved for a majority of them.
To achieve this goal in an online fashion, ESPRES uses a greedy mechanism
to reorder individual switch commands according to the current situation on

different switches.

Keywords: Software-Defined Networking; OpenFlow; Reliability; Monitor-

ing; Update performance
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Computer Networks of Today

Computer networks are becoming ubiquitous and an indispensable part of life.
Even the most rudimentary actions such as looking up a forecast on a mobile
phone require communication over multiple networks: First, your mobile uses
a 4G/LTE network of your service provider to deliver the webpage. On the
other end of the connection, load balancers, web servers and application back-
ends use a high-speed network inside a datacenter to produce the web page
delivered. Finally, the forecast would not be produced without a highly cus-
tomized network of some supercomputer. If this is not enough, add to the list
networks of big companies, each spanning multiple branch offices, networks of
healthcare providers such as hospitals, networks between financial institutions,
etc., and it becomes clear that we require networks to be constantly up and
functional. Moreover, the importance of computer networks is poised to in-
crease over time — the global Internet traffic is forecast to exceed 2 zettabytes
per year in 2019 [26], and it is expected that by the end of 2020 there will be
several times more Internet-of-Things (IoT) devices connected to the Internet

than people on this planet [33].

1.1.1.1 Traditional Network Management

The rapid expansion of the network needs puts their operators into a precar-
ious position. In particular, as the operating margins are slowly dwindling,
operators are hard-pressed with introducing new services on an increasingly

faster schedule, while guaranteeing very high availability. However, today it
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can take months to introduce a new service in the current networks. [73] This
is because traditionally, network management is a very tedious process. While
the details change from network to network, in general, the networks are hard
to manage because of the three main reasons: (i) lack of centralized control,

(1) lack of lingua franca and (4i7) lack of operational best practices.
Lack of centralized control

To manage the ever increasing complexity of networks it is advantageous to
configure the network in a central location. Yet, today we configure networks
on a “per-box” basis. This introduces great risks for the operator. First, the
networks are less flexible than they should be — for example, large-scale data
center networks run Border Gateway Protocol (BGP, [69]) or Interior Gateway
Protocol (IGP) to configure the routes between machines [56]. While such
solutions address scalability problems of layer 2 (ethernet) broadcast domains,
as the size increases, BGP and similar protocols hit a limit on their scalability
and manageability; there is a growing list of companies working around the
protocols to improve convergence times or customized traffic engineering setups
[42,77]. The situation is even worse for public data centers where operators
need to separate tenants by hand-configuring VLANs across multiple routers,
and enterprise networks that require certain traffic classes to be routed through

appliances such as firewalls, intrusion detection systems, load-balancers, etc.
Lack of lingua franca

The “per-box” configuration of networks has another consequence. Often,
these “boxes” are from different vendors. As such, pieces of network equip-
ment from different vendors might use different, proprietary, approaches to
configuration — one vendor might use a particular version of command line
interface (CLI) while other vendors are likely using different CLI commands.
This disconnect means that network administrators need to learn multiple

configuration languages, sometimes with fine nuances between them.
The fear of change

Every successful software company knows that big software projects cannot
happen without good design, source code version control, code reviews, au-
tomated testing and frequent release feedback. However, this is opposite of
how networks are configured today — the configuration is usually only on the
devices, and it cannot be easily rolled back or tested in isolation. This means

that the network operators are rightfully wary of any change. They build full
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Figure 1.1: Software-Defined Networking decouples data plane (i.e.,
forwarding) from control plane (i.e., configuration & management)

copies of their networks in labs just to test changes. Moreover, the changes
themselves require hours of planning as the reconfiguration must be carried
out in the correct order. And even after all of this the network configuration
change might go wrong and network administrators have to relentlessly work

to restore the network functionality.

1.1.2 Software Defined Networking

Software Defined Networking is a huge shift in a way we think about, design
and manage computer networks. In its essence, SDN is defined by two ideas
captured in Figure 1.1: (i) separate control plane (i.e., decisions on how to
handle traffic) from data plane (i.e., forwarding the traffic according to the
decisions made by control plane), and (i7) centralize control plane so that
a single control program oversees multiple data plane elements. By doing
this, SDN tries to solve all aforementioned problems of traditional network

management.

First, SDN promotes a central configuration by design; in SDN a single (log-

ically) centralized controller is in charge of the network, while the rest of

3



1. INTRODUCTION

network elements play a passive role. This greatly simplifies the management
of the network as the network operators need to configure policies only in
one place. A central configuration also helps with the planning of potential

changes and network policy troubleshooting.

Second, SDN promotes interoperability. In fact, SDN works best when the
network controller can talk to all network elements uniformly, no matter what
their vendor is. As such, SDN favors a single open “language” over which the
network elements talk (e.g., OpenFlow [6]) instead of a multitude of command-

line interfaces.

Finally, because of the separation of concerns, SDN facilitates better oper-
ational practices by helping operators overcome the fear of change: First,
centralized network configuration makes it easier to inspect, track and even
revert policy changes. Second, it is much easier to test software than a com-
bination of hardware appliances. Moreover, it is easy to test the correctness
of a switch separately from the correctness of a network controller. Finally,
interoperability helps in avoiding vendor lock-in, which is of a big concern for
some operators [72]. All in all, SDN is a huge improvement for the networking

community.

Unfortunately, despite all its benefits, SDN is facing challenges in its adoption.
This is no surprise as SDN, being fairly young and unproven, is far from being
ready to use in the production environment where high availability is needed.
Indeed, reports claim that the year 2014 was just a year of proof-of-concept
demos, and the year 2016 is predicted to be the first year with more companies
running SDN in a production [74]. To further speed up the adoption, it is
therefore crucial to address the question of reliability and to do so on multiple
levels: First, SDN programmers need a way to test whether controllers install
correct forwarding rules under all conditions rather than being a victim of
concurrency issues that might arise from configuring multiple switches (SDN
network is inherently a distributed system; this brings the potential of race
conditions). Second, to react quickly, SDN operators need a way to monitor
their networks for any anomalies that might arise. Finally, as SDN becomes
widely adopted and organizations start using it for new exciting use-cases such
as frequent traffic engineering [17], SDN performance will become more and

more important.
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1.1.3 Software Industry Trends
1.1.3.1 Affordable Computing

Networking is not the only field experiencing massive changes. For the past
four decades, the advances in CPU design and manufacturing followed Moore’s
law, and as a result, the number of transistors doubled around every two
years. In the meantime, CPUs manufactured with smaller fabrication processes
reduce energy consumption per computation. On the other hand, the sheer
size of the market enables mass-production of chips, which keeps their price
relatively low. Moreover, while the speed improvements of a single CPU core
did not significantly improve from 2004, chip makers are packing an increasing

number of cores on a single system [87].

Similarly, software performance benefits from years of active research. Today’s
programs run faster because of hard work done in compiler optimizations (one
prime example is improvements in runtime techniques such as just-in-time
compilation). Additionally, algorithms are improving as well — the need for
solving hard problems such as Boolean satisfiability problem (SAT), formal
verification or optimization (be it convex or integer linear problem optimiza-
tions) started a flurry of research resulting in many new heuristics applicable

to solving real-world problems as opposed to their theoretical worst cases.

These developments suggest that today we can use more computational power
and solve much harder problems at the fractional cost compared to just a

decade ago.

1.1.3.2 Software Development Costs

Unlike computing which gets cheaper and cheaper, the change in the cost of
software development is nowhere near this trend. In fact, software developers’
salaries keep increasing and are going to pass $100,000 per year [82]. One may
argue that today’s programmers are much more effective given the advances in
programming languages, supporting tools and available libraries to the extent
that it might take only a fraction of the time to develop the same software
as years ago. However, today’s programmers have to cope with increasingly
complex systems and requirements such as high availability, online upgrades,
better security, etc.. It is, therefore, no wonder that programming remains a
difficult task and that even the best practices cannot keep all the bugs out of

the software products. Addressing this problem is nowhere easy — after all,
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it is human nature to make mistakes. What we can do, however, is make it
even easier for programmers to tend to their code — starting with tools which
help identify bugs in the programs, through tools which ensure that the code
running in production is not behaving unexpectedly, to platforms that are
abstracting and handling a part of the problem. Programmers need all the
help they can get to improve their productivity and to identify and remove

bugs in their software.

1.2 Simplifying Development and Management
of SDN

The driving force behind this thesis is the fact that while we have excessive
amounts of computational power available, we rarely use it to improve the life
of software programmers and operators. This is particularly true for network-
ing that is quite late in adjusting to the software-development mindset and
thus lacks the tools for this jobs. Moreover, SDN is still in its infancy. As
such, it is the prime time for researchers to have a significant impact on the
industry — companies are still struggling to grasp all the implications, design

changes and new exciting ways SDN networks might work.

With this motivation in mind, the main goal of this dissertation is to show that
today’s abundance of computational power can greatly benefit both SDN pro-
grammers and operators. In particular, the steady increase of computational
power, as well as the recent advances in the field of satisfiability solvers, can be
used to build tools which use the vast amount of available computing resources
to improve correctness, reliability and performance of SDN. We believe that
having such tools will have a positive influence on SDN well beyond helping
programmers and operators. By helping programmers debug SDN controllers
quicker we enable faster and cheaper development with fewer bugs, which in
turn moves SDN quicker to its full deployment. Similarly, providing tools
for monitoring the network is a key enabler for operators to resolve problems

quickly and keep their networks running with minimal disruption.

No tool, however great, will be successful if it was hard to use. Therefore, a
part of our goal is to design tools which require just minimal modifications to
the existing SDN infrastructure. For example, if a programmer wants to test
an SDN controller, she should be able to do this without needing to change

the controller’s code. Similarly, tools for monitoring and optimizing network
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updates should be easily integrated into an existing network.

1.2.1 Solution Overview

Towards our goal of making it simple to develop and manage SDN networks,
this thesis describes three practical tools — NICE, Monocle, and ESPRES.
These three tools address development and management difficulties in various
parts of SDN.

We start with the observation that testing SDN controllers is hard. In par-
ticular, while SDN uses a centralized controller, the fact the SDN controller
needs to coordinate many switches at the same time makes it an exemplary
distributed system with all the consequences of its distributed nature. Our
first tool, NICE, addresses the problem of testing SDN. NICE tries to uncover
insidious and concurrency-related bugs in SDN controllers and thus it is a

great benefit for the programmers.

As a testing and bug finding tool, NICE does not have to act in a real time.
Instead, NICE can leverage seconds to minutes to even hours of offline compu-
tation, for example as a part of automated tests or just programmers running
it over night. This allows NICE to thoroughly and systematically explore var-
ious states through which the controller and the network could evolve as the
time progresses; NICE checks whether any of these executions leads to a buggy
behavior. To explore the evolution of possible network state, NICE employs
and combines two well-known techniques — model checking and symbolic exe-
cution described in more detail in Chapter 2. The main benefit of NICE is that
it systematically tries different scenarios, often ones which contain a complex

interleaving of events that was not envisioned by the programmers.

While NICE helps with the controller correctness, this is only a part of the
smooth and errorless operation of the network. The main reason is that the
packets in the network are ultimately moved around by the SDN switches and
any switch malfunction, therefore, results in potential problems. While the
controller can detect most such failures by observing that the affected switch
stopped responding and/or indicated an error, there is an important class of
problems that cannot be detected this way. Notably, a switch may fail in a
silent way. This might be caused by a buggy implementation, ambiguities in

the specification, or simply by random processes such as memory corruption.

Our tool Monocle is designed to address this issue by monitoring if the switch

7
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data plane behavior corresponds to what the controller installed in the control
plane. Monocle computes and injects into the network special probe pack-
ets, and then it observes whether these packets are correctly forwarded (and
optionally rewritten) by the switch. Unfortunately, generating probe packets
might be tricky because of the possibly complicated overlaps between switch
rules. Therefore, Monocle utilizes a satisfiability solver to find a correct probe
for each rule. Finally, we design Monocle to be fast — on par with the switch
update rate. This allows Monocle to see updates in flagrante and report to the
controller that the update is installed in a data plane. Such service is a great

benefit for consistent update techniques [68].

Finally, as SDN substantially enhances network programmability, we expect
that the rate of network changes will keep increasing. As an example, fre-
quent traffic engineering such as the one proposed in MicroTE [17] might
require re-balancing the traffic several times per minute. Moreover, each act
of re-balancing might require moving a large number of flows. This could be
therefore a time-consuming operation, especially considering the fact that to-
day’s hardware switches are quite heterogeneous and sometimes slow in their

performance [55].

With ESPRES, we strive to compensate for these inefficiencies by tackling
update installation as the problem of scheduling which operations the SDN
controller should send to which switch at any given time. In particular, while
the total time of the update might be bounded by the bottleneck switch, we
observe that a network update often can be considered as consisting of several
sub-goals, one for each flow. We demonstrate that by taking into account
these sub-goals, one can easily improve certain aspects of the whole update
such as (7) a number of flows moved to a new path at intermediate times, and
(ii) the mid-update rule overhead® of the update. ESPRES works by queuing
the whole update sent by the controller in a virtual queue. This is important
because it allows ESPRES to later decide on the exact order of the commands
that will be sent to the switches (re-ordering of commands that are already
sent to the switch is not possible). ESPRES then observes the current state
of the switches (i.e., the progress they are making in the rule installation) and
uses one of our several heuristics to decide which command to pick next and

send to each switch. It is because of this real-time nature that ESPRES can

I Certain types of updates might transiently keep both old and new rules installed on a
switch, e.g. [68].
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adapt to a variety of scenarios even if switches have unpredictable performance

characteristics.

1.2.2 Thesis Contributions

The key contributions of this dissertation are:

1. I present the design and implementation of NICE, an automated bug-
finding tool for testing the correctness of SDN controllers. The NICE
prototype tests unmodified applications written in Python for the NOX
platform.

o NICE introduces a novel combination of model checking (to ex-
plore the evolution of network state under different network event
orderings), symbolic execution (to find relevant packets that trigger
different controller behavior), and domain-specific search strategies

(to further reduce the space of event orderings)

o The performance evaluation shows that: (i) even on small examples,
NICE is five times faster than approaches that apply state-of-the-
art tools, (i) the OpenFlow-specific search strategies reduce the
state space by up to 20 times, and (i4i) the simplified switch model

brings a 4-fold reduction on its own.

o [ apply NICE to three real OpenFlow applications and uncover 13
bugs. Most of the bugs I found are design flaws, which are inherently
less numerous than simple implementation bugs. In addition, at

least one of these applications was tested using unit tests.

2. I present the design and implementation of Monocle, a data plane cor-
respondence monitoring tool that can operate on fine-grained timescales
needed in SDN. In particular, Monocle goes beyond the state-of-the-art
in its ability to quickly recompute the required monitoring information

during a rule update.

o [ formulate a set of formal constraints the monitoring packets must
satisfy. I handle unicast, multicast, ECMP, drop rules, rule dele-
tions and modifications while carefully treating rule overlaps. When
necessary, I provide proofs that my theoretical foundation is cor-
rect. I also optimize the conversion of the constraints a probe needs

to satisfy into a form presented to an off-the-shelf SAT solver.
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e [ go beyond the state-of-the-art by describing how to convert the
probe solution (computed in abstract header space) into a real

packet. Moreover, I prove that the conversion is sound.

o I 'minimize Monocle’s overhead (extra flow table space) by formulat-
ing and solving a graph vertex coloring problem. Our study shows

that only several extra rules per switch suffice in most topologies.

o The evaluation demonstrates that Monocle: (i) detects failed rules
and links in a matter of seconds while monitoring a 1000-rule flow
table in a hardware switch, (ii) ensures truly consistent network
updates by providing accurate feedback on rule installation with
only several ms of delay, (iii) takes between 1.48 and 4.03 ms on
average to generate a probe packet on two datasets, (iv) typically
has small overhead in terms of additional packets being sent and
received, and (v) works with larger networks as shown by delaying

an installation of 2000 flows by only 350ms.

o I describe the experience of using Monocle showing that it can reveal

switch problems that were previously unknown.

3. I present the design and implementation of ESPRES, a system that takes
a big network update (i.e., an update reconfiguring multiple flows) and
then, to improve certain aspects of the network update, on-the-fly re-

orders and schedules switch commands corresponding to this update.

e I introduce a per-switch virtual message queue and describe how
to manage it to minimize service times of requests sent to the
switch. This enables ESPRES to easily re-order operations sent to
the switch and thus optimize the update according to the current

progress.

o I observe that big network updates can be split into independent
sub-updates and these sub-updates can be scheduled independently

of each other.

e [ propose several online heuristics to schedule sub-updates. The

heuristics aim to optimize different aspects of the whole update.
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o The early results show that compared to a no-scheduler baseline,
different ESPRES schedulers can achieve (i) 2.17-3.88 times quicker
sub-update completion time for the 20th percentile of sub-updates
and 1.27-1.57 times quicker for the 50th percentile, or (ii) cause
only 3.5-17% intermediate switch rule overhead as compared to 62%

without any scheduler.

1.3 Thesis Organization

The rest of this thesis is organized as follows: First, in Chapter 2 we provide the
necessary background information on Software-Defined Networking, as well as
software techniques for systematic problem solving/verification that we build
upon in this thesis. Next, in Chapter 3 we describe a way to systematically
check the correctness of OpenFlow controllers. Afterward, in Chapter 4 we
look at the correctness problem from a different perspective — we develop a
method of verifying that the switch data plane processes packets as configured
by the control plane. Chapter 5 delves into the performance aspect of SDN
updates; here we discuss automated ways to improve certain aspects of the
update performance. Chapter 6 positions this thesis with the respect of the
related work. Finally, we conclude the thesis and provide ideas for future work
in Chapter 7.

1.4 Previously Published Work

This thesis is based on material previously published in the following peer-

reviewed conference and workshop papers:
Chapter 3 includes material from

o M. Canini, D. Venzano, P. Peresini, D. Kosti¢ and J. Rexford. A NICE
Way to Test OpenFlow Applications. The 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), April 2012.

e P. Peresini, M. Kuzniar, M. Canini, D. Venzano and D. Kosti¢ et al.
Systematically testing OpenFlow controller applications. Computer Net-
works (Elsevier), 2015.

11
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Chapter 4 builds on top of

o P. Peresini, M. KuZniar and D. Kosti¢. Monocle: Dynamic, Fine-Grained
Data Plane Monitoring. The 11th International Conference on emerging
Networking EXperiments and Technologies (ACM CoNEXT), Heidel-
berg, Germany, December 1-4 2015.

o P. Peresini, M. Kuzniar and D. Kosti¢. Dynamic, Fine-Grained Data
Plane Monitoring with Monocle. Under submission to IEEE/ACM Trans-
actions on Networking, (2016).

Chapter 5 is based on

o P. Peresini, M. Kuzniar, M. Canini and D. Kosti¢. ESPRES: Transpar-
ent SDN Update Scheduling. The Workshop on Hot Topics in Software
Defined Networking (HotSDN).

o P. Peresini, M. Kuzniar, M. Canini and D. Kosti¢. ESPRES: Fasy
Scheduling and Prioritization for SDN. Open Networking Summit (ONS)
Research Track, 2014.
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Chapter 2

Background

In this chapter, we present basic background information about Software De-
fined Networking and techniques to systematically test/verify software such
as satisfiability solvers, model checking, and symbolic execution. A reader
well versed in these topics might skip directly to chapter 3 although it is still
advisable to skim over the content of this chapter to become acquainted with

the terminology we use.

2.1 Computer Networks

2.1.1 Network Basics

A computer network is a collection of network nodes and links between them
with the primary goal of enabling communication between the nodes. Nodes

in the network can be split into two types: end hosts and network elements.

End hosts are the devices that want to communicate (e.g., computers, mobile
phones, etc.). Network elements, on the other hand, are placed in the net-
work to facilitate the communication and come in different flavors (e.g., hub,
switch, router, etc.) depending on their exact function. The end hosts them-
selves communicate by exchanging messages. Because network communication
is complex, its various functions are decomposed into several layers (known as
OSI model) shown in Table 2.1. In the OSI model, each layer provides func-
tionality to the layer above and uses layers below to exchange the messages;
it does this by prepending layer-specific information (header) to the message
from the layer above (payload). As such, at the data link layer, the frames

exchanged contain a stack of nested headers from all protocols above. We will
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Type of a mes-

Layer sage exchanged Layer function
High-level APIs. Translation of data be-
7. Application tween networking service and the applica-
6. Presentation data tion (e.g., character encoding, compression,
5. Session encryption, etc.). Managing communica-

tion sessions.

segment (TCP) | Reliable transmission of segments between

4. Transport datagram (UDP) | any end nodes on a network.

Managing a multi-node network; includes

3. Network ket . .
cwor backe addressing, routing and traffic control.
Reliable transmission of frames between
2. Data link frame two nodes directly connected by a physical
layer.
1. Physical bit Sending/receiving raw bitstreams over a

physical medium.

Table 2.1: Network layers and their function (OSI model)

collectively refer to this nested header at layer 2 as a packet header and to the
payload of transport layer as the packet payload (note that layers 5 to 7 are
rarely split these days, rather, they are usually commonly referred to as an

application layer).

Finally, network function can be split in another way between data and control
planes. In this split, data plane is responsible for moving packets around the
network whereas control plane is concerned with the question of what the
data plane should do. Traditionally, the network elements collocate these two
functions into a single device (e.g., router), which then (i) forwards the traffic,
and at the same time (4i) runs a logic that communicates with other routers
and decides what to do. As we mentioned in the introduction, this has a
potential drawback of complex non-trivial multi-device configuration in case
this logic does not support the function the network operators want to achieve

(e.g., supporting only shortest-path routing versus custom traffic engineering).

2.1.2 Software Defined Networking

Software Defined Networking is a network architecture that, unlike traditional
networks, separates the concepts of data plane forwarding (e.g., moving packets
across a network) and control plane configuration (e.g., deciding what data
plane forwarding should achieve) as depicted in Figure 1.1. As such, an SDN

network consists of two major parts — an SDN controller which manages the
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network, and SDN switches which perform data plane forwarding, both of

which communicate over a common protocol.

SDN switches: An SDN switch is a universal network element that performs
data plane forwarding. Unlike traditional networks where we make distinctions
between different type of data plane forwarding (e.g., switches for layer 2
forwarding, routers for layer 3 forwarding, or stateless middleboxes such as
simple firewalls working on layer 4) we do not make such distinction in SDN

as an SDN switch can perform forwarding across different layers (see Table 2.2).

In particular, each SDN switch has one or more flow tables. Each flow table
in the switch contains an ordered set list of flow entries (commonly referred
to as rules) describing the processing of packets by the switch. Table 2.3
shows an overview of the rule structure: Each rule consists of a match (spec-
ifying which values of header fields this rule applies to) and actions (such as
forwarding, dropping, flooding, or modifying the packets, or sending them
to the controller). Rules further contain a priority (to distinguish between
rules with overlapping patterns; if a packet matches multiple rules, the switch
applies actions of the highest-priority rule only), and a timeout (indicating
whether /when the rule expires). A match pattern can require an “exact match”
on all relevant header fields (i.e., a microflow rule), or have “don’t care” bits
in some fields (i.e., a wildcard rule). For each rule, the switch maintains traffic
counters that measure the number of bytes and packets processed so far. When
a packet arrives, the packet matching process starts at the first flow table and
may continue to additional flow tables. When matching a packet against a
given flow table, the switch selects the highest-priority matching rule, updates
the traffic counters, and performs the specified action(s). As an example of
this process, consider a flow table with the following three rules (ordered by

decreasing priority):

1. Rpign = match(EthType = IP,IP proto = TCP,TCP_dport =
22) — drop

2. Ryiq = match(EthType = IP,1P_dst = 1.2.3.4) — forward(port;)

3. Rjow = match(EthType = [P, IP_dst = 1.2.3.4) — forward(ports)

For this flow table, all SSH packets (TCP destination port 22) will be dropped,
all non-SSH packets destined to host with IP 1.2.3.4 will be forwarded to port
1, and no packet will be forwarded to port 2 because any packet matching

Ryo will be already covered by Rpign or Ripiq-

15



BACKGROUND

2.

‘SIoY}0 J10J SuIipaemio} ¢ nq sjaxoed sawios
I0J Sulpaemuioj g wiojiad ued yoms oy} ‘69 ‘poxIul 9q Ued IOIARYS( 9} ‘IOAODIOJA ‘JOIARYS( WIO)SNI MIU
© 9AR( USAD IO [[EMAI] B ‘I3INO0I B ‘YOIIMS g UR SB 108 URD [IIIMS N\[(JS Ue ‘So[nI a[qe} mop 9y} uo Surpuada(g
*SIUOWIS[S YIOM)SU [eUOI}IpRI} JO sadA) JuatoyIp aoe[dad P[nod Yoms N (IS 9[SUIs ® MO uonjeI)sn[l uy :g-g 9[qel

(yusreaInba
[euorjipe.a}
qe:68:L9 | JOo:pp Ow) Bui3IMs
110d N o - e o r10d MOTJO.II
¢ 08 ¢yect dOL | 8L9¢ | ¥VETT dl apiegi10 | o0iqqree ! BOJOTIN
(199noux)
gitod * * * 8L9¢ * * dI " « " Surnoy
([remoay)
oeIy
doip e x dOL % % % dI x s % supporg
(o1ms)
qe:68:L9
10d 3uryolims
4 s * * * * * * CPCTT0 * * oyUMms g1
1od xods ojoad adA S 218 xod
jaodp | 9 ) wsp ap | oas qp | AL 1 ISp 1
uornoy dO.L dOL dI NVIA | U OVIN OVIA | Youmg
UoreN

16



2.1. Computer Networks

Priority Match Actions Timeout Counters

Specifies Specifies Specifies what | Specifies Keeps statis-
the order in | which pack- | the switch | how  long | tics about the
which  the | ets this rule | should do with | should the | number of

rules are | applies to a packet that | switch keep | packets  and
matched matches  this | this rule bytes that
rule were processed

by this rule

Table 2.3: An overview of information that an SDN switch keeps
for each flow table entry (rule).

SDN controller: Unlike typical networks where management and configu-
ration is spread over the network elements (e.g., individual configuration of
traditional switches, routers, firewalls, etc.) an SDN network has a centralized
programming model; that is, there is one (or a few) software controller(s) man-
aging the underlying switches. To avoid vendor lock-in, the controller typically

runs on a commodity server machine near the switches it controls.

A controller can be further split into two parts — (i) a controller platform (e.g.,
NOX [36], POX [8], Ryu [10], OpenDaylight [4], ONOS [2], etc.) that manages
the common part of interaction with the switches (e.g., setting up connections,
encoding/decoding messages, etc.), and (ii) one or more controller applica-
tion(s) running on top of this platform and performing the business logic that

network administrators want to achieve.

To achieve the business objectives, the controller application (which is a general-
purpose program that can perform arbitrary computation and maintain arbi-
trary state), typically interacts with the switches (via the controller platform)
by installing and uninstalling rules in the switches, reading traffic statistics col-
lected by the switches, and responding to network events. For each event type
(e.g., packet arrival, rule timeout, switch join, etc.), the controller application
defines a handler that typically reacts to the situation at hand; for example,
a handler may install new rules or issue new requests for traffic statistics as a

reaction to new flows appearing in the network).

A common idiom for controller applications popularized by Ethane [24] is to
manage the network reactively, i.e., the controller application sets up new flows
in the network as they arrive. In a reactive setup when a new flow arrives at
the switch, the switch informs the controller about the new flow via a “packet

arrival” event. The controller responds to the packet arrival by installing a rule
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for handling subsequent packets directly in the data plane. Sending packets
to the controller introduces overhead and delay, so most applications try to

minimize the fraction of traffic that must go to the controller.

Reactive networking allows for very fine-grained policies because the controller
decides what to do with each of the network flows. This is in a contrast with
a fully proactive setup where the controller usually sets up a coarse wildcard
flows before any traffic enters the network. Proactive setup is more similar
to traditional routing, albeit the controller has much higher control over what
parts of the traffic follow what paths in the network. All in all, although the
term SDN is usually more associated with the reactive style of managing the
network, the SDN architecture does not dictate whether the controller should

use reactive or proactive, or even a mixed way of managing the network.

Communication protocol between the switches and the controller:
The SDN controller and switches have to communicate over a well-defined
protocol. Omne such protocol that gained popularity over the past years is
OpenFlow [5]. Through OpenFlow, the controller configures and manages
the switch, receives events from it and sends packets out the switch.! The
OpenFlow protocol itself is an application-layer protocol, i.e., it requires a
channel over which it exchanges messages (typically, the channel is TCP, TLS
or Unix domain sockets in case of a virtual switch running on the same machine
as the controller). Instead, OpenFlow deals with specifying an exact format
of messages that the switches and the controller can exchange. There are
three types of OpenFlow messages: (i) controller-to-switch, (i7) asynchronous
(switch to the controller), and (i7i) symmetric (can be sent both by a switch
and a controller). Here, we give an overview of the most important messages

and the curious reader is referred to the full specification for more details.

Hello, FeaturesRequest, FeaturesResponse are messages used during the
connection setup. Controller applications usually do not need to take special
care of them as the controller platform should be responsible for this part of

the controller-switch interaction.

FlowMod is perhaps the most important message. FlowMod is a controller-to-
switch message that tells the switch to install, modify or remove rule(s) from
its data plane. A FlowMod command consists of a command (insert, modify or

delete a rule), a match, a priority and actions. Modify and delete com-

I The controller might want to send packets such as LLDP probes/responses, ARP and
DNS responses, etc..
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mands come in two varieties — “strict” (e.g., they act only on the exact rule
described by the match) or “non-strict” (e.g., they update/delete all rules that
match wildcards of the flow modification). A typical application of non-strict
commands is all-wildcarded delete sent by some controllers at the beginning

to bulk-clear the switch flow table of any residual rules.

PacketIn message is sent by a switch after it receives a packet which is sup-
posed to be sent to the controller. PacketIn contains a reason field which
explains why the switch sent the packet to the controller; the possible reason
values are “no-match” (i.e., no rule in the flow table matched this packet), or
“action” (i.e., the controller explicitly specified forwarding the packet to the

controller as a part of some rule’s action list).

PacketOut message is a controller-to-switch message which instructs the switch
to send out a given packet from the switch. Typically, this can be used by the
controller to inject data plane packets such as LLDP requests/responses, ARP
responses, DNS responses, etc.. In our work we use PacketOut to inject probe

packets into the data plane (Chapter 4).

FlowStatsRequest message is a controller-to-switch message that tells the
switch to report the flow counters associated with the rules specified in the
FlowStatsRequest message. The switch replies with a FlowStatsResponse
message listing for each flow its match and the associated counter statistics.
FlowStats is, therefore, an important message for controllers wishing to mon-

itor flows in the network.

BarrierRequest is a controller-to-switch message which functions as a seri-
alization primitive — a switch needs to process all messages received before
BarrierRequest before it can send a BarrierReply and only then it can
continue processing other messages (note that without barriers, an OpenFlow
switch is free to re-order commands at will to improve performance. It is,
therefore, crucial to use barriers between any commands which depend on each
other). Unfortunately, the OpenFlow specification is rather unclear whether
the processing needs to happen before sending BarrierReply is only in the
control plane (e.g., guarantee that there will be no error in installing a rule)
or in the data plane as well (e.g., switch actually forwards packets according
to the installed rule). As we show in Chapter 4, some switches do not fully
implement the barrier command and therefore, a careful monitoring of the

switch behavior is required.
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2.2 Systematic Solving and Verification

Techniques

In this section, we briefly discuss techniques and tools used to verify software
and to systematically solve satisfiability and optimization problems. These
techniques are an integral part of today’s computing as many difficult problems

can be solved with their help — this thesis is a proof of it.

2.2.1 Constraint Solvers
2.2.1.1 SAT

Boolean satisfiability problem (commonly abbreviated as SAT) is one of the
cornerstones of theoretical computer science. SAT is the problem of deter-
mining whether there exists an interpretation that satisfies a given boolean
formula. In other words, SAT asks whether the variables of a boolean formula
can be assigned values T'rue or False such that the formula evaluates to True.
In practice, the boolean formula in SAT is often restricted to be in the con-
Junctive normal form (CNF), i.e., the formula is a conjunction (logical AND)
of clauses (logical OR of variables or their negations). As an example, formula
(aV=c)A(bVaVe)A(=d) is in the CNF form but formula (a Ab) V ¢ is not.

The importance of SAT, which is one of the first problems proven to be NP-
complete, is that many hard problems are easily reducible to SAT (e.g., by
formulating them as boolean formulas over variables). Despite SAT being
an NP-complete problem, many good heuristics were developed over the last
decade for solving SAT on real-world problems. There is even an annual SAT
competition [11] in which different implementations compete on a set of real-
world SAT instances. In Chapter 4 we will show how one can use SAT to

systematically test whether a switch data plane is behaving correctly.

2.2.1.2 SMT

An extension of SAT solvers are satisfiability modulo theory (SMT) solvers.
SMT solvers work not only over boolean formulas but also over specialized
theories. In this sense, SMT solvers are working on a representation which is
closer to the real world than plain SAT. For example, popular SMT solvers such
as Z3 [27] and STP [32] support both a theory of bit-vector integers and a the-

ory of integer-addressed arrays of variables. It is, therefore, possible to encode
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constraints such as (zxy == 4) A (array[z] == 5) A (array[y] == 4) with a
solver providing one of the two valid solutions = =1, y = 2, array[l] =5,
array[d] =4 or x =4, y =1, array[l] =4, array[4] =5 (the assignment
r =3, y =3 does not satisfy array access constraints as (array[2] ==5) A

(array[2] == 4) is not satisfiable).

SMT solvers work by encoding the constraints from a given theory into a plain
SAT instance and using a SAT solver underneath. However, a straightforward
conversion is often inefficient — SMT solvers thus use various techniques to
preprocess the constraints in an effort to reduce the size and complexity of the
final SAT instance, or even progressively refine the conversion (an example of

such optimization is bit-blasting [32] for efficient bit-vector support).

In this thesis, we use SMT solvers for exploring program paths with symbolic
execution (Chapter 3) as well as a potential backend for solving constraints on
packet header fields (Chapter 4).

2.2.1.3 Integer Linear Programs

Linear programming (LP) is another widely-used technique for solving a broad
range of problems. However, unlike SAT and SMT, linear programming is
designed to solve optimization problems. As such, linear programming can
not only find a valid solution for a given set of constraints, but it can also

efficiently find the solution that minimizes/maximizes a given objective.

A linear program, as its name suggests, is a set of constraints in a linear
form, i.e., it can be written as a set of several inequalities between a linear

combination of variables and a constant. An example linear program would

be

r+2y+32>3
204+ 2>5
y < -3

with an objective to minimize = + 2.

A variation of the linear program — an integer linear program (ILP, sometimes
also called mixed integer programming MIP) — is simply achieved by restricting
some variables to be only integer numbers. While this does not seem like a big
change, it changes the complexity with which the problem can be solved — while

a linear program can be solved in a polynomial time, adding integer constraints

21



2. BACKGROUND

makes the problem NP-complete. This can be easily seen by converting SAT to
ILP as one can simply encode binary variables as integer values 0 < z; < 1 and
encode each clause of as a sum of variables or their negations, e.g., encoding
r1V-rgVasasxy + (1 —x9) + 23 > 0. The fact that ILP can be used to solve
SAT (albeit not as efficiently as a dedicated SAT solver) is particularly useful
in scenarios where we need to find a feasible solution to the SAT problem
but at the same time optimize some criterion. Through this thesis, we will
use this aspect of ILP to find an optimal solution for different auxiliary tasks
(e.g., minimizing the number of switch labels while avoiding collisions between
neighboring switches in Chapter 3, and calculating an optimal offline schedule

for a network update in Chapter 5).

2.2.2 Model Checking

Model checking is a formal method for verifying correctness of finite-state
systems. In its essence, model checker takes a model of a system and automat-
ically and exhaustively checks whether all possible evolutions of the system in

time adhere to the given safety and liveness properties.

2.2.2.1 Modeling the State of a System

Typically, a model of a distributed system consists of multiple components
that communicate asynchronously over message channels, i.e., first-in-first-out
buffers (e.g., see Chapter 2 of [15]). Each component has a set of variables, and
the component state is an assignment of values to these variables. The system
state is the composition of the component states (at a given instant of time).
To capture in-flight messages, the system state also includes the contents of

the channels.

2.2.2.2 Evolution of the System State in time

The state of a system changes over time, e.g., by the system sending or re-
ceiving new messages. A transition represents such a change from one state to
another (e.g., due to sending a message). At any given state, each component
maintains a set of enabled transitions, i.e., the state’s possible transitions. For
each state, the enabled system transitions are the union of enabled transitions
at all components. A system execution corresponds to a sequence of these

transitions, and thus specifies a possible behavior of the system.
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pending_states = []
explored states = []
errors = |[]
initial _state = create_initial state ()
for t in initial state.enabled transitions:
pending states.push ([initial state, t])
while len (pending_states) > 0:
state , transition = choose(pending states)
try:
next_ state = run(state, transition)
if next state in explored states:
continue # already explored
check properties(next_state)
explored_states.add(next_state)
for t in state.enabled transitions:
pending_states.push ([next_state, t])
except PropertyViolation as e:
errors.append ([e, trace])

Figure 2.1: Pseudo-code of the basic model-checking loop.

2.2.2.3 Model-Checking Process

Given a model of the state space, performing a search is conceptually straight-
forward. Figure 2.1 shows the pseudo-code of the basic model-checking loop.
First, the model checker initializes a stack of states with the initial state of the
system. At each step, the checker chooses one state from the stack and one of
its enabled transitions. After executing this transition, the checker tests the
correctness properties on the newly reached state. If the new state violates a
correctness property, the checker saves the error and the execution trace. Oth-
erwise, the checker adds the new state to the set of explored states (unless the
state was added earlier) and schedules the execution of all transitions enabled

in this state (if any).

The model checker can run until the stack of states is empty, or until detecting

the first error.

2.2.2.4 Model-Checking Optimizations

While basic model checking is a sound approach to verifying correctness, it
suffers from a state-space explosion problem — the bigger the system is, there
are exponentially more possible states. There are multiple potential ways to

mitigate this state-space explosion.
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First of all, model simplification is the most common remedy to this problem.
As its name suggest, model simplification works by taking the model of a
system and removing parts of it that are not essential to the property being
verified. While this works well, the potential downside of model simplification
is that it is often a manual and tedious process. Moreover, it might be error-
prone as oversimplifying the model might yield both false positives and false

negatives.

The second way to mitigate state-space explosion, or more precisely the num-
ber of transitions explored by the model checker is to never re-explore the
same state. To do this, the model checker must be able to check whether the
state reached from the current transition was already explored or not, i.e., the
model checker must be able to explicitly track all of the system state. In order
to save memory, the model checker might also decide to only store a hash of
the canonical representation of the state — seeing the same hash means (with

high probability) that we already explored that state.

Finally, it might not be necessary to explore all of the system states to prove
that system works (or find an error) as there might be a redundancy between
the information that we can learn from the different system states. One of

such techniques is described in the next section.

2.2.2.5 Partial Order Reduction

Partial-Order Reduction (POR) is a technique that reduces the size of the
state space to be searched by a model-checking algorithm. In this section,
we give a brief overview of how the POR technique works (for more in-depth
review of POR, we kindly redirect the reader to Chapter 8 of [15]).

In its essence, POR takes advantage of the fact that many events that are
happening in the system are independent, i.e., they commute. It is therefore
enough to explore just one arbitrary order of such events. As an example,
consider a model of two concurrent systems A and B that do not communicate
with each other. If the size of the state-space of A is |A| and the size of state-
space of B is |B|, then the state of the system AB is |A|* |B|. Checking all
states of a parallel system such as AB is therefore obviously undesirable as
the state-space quickly explodes for even a moderate number of such systems.
Instead, if the systems A and B are really independent, it is enough to explore
just a single ordering of the independent events as depicted in Figure 2.2.

Of course, in reality, systems A and B are rarely completely independent.
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Figure 2.2: If two systems A and B are independent, it is enough
to explore only a single ordering between events of these systems.

Instead, these systems might have some events happening concurrently that

are independent and some events which affect each other.

Formally, let T" be a set of transitions; we say transitions t; € T and t5 € T

are independent (adapted from [30]) if for all states s:

1. if t; is enabled in s and s b , then %9 is enabled in s iff ¢5 is enabled

in 5.

2. if t; and ty are enabled in s, then there is a state s’ that s t# s1 3 s’
and s 3 59 by

In other words, independent transitions do not enable or disable each other
and if they are both enabled they commute. If two transitions are not indepen-
dent, they are dependent. Further, transitions that are dependent are worth

reordering because they lead to different system behaviors.

In practice, to check if transitions are independent, POR algorithms use the
notion of shared objects. Transitions that use the same shared object are
dependent and the ones that use disjoint sets of shared objects are independent.
Identifying the right granularity for shared objects is crucial because if the
choice is too conservative, transitions that are not worth reordering would be
considered dependent and make POR less effective (e.g., an extreme case of
a shared object is shared global state). On the other hand, missing a shared

object generally means that the search is no longer complete.
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;voii i(i;:;x, int y) { [ y=2y | e vz
5 if (x = 100000) {
4 if (x<y) { =0 X7 =100000 x=100000
o * aeo Ay AR =0 no yes y=0
5 assert (0); /* error */ y
6 }
7 =100000 -
s } } ;=50001 yes ;=ZJOOOOO

(a) Example code snippet (b) Exploration

Figure 2.3: Symbolic execution of a code snippet. Symbolic execu-
tion engine explores all paths, collects constraints along them and
queries an SMT solver to check if a path is feasible.

2.2.3 Symbolic Execution

Symbolic execution is a systematic method that systematically explores all
feasible code paths through a program. By exploring all feasible code paths,
symbolic execution can figure out if there is a specific code path that leads to
an assertion or other error. In such case, symbolic execution can provide an
example of the input values such that the program follows the specific path.

Symbolic execution is therefore very useful as a bug-finding tool.

2.2.3.1 Symbolic execution

Symbolic execution works by running the tested program with symbolic vari-
ables (i.e., apriori-unspecified values) as inputs. The symbolic-execution en-
gine tracks the use of these symbolic variables and records their assignments
as well as constraints on their possible values. For example, in line 2 of Fig-
ure 2.3, the engine learns that y — 2y (e.g., the current value of variable y
maps to 2y). At any branch (e.g., if statement), the engine queries an SMT
solver for two assignments of symbolic inputs—one that satisfies the branch
predicate and one that satisfies its negation (i.e., takes the “else” branch)—
and logically forks the execution to follow the feasible paths. For example, the
engine determines that to reach line 5 of Figure 2.3, the value of y (currently
mapped as y — 2y) must be greater than x. The symbolic execution engine
then asks an SMT solver to solve the constraint (z = 100000) A (z < 2y).
Because there exists a solution (one example is x = 100000, y = 50001), the
symbolic execution engine concludes that it is possible to reach the assertion

and reports this example as an error.
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2.2.3.2 Concolic Execution

A particular variant of symbolic execution is concolic execution? first intro-
duced by DART [35] and CUTE [75] and further extended by KLEE [21].
Concolic execution tries to address the problem of symbolic execution that
once the constraint becomes too complex for the constraint solver, symbolic
execution cannot proceed exploring this path (as it does not know whether
the path is feasible or not). Concolic execution works around this problem by
executing the program with concrete inputs and tracing the execution. This
way, the concolic engine can easily track all constraints on symbolic variables.
The concolic execution engine then chooses one branch that it tries to negate,
and uses the solution as a new concrete input for the program. This way, the
concolic execution engine never reports any false positives (if we reach an as-
sertion with concrete inputs, we have a failing example) while at the same time
it might try to work around complex (unsolvable) constraints by simplifying
them (in the worst-case the new inputs might lead to an unanticipated path

through a program).

2.2.3.3 Limitations of Symbolic and Concolic Execution

Unfortunately, symbolic/concolic execution does not scale well with the size
of the program; this is because the number of code paths can grow exponen-
tially with the number of branches and the size of the inputs. Also, symbolic
execution does not explicitly model the state space, which can cause repeated
exploration of the same system state unless expensive and possibly undecidable
state-equivalence checks are performed. In addition, despite exploring all code
paths, symbolic execution does not explore all system execution paths, such as
different event interleavings (techniques exist that can add artificial branching
points to a program to inject faults or explore different event orderings [20,71],

but at the expense of extra complexity.)

As such, symbolic execution alone is insufficient for testing of OpenFlow ap-
plications. Instead, our tool NICE (Chapter 3) uses model checking to explore
system execution paths (and detect repeated visits to the same state [49]),
and symbolic execution to determine which inputs would exercise a particular

state transition.

2 Concolic stands for concrete+symbolic.
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Chapter 3

Testing SDN Controllers With
NICE

While lowering the barrier for introducing new functionality into the network,
Software-Defined Networking (SDN) also raises the risks of software faults (or
bugs). Even today’s networking software—written and extensively tested by
equipment vendors, and constrained (at least somewhat) by the protocol stan-
dardization process—can have bugs that trigger Internet-wide outages [1,9].
In contrast, programmable networks offer a much wider range of function-
ality, through software created by a diverse collection of network operators
and third-party developers. SDN therefore heavily depends on having effec-
tive ways to test applications in pursuit of achieving high reliability. In this
chapter, we present NICE, a tool that efficiently uncovers bugs in OpenFlow

programs, through a combination of model checking and symbolic execution.

3.1 Bugs in OpenFlow Applications

On the surface, the centralized programming model of SDN should reduce the
likelihood of bugs. Yet, a software-defined network is inherently distributed
and asynchronous, with events happening at multiple switches and inevitable
delays affecting communication with the controller. Moreover, the installed
rules might interact in an unanticipated fashion, either between the different

switches, between the switches and the controller or even at the same switch.

Multiple packets of a flow reaching the controller: A common idiom in
programming SDN networks is to direct a packet to the controller, and then

install a rule for the switches to handle the remaining packets of a flow in
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Figure 3.1: Due to delays between the controller and switches, the
packet may not encounter an installed rule in the second switch.

the data plane. Yet, a race condition can easily arise if additional packets
arrive at the switch while the controller is in the middle of installing the rule.
Because the rule is not installed yet, these packets subsequently arrive at the
controller as well. A program that implicitly expects to see just one packet
(i.e., the first packet of a flow) may behave incorrectly when multiple packets
arrive because of the race condition [23]. For example, imagine a program that
intends to directs all packets in a flow to the same randomly-selected server.
The arrival of a second packet may trigger the application to install a second
rule that directs packets to a different server replica. The program would
behave correctly in the common case where the subsequent packets enter the
network only after the rule is installed, but break if a burst of packets arrives

at the controller.

No atomic update across multiple switches: Many applications need to
install rules at multiple switches (e.g., to direct the packets over a particular
path through the network). These rules are not installed atomically, so some
switches may start applying new rules before other switches have installed
their rules. This can lead to the unexpected behavior shown in Figure 3.1,
where an intermediate switch may encounter a packet that must go to the
controller for handling. Implicitly assuming that rules are installed atomically
can, therefore, lead to subtle bugs that only manifest themselves under certain
packet timings and rule-installation delays. And while installing rules from
“back to front” (from the end of the path to the beginning) can prevent this

mistake, the programmer may not choose to install the rules this way."

Previously-installed rules limit the controller’s visibility: The con-

I Even worse, the switches may not reliably indicate when they finished installing rules. We
address this problem with Monocle in Chapter 4.
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troller program is really just one part of a distributed system that includes
the processing performed by the underlying switches. Installing a rule (e.g.,
that forwards or drops all matching packets) not only dictates what process-
ing a switch performs, but also what packets the controller sees in the future!
For example, imagine a program implementing a learning switch. Installing a
wildcard rule to forward traffic based only on the destination MAC address
would keep the controller from seeing some packets sent by new source MAC
addresses—preventing the network from “learning” how to reach these ad-
dresses. While still successfully delivering traffic, this program would lead to

inefficient delivery (e.g., via unnecessary flooding) in some corner cases.

Composing functions that affect the same packets: Networks often per-
form multiple tasks that affect the handling of the same packets. For example,
routing determines which path carries each packet (e.g., based on destination
[P address), and monitoring determines which packets should be grouped to-
gether for accumulating statistics (e.g., based on TCP port number). Combin-
ing functionality is complicated, potentially involving the “cross product” of
the rules needed for each function independently. OpenFlow switches rely on
rule priority to disambiguate between overlapping groups of packets (e.g., to
ensure a rule with destination address 1.2.3.4 and port 80 gets precedence over
another rule that matches all traffic to destination 1.2.3.4). Subtle mistakes
in setting the priorities can lead to a program that operates correctly except

for certain packets, or packets arriving in a particular order.

Interaction with end-host software: Some controller applications rely on
implicit assumptions about the software running on the end host (e.g., new
TCP connections start with a SYN packet, or a Web download idle for more
than 60 seconds has completed). These applications may have subtle bugs
that only arise when hosts generate traffic that violates these assumptions.
For example, imagine a server load-balancing application that directs client
traffic to different Web server replicas (e.g., sending traffic from source IP
addresses starting with 0 to one replica and starting with 1 to another) [88].
Any changes to the load-balancing policy should ensure any ongoing TCP
connection completes on the same server. By installing a rule that temporarily
directs traffic to the controller, the application could inspect the next packet of
each flow to install a microflow rule directing new flows (i.e., if the packet is a
SYN) to a new server and ongoing flows (i.e., if the next packet is not a SYN)
to the old server. However, the TCP state machine allows a host to retransmit
SYN packets, raising the possibility of duplicate SYN packets which could lead

the application to wrongly classify an ongoing connection as new.
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3.2 Challenges of Testing SDIN Applications

Testing SDN applications is challenging because controller behavior depends
on the larger execution environment. The end-host applications sending and
receiving traffic—and the switches handling packets, installing rules, and gen-
erating events—all affect the program running on the controller. The need to
consider the larger environment leads to an extremely large state space, which

“explodes” along three dimensions:

Large space of switch state: Switches run their own programs that main-
tain state, including the many packet-processing rules and associated counters
and timers. Further, the set of packets that match a rule depends on the pres-
ence or absence of other rules, due to the “match the highest-priority rule”
semantics. As such, testing OpenFlow applications requires an effective way

to capture the large state space of the switch.

Large space of event orderings: Network events, such as packet arrivals
and topology changes, can happen at any switch at any time. Due to commu-
nication delays, the controller may not receive events in order, and rules may
not be installed in order across multiple switches. Serializing rule installation,
while possible, would significantly reduce application performance. As such,
testing OpenFlow applications requires efficient strategies to explore a large

space of event orderings.

Large space of input packets: (Reactive) SDN Applications are data-plane
driven, 7.e., controller applications must react to a huge space of possible pack-
ets. Controller applications may react differently to different packets (basing
their decisions on packet header fields such as MAC addresses, IP addresses,
TCP/UDP port numbers, etc.) and based on the switch port the packet ar-
rived to. Moreover, the controller can perform arbitrary processing based on
all of this information and modify the network state accordingly. This means
that in order to explore all distinct network behaviors, one needs to consider
combinations of potentially all header fields of packets arriving at the con-
troller. As such, testing OpenFlow applications requires effective techniques

to deal with the large space of inputs.

To simplify the problem, we could require programmers to use domain-specific
languages that prevent certain classes of bugs [31,64,86]. However, the adop-
tion of new languages is difficult in practice. Not surprisingly, most OpenFlow

applications are written in general-purpose languages, like Java and Python.
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Alternatively, developers could create abstract models of their applications,
and use formal-methods techniques to prove properties about the system. How-
ever, these models are time-consuming to create and easily become out-of-sync
with the real implementation. In addition, existing model-checking tools like
SPIN [40] and Java PathFinder (JPF) [85] cannot be directly applied because
they require explicit developer inputs to resolve the data-dependency issues
and sophisticated modeling techniques to leverage domain-specific informa-
tion. They also suffer state-space explosion, as we show in Section 3.9. Instead,
we argue that testing tools should operate directly on unmodified OpenFlow

applications, and leverage domain-specific knowledge to improve scalability.

3.3 NICE Overview

To address the scalability challenges, we present NICE (No bugs In Controller
Ezecution)—a tool that tests unmodified controller programs? by automati-
cally generating carefully-crafted streams of packets under many possible event
interleavings. To use NICE, the programmer supplies the controller program
and the specification of a topology with switches and hosts. The programmer
can instruct NICE to check for generic correctness properties such as no for-
warding loops or no black holes, and optionally write additional, application-
specific correctness properties (i.e., Python code snippets that make assertions
about the global system state). By default, NICE systematically explores the
space of possible system behaviors and checks them against the desired cor-
rectness properties. The programmer can also configure the desired search
strategy. In the end, NICE outputs property violations along with the traces

to reproduce them.

The whole process of using NICE is summarized in Figure 3.2. Finally, on
top of automatic systematic execution, programmers can also use NICE as
a simulator to perform manually-driven, step-by-step system executions or
random walks on system states. By combining these two features — gathering
event traces that lead to bugs and step-by-step execution — developers can

effectively debug their applications.

Our design uses explicit state, software model checking [50,63,85,91] to explore
the state space of the entire system—the controller program, the OpenFlow

switches, and the end hosts—as discussed in Section 3.4. However, applying

2 NICE only requires access to the controller state.
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Figure 3.2: NICE usage overview. Given an OpenFlow program,
a network topology, and correctness properties, NICE performs a
state-space search and outputs traces of property violations.

model checking “out of the box” does not scale. While simplified models of
the switches and hosts help, the main challenge is the event handlers in the
controller program. These handlers are data dependent, forcing model check-
ing to explore all possible inputs (which doesn’t scale) or a set of “important”
inputs provided by the developer (which is undesirable). Instead, we extend
model checking to symbolically execute [20,21] the handlers, as discussed in Sec-
tion 3.5. By symbolically executing the packet-arrival handler, NICE identifies
equivalence classes of packets—ranges of header fields that determine unique
paths through the code. NICE feeds the network a representative packet from
each class by adding a state transition that injects the packet. Finally, to
reduce the space of event orderings, we propose several domain-specific search
strategies that generate event interleavings that are likely to uncover bugs in

the controller program, as discussed in Section 3.6.2.

Bringing these ideas together, NICE combines model checking (to explore sys-
tem execution paths), symbolic execution (to reduce the space of inputs), and
search strategies (to reduce the space of event orderings). The programmer
can specify correctness properties as snippets of Python code that assert global
system state, or select from a library of common properties, as discussed in
Section 3.7.

3.4 Model Checking a Software-Defined
Network

The execution of a controller program depends on the underlying switches and

end hosts; the controller, in turn, affects the behavior of these components. As
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such, testing is not just a matter of exercising every path through the controller
program—we must consider the state of the larger system. The requirements
for systematically exploring the space of system states, and checking correct-
ness in each state, naturally lead us to consider model checking techniques. To
apply model checking, we need to identify the system states and the transitions

between states.

3.4.1 Transition Model for OpenFlow Apps

Model checking relies on having a model of the system, i.e., a description
of the state space. This requires us to identify the states and transitions for
each component—the controller program, the OpenFlow switches, and the end
hosts. However, we argue that applying existing model-checking techniques
imposes too much work on the developer and leads to an explosion in the state

space.

3.4.1.1 Controller Program

Modeling the controller as a transition system seems straightforward. A con-
troller program is structured as a set of event handlers (e.g., packet arrival and
switch join/leave for the MAC-learning application in Figure 3.3), that inter-
act with the switches using a standard interface, and these handlers execute
atomically. As such, we can model the state of the program as the values of
its global variables (e.g., ctrl_state in Figure 3.3), and treat event handlers
as transitions. To execute a transition, the model checker can simply invoke
the associated event handler. For example, receiving a packet-in message from
a switch enables the packet_in transition, and the model checker can execute

it by invoking the corresponding event handler.

However, the behavior of event handlers is often data-dependent. In line 9
of Figure 3.3, for instance, the packet_in handler assigns mactable only for
unicast source MAC addresses, and either installs a forwarding rule or floods
a packet depending on whether or not the destination MAC is known. This
leads to different system executions. Unfortunately, model checking does not
cope well with data-dependent applications (see Chapter 1 of [15]). Since
enumerating all possible inputs is intractable, a brute-force solution would
require developers to specify “relevant” inputs based on their knowledge of
the application. Hence, a controller transition would be modeled as a pair

consisting of an event handler and a concrete input. This is clearly undesirable.
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—_

ctrl_state = {} # State of the controller is a global variable

[\

# Handles new packets

def packet_in(switch_id, inport, pkt, bufid):
mactable = ctrl_state[switch_id]
is_bcast_src = pkt.src[0] & 1

= W

D ot

7 is_bcast_dst = pkt.dst[0] & 1

8 if not is_bcast_src: # learn source

9 mactable[pkt.src] = inport

10 if (not is_bcast_dst) and (mactable.has_key(pkt.dst)):
11 # install rule to destination

12 outport = mactable[pkt. dst |

13 if outport != inport:

14 match = {

15 DL _SRC: pkt.src,

16 DL_DST: pkt.dst,

17 DL TYPE: pkt.type,

18 IN_PORT: inport ,

19 }

20 actions = [(OUTPUT, outport)]

21 install_rule (

22 switch_id , match, actions,

23 soft _timer=5, hard_ timer=PERMANENT
24 )

25 send_packet_out (switch_id, pkt, bufid)
26 return

27 flood_packet (switch id, pkt, bufid)

28

29 # Handles when a switch joins

30 def switch join (switch id, stats):

31 if not ctrl state.has_ key(switch_id):
32 ctrl_state[switch_id] = {}

33

34 # Handles when a switch leaves

35 def switch_leave(switch_id):

36 if ctrl state.has_key(switch_id):
37 del ctrl state|switch_id]

Figure 3.3: Pseudo-code of a MAC-learning switch, based on
the pyswitch application bundled with the NOX platform. The
packet_in handler learns the input port associated with non-
broadcast source MAC addresses; if the destination MAC is known,
the handler installs a forwarding rule and instructs the switch to
send the packet according to that rule. Otherwise, it floods the
packet.
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NICE overcomes this limitation by using symbolic execution to automatically

identify the relevant inputs, as discussed in Section 3.5.

3.4.1.2 OpenFlow Switches

To test the controller program, the system model must include the underlying
switches. Yet, switches run complex software, and this is not the code we
intend to test. A strawman approach for modeling the switch is to start with an
existing reference OpenFlow switch implementation (e.g., [3]), define its state
as the values of all variables, and identify transitions as the portions of the
code that process packets or exchange messages with the controller. However,
the reference switch software has a large state (e.g., several hundred KB),
not including the buffers containing packets and OpenFlow messages awaiting
service; this aggravates the state-space explosion problem. Importantly, such
a large program has many sources of nondeterminism and it is difficult to

identify them automatically [91].

Instead, we manually create a switch model that omits inessential details. In-
deed, creating models of some parts of the system is common to many standard
approaches for applying model checking. Further, in our case, this is a one-time
effort that does not add burden to the user. Following the OpenFlow speci-
fication [5], we view a switch as a set of communication channels, transitions

that handle data packets and OpenFlow messages, and a flow table.

Simple communication channels: FEach channel is a first-in, first-out
buffer. Packet channels have an optionally-enabled fault model that can drop,
duplicate, or reorder packets, or fail the link. The channel with the controller
offers reliable, in-order delivery of OpenFlow messages, except for optional
switch failures. We do not run the OpenFlow protocol over SSL on top of
TCP/IP, allowing us to avoid intermediate protocol encoding/decoding and

the substantial state in the network stack.

Two simple transitions: The switch model consists of only process_pkt
and process_command transitions — for processing data packets and Open-
Flow messages, respectively. We enable these transitions if at least one packet

channel or the OpenFlow channel is nonempty, respectively.

To match the controller program’s expectations about the environment, our
switch model includes buffers that temporarily store packets awaiting further

instruction from the controller. However, to improve scalability, we do not
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include these buffers in our definition of the state space (the buffered packet is
already a part of the controller’s packet_in transition and the exact value of
buffer_id is irrelevant as long as it is unique.) A final simplification we make
is in the switch’s process_pkt transition. Here, the switch dequeues the first
packet from each packet channel, and processes all these packets according to
the flow table. So, multiple packets at different channels are processed as a
single transition. This optimization is safe because the model checker already

systematically explores the possible orderings of packet arrivals at the switch.

Merging equivalent flow tables: A flow table can easily have two states
that appear different but are semantically equivalent, leading to a larger search
space than necessary. For example, consider a switch with two microflow rules.
These rules do not overlap—mno packet would ever match both rules. As such,
the order of these two rules is not important. Yet, simply storing the rules as a
list would cause the model checker to treat two different orderings of the rules
as two distinct states. Instead, as often done in model checking (e.g., [78]),
we construct a canonical representation of the flow table that derives a unique
order of rules by sorting them in a deterministic manner. Additionally, the
switch flow table does not store any packet statistics. Instead, we automati-

cally infer the values that might change the controller behavior in Section 3.5.

3.4.1.3 End Hosts

Modeling the end hosts is tricky, because hosts run arbitrary applications and
protocols, have a large state, and have behavior that depends on incoming
packets. We could require the developer to provide the host programs, with a
clear indication of the transitions between states. Instead, NICE provides sim-
ple programs that act as clients or servers for a variety of protocols including
Ethernet, ARP, IP, and TCP. These models have explicit transitions and rel-
atively little state. For instance, the default client has two basic transitions—
send (initially enabled; can execute C' times, where C' is configurable) and
receive—and a counter of sent packets. The default server has the receive
and the send_reply transitions; the latter is enabled by the former. NICE
also includes a more realistic refinement of this model — a mobile host that
includes the move transition that moves the host to a new (switch, port) lo-
cation. The programmer can also customize the models we provide, or create

new models.
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3.4.2 Limitations of the Strawman Model Checking

So far, it would appear that model checking is a good match for testing SDN
networks. However, this is not the case, and we now discuss what we believe

the two main issues are.

Developer input for data-dependent handlers. As a systematic explo-
ration of all possible packet inputs is infeasible (e.g., just enumerating all IPv4
source and destination takes 264 combinations), the only way to bound the
model checking search is for the developer to manually specify a set of “rel-
evant” inputs. Our desire is to do better than that. We suggest to analyze
the controller program code and automatically infer which inputs cause which
distinct behavior. Intuitively, this means uncovering the possible distinct data-

dependent transitions at the controller.

State-space explosion. Second, the scalability of model checking is severely
limited by the state-space explosion problem, i.e., the number of states may

be too large in practice.

In part, this is because we use a real switch implementation: this has a lot of

states due to implementation details that are not necessary for testing.

There are several traditional ways to mitigate this problem. State tracking,
which avoids exploring previously encountered states, is the first remedy com-
monly employed. Partial order reduction can be applied in the cases where
the relative ordering of transitions does not alter the final state; so, it explores
with just one arbitrary sequence. Finally, model checking experts can find the

appropriate abstractions to obtain simplified system models.

Before discussing how we manage the state-space explosion, we next report

how the existing tools perform in our problem domain.

3.4.2.1 Can Existing Tools Cope?

We wish to understand how large of an issue state-space explosion is for us
and what is causing it. Thus, we experiment with two state-of-the-art model
checkers: SPIN [40] and JavaPathfinder (JPF) [85]. Here, we briefly summarize
the results for SPIN and we refer the interested reader to the Section 3.9 for

further details.

We use an OpenFlow-based MAC-learning switch controller. The system has

two end hosts and two switches interconnected in a linear topology with the
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switches in the middle. The basic system behavior is that host 1 sends a packet
to host 2; host 2 replies with another packet. We analyze the complexity of
fully exploring the state space as we increase the number of packets that host

1 sends (concurrently).

Although SPIN reduces the state space by using an abstract model of the
system and uses partial order reduction, already with 8 packets the exhaustive
search reaches the memory limit of 64 GB in our machine after exploring ~ 50
M states. This huge number of states for a tiny OpenFlow system is caused
by the high level of concurrency—transitions enabled at different components

are interleaved in every possible way.

Note that the process of uncovering transitions at the controller is important
for thorough testing but aggravates state-space explosion. Therefore, to cope
with the state-space explosion, we (i) propose a number of simplifications for
the OpenFlow switch model and (i7) derive several search heuristics based on

a domain-specific knowledge.

3.5 Extending Model Checking with Symbolic

Execution

To systematically test the controller program, we must explore all of its possi-
ble code paths as the behavior of an event handler depends on the inputs (e.g.,
the MAC addresses of packets in Figure 3.3). Rather than explore all possi-
ble inputs, NICE identifies which inputs would exercise different code paths
through an event handler. Systematically exploring all code paths naturally
leads us to consider symbolic execution (SE) techniques. In this section, we
describe how we apply symbolic execution to controller programs. Then, we
explain how NICE combines model checking and symbolic execution to explore

the state space of the whole network effectively.

3.5.1 Symbolic Execution of Event Handlers

Applying symbolic execution to the controller event handlers is relatively
straightforward, with two exceptions. First, to handle the diverse inputs to
the packet_in handler, we construct symbolic packets. Second, to minimize
the size of the state space, we choose a concrete (rather than symbolic) repre-

sentation of controller state.
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Symbolic packets. The main input to the packet_in handler is the incom-
ing packet. To perform symbolic execution, NICE must identify which (ranges
of) packet header fields determine the path through the handler. Rather than
view a packet as a generic array of symbolic bytes, we introduce symbolic
packets as our symbolic data type. A symbolic packet is a group of symbolic
integer variables that each represents a header field. To reduce the overhead
for the constraint solver, we maintain each header field as a lazily-initialized,
individual symbolic variable (e.g., a MAC address is a 6-byte variable), which
reduces the number of variables. Yet, we still allow byte- and bit-level accesses
to the fields. This also tells us whether the program is agnostic to particular
protocols (e.g., ignoring transport header fields), allowing us to select a sim-
pler host model for generating the input packets. In some cases, we go even
further and constrain the possible values of header fields (e.g., the MAC and
IP addresses used by the hosts and switches in the system model, as specified

by the input topology).

Concrete controller state. The execution of the event handlers also de-
pends on the controller state. For example, the code in Figure 3.3 reaches line
12 only for unicast destination MAC addresses stored in mactable. Starting
with an empty mactable, symbolic execution cannot find an input packet that
forces the execution of line 12; yet, with a non-empty table, certain packets
could trigger line 12 to run, while others would not. As such, we must incorpo-
rate the global variables into the symbolic execution. We choose to represent
the global variables in a concrete form. We apply symbolic execution by using
these concrete variables as the initial state and by marking as symbolic the
packets and statistics arguments to the handlers. The alternative of treating
the controller state as symbolic would require a sophisticated type-sensitive
analysis of complex data structures (e.g., [49]), which is computationally
expensive and difficult for a dynamically typed language like Python. In addi-
tion, having purely symbolic controller state could cause NICE to test spurious
states that are not reachable in practice due to the constraints imposed by the

larger environment.

3.5.2 Combining Symbolic Execution with
Model Checking

With all of NICE’s parts in place, we now describe how we combine model

checking (to explore system execution paths) and symbolic execution (to re-
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State client,.send(pkt,) client,.discover_packets
0 [ client,.discover_packets ~~ - ) . >

/

Symbolic Enable new I

Controller state execution Nev‘;;ﬁﬁ\fnt transitions: I
sw_id, inport of packet_in [Ekt,, pkt;] client,.send(pkt.) |
handler client,.send(pkt,) ]

Figure 3.4: Example of how NICE identifies relevant packets and
uses them as new enabled send packet transitions of client;. For
clarity, the circled states refer to the controller state only.

duce the space of inputs). At any given controller state, we want to identify
packets that each client should send—specifically, the set of packets that ex-
ercise all feasible code paths on the controller in that state. To do so, we
create a special client transition called discover_packets that symbolically
executes the packet_in handler. Figure 3.4 shows the unfolding of controller’s

state-space graph.

Symbolic execution of the handler starts from the initial state defined by ()
the concrete controller state (e.g., State 0 in Figure 3.4) and (i¢) a concrete
“context” (i.e., the switch and input port that identify the client’s location).
For every feasible code path in the handler, the symbolic-execution engine finds
an equivalence class of packets that exercise it. For each equivalence class, we
instantiate one concrete packet (referred to as the relevant packet) and enable a
corresponding send transition for the client. While this example focuses on the
packet_in handler, we apply similar techniques to deal with traffic statistics,
by introducing a special discover_stats transition that symbolically executes
the statistics handler with symbolic integers as arguments. Other handlers,
related to topology changes, operate on concrete inputs (e.g., the switch and

port ids).

Figure 3.5 shows the pseudo-code of our search-space algorithm, which extends

the basic model-checking loop of Figure 2.1 in two main ways described next.
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1 pending_states = []

2 explored states = []

3 errors = []

4 initial state = create initial state ()

5 for client in initial state.clients

6 client . packets = {}

7 client .enable_transition (discover_packets)

8 for t in initial state.enabled transitions:

9 pending states.push([initial state, t])

10 while len (pending states) > 0:

11 state, transition = choose(pending_states)

12 try:

13 next_state = run(state, transition)

14 ctrl = next_state.ctrl # Reference to controller

15 ctrl_state = ctrl.get_state() # Serialized controller state
16 for client in state.clients:

17 if not client.packets.has key(ctrl state):

18 client .enable_transition (discover__packets, ctrl)
19 if process_stats in ctrl.enabled_transitions:

R0 ctrl.enable_transition (discover_stats, state, sw_id)
21 check properties(next_state)

22 if next_state not in explored_ states:

23 explored states.add(next_state)

24 for t in next_ state.enabled transitions:

25 pending_states.push ([next_state, t])

26 except PropertyViolation as e:

27 errors.append ([e, trace])

28

P9 def discover_ packets_ transition(client, ctrl):

0 sw_id, inport = switch_location_ of(client)

B1 new_ packets = SymbolicExecution(ctrl , packet_in,

2 context=[sw_id, inport])

B3 client . packets[state(ctrl)] = new_ packets

B4 for packet in client.packets[state(ctrl)]:

B5 client .enable_transition (send, packet)

36

B7 def discover_ stats_ transition(ctrl, state, sw_id):

38 new_ stats = SymbolicExecution(ctrl, process_stats, context=[sw_id])
B9 for stats in new stats:

Ko ctrl.enable_ transition(process_stats, stats)

Figure 3.5: The state-space search algorithm used in NICE for find-
ing errors. The highlighted parts, including the special “discover”
transitions, are our additions to the basic model-checking loop of
Figure 2.1.
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Initialization (lines 5-7): For each client, the algorithm (7) creates an empty
map for storing the relevant packets for a given controller state and (iz) enables

the discover_packets transition.

Checking process (lines 14-20): Upon reaching a new state, the algorithm
checks for each client (line 17) whether a set of relevant packets already exists.
If not, it enables the discover_packets transition. In addition, it checks
(line 19) if a process_stats transition is enabled in the newly-reached state,
meaning that the controller is awaiting a response to a previous query for

statistics. If so, the algorithm enables the discover_stats transition.

Invoking the discover_packets (lines 29-35) and discover_stats (lines 37-
40) transitions allows the system to evolve to a state where new transitions
become possible—one for each path in the packet-arrival or statistics handler.
This allows the model checker to reach new controller states, allowing sym-
bolic execution to again uncover new classes of inputs that enable additional

transitions, and so on.

By symbolically executing the controller event handlers, NICE automatically
infers the test inputs for enabling model checking without developer input, at
the expense of some limitations in coverage of the state space which we discuss
in Section 3.11.

3.6 Reducing the State Space Search

Even with our optimizations from the last two sections, the model checker
cannot typically explore the entire state space, since it may be prohibitively
large or even infinite. In this and the next section, we describe both general-

purpose and domain-specific techniques for reducing the search space.

3.6.1 Dynamic Partial Order Reduction

To apply Partial Order Reduction (Section 2.2.2.5) in our context, we identify
the following shared objects:

1. input buffers of switches and hosts: All transitions that read from or

write to a buffer of a given node (send or receive a packet) are dependent.

2. switch flow tables: The order of switch flow table modifications is im-

portant because it matters if a rule is installed before or after a packet
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matching that rule arrives at the switch. However, we exploit the seman-
tics of flow tables to identify more fine-grained shared objects and hence
make POR more effective. In particular, a pair of transitions that only
read from the flow table are independent. Also, transitions that operate
on rules with non-overlapping matches are independent. All remaining

transition combinations are dependent.

3. the controller application: Because NICE treats the controller state
as a single entity all transitions related to the controller are dependent.
No further specialization is possible without relying on more fine-grained

analysis of the controller state.

Rather than relying on a priori knowledge about what shared objects are
used by which transition, we use a dynamic variant of POR, namely Dy-
namic Partial-Order Reduction (DPOR) [30], which gathers the dependency
information at run-time while executing transitions, and modifies the set of

enabled transitions at each visited state accordingly.

We base our DPOR algorithm on the one presented in [30] and extend it
to work for our context. The base DPOR algorithm relies on the fact that
a single execution path ends when there are no enabled transitions. NICE
typically bounds the search depth and uses state matching to avoid exploring
the same state multiple times. Therefore, some search paths end before all
possible transitions that could be worth reordering are considered by DPOR.
This was already recognized as a problem by the authors of [93]. To avoid this
problem, we conservatively consider all enabled transitions as worth exploring

unless specifically marked otherwise.

We first introduce some notation: Let E; be the set of transitions enabled in
state s;; let SE; C E; be the set of transitions strongly enabled in s; (i.e.,
the transitions that cannot be ignored); let D; C F; be the set of transitions
enabled in s; that are temporarily disabled by DPOR.

: i t t t
The search path is represented by a transition sequence: s — sg —> ... —%

Sp+1. For each transition ¢; in this sequence, we keep track of the transition ¢;
that enabled ¢;. In other words, we look for ¢ such that ¢t; ¢ E; and t; € F; 1.
Let P(j) =i, we call ¢ Pj) @ first level predecessor of ¢;, ¢ P(P(j)) & second level
predecessor of t;, and so on.
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1 def DPOR( current_path ):

2 for t_i in current_path[l : n-—1]:

3 state = get_start_state(t_1i)

4 for t_j in current_path[idx(t_i) + 1 : n]:
5 if is_worth_reordering(t_i, t_j):

6 if t_j in state.enabled:

7 t_k =1t_j

8 else:

9 t_k = get_predecessor(state, t_j)
10 state.strongly_ enabled.add(t_k)

11 state.force_order(t_k, (t_j, t_i))
12 elif t_j in state.enabled:

13 state.unnecessary.add(t_j)

14

15 def get__next__transition(state ):

16 for t in state.enabled:

17 if (t in state.unnecessary and

18 t not in state.strongly_ enabled):
19 state.enabled.remove(t)

20 return state.enabled.pop()

Figure 3.6: Pseudo-code of our variation of the DPOR algorithm.
The get_next_transition method prunes the enabled actions and
returns the next transition worth executing. The DPOR method
runs when the search ends in a state with no enabled transitions.

Figure 3.6 presents the pseudo-code of our DPOR algorithm. The function
DPOR is invoked for the current execution path once the model checker reaches
a state s, with no enabled transitions. For every transition ¢; with i € [1,n],
we identify all transitions ¢; where j € [i + 1,n] that ¢; is worth reordering
with (line 5). In this case, we want to enforce a new search path that, starting
from s;, would first execute t; and then t; (lines 6-11). If t; € E;, we simply
add t; to SE;. If t; € F;, we find a transition ¢, € [; that is a predecessor
of t; (line 9) and add it to SE; (line 10). If ¢; is not worth reordering with
tj € E;, we add t; to D; (line 13). Marking ¢, for exploration is necessary to
ensure search completeness, but it is not sufficient to efficiently prune states.
After executing tj, the model checker would again have two possible orderings
of t; and t;. To achieve the desired state space reduction, we enforce that ¢; is
executed before ¢; on this particular search path (line 11). Before selecting the
next transition to explore in a given state, the get_next_transition function
disables all transitions enabled in this state, that were considered not worth

reordering while exploring other paths (line 18).
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Figure 3.7: Illustration of the state space explored by our search
strategies in relation to the entire state space.

3.6.2 OpenFlow-Specific Search Strategies

We propose several domain-specific heuristics that substantially reduce the
space of event orderings while focusing on scenarios that are likely to uncover
bugs. The general overview of the subspace of the state space explored by

these heuristics is depicted in Figure 3.7.

PKT-SEQ: Limiting relevant packet sequences. The effect of discov-
ering new relevant packets and using them as new enabled send transitions
is that each end-host generates a potentially-unbounded tree of packet se-
quences. For example, for our pyswitch controller (Figure 3.3), NICE would
just generate new, so far unseen, MAC addresses each time the MAC table

changes.

To make the explored state space finite and smaller, PKT-SEQ heuristic re-
duces the search space by bounding the possible end host send transitions (and
thus indirectly bounding the search tree). The heuristic bounds the search
along two dimensions, each of which can be fine-tuned by the user. First, we
limit the maximum number of packets an end host can send. Effectively, this
also places a hard limit on the issue of infinite execution trees due to symbolic
execution. Second, we limit the maximum number of outstanding packets, or
in other words, the length of a packet burst. For example, if client; in Fig-
ure 3.4 is allowed only a 1-packet burst, this heuristic would disallow both
send (pkto) in State 2 and send(pkt;) in State 3. Effectively, this limits the
level of “packet concurrency” within the state space. To introduce this limit,
we assign each end host with a counter ¢; when ¢ = 0, the end host cannot send
any more packets until the counter is replenished. Because we are dealing with
communicating end hosts, the default behavior is to increase ¢ by 1 for every
received packet. However, this behavior can be modified in more complex end

host models, e.g., to mimic the TCP flow and congestion controls.
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NO-DELAY: Instantaneous rule updates. @ When using this simple
heuristic, NICE treats each communication between a switch and the con-
troller as a single atomic action (i.e., not interleaved with any other transi-
tions). In other words, the global system runs in “lock step”. This heuristic
is useful during the early stages of development to find basic design errors,
rather than race conditions or other concurrency-related issues. For instance,
it would allow the developer to realize that installing a rule prevents the con-
troller from seeing other packets that are important for program correctness.
For example, a MAC-learning application that installs forwarding rules based
only on the destination MAC address would prevent the controller from seeing

some packets with new source MAC addresses.

UNUSUAL: Unusual delays and reorderings. With this heuristic, NICE
only explores event orderings with uncommon and unexpected delays aiming
to uncover race conditions. For example, if an event handler in the controller
installs rules in switches 1, 2, and 3, the heuristic explores transitions that
reverse the order by allowing switch 3 to install its rule first, followed by
switch 2 and then switch 1. This heuristic uncovers bugs like the example in

Figure 3.1.

FLOW-IR: Flow independence reduction. Many OpenFlow applications
treat different groups of packets independently; that is, the handling of one
group is not affected by the presence or absence of another. In this case,
NICE can reduce the search space by exploring only one relative ordering
between the events affecting each group. To use this heuristic, the programmer
provides isSameFlow, a Python function that takes two packets as arguments
and returns whether the packets belong to the same group. For example, in
some scenarios different microflows are independent, whereas other programs

may treat packets with different destination MAC addresses independently.

Summary. PKT-SEQ is complementary to other strategies in that it only
reduces the number of send transitions rather than the possible kind of event
orderings. It is enabled by default and used in our experiments (unless other-

wise noted). The other heuristics can be selectively enabled.

3.7 Specifying Application Correctness

Correctness is not an intrinsic property of a system—a specification of correct-

ness states what the system should do, whereas the implementation determines
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what it actually does. NICE allows programmers to define correctness prop-
erties as Python code snippets, and provides a library of common properties

(e.g., no loops or black holes).

3.7.1 Customizable Correctness Properties

Testing correctness involves asserting safety properties ( “something bad never
happens”) and liveness properties ( “eventually something good happens”), de-
fined more formally in Chapter 3 of [15]. Checking for safety properties is
relatively easy, though sometimes writing an appropriate predicate over all
state variables is tedious. As a simple example, a predicate could check that
the collection of flow rules does not form a forwarding loop or a black hole.
Checking for liveness properties is typically harder because of the need to con-
sider a possibly infinite system execution. In NICE, we make the inputs finite
(e.g., a finite number of packets, each with a finite set of possible header val-
ues), allowing us to check some liveness properties. For example, NICE could
check that, once two hosts exchange at least one packet in each direction,
no further packets go to the controller (a property we call “NoControllerIn-
volved”). Checking this liveness property requires knowledge not only of the

system state, but also which transitions were executed.

To check safety and liveness properties, NICE allows correctness properties
to (i) access the system state, (ii) register callbacks invoked by NICE to
observe important transitions in system execution, and (#i7) maintain local
state. In our experience, these features offer enough expressiveness. For ease
of implementation, the properties are represented as snippets of Python code
that make assertions about the system state. NICE invokes these snippets after
each transition. For example, to check the NoControllerInvolved property,
the code snippet defines local state variables that keep track of whether a
pair of hosts has exchanged at least one packet in each direction, and would
flag a violation if a subsequent packet triggers a packet_in event. When a
correctness check signals a violation, NICE records the execution trace that

recreates the problem.

3.7.2 Library of Correctness Properties

NICE provides a library of correctness properties applicable to a wide range
of OpenFlow applications. A programmer can select properties from a list,

as appropriate for the application. Writing these correctness modules can be
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challenging because the definitions must be robust to communication delays
between the switches and the controller. Many of the definitions must inten-
tionally wait until a “safe” time to test the property to prevent natural delays
from erroneously triggering a violation. Providing these modules as part of
NICE can relieve the developers from the challenges of specifying correctness
properties precisely, though creating any custom modules would require similar

care.

o NoForwardingLoops: This property asserts that packets do not encounter
forwarding loops. It is implemented by checking if each packet goes through

any <switch, input port> pair at most once.

e NoBlackHoles: This property states that no packets should be dropped in
the network, and is implemented by checking that every packet that enters
the network and is destined to an existing host, ultimately leaves the network
(for simplicity, we disable optional packet drops and duplication on the chan-
nels). In the case of host mobility, an extended version of this property —
NoBlackHolesMobile — ignores the inevitably dropped packets in the period
from when the host moves to when the controller can realize that the host

moved.

o WaitPathSetup: This property checks that a given packet reaches the con-
troller at most once. Essentially, this checks whether the controller properly
finishes installing the path to the destination before releasing the packet back
to the network. As an example, this check would detect the race condition
described in Figure 3.1. The WaitPathSetup property is useful for many Open-
Flow applications, though it does not apply to the MAC-learning switch, which
requires the controller to learn how to reach both hosts before it can construct

unicast forwarding paths in either direction.

e NoControllerInvolved: This property checks that, after two hosts have suc-
cessfully delivered at least one packet of a flow in each direction, no successive
packets reach the controller. This checks that the controller has established a

direct path in both directions between the two hosts.

e NoForgottenPackets: This property checks that all switch buffers are empty
at the end of system execution. A program can easily violate this property
by forgetting to tell the switch how to handle a packet. This can eventu-

ally consume all the available buffer space for packets awaiting controller in-
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struction; after a timeout, the switch may discard these buffered packets®. A
short-running program may not run long enough for the queue of awaiting-
controller-response packets to fill, but the NoForgottenPackets property easily
detects these bugs. Note that a violation of this property often leads also to a
violation of NoBlackHoles.

3.8 Implementation Highlights

We have built a prototype implementation of NICE written in Python so as
to seamlessly support OpenFlow controller programs for the NOX platform
(which provides an API for Python).

As a result of using Python, we face the challenge of doing symbolic exe-
cution for a dynamically typed language. This task turned out to be quite
challenging from an implementation perspective. As pure symbolic execution
would require us to modify the Python interpreter, we use concolic execution
instead. Another consequence of using Python is that we incur a significant
performance overhead, which is the price for favoring usability. We plan to

improve performance in a future release of the tool.

NICE consists of three parts: (i) a model checker, (i7) a concolic-execution
engine, and (7i7) a collection of models including the simplified switch and
several end hosts. We now briefly highlight some of the implementation details
of the first two parts: the model checker and concolic engine, which run as

different processes.

Model checker details. To checkpoint and restore system state, NICE
takes the approach of remembering the sequence of transitions that created
the state and restores it by replaying such sequence, while leveraging the fact
that the system components execute deterministically. State-matching is done
by comparing and storing hashes of the explored states. The main benefit of
this approach is that it reduces memory consumption and, secondarily, it is
simpler to implement. Trading computation for memory is a common approach
for other model-checking tools (e.g., [50,91]). To create state hashes, NICE
first normalizes the state and then it serializes it via the json module after

which it applies the built-in hash function to the resulting string.

3 In our tests of the ProCurve 540621 OpenFlow switch, we see that, once the buffer becomes
full, the switch starts sending the entire contents of new incoming packets to the controller,
rather than buffering them. After a ten-second timeout, the switch deletes the packets
that are buffered awaiting instructions from the controller.
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Alternatively, NICE can be configured to store the serialized states themselves,
at the cost of higher memory usage. This approach has a potential to reduce
NICE running time, but the exact benefits depend mostly on the time required
to save and restore the controller state. Moreover, saving the state required

for DPOR is challenging and we do not support it in the current prototype.

Concolic execution details. A key step in concolic execution is tracking the
constraints on symbolic variables during code execution. To achieve this, we
first implement a new “symbolic integer” data type that tracks assignments,
changes and comparisons to its value while behaving like a normal integer
from the program point of view. Second, we reuse the Python modules that
naturally serve for debugging and disassembling the byte-code to trace the

program execution through the Python interpreter.

Further, before running the code symbolically, we normalize and instrument
it since, in Python, the execution can be traced at best with single code-line
granularity. Specifically, we convert the source code into its abstract syntax
tree (AST) representation and then manipulate this tree through several recur-
sive passes that perform the following transformations: (i) we split composite
branch predicates into nested if statements to work around short-circuit eval-
uation (i.e., explicitly encode Python’s logic “if left-hand side of and operator
is False, the right-hand side is not evaluated”; similarly for or), (i7) we move
function calls contained in conditional expressions before the if statement to
ease tracking of the symbolic variables through the conditional statements,
(74i) we instrument branches to inform the concolic engine on which branch is
taken, (iv) we substitute the built-in dictionary class dict with a special stub
to track uses of symbolic variables, and (v) we intercept and remove sources
of nondeterminism (e.g., seeding the pseudo-random number generator). The

AST tree is then converted back to a source code for execution.

3.9 Performance Evaluation
Here we present an evaluation of how effectively NICE copes with the large

state space in OpenFlow.

3.9.1 Experimental setup.

We run the experiments on the simple topology of Figure 3.1, where the two

end hosts behave as follows: host A sends a “layer-2 ping” packet to host B
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Pings H Transitions \ Unique states p \ CPU time ‘
2 530 vs. 706 315 vs. 432 0.73 1.1 vs. 1.72 [s]
3 14,762 vs. 31,345 6,317 vs. 13,940 0.45 | 37.2 vs. 92.9 [
4 356,469 vs. 1,134,515 121,320 vs. 399,919 0.30 17 vs. 59 [m]
5 7,816,517 vs. 33,134,573 | 2,245,345 vs. 9,799,538 0.27 8 vs. 57 [h]

Table 3.1: Effectivity of the canonical switch state representation in
NICE. We compare the state-space NICE needed to search without
vs. with the canonical representation of the switch state on a MAC-
learning switch application with ping-exchanging end hosts. Canon-
ical representation enables recognizing equivalent switch states.
Value p represents the ratio of the number of unique states.

which replies with a packet to A. The controller runs the MAC-learning switch
program of Figure 3.3. We report the numbers of transitions and unique states,
and the execution time as we increase the number of concurrent pings (a pair
of packets). We run all our experiments on a machine with Linux 3.8.0 x86_ 64
that has 64 GB of RAM and a clock speed of 2.6 GHz. Our prototype does

not yet make use of multiple cores.

3.9.2 Benefits of simplified switch model.

We first perform a full search of the state space using NICE as a depth-first
search model checker (without symbolic execution) and compare it to doing
model-checking without a canonical representation of the switch state. Effec-
tively, this prevents the model checker from recognizing that it is exploring
semantically equivalent states. These results, shown in Table 3.1, are obtained
without using any of our search strategies. We compute p, a metric of state-

space reduction due to using the simplified switch model, as

_ UniqueStates (WITH-CANONICAL-REPRESENTATION)
B Unique(NO-CANONICAL-REPRESENTATION)

We observe the following:

e In both cases, the number of transitions and the number of unique states
grow roughly exponentially (as expected). However, using the simplified switch
model, the unique states explored with the switch canonical representation
grow with a rate that is lower than the one observed without the canonical

representation.

e The ratio p goes down with the problem size (number of pings) and is

substantial (reduction of 3.7-times for four pings).
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Figure 3.8: Running time and the number of states different heuris-
tics (NO-DELAY, UNUSUAL) take relative to full search (NICE-
MCQO).

e The time taken to complete a full state-space search in this small-scale
example grows exponentially with the number of packets. However, thanks
to symbolic execution, we expect NICE to explore most of the system states

using a modest number of symbolic packets and even small network models.

3.9.3 Heuristic-based search strategies.

Figure 3.8 considers the same scenario as in the previous section (i.e., host A
pinging host B with multiple concurrent packets) and illustrates the contri-
bution of NO-DELAY and UNUSUAL heuristics in reducing the search space
relative to the metrics reported for the full search NICE-MC (we use the sim-
plified switch model in all cases). The state space reduction is again significant;
about factor of five and factor of ten for over two pings with UNUSUAL and
NO-DELAY respectively. In summary, our switch model and these heuristics
result in over 20-fold state space reduction for four and more pings. Finally, we
also test the FLOW-IR heuristic. Unfortunately, in this scenario the heuristic
is unable to reduce the state space because of the way the PySwitch works —
as PySwitch learns new MAC addresses from all packets it receives, the flows
are not independent. However, in Table 3.4 we show the effectiveness of this

strategy in other scenarios (even 10 times reduction).
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3.9.4 Comparison to other model checkers.

Next, we contrast NICE-MC with two state-of-the-art model checkers, SPIN [40]
and JPF [85]. We create system models in these tools that replicate as closely
as possible the system tested in NICE, using the same experimental setup as

with our heuristics.

3.9.4.1 SPIN

SPIN is one of the most popular tools for verifying the correctness of software
models, which are written in a high-level modeling language called PROMELA.
This language exposes non-determinism as a first-class concept, making it eas-
ier to model the concurrency in OpenFlow. However, using this language pro-
ficiently is non-trivial and it took several person-days to implement the model
of the simple OpenFlow system (Figure 3.1). To capture the system concur-
rency at the right level of granularity, we use the atomic language feature to
model each transition as a single atomic computation that cannot be inter-
leaved to any other transition. In practice, this behavior cannot be faithfully
modeled due to the blocking nature of channels in PROMELA. To enable
SPIN’s POR to be most effective, we assign exclusive rights to the processes

involved in each communication channel.

Figure 3.9a shows the memory usage and elapsed time for the exhaustive search
with POR as we increase the number of packets sent by host A. As expected,
we observe an exponential increase in computational resources until SPIN
reaches the memory limit when checking the model with 8 pings (i.e., 16 pack-
ets).

To see how effective POR is, we compare in Figure 3.9b the number of tran-
sitions explored with POR and without POR (NOPOR) while we vary the
number of pings. In relative terms, POR’s efficiency increases, although with
diminishing returns, from 24% to 73% as we inject more packets that are iden-
tical to each other. The benefits due to POR on elapsed time follow a similar
trend and POR can finish 6 pings in 28% of time used by NOPOR. However,
NOPOR hits the memory limit at 7 pings, so POR only adds one extra ping.

Finally, we tried to see whether it would be possible to reduce SPIN’s search
space by taking advantage of the simple independence property as in FLOW-

IR. Unfortunately, this is not possible as SPIN uses the accesses to communi-

95



3. TESTING SDN CONTROLLERS WITH NICE

Abort after hitting

65GB memory limit
Memory —+—  Time —X- |

100GB T />1ooo
10GB e 100
>  1GB 10 =
2 (0]
5 £
= 100MB 1 =
10MB 0.1
IMB——— 11 0.01
1 2 3 4 5 6 7 8
Number of pings
(a) Memory usage and elapsed time with POR enabled.
1 T T T T l
09 Transitions 1 _|
Time N
% 0.8 Unique states [
o -
% 0.7
o 0.6 -
o -
5 0.5
T 04
o
S 03[
3]
T o2
0.1 -
0
1 2 3 4 5 6 7
Number of pings
(b) POR can reduce the number of explored transitions by up to
73%.

Figure 3.9: Results of the SPIN model checker on a network model
representing the same scenario as Table 3.1. Exponential increase
in computational resources partially mitigated by POR.

cation channels to derive the independence of events. Our DPOR algorithm

instead considers a more fine-grained domain-specific definition of shared ob-

jects and thus could achieve additional state space reduction.
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Pings | Time [s] | Unique states | End states | Mem. [MB]
1 0 95 2 17
2 9 20638 134 140
3 13689 25470986 2094 1021

(a) Thread-based model

Pings | Time [s] | Unique states | End states | Mem. [MB]

1 0 1 1 17
2 1 691 194 33
3 16 29930 6066 108
4 11867 16392965 295756 576

(b) Choice-based model

Table 3.2: Results of JPF model checker on a network model repre-
senting the same scenario as Table 3.1. Even the better choice-based
model undergoes a big explosion of the state space.

3.9.4.2 Java PathFinder

Java PathFinder (JPF) is one among the first modern model checkers which
use the implementation in place of the model. We follow two approaches to

model the system by porting our Python code to Java.

In the first approach, we naively use threads to capture nondeterminism, hop-
ing that JPF’s automatic state-space reduction techniques would cope with
different thread creation orders of independent transitions. However, in our
case, the built-in POR is not very efficient in removing unnecessary network
event interleavings because thread interleaving happens at a finer granularity
than event interleavings. To solve this problem, we tune this model by using
the beginAtomic() and endAtomic() functions provided by JPF. As this still

produces too many possible interleavings, we further introduced a global lock.

In a second approach to further refine the model, we capture nondeterminism
via JPF’s choice generator: Verify.getInt(). This gives a significant im-
provement over threads, mainly because we are able to specify precisely the
granularity of interleavings. However, this second modeling effort is nontriv-
ial since we are manually enumerating the state space and there are several
caveats in this case too. For example, explicit choice values should not be
saved on the stack as the choice value may become a part of the global state,
thus preventing reduction. The vector of possible transitions must also be
sorted?.

4 We order events by their states’ hash values.
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Table 3.2a illustrates the state space explosion when using the thread-based
model. Unfortunately, as shown in Table 3.2b, the choice-based model im-
proves only by 1 ping the size of the model that we can explore within a

comparable time period (= 4 hours).

These results suggest that NICE, in comparison with the other model-checkers,
strikes a good balance between (i) capturing system concurrency at the right
level of granularity, (i¢) simplifying the state space, and (ii7) allowing testing

of unmodified controller programs.

3.10 Experiences With Real Applications

In this section, we report our experience with applying NICE to three real
applications—a MAC-learning switch, a server load-balancer, and energy-aware
traffic engineering—and uncovering 13 bugs. In all experiments, it was suffi-

cient to use a network model with at most three switches.

3.10.1 MAC-Learning Switch (PySwitch)

Our first application is the pyswitch software included in the NOX distri-
bution (98 LoC). The application implements MAC learning, coupled with
flooding to unknown destinations, common in Ethernet switches. Realizing
this functionality under a centralized programming model seems straightfor-
ward (e.g., the pseudo-code in Figure 3.3), yet NICE automatically detects

three violations of correctness properties.

BUG-I: Host unreachable after moving. This fairly subtle bug is trig-
gered when a host B moves from one location to another. Before B moves, host
A starts streaming to B, which causes the controller to install a forwarding
rule. When B moves, the rule stays in the switch as long as A keeps sending
traffic, because the soft timeout does not expire. As such, the packets do not
reach B’s new location. This serious correctness bug violates the NoBlackHoles
and NoBlackHolesMobile properties. If the rule had a hard timeout, the appli-
cation would eventually flood packets and reach B at its new location; then,
B would send return traffic that would trigger MAC learning, allowing future
packets to follow a direct path to B. While this “bug fix” prevents persistent
packet loss, the network still experiences transient loss until the hard timeout

expires.
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BUG-II: Unnecessary packets routed through the controller. The
pyswitch also violates the NoControllerInvolved property, leading to subopti-
mal performance. The violation arises after a host A sends a packet to host
B, and B sends a response packet to A. This is because pyswitch installs a
forwarding rule in one direction — from the sender (B) to the destination (A),
in line 13 of Figure 3.3. The controller does not install a forwarding rule for the
other direction until seeing a subsequent packet from A to B. For a three-way
packet exchange (e.g., a TCP handshake), this performance bug directs 50%
more traffic than necessary to the controller. Anecdotally, fixing this bug can
easily introduce another one. The naive fix is to add another install_rule
call, with the addresses and ports reversed, after line 14, for forwarding pack-
ets from A to B. However, since the two rules are not installed atomically,
installing the rules in this order can allow the packet from B to reach A before
the switch installs the second rule. This can cause a subsequent packet from A
to reach the controller unnecessarily. A correct fix installs the rule for traffic
from A first, before allowing the packet from B to A to traverse the switch.
With this fix, the program satisfies the NoControllerInvolved property.

BUG-III: Excess flooding. When we test pyswitch on a topology that
contains a cycle, the program violates the NoForwardingLoops property. This

is not surprising since pyswitch does not construct a spanning tree.

3.10.2 Web Server Load Balancer

Data centers rely on load balancers to spread incoming requests over service
replicas. Previous work created a load-balancer application that uses wildcard
rules to divide traffic based on the client IP addresses to achieve a target load
distribution [88]. The application dynamically adjusts the load distribution by
installing new wildcard rules; during the transition, old transfers complete at
their existing servers while new requests are handled according to the new dis-
tribution. We test this application with one client and two servers connected
to a single switch. The client opens a TCP connection to a virtual IP address
corresponding to the two replicas. In addition to the default correctness prop-
erties, we create an application-specific property FlowAffinity that verifies that
all packets of a single TCP connection go to the same replica. Here we report
the bugs NICE found in the original code (1209 LoC), which had already been

unit tested to some extent.

BUG-1V: ARP packets forgotten during address resolution. Having
observed a violation of the NoForgottenPackets property for ARP packets, we
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identified two bugs. The controller program handles client ARP requests on
behalf of the server replicas. Despite sending the correct reply, the program
neglects to discard the ARP request packets from the switch buffer. This leads
to the switch holding them in its buffers until they are deemed to expire.® A

similar problem occurs for server-generated ARP messages.

BUG-V: TCP packets always dropped before the first reconfigura-
tion. A violation of the NoForgottenPackets property for TCP packets allowed
us to detect a problem where the controller ignores all packet_in messages
for TCP packets caused by no matching rule at the switch. As before the
first reconfiguration there are no rules installed, all flows that start during this
period are ignored. Dropping such packets is understandable as the controller
may have insufficient information about the replicas. However, the controller
should drop them explicitly as ignoring them completely occupies space in

switch buffers.

BUG-VI: Next TCP packet always dropped after reconfiguration.
Having observed another violation of the NoForgottenPackets property, we
identified a bug where the application neglects to handle the “next” packet
of each flow—for both ongoing transfers and new requests—after any change
in the load-balancing policy. Despite correctly installing the forwarding rule
for each flow, the application does not instruct the switch to forward the
packet that triggered the packet_in handler. Since the TCP sender ultimately
retransmits the lost packet, the program does successfully handle each Web

request, making it hard to notice this bug that degrades performance.

BUG-VII: Some TCP packets dropped during reconfiguration. After
fixing previously described bugs, NICE detected another NoForgottenPackets
violation due to a race condition. In switching from one load-balancing policy
to another, the application sends multiple updates to the switch for each exist-
ing rule: (i) a command to remove the existing forwarding rule followed by (%)
commands to install one or more rules (one for each group of affected client
IP addresses) that direct packets to the controller. Since these commands are
not executed atomically, packets arriving between the first and second step do

not match either rule. The OpenFlow 1.0 specification prescribes that packets

5 The switch discards buffered packets after some time precisely to avoid bugs similar to
this. However, until the packets are expired, they needlessly occupy precious buffer space.
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that do not match any rule should go to the controller.® Although the packets
go to the controller either way, these packets arrive with a different “reason
code” (i.e., NO_MATCH). As written, the packet_in handler ignores such (un-
expected) packets, causing the switch to buffer them until they expire. This
appears as packet loss to the end hosts’. To fix this bug, the program should
reverse the two steps, installing the new rules (perhaps at a lower priority) be-
fore deleting the existing ones. Finding this bug poses another challenge: only
a detailed analysis of event sequences allows us to distinguish it from BUG-V.
Moreover, a proper fix of BUG-V hides all symptoms of BUG-VII.

BUG-VIII: Incomplete packets encapsulated in packet_in messages.
The final NoForgottenPackets property violation was caused by a change in
the OpenFlow specification before version 1.0. If a rule’s action is to send
packets to the controller, the action needs to define the maximum number
of packet bytes that should be encapsulated in a packet_in message. The
controller uses value 0, which in the initial versions of the specification means
“encapsulate the entire packet”. However, as of OpenFlow 1.0, value 0 is no
longer special. As a result, the controller does not receive any bytes of the

packet header and is unable to analyze it.

BUG-IX: Duplicate SYN packets during transitions. A FlowAffinity
violation detected a subtle bug that arises only when a connection experiences
a duplicate (e.g., retransmitted) SYN packet while the controller changes from
one load-balancing policy to another. During the transition, the controller
inspects the “next” packet of each flow, and assumes a SYN packet implies the
flow is new and should follow the new load-balancing policy. Under duplicate
SYN packets, some packets of a connection (arriving before the duplicate SYN)
may go to one server, and the remaining packets to another, leading to a broken
connection. We are not the first to report this problem — the authors of [8§]
already acknowledged this possibility in Footnote 2 in their paper. However,

they needed a careful consideration to discover this problem.

6 In later versions of the specification, this behavior is actually configurable and the available
options are: (7) drop, (i7) send to the controller, (7i:) continue with the next flow table.
In either case, the controller should explicitly configure this behavior by installing “table-
miss” flow entry.

7 To understand the impact, consider a switch with 1 Gb/s links, 850-byte frames, and a
flow table update rate of 250 rules/s (as widely reported for the HP 5406zl [55,70]). That
would lead to 150 dropped packets per switch port.
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3.10.3 Energy-Efficient Traffic Engineering

OpenFlow enables a network to reduce energy consumption [39, 83] by selec-
tively powering down links and redirecting traffic to alternate paths during
periods of lighter load. REsPoNse [83] pre-computes several routing tables
(the default is two), and makes an online selection for each flow. The NOX
implementation (374 LoC) has an always-on routing table (that can carry all
traffic under low demand) and an on-demand table (that serves additional
traffic under higher demand). Under high load, the flows should probabilis-
tically split evenly over the two classes of paths. The application learns the
link utilizations by querying the switches for port statistics. Upon receiving a
packet of a new flow, the packet_in handler chooses the routing table, looks

up the list of switches in the path, and installs a rule at each hop.

For testing with NICE, we install a network topology with three switches in a
triangle, one sender host at one switch and two receivers at another switch. The
third switch lies on the on-demand path. We define the following application-

specific correctness property:

o UseCorrectRoutingTable: This property checks that the controller program,
upon receiving a packet from an ingress switch, issues the installation of rules
to all and just the switches on the appropriate path for that packet, as deter-
mined by the network load. Enforcing this property is important, because if
it is violated, the network might be configured to carry more traffic than it
physically can, degrading the performance of end-host applications running on

top of the network.
NICE found several bugs in this application:

BUG-X: The first packet of a new flow is dropped. A violation of
NoForgottenPackets and NoBlackHoles revealed a bug that is almost identical
to BUG-VI. The packet_in handler installed a rule but neglected to instruct
the switch to forward the packet that triggered the event.

BUG-XI: The first few packets of a new flow can be dropped. After
fixing BUG-X, NICE detected another NoForgottenPackets violation at the
second switch in the path. Since the packet_in handler installs an end-to-
end path when the first packet of a flow enters the network, the program
implicitly assumes that intermediate switches would never direct packets to
the controller. However, with communication delays in installing the rules,
the packet could reach the second switch before the rule is installed. Although
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these packets trigger packet_in events, the handler implicitly ignores them,
causing the packets to buffer at the intermediate switch. This bug is hard to
detect because the problem only arises under certain event orderings. Simply
installing the rules in the reverse order, from the last switch to the first, is not
sufficient — differences in the delays for installing the rules could still cause a
packet to encounter a switch that has not (yet) installed the rule. A correct fix
should either handle packets arriving at intermediate switches, or use barriers
(where available) to ensure that rule installation completes at all intermediate

hops before allowing the packet to depart the ingress switch.

BUG-XII: Only on-demand routes used under high load. NICE de-
tects a CorrectRoutingTableUsed violation that prevents on-demand routes
from being used properly. The program updates an extra routing table in
the port-statistic handler (when the network’s perceived energy state changes)
to either always-on or on-demand, in an effort to let the remainder of the code
simply reference this extra table when deciding where to route a flow. Unfor-
tunately, this made it impossible to split flows equally between always-on and
on-demand routes, and the code directed all new flows over on-demand routes
under high load. A fix was to abandon the extra table and choose the routing

table on a per-flow basis.

BUG-XIII: Packets can be dropped when the load reduces. After
fixing BUG-XI, NICE detected another violation of the NoForgottenPackets.
When the load reduces, the program recomputes the list of switches in each
always-on path. Under delays in installing rules, a switch not on these paths
may send a packet to the controller, which ignores the packet because it fails

to find this switch in any of those lists.

3.10.4 Overhead of Running NICE

In Table 3.3, we summarize how many seconds NICE took (and how many
state transitions were explored) to discover the first property violation that
uncovered each bug, under four different search strategies with and without
DPOR. Note the numbers are generally small because NICE quickly produces
simple test cases that trigger the bugs. One exception, BUG-IX, is found
in 1 hour by doing a PKT-SEQ-only search but NO-DELAY and UNUSUAL
heuristics can detect it in just 3-8 minutes. Our search strategies are also
generally faster than PKT-SEQ-only to trigger property violations, except in
one case (BUG-VI).
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3.10. Experiences With Real Applications

NO-DELAY takes longer for BUG-VI because the latter is faster to explore a
sequence of transitions where the network reconfiguration event happens at the
right time for experiencing a NoForgottenPackets violation. FLOW-IR does
not produce benefits for several bugs — as we already explained, FLOW-IR
does not work on PySwitch because the flows are not independent. FLOW-
IR also does not help with the first three bugs in EATE because these are
uncovered by test cases that do not involve using multiple flows. Adding DPOR
improves all strategies unless the bug is found on one of the first explored
paths. Also, note that there are no false positives in our case studies—every
property violation is due to the manifestation of a bug®—and only in few
cases (BUG-VII, BUG-IX, BUG-XI and BUG-XIII) the heuristic-based
strategies experience false negatives. Expectedly, NO-DELAY, which does not
consider rule installation delays, misses race condition bugs (3 missed bugs out
of 13). BUG-IX is missed by FLOW-IR because the duplicate SYN is treated

as a new independent flow (1 missed bug).

Finally, the reader may find that some of the bugs we found — like persis-
tently leaving some packets in the switch buffer — are relatively simple and
their manifestations could be detected with run-time checks performed by the
controller platform. However, the programmer would not know what caused
them. For example, a run-time check that flags a “no forgotten packets” error
due to BUG-VI or BUG-VII would not tell the programmer what was special
about this particular execution that triggered the error. Subtle race conditions
are hard to diagnose, so having a (preferably small) example trace—like NICE

produces—is crucial.

3.10.5 Effectiveness of Optimizations

Until now we reported only times to find the first invariant violation, which is
critical when looking for bugs. However, to fully evaluate various optimizations
described earlier, we disable all invariants and in Table 3.4 present a total
number of transitions and running time for three configurations: MAC-learning
controller like in Section 3.9 with 4 pings, Load Balancer with one connection,
and Energy-Efficient Traffic Engineering with two connections (like for BUG-
XTIII).

8 There is a NoForgottenPackets violation in the switch application for which it is difficult to
discern if it is really a bug or not: the code explicitly discards LLDP packets and assumes
they will be liberated from the switch buffer by other means. However, that might not
happen so we still think the programmer should be aware of the consequences of his code.
Therefore, we choose to report such case as a violation.
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3.11. Coverage vs. Overhead Trade-Offs

First, state serialization improves the performance and the improvement de-
pends on the complexity of serializing the controller state. Load Balancer has
a more complex state than the other two. For the controllers with a simpler
state, the state serialization allows to finish the state space exploration in up
to 40% less time.

DPOR reduces the number of transitions and states that the model checker
needs to explore, however, it comes with two sources of overhead: (i) it per-
forms additional computations, and (i) in our implementation DPOR works
does not work with state serialization. For this reason, in a network where
many transitions are dependent and where serializing the controller is simple
(learning switch) the benefits of using DPOR are smaller than the costs. On
the other hand, with the Load Balancer, DPOR reduces the number of ex-
plored transitions up to 9 times which leads up to 10 times shorter exploration
time. For REsPoNse the difference is smaller, but still meaningful: over 4

times.

3.11 Coverage vs. Overhead Trade-Offs

Testing is inherently incomplete, walking a fine line between good coverage

and low overhead. Here we discuss some limitations of our approach.

Concrete execution on the switch: In identifying the equivalence classes
of packets, the algorithm in Figure 3.5 implicitly assumes that the packets
reach the controller. However, depending on the rules already installed in
the switch, some packets in a class may reach the controller while others may
not. This leads to two limitations. First, if no packets in an equivalence class
go to the controller, generating a representative packet from this class was
unnecessary. This leads to some loss in efficiency. Second, if some (but not
all) packets go to the controller, we may miss an opportunity to test a code
path through the handler by inadvertently generating a packet that stays in
the “fast path” through the switches. This causes some loss in both efficiency
and coverage. We could overcome these limitations by extending symbolic
execution to include our simplified switch model and performing “symbolic
packet forwarding” across multiple switches. We chose not to pursue this
approach because (i) symbolic execution of the flow-table code would lead to
a path-explosion problem, (i7) including these variables would increase the
overhead of the constraint solver, and (4i7) rules that modify packet headers

would further complicate the symbolic analysis.
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3. TESTING SDN CONTROLLERS WITH NICE

Concrete global controller variables: In symbolically executing each
event handler, NICE could miss complex dependencies between handler invo-
cations. This is a byproduct of our decision to represent controller variables
in a concrete form. In some cases, one call to a handler could update the vari-
ables in a way that affects the symbolic execution of a second call (to the same
handler, or a different one). Symbolic execution of the second handler would
start from the concrete global variables, and may miss an opportunity to rec-
ognize additional constraints on packet header fields. We could overcome this
limitation by running symbolic execution across multiple handler invocations,
at the expense of a significant explosion in the number of code paths. Or, we

could revisit our decision to represent controller variables in a concrete form.

Infinite execution trees in symbolic execution: Despite its many ad-
vantages, symbolic execution can lead to infinite execution trees [49]. In our
context, an infinite state space arises if each state has at least one input that
modifies the controller state. This is an inherent limitation of symbolic exe-
cution, whether applied independently or in conjunction with model checking.
To address this limitation, we explicitly bound the state space by limiting the
size of the input (e.g., a limit on the number of packets) and devise OpenFlow-
specific search strategies that explore the system state space efficiently. These
heuristics offer a tremendous improvement in efficiency, at the expense of some

loss in coverage.

Finally, there are two main sources of coverage incompleteness: () heuristic-
driven and bounded-depth model checking, and (4i) incomplete symbolic ex-
ecution of the controller code. We showed in Section 3.10 that at least one
heuristic was always able to detect each bug. We do not report the code cov-
erage of the controller because symbolic execution applies to event handlers
that are a subset of the actual application logic, making it is difficult to dis-
tinguish between this logic and the rest of the system. Second, there are many
hidden branches (e.g., in dictionaries) that are not visible with code coverage

statistics.

3.12 Chapter Summary

In this chapter we introduced NICE, a tool focused on finding bugs in SDN
controllers. NICE, in its essence, works by combining two systematic software
verification techniques — model checking and symbolic execution — into a

single system. This, together with domain-specific heuristics, allows NICE to
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automatically exercise the controller-network interaction across different event
orderings while at the same time picking only events that have a potential to

uncover new system states.

Our evaluation shows that NICE scales better than traditional model check-
ers. Perhaps more importantly, when we put three different SDN controller
applications to the test, NICE managed to find a total of 13 bugs. This is an
indication that NICE can be useful to developers for uncovering problems in

their controllers.
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Chapter 4

Monitoring SDIN Switches With

Monocle

In the previous Chapter we described a systematic method to check whether
an SDN controller program reacts correctly to network events and whether
it installs the correct network policies. However, we based our testing on one
major assumption, namely, that the SDN switches themselves behave correctly.
Unfortunately, there are a plenty of reasons why this might not be the case;
the potential switch errors may range from firmware implementation bugs
and wrong/ambiguous interpretation of the specification to random hardware
failures such as bit flips in TCAM! memory. Our goal in this Chapter is,
therefore, to develop a new tool (called Monocle) that monitors the switches

and checks whether they behave correctly.

4.1 Data Plane Correspondence Problem

While the notion of SDN correctness and reliability typically revolves around
the controller responsible for enforcing the network policy configured by the
network operator, it is the SDN switches that ultimately move (and modify)
the packets in the network. It is, therefore, important to ensure that SDN
switches perform their tasks (i.e., data plane forwarding) exactly as instructed

by the controller. We refer to this problem as data plane correspondence.

Unfortunately, guaranteeing data plane correspondence is difficult or down-

right impossible “by construction” or by pre-deployment testing. This is a

I Ternary content-addressable memory. Switches use this memory to quickly match packets
against multiple forwarding rules.
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4. MONITORING SDN SwiTCHES WITH MONOCLE

consequence of the possibility of various software and hardware failures ranging
from transient inconsistencies (e.g., switch reporting a rule was updated sooner
than it happens in data plane [55]), through systematic problems (switches in-
correctly implementing the OpenFlow specification, e.g., ignoring the priority
field [55]), to hardware failures (e.g., soft errors such as bit flips, line cards
not responding, etc.), and switch software bugs [94], neither of which can be

reliably detected in the control plane only.

Because a-priori guaranteeing data plane correspondence is impossible, it has
to be done during run-time, i.e., by actively monitoring the switches. More-
over, as already mentioned, querying only the switch’s control plane (e.g.,
asking the switch about what it is doing) cannot fully guarantee the data
plane correspondence. Instead, the only way to reliably verify forwarding cor-
rectness, the switch must be exercised in the data plane. However, the typical
choice of data plane monitoring tools is limited — operators can use end-to-end
tools (e.g., ping, traceroute, ATPG [94], etc.), or periodically collect switch
forwarding statistics. Unfortunately, these methods are insufficient — ping/-
traceroute and other similar tools do not determine what packet header values
can test for data plane correspondence. And while ATPG provides a compre-
hensive end-to-end data plane monitoring and can quickly localize problems,
it is designed to batch-generate probes for all network rules at the same time.
As a consequence, ATPG requires substantial time (e.g., minutes to hours [94],
depending on coverage) to pre-compute its probes after each network change.
This delay is too long for modern SDNs where the ever-increasing amount and

rate of change demand a quick, dynamic monitoring tool.

4.2 Verifying Data Plane Correspondence with

Monocle

To address limitations of existing tools, we built Monocle — a system that
allows network operators to simplify their network troubleshooting by pro-
viding automatic data plane correspondence monitoring capable of tracking
all network changes. Monocle transparently operates as a proxy between an
SDN controller and network switches, verifying that the network view config-
ured by the controller (for example using OpenFlow) corresponds to the actual

hardware behavior.

To ensure data plane correspondence, Monocle relies on a switch failure model

72



4.2. Veritying Data Plane Correspondence with Monocle

in which each rule on the switch is either installed in the data plane or it
is missing from it.? To ensure that a rule is correctly functioning, Monocle
injects a monitoring packet (also referred to as a probe) into the switch, and
examines the switch behavior. Monocle monitors multiple network switches
in parallel and continuously, i.e., both during reconfiguration (while the data

plane is undergoing change during rule installation) and in steady-state.

During reconfiguration, Monocle closely monitors the updated rule(s) and pro-
vides a service to the controller that informs it when the rule updates sent to
the switch finish being installed in hardware. This information could be used

by a controller to enforce consistent updates [68].

In steady-state, Monocle periodically checks all installed rules and reports rules
that are misbehaving in the data plane. This localization of misbehaving rules
can then be used to build a higher level troubleshooting tool. For example,

link failures manifest themselves as multiple simultaneously failed rules.

A major challenge in building Monocle is to correctly generate probe packets.
This is difficult for a number of reasons. First, probe generation needs to
be quick and efficient — the monitoring tool needs to be capable of quickly
reacting to network reconfigurations, especially if the controller acts on its
output. Moreover, the problem is computationally intractable (NP-hard, see
Appendix A.1). The reason for this level of hardness is because the monitoring
packets need to match the installed rule while avoiding certain other rules
present in the switch. This case routinely occurs with Access Control rules,
for which the common action is to drop packets. Instead of dealing with
this complex problem on our own, we encode the probe generation as a SAT

problem and leverage the existing tools to efficiently find the solution.

Second, a big challenge is dealing with the multitude of rules: drop rules,
multicasting, equal-cost multi-path routing (ECMP), etc., that all have to be
carefully taken into account and dealt with. We address this challenge by
developing a systematic framework with which we formulate constraints that
the probes need to satisfy. Indeed, a big part of this Chapter is focused on
describing what constraints the probes should satisfy and how this changes

with varying types of rules.

2 This is a reasonable assumption already adopted by the previous work [94]. Section 4.4.7
discusses what happens if we relax this property.
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Q: Is rule 1 in data plane?

- Outcome=A = OK
Probe generation: Outcome=B = Alarm
probe=(srclP=10.0.0.1,
dstiP=10.0.0.2, ﬁ
'SP =
=) % Probe collection
ﬂ Flow Table: (uses catching rule
Probe 1.(10.0.0.1,*) = A isProbe — controller)
probe | .. .
injection ;

upstream downstream —M

Figure 4.1: Overview of data-plane rule checking

4.3 Monocle Design

Monocle is positioned as a layer (proxy) between the OpenFlow controller and
the network routers/switches. Such design allows Monocle to be transparent
to the OpenFlow controller and thus it can be easily deployed in a network
regardless of the controller itself. Being a proxy allows Monocle to intercept
all rule modifications issued to switches and maintain the (expected) contents
of flow tables in each switch. After determining the expected state of a switch,

Monocle can compute packet headers that exercise the rules on that switch.

Figure 4.1 shows the core mechanism that the system uses to monitor a rule.
Monocle uses data plane probing as the ultimate test for a rule’s presence in the
switch forwarding table. Probing involves instructing an “upstream” switch
to inject a packet toward the switch that is being probed. The “downstream”
switch has a special catching rule installed that forwards the probe packet back
to Monocle. Upon the receipt of the correctly modified probe packet coming
from the appropriate switch, Monocle can confirm that the tested rule behaves
correctly in the data plane and can move to monitoring other rules. To ensure
that probing does not affect the controller-generated network state, Monocle

filters out all probes before they reach the controller.

Before Monocle starts monitoring the network, it computes and installs the
catching rules. To reliably separate production and probing traffic, a catching
rule needs to match on a particular value of a header field that is otherwise
unused by rules in the network; moreover, this value cannot be used by the
production traffic. In a network that requires monitoring rules at multiple
switches, several such catching rules are needed. It is, therefore, important

to minimize the number of extra catching rules that have to be installed. We
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Flow table: Packet crafting:
R1:src=10.0.0.1 — fwd(1) 01100011100101101
Q R2: dst=10.0.0.2 — drop

Constraints: ﬂ %

; . matcthﬂ?%) :> SMT/SAT solver:
. malc - -
5 xVy)AGzVY) Probe packet

Figure 4.2: Steps involved in probe packet generation. Probes for
different rules can be generated in parallel.

formulate this problem as a graph vertex coloring problem and solve it.

As Monocle relies on catching rules for its proper functioning, we need to verify
that these rules work correctly. Fortunately, it is easy to check if the catching
rules are installed by injecting packets that match them directly. Additionally,
a broken catching rule appears as a correlated failure of all rules checked using

this rule.

Figure 4.2 outlines how the probe packets are created. Monocle leverages its
knowledge of the flow table at the switch to create a set of constraints that
a probe packet should satisfy. Next, our system converts the constraints into
a form that is understood by an off-the-shelf satisfiability (SMT/SAT) solver.
Keeping constraint complexity low is important for the solving step. For this
reason, Monocle formulates constraints over an abstract packet view [48,94],
structured as a collection of header fields. As the final step, Monocle needs to
convert the SAT solution, represented in an abstract view, into a real probe
packet. Monocle leverages an existing packet generation libraries to perform
this task.

While we use OpenFlow 1.0 as a reference when describing and evaluating the
system, its usefulness is not limited to this protocol. Presented techniques are
more general and apply to other types of matches and actions (e.g., multiple
tables, action groups, ECMP).

4.4 Steady-State Monitoring

During steady-state monitoring, Monocle tests whether the control plane view
of the switch forwarding state (constructed by observing proxied controller

commands) corresponds to the data plane forwarding behavior. To ascertain
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Matches(probe, Ryroped) /N

Hit (VR € Rules : R.priority > Ryyopeq-priority = ~Matches(probe, R))
Let LowPrioRules := {R € Rules : R.priority < Rpyopeq.priority}
and IsHighestMatch(pkt, R, Rules) := Matches(pkt, R) A
Distinguish (VR' € Rules : R .priority > R.priority = —Matches(pkt, R'))

Then VR € LowPrioRules :
IsHighestMatch(probe, R, LowPrioRules) =
Dif fOutcome(probe, Ryyoped, R)

Collect Matches(probe, Regtcn)

Table 4.1: Summary of constraints that probe packets need to satisfy
when probing for rule R,,.pcq-

the correspondence, Monocle actively cycles through all installed rules and for
each rule it (i) generates a data plane packet confirming the presence of the
rule in data plane, (i7) injects this packet into the network, and (iii) moves on
to testing the next rule as soon as the packet travels through the switch and
it is successfully received by Monocle. In this section, we explain the creation
of monitoring packets by gradually looking at increasingly complex forwarding

rules.

4.4.1 Basic Unicast Rules

The presence of a given rule on a switch can be reliably determined if and only
if there exists a packet that gets processed by a switch differently depending
on whether the monitored rule is installed and working correctly. Therefore,
the probe packet for monitoring the rule has to: (i) hit the given rule, (i7)
distinguish the absence of the rule, and (iii) be collected by Monocle at the
downstream switch. We formulate these conditions as formal constraints and
summarize them in Table 4.1.

Hitting a rule: Only packets that match a given rule can be affected by this
rule. Therefore, the header of any potential probe packet P must be matching
the Rpropeq rule. Additionally, R,.opeq is seldom the only rule on the switch
and different rules can overlap (i.e., a packet can match multiple rules; switch
resolves such a situation by taking rule priorities into account?®). As such, for
a probe P to be really processed according to Rp.opeq, I cannot match any
rule with a priority higher than the priority of R,;peq. This is illustrated in
Figure 4.3a.

3 According to the OpenFlow specification, the behavior when overlapping rules have the
same priority is undefined. Therefore, we do not consider such a situation.

76



4.4. Steady-State Monitoring

’//,%/ﬁ %

700, : %{%

(a) Hit: A probe for the striped (b) Distinguish: A probe needs

rule needs to avoid any higher- to distinguish the rule from lower-

priority rule(s). priority rule with the same out-
come.

Figure 4.3: Illustration of probe generation intricacies. A wvalid
probe must belong to a region(s) within the dashed outline(s).

Distinguishing the absence of a monitored rule: Even the rules with
priority lower than the probed rule R,,..q affect the probe generation (Fig-
ure 4.3b). For example, if the probe matches a low priority rule Rj,,» that
forwards packets to the same port as R,,oped, there is no way to determine if
Ryroped is installed or not. Thus the probe has to avoid any such rule. Again,
there is an intricate difference between a packet matching a rule R and being
processed by R. Notably, if we just prevent P from matching all lower-priority
rules with the same outcome, we may fail to generate a probe despite the fact
that a valid probe exists. Consider the following set of rules ordered from

lowest to highest priority (and unrelated to Figure 4.3b):

o Ripwest := match(srcl P=x, dstl P=x) — fwd(1), i.e., default forward-
ing rule

o Ripwer := match(srcIP=10.0.0.1, dstI P=x) — fwd(2), i.e., traffic en-
gineering diverts some flows

o Rpropea = match(srcIP=10.0.0.1, dstIP=10.0.0.2) — fwd(1), i.e.,

override specific flow, e.g., for low latency

If the constraint prevented P from matching Rj,yest (the same output port as
Ryrobed), we would be unable to find any probe that matches R,,opeq. How-
ever, there exists a valid probe P := (src¢I P=10.0.0.1, dst] P=10.0.0.2) as the
behavior of the switch with and without Rp,opeq is different (Rjgyper overrides

Rjowest for such a probe).

The provided example demonstrates that special care should be taken to prop-

7



4. MONITORING SDN SwiTCHES WITH MONOCLE

erly formulate the Distinguish constraint listed in Table 4.1: When R,;opeq is
potentially missing from the data plane, probe P cannot distinguish Ry opeq
from an arbitrary lower priority rule Rz, p having the same outcome as Iy, opeq if
probe P matches both R,.opeq and Ry p and at the same time P does not match
any rule with a priority higher than Rrp (except Rpyopeq itself). To formalize
this statement, we define predicate IsHighest Match(P, R, Other Rules) that
indicates whether packet P is processed according to rule R even if it matches
some other rules on the switch. Using IsHighestMatch we can assert that
the probed rule Rp.opeq must be distinguishable (e.g., have a different out-
come) from the rule which would process probe P if R, opeq Was not installed.
For simplicity one may think about Dif fOutcome(P, Ruler, Rules) as a test
Ruley.outport # Rules.outport, but we later expand this definition to accom-

modate rewrite and multicast.

Collecting probes: Monocle decides if a rule is present in the data plane
based on what happens (referred to as probe outcome) to the probe packet.
To gather this information but not affect the production traffic, we need to
reserve a set of values of some header field exclusively for probes and ensure
that a production traffic will not use these reserved values. We then pre-
install a special “probe-catch” rule on each neighboring switch; this catching
rule redirects probe packets to the controller and needs to have the highest
priority among all rules. Naturally, as the last constraint, the probe P has to

match the probe-catch rule R, ., of the expected next-hop switch.

4.4.2 Unicast Rules With Rewrites

On top of forwarding, certain rules in the network may rewrite portions of the
header before outputting the packet. Accounting for header rewrites affects
the feasibility of probe generation for certain rules. Consider a simple example

containing two rules:

o Ry := match(srcl P=x) — fwd(1) and
o Rpign := match(srcIP=10.0.0.1) — fwd(1).

It is impossible to create a probe for the high-priority rule Rp,; 4, because it for-
wards packets to the same port as the underlying low-priority rule. However, if
instead of Rj;gp, there was a different rule R’Mgh := match(srcIP=10.0.0.1) —
rewrite(ToS < woice), fwd(1) that marks certain traffic with a special type

of service, we could distinguish it from R;,,, based on the rewriting action. The
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outcome of the switch processing a probe P := (srcI P=10.0.0.1,T0S # voice)

unambiguously determines if R}, , is installed.

In general, we can distinguish probes either based on ports they appear on, or

by observing modifications done by the rewrites. Therefore, we define
Dif fOutcome(P, Ry, Re) := Dif fPorts(Ry, R2) V Dif f Rewrite(P, Ry, Re).

However, checking if two rewrites are different requires more care than checking
for different output ports. A strawman solution that checks if rewrite actions

defined in two rules modify the same header fields to the same values does not
;zig
different (e.g., rewrite(None) # rewrite(ToS < woice)), they produce the

work. Consider again rules [, and Ry, ,. While the rewrites are structurally
same outcome if the probe packet happens to have ToS = woice. Therefore,
to compare the outcome of rewrite actions, we need to take into account not
only the rewrites themselves but also the header of the probe packet P and
how it is transformed by the rules in question. Formally, we say that the
rewrites of two rules are different for a given packet if and only if they rewrite
differently at least one bit of the packet, i.e., Dif fRewrite(P, Ry, Ry) =
i € 1...headerlen : (BitRewm'te(P[i], Ry) # BitRewrite(P|i], Rg)) where
BitRewrite(Pli], R) is either 0, 1, or P[i] depending if rule R rewrites the bit

to a fixed value or leaves it unchanged.

Finally, the rules in the network must not rewrite the header field reserved
for probing. This assumption is required for two reasons: (i) if the probed
rule rewrites the probe tag value, the downstream switch will be unable to
distinguish and catch the probes; and additionally (i) the headers of ordinary
(non-probing) packets could be rewritten as well and afterward treated as

probes; this would break the data plane forwarding.

4.4.3 Drop Rules

Drop rules can be easily distinguished from unicast rules based on output
ports — the downstream switch either receives the probe or not. However,
verifying that probes are dropped (a situation we call negative probing) brings
in a risk of false positives: If the rule is not installed but monitoring packets
get lost or delayed for other reasons (e.g., overloaded link, packets damaged
during transmission, etc.), Monocle is unable to determine the difference and
assumes the rule itself drops the packets and thus is correctly installed in the

data plane.
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While false positives should be tolerable in most cases (e.g., the production
traffic is likely to share the same destiny as the probes and therefore the end-
to-end invariant — traffic should be dropped — is maintained), we present a
fully reliable method useful mainly for network update monitoring in Section
4.5.3.

Finally, since drop rules do not output any packets, header rewrites performed
by them are meaningless and do not distinguish rules. As such we define
Dif f Rewrite(P, Rarop, R') := False to fit our theory.

4.4.4 Multicast and ECMP Rules

After discussing the rules that modify header fields and send packets to a single
port or drop them, the only remaining rules are those that forward packets to
several ports (e.g., multicast/broadcast and ECMP). Such rules can be easily
incorporated into our formal framework just by modifying the definition of
Dif fOutcome.

Both ECMP and multicast rules define a forwarding set of ports and send a
packet to all ports in this set (multicast/broadcast) or a different port from
this set at different times (ECMP). Moreover, note that drop and unicast
rules are just special cases of multicast with zero and one element in their for-
warding sets, respectively. Therefore, we only need to define Dif fOutcome
for the following three combinations of rule types: (i) multicast + multi-
cast, (i1) ECMP + ECMP, and (i7i) multicast + ECMP. In all of these
cases, we can distinguish rules again based on either their ports (forward-
ing sets) or based on their header rewrites, e.g., Dif fOutcome(P, Ri, R2) :=
Dif fPorts(R1, R2) V Dif f Rewrite(P, Ry, Ry). We start by describing the
case of distinguishing by different ports.

If both rules are multicast, a packet will appear on all ports from one of the
forwarding sets. Therefore, if any port distinguishes these forwarding sets, we
can use it to confirm a rule. As such, Dif f Ports(Ry, Ra) := (F # F3) where
F1 and F3 denote forwarding sets of Ry and Ra respectively.

If both rules are ECMP, since each rule can send a packet to any port in its

forwarding set, we can reliably distinguish them only if the forwarding sets
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do not intersect? (a probe appearing at a port in the intersection will not
distinguish the rules as both rules can send a packet there). Thus, in this case
Dif fPorts(Ry, Ry) := ((Fin Fa) = 0).

If only one of the rules (assume R;) is multicast, we are sure that a packet
will either appear on all ports in Fj, or on only one (unknown) port in Fb.
We can simply capture the probe on any port that does not belong to Fb.
Therefore, Dif f Ports(Ry, Ry) := ((Fl \ Fy) # (Z)). (An equivalent definition
is I} Q F.)

Finally, there is an additional way to distinguish an ECMP rule from a mul-
ticast rule that is not unicast (i.e.,|F1| # 1). We can differentiate them by
counting received probes (an ECMP rule always sends a single probe). This
way of counting the expected number of probes on the output is applicable in
general and can extend the definitions of Dif fOutcome, but since it is prac-
tically useful only in the presented scenario, we treat it as an exception rather

than a regular constraint.

Now we analyze a situation when a rule may apply (possibly different) rewrite
actions to the packets sent to different ports. We again need to consider
the three types of combinations of rules R;, Re with forwarding sets FY, Fb
and adjust the definition of Dif f Rewrite for each of them. When considering
Dif f Rewrite, we take into account only actions that precede sending a packet
to a port that belongs to Fi N Fy since if a packet appears at any other port,
the location is sufficient to distinguish the rules. Additionally, we will need
a new predicate: Dif f RewriteOnPort(P, Ry, Re,port) which is true if the
rule R; rewrites packet P differently than rule Ry on port port. With the

aforementioned observations, we consider the possible cases.

If both rules are multicast, there is going to be a probe packet at each output
port in one of the forwarding sets. Thus, it is sufficient if there is a single port
in the F1 N F, on which the outputted packet is different depending which rule
processed it. Therefore we have Dif f Rewrite(P, R1, Ry) := port € F1 N Fy :
Dif f RewriteOnPort(P, Ry, Ry, port) where F} and F; are forwarding sets of
Ry and Rs.

If both rules are ECMP, we need to be able to distinguish them regard-

4 There is an alternative, probabilistic approach. Monocle could generate enough probes so
that statistically at least one will differentiate two distinct forwarding sets. We decided
not to use this method because it heavily relies on the switch hashing function and may
fail if the switch hashes only on a small subset of header fields.
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less of which output port each of them chooses. In particular, we need to
be able to differentiate (by rewrite) on all common ports common to both
rules. We therefore define Dif f Rewrite(P, Ry, Re) := Vport € F1NF; :
Dif f RewriteOnPort(P, Ry, Ry, port).

Finally, if only one of the rules (assume R;) is multicast, we still do not
know which port will be selected by Ry. Thus, for the same reason as in
the previous case, we define Dif f Rewrite(P, Ry, Re) := Vport € F1NF; :
Dif f RewriteOnPort(P, Ry, Ry, port).

4.4.5 Chained Tables

Monocle as described so far assumes that each packet enters a switch on one of
its ports, gets matched against a forwarding table once, and leaves the switch
on one of the ports. In practice, switches may contain a pipeline of tables
that each packet traverses (e.g., chaining tables abstraction in OpenFlow 1.1).
In such a case, Monocle would require the first table to have additional “fast
forward” rules that redirect the probes to the desired tables. Similarly, each
table needs to have a catching rule that intercepts the probe. Such design still
requires only one probe per rule and in a sense treats chained tables in a single
switch as a chain of switches, albeit with a more complicated probe injection

mechanism.

4.4.6 Unmonitorable Rules

For some combinations of rules it is impossible to find a probe packet that
satisfies all the aforementioned constraints, as can be seen in the following

examples.

First, a rule cannot be monitored if it is completely hidden by higher-priority
rules. For example, one cannot verify the presence of a backup rule if the
primary rule is actively forwarding packets. Similarly, a rule is impossible to
monitor if it overrides lower priority rules but it does not change the forwarding
behavior, e.g., a high-priority exact match rule cannot be distinguished from
default forwarding if the output port is the same. If distinguishing such rules is
absolutely necessary and the network operator is allowed to modify an unused

header field of the production traffic’, one may imagine Monocle modifying

> While allowing to modify header fields of a production traffic is not possible for general
Internet connection providers, it might be feasible in a private datacenter setting.
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rules by adding header rewrites to force different outcomes of the rules in

question. We leave this as a potential future work.

Finally, it is impossible to monitor rules that send packets to the network
edge as the probes would simply exit the network. While it is impossible to
monitor such egress rules, many deployments (e.g., typically in a datacenter)
use hardware switches only in the network core and use software switches at
the edge (e.g., at the VM hypervisor). This lessens the importance of egress-
monitoring — the software switches tend to update their data plane quickly
and correctly acknowledge the update. Moreover, hardware failures are likely
to manifest in the unavailability of the whole machine; this would be promptly

diagnosed by existing server monitoring solutions.

4.4.7 Partial Failures

While Monocle is designed under the assumption that a rule is either correctly
installed in the data plane or it is missing from it, there are types of failures

which happen to lie in between these two cases.

In the first case, a rule might be matching correctly but have the rule actions
damaged (i.e., the switch is matching correct packets but performing a wrong
action on them). This case is easy to spot for Monocle as the injected data
plane probe follows an unexpected fate. Thus, as soon as Monocle receives
the probe, either from a wrong neighboring switch or with unexpected header
modifications, it can notify the operator about a rule failure. Similarly, if
the probe was supposed to be forwarded but in reality it is dropped due to
damaged actions, Monocle will observe that the probes are getting lost and

alert the operator as well.

On the other hand, a rule might have a damaged match, i.e., it matches a
different part of header space than it is supposed to do. This type of a failure
is very difficult to detect in practice due to the fact that some of the generated
probes will behave correctly. Thus, it is necessary to use multiple probes to
verify the rule — as an extreme example, if the rule matched wrongly only a
single packet header, one would need to send all possible packet headers to be
sure about the rule being correct. Because of this, neither Monocle nor any
other system can guarantee to detect such failures. However, not all is lost,
especially if the part of the match that is failing is big enough. Here, Monocle
takes a pragmatic and probabilistic approach — each time we probe for a rule,

we generate a new probe packet randomly (e.g., by randomly seeding the SAT
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solver). This means that over time, Monocle verifies different parts of the rule
match and the time it takes to detect a failure is inversely proportional to the
size of the failure. In fact, if we define p to be the fraction of a match that is
failing (e.g., p = 0.25 if a quarter of the rule is failing), we expect to detect
the problem on average in 1/p probing cycles with a heavy-tail distribution
(the number of cycles is distributed according to Poisson distribution with
A = 1/p). Finally, if the partial match failures are more likely only in some
region of the match (an excellent example is priority failures, as discussed in
RuleScope [19]), Monocle could be guided to check these regions with higher
probability. We however leave such implementation and evaluation for future

work.

4.5 Update Monitoring

While monitoring networks in a steady state is important, network config-
uration is most fragile during policy updates. Monocle treats such periods
with special caution and switches to a dynamic monitoring mode. In this
mode, our system focuses only on rules that change, which allows it to gen-
erate probes quickly enough to confirm data plane updates almost in real
time. Such knowledge is important for controllers trying to enforce consistent
network updates [46], as the controller cannot update the “upstream” switch
sooner than the “downstream” switch finished updating its data plane. In this
section, we describe aspects of dynamic monitoring that differ from its static

counterpart.

4.5.1 Rule Additions, Modifications, and Deletions

Generating probes for monitoring rule updates is similar to monitoring a static
flow table. In particular, a probe for rule addition is constructed the same way
as a steady-state probe assuming that the rule was already installed. The only
difference is that for some switches, Monocle should tolerate transient incon-
sistencies (e.g., the monitored rule missing from the data plane) and should
not raise an alarm instantly. Instead, Monocle signals to the controller that

the rule is safely in the data plane once the transient inconsistency disappears.

Similarly, rule deletion is treated as the opposite of installation. We look for
a probe that satisfies the same conditions. However, rule deletion is success-

ful only when the probe starts hitting actions of an underlying lower-priority
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rule. Next, rule modifications keep the match and priority unchanged. This
means that the probe will always hit the original or the new version of the
rule, regardless of other lower priority rules in the flow table. As such, we
simply make a copy of the (expected) content of the flow table, adjust it by
removing all lower-priority rules, and decrease the priority of the original rule.
Afterward, we can use the standard probe generation technique on this altered

version of the flow table to probe for the new rule version.

Finally, a single OpenFlow command can modify or delete multiple rules.
Probing in such a case is similar to probing for concurrent modification of
multiple overlapping rules at the same time. We describe the complications
of concurrent probing in the next section, and leave reliable probe generation
in the general case for future work. However, by knowing the content of the
switch flow table, it is possible (at a performance cost) to translate a single
command that changes many rules to a set of commands changing these rules

one by one, and confirm them separately.

4.5.2 Monitoring Multiple Rules and Updates

Simultaneously

In steady-state, generating a probe for a given rule does not affect other probes.
Therefore, Monocle generates and then uses the probes for multiple rules in
parallel. However, after catching the probe Monocle still needs to match it
to the monitored rule. To solve this problem, we include in the probe packet
payload, which cannot be touched by the switches, necessary metadata such as
the rule under test and the expected result. This allows us to pinpoint which
rule was supposed to be probed by the received probe packet. We use this

technique in both steady-state and dynamic monitoring modes.

When monitoring simultaneous rule updates, Monocle must generate probes
that work correctly for all already confirmed rules and at the same time for
all subsets® of unconfirmed rules sent to the switch. This is required because
the probe must work correctly even when the switch updates its data plane
while other probes are still traveling through the network. As long as the
unconfirmed updates are non-overlapping, the updates do not interfere with

each other (see Section 4.6.4) and we can generate probes and monitor the

6 According to the OpenFlow specification, a switch can reorder flow installation commands
if they are not separated by a barrier message. Additionally, some switches do reorder
even barrier-separated commands [55].
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updates separately. Unfortunately, in a general case the problem is more
challenging. Our current implementation handles unconfirmed overlapping
rules by queuing rules that overlap with any yet unconfirmed rule until it is
confirmed. We leave probe generation under several unconfirmed overlapping

rules as a potential future work.

To illustrate why probe generation for multiple overlapping updates is chal-
lenging in a general case, consider the controller issuing three rules (in this

order):

o low priority Ry := match(srcIP = 10.0.0.1,dstIP = x) — fwd(1)

o high priority Re := match(srcIP = *,dstIP = 10.0.0.2) — fwd(2)

o middle priority Rs := match(srcI P = 10.0.0.0/24,dstIP = 10.0.0.0/24) —
drop

After Monocle receives rule Rp, it has to send it to the switch, generate a
valid probe (e.g., P; := (10.0.0.1,10.0.0.2)) and start injecting it. Assume the
controller would then install rule Rs. On top of generating probe P>, Monocle
also needs to re-generate P; as it is no longer a valid probe for R; (if the
switch installs Ry before Ry, P; will always be forwarded by Ro, and therefore
become unable to confirm Rj). Additionally, Monocle has to invalidate all in-
flight probes P;. And even if Monocle now receives rule R3, probing for Rj3 is
impossible until rule R; is confirmed (if the default switch behavior is to drop).
Similarly, until rule Ry is confirmed, probe for Rs3 needs to take into account
two scenarios — either [R9 has been installed or not. The number of such
combinations could rise exponentially, e.g., 5 rules may require considering up

to 2° outcomes.

4.5.3 Drop-Postponing

The final improvement is a way to reliably monitor installation of drop rules
(rather than relying on negative probing or correctness of the control plane).
The method is presented in Figure 4.4 and relies on modifying rules with-
out affecting the end-to-end forwarding invariants. Specifically, instead of
installing a drop rule on a switch, we can install a modified version of the
rule which matches the same packets but instead of dropping, it rewrites the
packet to a special header and forwards it to one of the switch’s neighbors. The
aforementioned neighboring switch must have in its flow table an appropriate,
pre-installed rule which matches this special header and drops all matching

traffic. Moreover, this drop rule must have a priority lower than the priority
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1. match(*,P) -> rewrite(“drop”), fwd(A)
2. match(*,*) -> fwd(B)

1. match(catch) -> ctrl
2. match(“drop”) -> drop
3. other rules ...

Figure 4.4: Illustration of how the drop-postponing method enables
reliable probing for drop rules.

of probe-catching rule but sufficiently high that it dominates other rules. This
way, all non-probe traffic is dropped one hop later while probe packets are
still forwarded to Monocle (but with a modified header); this allows Monocle
to realize when the drop rule is installed. Finally, after successfully acknowl-
edging the “drop” rule, Monocle can update the rule to be a real drop rule
as probing is no longer necessary; this change does not modify the end-to-end

network behavior for production traffic.

While this method allows for the most precise monitoring of drop rule in-
stallation, it has the following drawbacks: First, it (temporarily) increases
the utilization of a link to the neighboring switch because it forwards all to-
be-dropped traffic there for some time. Second, it adds an additional rule
modification to really drop packets after acknowledging the temporary “drop”

rule.

4.6 Solving Constraints and Packet Crafting

As discussed in Section 4.4, probe generation involves creating a probe packet
that satisfies a given set of constraints. Here we describe how to perform this

task by leveraging the existing work on SMT/SAT solvers.

4.6.1 Abstracting Packets

While constraints from Table 4.1 are relatively simple, their complexity is
hidden behind predicates such as Matches(P, R) or Dif f Rewrite(P, Ry, Ra).
In particular, when dealing with real hardware, the implementation of packet

matching is performing more than a simple per-field comparison. Instead, a
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switch needs to parse the respective header fields and validate them before
proceeding further. For example, a switch may drop packets with a zero TTL
or an invalid checksum even before they reach the flow table matching step.

As such, it is important to generate only valid probe packets.

While the “wire-format” packet correctness can be achieved by enforcing packet
validity constraints, doing so is undesirable as such constraints are needlessly
complex (e.g., checksums, variable field start positions depending on other
fields such as VLAN encapsulation, etc.) to be efficiently solved by off-the-
shelf solutions. Similarly to other work in this field (e.g., [46,48,94]), we use an
abstract view of the packet, i.e., instead of representing a packet as a stream of
bits with complex dependencies, we abstract out the dependencies and treat
the packet as a series of (abstract) fields where each field corresponds to a

well-defined protocol field (similarly to the definition of OpenFlow rules).

By introducing abstract fields, we can solve the probe generation problem
without dealing with the packet wire-format details. As the final step, we
need to “translate” the abstracted view into a real packet. As we show in the
rest of this section, this process involves some technicalities. While previous
work (e.g., ATPG [94]) uses a similar translation, its authors do not go into
the details of how to deal with this task.

4.6.2 Creating Raw Packets

The process of creating a raw probe packet given an abstracted header can
be handled by the existing packet crafting libraries. The library can handle
all relevant assembly steps (computing protocol headers, lengths, checksums,
etc.). The only remaining task is providing consistent data to the library. In
particular, there are two requirements on the abstract data that we provide to
the library: (i) limited domains of some fields and (ii) conditionally present
fields.

4.6.2.1 Limited Domain of Possible Field Values

Some (abstract) packet header fields cannot have arbitrary values because the
packet would be deemed invalid by the switch (e.g., DL TYPE or NW_ TOS
fields in OpenFlow). Therefore, we need to make sure that our abstract probe
contains only valid values of such fields. A basic solution is to add an additional
“must be one of the following values” constraint on the abstract field. This

solution is preferred for small domains (e.g., input port). For domains that are

88



4.6. Solving Constraints and Packet Crafting

big, we have an alternative solution: Assume that an (abstract) header field
H can be only fully wildcarded or fully specified (i.e., field H cannot have
a partial wildcard). Moreover, assume that the domain of field H contains
at least one spare value, i.e., a valid value that is currently not used by any
rule in the flow table. Then, we can run the probe generation step without
any additional constraints and look at the resulting probe probe. If probe[H|
contains a valid value for the domain, we leave it as is. However, if probe[H |

contains an invalid value, we replace it by the spare value.

Lemma: Replacement of an invalid value of field H by a spare value does not

affect the validity of probe.

Informal proof: Assume probe[H| contains an invalid (e.g., out-of-domain)
value. As all rules in the flow table contain only valid values from the domain,
it is clear that for each rule R in the flow table either R.match[H] # probe[H]
or R.match[H| = *. Setting probe|H| := spare does not change inequalities
to equalities and vice versa as we assume spare is a value not used by any
rule. Thus, the substitution does not affect the Matches(probe, R) test and
therefore it preserves the validity of the solution with respect to the given

constraints.

4.6.2.2 Some (Abstract) Packet Header Fields Are Included Only
Conditionally

For example, one cannot include TCP source/destination port unless IP pro-
tocol is 0x06. We use a term conditionally-included to denote a header field
that is present in the header only when another field is present and has a par-
ticular value (e.g., TCP source port is present only if the transport protocol
is TCP). Similarly, a field that cannot be in the header because of the value
of another field (e.g., UDP source port if transport protocol is TCP) is called
conditionally-excluded. While it is easy to remove all conditionally-excluded
fields from the probe solution (e.g., by ignoring their values), we need to make
sure that the solution remains valid. A particular concern is whether for any
rule R the value of Matches(probe, R) stays the same. We show that the state-
ment holds if rules are well-formed (i.e., they respect conditionally-included

fields as required by the OpenFlow specification > 1.0.1).

Lemma: Eliminating all conditionally-excluded fields from any valid solution

does not change the validity of Matches(probe, R) for any well-formed rule R.

Informal proof: We will eliminate all conditionally-excluded fields one by
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one. For a contradiction, assume that there exists a conditionally-excluded
field H and a rule R such that during the elimination of H the validity of
Matches(probe, R) changes. Clearly, field H cannot be wildcarded in R.match
otherwise the validity of Matches(probe, R) would not change. As a conse-
quence, R.match includes field H and as rule R is well-formed (an assumption),
R.match has to also include an exact match for the parent field H' of H, i.e.,
the field which determines conditional inclusion of H. We can now finalize
the contradiction: If probe[H'| # R.match[H'], value of Matches(probe, R)
is False regardless of the value of probe[H| which contradicts the assump-
tion that leaving out H changes the value of Matches(probe, R). Further, if
probe[H'| = R.match[H'], field H is conditionally-included which also contra-
dicts the assumptions. Finally, parent field H’ itself might be conditionally-
excluded in probe; in such case, we perform the same reasoning leading to

contradiction on its parent recursively.

4.6.3 Solving Constraints

Next, we show how to solve the constraints (listed in Table 4.1) that the
probe packet needs to satisfy. As it turns out (see Appendix A.1), the prob-
lem of probe generation is NP-hard. Therefore, our goal is to reuse the ex-
isting work on solving NP-hard problems, in particular work on SAT/SMT
solvers. While this requires some work (e.g., eliminating for-all quantifiers
in the Hit and Distinguish constraints), our constraint formulation is very
convenient for conversion into SAT/SMT. In particular, we convert the Hit
constraint to a simple conjunction of several =Matches terms and the Dis-
tinguish constraint to a chain of if-then-else expressions, i.e., we represent it
as If(my,dy, If(mea,ds, If(ms,ds,...))) where m; and d; are in the form of
Matches(P, R) and Dif fOutcome(probe, Ryoped, R) for some rule R; this ef-
fectively mimics priority-matching of a switch’s TCAM. The only remaining
task to discuss is the conversion of the Matches and Dif fOutcome predi-
cates. Dif fOutcome consists of Dif f Rewrite and Dif f Ports. Basic set
operations allow us to evaluate Dif f Ports to either True or False before en-
coding to SAT. Both Dif f Rewrite and Matches are similar in nature. There-
fore, here we present only the encoding of Matches in the context of the first
three constraints. (We provide more details in Appendix A.2). For example,
assume that all header fields are 2-bit wide (including IP source and desti-
nation). The goal is then to generate a probe packet for a low-priority rule
Ripw = match(srcI P=1,dstIP=x) — fwd(1) while using probe-catching
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rule Regge := match(VLAN=3) and assuming a high-priority rule Rp;q, 1=
match(srcI P=1, dstIP=2) — fwd(2). We represent probe packet as a se-
quence of 6 bits pips...ps where bits 1-2 correspond to IP source, bits 3-4
to IP destination and bits 5-6 to VLAN. Then, the Catch and Hit constraints
together are Matches(P, Reqten,) N Matches(P, Rjy) A 7 Matches(P, Rpigh)
and the Distinguish constraint is simply True as Ry, is distinguishable from

the default drop-all rule. This field-wise corresponds to
(p5_6 = Obll) A\ (p1-2 = 0501) A= (p1_2 = 0601 A p3g4 = OblO)

where prefix 0b means the binary representation. This can be further expanded

to (ps Ape) A (—p1 Ap2) A (p1V —p2 V —p3 V pg), which is a SAT instance.

4.6.4 Considering Only Overlapping Rules

Probe packet generation involves generating a long list of constraints that need
to be satisfied. To increase solving speed, we strive to simplify the constraints

based on the following observation:

Lemma: Let R be a rule that does not overlap with Rp.,peq. Then the pres-
ence/absence of R in a switch flow table does not affect results of probe gen-

eration.

Proof: By definition, rules R,,qpeq and R overlap if and only if there exists a
packet x that matches both. The negation (i.e., non-overlapping condition)
is therefore Vz : =Matches(x, Rpropea) V " Matches(x, R). As the expression
holds for all packets, it must hold for probe P as well, i.e., at least one of
—Matches(P, Rproped) and =Matches(P, R) holds. Combined with the as-
sumption Matches(P, Ryrobed), it implies ~Matches(P, R). Therefore, parts
of the Hit and Distinguish constraints related to rule R are trivially satisfied
for any probe that matches 1), opeq. As a corollary, all rules that do not overlap
with Rp,ropeq can be filtered out before building constraints. This is a powerful

optimization, as typically rules only overlap with a handful of other rules.

4.7 Network-Wide Monitoring

Monocle design allows it to monitor and generate probes for each switch in the
network separately. However, care must be taken to avoid interference among
catching rules of different Monocle instances. In particular, each monitored

switch S; could be a downstream switch for multiple other switches, each
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of them requiring a different catching rule at S;. At the same time, these
catching rules should not match the probes used to monitor S; otherwise the
catching rules at S; would intercept all probes instead of letting them match

the monitored rule.

To overcome this problem, a single reserved value of the probe-catching header
field is no longer sufficient. Instead, we propose two possible solutions that
offer a trade-off between the number of header fields that need to be reserved

for monitoring and the additional load imposed on the control channel.

The first solution is similar to [13]. The solution reserves a single header field
H for monitoring and uses a set Reserved of reserved values of this field,
Reserved = {x; : i is a switch}. The assumptions are similar to a single-
switch probing: (i) production traffic never uses these reserved values of H,

and (7i) no rule can rewrite field H.

Then, switch i installs |Reserved| — 1 catching rules; a rule matching on
match(H = zj) for each z; € Reserved\{z;}. According to Hit and Col-
lect constraints in Table 4.1, the value of field H in a probing packet has to be
equal xr; — it cannot match any catching rule at the probed switch, but must

be intercepted by a catching rule at the downstream switch.

Unfortunately, during monitoring of flow table updates, this method causes
all probes (except for the ones dropped at the probed switch) to return to
the controller even if they were forwarded by rules other than the probed one.
This potentially increases control channel load (which is undesirable during

the update) and forces Monocle to analyze more returned probes.

To address this problem, we propose a second solution at the cost of reserv-
ing two header fields H; and Ha with reserved values Reserved; = {w; :
i is a switch} and Reserveds = {y; : i is a switch}, respectively.. Switch

i preinstalls two types of rules used during probing:

1. a (high priority) probe-catch rule Reqep := match(Hy = %, Hy = y;) —
fwd(controller), and

2. (slightly lower priority) rules R tijep(;) 1= match(Hy = xj, Hy = %) — drop
for all z; € Reserved;\x;.

The generated probe will have Hy = Zproped; H2 = Ynext Where probed and
next are identifiers of the probed and the desired downstream switch, respec-

tively. Such a probe is not affected by any catching rule on the probed switch
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but gets sent to the controller only if it reaches the correct downstream switch.
The probe gets dropped by other neighbors of the probed switch so the Mon-
ocle receives it back only after the update happened in the data plane.”

Both presented solutions have a potential downside: they require as many
reserved values of field(s) H and as many catching rules in each switch as there
are switches in the network. However, what matters for the first method is that
any two connected switches have different identifiers. Finding an assignment
of labels to nodes of a graph such that no two connected nodes have the same
label, and the total number of distinct labels is minimum is a well-known vertex
coloring problem [62]. While finding an exact solution is NP-hard, doing so (as
our evaluation in Section 4.9.3.2 suggests) is feasible for real-world topologies.
Our study of publicly available network topologies [51,79] shows that at most
9 distinct values are required in network topologies consisting of up to 11800
switches. Moreover, the time required is not crucial as it is a rare effort.
Network topology changes, such as addition of new switches or links, trigger
catching rule recomputation. Network failures do not require recomputation;

the setup may simply no longer be optimal but it is still working.

The number of identifiers used by the second method can also be reduced
in a similar fashion. In this case, however, it is not enough to ensure that
two directly connected switches have distinct numbers assigned. Indeed, any
switches that have a common neighbor must also have different identifiers
otherwise this method loses the guarantee that the controller does not receive
a probe until the probed rule is modified. As such, the second method works
best on topologies which do not contain “central” switches with a high number
of peers. From the algorithmic perspective, we can use the vertex coloring
problem solver and just modify the underlying graph; we take the original
graph and for each switch, we add fake edges between all pairs of its peers,

essentially adding a clique to the graph.

4.8 Implementation

We design Monocle as a combination of C++4 and Python proxies. Such proxy-
based design enables chaining many proxies to simplify the system and provide
various functionalities (e.g., improving switch behavior by providing update

acknowledgments). Moreover, it makes the system inherently scalable — each

7 Unless the modification affects only rewrite actions, not the output port.

93



4. MONITORING SDN SwiTCHES WITH MONOCLE

Monocle proxy is responsible for intercepting only a single switch-controller

connection and can be run on a separate machine if needed.

Monocle mainly consists of two proxies — Multiplexer and Monitor. Multi-
plexer connects to Monitors of all monitored switches and is responsible for
forwarding their PacketOut/In messages to/from the switch. Monitor is the
main proxy and is responsible for tracking the switch flow table, generating
the necessary probes, and sending update acknowledgments to the controller.
To reduce latency on the critical path, Monitor forwards the FlowMod mes-
sages from the controller as soon as it receives them, and delegates the probe

computation to one of its worker processes.

Monocle can use conventional SMT solvers for the probe generation. In par-
ticular, we implement conversion for Z3 [27] and STP [32] solvers. However,
our measurements indicate that these solvers are not fast enough for our pur-
poses (they are 3-5 times slower compared to our custom-built conversion to
SAT when run on the experiments presented in Section 4.9.2). While we do not
know the exact cause, it is likely that (i) Python version of bindings is slow, and
(1) these SMT solvers try too hard to reduce the problem size before passing
it to SAT (e.g., by using optimizations such as bit-blasting [32]). While such
optimizations pay off well for large and complex SAT problems, they might be
an overkill and a bottleneck for the probe generation task. Thus, we wrote our
own, optimized, conversion to plain SAT (we use PicoSAT [7] as a SAT solver).
The conversion and PicoSAT binding is written in Cython® to be on par with
plain C code speed and we use the DIMACS format [25] to represent the
CNF formulas as one-dimensional vectors of integers. We use such a single-
dimensional representation instead of a more intuitive two-dimensional one
(vector of vectors of integers, inner vectors representing disjunctions) because
such representation resulted in poor performance — in particular, it necessi-
tated malloc()-ing of too many small objects, which was the major bottleneck

for the conversion.

Finally, since we do not have access to a real PICAS switch for our evaluation?,
we create and use an additional proxy placed in front of an OpenVSwitch in
one of the experiments. This proxy intercepts, delays and modifies the control
plane communication to mimic the behavior (rule reordering and premature

barrier responses) and update speeds of the PICA8 switch as described in [55].

8 Do not confuse with CPython, the standard Python interpreter.
9 We already returned a borrowed model used in [55].
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4.9 Evaluation

In our evaluation, we explore the practicality of Monocle as well as its limits.

We focus on and answer the following questions:

1. How quickly can Monocle detect failed rules and links? (in a matter of
seconds)

2. Is steady-state monitoring useful? (by using Monocle we detected issues
with two hardware switches)

3. How quick and effective is Monocle in helping controllers deal with transient
discrepancies between control and data planes? (it enables correct execution
of consistent network updates [68] by providing accurate feedback on rule
installation with only several milliseconds of delay)

4. How long does Monocle take to generate probing packets? (a few millisec-
onds)

5. How big is the overhead in terms of additional rules and additional packets
being sent /received? (typically small)

6. Does Monocle work with larger networks? (it does and delays an installa-
tion of 2000 paths for only 350 milliseconds)

4.9.1 Monocle Use Cases

We start by showcasing Monocle’s capabilities in both steady-state and dy-

namic monitoring modes.

4.9.1.1 Detecting Rule and Link Failures in Steady-State

To demonstrate Monocle’s failure detection abilities, we conduct an experiment
where we monitor the data plane of an HP ProCurve 5406zl switch. We connect
this switch with 4 links to 4 different OpenVSwitch instances mimicking a star
topology with the hardware switch in the middle. We run OpenVSwitches
and Monocle on a single 48-core machine based on the AMD Opteron 8431
Processor. To detect failures, we configure Monocle to monitor the switch
with a conservative rate of 500 probes/second (Section 4.9.3), re-try sending
a probe if there is no response for more than 50ms, and raise an alarm if a
given probe is not received after 3 retries. In our first experiment, we install
1000 layer-3 forwarding rules on the HP switch, and let Monocle monitor the
switch. Afterward, we “fail” a random rule (by removing it from the data

plane without telling Monocle) and we measure the time it takes for Monocle
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CDF different runs

0 0.5 1 1.5 2 2.5
Time [s] to detect x failures out of y failed rules

5outof 102 — - - 3outof5 = = 5 out of 5
3outof 10 ======- 1outof{ —

Figure 4.5: Time to detect a configured threshold of failures after a
rule/link failure with a probing rate of 500 probes/second and 1000
rules in the switch flow table.

to detect the failure. We repeat the experiment 1000 times and plot the CDF
of the resulting distribution. The results (solid line in Figure 4.5) suggest
that, depending on where the failed rule happens to be with respect to the
monitoring cycle (Monocle repeatedly goes through all the monitored rules),
Monocle can detect the failure in 150 to 3000 ms.

Next, we study how fast a system built on top of Monocle could detect cor-
related failures, e.g., failures that affect multiple rules simultaneously. In this
experiment, we configure Monocle to raise an alarm only after detecting a
given threshold (number) of individual rule failures. During the experiment,
we fail multiple rules simultaneously, or, in one case, fail a whole link to which
102 of the installed rules forward to. We again repeat the experiment 1000
times and plot the CDF. As the violet (dash-dot-dot) line in Figure 4.5 shows,
identifying big correlated failures (e.g., a link failure) can be done quickly (on
average in 200 ms, out of which 150 ms is the detection timeout). For a smaller
number of failures and higher thresholds, Monocle requires more time as it is
unlikely that many (or, in the extreme case, all) of the failed rules would be

covered early on in the monitored cycle.

We finish the evaluation of Monocle’s steady-state detection capabilities by
experimenting with partial failures. With the exception of the switch itself

(we did not manage to run the experiment on HP 5406zl, see Section 4.9.1.2),
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Figure 4.6: Time to detect a partial failure with a probing rate of
500 probes/second and 1000 rules in the switch flow table. Monocle
might need multiple probing cycles to find a probe that falls within
the affected part of the failed rule.

we use the same experimental setup (e.g., 1000 layer-3 rules) as in the previous
experiments. However, when we need to fail a rule, instead of removing it from
the data plane, we replace it by several rules with a more specific match. In
particular, we replace a single “/24” rule with 2¥ — 1 rules having netmask
/(24 + k), effectively emulating a failure of a single /(24 4 k) subregion. We
run the experiment with & = 1, 2, and 3 (i.e., failing 1/2, 1/4, and 1/8 of the
rule). Note that in order to not introduce any false alarms due to the non-
atomic rule updates on the switch, we first install the new rules (with slightly
higher priority) and only then delete the original rule; only the deletion triggers

the failure.

The results in Figure 4.6 show that partial rule failures take substantially
longer to detect than full rule failures. In particular, detecting a partial failure
takes on average 3.11 seconds for £ = 1, 7.35 seconds for £ = 2 and 15 seconds
for k = 3 in our experiments. Unfortunately, as Figure 4.6 shows, the detection
times are heavy-tailed (e.g., it took slightly more than 100 seconds to detect
the failure in the worst experimental run of the & = 3 experiment). This is
no surprise as partial failures rely on a probabilistic detection approach and
while not particularly likely, Monocle might get repeatedly unlucky with the

probe selection.
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4.9.1.2 Monocle Detects Previously Unknown Switch Problems

While running regular experiments to evaluate our system, Monocle surprised

us by detecting unknown problems with the two switches we used.

A previously unknown firmware bug in the HP 5406z] switch: Sur-
prisingly, when running the partial failure experiment (with & = 1) on our HP
540621 switch, Monocle quickly and repeatedly detected a failure even after we

restored the failed rule R to the original state.

By looking at the issue, we verified that the reported error is a real problem
— the switch would drop packets destined to the restored rule R even while
it reported in CLI that the rule is installed. Our suspicion is that the switch
firmware contains a bug related to moving overlapping rules between software
and hardware flow tables (when configured to use only hardware flow tables,
the switch rejects installing rule R,,4,4iq; covering half of the rule R. Moreover,
with the software flow table enabled, the switch reports that rule R is in

hardware before we install rule Ry, 401, and gets moved to software later).

Rare non-deterministic rule failures on an undisclosed switch: When
we run the basic steady-state experiments on a switch from a vendor that
wanted to be anonymized, Monocle detected a non-deterministic failure with
a rate of one in around 500-1500 experimental runs. Surprisingly, when we
looked at the switch behavior, we observed that the problem affects rules which
were not “failed” in the current run of the experiment but several runs ago.
Importantly, the switch believed that the problematic rule was installed (ac-
cording to the ovs-ofctl dump-flows command run on the switch). However,
the packets destined to this rule were hitting an underlying drop-all rule (veri-
fied through the rule packet counters and an absence of packets on the output

port).

Unfortunately, we did not manage to find out what exact conditions cause the
problem to appear. Due to the rare occurrence, we managed to trigger this
problem only a dozen times and the problem disappeared once we modified a
few unrelated rules on the switch. Our best guess is that the problem happens
because of TCAM memory corruption and the issue disappears as soon as the
switch is forced to update the affected TCAM entry when the switch flow table
is modified. This has been confirmed with the vendor, which stated that the
problem was due to direct IO memory access to the TCAM and that they fixed

it in a newer version of the chip.
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Figure 4.7: Experimental setup for testing transient inconsisten-
cies during a path migration. The upstream switch S; needs to be
updated only after switch S5 installed forwarding rules in the data
plane.

4.9.1.3 Helping Controller Deal With Transient Inconsistencies

Some OpenFlow switches prematurely acknowledge rule installation [54, 55].
As Monocle closely monitors flow table updates, it can help the controller to
determine the actual time when the rules are active in the data plane. This, in
turn, allows the controller to perform network updates without any transient
inconsistencies. We demonstrate this by using Monocle in a scenario involving

an end-to-end network update.

We configure a testbed (Figure 4.7) consisting of three switches Sy, Sz and
Ss connected in a triangle, and two end hosts — Hj connected to Sp, and
Hs connected to So. Switch S3 is the monitored switch exhibiting transient
inconsistencies between control and data planes. Initially, we install 300 paths
that are forwarding packets belonging to 300 IP flows from H; to Hs through
switches S7 and Sy. We send traffic that belongs to these flows at a rate of
300 packets/s per flow. Then, we start a consistent network update [68] of
these 300 paths, with the goal of rerouting traffic to follow the path 51-53-S5.
For each flow, we install a forwarding rule at S3 and when it is confirmed, we
modify the corresponding rule at S;. We repeat the experiments using two
different switches in the role of a probed switch (S3): HP ProCurve 5406z,
and an OpenVSwitch with a proxy that modifies its behavior to mimic the
Pica8 switch described in [55]. We always use OpenVSwitch as S7 and Ss.
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Figure 4.8: Time when flows move to an alternate path in an end-to-
end experiment. For both switches, Monocle prevents packet drops
by ensuring that the controller continues the consistent update only

300

250

200

150

100

50

300

250

200

150

100

50

T T T T T
<> = time when
' a flow is broken

0.2 0.4 Time [s] 1.0 1.2
Barriers Monocle
Upstream updated Upstream updated ——
Dataplane ready - - - Dataplane ready — =

(a) HP 5406zl

02 04 06 Time [s] 12 14 16
Barriers Monocle
Upstream updated Upstream updated ——

Dataplane ready * * - Dataplane ready = =

(b) PICAS8 emulation

once the rules are provably in the data plane.

Because both HP 5406z1 and Pica8 report rule installations (by replying to
a subsequent barrier command) before the installation actually happens in
the data plane, a rule at the upstream switch S gets updated in the vanilla
experiment too soon and traffic gets forwarded to a temporary black hole.
Figures 4.8a and 4.8b show when the packets for a particular flow stop following

the old path, and when they start following the new path. The gap between
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Data set | avg [ms] | max [ms] | probes found
Campus 4.03 5.29 10642 / 10958
Stanford 1.48 3.85 2442 / 2755

Table 4.2: Time Monocle takes to generate a probe.

the two lines shows the periods when packets end in a black hole. In the
experiment, a theoretically consistent network update led to 8297 and 4857
dropped packets at HP and Pica8 respectively. In contrast, Monocle ensures
reliable rule installation acknowledgments so both lines are almost overlapping
and there are no packet drops. The total update time is comparable to the

elapsed time without Monocle.

4.9.2 Monocle Performance

Here, we evaluate Monocle’s performance. First, we answer the question

whether Monocle can generate probes fast enough to be usable in practice.

Having access to a dataset containing rules from an actual OpenFlow deploy-
ment is hard. We observe that rules in Access Control Lists (ACL) are those
most similar to OpenFlow rules, since they match on various combinations of
header fields. Hence we report the times Monocle takes to generate probes for
the rules from two publicly available data sets with ACLs: Stanford backbone
router “yoza” configuration [46] containing 2755 rules (referred to as “Stan-
ford”), and ACL configurations from a large-scale campus network [80] with
a total of 10958 ACL rules (referred to as “Campus®; we aggregate ACL rules

from 300 routers into a single virtual flow table).

For each dataset we construct a full flow table and then ask Monocle to gen-
erate a probe for each rule. In Table 4.2 we report average and maximum
per-rule probe generation time. On average, Monocle needs between 1.44 and
4.13 milliseconds to generate a probe on a single core of a 2.93-GHz Intel Xeon
X5647. This time depends mostly on the number of rules, and not on the rule
composition and header fields used for matching. This is the case because the
SAT solver is very efficient and the most time-consuming part is to check for
the rule overlaps and to send all constraints to the solver. Further, our solution
can be easily parallelized both across the switches (separate proxy and probe
generator for each switch) and across the rules on a particular switch (probe

generation is independent in steady-state).
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Finally, we also show the number of generated probes compared to the number
of rules Monocle is able to find (for reasons why Monocle may fail to find a
probe see Section 4.4.6). On both datasets our system was able to generate

probes for the majority of rules.

4.9.3 Overhead

Next, we show that the overhead of sending and receiving probes is modest
when using hundreds or even thousands of probes per second, depending on
the switch. We also show that the catching rules occupy a small amount of
TCAM space in the switches.

4.9.3.1 PacketIn and PacketOut Processing Overhead

While it is possible to inject and collect probes via data plane tunnels (e.g.,
VXLANS) to and from the desired switch, the approach we implemented re-
lies on the control channel. Therefore, it is essential to make sure that the
switch’s control plane can handle the additional load imposed by the probes
without negatively affecting other functionality. We start by estimating what
are the maximum PacketIn and PacketOut rates that switches can handle

when otherwise idle.

To measure the maximum PacketIn rate, we install a rule forwarding all traffic
to the controller, send traffic to the switch, and observe the message rate at
the controller. To measure the maximum switch PacketOut rate, we issue
20000 PacketOut messages and record the time when the last injected packet
arrived at the destination. We repeat both experiments 5 times and for each
experiment we report the average values over the runs; in all cases the standard

deviation is lower than 3%.

The observed throughputs are 5531 Packetln/s and 7006 PacketOut/s on an
older HP ProCurve 540621 switch, 401 PacketIn/s and 850 PacketOut/s on
a modern, production grade, Dell S4810 switch, and 1105 Packetln/s and
9128 PacketOut /s on Dell 8132F with experimental OpenFlow support. If the
packet arrival rate is higher than maximum PacketIn rate available at a given
switch, the switches start dropping PacketIns. These values assume no other

load on the switch.

In the next experiment, we measure the effect PacketIns have on the switch

control plane performance. To do so, we perform an update while injecting
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Figure 4.9: Impact of PacketIns on rule modification rate normalized
to the rate with no PacketIns. Except for Dell S4810 with all rules
having equal priority, PacketIns have a negligible impact on switches.

data plane packets at a fixed rate of r packets/s causing r PacketIn messages/s
and observe how they affect the rule update rate. Figure 4.9 shows that all
switches apart from one exceptional case are almost unaffected by the addi-
tional load caused by PacketIn messages. Dell S4810 with all rules having
the same priority (marked with ** in Figure 4.9) is more easily affected by
PacketIns because its baseline rule modification rate is much higher in such a

configuration.

Next, we measure the overhead of PacketOut messages on the performance
of flow table updates. We emulate in-progress network updates by mixing
PacketOut and FlowMod messages using the k : 2 ratio (to keep the total
number of rules stable, the 2 FlowMod messages are: delete an existing rule
and add a new one). We vary k and observe how it affects the flow modification

rate.

The results presented in Figure 4.10a show that the performance of all switches
is only marginally affected by the additional PacketOut messages as long as
these messages are not too frequent. Apart from one exceptional case, the
measured switches maintain 85% of their original performance even if each
flow modification command is accompanied by up to five PacketOut messages.
Again, Dell S4810 performance drops when the baseline modification rate is

high (all rules have the same priority, marked with **).

We also reuse the same measurement to estimate performance curves for
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Figure 4.10: Impact of PacketOut messages on the rule modifica-
tion rate normalized to a baseline rate for each switch. Note that
Figure 4.10b is based on the data from Figure 4.10a instead of a

separate measurement of the switch performance.

a varying PacketOut rate.

(z,y) = (FmodRate * ratio, FmodRate) of different ratios for each switch as
plotted in Figure 4.10b. Switches can handle, depending on the model, hun-

dreds to thousands of PacketOuts per second without excessively impacting

the rule installation speed.
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Figure 4.11: Number of reserved values in the probing field (also
equal to a number of catching rules) for topologies from Topology
Zoo [51]. Coloring 1 and 2 correspond to vertex coloring optimiza-
tion for catching rules with 1 and 2 reserved fields, respectively.

4.9.3.2 Number of Catching Rules Required

Recall that our approach for multi-switch monitoring requires multiple probe-
catching rules, and these effectively introduce rule overhead. To quantify this
overhead, we compute the number of catching rules required for monitoring the
network topologies from the Internet Topology Zoo [51] and Rocketfuel [79]
datasets. To assign probe-catching rules to different switches, we use an op-
timal vertex coloring solution computed using an integer linear program for-
mulation; solving takes only a couple of minutes to compute the results for
all 261410 topologies. We start by counting the number of topologies from
Topology Zoo that require at least a given number of reserved values of the
probe-catching field(s)!” in the basic version where each switch has a distinct
ID, as well as using vertex coloring optimizations for both of the previously
explained strategies. Figure 4.11 presents a couple of interesting observations.
First, both vertex coloring optimizations significantly decrease the number of
the required values. Moreover, the strategy using just a single reserved field
works with a very low number of IDs in practice — up to 9 values are suffi-
cient for networks as big as 754 switches. The final, somewhat unexpected,

conclusion is another tradeoff introduced by the technique with two reserved

OWhich is the same as the number of probe-catching rules that must be installed on a
switch, see Section 4.7
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fields. Since the number of IDs it requires is at least as large as the largest

node-degree in the network, the number is sometimes high (the maximum is

59).

Rocketfuel topologies confirm these observations — for networks of up to 11800
switches, the technique with a single reserved field requires at most 8 values
while the second technique needs to use up to 258 values (note that we use
greedy coloring heuristic for the second technique as our ILP formulation runs
out-of-memory on our machine). Taking these observations into account, the
most practical solution is the one that requires a single reserved field for prob-

ing.

4.9.4 Larger Networks

Finally, we show that Monocle can work in larger networks without prohibitive
overheads. We do not have access to a large network, therefore, we set up an
experiment that consists of a FatTree network built of 20 OpenVSwitches. As
before, we add a proxy emulating Pica8 behavior to each of these switches.
Further, each ToR switch has a single emulated host underneath, running
a hypervisor switch that implements reliable rule update acknowledgments
(also implemented as a proxy on top of OpenVSwitch). For comparison, we
construct the same FatTree, but consisting of 28 (ideal) switches with reliable
acknowledgments. We ignore the data-plane traffic to avoid overloading the
48-core machine we use for the experiment. Monocle is realized as a chain
of three proxies per switch. As already mentioned, the proxies are highly
independent and the problem can be easily parallelized. Probe generation for

each switch is done in two threads.

We carry out an experiment to show how Monocle copes with high load and
what is its impact on update latency. In the experiment the controller performs
an update installing 2000 random paths in the network, starting 40 new path
updates (5-7 rule updates each) every 10 ms.'! Installation of each path is
done in two phases: (i) install all rules except for the ingress switch rule, and

(1) install the remaining rule.

Figure 4.12 shows that Monocle performs comparably to the network built
with ideal switches. Even though the probes have to compete for the control
plane bandwidth with rule modifications, the entire update takes only 350 ms

longer.

HSending all rules at once would cause head-of-line blocking effects on the update. [66]
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Figure 4.12: Batched update in a large network. Monocle provides
rule modification throughput comparable to ideal switches.

4.10 Chapter Summary

This chapter introduced Monocle — a system that uses data plane packets to
monitor whether SDN switches behave as configured by the controller. The
main insight to data plane monitoring is generating probe packets while ac-
counting for the various types of rules (e.g., unicast, multicast, ECMP, header
rewriting, etc.) and rule overlaps. To do this systematically, we devoted a
big part of the chapter to build up the theory behind the constraints that
the probe packets need to satisfy to reliably determine if the rule is working
properly in the data plane. Monocle then converts the given constraints into
a SAT/SMT instance that is solved by existing solvers. Afterward, Monocle
translates the SAT/SMT solution back into actual packets and injects them

into the network to observe their fate.

Evaluation of Monocle shows its high practicality. Monocle is capable of gen-
erating probes for the majority of rules in the switch flow table, and it can
detect rule failures within a few seconds from the occurrence. When Monocle
focuses on a single rule, it is fast enough to actually help controllers determine
the exact time when a rule modification lands in the data plane. Finally, Mon-
ocle uncovered two previously unknown problems with the switches we used

for the evaluation which further attests to its usefulness.
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Chapter 5

Optimizing SDN Updates With
ESPRES

In Chapters 3 and 4 we discussed how to improve SDN correctness and re-
liability. This chapter moves on and discusses another important topic —
performance. In order to fully unleash its potential, SDN needs to offer an
unprecedented speed of reconfiguration. This is driven by the fact that as net-
work operators transition to SDN infrastructure, network changes that took
days of planning and execution are now automated by the controller. As a
consequence, network operators will push for ever higher rate of change, for
example by providing self-provisioning portals to the customers or maybe run-

ning high-frequency traffic engineering to optimize the network load.

In this chapter, we examine the problem of installing bulk network updates.
These updates, which may arise from traffic engineering, VM migration or fail-
ure recovery, are touching many different flows in the network. It is, therefore,
essential to optimize the update in a way that minimizes the individual com-

pletion times, reduces the disruption time, or reduces the switch rule overhead.

Towards the goal of optimizing network updates, we introduce a runtime mech-
anism named ESPRES. ESPRES is based on the observation that a large
update typically consists of a set of independent sub-updates, and hence sub-
updates can be installed in parallel, in any order. ESPRES carefully plans the
installation of individual sub-updates and actively manages switch message
queues, while striving to fully utilize message processing capacities of switches
without overloading them. By doing so, ESPRES optimizes network updates

for a variety of goals without increasing the total update time.
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Figure 5.1: A key observation: network updates can be broken down
into independent sub-updates.

5.1 Bulk Network Updates

This chapter is based on the key observation that an SDN update is typically
induced by one or more high-level events, such as traffic engineering recom-
putations, VM migrations, and topology or policy changes. Typically, these
events result in a batch-style update of forwarding state spanning multiple
switches. Importantly, such a network update consists of a set of sub-updates
that are independent of one another, that is, there are no rule installation de-
pendencies between rule operations corresponding to these sub-updates (Fig-
ure 5.1). For example, each flow affected by traffic engineering can typically

be updated independently of any other flow.!

Independence between sub-updates plays an important role because any com-
bination of independent sub-updates can be applied in an arbitrary order, or
even interleaved in parallel. Importantly, such interleaving would not intro-
duce data plane inconsistencies (e.g., would not cause a forwarding loop or
a black hole, impose mutually exclusive forwarding actions, or violate other
safety conditions [59]). Such independence is, therefore, a great source of flex-

ibility for choosing an order in which rule operations and whole sub-updates

I Even with congestion free-induced limitations, there are solutions generating sets of inde-
pendent sub-updates [58].
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Figure 5.2: Grouping rules by sub-update helps to finish part of a
network update sooner. A box corresponds to a data plane command
executed on a switch and different colors correspond to different sub-
updates.

are applied. By leveraging such flexibility, we can optimize the network up-
date installation for a variety of goals. As an example, consider Figure 5.2 —
by grouping individual switch commands by a sub-update and ordering them,

parts of the network update could be finished sooner.

5.1.1 ESPRES Overview

Figure 5.3 illustrates the position of ESPRES in an SDN controller architecture
introduced by Mahajan et al. [59]. The architecture consists of two layers: the
Network / Policy Database and the Update Plan Generator. To a good extent,
this architecture is a simplification from existing SDN control plane propos-
als such as Onix [52] and ONOS [12]. SDN applications interact with the
controller through an interface that allows them to programmatically alter the
network state via modifications to the Network / Policy Database. Changes to
the database are propagated to the Update Plan Generator, a component that
translates these changes into actual commands affecting switch rules (hereafter
rule operations) as well as a dependency graph (Figure 5.1) that describes the
intra-update dependencies between operations [59]. Additionally, inter-update
dependencies between different network updates may exist. In a typical SDN
stack, an OpenFlow driver or similar component would then send rule opera-
tions to switches based on the computed update plan. As shown in Figure 5.3,
ESPRES operates below the Update Plan Generator and subsumes this latter

component. ESPRES receives a stream of network updates and optimizes the
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Figure 5.3: Position of ESPRES in an SDN architecture.

efficiency of rule installation by scheduling rule operations. Finally, ESPRES
acknowledges all finished network updates back to the Update Plan Generator.

ESPRES introduces a per-switch virtual message queue that is realized as the
combination of the message queue on the switch extended with a message
queue maintained at the controller. Our key insight is that this queue exten-
sion enables ESPRES to continuously reassess and change the order in which
messages should be sent to switches — virtual message queue is needed since
once the messages are queued at the switches they can no longer be reordered
with the current versions of OpenFlow or similar protocols. ESPRES’ queue
manager observes how long each switch takes to execute each message (data
plane command), and carefully issues enough of them to keep the switch oc-

cupied without excessively queuing messages there.

At a high-level, ESPRES first groups all operations of an update into sub-
updates that affect different logical traffic flows, and then schedules operations
by ordering the sub-updates. ESPRES aims to execute as many sub-updates
in parallel as possible, while offering the ability to optimize for different goals.
For example, the goal of finishing flows sooner is accomplished by choosing
shorter updates first. On the other hand, ESPRES can reduce rule overhead

in the switches by preferring sub-updates that remove rules first.
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5.2 Managing Switch Command Queues

A key to exploiting all the available scheduling flexibility is maintaining good
switch responsiveness by actively managing their command queues. That is,
instead of sending all commands at once to a switch (and queuing them there
with no possibility for future reordering or cancellation), ESPRES queues these
commands at the controller and sends to the switch only a small subset of them
(Figure 5.4). Naively sending all available commands to a switch fills up its
queue, which delays installation of some rule dependencies. Instead, when the
queue length is actively managed, ESPRES can decide which commands are to
be sent next according to a particular scheduling discipline (e.g., prefer rules

from sub-updates that already started).

Because sending rule operations to a switch is not an instantaneous process, the
Queue Manager needs to trade-off queue length (queuing adds an additional

delay as well as limits the reordering possibilities) versus switch performance.

In particular, a very short queue length ensures low waiting latency but causes
low rule modification throughput, whereas a very long queue provides full
throughput at the expense of rule operations being stuck in the back of the
queue for a long time. In our prototype, we use a simple heuristic for queue
management: our algorithm limits the number of outstanding requests for
each switch not to exceed a fixed threshold (5 in our experiments). Because
OpenFlow lacks positive acknowledgments, we limit outstanding requests by

using barriers and tracking the number of sent BarrierRequest messages and
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received BarrierReply messages.” We validate our decision for using just a
simple threshold, as well as the trade-off between latency and performance in
Section 5.4.

5.3 Scheduling Rule Operations

When the Queue Manager considers a particular switch command queue to
be short, it notifies the Scheduler. Then, the Scheduler selects which rule
operation should be next sent to that switch. A baseline solution is to disre-
gard the active queue management and scheduling altogether and send rule
operations as soon as all their dependencies are met. Such baseline solution
has,however, a major drawback. Recall that each traffic flow starts following
the new desired forwarding configuration only after all rules corresponding to
the particular network flow are installed, i.e., the sub-update for that flow
completes. Therefore, if rule operations are ordered in an arbitrary (random)
way, sub-update completion will be frequently hindered by the last rule oper-
ation. Instead, grouping rule operations by sub-update helps to finish parts of

the network update sooner as illustrated in Figure 5.2.

5.3.1 ESPRES Schedulers

We base our schedulers on the observation that it is beneficial to install all rule
operations of a given sub-update at roughly the same time. Thus, we design
ESPRES schedulers as sub-update schedulers — they decide on the preferred
order in which the sub-updates should be installed. Note that this is not a
strict sequential ordering — in order to be work-conserving, ESPRES can send
rule operations from any (even the last) sub-update as long as previous sub-
updates do not have rule operations which are ready to be sent on a per-switch

basis. A rule operation is ready if all of its dependencies are already installed.

Preferred order scheduler. The basic version of the scheduler always sends
the first ready rule operation, according to the preferred order (we discuss how
this order is derived in the next section). That is, each time the Queue Man-

ager informs the Preferred order scheduler that (some) switches are ready,

2 While barriers cannot be trusted to determine the data plane state of the switch, they can
be trusted enough to identify which commands the switch processed in the control plane.
As such, they can be used for our purpose of monitoring the switch command queue.
Moreover, if the update contains dependencies between data plane commands, ESPRES
could use Monocle to ensure that dependencies are ready in the data plane.
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Figure 5.5: Ordering sub-updates by size can speed up average sub-
update installation time.

the scheduler goes through the sub-updates in the current order, inspects each
sub-update and sends out any ready rule operations. The scheduler ends iter-
ating through sub-updates when the end of the sub-update list is reached or

when there is no more switch queue space, whichever comes first.

Batch-ready scheduler. We observe that we can further improve the Pre-
ferred order scheduler performance by using the following heuristic. Instead
of sending any ready rule operation across sub-updates as soon as a switch is
available, we can synchronize ready operations within a sub-update and send
them at the same time.> The Batch-ready scheduler thus iterates through the
sub-update list similarly to Preferred order scheduler but sends sub-update
ready rule operations as a batch and only when all corresponding switches are
available. This provides an effect similar to gang scheduling [29], an operating
systems scheduling concept that enhances the performance of multi-threaded
programs by co-scheduling multiple threads of the same program at the same

time.

5.3.2 Ordering Subupdates

The preferred ordering in which sub-updates should be installed plays an im-
portant role in the scheduling performance. For example, if the goal is to
finish updating the majority of sub-updates in the network as soon as possi-
ble, we should order shorter sub-updates first similarly to the shortest job first

scheduling in the context of operating systems (see Figure 5.5).

ESPRES supports a variety of preferred orderings. A baseline is an arbitrary
fixed order of sub-updates (e.g., sort by sub-update identifier). ESPRES can

3 Assuming that the number of ready operations per switch is smaller than the limit on the
outstanding number of requests.
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also sort on the sub-update size, priority (if given by the controller), or a
custom-defined order. Moreover, the preferred order is not necessarily fixed

throughout the whole update.

For instance, to support the goal of minimizing mid-update rule overhead,*
ESPRES uses an estimate of the current switch rule overhead to prefer updates
that remove rules from the currently most overloaded switches. In this case,
ESPRES periodically reorders all sub-updates according to a penalty function
after potentially installing a sub-update. We define the penalty function of
subupdate U as:

penalty(U) = > sqr(max(0, current ruless + deltas(U) — targets))

s€swilches

where current_rulesg is the current number of rules installed at switch s,
deltas(U) is the change in the number of rules on s if U was installed, and
targets is the maximum of rules at s before the entire update starts (known
by the controller) and the number of rules after it ends (can be computed by
counting rule additions and deletions of the entire update), i.e., targets =

max (initials, finals + update_deltay)

5.4 Evaluation

We implemented our ESPRES prototype as a Python program on top of the
POX OpenFlow controller platform. We also developed a discrete event sim-

ulator to evaluate the system under more controlled conditions.

To validate the simulator, we run ESPRES in an emulated Mininet environ-
ment using the reference OpenFlow switches rate limited to 40 rule modifi-
cations/second. We observe that results of the simulation and emulation are
comparable and therefore we use the simulator for the rest of our experiments.
Further, unless specified otherwise, we set the rule modification rate at simu-
lated switches to 1000 rules/second, which is more than the current generation
of OpenFlow switches is capable of [41,55]. Although fast switches are adver-
sarial to ESPRES, we choose to use such value to confirm that ESPRES will

be equally relevant in future deployments.
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Figure 5.6: Performance of a limit-outstanding-requests queue man-
agement on a Pica8 switch. Rule modification throughput is con-
stant for queue longer than 1.

5.4.1 Active Queue Management

First, we explore how short the switch queue can be without decreasing control
plane performance. We design a benchmark where the controller maintains
a fixed number of outstanding requests per switch and measures the switch
performance. The controller pre-populates a switch flow table with 500 initial
rules and then repeatedly removes a random rule and replaces it with a new
one followed by a barrier request.

We run the benchmark on a Pica8 3290 switch (PicOS 2.0.4, OVS 1.10.0)
and summarize the results in Figure 5.6. The main takeaway is that using
a small number of outstanding requests (e.g., two) does not decrease control
plane performance. Running the benchmark on an HP ProCurve E5406zl, we
observe that it requires a few more outstanding requests, and we thus set the
number of outstanding requests in our experiments to 5 (to account for some
variance in switch performance). Our measurements [55] confirm this choice

for additional switch models.

4 Controllers using the two-phase consistent update [68] require keeping both old and new
rules at the same time.
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Figure 5.7: When installing a batch of new flows, scheduling reduces
completion time for most of them.

5.4.2 Intra-Update Scheduling

To show the scheduling benefits of ESPRES, we evaluate it in three scenarios

with different scheduling goals.

5.4.2.1 Improving Mean Time to Finish

We first focus on the mean time to finish a sub-update. This is an important
metric when the controller is installing a batch of new flows (e.g., spinning up
a new VM) or repairing existing flows after a topology change. In this experi-
ment, ESPRES coordinates installation of new sub-updates, each representing
a flow on a randomly-selected shortest path between two edge switches chosen
at random. Flows are installed in a per-packet consistent manner [68], i.e.,
we use a two-phase update where the ingress rule is installed only after all
other rules are in place. We run the experiment using various parameters, as
discussed below. Each run was repeated 3 times and we observed comparable
results across runs; therefore, due to space limit, we highlight a few major

results.

Figure 5.7 shows the CDF of flow installation time for 1000 flows in an IBM
topology [51] with 18 switches (all switches are edge switches) and a FatTree
topology with 20 switches (kK = 4, 8 ToR switches are edge switches). Ta-
ble 5.1 summarizes results of experiments across a range of flows and switch

performance parameters on the IBM topology.

Overall, the results show that significant benefits come even from our sim-

ple scheduling algorithms. The Batch-ready scheduler comes very close to an
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Finish time improvement for the x-th percentile
Flows relative 10 rules/s 100 rules/s 1000 rules/s
20th | 50th || 20th [ 50th || 20th | 50th || 20th | 50th

100 1.85x | 1.46x || 0.6s| 0.6s | 0.06s | 0.06s | 0.006s | 0.006s
1000 || 4.06x | 1.72x || 10.1s | 7.7s || 1.01s | 0.77s | 0.10s| 0.08s
5000 || 4.27x | 1.80x || 50.8 s | 41.8 s || 5.08 s | 4.18 s || 0.51s | 0.42s

Table 5.1: Relative and absolute sub-update finish time improve-
ment (at the 20th and the 50th percentile) of ESPRES’s batch sched-
uler compared to no scheduler on IBM topology. ESPRES helps for
all update sizes, but the improvement increases with the size. Note
that switch rule installation speed has no effect on the relative im-
provement.

optimal schedule calculated by an integer linear program,® which has a high
run-time overhead of 10 minutes. Further, our batch scheduler algorithm is
up to 4.3 times better than not using a scheduler® for the 20th percentile of
flows, up to 1.7 times better for the 50th percentile, and achieves equal total
update time. Note that scheduling does not introduce performance benefits
in the 9x-percentiles of flow installations, which correspond to the flows that
are installed last. This is because these flows ultimately depend on which
bottleneck switch is last to finish with rule installations. Nonetheless, schedul-
ing does not worsen the installation time of these flows. Moreover, as shown
in Table 5.1, increasing the switch rule installation speed does not affect the
scheduling benefits. The overall update time decreases proportionally, but the
benefits coming from ESPRES remain. Finally, the benefits of ESPRES are
greater for bigger updates when the scheduler has a higher freedom to reorder

sub-updates.

5.4.2.2 Lowering Mid-update Switch Rule Overhead

In these experiments, we assess rule overhead using a version of the scheduler

that tries to minimize the mid-update switch rule overhead”.

We design an experiment that resembles a traffic engineering recomputation

5 For the ILP formulation we assume a priori known and constant switch performance.

6 “No scheduler” is a scheduler that iterates over the flows in some predefined order and
sends ready operations to the switch as soon as possible, ignoring any queue management.
We try with different flow orderings but the ordering itself seems to have no major effect
on the results.

" We calculate the per-switch overhead (in percent) as in [45]: overhead = 100 *
(worst/base — 1) where worst is the maximum number of rules during the update and
base is the lower bound, base = max(pre-update rule count, post-update rule count).
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Sub-updates
Scheduler 352 1074
per-switch overhead max avg max avg
No scheduler 55.4% | 26.3% || 62.3% | 27.8%
Incremental consistent updates [45] || 15.8% | 15.0% || 17.1% | 8.7%
ESPRES 16.8% | 5.7% || 3.5% | 1.3%

Table 5.2: Comparison of rule overhead when using two-phase up-
date methodology [68] to achieve consistency.

in a FatTree topology with 20 switches. We first set up a number of flows over
arbitrary shortest paths between pairs of ToR switches chosen at random. We
consider both 500 and 1500 flows. Then, we compute new paths for all flows
by randomly choosing a new shortest path for each flow. In about 25% of cases
the same path for a flow is chosen and therefore the number of sub-updates
is lower than the number of flows (e.g., 352 and 1074 instead of 500 and
1500, respectively). Finally, we let ESPRES to update all flows in a consistent
manner, 7.e., we provide dependencies between rule operations of the same
flow as a three stage update where we first add new rules, then modify the
“ingress” switch, i.e., the switch where the new path diverges from the old

one, and finally delete old rules.

Table 5.2 summarizes our results. We observe that a naive update without
a scheduler results in major maximum per-switch overhead (up to around
60%), while both incremental consistent updates [45] configured to use 4
rounds and ESPRES keep the overhead low (17% in the worst case). Fur-
ther, ESPRES outperforms incremental consistent updates for larger updates
because ESPRES reacts to current switch conditions at run-time and inter-
leaves rule installations and rule deletions from different sub-updates to lower
the overhead. We note that ESPRES is a best-effort service and does not guar-
antee low worst-case overhead like incremental consistent updates does. In the
future, we plan to explore the benefits of running ESPRES on top of incremen-
tal consistent updates to bound the worst-case behavior while maintaining the

benefits of run-time information.

5.4.2.3 Minimizing Subupdates Durations

We conclude the evaluation of scheduling goals with an experiment measuring
the duration of individual sub-update installation times, 7.e., the time taken

to install a sub-update from start to finish, as measured at the controller. We
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Figure 5.8: CDF of individual sub-update durations. Scheduling
helps to minimize the possible disruption times.

use the same setup as for the mean time experiment. Results in Figure 5.8
suggest that our scheduler rapidly decreases the in-progress sub-update dura-
tions for most sub-updates, while finishing the update at the same time as the
baseline case with no scheduling. This reduction can be attributed to grouping

operations per sub-update and co-scheduling all operations at the same time.

5.4.3 ESPRES Sensitivity to Network Latency

To check how our greedy scheduler performs when working with delayed in-
formation, we vary the controller-switch round-trip-time (RTT) from 0 to 200
ms. To avoid switch underutilization, we adjust the number of outstanding
requests to cover at least RTT-worth of rule operations (e.g., 2, 105 and 205

outstanding requests for 0 ms, 100 ms, and 200 ms, respectively.)

Understandably, the update time increases with higher RTTs, as shown in
Figure 5.9. However, we also observe that ESPRES performs worse than no
scheduler for long RTTs (e.g., the line marked with squares in the figure). An
investigation revealed that our schedulers are too eager to finish the already-
started sub-updates, which does not interact well with the long latencies during
the final phase of an update as some sub-updates do not start until the very
end and then they have to wait long for their dependencies. In particular, for
each operation denote its depth as the maximum length of dependency chain

from the operation to the update end (depth is 1,2 or 3 in our experiments).

Assuming the same RT'T between the controller and all switches, if an update
contains an operation at depth d, the update cannot finish sooner than in
dx RTT. To fix the scheduler, for each switch s and each depth d, we calculate
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Figure 5.9: CDF of flow installation time as we vary the controller-
switch RTT.

pending(s,d) as the count of all operations at depth d still not sent. Then we

calculate

Timin(s,d) = d x RTT + pending(s,d)/rate(s)

and

Tpra = max (Zpendmg(s, d)/mte(s))
d

If Thnin(s,d) x (14+¢) > Tpra for some depth d, there is a risk that an
update would be delayed because of operations with depth d (we use ¢ = 5%
as a safety margin). In this case, we force the scheduler to send to switch s
only operations with depth > d, effectively starting new sub-updates instead

of finishing already started ones.

After fixing the scheduler to start sub-updates earlier if some operations may
wait too long because of dependencies, the results improve. There are two
main conclusions coming from Figure 5.9. First, the fixed scheduler performs
much better than baseline early during an update and stays no worse than
the baseline near the end. Second, the time when the scheduler changes the
strategy depends on the RTT, the switch rule modification rate and the update
size. Thus, even if switches become faster, ESPRES will still be helpful in the

future because the updates are likely to grow and the RTTs to decrease.
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5.5 Chapter Summary

In this chapter we presented ESPRES, a runtime system that uses a mod-
erate amount of available compute power to optimize bulk network updates.
The main insight of ESPRES is that a bulk network update can be broken
into many independent sub-updates, and the sub-updates can be re-ordered.
ESPRES exploits the reordering potential and adapts to the switch command
plane performance at runtime. By doing so it enables a vast majority of the
flows to begin functioning correctly much quicker when compared to launching

all commands on the switches at once as is typically the case today.

Our evaluation suggests that ESPRES is successful at lowering individual sub-
update installation times for the majority of sub-updates, while not affecting
the total update time. ESPRES is also capable of using its runtime knowledge
to optimize mid-update overhead better than the existing static scheduling
methods.
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Chapter 6

Related Work

Over the years, the research on SDN produced hundreds of articles. Because
it is impossible to list all the work here, in this chapter we give a just short

overview of past research efforts closely related to this dissertation.

6.1 Model Checking

Model checking is an automatic and effective technique that has been success-
fully applied for finding bugs in concurrent programs (tools such as VeriSoft [34],
SPIN [40] or Java Path Finder [85]), network protocol implementations
(CMC [63], KleeNet [71]), distributed systems (MaceMC [50], Crystall-
Ball [90], MODIST [91]), and file systems (EXPLODE [92]).

While some tools such as SPIN [40]) require writing models in a high-level
modeling language (PROMELA in the case of SPIN), there has been an effort
to use a real code as the base for model checking. VeriSoft [34] and Java
PathFinder (JPF) [85] are among the first model checkers to directly operate

on the source code instead of the model.

Unfortunately, even model checkers using real code instead of a model have a
major drawback — model checking ordinarily requires a closed system, i.e., a
system (model) together with its environment. Moreover, the creation of such
an environment is typically a manual process (e.g., [71]). This is especially
true for networks where modeling a universal real-world environment would
require making an environment supporting many different protocols (and thus

packet types).

NICE re-uses the idea of model checking—systematic state-space exploration—
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and combines it with the idea of symbolic execution—exhaustive path coverage—
to avoid pushing the burden of modeling the environment on the user. Also,
NICE is the first to demonstrate the applicability of these techniques for test-
ing the dynamic behavior of OpenFlow networks. Finally, NICE makes a

contribution in managing state-space explosion for this specific domain.

6.2 Symbolic Execution

Symbolic execution exhaustively exercises all code paths through a program
by utilizing an SMT solver to decide whether a given path is feasible. Symbolic
execution has proven useful in automatically creating test cases that attempt
to uncover implementation bugs in a given piece of code. Symbolic execu-
tion was pioneered by tools such as DART [35], EXE [22], KLEE [21], and
Cloud9 [20].

Khurshid et al. [49] present a generalization of symbolic execution that en-
ables a model checker to perform symbolic execution. Their work effectively
builds a symbolic execution engine for Java on top of an existing model-checker
(JPF [85]): that is, it maps branching points in the code to possible transi-
tions in the program state space. NICE shares this spirit of using symbolic
variables to represent data from very large domains (e.g., possible packets in
the network). However, the difference is that NICE builds its model checker
on top of symbolic execution. By doing so, NICE can use state matching as
opposed to [49] since state matching is, in general, undecidable when states

represent path conditions on unbounded data.

As a result, we (i) reduce state-space explosion due to feasible code paths
because not all code is symbolically executed, and (ii) enable matching of

concrete system states to further reduce the search of the state space.

6.3 Model Checking and Symbolic Execution

in Computer Networks

Verifying behavior of computer networks is important for many reasons (e.g.,
most importantly security and reliability). As model checking and symbolic
execution have proven to be useful in general, researchers started to applying
them to this domain as well. Here we list the most relevant work and its
differences from NICE.
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Kuai [61] is an SDN model checker that introduces a set of partial order
reduction techniques to reduce the state space. However, unlike NICE, Kuai

requires the application to be rewritten into a custom modeling language.

VeriCon [16] extends verification of SDN programs to check their correctness
on all admissible topologies, and for all possible sequences of network events.
These approaches need to manually port the controller application to a differ-
ent programming language and do not use symbolic execution to reduce the

space of input packets.

Kothari et al. [53] use symbolic execution and developer input to identify
protocol manipulation attacks for network protocols. In contrast, NICE com-
bines model checking with symbolic execution to identify relevant test inputs

for injection into the model checker.

Bishop et al. [18] examine the problem of testing the specification of end host
protocols. NICE tests the network itself, in a new domain of software defined
networks. Moreover, NICE performs model checking of the implementation
(e.g., Python code that runs in the controller) directly, and thus avoids a
lengthy step of deriving the specification.

Sethi et al. [76] present data- and network-state abstractions for model check-
ing SDN controllers. Their approach extends verification to an arbitrary num-
ber of packets by considering only one concrete packet for the verification
task. This reduces the state space but it also limits the invariants that can be

checked to just per-packet safety properties.

SDNRacer [28] presents an alternative approach to NICE. Instead of exer-
cising different event orderings in the network, SDNRacer simulates a network
while collecting traces of network events including their happens-before rela-
tionship. Afterward, SDNRacer builds the “happens-before graph” and runs a
concurrency analysis on it. NICE does not build a happens-before graph but
its DPOR technique eliminates exploring different orderings of independent

events.

6.4 Network Policy Verification

Anteater [60] uses static analysis of network devices’ forwarding informa-
tion bases to uncover problems in the data plane. This approach takes user-

specified network-wide invariants such as reachability and loop-free forwarding
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and maps them into instances of boolean satisfiability problem that are ana-
lyzed with a SAT solver.

SecGuru [43] is similar to Anteater. SecGuru uses a SAT solver to analyze
network policies. Moreover, SecGuru can provide a semantic difference be-
tween two policies so that the operators can verify whether their changes have

any unexpected consequences.

FlowChecker [14] applies symbolic model checking techniques on a manually-
constructed network model based on binary decision diagrams to detect mis-

configurations in OpenFlow forwarding tables.

Header Space Analysis (HSA) [46] is the first work to systematically ex-
amine the theory behind network forwarding. HSA models packets as points
in a “header space” — a set of all viable headers, and models switches as func-
tions which transform input packet into an output packet. More importantly,
HSA allows for easy representation rules as wildcards can be represented as

hypercubes in header space.

NetPlumber [47] is a follow-up work on HSA. NetPlumber allows for incre-

mental recomputation of HSA if rules in the network change.

VeriFlow [48] is similar in nature to HSA. VeriFlow explicitly computes equiv-
alence classes of packets that follow the same path in the network. In contrast,
NICE computes equivalence classes of packets that trigger the same path in

the network controller.

All these works as complementary to NICE — they deal with a snapshot of
the network policy (i.e., control plane configuration) rather than the dynamic
interaction between the switches and the controller. NICE can, however, eas-
ily benefit from these tool by using their policy-checking abilities as safety

invariants.

Similarly, we view all these works as orthogonal to Monocle because problems
such as hardware failures, soft errors and switch implementation bugs can still
manifest as an obscure and undetected data plane behavior that is not visible
in the control plane snapshot. By systematically dissecting and solving the
problem of probe packet generation, Monocle closes the gap and complements
these other works. Monocle monitors the packet forwarding done at the hard-
ware level and ensures that it corresponds to the control plane view that these

tools verify.
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6.5 Data Plane Monitoring

ATPG [94] is the first system to use data plane probes to automatically
verify the switch forwarding behavior. However, there are some fundamental
differences. To the best of our knowledge, ATPG (i) generates probes taking
into the account only Hit and Collect constraints. It never checks whether
the probes actually can Distinguish the rule from a lower priority one. (i)
More importantly, ATPG takes substantial time to generate the monitoring
probes it needs. While this approach works well for static networks, it has
serious limitations in highly dynamic SDN networks. In contrast, Monocle
copes easily with this case, down to the level that it can observe the switch

reconfiguring its data plane during a network update.

RuleScope [19] is a system similar to Monocle and ATPG. RuleScope’s ad-
vantage over Monocle is its ability to systematically detect and troubleshoot
rule priority inversions; Monocle could be adapted to look for such failures
as well (by restricting the probe search only to overlaps with other rules, see

section 4.4.7) but we leave such implementation and evaluation as future work.

On the other hand, similarly to ATPG, RuleScope does not consider Distin-
guish-ing rules from lower-priority ones based on rule actions and its design
is more concerned with stable state monitoring/troubleshooting rather than

quick dynamic inspection of the switch.

6.6 Network Debugging

SDN traceroute [13] focuses on a mechanism that allows tracing packets in
an SDN network. Traceroute aims to observe the behavior for a particular
packet. Our goal in Monocle is to observe switch behavior for a particular

rule.

OFRewind [89] enables recording and replay of events for troubleshooting
problems in production networks due to closed-source network devices. How-
ever, unlike NICE, it does not automate the testing of OpenFlow controller

programs.

NDB [37] collects packet traces. Although both tools can uncover consistency
problems (NICE in a model, NDB in production), they can only report the

existence of a bug and do not fix it.
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Heller et al. [38] describe a unified vision of SDN troubleshooting — they
observe that an SDN network consists of multiple layers and categorize existing
tools by the layers they are testing. This work thus shows deep insights about
how exactly the different SDN troubleshooting tools are related.

6.7 Network Operating Systems and Platforms

NOX [36] is the first OpenFlow platform that was available. NOX is written
in C4++ but it also has Python API.

POX [8] started as an attempt to rewrite NOX into Python. Because of its
ease of use and simple setup, POX became an attractive platform for research
controllers despite its Python limitations (e.g., slow speed and the absence of

multithreading).

We built our three systems on top of these two platforms. Apart from NOX
and POX, there are more controller platforms such as Ryu [10], OpenDay-
light [4], and ONOS [2], etc.

6.8 SDN Abstractions and Programming Models

Providing abstractions is important for easying SDN development. Unfortu-
nately, finding abstractions with the right balance of simplicity and flexibility
is hard. The works in this short section show some very interesting points in

the design space.

Frenetic [31] and FlowLog [64] are domain-specific languages for SDN. In
contrast with NICE, which aims at finding programmer bugs, the higher-level
abstractions in these works make it possible to eradicate certain classes of
programming faults and to some extent enable controller verification. However,

these languages have not yet seen wide adoption.

Maple [86] is an interesting compromise between higher-level abstractions and
practicality. Maple provides an abstraction that the OpenFlow controller ex-
amines every packet at every switch in the network. In reality, Maple attempts

to offload some of the work to the switches.

While these abstractions avoid some classes of bugs (e.g., rules conflicting with
each other or hiding visibility to the controller), we believe NICE would be still

relevant in finding different classes of concurrency issues [67]. Moreover, we
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believe that these abstractions might simplify the task of network verification.
It would be therefore interesting to see whether tools such as NICE could be
modified to fully exploit the limits these abstractions impose on the network

and controller behavior.

6.9 Switch Control Plane Behavior

Having a detailed knowledge about switch control plane behavior is important
for SDN programmers because it can affect the design of SDN controllers. The
most important questions that need to be answered are (i) the limits on the
rate of change (affecting the practicality of big network updates), and (i7) any
switch “quirks”, 7.e., unexpected behaviors. Fortunately, multiple researchers
already answered these questions and these results actually prompted us to
work on both Monocle and ESPRES.

OFLOPS [70] is the first study of SDN switch performance. OFLOPS mea-
sures several OpenFlow-capable switches and shows that they are not very fast
at updating their data plane configuration. Moreover, OFLOPS is the first
work to notice the temporal discrepancy between the time when the switch

reports a command to be done, versus when its data plane starts following it.

Huang et al. [41] measure switch performance (e.g., rule installation rate) to
build high-fidelity switch models.

Our own switch measurements in [55] confirm findings from these papers,
namely that the switches (i) have unpredictable (and sometimes rather low)
performance, and (ii) controller cannot trust barrier requests. As a response,
because large updates can take substantial time to install, we build ESPRES to
optimize such updates. Similarly, we built Monocle to closely monitor whether

the switch data plane is doing what it should.

6.10 Consistency of Network Updates

There are many states a network can undergo while updating from one config-
uration to another. This is especially true when the update touches multiple
switches, each of them updated at a different time. If not carefully controlled,
these intermediate network states might lead to policy violations, induce net-

work loops, or send traffic into temporary black holes.
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Consistent updates. Reitblatt et al. [68] pioneered the notion of consistent
updates, a class of network updates where each packet is processed according
to either old or new configuration but never by a mix of them. This prevents
transient inconsistencies such as loops, black holes or policy violations, and is in
a stark contrast with traditional BGP updates where temporary inconsistencies
can occur [65]. To prevent a mix of network policies, consistent updates use a
variation of a two-phase commit where the new rules are first installed on all

switches except ingress points and only then the ingress points are updated.

Incremental Consistent Updates. Consistent updates spawned a lot of
interest from researchers and multiple follow-up works. As already stated,
consistent updates use a two-phase commit to transition from the old con-
figuration to the new one. Unfortunately, this requires having rules of both
configurations at the same time, effectively reducing the switch TCAM size
by two. This was improved by Katta et al. [45] who reduce switch rule over-
head by splitting the update into several rounds. This, however, increases the

overall update duration.

zUpdate [58] further improves the consistent update to take link capacities
into the account — it performs congestion-free updates using a set of carefully

computed steps.

These systems are important to ESPRES but at the same time somewhat
orthogonal — the major difference between these systems and ESPRES is the
fact that they are responsible for coming up with the update operations and
their dependencies while ESPRES is responsible for taking these rules and
installing them in the network. Moreover, both zUpdate and Incremental
Consistent Updates use linear programming to come up with a plan optimizing
for the worst-case behavior. ESPRES, on the other hand, is a best-effort
system which cannot change already-existing (potentially suboptimal) update
plans, it can only decrease transient problems while the network update is
being installed. Thus, ESPRES can actually work on top of both Incremental

Updates and zUpdate by trying to avoid the worst-case scenario if possible.

Finally, these systems rely on the assumption that switches report correctly
when they installed rules in the data plane. Unfortunately, as the measure-
ments [55, 70] suggest, this is not true for some switch models and thus these
systems might lose consistency guarantees. Monocle can help these systems
to monitor the switch data plane and proceed with the update only once the
rules are indeed in the data plane. By doing so it restores the guarantees these

systems provide.
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6.11 Network Update Scheduling

Jive [57] measures the performance of OpenFlow switches according to pre-
determined patterns to derive switch capabilities; these capabilities could, in
turn, be used to optimize network behavior. In contrast, ESPRES dynamically

adapts to run-time switch performance while scheduling rule installation.

Mahajan and Wattenhofer [59] recently discuss consistent updates in SDN,
and their plan erecutor subsystem is perhaps the closest in spirit to our work.
However, ESPRES goes further in offering the initial design, implementation,

and evaluation of a network-wide scheduler for rule installation.

Dionysus [44] is a system for fast, consistent update installation. Dionysus
improves on the previous work by considering constraints such as network
bandwidth and switch TCAM space on top of standard consistency guarantees.
Similarly to ESPRES, Dionysus schedules updates at runtime depending on
the progress. However, unlike Dionysus which strives to minimize the total
length of the update, ESPRES observes that it is also worthwhile to optimize
parts of the update. Ultimately, joining ESPRES and Dionysus would combine

advantages of both systems.
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Chapter 7

Conclusions and Future Work

It is likely that Software-Defined Networking is going to revolutionize the way
network operators configure and manage their networks. However, it is still
too early for SDN to be production-ready and the network operators do not
want to give up the “five-nines” (99.999%) reliability of the old, traditional

networks.

This thesis is a step towards bridging this gap — the underlying question
we answer throughout the thesis is “Is it possible to use the vast amounts of
computing power available today to ease SDN programming and management?”
Fortunately, the answer to the question is yes and we illustrate it multiple

times.

First, in Chapter 3 we describe how we can utilize compute power to improve
SDN debugging. Our tool NICE thoroughly explores the interaction of an SDN
controller with the rest of the network by systematically examining various
event orderings. Doing so helps programmers uncover insidious bugs and race

conditions that result in wrong network behavior.

Second, our tool Monocle described in Chapter 4 demonstrates that the extra
CPU cycles can be put to the difficult task of overseeing SDN switch cor-
rectness. Monocle monitors the switches by carefully constructing data plane
packets, which are then injected into the network and observed. By doing
this, Monocle detects switch problems ranging from firmware bugs to random

memory corruption.

Finally, Chapter 5 shows that even performance of SDN updates can be im-
proved by taping into the computation power. Thanks to the careful scheduling
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and constant adjustments based on the current progress, our tool ESPRES is

able to improve on certain aspects of SDN updates.

7.1 Future Work

There are many ways in which the work in this thesis could be improved.
Here we list the natural follow-up work that would remove some of the current
limitations, as well as more vision-like ideas that can spawn new research

directions on their own.

NICE: As we mention in Section 3.11, NICE cannot model dependencies be-
tween two handler invocations. To lift this constraint, we could either run a
series of handler calls each time we use the discover_packet transition, or use
symbolic state. Only a careful evaluation would show which approach fares
better in terms of scalability vs. bug-finding ability. Similarly, when comput-
ing packets to be injected, NICE currently does not consider rules installed
on the switches. The potential solution here would be to either run sym-
bolic execution also on the switches, or combine NICE with some specialized

reachability analysis such as Header Space Analysis [46].

By being based on model checking and symbolic execution, NICE walks a
tight line between the state-space explosion encountered by these techniques
and its usefulness in terms of bug-finding abilities. A part of the future work
would be pushing this line further. Specifically, could we find heuristics which
work better? Can we increase the size of the network on which applications
are tested without a big performance penalty? And more importantly, can
we systematically reduce the state-space explosion by perhaps splitting the

problem into several smaller subproblems?

Monocle: Monocle currently cannot cope with multiple overlapping rule up-
dates at the same time and needs to serialize them (see Section 4.5.2). We
envision that this problem could be solved by carefully reformulating the
constraints and SAT/SMT conversion to accommodate for “maybe-installed”
rules. The outstanding question is whether this can be encoded more efficiently
than enumerating all 2% possibilities where k is the number of maybe-installed

rules.

Monocle, as it was designed, assumes that the only type of a failure on the
switch is “a single rule missing from the data plane” (although Monocle can

also probe for multiple non-overlapping failures as well as some partial failures
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described in Section 4.4.7). By carefully studying what other types of failures
can happen in practice (e.g., priority failures [19]) we could improve Monocle’s
monitoring capabilities even more. Finally, in Section 4.4.5 we discuss a way for
Monocle to probe OpenFlow switches with a pipeline of tables. Unfortunately,
the method we present there might not work with legacy switches not designed
with OpenFlow in mind — these switches may have serious limitations on
how the pipeline works. Yet, being able to work with legacy switches would

certainly improve Monocle’s usability.

ESPRES: One of the foundations of ESPRES is the assumption that a net-
work update can be split into many sub-updates that are commutative, i.e.,
that they could be installed in any order (or even interleaved). While this is
true in many cases, Dionysus [44] shows that the matter is more complicated if
one starts taking link capacity into the account. In such a case, dependencies
between switch operations will change over time (i.e., as the individual flows
are moved). Here we, however, see a possibility for improvement - Dionysus
tries to optimize the total update time and in this aspect it is very similar to
not having a scheduler at all. It is, therefore, worth exploring the combination
of Dionysus and ESPRES — Dionysus optimizing the total update time while
informing ESPRES about the current set of commutative operations, and let-
ting ESPRES decide on the order of operations that are not on the critical
path.

Another possible avenue for ESPRES improvement is inter-update scheduling.
Currently ESPRES schedules operations only within a single (big) network
update. However, the controller might want to install multiple updates, some-
times with a different priority. For example, a controller might start installing
a big traffic engineering update but before the installation finishes, a higher-
priority, more urgent update might come (e.g., moving flows off a failed link).
Normally, it would be hard for the controller to cancel the traffic engineering
update while it is running and perform the emergency re-routing (e.g., what
if the same flow was being moved by both the traffic engineering and fail-
ure recovery?). We envision that by declaring dependencies between updates,
ESPRES would be able to: (i) prioritize the failure-affected part of the traffic
engineering update, (4i) install the failure recovery update, and (ii¢) continue

with the rest of the traffic engineering.
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Appendix

A.1 Probe Generation is NP-hard

We prove this by providing a polynomial reduction from SAT, i.e., by produc-
ing an instance of the probe generation problem for a given instance of SAT.
In particular, let I be an instance of SAT, i.e., I is a formula in the conjunctive
normal form (CNF). Let 1,9, ..., x, be variables of I. Our reduction uses
n header fields (or, alternatively, n bits of a single header field if it can be arbi-
trarily wildcarded). The reduction is best illustrated on an example. Consider
I = (x1 Vaa) A (mz2V x3) A —w3. We create several high-priority rules, one
for each disjunction of I. In particular, we design the rules so that matching
rule R; logically corresponds to i-th disjunction being false, i.e., the header
fields of R; must match bit 0 for each positive variable, bit 1 for each negative
variable, and be wildcarded for each variable not present in the disjunction. In
our case, Ry := (0,0,%), Ry := (*,1,0), and Rg := (x,%,1). Then, we ask for
a probe packet matching a low-priority all-wildcard rule Ry, := (*, *, %) (note
that the probe packet must exclude all higher-priority rules). We leave it as an
exercise for the reader to prove that a given probe packet is a valid solution to
the aforementioned probe generation problem if and only if the values of probe
fields interpreted as values of variables are a valid solution to the original SAT

instance [
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APPENDIX

A.2 Encoding Hit, Distinguish, and Collect

Constraints as CNF Expressions

In this section we briefly describe how to encode the Hit, Distinguish, and

Collect constraints into the conjunctive normal form.

Let ¢1, ..., ¢, be formulas in CNF. Then, we can perform the following oper-

ations and obtain a CNF formula as a result
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o Conjunction ¢ := @1 Apa A--- Apy: The formula is already in CNF.
o Disjunction ¢ := @1 V2 V---V p,: We can repeatedly apply the dis-

tribution theorem (¢1 A o) Vg < (1 V bs) A (19 V 1b3) to expand
the formula into CNF. However, in general, such an expansion may lead
to a formula of an exponential size, making it impractical. A better
approach is to create an equisatisfiable formula, i.e., a formula which
is satisfied under the given valuation of variables if and only if the
original formula is satisfied. The idea is to create a new formula by
introducing new fresh variables; this is usually referred to as Tseitin
transform [81]. As an example, consider ¢ := @1 V @9 and a fresh new
variable v. We can write ¢’ := (vV 1) A (=0 V p2) and observe that
it is satisfied if and only if at least one of ¢; and ¢y is satisfied. It
should be mentioned that while it looks that we only swept the prob-
lem of disjunctions one level deeper, disjunctions of the form vV ¢; with
v being a literal can be expanded to CNF without an exponential explo-
sion. For longer disjunctions @1V 2 V- -V @, we use an extended form
O = (v V1) A(vaVe2) Ao A (o Vpp) A(mop Vg VeV -y
Implication ¢ := p1 — @2 is equivalent to =1 V 2
Variable substitution ¢ := z <> 1 is simply (¥ — ¢1) A (p1 — ) or
using previous point: (—z V1) A (2 V —p1)
Negation —¢: It turns out that we need to support only several special
cases of the negation:
— the negation of a literal: —=(v) = —w, =(-v) = v
— the negation of a CNF formula consisting only of single disjunction:
@ :=-(l1 VIgV---V1,) is equivalent to =l; A =l A -+ A=l where
li,...,1, are literals
— the negation of a CNF formula where each disjunction is trivial:
w:==(l1 Nlg A+ Nly) is equivalent to (=l V =lg V...V =ly,)



A.2. Encoding Hit, Distinguish, and Collect Constraints as CNF
Expressions

o If-then-else chain substitution

o (s — if (i1, tr,if (i toyif (o if (i b else)) ... )))

First, we substitute all sub-expressions as new fresh variables. Then, we

use the following construction from [84]:

g0:<—\i1V—|t1VS>/\
—|i1Vt1V—|S>/\
il\/—\iQ\/—'tQ\/S)/\

i1Vﬁi2Vt2V—\S)/\

2'1Vig\/---\/in_l\/—'in\/ﬂtn\/s>/\
i VigVe o Vipg_1 V=i Vi Vs )
2'1\/2'2\/~~~\/in1\/inv—|else\/s>/\
<i1\/i2\/--~\/in_1\/in\/else\/—'s>

Note that the construction is quadratic in size and therefore very long if-
then-else chains should be split by repeatedly substituting some postfix
of the chain by a fresh variable.

o Predicate Matches(P, R) is simply a conjunction of per-bit terms defined
in Table A.1. When encoding into SAT, we perform trivial simplification
by excluding all True terms from the conjunction.

o Predicate Dif fOutcome is a disjunction of Dif f Rewrite and Dif f Ports.
Note that truth value of Dif f Ports can be determined in a preprocess-
ing step and as such we can simplify Dif fOutcome to either True or
Dif f Rewrite.

o Predicate Dif f Rewrite(P, Ry, R2) (which corresponds to the expression
rewrite(P, Ry) # rewrite(P, Ry)) is a disjunction (over all bits of P) of
expressions from Table A.2; here P[i] represents the variable holding the
value of i-th header bit (see Matches() definition), and R[é] is 0, 1 or *
depending on whether the rule R rewrites bit to 0, 1 or it does not update
the bit). Finally, we can perform trivial simplification on the returned
disjunction — remove all Flalse sub-expressions as well as return simply

True if one of the sub-expressions is True.
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R[i] | i-th bit of P matches R iff
- Pli]
1 Pli]
* True

Table A.1: Converting Matches(P, R) predicate to a CNF formula.
The resulting formula is a conjunction of per-bit terms and is satis-

fied if and only if P matches R.

g
il
o~
=
=
N
-~
=

Bit rewrites are different iff

False

True

True

False

Pli] (e.g., bit needs to be set to 1)

—P

[

i] (e.g., bit needs to be set to 0)

P[]

*| = D] ¥ ¥ == oo
¥ *k ¥ = O = O = O

- Pli]

False

Table A.2: Converting Dif f Rewrite(P, R1, Ry) predicate to a CNF
formula. The resulting formula is a disjunction of per-bit terms and
is satisfied if and only if R; rewrites at least one bit of P differently

than Rs.
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