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Sommario

L’approccio Software Defined Networking (SDN) è una novità nel campo

delle reti informatiche. La migliore flessibilità, la gestione semplificata e la

riduzione dei costi promesse dal paradigma SDN fanno pensare a molti che

questo sia il futuro delle reti. L’intuizione principale di SDN sta nella sep-

arazione tra la configurazione, il controllo della rete e l’instradamento dei

pacchetti a basso livello. In questo modo, lo sviluppo del complesso software

di controllo diventa indipendente dai cambiamenti di instradamento e switch-

ing a livello hardware. Facendo affidamento su un’interfaccia ben definita, un

programma di controllo pu supervisionare l’intera rete composta da parecchi

switch, di diversi produttori. Nella mia tesi argomento, invece, che questa

visione idealizzata difficile da ottenere in pratica e che un controllore SDN

non può trattare tutti gli switch in modo eguale. Ci sono parecchie ragioni

per le quali switch che implementano la stessa specifica rimanono eterogenei:

specifiche non chiare, difficili implementazioni, costi ed errori umani.

In questa tesi descrivo un approccio a due fasi per gestire l’eterogeneit

degli switch SDN. In primo luogo presento delle tecniche sistematiche per

rilevare differenze tra componenti diversi. SOFT è un metodo, che ho definito

ed implementato, che mette allo scoperto differenze funzionali tra diversi

software di switching. Si basa su ben note tecniche di analisi software ed

un nuovo modo di applicare un risolutore di constraint per trovare input

che causano un diverso comportamento degli switch. Inoltre, definisco una

metodologia sistematica per effettuare misure di prestazioni sulle richieste

di aggiornamento degli switch. Sviluppo anche un tool di misura basato

su questa tecnica che è in grado di computare le caratteristiche del tasso

di aggiornamento degli switch hardware. Questa metodologia, in aggiunta,
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tracciando le interazioni tra lo strato di controllo e di gestione dati durante gli

aggiornamenti, è in grado di rivelare le inconsistenze che mostrano quando

gli switch non seguono la specifica. Infine risolvo il più grosso problema

rilevato. RUM, uno strato software che si pone tra il controllore e gli switch,

maschera e aggiusta le notifiche di aggiornamento scorrette che arrivano da

switch problematici.

Dimostro l’utilit della soluzione descritta analizzando degli switch es-

istenti. SOFT individua diverse inconsistenze tra due switch open source. Il

benchmark di prestazioni rivela degli errori che compromettono la sicurezza di

rete. Fornisce anche delle caratteristiche dettagliate sugli switch che dovreb-

bero essere prese in considerazione dagli sviluppatori di applicazioni lato con-

trollore per migliore le prestazioni di rete. RUM previene perdite di pacchetti

con un aggiornamento dell’instradamento sicuro senza che alcuna modifica

sia necessaria agli switch problematici.

Parole Chiave:

Software Defined Network, switch, affidabilità, interoperabilità,

prestazioni, flow table, aggiornamenti, OpenFlow
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Abstract

Software Defined Networking (SDN) is a novel approach to building computer

networks. Improved flexibility, simplified management and cost reduction

promised by SDN makes many see it as the future of networking. The main

insight of SDN is the separation of network control and configuration deci-

sions from packet forwarding devices. This way, complex control software

development becomes independent of changes in hardware traffic forward-

ing switches. Relying on a well-defined interface, a controller program can

supervise the whole network built of many switches, produced by multiple

vendors. I argue however, that this idealized vision is difficult to achieve in

practice and that an SDN controller cannot treat all switches equally. There

are multiple reasons why switches following the same specification are hetero-

geneous: unclear specification, implementation difficulties, cost, and human

errors.

In this dissertation, I describe a two-phase approach to handle switch

diversity in SDN. First, I present systematic techniques to detect various

differences between devices. SOFT is a method and a tool that uncovers

functional differences in switch software. It relies on established software

analysis techniques and a novel application of a constraint solver to find in-

puts that result in distinct behavior of two switches. Further, I design a

systematic methodology for switch update performance measurements. A

benchmarking tool based on this technique computes update rate character-

istics of hardware switches. By additionally tracking interactions between

control and data planes during the update, this methodology is capable of

revealing inconsistencies showing that the switches do not follow the specifi-

cation. Finally, I address the most severe issue detected. RUM, a software
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layer between the controller and the switches masks and fixes incorrect rule

update notifications coming from faulty switches.

I demonstrate the usefulness of the described solutions by analyzing ex-

isting switches. SOFT detected several inconsistencies between two open

source software switches. The performance benchmark revealed errors that

compromise network security. It also provided detailed switch characteris-

tics that should be taken into account by controller developers to improve

network performance. RUM prevents packet drops in a safe network update

without requiring any changes to faulty switches.

Keywords:

Software Defined Networks, switches, reliability, interoperability,

performance, flow table updates, OpenFlow
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Chapter 1

Introduction

1.1 Computer Networks

Computer networks are essential components of modern life. Whether to

work, get entertained, look for information, do shopping, or contact others,

people use the Internet and cloud services every day. As part of the critical

infrastructure, computer networks need to be reliable and keep working all

the time, even when facing network element failures. Moreover, the ever

growing need for connectivity poses strong extensibility and maintainability

requirements for the networks.

Years of research have led to a slowly evolving network architecture char-

acterized by a set of best practices. To avoid single points of failure, networks

are composed of multiple independent devices (e.g., switches, routers, mid-

dleboxes) that communicate using well-defined protocols. This way, after an

addition or a failure of one entity, the remaining nodes can follow standard-

ized procedures to reconverge their packet forwarding states. Further, by

relying on common protocols, the devices produced by different vendors and

managed by different operators can work together in one global network.

However, traditional computer networks are difficult to manage and leave

little room for innovation. Introducing new functionalities or modifying the

existing ones requires support at many levels. First, the standardizing body

needs to define a new protocol. This process often takes years and is followed

by detailed interoperability testing, as the new protocol cannot be in conflict

with existing ones. Since switches and routers run proprietary software to
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implement the standardized protocols, any implementation change requires

vendors’ intervention. If the feature is in low demand, switch and router

developers may take a long time to provide it. Further, administrators con-

figure each device individually at the protocol level, using its configuration

interface. The configuration interfaces and commands differ across vendors,

which leads to vendor-specific courses and certificates for network operators.

As a result, network administrators have to be familiar with many protocols

and many configuration interfaces. Adapting new protocols and devices in

a network induces an additional cost of staff training. A recent legal con-

flict between Cisco and Arista about using similar command line interfaces

shows that networking gear vendors are not interested in changing this situa-

tion [18]. All the above results in vendor lock-ins, where the network owners

are forced to heavily depend on a single switch/router provider. Finally, since

the network is configured at a protocol level with many protocols running

concurrently, it is difficult to reason about a global network state.

While a majority of computer networks is still following the traditional

approach, research efforts to simplify network management are quickly get-

ting traction.

1.2 Software Defined Networks

Software Defined Networking (SDN) is a recent approach to build computer

networks that promises to simplify network management and lower the bar-

rier for deploying new functionalities. It is gradually replacing the traditional

design in data center [78], campus [54], and wide area networks [39, 43,45].

The core concept in the SDN paradigm is physical separation of the data

and control planes in the network [64]. The control plane decides how to

configure the network and the data plane forwards packets according to this
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configuration. Unlike in the traditional case, where both planes were located

inside the same device (e.g., switch, router), in SDN the control plane of

multiple switches is realized in a single software program running on external

computers. One control program supervises multiple data plane devices via

a general configuration protocol.

This novel design solves many problems present in the traditional ap-

proach to networking. First, introducing a new functionality requires a net-

work operator to prepare a software program instead of making individual

changes to hardware devices. Moreover, the control program is written in

a high level programming language. Since the switches are configured ex-

ternally, they become simpler and cheaper. Complexity gets moved to a

software program running on a server machine. Further, as vendors are no

longer involved in the process, network innovation accelerates and becomes

more dynamic. Network operators get flexibility — they choose what func-

tions they need and want to provide and can do it quickly.

1.2.1 OpenFlow

OpenFlow [64] is the most popular open protocol used to realize SDN con-

cepts in practice. The protocol specification defines an interface and mes-

sages exchanged between the control program (often called controller) and

data plane packet forwarding devices called OpenFlow switches. Figure 1.1

shows an overview of the OpenFlow-based design.

1.2.1.1 OpenFlow Controller

A controller serves a crucial role in a software defined network. It collects

statistics and other information from the network and makes appropriate

reconfiguration decisions. Additionally, since the controller runs on a reg-
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Figure 1.1: An overview of SDN realized with OpenFlow. The
controller configures the OpenFlow switch using OpenFlow mes-
sages sent over a secure channel. OpenFlow agent running at the
switch parses the messages and updates rules in the flow table
accordingly.

ular computer, it can also pull data from other sources than the switches.

Consider, for example, a control program that adjusts routing based on a

machine reservation system in a cloud or expected popular social events in a

mobile network.

An OpenFlow controller is usually constructed as a layered, modular sys-

tem. On top of a controller platform, developers create so called controller

applications that realize particular functionalities such as topology discov-

ery, routing, load balancing. While controller platforms are often compared

to operating systems [38, 75], basic platforms such as NOX [6] provide only

message handling and translation between data structures and the wire for-

mat. More advanced, distributed platforms such as Onix [56] and ONOS [19]

spread state across multiple machine to improve fault tolerance. Contrary to

a common misconception, an SDN controller does not have to be centralized.

Commercial solutions rely on distribution and replication to improve perfor-
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mance and reliability. The controller platforms often come with a set of basic

and frequently used applications such as shortest path routing and link state

detection. This way other, problem-specific applications reuse the common

code. In the end, a fully functional controller contains a mesh of interdepen-

dent applications. Since the distinction between the controller platform and

the applications is often blurry, in this dissertation the term controller refers

to the entire modular control program.

Controller platforms try to balance programming simplicity and perfor-

mance by choosing different programming languages such as C++ (NOX [6]),

Java (Floodlight [4], Beacon [32]), Python (POX [12], Ryu [14]). Finally, as

is the case for any modern programming technique, various supporting tools

and abstractions make programming networks simpler. The control software

developer can use one of the high level network programming abstractions

to reason about the network at a high level in an intuitive manner [35, 47].

1.2.1.2 OpenFlow Switches

An OpenFlow switch is a generic packet forwarding device that replaces

switches, routers, and middleboxes known from traditional networks. There

are two main logical components of an OpenFlow switch: a flow table and

an OpenFlow agent.

OpenFlow agent. An OpenFlow agent is a software component running

at a switch. Its role is to expose a standardized programmatic interface to

the switch forwarding tables and to handle the communication with the con-

troller. The agent also performs initial message validation and error checking.

Flow table. The controller directly configures the switches by inserting

low-level forwarding rules in their flow tables. The flow table is a set of

match-action rules that define how the switch should handle packets. Each
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forwarding rule consists of a general match pattern that matches packet head-

ers and optionally a port at which the packet arrived. The matches span fields

belonging to multiple encapsulation layers and traditional networking proto-

cols (Ethernet, IP, TCP/UDP, and others). Moreover, each match can either

define the expected value of each field, or mark a field as unimportant by

wildcarding it. Actions include modifying headers, dropping and forwarding

packets to one or many ports, or encapsulating them in an OpenFlow mes-

sage and sending to the controller for further analysis. For each data plane

packet, the switch applies instructions or actions defined by the highest pri-

ority rule matching this packet. Additionally, each rule has a set of counters

assigned. These counters collect statistics about the number of packets and

bytes forwarded by a given rule. Newer OpenFlow specifications introduce a

notion of multiple flow tables that get chained and form a packet processing

pipeline.

In practice switches realize the abstract flow table as two separate tables.

First, an OpenFlow agent parses an incoming rule modification message,

checks for errors and places the desired rule in the software flow table. Af-

terwards, the updates are propagated to the hardware flow table managed

by an application-specific integrated circuit (ASIC). The main reason for

this split is limited bandwidth between the switch CPU and the ASIC. It

can become a bottleneck for frequent rule updates [29]. Independently, in

private communication switch vendors confirmed that to reduce the impact

of hardware updates, they batch multiple rule modifications before sending

them to the ASIC. Moreover, to provide quick matching for general and

partially wildcarded matches required by SDN, rules in the hardware table

are stored in Ternary Content-Addressable Memory (TCAM). This type of

memory is expensive and has high power requirements [17], which limits its
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available capacity. Therefore, switches may choose not to move some rules

to hardware [21, 48]. On the other hand, only rules placed in the hardware

flow table can guarantee high packet forwarding rates. Header matching and

packet forwarding in software is slower and overloads the switch CPU.

1.2.1.3 OpenFlow Commands

While this work considers all OpenFlow commands, these four are most rel-

evant to network reconfiguration: rule modifications (Flow Mod), Barrier,

Packet Out, and Packet In.

Rule modifications (Flow Mod). The controller instructs the switch how

to configure its flow table using flow table modification messages (Flow Mod,

sometimes called rule modification message in this thesis). There are three

subtypes of the rule modification message: addition of a new rule, deletion

of an existing rule, and change of an existing rule.

Barrier. Barrier is a multipurpose message used to order other messages

and to synchronize the switch and controller states. After receiving a Barrier

request, the switch has to finish processing all previously received messages

before executing any messages after the Barrier request. When the process-

ing is complete, the switch must send a Barrier reply message [11]. All older

specifications do not clarify what processing means exactly. Since OpenFlow

version 1.5, it is defined that a switch can send the Barrier reply only when

all earlier messages are processed such that their effects are visible in the

data plane.

Packet Out. The controller uses the Packet Out command to inject pack-

ets in the network data plane directly from a particular switch. The command

specifies the packet header and its content, as well as on which of the switch

ports should the packet appear.
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Packet In. The Packet In command is the opposite of Packet Out. This

message encapsulates a data plane packet and sends it to the controller using

the control channel. There are two scenarios when such an event occurs: (i)

the packet matches a rule that specifies a special “send to the controller”

action, or (ii) there is no matching rule and the switch sends packets to the

controller by default. The message contains the encapsulated packet itself

(or a part of its header) and the ingress port where the packet arrived.

1.2.2 Evolution of Network Devices

Years of steady development has lead to expensive and complex routers that

implement hundreds of protocols. In 2011, Cisco routers supported 700 dif-

ferent standards [15] while Juniper supported over 250 standards related to

routing alone [16]. Systems running on these machines contain over 20 mil-

lions lines of code and each device has to be separately updated.

The SDN revolution started in software switches first. Open vSwitch [69]

providing OpenFlow 1.0 support enabled first local OpenFlow tests. While

processing of packets in software is slower than in hardware, a modern evo-

lution of the Open vSwitch is capable of connecting virtual machines and

serves as the network edge in a virtualized environment [55]. This switch

implementation has been constantly maintained and developed to keep up

with the most recent protocol versions. It was also followed by other software

switches with OpenFlow support [3, 5].

When established networking gear vendors realized that SDN is getting

popular and there is demand for hardware OpenFlow switches, they started

adding extensions to their existing devices. The OpenFlow agent in these

switches is often based on Open vSwitch. Legacy devices with patched soft-

ware, such as HP ProCurve 5400zl, Dell PowerConnect 8132F and NEC
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IP8800 offer limited support for OpenFlow. Existing forwarding, routing,

and filtering tables have insufficient flexibility to perform general matches.

Their capacity is also insufficient for SDN requirements. Moreover, not all

required actions can be applied in hardware, and complex rules get rejected

or get placed in the software flow table. Since these devices were not de-

signed for frequent communication between CPU and ASICs, rule update

rate is low. Despite all the shortcomings, this first generation of switches

allowed for initial prototype deployments and many of them still are the core

of many academic networks [7].

Finally, new companies such as Pica8 and NoviFlow took advantage of

the SDN popularity and entered the market with switches purposefully built

for programmable networks. The new generation of devices claims full Open-

Flow support in multiple versions and offers improved performance. Their

hardware flow tables fit thousands of general rules with arbitrary matches

and actions.

The most recent trend in switch design argues for making switch hardware

interface fully open. Traditionally, switch hardware, an operating system and

specific feature implementations running at the switch were proprietary and

accessible only through a vendor-specific configuration interface. While early

SDN efforts standardized the interface and simplified the switch software, the

whitebox switches proposal goes a step further [76]. In a whitebox switch

only bare hardware is provided by vendors. Both the operating system and

applications are developed independently and users can get them from other

sources. This design is similar to a model successfully applied to personal

computers and servers for years.
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1.3 Motivation and Goals

The main assumption of Software Defined Networking is that all data plane

elements are configured using a common, well-defined programming interface

(API). Open APIs such as OpenFlow hide technological and implementation

details and give switch vendors freedom in choosing the best internal design.

However, because of the rapid development, devices that belong to dif-

ferent generations of SDN switch design exist in networks concurrently. This

diversity is further increased by several issues that make it difficult to produce

error-free and functionally equal switch software and hardware.

First, the specification is often ambiguous and can be interpreted in mul-

tiple, seemingly equally correct ways. Despite constant improvements and

clarifications in new specification revisions, there is no guarantee that two

independent teams implementing the same functionality will always under-

stand all the details in the same way.

Second, switch vendors sometimes have explicit implementation freedom

that can affect network behavior.

Finally, especially the newest specifications define a large set of desired

functions some of which are difficult or expensive to realize. Thus, vendors

may choose to simplify them or not to provide them at all, choosing higher

performance and lower cost over correctness.

Therefore, despite following the same specification and exposing a the-

oretically unified interface, switches are likely to behave differently in some

corner case scenarios. If controller developers and network administrators are

unaware of these differences, the network behavior can become suboptimal,

unexpected or even incorrect. However, while switches are the main compo-

nent of Software Defined Networks and their correct behavior is paramount
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for network reliability, there is little interest in switch testing [8, 72]. As for

any new technology, most of the SDN research is devoted toward developing

new functionalities. Testing efforts that exist focus on the controllers and

network policies as a whole. They assume correctly working switches and

abstract them behind simplified models.

My goal in this dissertation is to start the process of bridging the gap

between the reality of heterogeneous switches and the theory of the unified

network view promised by the SDN vision. To this end, switches should be

interoperable from the point of view of the controller, which means that

switches supporting the same protocol version should be treated by the con-

troller equally, regardless of their implementation.

Two phases are essential for reaching this goal.

• Well-established methodologies to systematically measure, analyze and

understand switch heterogeneity are required to test existing and new

switches. Such testing tools will detect problems with new devices.

Depending on severity, the detected issues should be addressed by ven-

dors, acknowledged by controller developers and network operators, or

handled by runtime tools.

• A multilevel chain of runtime tools should mask the detected differences

without requiring changes to the switches or to the controller. Applying

modifications to hardware devices such as switches is troublesome and

slow because it requires vendor efforts. On the other hand, it would be

wasteful and repetitive for all controllers to handle switch heterogeneity

on their own. Instead, I envision a chain of software-based proxies

layered between switches and controllers that mask both functional

and performance based differences to some extent.
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1.4 Solution Overview

I first set to understand how big of an issue the switch heterogeneity is in

practice. There are two sources and types of diversity.

First, differences and errors in OpenFlow agent source code could lead to

inconsistent functional behavior of the switches. Since an agent is in essence

a regular program, I apply an established systematic software analysis tech-

nique — symbolic execution. Symbolically executing a program generates

its mathematical representation: each execution path is encoded as a set of

constraints which must hold for the execution of that path. Additionally, the

path execution produces a corresponding output. The constraints split the

space of switch inputs into subspaces. All elements in a given subspace re-

sult in the same output. In the second testing phase, I check if there are any

inconsistencies between the two switches by intersecting their input/output

spaces. Such a two phase approach solves the main challenge of this problem

— how to compare two switches without requiring simultaneous access to

their source codes.

The second type of inconsistency cannot be detected using static source

code analysis alone. It is related to interactions between the switch software

and hardware. Here, I designed a switch flow table update measurement

methodology that systematically covers the input space (rule modification

request sequences). The main feature of this methodology is that it as-

sumes not only precise observation of the control channel, but also requires

constant data plane monitoring. A switch benchmark that implements the

methodology also injects and captures packets matching newly installed rules.

This approach revealed various timing related issues with existing OpenFlow

switches.
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Finally, I propose a software-based solution to one of the detected prob-

lems. Switches differ in terms of how precise they report rule modifications.

The biggest observed divergence from the truth is in order of minutes — a

delay that may even compromise network security. RUM is a software layer

between faulty switches and the controller that relies on additional tech-

niques to make sure that the switch really modifies a rule. The techniques

vary from simply waiting for a safe time, through using artificial, probe rule

modifications, up to full probing of the network data plane. They differ

in terms of the provided guarantees, assumptions about the switches, and

induced overhead.

1.5 Thesis Contributions

While working on achieving the thesis goals, I make the following contribu-

tions:

• I apply symbolic execution to systematically identify and compare code

paths in OpenFlow agents to determine input subspaces that result

in the same outputs. In the process, I identify what combinations

of symbolic and concrete inputs guarantee satisfactory running time

without sacrificing coverage. I also show how observing external actions

of an agent leads to conclusions about its internal state.

• I demonstrate a novel use of a constraint solver to compute an intersec-

tion of input subspaces for different agent implementations. It quickly

reveals inputs that cause different behavior (inconsistencies) in multiple

agents. In addition, it works without any definition of correct behavior.

This phase is separate from symbolic execution and does not require

access to switch source code.
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• I devise a systematic methodology for switch control plane performance

testing along many different dimensions. The methodology focuses

on measuring the interactions between the control plane and the data

plane. I also create and publicly release a benchmarking tool that

implements this methodology.

• I propose techniques that hide imprecise rule update notifications in

various SDN switches. The techniques offer different precision and

guarantees depending on the induced overhead and assumptions made

about the switch. All assumptions are based on the characteristics

observed in practical experiments. To validate my solutions, I create

RUM: a software layer that implements these techniques without re-

quiring any modifications to controllers and switches.

• I demonstrate the effectiveness of the technique that detects functional

differences between switches by applying it to the Reference Switch

(55K lines of code) and Open vSwitch (80K lines of code), the two pub-

licly available OpenFlow agent implementations. A tool implementing

the aforementioned technique found several inconsistencies between the

two switches.

• I show the usefulness of the performance measurement methodology

by presenting a detailed study of switch flow table update rates. I also

report several types of anomalous behavior in OpenFlow switches that

were never revealed before.

• I show that RUM guarantees rule update confirmations precise enough

to prevent any packet drops in a safe network update scenario, that

loses traffic for up to 290ms otherwise.
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1.6 Document Organization

In this chapter I presented a brief overview of Software Defined Networking

and outlined my motivation for systematic analysis of the emerging SDN

switches.

In Chapter 2, I present a systematic approach to detecting functional

differences between OpenFlow switches. SOFT is a tool that relies on recent

advancements in software analysis techniques to detect inputs for which two

tested switches return different outputs.

Chapter 3 presents an exhaustive study of flow table update characteris-

tics in SDN switches. The systematic methodology introduced in this chapter

allows for measuring and analyzing both bare update performance, as well

as finding corner cases and surprising behaviors.

In Chapter 4, I present a software-based solution to the inconsistent

and incorrect Barrier implementations detected and described in Chapter 3.

RUM is a middle layer between the switches and a controller. It provides the

controller with reliable rule update confirmations even when working with

unreliable switches.

Finally, I present the related work in Chapter 5 and conclude in Chapter 6.
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Chapter 2

Detecting Functional Differences

This chapter focuses on the question how unclear specification and imple-

mentation freedom affect switches from the functional point of view. SOFT

(Systematic OpenFlow Testing) — a tool introduced here — automates in-

teroperability testing of OpenFlow switches by applying software analysis

techniques. To achieve exhaustive testing, we present an approach that lever-

ages the multiple, existing OpenFlow implementations to identify potential

interoperability problems by crosschecking their behaviors. Instead of defin-

ing what the correct, expected behavior is, our method compares behavior

of the tested devices. Exploring code behaviors in a systematic way is key

to observing inconsistencies. Operating in two phases, SOFT uses symbolic

execution and constraint solving. In the first testing phase, symbolic exe-

cution runs locally on each vendor’s source code. Then, using the outputs

of symbolic execution (not the source codes), SOFT determines the input

ranges (e.g., fields in OpenFlow messages) that cause two OpenFlow agent

implementations to exhibit different behaviors.

2.1 Defining Inconsistencies

Switches that are capable of supporting the OpenFlow Switch Specifica-

tion [11] do so by running an OpenFlow agent. This agent is a piece of soft-

ware primarily responsible for state management. It receives and processes

control messages sent by OpenFlow controllers (e.g., Flow Mod, Packet Out,

etc.), and configures the switch forwarding tables accordingly to the given

commands. In addition, the OpenFlow agent may take part in packet for-
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warding itself — in a hardware switch, for packets that are forwarded to the

controller; in a pure software implementation, for every packet.

As such, the execution of the OpenFlow agent is mainly driven by external

events (e.g., rule installation requests). There are two channels that provide

data to the switch: control channel to the controller and data plane con-

nections. We make no distinction and use the term inputs to call the data

arriving at the agent as either OpenFlow control messages or data plane

packets.

Intuitively, an inconsistency occurs when two (or more) OpenFlow agents

that are presented with the same input sequence produce different results.

Here, the results refer to both externally observable consequences when pro-

cessing an input (e.g., replying to a request for flow table statistics), and

internal state changes (e.g., updating the flow table with a new entry).

To be able to identify inconsistencies, we assume the agents support the

OpenFlow interface and we check for inconsistencies in operations at the in-

terface level. To crosscheck behaviors, we rely either on externally observable

results or, when necessary, on the probe packets to infer the internal state.

Note that, we are uninterested in verifying the underlying switching hard-

ware’s correctness. In fact, such verification is typically already part of the

ASIC design process. However, we assume that there is a way to execute

the OpenFlow agent without the switching hardware, e.g., through an emu-

lation layer that is commonly readily available for development and testing

purposes.

2.2 Symbolic Execution Background

Our approach is inspired by the successful use of symbolic execution [53] in

automated testing of systems software [23–25,28,37]. The idea behind sym-
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bolic execution is to exercise all possible paths in a given program. Therefore,

unlike normal execution that runs the program with concrete values, symbolic

execution runs program code on symbolic input variables, which are initially

allowed to take any value. During symbolic execution, code is executed nor-

mally until it reaches a branch instruction where the conditional expression

expr depends (either directly or indirectly) on a symbolic value. At this

point, program execution is logically forked into two executions — one path

where the variables involved in expr must be constrained to make expr true;

another path where expr must be false. Internally, the symbolic execution

engine invokes a constraint solver to verify the feasibility of each path. Then,

program execution resumes and continues down all feasible paths. On each

path, the symbolic execution engine maintains a set of constraints, called the

path condition, which must hold for the execution of that path. For every

explored path, symbolic execution passes the path condition to a constraint

solver to create a test case with the respective input values that led execu-

tion on that path. Since program state is (logically) copied at each branch,

the symbolic execution engine can explore multiple paths simultaneously or

independently.

Like others [57], we observe that, to deal with loops, symbolic execu-

tion would potentially need to explore an unbounded number of paths. As

described in Section 2.5.2, we effectively side-step this problem by exploit-

ing knowledge of the OpenFlow message grammar to construct inputs that

ensure we explore a bounded number of paths.

Therefore, symbolic execution is a powerful program analysis technique

— rather than having a linear execution where concrete values are used, sym-

bolic execution covers a tree of executions where symbolic values are used.

However, the usefulness of symbolic execution is limited by its scalability be-

19



cause the number of paths through a program generally grows exponentially

in the number of branches on symbolic inputs. This problem is commonly

known as the “path explosion” problem. The path explosion is exacerbated

by the fact that the program under test interacts with its environment, e.g.,

by invoking OS system calls and calls to various library functions. External

functions present an additional problem if the symbolic execution engine does

not have visibility into their source code. A typical solution to this problem

is to abstract away the complexity of the underlying execution environment

using models. These models are typically a simplified implementation of a

certain subsystem such as file system, network communication, etc. Besides

using environment models to “scale” symbolic execution, it is possible and

often sufficiently practical to selectively mark as symbolic only the inputs

that are relevant for the current analysis. As we show later in Section 2.5.2,

carefully mixing symbolic and concrete inputs is key to being able to sym-

bolically execute OpenFlow agents.

2.3 SOFT Overview

Our approach to automatically finding inconsistencies among OpenFlow agent

implementations is most easily introduced through an example.

Consider an input sequence that only includes one control message of

type Packet Out. This message instructs the OpenFlow agent to send out a

packet on port p, where p is a 16-bit unsigned integer that identifies a specific

port or is equal to one of several preset constants (e.g., flood the packet or

send to controller). For the sake of presentation, we assume that only p is

symbolic (i.e., p is the only part of this input that varies) and we omit the

case p = 0 (for which an error message would be produced).

We first symbolically execute an OpenFlow agent implementation while
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if (p == OFPP_CTRL) {

  send_to_ctrl()

} else if (p < 25) {

  send_to_port(p)

} else {

  error(BAD_PORT);

}

if (p < 25) {

  send_to_port(p);

} else {

  error(BAD_PORT);

}

Figure 2.1: Example OpenFlow agents having different
PACKET OUT message implementations.

feeding it with this input sequence. When executing symbolically, we auto-

matically partition the input space of p into several subspaces. Each subspace

is an equivalence class of inputs that, in this case, describes which values of

p follow the same code path. To make the point more tangible, consider

Agent 1 in Figure 2.1: if p ∈ [1, 24] the program executes the code path that

sends the packet on port p; if p = OFPP CTRL (the predefined controller port)

the program executes a different code path that encapsulates the packet in a

Packet In message and sends it to the controller; and so on. Besides deter-

mining the input space partition, we log the output results produced when

executing each code path (e.g., we log what packet comes out from which

port). Therefore, for each input subspace there exists a corresponding output

trace.

Next, we symbolically execute a different OpenFlow agent implementa-

tion (Agent 2 in Figure 2.1) and determine the partitions of input space of

p. However, assume that this second OpenFlow agent does not support the

special port number OFPP CTRL. Instead, the program sends an error message

to the controller when it encounters this case. Likewise, we log the output

results produced when executing each code path.

At this point, we have two input space partitions (one for each OpenFlow

agent implementation), as depicted in Figure 2.2. Within each partition, we
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Figure 2.2: Input space partitions and inconsistency check.

then group the subspaces by output result (illustrated with different colors

in Figure 2.2). That is, we merge together two subspaces (two code paths), if

they produce the same outputs. Such grouping results in two coarse-grained

input space partitions–one for each agent. Next, we consider the cross prod-

uct of the coarse-grained partitions (i.e., all pair-wise combinations of sub-

spaces between the two partitions). From the cross product, we exclude pairs

of subspaces that correspond to identical output results. Finally, we inter-

sect the two subspaces in every remaining pair. A non-empty intersection

defines a subspace of inputs that give different results for different OpenFlow

agents: this is an inconsistency. For each inconsistency we discover, we con-

struct a concrete test case that reproduces the observed results. Relative to

our current example, we identify that one inconsistency exists and, to repro-

duce it, we construct the example with input p = OFPP CTRL as illustrated

in Figure 2.2.
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2.4 Usage

It is impractical to assume that a tool for interoperability testing has access

to the source code of commercial OpenFlow implementations from all ven-

dors. Therefore, the goal is to make symbolic execution scale to crosscheck

different OpenFlow implementations and find interoperability issues without

having simultaneous access to all source codes. The proposed solution allows

switch vendors to use SOFT in two phases. In the first phase, each vendor

independently runs SOFT on its OpenFlow agent implementation to produce

a set of intermediate results that contain the input space partitions and the

relative output results. One benefit of this approach is that a vendor does

not require access to the code of other vendors.

In the second phase, SOFT collects and crosschecks these intermediate

results to identify inconsistencies. This phase can take place as a part of

an inter-vendor agreement (e.g., under an NDA), or during wider interop-

erability events [9]. Alternatively, a third-party organization such as Open

Networking Foundation (ONF) may conduct the tests.

While we focus the presentation of SOFT on interoperability testing,

we want to clarify that there exist other applications. For example, SOFT

can automate performing regression testing. In addition, it can be used to

compare against a well-known set of path conditions that are bootstrapped

from unit tests.

We observe that an OpenFlow agent is potentially a software component

of a hardware device. As such, some operations can install state directly in

the switching hardware (e.g., forwarding rules), seemingly outside of SOFT’s

reach. We note, however, that vendors typically have a way of running

their firmware inside a hardware emulator for testing purposes. We only
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require that the hardware emulator is integrated with the symbolic execution

engine. Previous work (e.g., [28]) demonstrates that it is indeed possible to

run complex software systems live, including closed-source device drivers.

2.5 Design

Our goal is to enable systematic exploration of inconsistencies across multiple

OpenFlow agent implementations. In other words, we want to find whether

there exists any sequence of inputs under which one OpenFlow agent behaves

differently than another agent. To do this, we require a way of (i) construct-

ing sequences of test inputs that cover all possible executions for each Open-

Flow agent, and (ii) comparing the output results that each input produces

to identify inconsistencies.

We accomplish the subgoal of finding test inputs by using symbolic ex-

ecution. The outcome of symbolic execution is twofold: (i) a list of path

conditions, each of which summarizes the input constraints that must hold

during the execution of a given path, and (ii) a log of the observed output

results for each path executed.

We then identify inconsistencies by grouping the path conditions that

share the same output results on a per-agent basis and finding the input

subspaces that satisfy the conjunction of the path conditions. Figure 2.3

provides an illustration of the operation of SOFT as described above. In

the remainder of this section, we discuss our approach in detail. After a

brief description of a strawman approach for utilizing symbolic execution in

functional equivalence testing, we analyze improvements required to apply it

to complex software such as OpenFlow agents. Finally, we discuss how we

solve the second problem, namely collecting and comparing relevant outputs.
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Figure 2.3: SOFT overview.

2.5.1 Automating Equivalence Testing

Our form of interoperability testing can be viewed as checking the func-

tional equivalence of different OpenFlow agents at the interface level (i.e.,

the OpenFlow API). To understand how we can use symbolic execution for

this purpose, let us first consider a simpler problem.

A strawman approach. Assume we have two functions that implement the

same algorithm differently and we want to test if they are indeed functionally

equivalent. To do this, it is sufficient to symbolically execute both functions

by passing identical symbolic inputs to both of them and checking whether

they return the same value. If the results differ, the symbolic execution

engine can construct a test case to exercise the problematic code path. In
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essence, symbolic execution enables us to crosscheck the two functions’ results

through all possible execution paths. This simple approach is sound, i.e., it

identifies all cases where results differ, provided that symbolic execution can

solve all constraints it encounters. It is also relatively straightforward to

extend this approach to crosscheck console utility programs by running with

the same symbolic environment and comparing the data printed to stdout,

as shown in [24].

Challenges and approach. Scaling up this approach to our target system

is not an easy task. An OpenFlow agent is a non-terminating, event-driven

program that interacts intensely with its environment. In this case, the

environment consists of the network data plane, other switch components

(e.g., flow tables) and the controller.

The first challenge this raises is that the input space is inherently infinite,

thus making the problem of comparing OpenFlow agents over unbounded

inputs intractable. Instead, to make our problem tractable, we must limit

the length of any input sequence used for testing.

Second, crosschecking the results of different OpenFlow agents is challeng-

ing because there exists no notion of a “switch return value”. Furthermore,

there does not exist a universal stdout format that enables textual com-

parison unlike console utilities. Instead, we must collect a trace of switch

output results that enables comparison using detailed information from both

the OpenFlow and the data plane interfaces. In other words, we must for

example, capture packets and OpenFlow messages emitted by the switch,

and maintain a non-ambiguous representation of these events.

Finally, the approach above works by feeding both functions with the

same symbolic input. In turn, this requires that both agents be locally avail-

able. However, we cannot assume that SOFT will operate on different Open-
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Flow agents at the same time. Instead, we make a conscious design choice

to decouple the symbolic execution phase from the crosschecking phase.

2.5.2 Creating Symbolic Inputs

An OpenFlow agent reacts to OpenFlow messages and data plane packets

it receives. Therefore, sequences of such messages can be considered inputs

to the agent. In this subsection, we only consider the control channel inputs

(the messages sent by the controller) because our goal is to test a switch at

the OpenFlow interface (and not the data plane interface).

2.5.2.1 Structuring Inputs

Feeding unstructured inputs is ineffective. As the input space con-

taining sequences of arbitrary numbers of arbitrary messages is infinite, we

need to enforce the maximum length of the sequence. A straightforward

way to limit the input size would be to use N -byte symbolic inputs, with N

bounded. Unfortunately, this approach quickly hits the scalability limits of

exhaustive path exploration because these inputs do not contain any infor-

mation that is of either syntactic or semantic value. As a result, symbolic

execution must consider all possible ways in which these symbolic inputs can

be interpreted (most of which represent invalid inputs anyway) to exhaust

all paths. As an example, consider feeding an agent with the mentioned

sequence of N symbolic bytes. Since there exist different types of control

messages, some of which have variable lengths, this stream of N bytes can

be parsed (depending on its content) as: one message of N bytes, or as any

combination of two messages whose lengths add up to N , or as combinations

of three messages, etc.

Moreover, some messages like Flow Mod and Packet Out, are variable
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in length. This is because they both contain the actions field which is a

container type for possible combinations of forwarding actions. The major

issue arises as each individual action is itself variable in length. As such,

we are again in the situation where symbolic execution is left to explore all

possible combinations in which it can interpret N symbolic bytes as multiple

action items. Although individual lengths must be multiple of 8 bytes to be

valid, the combinatorial growth quickly becomes impractical.

Structuring the inputs improves scalability. We overcome the afore-

mentioned problems by using a finite number of finite-size inputs. Most

importantly, we construct inputs that adhere to valid format boundaries of

OpenFlow control messages rather than leaving symbolic execution to guess

the correct sizes. This means that we feed the agent with one symbolic con-

trol message at a time and pass the actual message length as a concrete

value in the appropriate header field. In practice, we must also make the

message type concrete before establishing a valid message length, as the lat-

ter is essentially determined by the former. This is not an issue, since every

message must be identified by a valid code (at present about 20 codes exist,

all described in the protocol specifications, e.g., [11]). In a similar fashion,

for messages that have variable length actions, we predetermine the number

of action items and the relative lengths as concrete values.

2.5.2.2 Choosing the Size of Inputs

As we choose to limit the size of inputs, the immediate question we face is

up to what input size is it practical to symbolically execute an OpenFlow

agent, given today’s technology? Indeed, it is known that the scalability

of symbolic execution is limited by the path explosion problem: i.e., the

number of feasible paths can grow exponentially with the size of the inputs
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and number of branches. On the other hand, to make testing meaningful,

the chosen inputs need to provide satisfactory coverage of agent’s code and

functionality. In practice, we seek answers through empirical observations.

The input size varies along two dimensions: (i) number of symbolic control

messages, and (ii) number of symbolic bytes in each message.

Covering the input space of each message is generally feasible. We

first explore to what extent the number of symbolic bytes in each message

represents a hurdle to our approach. As we discuss below, we find that the

overhead to exhaustively cover the input space of each message is generally

acceptable, given the current protocol specifications. We already mentioned

that the message length depends in the first place on the message type. It

should also be clear that the processing code and especially the processing

complexity varies across message types. For example, it is trivial to sym-

bolically execute a message of type Hello, which contains no message body.

On the other hand, the Flow Mod message, which drives modifications to

the flow table, carries tens of data fields that need validation and ultimately

determine what actions the switch will perform. Indeed, we observe through

experimentation that the number of feasible paths varies significantly be-

tween different message types (two orders of magnitude between Flow Mod

and Packet Out messages). Most importantly, symbolic execution runs to

completion in all cases when testing with the reference OpenFlow switch

implementation.1

Achieving good coverage requires just two symbolic messages. How-

ever, the question remains about how many symbolic control messages we

should inject in practice. Again, the answer depends on what type of mes-

sages one considers. We find that for complex messages we can at most use

1Our experimental setup is introduced in Section 2.7.
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Figure 2.4: Reference switch code coverage as a function of the
number of symbolic messages injected.

a sequence of three messages. This number may seem small, but it is worth

noting that we do not need long message sequences for the type of testing we

target. In fact, one symbolic message is already sufficient to cover all feasible

code paths involved in message processing. With the subsequent message,

we augment the coverage to include additional paths that depend on parts of

switch state that are rendered symbolic as a result of running with the first

symbolic message. Effectively, the second message enables us to explore the

cross-interactions of message pairs. In addition, such interactions exist only

for a small fraction of possible message type combinations. For example,

two Flow Mod messages may affect the same part of the switch state; that

is not true for Echo Request followed by Flow Mod. As such, the increase

in instruction coverage due to the second message is a fraction of what the

first message covers. A third message does not significantly improve coverage

further as shown in Figure 2.4. Thus, careful consideration of inputs is key

to successfully achieving our goals through symbolic execution.
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2.5.2.3 Defining Relevant Input Sequences

Exploiting domain specific knowledge is essential to construct input sequences

that target interesting uses of OpenFlow messages to further reduce the test-

ing overhead. First, although the protocol specifications define about 20

messages, some of these are clearly more important than others. For exam-

ple, the Hello and Echo messages are simple connection establishment and

keep-alive messages, respectively. We focus on complex messages such as

Flow Mod, Packet Out, Set Config that require validation and modify the

state of an agent. We also note that because these messages are meant to

affect different functional aspects of the agent, we find it unnecessarily time-

consuming to check all pair-wise combinations of these messages. Section 2.7

details the actual sequences of messages we use for testing.

2.5.3 Collecting Output Results

So far we have shown how our approach uses exhaustive path exploration to

obtain the input space partitions (or equivalence classes of inputs). However,

we still need to know what end result each partition produces because only

the results enable the comparison across different OpenFlow agents.

As we feed a symbolic message to an OpenFlow agent, its state might be

updated. Additionally, there are two possible outcomes: (i) the agent outputs

some data (i.e., messages back to the controller or data plane packets), or

(ii) the agent does not produce externally observable data. In this work we

treat only data explicitly returned by an agent (OpenFlow messages and data

plane packets) as an output. Instead of directly fetching the internal state,

we use additional packets and messages to infer the impact of the state on

agent’s behavior.

Capturing output data. To collect the outputs, we make use of the
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OpenFlow and data plane interfaces to capture data. Specifically, we log

all OpenFlow messages and packets emitted by the agent. Note that the

entire analysis runs in software (the output data may even contain symbolic

inputs); therefore, with data plane interface we simply mean the socket API

(or equivalent) that the agent uses to send packets.

Using concrete packets for probing state. Regardless of whether the

agent does or does not output data, we cannot immediately determine if

the symbolic message caused any internal state change (e.g., the Flow Mod

message installs a new rule in the flow table). Differences in the internal

state do not necessarily result in differences in observed behavior. Moreover,

we want to avoid directly fetching an agent’s internal state as this would

add a dependency on the specific implementation. As a solution, following

any potentially state changing symbolic message, we inject a concrete packet

through the data plane interface as a simple state probe. The effect of this

probe is that it enables symbolic execution to exercise the code that matches

incoming packets and the code that applies the forwarding actions. The

probe packet is then either forwarded (to a port or controller), in which case

we log it, or it is dropped, in which case we log an empty probe response.

Normalizing results. Rather than saving the logs verbatim, we normalize

the output results to remove certain data from the results for which spu-

rious differences are expected. For example, the buffer identifiers used by

different agents may differ and such a difference should not be considered an

inconsistency.

2.5.4 Finding Inconsistencies

In this phase, we seek to find inconsistencies between two OpenFlow agents

denoted A and B.
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With respect to agent A, we denote with PCA the set of path conditions

(outcome of symbolic execution). For each pc ∈ PCA, let resA(pc) be the

normalized output result when executing the path represented by pc. We

denote the set of distinct output results as RESA.

Grouping paths by output results. Our first step is to group all different

path conditions that produce the same output result. Formally, ∀r ∈ RESA

we set CA(r) =
∨{pc | pc ∈ PCA; resA(pc) = r} to be the disjunction of all

path conditions that share the same output result. PCB, RESB, and CB are

similarly defined.

Intersecting input subspaces. In our second and last step, for each pair

of different outputs of agents A and B, we check if there exists at least one

common input that leads to these inconsistent outputs. For each pair (i, j)

of results i ∈ RESA, j ∈ RESB such that i �= j, we query a satisfiability

solver (STP [36]) to obtain an example test case that satisfies the condition

CA(i)
∧

CB(j). If the solver can satisfy this conjunction, then we have an

inconsistency.

Discussion. It is easy to note that an upper bound of the number of

queries to the solver for our approach is |RESA| · |RESB|. In addition,

note that our approach produces only one inconsistency example per pair

of different output results. In other words, we do not provide one example

for each path that produces the inconsistency. If this is desired, one can

omit grouping all paths that share the same output. However, doing so has

an inherent overhead cost because it increases the number of STP queries.

Instead, our approach amortizes the start-up costs of a multitude of solver

invocations by using fewer larger queries and enables the solver to apply

built-in optimizations to handle such larger queries.

As with any bug finding tool, it is important to know whether our ap-
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proach may report false positives/negatives. We observe that SOFT does

not produce false positives: each identified inconsistency is an evidence of

divergent behavior. Note that this does not necessarily mean that one agent

does something in violation to the specifications. According to our previous

definition, an inconsistency is reported if the tested agents perform different

actions when exposed to the same input. However, the tool might have false

negatives for two reasons. The first is that our path coverage may not be

complete. For instance, symbolic execution might not cover all feasible paths

due to path explosion. The second is that all agent implementations under

test might contain the same bug, and therefore produce the same output.

2.6 Implementation Details

We built our SOFT prototype on top of the Cloud9 [23] symbolic execution

engine. SOFT consists of three major components: (i) a test harness, which

drives the testing of OpenFlow agents, (ii) a grouping tool to group path

conditions that share output results, and (iii) a tool for finding inconsisten-

cies.

2.6.1 Test Harness and Cloud9

To provide the necessary execution environment for the OpenFlow agent, we

build a test harness that emulates both a remote controller and the underlying

network. The emulated controller is capable of injecting symbolic inputs.

As a symbolic execution engine, Cloud9 can symbolically execute only a

single binary. We therefore create a test “driver” by linking the OpenFlow

agent and our test harness controller together. Upon startup, the test driver

forks into two processes, one of which runs the OpenFlow agent while the

second runs the test harness itself. The two processes are connected via
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standard UNIX sockets. Upon startup, the OpenFlow agent connects to the

test harness. After the connection setup and exchange of the initial Hello

messages, the test harness injects a sequence of several symbolic OpenFlow

messages and/or probes, one at a time (we discuss the input sequences in

more details in Section 2.7). Upon confirming that the switch processed all

messages and probes, we kill the execution.

To use Cloud9 for our goal, we had to improve its environment model.

Cloud9 provides a symbolic model of the POSIX environment. Such a model,

most importantly, allows us to efficiently use the socket API without access-

ing the entire networking stack. As a result, all symbolic variables remain

symbolic after being transferred as data in a packet. However, such a model

needs to provide all functions used by the tested application. Notably, we

needed to implement the RAW socket API which was missing in Cloud9 but

is used by the OpenFlow agents in our tests. Moreover, we replace or simplify

some library functions as described next.

We assume that the agents correctly use network versus host byte order-

ing, and we change functions ntoh and hton to simply return their argument

unchanged. This simplifies constraints by removing double-shuffling (first

when the test harness creates a message, second when the OpenFlow agent

parses the message). We also simplify checksum and hash functions to return

constants or identities, because they cannot be reversed or it is computation-

ally very expensive to do so (this is a well-known issue in using a constraint

solver). The aforementioned modifications reduce complexity and improve

symbolic execution efficiency.

Finally, the symbolic execution engine may use several search strategies

that prioritize different goals while exploring the program. We choose to

use the default Cloud9 strategy that is an interleaving of a random path
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choice and a strategy that aims to improve coverage. However, the choice of

the search strategy has small impact on our tool. By controlling the inputs

we tend to exhaustively cover all possible execution paths, which in turn

diminishes the impact of choosing a particular search strategy. Moreover,

SOFT is capable of working with traces that are only partially covering

agents’ code.

2.6.2 Tools

Apart from the test harness, we provide two tools for manipulating Cloud9

results. Both of these tools are written in C++ and heavily reuse existing

Cloud9 code for reading, writing and manipulating path conditions. The

tools contain less than 200 lines of new code in total.

The group tool reads multiple files (results of Cloud9 execution), iden-

tifies different output results and groups the path conditions by result. To

improve performance of further constraint parsing, we group path conditions

by building a balanced binary tree minimizing the depth of nested expres-

sions. The inconsistency finder tool expects two directories holding grouped

results as its arguments. The tool iterates over all combinations of different

results and queries the STP solver to check for inconsistencies. If there is

an inconsistency (the condition is satisfiable), the STP solver provides an

example set of variables that satisfy the condition. This is a test case that

can be used to understand and trace the root cause of the inconsistency and

verify if a behavior is erroneous.

2.7 Evaluation

We evaluate SOFT using two publicly available OpenFlow agents compatible

with the specifications in version 1.0. The first one is a reference OpenFlow
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Test Description

Packet Out A single Packet Out message containing a symbolic ac-
tion and a symbolic output action.

Stats Request A single symbolic Stats Req. It covers all possible
statistics requests.

Set Config A symbolic Set Config message followed by a probing
TCP packet.

FlowMod A symbolic Flow Mod with 1 symbolic action and a sym-
bolic output action followed by a probing TCP packet.

Eth FlowMod

Symbolic Flow Mod with 1 symbolic action and a sym-
bolic output action. Fields not related to Ethernet are
concretized. The message is followed by a probing Eth-
ernet packet.

CS FlowMods 2 Flow Mod. The first one is concrete, the second is
symbolic.

Concrete 4 concrete 8-byte messages. These are the messages that
do not have variable fields.

Short Symb A 10-byte symbolic message. Only the OpenFlow ver-
sion field is concrete.

Table 2.1: Tests used in the evaluation.

switch implementation written in C released with version 1.0 of the specifica-

tions. Its main purpose is to clarify the specifications and present available

features. Although the reference implementation is not designed for high

performance, it is expected to be correct as others will build upon and test

against it. We are referring to this version as Reference Switch (55K lines

of code). The second is Open vSwitch 1.0.0 [10] (80K lines of code). It is a

production quality virtual switch written in C and used as a base for several

commercial switches.2 OpenFlow is just one the supported protocols. We

also created a third OpenFlow agent by modifying the Reference Switch and

introducing different corner case behaviors (Modified Switch). This way we

can tell how efficiently SOFT finds the injected differences and which of them

remain unnoticed.

To evaluate SOFT we use the set of tests summarized in Table 2.1. We

run our experiments using a machine with Linux 3.2.0 x86 64 that has 128

2For example, in Pica8 products: http://www.pica8.org/.
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GB of RAM and a clock speed of 2.4 GHz. Our implementation does not use

multiple cores for a single experiment.

2.7.1 Can SOFT Identify Inconsistencies?

In this section, we report and analyze the inconsistencies SOFT detects. We

apply a set of tests to all three OpenFlow agents and compare Reference

Switch with both Modified Switch and Open vSwitch.

2.7.1.1 Modified Switch vs. Reference Switch

First, we look for differences between Reference Switch and Modified Switch.

Two team members who did not take part in the tool’s implementation and

test preparation were designated to introduce a few modifications to the Ref-

erence Switch. The modifications were meant to affect the externally visible

behavior of the OpenFlow agent. Having purposefully injected changes, we

set out to check how many can be detected by SOFT.

SOFT is able to correctly pinpoint 5 out of 7 injected modifications.

We further investigate the cases in which SOFT failed to flag the effect of

the differences. It turns out that one of them concerns the Hello message

received while establishing a connection to the controller. SOFT does not

recognize this problem because it establishes a correct connection first and

then performs the tests. The second missed modification manifests itself

only when a rule is deleted because of a timeout. This occurs because the

symbolic execution engine is not able to trigger timers. As part of our future

work, we plan to extend our approach to deal with time, e.g., similarly to

MODIST [82].
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2.7.1.2 Open vSwitch vs. Reference Switch

Knowing that SOFT is capable of finding inconsistencies, we compare the

Reference Switch with Open vSwitch to verify how useful SOFT is when

applied to a production quality OpenFlow agent. The list of differences

between the two major software agents contains a few significant ones. In

the following, we present the observed inconsistencies and analyze their root

causes.

Packet dropped when action is invalid. This case describes a Packet

Out message containing a packet that is silently dropped by Open vSwitch

while the Reference Switch forwards it. The inconsistency appears when the

Packet Out control message satisfies the following conditions: (i) it contains

the packet that the agent should forward and (ii) one of the actions is setting

the value of VLAN or IP Type of Service field. Further investigation leads us

to the conclusion that Open vSwitch validates whether a new VLAN value

set by the action fits in 12 bits and similarly whether the last two bits of the

TOS value are equal to 0. When an action specified in the message does not

pass this strict validation, Open vSwitch silently ignores the whole message.

Additional tests with Flow Mod messages reveal a similar issue. These tests

also show that the vlan pcp field undergoes additional validation in Open

vSwitch. Reference Switch does not validate values of the aforementioned

fields, but it automatically modifies them to fit the expected format.

The specifications do not state that the OpenFlow agent should perform

such a precise validation of any of the mentioned fields. Therefore, both

implementations might be considered correct. However, such a difference in

behavior might cause unexpected packet drops if the controller developers

test their applications with switches that are different from those deployed

in the network.
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Forwarding a packet to an invalid port. Here we describe a case in

which the tested OpenFlow agents return error messages concerning incorrect

output ports in an inconsistent fashion. According to the specifications, the

agent has to return an error message if the output port will never be valid.

However, if the port may become valid in the future, the message might

either be rejected with an error, or the agent may drop packets intended for

this port while it is not valid. The differences in interpretation when the port

will be invalid forever lead to a few differences between OpenFlow agents.

First, when the ingress port in the match is equal to the output port, the

Reference Switch returns an error, as no packets will ever be forwarded to

this port.3 Open vSwitch accepts such a rule and drops all matching packets.

On the other hand, Open vSwitch immediately returns an error when the

action defines an output port greater than a configurable maximum value.

Reference Switch does not validate ports this way.

Thus, if the controller application relies on error messages received, it may

misbehave when deployed with a different agent than it was tested with. If

the agent used in testing considered a port valid but the other agent did

not, the controller would fail to install rules it was designed to install. The

opposite situation is equally unsafe. The rule installation that used to return

an error succeeds, but all matching packets get dropped. As a result, some

packets will not to be sent to the controller, although they were expected to

be. Moreover, such a rule may cover another, lower priority one.

Lack of error messages. We have already presented a few cases when

one of the agents silently drops the incorrect message without returning an

error. SOFT detects another instance of such a problem in the Reference

Switch while testing with Packet Out and Flow Mod messages. When the

3A special OFPP IN PORT port must be explicitly used to forward packets back to the port
they came from [11].
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buffer id field refers to a non-existent buffer, the Reference Switch handles

the message but does not apply actions to any packet and does not report

any error. Open vSwitch replies with an error message, but installs the flow

as well. We analyzed the Reference Switch source code and discovered that

although the error is returned by the message handler, it is not propagated

further as an OpenFlow message.

OpenFlow agent terminates with an error. There are three indepen-

dent cases when the Reference Switch crashes. First, when the OpenFlow

agent receives a Packet Out message with output port set to OFPP CTRL.

This may be a rare case (e.g., when the developer demands such behavior)

but it is not forbidden by the specifications. Second, when the agent ex-

ecutes an action setting the vlan field in a Packet Out message the same

error appears and the agent crashes. Finally, when the agent receives a queue

configuration request for port number 0, it encounters a memory error. All

the aforementioned problems are not only inconsistencies, but also major

reliability problems in the OpenFlow agent.

Different order of message validation. In this case, the order in which

message fields should be validated is not made explicit in the specifications.

This vagueness results in externally visible differences in agents’ behavior.

The same incorrect message may induce two different error messages, or an

error message and a lack of response in case of the mentioned problem. We

encountered such a situation for a Packet Out message with an incorrect

buffer id and output port.

Statistics requests silently ignored. The Reference Switch silently ig-

nores requests for statistics to which it is not able to respond. This behavior

is a specific case of the “Lack of error messages” problem. Even though the

handler returns an error it is not converted to an OpenFlow message. The
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problem was detected because Open vSwitch sends an error in response to

an invalid or unknown request.

Missing features. SOFT is able to detect features that are missing in

one OpenFlow agent, but are present in the other. We were able to au-

tomatically infer that Open vSwitch does not support emergency flow en-

tries that are defined in the specifications. Secondly, Reference Switch being

purely an OpenFlow switch, does not support the traditional forwarding

paths (OFPP NORMAL).

2.7.2 What is the Overhead of Using SOFT?

In this section, we present the performance evaluation of the two key stages

of SOFT’s execution.

Symbolic execution. In the first stage, the OpenFlow agent is symboli-

cally executed with an input sequence and SOFT gathers path constraints

and corresponding outputs. For all three OpenFlow agents we report the

running time, as well as the number and size (number of boolean operations

in a path condition) of paths (equivalence classes of inputs) in Table 2.2.

These metrics are strongly variable and depend not only on the input length

but also on the message type. Moreover, adding a second message or a probe

packet significantly increases complexity by orders of magnitude. Addition-

ally, Open vSwitch–the most complex of the tested agents–is noticeably more

challenging for symbolic execution (we note that it is possible to use even

partial results of symbolic execution to look for inconsistencies). As a result

of multiple additional validations, the test input space for Open vSwitch is

partitioned into 3-15 times more subspaces than for the Reference Switch.

Subspaces intersections. We distinguish between two sub-stages of the

second stage: (i) grouping input subspaces by the same output, (ii) inter-
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Grouping results Inconsistency
Test Reference Switch Open vSwitch checking

time #res time #res time #
Packet Out 0.038s 6 0.090s 10 26s 14

Stats Request 0.116s 8 0.061s 9 10s 7
Set Config 0.141s 69 0.43s 69 236s 0

Eth FlowMod 8s 12 23s 31 23m 58
CS FlowMods 79s 4 344m 6 >28h ≥8
Short Symb 0.039s 9 0.01s 7 6s 4

Table 2.3: Time needed to find overlapping input subspaces and
number of created test cases. Each test case represents one inter-
section of overlapping input subspaces. Additionally, time needed
to group constraints by the output and a number of distinct out-
puts for Reference Switch and Open vSwitch.

secting subspaces corresponding to potential inconsistencies.

For the first sub-stage we report the time required to group and the

number of distinct outputs. As presented in Table 2.3, this part requires

orders of magnitude less time than symbolic execution. Grouping constraints

dramatically reduces the number of expressions that need to be checked for

satisfiability, as there are only up to 30 distinct outputs (a 1-5 orders of

magnitude reduction compared to the initial number of equivalence classes).

The search for overlapping subspaces depends on the complexity of con-

straints and usually finishes within a couple of minutes. There is one excep-

tional case in which the STP solver is unable to solve the merged constraints

in one day. In the future we plan to investigate grouping constraints into

smaller groups for such cases.

The achieved results in finding inconsistencies confirm our expectations.

Usually one difference manifests itself multiple times and affects many sub-

spaces of inputs. In the extreme example, although there are 58 reported

inconsistencies, manual analysis reveals only 6 distinct root causes of differ-

ences.
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Reference Switch Open vSwitch
Test Inst.(%) Branch(%) Inst.(%) Branch(%)

No Message 12.21 8.27 19.03 13.34
Packet Out 26.23 19.31 25.68 17.28

Stats Request 30.27 24.15 24.31 16.75
Set Config 26.23 19.31 23.98 16.16

Eth FlowMod 41.74 34.65 38.15 25.49
FlowMod 42.65 34.25 38.24 26.27
Concrete 17.13 11.42 20.16 13.62

Short Symb 19.92 13.39 21.60 14.34

Table 2.4: Instruction and branch coverage for selected tests for
Reference Switch and Open vSwitch.

2.7.3 How Relevant is Input Sequence Selection?

To quantify the relevance of chosen tests, we measure the instruction and

branch coverage provided by Cloud9. The instruction/branch reached at

least once in the execution is considered covered, regardless of its arguments.

We consider only the sections of OpenFlow agent’s code relevant to Open-

Flow processing. The initialization that is repeated for each test covers 12%

of instructions and 8% of branches. The test specific results, shown in Ta-

ble 2.4, are spread between 20 and 40%. To verify that the low reported

coverage is a result of the fact that each test targets a few specific message

handlers, we manually analyze cumulative coverage of all tests. We observe

that SOFT covers approximately 75% of the code and that the remaining

instructions belong mostly to code that is not accessible in standard execu-

tion (e.g., command line configuration, dead code, cleanup functions, logging

functions).

The importance of concretizing inputs. Due to time and memory con-

straints it is often convenient to concretize selected fields in the message. We

evaluate the benefits and drawbacks of using the domain knowledge to re-

duce the input space. As a baseline, we choose a test where a single symbolic
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Test Time Paths Coverage
Fully Symbolic 31h 226224 42.93%
Concrete Match 12m 2634 40.60%
Concrete Action 193m 30396 37.32%

Concrete Probe 48m 9216 41.6%
Symbolic Probe 172m 33168 43.9%

Table 2.5: Effects of concretizing on execution time, generated
paths and instruction coverage.

Flow Mod message containing 2 symbolic actions and 2 symbolic output ac-

tions is followed by a TCP probe packet. We then compare the results of: (i)

the baseline, (ii) a version of the baseline with a concrete match (wildcard),

and (iii) a version of the baseline with a single concrete action instead of 4

symbolic ones. All values are summarized in the upper part of Table 2.5.

While the drop in the coverage percentage is only 2-5% in comparison to the

baseline test, the difference in time and path count is noticeable. Specifi-

cally, the tests finish 10 to 50 times quicker, while generating 1 to 2 orders

of magnitude less paths.

To verify how much coverage we lose by not using symbolic probes, we

create a separate test. This test first installs a partially symbolic Flow Mod

that applies actions to Ethernet packets. It then sends a short probe packet

that is concrete or symbolic depending on the test version. Results in the

lower part of Table 2.5 show that a symbolic probe adds just 2% to the

coverage. The cost is 3.5 times longer running time and 3.5 times more

paths.

To summarize, concretizing parts of the inputs significantly reduces the

time needed to conduct the test at the cost of leaving small portion of addi-

tional instructions uncovered. Therefore, it is possible to use the concretized

inputs to conduct regular tests more often. When combined with careful

choice of concrete fields, the coverage is marginally affected. The fully sym-
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bolic messages can be used just for the final checks before a major release

when the best coverage possible is required, and testing time is less of an

issue.

2.8 Summary

By combining symbolic execution with a novel use of constraint solvers,

SOFT automatically determines functional differences between software agents

running on switches. Applying the tool to two existing software switches re-

veals several inconsistencies. While some of them are a result of a buggy

implementation, there are cases where agents diverge because of differences

in interpreting ambiguous portions of the specification.

Finally, although the work presented in this chapter is centered around

the specific details of OpenFlow, the approach is more general and can be

applied to other router software and heterogeneous networked systems.
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Chapter 3

Detecting Performance Differences

This chapter presents a methodology to detect performance related differ-

ences between switches. These issues manifest themselves only in the run-

ning devices and cannot be uncovered by methods that are relying on static

analysis of switch software such as the one presented in Chapter 2. The

methodology is based on systematic exploration of control plane message se-

quences sent to the devices, while monitoring the data plane behavior. The

main focus of this chapter is on rule update performance, while measuring

maximum data plane packet forwarding rates stays outside of its scope.

Applying the methodology to six hardware switches allows us to detect

two general inconsistency types. In this chapter, we first expose behaviors

that do not follow the specification, and if unnoticed, may lead to unsafe

networks. Then, we present a detailed overview of rule update performance

characteristics depending on various parameters. Each non-obvious finding

is expanded with further experimental investigation, a hypothesis and, if

possible, switch vendor comments.

3.1 Measurement Methodology

This section describes the methodology we follow to design the benchmarks

that assess control and data plane update performance of switches under

test.
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3.1.1 Tools and Experimental Setup

In this study we focus on two metrics describing switch behavior: flow table

rule update rate and correspondence between control plane and data plane

views. The second metric is quantified by the time gap between when the

switch confirms a rule modification and when the modified rule starts affect-

ing packets. We designed a general methodology that allows for systematic

exploration of switch behaviors under various conditions. At the beginning

of each experiment, we prepopulate the switch flow table with R rules. Un-

less otherwise specified, the rules are non-overlapping and have the default

priority. Each rule matches a flow based on a pair of IP source-destination

addresses, and forwards packets to switch port α. For clarity, we identify

flows using contiguous integer numbers starting from −R + 1. According to

this notation, the prepopulated rules match flows in the range −R + 1 to 0,

inclusive.

After initializing the switch’s hardware flow table, we perform flow table

updates and measure their behaviors. In particular, we send B batches of rule

updates, each batch consisting of: BD rule deletions, BM rule modifications

and BA rule insertions. Each batch is followed by a barrier request. In the

default setup, we set BD = BA = 1 and BM = 0. If BD is greater than 0,

batch i deletes rules matching flows with numbers between−R+1+(i−1)∗BD

and −R + i ∗ BD. If BA is greater than 0, batch i installs rules that match

flows with numbers in range between (i−1)∗BA+1 and i∗BA and forwards

packets to port α. As a result, each batch removes the oldest rules. Note that

the total number of rules in the table remains stable during most experiments

(in contrast to previous work such as [59] and [72] that measure only the time

needed to fill an empty table).

To measure data plane state, in some experiments, we inject and cap-
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ture data plane traffic. We send packets that belong to flows Fstart to Fend

(inclusive) at a rate of about 300 packets per flow per second.

In our study, we have explored a wide range of possible parameters for

our methodology. For brevity, in the next sections, we highlight results where

we instantiate the methodology with specific parameters that led to interest-

ing observations. In the experiment descriptions we call the setup described

above with BD = BA = 1, BM = 0 and all rules with equal priority as a

general experimental setup. Finally, unless an experiment shows variance

greater than 5% across runs, we repeat it three times and report the aver-

age. Because the results have a small deviation across runs, unless otherwise

specified, we do not show confidence intervals.

Measurement tool: Based on our initial investigation, as well as previously

reported results [44], we identify three main requirements for a measurement

tool: (i) flexibility, (ii) portability, and (iii) sufficient precision. First, since

the switches we test are often in remote locations with limited physical access,

the measuring tool cannot use customized hardware (e.g., FPGAs). More-

over, our previous experience suggests that switches behave unexpectedly,

and thus we need to tailor the experiments to locate and dissect problems.

Finally, as the tested switches can modify at most a few thousands of rules

per second, we assume that a millisecond measurement precision is sufficient.

To achieve the aforementioned goals, we built a tool that consists of three

major components that correspond to the three benchmarking phases: input

generation, measurement and data analysis (Figure 3.1).

First, an input generator creates control plane rule modification lists and

data plane packet traces used for the measurements. Unless otherwise speci-

fied, the forwarding rules used for the experiments match traffic based on IP

source/destination pairs and forward packets to a single switch port. More-
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Figure 3.1: Overview of our measurement tools and testbed setup.

over, we notice that some switches can optimize rule updates affecting the

same rule; we therefore make sure that modifications affect different rules.

To ensure this, by default, we use consecutive IPs for matches. Furthermore,

we cross-check our results using random matches and update patterns.

We refer to the control plane measurement engine as the controller as

it emulates the behavior of an OpenFlow controller. We implement it using

NOX [6] and ROFL [13] libraries that can issue rule updates at a much higher

rate than what the hardware switches can handle.1 The engine records time

of various interactions with the switch (e.g., flow modification sent, barrier

reply received) and saves all its outputs into files. We additionally record

all control plane traffic using tcpdump. We rely on existing tcpreplay and

tcpdump tools to both send packets based on a pcap file and record them. To

remove time synchronization issues, we follow a simple testbed setup with the

switch connected to a single host on multiple interfaces — the host handles

the control plane as well as generates and receives traffic for the data plane.

Note that we do not need to fully saturate the switch data plane, and thus a

1Our benchmark with software OpenVSwitch handles ∼42000 updates/s.
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conventional host is capable of handling all of these tasks at the same time.

Finally, a modular analysis engine reads the output files and computes

the metrics of interest. Modularity means that we can add a new module to

analyze a different aspect of the measured data. We implement the analysis

engine as a collection of Python modules.

Switches under test: We benchmark three ASIC-based switches capable

of OpenFlow 1.0 and two ASIC-based switches capable of OpenFlow 1.3

support: HP ProCurve 5406zl with K.15.10.0009 firmware, Pica8 P-3290

with PicOS 2.0.4, Dell PowerConnect 8132F with beta2 OpenFlow support,

Switch X and Switch Y. They use ProVision, Broadcom Firebolt, Broadcom

Trident+, Switch X and Switch Y ASICs, respectively. We additionally

compare how Switch X behaves with two firmware versions: V1 and V2.

We anonymize two of the switches since we did not get a permission to use

their names from their respective vendors. These switches have two types

of forwarding tables: software and hardware. While hardware flow table

sizes (about 1500, 2000, 750, 4500, and 2000 rules, respectively) and levels

of OpenFlow support vary, we make sure that all test rules ultimately end

up in the hardware tables. Moreover, some switches implement a combined

mode where packet forwarding is done by both hardware and software, but

this imposes high load on the switch’s CPU and provides lower forwarding

performance. Thus, we avoid studying this operating mode. Further, as

mentioned before, analyzing the data plane forwarding performance is out

of scope of this work. We also benchmark NoviSwitch 1132 — a network-

processor based, OpenFlow 1.3 switch running firmware version 300.0.1.3

Each of its 64 flow tables fits over 4000 rules. We caution that the results for

2There are plans to optimize and productize this software.

3We repeated our tests with firmware 300.0.5 but observed similar results. We briefly
describe bigger differences when compared to earlier firmware versions in Section 3.2.3.
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this switch may not directly compare to those of the other measured devices

due to the different switch architecture. In particular, our methodology

correctly characterizes the update rates of flow tables but does not establish

a relation between flow table occupancy and maximum forwarding speed, for

which ASICs and network processor might exhibit different behaviors.

Finally, since switches we test are located in different institutions, there

are small differences between the testing machines and the network perfor-

mance. However, the set-ups are comparable. A testing computer is always

a server class machine and the network RTT varies between 0.1 and 0.5 ms.

3.2 Results: Flow Table Consistency

While the only view the controller has of the switch is through the control

plane, the real traffic forwarding happens in the data plane. In this sec-

tion we present the results of experiments where we monitor rule updates in

the control plane and at the same time send traffic to exercise the updated

rules. The unexpected behavior we report in this section may have negative

implications for network security and controller correctness.

3.2.1 Synchronicity of Control and Data Planes

Many solutions essential for correct and reliable OpenFlow deployments

(e.g., [60, 70]) rely on knowing when the switch applied a given command

in the data plane . The natural method to get such information is the barrier

message.Therefore, it is crucial that this message works correctly. However,

as authors of [72] already hinted, the state of the data plane may be different

than the one advertised by the control plane. Thus we set out to measure

how these two views correspond to each other at a fine granularity.

We use the default setup extended with one match-all low priority rule
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Switch Data plane
Switch X, firmware V1 falls behind indefinitely. Up to 4 minutes in

our experiments.
Switch X, firmware V2 in sync with control plane

HP 5406zl often falls behind up to 250 ms. Indefinitely
in corner cases (up to 22 s in our tests).

Pica8 P-3290 reorders + behind up to 400 ms
Dell 8132F in sync with control plane
Switch Y in sync with control plane

NoviSwitch 1132 in sync with control plane

Table 3.1: Data plane synchronicity key findings summary.

that drops all packets4 and we inject data plane flows number Fstart to Fend.

For each update batch i we measure the time when the controller receives a

barrier reply for this batch and when the first packet of flow i reaches the

destination.

Figure 3.2 shows the results for R = 300, B = 300, Fstart = 1 and Fend =

100. There are three types of behavior that we observe: desynchronizing

data and control plane states, reordering rules despite barriers and correct

implementation of the specification.

Switch X: The data plane configuration of Switch X is slowly falling

behind the control plane acknowledgments — packets start reaching the des-

tination long after the switch confirms the rule installation with a barrier

reply. The divergence increases linearly and, in this experiment reaches 300

ms after only 100 rules. The second observation is that Switch X installs

rules in the order of their control plane arrival. After reporting the problem

of desynchronized data and control plane views to the switch vendor, we re-

ceived a new firmware version that fixed observed issues to some extent. We

report the improvements in Section 3.2.3.

HP 5406zl: Similarly to Switch X, the data plane configuration of HP

4We need to use such a rule to prevent flooding the control channel with the Packet In
messages caused by data plane probes or flooding the probes to all ports.
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(a) Switch X, firmware version V1
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(c) Pica8 P-3290
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(f) NoviSwitch 1132

Figure 3.2: Control plane confirmation times and data plane probe
results for the same flows. Switch data plane installation time may
fall behind the control plane acknowledgments and may be even
reordered.
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5406zl is slowly falling behind the control plane acknowledgments. However,

unlike for Switch X, after about 50 batches, which corresponds to 100 rule

updates (we observed that adding or deleting a rule counts as one update, and

modifying an existing rule as two), the switch stops responding with barrier

replies for 300 ms, which allows the flow tables to catch up. After this

time the process of diverging starts again. In this experiment the divergence

reaches up to 82 ms, but can be as high as 250 ms depending on the number

of rules in the flow table. Moreover, the frequency and the duration of this

period does not depend on the rate at which the controller sends updates,

as long as there is at least one update every 300 ms. The final observation

is that HP 5406zl installs rules in the order of their control plane arrival.

Pica8 P-3290: Similarly to HP 5406zl, Pica8 P-3290 stops responding

to barriers in regular intervals. However, unlike HP 5406zl and Switch X,

Pica8 P-3290 is either processing control plane (handling update commands

and responding to barriers), or installing rules in TCAM and never does

both at the same time. Moreover, despite the barriers, the rules are not

installed in hardware in the order of arrival. The delay between data and

control plane reaches up to 400 ms in this experiment. When all remaining

rules get pushed into hardware, the switch starts accepting new commands

in the control plane again. We confirmed with a vendor that because the

synchronization between the software and hardware table is expensive, it is

performed in batches and the order of updates in a batch is not guaranteed.

When the switch pushes updates to hardware, its CPU is busy and it stops

dealing with the control plane.5

Dell 8132F, Switch Y and NoviSwitch 1132: All three switches

make sure that no control plane confirmation is issued before a rule becomes

5The vendor claims that this limitation occurs only in firmware prior to PicOS 2.2.
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active in hardware. In this experiment we do not see any periods of idleness

as the switch pushes rules to hardware all the time and waits for completion

if necessary. Additionally, because NoviSwitch 1132 is very fast, we increased

the frequency of sending data plane packets in order to guarantee required

measurement precision.

Summary: To reduce the cost of placing rules in a hardware flow ta-

ble, vendors allow for different types (e.g., falling behind or reordering) and

amounts (up to 400 ms in this short experiment) of temporary divergence be-

tween the hardware and software flow tables. Therefore, the barrier command

does not guarantee flow installation. Ignoring this problem leads to an

incorrect network state that may drop packets, or even worse,

send them to an undesired destination!

3.2.2 Variability in Control and Data Plane Behavior

The short experiment described in the previous section reveals three ap-

proaches to data and control plane synchronization. In this section we re-

port more detailed unexpected switch behavior types observed when varying

parameters in that experiment. The overall setup stays the same, but we

modify the number of rules in the flow tables, length of the experiments and

range of monitored rules.

Switch X: The short experiment revealed that facing a constant high

update rate Switch X never gives the data plane state a chance to synchronize

with control plane acknowledgments. In this extended experiment we issue

4000 batches of rule deletion and rule installation and monitor every 10th

rule. Figure 3.3 shows the results for various flow table occupancy levels (7%,

25%, 50% and 75%). There are three main observations. First, the switch

indeed does not manage to synchronize the control and data plane states.
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(b) 25% (1125 rules)

 0

 20

 40

 60

 80

 100

 120

 140

 0  1000  2000  3000  4000

Ti
m

e 
ac

kn
ow

le
dg

ed
 [s

ec
on

ds
]

Flow ID

Data plane
Control plane

(c) 50% (2250 rules)
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Figure 3.3: Control plane confirmation times and data plane probe
results for the same flows in Switch X (firmware version V1) de-
pending on flow table occupancy. The rate suddenly slows down
after about 4600 flow installations (including initial rules installed
before the experiment starts).

Second, the update rate increases when the switch is no longer busy with

processing and sending control plane messages. This is visible as a change

of slope of the data plane line in Figures 3.3a and 3.3b. We confirmed

this observation by artificially occupying the switch with additional Echo

Request or Barrier messages. If the switch control plane stays busy, the

data plane line grows at a constant rate. We believe a low power CPU used in

this switch can easily become a bottleneck and cause the described behavior.

Finally, after installing about 4600 rules since the last full table clear, the

switch becomes significantly slower and the gap between what it reports in

the control plane and its actual state quickly diverges. We kept monitoring
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(d) 1300 rules

Figure 3.4: Control plane confirmation times and data plane probe
results for the same flows in HP 5406zl depending on flow table
occupancy. The rate slows down and the pattern changes for over
760 rules in the flow table.

the data plane for 4 minutes after the switch reported all rule modifications

completed, and still not all rules were in place yet. We run additional tests

and it seems that even performing updates at a lower rate (2 updates every

100 ms) or waiting for a long time (wait for 8 s after every 200 updates) does

not solve the problem. The risk is that the switch performance may degrade

in any deployment where the whole flow table is rarely cleared. We reported

aforementioned issues to the switch vendor and received a confirmation and

an improved firmware version.

HP 5406zl: The pattern observed in the previous experiment does not

change when parameters vary except for two details depending on the flow
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Figure 3.5: Control plane confirmation times fall behind the data
plane probe results in HP 5406zl when using rules with different
priorities. The scale of divergence is unlimited.

table occupancy. We show them in Figure 3.4. First, the 300 ms inactivity

time is constant across all the experiments, but happens three times more

often (every 33 updates) if there are over 760 rules in the flow table (Fig-

ure 3.4c). Second, when the number of rules in the flow table increases, the

maximum delay between control and data plane update increases as well. It

reaches 250 ms when there are 750 rules in the table (Figure 3.4b). For over

760 rules, the switch synchronizes more frequently, so the maximum delay

is smaller again (Figure 3.4c) but goes back to 150 ms for 1300 rules (Fig-

ure 3.4d). We conclude that the real flow table update speed in HP 5406zl

depends on the number of rules in the table, and the switch accounts for a

possible delay by letting the data plane to catch up in regular intervals.

However, we found cases when the switch does not wait long enough,

which may lead to unlimited divergence between the data and control planes.

First, in Figure 3.5 we show that when different priorities are used (each rule

has a different priority in this experiment), the switch becomes very slow in
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Figure 3.6: Control plane confirmation times fall behind the data
plane probe results in HP 5406zl when filling the flow table.

applying the changes in hardware without notifying the control plane. This

behavior is especially counter-intuitive since the switch does not support

priorities in hardware. Second, our experiments show that rule deletions are

much faster than installations. Figure 3.6 shows what happens when we

install 500 rules starting from an empty flow table with only a single drop-all

rule. Until there are 300 rules in the table, the 300 ms long periods every

100 updates are sufficient to synchronize the views. Later, the data plane

modifications are unable to keep up with the control plane.

Pica8 P-3290: There are no additional observations related to Pica8

P-3290. The pattern from Figure 3.2c occurs during the whole experiment.

Dell 8132F: As depicted in Figure 3.7, the switch starts updating rules

quickly, but suddenly slows down after 210 new rules installed and main-

tains this slower speed (verified up to 2000 batches). However, even after

the slowdown, the control plane reliably reflects the state of the data plane

configuration. Additionally, we observe periods when the switch does not
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Figure 3.7: Control plane confirmation times and data plane probe
results in Dell 8132F are synchronized, but the update rate sud-
denly slows down after about 210 newly installed rules.

install rules or respond to the controller, but these periods are rare, non-

reproducible and do not seem to be related to the experiments.

Switch Y: Although in the original experiment we observe no periods

of idleness, when the flow table occupancy and the experiment running time

increase, the switch stops processing requests for hundreds of milliseconds

(about 600 ms with 95% occupancy — Figure 3.8) every 2 seconds. Unlike

HP 5406zl, here the idleness frequency depends on time, not the number

of updates. Decreasing the rate at which the controller issues updates does

not affect the idleness duration or frequency. During the period when the

switch does not update its rules, it still responds to control plane messages

(e.g., barriers), but does it slightly slower, as if it was busy. We believe,

this behavior allows the switch to reoptimize its flow tables or perform other

periodic computations. We are in the process of explaining the root cause

with the vendor.

NoviSwitch 1132: Behavior reported in Figure 3.2f repeats in longer
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Figure 3.8: Control plane confirmation times and data plane probe
results in Switch Y with 95% table occupancy are synchronized,
but the switch stops processing new updates for 600 ms after every
2 s.

experiments as well.

Summary: Flow table update rate often depends on the number of in-

stalled rules, but the control plane acknowledgments sometimes do not reflect

this variability. A switch flow table state may be minutes behind what it

reported to the control plane.

3.2.3 Firmware Updates Can Improve Switch Perfor-

mance

We reported our findings to switch vendors and some of them provided us

with new, improved firmware versions.

Switch X: Most notably, Switch X with firmware version V2, no longer

allows for data and control plane desynchronization. As we show in Fig-

ure 3.9, both views are synchronized and the rate does not increase when

all control plane messages get processed, since they are no longer processed

before the data plane update ends. On the other hand, the switch still sig-
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Figure 3.9: Control plane confirmation times and data plane probe
results for the same flows in Switch X (firmware version V2). Data
and control plane views are synchronized, but the rate still slows
down after about 4600 flow installations.

nificantly slows down after about 4600 rule installations without full table

cleaning. We repeat the experiment where we perform single rule installa-

tions and deletions, keeping flow table occupancy stable. Then, we stop an

experiment and resume it after 10 minutes. Figure 3.9b shows the results for

occupancy of 50% (2250 rules). Behavior with the new firmware is the same

as with the old version (Figure 3.3c). Finally, at the beginning, the updates

are slightly slower than in the previous version and slightly faster when the

switch slows down (compare to Figure 3.3).

NoviSwitch 1132: When we started our measurements of NoviSwitch

1132, the switch was running firmware version 250.3.2. The update rate was

initially stable at about 60-70 rules/s, but after longer experiments started

dropping to single digits and the switch required reboots. An investigation

revealed that excessive logging was causing the disk space to run out in

our longer and update-intensive experiments. We reported this fact and

the vendor who provided us with a new firmware version: 250.4.4. A simple

software upgrade allowed the switch to reach stable update rate of about 6000

rules/s — two orders of magnitude higher than before. Another upgrade
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(to version 300.0.1 used to get all measurements reported in this chapter)

increased the update rate by another 10-15% and fixed a bug that was causing

the switch to crash when using long sequences of upgrades of rules with

changing priorities.

Summary: Firmware is often responsible for switch faulty behavior and

an upgrade can fix bugs or significantly improve performance without replac-

ing hardware.

3.2.4 Rule Modifications are not Atomic

Previously, we observed unexpected delays for rule insertions and deletions.

A natural next step is to verify if modifying an existing rule exhibits a similar

unexpected behavior.

A gap during a FlowMod: As before, we prepopulate the flow table

with one low priority match-all rule dropping all packets and R = 300 flow

specific rules forwarding packets to port α. Then, we modify these 300 rules

to forward to port β. At the same time, we send data plane packets matching

rules 101 − 200 at a rate of about 1000 packets/s per flow. For each flow,

we record a gap between when the last packet arrives at the interface con-

nected to port α and when the first packet reaches an interface connected to

β. Expected time difference is 1 ms because of our measurement precision,

however, we observe gaps lasting up to 7.7, 12.4 and 190 ms on Pica8 P-

3290, Dell 8132F and HP 5406zl respectively (Table 3.2). At HP 5406zl the

longest gaps correspond to the switch inactivity times described earlier (flow

150, 200). A similar experiment with Switch X, Switch Y and NoviSwitch

1132 shows that average and maximum gaps are within our measurement

precision.
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Switch Pica8 P-3290 Dell 8132F HP 5406zl
avg/max gap in
packets [ms]

2.9/7.7 2.2/12.4 10/190

Table 3.2: Time required to observe a change after a rule mod-
ification. The maximum time when packets do not reach either
destination can be very long.

Drops: To investigate the forwarding gap issue further, we upgrade our

experiment. First, we add a unique identifier to each packet, so that we can

see if packets are being lost or reordered. Moreover, to get higher precision,

we probe only a single rule (number 151 — a rule with an average gap, and

number 150 — a rule with a long gap on HP 5406zl) and increase our probing

rate to 5000 packets/s.

We observe that Pica8 P-3290 does not drop any packets. A continuous

range of packets arrive at port α and the remaining packets at β. On the

other hand, both Dell 8132F and HP 5406zl drop packets at the transition

period for flow 150 (3 and 17 packets respectively). For flow number 150,

HP 5406zl drops an unacceptable number of 782 packets. This suggests that

the update is not atomic — a rule modification deactivates the old version

and inserts the new one, with none of them forwarding packets during the

transition.

Unexpected action: To validate the non-atomic modification hypoth-

esis we propose two additional experiments. The setup is the same but in

variant I the low priority rule forwards all traffic to port γ and in variant II,

there is no low priority rule at all. Incorrectly, but as expected, in variant I

both Dell 8132F and HP 5406zl forward packets in the transition period to

port γ. The number and identifiers of packets captured on port γ fit exactly

between the series captured at port α and β. Also unsurprisingly, in variant

II, Dell 8132F floods the traffic during the transition to all ports (default
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behavior for this switch when there is no matching rule). What is unex-

pected is that HP 5406zl in variant II, instead of sending PacketIn messages

to the controller (default when there is no matching rule), floods packets to

all ports. We reported this finding to the HP 5406zl vendor and still wait for

a response with a possible explanation of the root cause.

The only imperfection we observed at Pica8 P-3290 in this test is that if

the modification changes the output port of the same rule between α and β

frequently, some packets may arrive at the destination out of order. We did

not record any issues with rule modifications in Switch Y and Switch X.

Finally we observed that NoviSwitch 1132 reorders packets belonging to

different flows, but the timescale of this reordering (microseconds) is much

below our probing frequency. That suggests, that the reordering is unrelated

to an incorrect order of rule modifications. Indeed, we confirmed that pack-

ets in different flows get reordered even if there are no rule modifications.

We also checked, that packets in the same flow do not get reordered. The

switch vendor confirmed that packets belonging to different flows may be

processed by different cores of the network processor. They also ensured us,

that assuming not too complicated actions, the processing power should be

sufficient even for small packets.

Summary: Two out of six tested switches have a transition period during

a rule modification when the network configuration is neither in the initial

nor the final state. The observed action of forwarding packets to

undesired ports is a security concern. Non-atomic flow modification

contradicts the assumption made by controller developers and network update

solutions. Our results suggest that either switches should be redesigned or the

assumptions made by the controllers have to be revisited to guarantee network

correctness.
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Variant
Rhi Rlo

IP src IP dst IP src IP dst

I exact exact exact exact
II exact * * exact
III * exact exact *
IV exact exact exact *
V * exact exact exact

Table 3.3: Combinations of overlapping low and high-priority rules.

3.2.5 Priorities and Overlapping Rules

The OpenFlow specification clarifies that, if rules overlap (i.e., two rules

match the same packet), packets should always be processed only by the high-

est priority matching rule. Since our default setup with IP src/dst matches

prevents rule overlapping, we run an additional experiment to verify the be-

havior of switches when rules overlap.

The idea of the experiment is to install (in the specified order) two dif-

ferent priority rules Rhi and Rlo that can match the same packet. Rhi has

a higher priority and forwards traffic to port α, Rlo forwards traffic to port

β. We test five variants of matches presented in Table 3.3. Rhi is always

installed before and removed after Rlo to prevent packets from matching

Rlo. Initially, there is one low priority drop-all rule and 150 pairs of Rhi

and Rlo. Then we send 500 update batches, each removing and adding

one rule: (−Rlo,1,+Rhi,151), (−Rhi,1,+Rlo,151), (−Rlo,2,+Rhi,152), . . . We send

data plane traffic for 100 flows. If a switch works correctly, no packets should

reach port β.

Table 3.4 summarizes the results. First, as we already noted, Dell 8132F,

Switch Y, Switch X and NoviSwitch 1132 do not reorder updates between

batches and therefore, there are no packets captured at port β in any variant.

The only way to allow some packets on port β in Dell 8132F is to increase
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Switch Observed/inferred behavior
Switch X OK
HP 5406zl Ignores priority, last updated rule permanently

wins
Pica8 P-3290 OK for the same match. For overlapping match

may temporarily reorder (depending on wildcard
combinations)

Dell 8132F OK (Reorders within a batch)
Switch Y OK

NoviSwitch 1132 OK

Table 3.4: Priority handling of overlapping rules. Both HP 5406zl
and Pica8 P-3290 violate the OpenFlow specification.

the batch size — the switch freely reorders updates inside a batch and seems

to push them to hardware in order of priorities. On the other hand, Pica8

P-3290 applies updates in the correct order only if the high priority rule has

the IP source specified. Otherwise, for a short period of time — 210 ms

on average, 410ms maximum in the described experiment — packets follow

the low priority rule. Our hypothesis is that the data structure used to

store the software flow table sorts the rules such that when they are pushed

to hardware the ones with IP source specified are pushed first. Finally, in

HP 5406zl only the first few packets of each flow (for 80 ms on average,

103 ms max in this experiment) are forwarded to α and all the rest to β.

We believe that the switch ignores the priorities in hardware (as hinted in

documentation of the older firmware version) and treats rules installed later

as more important. We confirm this hypothesis with additional experiments

not reported here. Further, because the priorities are trimmed in hardware,

when installing two rules with exactly the same match but different priorities

and actions the switch returns an error.

Summary: Results (Table 3.4) suggest that switches may permanently

or temporarily forward according to incorrect, low priority rules.
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Experiment In-flight
batches

Batch
size

(del+add)
Initial
rules R

In-flight batches 1-20 1+1 300

Flow table occupancy 2 1+1 50 to max
for switch

Priorities as in Flow table occupancy + a single
low priority rule in the flow table

Access patterns 2 1+1
50 to max
for switch
+priorities

Working set
as in Flow table occupancy, vary the
number of rules that are not updated

during the experiment

Batch size 2 1+1 to
20+20 300

Table 3.5: Dimensions of experimental parameters we report in this
section. Note, that we also run experiments for other combinations
of parameters to verify the conclusions.

3.3 Results: Flow Table Update Speed

The goal of the next set of experiments is to pinpoint the most important

aspects that affect rule update speed. We first pick various performance-

related parameters: the number of in-flight commands, current flow table

occupancy, size of request batches, used priorities, rule access patterns. Then

we sample the whole space of these parameters and try to identify the ones

that cause some variation. From the previous section we know that although

the control plane information is imprecise, in a long run the error becomes

negligible, because all switches except for Switch X synchronize the data

and control plane views regularly. Therefore, we rely on barriers to measure

update rates in long running experiments used in this section. Based on the

results, we select a few experimental configurations which highlight most of

our findings and present them in Table 3.5.
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Figure 3.10: Switch performance increases with the number of in-
flight requests. However, the improvements beyond the case where
the controller waits for confirmation of the previous request before
sending the next one (k = 1) are negligible.

3.3.1 Two In-flight Batches Keep the Switch Busy

Setting the number of commands a controller should send to the switch before

receiving any acknowledgments is an important decision when building a

controller [67]. Underutilizing or overloading the switch with commands is

undesired. Here, we quantify the tradeoff between rule update rate and the

servicing delay (time between sending a command and the switch applying

it) to find a performance sweet spot.

We use the default setup with R = 300 and B = 2000 batches of rule

updates. The controller sends batch i+k only when it receives a barrier reply

for batch number i. Note that barrier replies come always in order, i.e., we

receive configuration of batch i only after all batches < i are confirmed. We

vary k and report the average rule update rate, which we compute as 2∗B/T

where T is the time between sending the first batch and receiving a barrier

reply for the last and 2 comes from the fact that each batch contains one add
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Figure 3.11: HP 5406zl barrier reply arrival times. HP 5406zl
postpones sending barrier replies until there are no more pending
requests or there are 29 pending responses.

and one delete message.

Figure 3.10 shows the average update rate. The rule update rate with

one outstanding batch is low as the switch is idle for at least a network RTT.

However, even two in-flight batches are usually sufficient to saturate tested

switches given our network latencies. Thus, we use 2 in-flight batches in all

following experiments. Since the update rate for NoviSwitch 1132 is often

an order of magnitude higher than other switches, we use plots with a split

y axis.

Looking deeper into the results, we notice that with a changing number

of in-flight batches HP 5406zl responds in an unexpected way. In Figure 3.11

we plot the barrier reply arrival times normalized to the time when the first

batch was sent for R = 300, B = 50 and a number of in-flight batches varying

between 1 and 50. We show the results for only 4 values to improve readabil-

ity. If there are requests in the queue, the switch batches the responses and

sends them together in bigger groups. If the constant stream of requests is

shorter than 30, the switch waits to process all, otherwise, the first response

73



comes after 29 requests. This observation makes it difficult to build a con-

troller that keeps the switch command queue short but full. The controller

has to either let the queue get empty, or maintain the length longer than 30

batches. But based on the previous observation, even letting the queue to

get empty has minimal impact on the throughput.

Summary: We demonstrate that with LAN latencies two or three in-

flight batches suffice to achieve full switch performance. Since, many in-flight

requests increase the service time, controllers should send only a handful of

requests at a time.

3.3.2 Current Flow Table Occupancy Matters

The number of rules stored in a flow table is a very important parameter

for a switch. Bigger tables allow for a fine grained traffic control. However,

there is a well known tradeoff — TCAM space is expensive, so tables that

allow complex matches usually have limited size.

We discover another, hidden cost of full flow tables. Namely, we analyze

how the rule update rate is affected by the current number of rules installed

in the flow table. We use the default setup fixing B = 2000 and changing

the value of R.

In Figure 3.12 we report the average rule update rate when varying switch

flow table occupancy. There are three distinct patterns visible. Pica8 P-

3290, Dell 8132F and Switch Y express similar behavior. The rule update

rate is high when the flow table contains a small number of entries but

quickly deteriorates as the number of entries increases. As we confirmed

with one of the vendors and deduced based on statistics of another switch,

there are two reasons why the performance drops when the number of rules

in the table increases. First, even if a switch ultimately installs all rules in

74



 6500
 7000
 7500

NoviSwitch 1132
Switch Y

Pica P-3290
Dell 8132F

HP 5406zl

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0  250  500  750  1000 1250 1500 1750 2000

U
pd

at
e 

ra
te

 [r
ul

es
/s

ec
]

Flow table occupancy [rules]

Figure 3.12: For most switches the performance decreases when
the number of rules in the flow table is higher.

hardware, it keeps a software flow table as well. The flows are first updated

in the software data structure which takes more time when the structure

is bigger. Second, the rules need to be pushed into hardware (the switch

ASIC), which may require rearranging the existing entries. Unlike other

ASIC-based switches, HP 5406zl maintains a lower, but stable rate following

a step function with a breaking point around 760 rules in the flow table.

This stability is caused by periods of inactivity explained in Section 3.2. An

update rate for NoviSwitch 1132 is an order of magnitude higher than for

other switches. Additionally, the fast update rate (about 7000 updates/s)

and its stability that is independent of the flow table occupancy for this

device contrasts with all other switches.

Since Switch X update rate changes during an experiment and in older

firmware version it does not offer a reliable way to measure its performance

based on the control plane only, we manually computed update rates from

the data plane experiments. As previously explained, there are three phases
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Occupancy phase I phase II phase III
7% (300 rules) 415 rules/s 860 rules/s —
25% (1125 rules) 374 rules/s 790 rules/s 34 rules/s
50% (2250 rules) 340 rules/s — 28 rules/s
75% (3375 rules) 320 rules/s — 20 rules/s
95% (4275 rules) 302 rules/s — 8 rules/s

Table 3.6: Flow table update rate in Switch X depending on switch
state and flow table occupancy. The rate gradually decreases with
increasing number of rules in the flow table. After installing a total
number of about 4600 rules, the switch update rate drastically
decreases.

in this switch operation: slow rate when the switch is busy with control

plane, fast rate when the switch does not deal with the control plane, and

a very slow phase after the switch has installed about 4600 rules. Table 3.6

contains update rates in these three phases depending on the flow table occu-

pancy (phase II is missing when the transition to phase III happens before all

control plane messages are processed, phase III is missing for 7% occupancy,

because the experiment is too short to reveal it). The results show that the

switch performs similarly to other tested devices (Figure 3.12) until it installs

4600 rules during the experiment. After that point the performance drops

significantly (phase III). It is also visible that the switch can modify rules

two times quicker when it does not need to process control plane messages

(phase II).

Summary: The performance of most tested switches drops with a number

of installed rules, but the absolute values and the slope of this drop vary.

Therefore, controller developers should not only take into account the total

flow table size, but also what is the performance cost of filling the table with

additional rules.

76



 6500
 7000
 7500

NoviSwitch 1132
Switch Y

Pica P-3290
Dell 8132F

HP 5406zl

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0  250  500  750  1000 1250 1500 1750 2000

U
pd

at
e 

ra
te

 [r
ul

es
/s

ec
]

Flow table occupancy [rules]

Figure 3.13: Priorities cripple performance — Experiment from
Figure 3.12 repeated with a single additional low-priority rule in-
stalled reveals a massive fall in performance for two of the tested
switches.

3.3.3 Priorities Decrease the Update Rate

OpenFlow allows to assign a priority to each rule, but all our previous experi-

ments considered only rules with equal, default priorities. A packet is always

processed according to the highest priority rule that matches its header. Fur-

thermore, in OpenFlow 1.0, the default behavior for a packet not matching

any rule is to encapsulate it in a Packet In message and send to the con-

troller. To avoid overloading the controller, it is often desirable to install

a lowest priority all-matching rule that drops packets. We conduct an ex-

periment that mimics such a situation. The experiment setup is exactly the

same as the one described in Section 3.3.2 with one additional lowest priority

drop-all rule installed before all flow-specific rules.

Figure 3.13 shows that for a low flow table occupancy, all switches per-

form the same as without the low priority rule. However, Pica8 P-3290 and

Dell 8132F suffer from a significant drop in performance at about 130 and
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255 installed rules respectively. After this massive drop, the performance

gradually decreases until it reaches 12 updates/s for 2000 rules in the flow

table for Pica8 P-3290 and 30 updates/s for 750 rules in the flow table for

Dell 8132F where both switches have their tables almost full. Interestingly,

HP 5406zl’s update rate does not decrease, possibly because it ignores the

priorities. Switch Y and NoviSwitch 1132 update their flow tables at the

same rate with and without the low priority rule. Again, for plot readability

we do not show the rate for NoviSwitch 1132, which is an order of magnitude

higher than other switches. We confirm that the results are not affected by

the fully wildcarded match or the drop action in the low priority rule by

replacing it with a specific IP src/dst match and a forwarding action.

Finally, we rerun the experiments from Section 3.3.1 with a low priority

rule. The rates for Pica8 P-3290 and Dell 8132F are lower, but the charac-

teristics and the conclusions hold.

More priorities: Next, we check the effect of using different priorities

for each rule. We modify the default set-up such that each rule has a different

priority assigned and install them in an increasing (rule i has a priority D+i,

whereD is the default priority value) or decreasing (rule i has a priorityD−i)
order.

Switches react differently. As it is visible in Figure 3.14, both Pica8 P-

3290’s and Dell 8132F’s performance follows a similar curve as in the previous

experiment. There is no breaking point though. In both cases the perfor-

mance is higher with only a single different priority rule until the breaking

point, after which they become equal. Further, Pica8 P-3290 updates rules

quicker in the increasing priority scenario.6

Figure 3.14 shows that also NoviSwitch 1132 becomes significantly slower

6This is consistent with the observation made in [59], but the difference is smaller as for
each addition we also delete the lowest priority rule.
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Figure 3.14: Switch rule update performance for different rule pri-
ority patterns.

when there are additional priorities used. Based on the figure, the update rate

depends on the number of rules in the flow table. Even with just 50 installed

rules, the rate drops from original 7000 updates/s to about 420. When the

table occupancy increases the rate is as low as 5 updates/s. Update pattern

does not matter — in the decreasing priority scenario the rate is minimally

higher (up to 3%). In both cases, the update rate is inversely proportional

to the occupancy. A deeper analysis shows, that the rate depends more on

the number of priorities used than a total number of rules (Table 3.7). For

example, the rate with 1000 rules in the table when rule i has a priority

D − 	 i
10

 is almost equal to the rate with 100 initial rules in Figure 3.14.

Further, it also seems that adding a rule with a new priority to the table

takes a lot of time. When we run the experiment with rules using the same
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Priorities 1000 rules 2000 rules
D − 	 i

10

 216 rules/s 110 rules/s

D − 	 i
20

 374 rules/s 215 rules/s

D − (i%10) 5222 rules/s 5588 rules/s
D − (i%20) 6468 rules/s 6142 rules/s

Table 3.7: Flow table update rate in NoviSwitch 1132 depending
on priority patterns and flow table occupancy. The rate depends
on the number of priorities in use and number of newly added
priorities.

priorities as rules installed in the table before the experiment started, the rate

is much higher. The vendor confirms that handling many priorities requires

the switch to move some rules in TCAM, which makes updates slower. They

use optimizations to reduce an impact of this movements when the number

of priorities is small.

HP 5406zl control plane measurement is not affected by the priorities,

but as our data plane study shows there is a serious divergence between

the control plane reports and the reality for this switch in this experiment

(see Section 3.4). Finally, using different priorities does not affect Switch Y

performance.

Working set size: Finally, we check what happens if only a small subset

of rules in the table (later referred as “working set”) is frequently updated.

We modify the default experiment setup such that batch i deletes the rule

matching flow number i −W and installs a rule matching flow i. We vary

the value of W . In other words, assuming there are R rules initially in the

flow table, the first R −W rules never change and we update only the last

W rules.

The results show that HP 5406zl performance is unaffected and remains

the same as presented in Figures 3.12 and 3.13 both below and above the

threshold of 760 rules in the flow table. Further, for both Pica8 P-3290 and
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Figure 3.15: Size of the rule working set size affects the perfor-
mance. For both Pica8 P-3290 and Dell 8132F when the low prior-
ity rule is installed, the performance depends mostly on the count
of the rules being constantly changed and not on the total number
of rules installed (1000 for Pica8 P-3290 and 500 for Dell 8132F
in the plots). The same can be said about NoviSwitch 1132 with
various rule priorities (2000 installed rules in the plot).

Dell 8132F a small working set for updates makes no difference if there is no

low priority rule. For a given R (1000 for Pica8 P-3290 and 500 for Dell 8132F

in Figure 3.15), the performance is constant regardless of W . However, when

the low priority rule is installed, the update rate characteristic changes as

shown in Figure 3.15. For both switches, as long as the update working set is

smaller than their breaking point revealed in Section 3.3.2, the performance

stays as if there was no drop rule. After the breaking point, it degrades and

is only marginally worse compared to the results in Section 3.3.2 for table

occupancy W .
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A working set size affects NoviSwitch 1132 as well. In this case, we analyze

its performance when using multiple priorities (Figure 3.15) with R = 2000.

The rate depends on the working set size and is almost the same as the rate

with the same total number or rules in the flow table.

Summary: The switch performance is difficult to predict — a single rule

can degrade the update rate of a switch by an order of magnitude. Controller

developers should be aware of such behavior and avoid potential sources of

inefficiencies.

3.3.4 Barrier Synchronization Penalty Varies

A barrier request-reply pair of messages is very useful, as according to the

specification, it is the only way for the controller to (i) force an order of

operations on the switch, and (ii) make sure that the switch control plane

processed all previous commands. The latter becomes important if the con-

troller needs to know about any errors before continuing on with the switch

reconfiguration. Because barriers might be needed frequently, in this experi-

ment we measure the overhead given a frequency with which we use barriers.

We repeat our general experiment setup with R = 300 preinstalled rules,

this time varying the number of rule deletions and insertions in a single batch.

To keep flow table size from diverging during the experiment, we use an equal

number of deletions and insertions.

As visible in Figure 3.16, for both Pica8 P-3290 and HP 5406zl the rate

slowly increases with growing batch size, but the difference is marginal: up

to 14% for Pica8 P-3290 and up to 8% for HP 5406zl for a batch size growing

20 times. On the other hand, Dell 8132F speeds up 3 times in the same

range if no priorities are involved. The same observation can be made for

Switch Y.
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Figure 3.16: Cost of frequent barriers is modest except for the case
of Dell 8132F with no priorities (i.e., with high baseline speed) and
Switch Y where the cost is significant.

While further investigating these results, we verified that the barrier over-

head for each particular switch recalculated in terms of milliseconds is con-

stant across a wide range of parameters — a barrier takes roughly 0.1-0.3ms

for Pica8 P-3290, 3.1-3.4ms for Dell 8132F, 1ms for Switch Y, 0.6-0.7ms for

HP 5406zl and 0.04ms for NoviSwitch 1132. This explains the high overhead

of Switch Y and Dell 8132F for fast rule installations in Figure 3.16 — barri-

ers just take time comparable to rule installations. Taking into account that

Switch Y and Dell 8132F are the only tested ASIC-based switches that pro-

vide correct barriers, our conclusion is that a working barrier implementation

is costly.

Summary: Overall, we see that barrier cost varies across devices. The

controller, therefore, should be aware of the potential impact and balance be-

tween the switch performance and potential notification staleness. Moreover,

there is a tradeoff between correct barrier implementation and performance.
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3.4 Results: Other Surprises and Trivia

In the process of running the experiments and digging deep to find and un-

derstand the root causes of various unexpected behaviors we made additional

observations. They are not worth a section on their own because they have

lower practical importance or we cannot fully explain and confirm them.

However, we briefly report them as someone may find this information useful

or inspiring to further investigate the issue.

Rule insertion may act as a modification. In one of the experiments

we show that two out of six switches are unable to perform an atomic rule

modification. However, when receiving a rule that has the same match and

the same priority as an already installed one, but a different set of actions, all

the tested switches modify the existing rule. Moreover, this operation does

not lead to any packet drops on HP 5406zl, which is better than the actual

rule modification. The behavior on Dell 8132F remains unchanged.

Data plane traffic can increase the update rate of Pica8 P-3290.

We noticed that in some cases, sending data plane traffic that matches cur-

rently installed rules at Pica8 P-3290 can speed up the general update rate

and even future updates. We are still investigating this issue and can not

provide an explanation of this phenomenon nor confirm it with full certainty,

but we report it anyway as something completely counter intuitive.

Dell 8132F performs well with a full flow table. In Section 3.3.3 we

report that the performance of Dell 8132F with a low priority rule installed

decreases with the growing table occupancy and drops down to about 30

updates per second when the flow table contains 751 rules. We observed

that this trend continues, until the table is full or there is one slot left.

Surprisingly, the switch performs updates that remove a rule and install a
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Figure 3.17: An update rate in Dell 8132F suddenly increases for
4 specific flow table occupancy values.

new one with a full table at a rate comparable to that observed without the

low priority rule. We show the update rate measured for all possible flow

table occupancies in an experiment with 2000 update batches in Figure 3.17.

There is a sudden performance drop at 510 and 511 rules. Measurements in

both these points have a very high standard deviation, but the results for a

full table are stable.

3.5 Summary

The methodology presented in this chapter allows us to advance the general

understanding of OpenFlow switch performance. Specifically, by focusing

on analyzing control plane performance and Forwarding Information Base

(FIB) update rate in hardware OpenFlow switches we detected that: (i)

control plane performance is widely variable, and it depends on flow table

occupancy, rule priorities, size of batches, and even rule update patterns — in

particular, priorities can cripple performance; (ii) switches might periodically
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or randomly stop processing control plane commands for up to 500 ms; (iii)

the data plane state might not reflect the control plane — it might fall behind

by several minutes and it might also manifest rule installations in a different

order; (iv) seemingly atomic data plane updates might not be atomic at all.

The impact of our findings is multifold and profound. The non-atomicity

of seemingly atomic data plane updates means that there are periods when

the network configuration is incorrect despite looking correct from the con-

trol plane perspective. The existing tools that check if the control plane is

correctly configured [50–52] are unable to detect these problems. Moreover,

the data plane can fall behind and unfortunately barriers cannot be trusted.

This means that approaches for performing consistent updates need to devise

a different way of defining when a rule is installed; otherwise they are not

providing any firm guarantees. Finally, because the performance of a single

switch depends on previously applied updates, developers need to account

for this variable performance when designing their controllers.
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Chapter 4

RUM: Software-based Solution to
Performance Differences

This chapter presents a software-based technique that addresses the security-

critical issue revealed in Chapter 3: inconsistent Barrier implementations.

The Barrier commands are commonly used during network updates,

when a controller modifies forwarding behavior of one or multiple switches.

The network update process is complicated and if not conducted carefully,

may lead to transient problems such as black holes, forwarding loops, link

overload, and packets reaching undesired destinations. There are many ap-

proaches that guarantee various correctness properties [49, 60, 62, 70]. These

all split an update into many smaller stages, and rely on knowing when a

particular rule modification was applied at the switch(es) before proceed-

ing to the next stage and issuing further modifications. This necessitates

positive acknowledgments confirming rule modifications. Unfortunately, in

OpenFlow there is no mechanism with a sole purpose of acknowledging rule

modifications. Instead, there exists a Barrier command with a more general

functionality. However, as we show in the previous chapter, not all switches

satisfy the specification in this command that is crucial for correctness.

Although ultimately vendors should fix all errors in the switches, this

process takes time. Instead we take advantage of one of the main selling

points of SDN, and add new functionality in software quickly and for low

cost. The solution presented in this chapter introduces a transparent layer

below an SDN controller that provides reliable acknowledgments for rule

modifications. This method relies on various methods, including data plane
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Figure 4.1: Consistent network update using a hardware switch.
Despite theoretical guarantees, for most flows switch S1 gets up-
dated before S2 and the network drops packets for up to 290 ms.
Using our system eliminates this problem.

probing schemes, that achieve the aforementioned goal depending on switch

capabilities. When using these techniques, the controller can never receive an

acknowledgment before a corresponding rule is installed in the data plane.

Moreover, at the cost of a higher overhead, such a layer can also provide

barrier-like guarantees to the controller working with switches that do not

implement barriers correctly.

4.1 Motivating Example

To demonstrate the magnitude of the problem, we prepare a small end-to-end

test: We set up a network in a triangle topology with the hardware switch

S2 and two software switches S1 and S3 (Figure 4.1a). We preinstall paths

for 300 IP flows between hosts H1 and H2 going through switches S1 and

S3. Then, we perform an update that modifies the paths to S1-S2-S3 in a

consistent manner, such that a given packet can follow the old rules only or

the new rules only [70].
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Figure 4.2: If switch B does not report data plane updates cor-
rectly, the theoretically safe update that adds rules for trusted and
untrusted traffic from the same host turns into a transient security
hole.

Despite using consistent updates, some flows drop packets for an extended

period of time (Figure 4.1b). A detailed analysis shows that the switch sends

the barrier reply up to 290 ms before the rule modification becomes visible

to data plane traffic. Based on Chapter 3 we know that other switch models

not only reply to barriers too early, but also reorder rule updates across

barriers. The consequences of this observation have great impact — even

though provably correct in theory, none of the consistent network update

techniques work in practice with buggy switches, and all systems that build

upon these techniques are unsafe as well. In particular, buggy behavior may

lead to security violations, broken bandwidth guarantees, or black holes —

an example of the first is depicted in Figure 4.2. If the issues that we bring

up here are not addressed (e.g., by adopting one of our schemes) the SDN

deployments that are increasingly taking place in enterprises are in jeopardy.

While an incorrect barrier implementation may be just a temporary prob-

lem and not a fundamental limitation (some of the tested switches do imple-

ment barriers correctly), we see three main reasons why it should be imme-
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diately addressed. First, there are many solutions that rely on barriers and

it cannot be expected that all switches in a network will correctly function.

Second, even after five major revisions the OpenFlow specification is unclear

— it does not explicitly state that the commands must be applied in the data

plane, instead it may be understood that the barrier enforces control plane-

ordering only. This in turn means that, unless there is a high pressure from

customers, vendors will have no incentive to provide data plane-level con-

firmations, and therefore the problem might not disappear in future switch

generations. Finally, we argue that controllers need acknowledgments of each

rule installation, rather than only high level barriers [68]. Therefore, we go

one step further than just fixing barriers, and the solutions we propose pro-

vide such fine grained rule update acknowledgments.

4.2 System Overview

We have two main requirements in mind when designing our system called

RUM (Rule Update Monitoring). First, it needs to work with existing

switches and take into account their capabilities and limitations. Second, the

system should provide reliable barrier commands in a backward-compatible

way without requiring any modifications to the existing controllers and switches.

However, it should allow the RUM-aware controllers to benefit from fine

grained acknowledgments.

Acknowledging rule modifications. The first goal of the system is to pro-

vide reliable rule modification acknowledgments to the OpenFlow-speaking

controllers. We design RUM as a transparent layer between the switches and

the controller that intercepts and modifies the communication between them

similarly to FlowVisor [77] or VeriFlow [52]. In contrast with these systems,

RUM plays a more active role in the interception, as it can buffer, rate-limit,
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remove or add messages. To allow easy deployment and transparency for con-

trollers that are not designed to work with the fine grained acknowledgments,

RUM adapts existing OpenFlow messages to convey successful modifications

(such notifications are not available in OpenFlow). Depending on the re-

quired precision and available switch properties, the techniques (Section 4.3)

rely only on the control plane communication with the tested switch, or may

install additional rules and involve the neighboring switches.

Providing reliable barriers. To provide reliable barriers, RUM intercepts

all Barrier requests and replies. After capturing a Barrier request, RUM

holds off sending the corresponding Barrier reply and following messages

from the switch until it can ensure that the switch completed all pending

operations. An ability to correctly acknowledge commands issued to the

switch is therefore the key to reliable barriers. Additionally, when working

with switches that reorder modifications across barriers, RUM buffers all

commands that the controller sends after the last unconfirmed barrier. It

releases them to the switch after acknowledging the barrier. The barrier layer

uses standard OpenFlow Barrier commands and is therefore transparent to

any controller.

4.3 Data Plane Acknowledgments

RUM aims to acknowledge rule modifications as soon as the new rule is

active in a switch data plane, but not sooner. Because different switches have

different limitations and capabilities, we discuss several possible solutions to

the problem at hand.
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4.3.1 Control Plane Only Techniques

The first class of techniques uses control plane information only and requires

modeling the switch behavior. They make minimal assumptions about the

switches but instead do not offer strong guarantees.

Using OpenFlow barrier commands. Relying on Barrier messages

is a natural way to receive acknowledgments in OpenFlow (the only way

defined by the specification). Therefore, we present it as a baseline. A

switch must send a Barrier reply message only after it finishes processing

all previous commands. However, our measurements in Chapter 3 show that

some switches respond to a barrier immediately, before the modifications were

applied to the data plane, and as a result the data plane is often between

100 and 300 ms behind what may be assumed based on Barrier replies.

This confirms previous measurements [72] indicating that barriers cannot be

trusted and should not be used as rule update confirmations.

While one can imagine using other OpenFlow commands instead of barri-

ers (e.g., using statistics requests), we believe that such an approach does not

solve the underlying problem — the reply from the switch is still based on

its control plane view and/or it does not have enough temporal granularity

(e.g., flow statistics might be updated only once per second). Therefore, in

the rest of this section we introduce techniques that still rely on the barriers,

but take into account the data plane delay.

Delaying barrier acknowledgments. The first technique relies on exper-

iments prior to deployment. If the maximum time between the barrier reply

and the rule modification being applied is bounded and can be measured,

RUM waits for this time after receiving a reply before confirming earlier

modifications.

The main drawback of this method is that it requires precise delay mea-
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surements or overestimation. We observe that in practice the delay depends

on many, often difficult to predict factors and therefore providing strong

guarantees is difficult (Chapter 3). For example, if the data plane is typi-

cally delayed by up to 100 ms, but there are cases of a 300-ms delay, one

needs to assume the worst case scenario and always wait for 300 ms. Even

then, in hard to predict corner cases, the delay may reach several seconds,

which is impractical to use as the upper bound. Therefore, waiting for a

timeout after each barrier has a negative impact on update performance and

rule modification rate.

Adaptive delay. Adaptive timeout improves the performance of the pre-

vious technique, but requires even more detailed measurements to develop a

precise switch model. Based on such models and knowing the rate at which a

controller issues modification commands, RUM estimates when a particular

rule modification will take place in the switch. Thus, the timeout is ad-

justed accordingly. However, this method requires building detailed switch

performance models, which is difficult.

4.3.2 Data Plane Probes

The basic idea of data plane probes is to inject special packets into the

network and use them, as well as special probing rules, to monitor which rules

are active in the data plane. There are two aspects of OpenFlow Barrier

commands: (i) a switch should respond with a Barrier reply after processing

all previous commands, and (ii) a switch should never reorder commands

separated by barriers. In practice some switches violate either the first of

these properties (because they process commands in the control plane, but

push the rules to the data plane later), or both. The two techniques presented

in this section are designed to work correctly with such two classes of switches.
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4.3.2.1 Sequential Probing

If a switch violates only the first barrier property (responds to barriers too

early) two modifications separated by a barrier are never reordered in the data

plane. Therefore, a strawman solution follows each real rule modification

with a barrier and an additional rule installation for probing. By the time

the probing rule is determined to be active (i.e., it forwards a probing packet),

the original rule must be in place as well.

Implementation-wise, the probing rule matches only the specially selected

probe packets and has a high priority so that no other rule can override

it. The probing rule sends the matching packets to the controller. RUM

then repetitively injects probe packets (using a Packet Out message) into

the switch forwarding pipeline and when the probe arrives back to RUM, it

means that the probe rule is installed and therefore the corresponding real

rule is active as well. Finally, after probing rule is confirmed, it is no longer

needed and can be removed.

There are, however, technical details of the strawman solution that make

it impractical and require improvements. First, from the correctness perspec-

tive, it assumes that the Packet Out processing and probe rule matching are

performed in hardware. Unfortunately, this might not be the case – rules

sending packets to the controller are often kept in software and may start

forwarding traffic before the previous hardware rules are pushed into the data

plane. As such, we modify our solution to use hardware-only probing rules

– we use two additional switches1 as depicted in Figure 4.3.

Second, inserting one probe rule after each normal rule is prohibitively

expensive. Instead, we notice that a single probe rule installed after a batch

1In principle, switches A and C can be the same switch. We keep them separated for the
presentation purposes.
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Figure 4.3: Probing the data plane at switch B. The controller
(RUM) sends a probe packet from switch A to switch B. If B
installed the probing rule, it forwards the packet to switch C which
sends it back to the controller.

of several rule modifications acknowledges the whole batch at the same time.

This way the probing overhead gets amortized over more rules at the ex-

pense of a longer acknowledgment delay. Moreover, the probe rules can be

optimized even more – instead of installing a new probe rule for each batch

and then deleting it, we use a single probing rule which rewrites a particular

field in the packet header (e.g., ToS or VLAN) with a version number of this

probing rule. Then, we just update the rule to write the new version number

to the probe packet header. RUM recognizes the last version of probe rule

based on the probing packet headers it receives back.

Multi-switch deployment. The approach described so far requires setting

up different probe rules matching different packets for each probed switch,

because otherwise forwarding the probe packet on the next switch will in-

terfere with probe collection on that switch. We overcome this problem by

choosing two header fields H1 and H2 to be used by probing. These can be

any rewritable fields in a packet header. Additionally, we reserve two special

values of H1; we call these values preprobe and postprobe. In our solution,

all switches install a high priority probe-catch rule that sends all packets

with H1 == postprobe to the controller. We also install one probing rule per

each switch. It matches packets with H1 == preprobe and rewriting them

to post-probes while also storing the per-switch unique probe rule version in
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Figure 4.4: Network-wide probing solution. There are two rules
preinstalled at each switch and only the version of the probing rule
is updated over time.

H2 (H1 ← postprobe, H2 ← ver). To do the probing, RUM sends a probe

packet with H1 = preprobe inside a Packet Out message through switch A

towards switch B as depicted in Figure 4.4.

This technique comes with two sources of overhead. First, a switch needs

to install the probe rules which reduces its usable rule update rate. Fur-

ther, the probe rules are probed by data plane packets, which affects the

neighboring switches’ control planes though the Packet Out and Packet In

messages. Thus, there is a trade-off between notification delay and the usable

update rate.

4.3.2.2 General Probing

The final strategy addresses the problem of switches that reorder rule mod-

ifications despite the use of barriers. In such a case, confirming that the

last update took place is insufficient to acknowledge all previous updates.

Specifically, it means that we cannot rely on probe rules described previ-

ously. Instead RUM needs to confirm each modification separately, where a

modified rule may match an arbitrary set of header fields.

In this strategy, we need to reserve a header field H that is not used in

the network, meaning that all normal rules have it wildcarded and no packet

has it set to a value used by RUM (e.g., VLAN, MPLS or ToS depending
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Figure 4.5: Probing for a rule matching IP packets with source Rs
and destination Rd. A probe packet matches the tested rule at B
and a send-to-controller rule at C.

on the deployment). At the beginning, each switch i gets assigned a unique

value Si of field H. Each switch i then installs a high priority probe-catching

rule that sends all packets that match on H == Si to the controller. Figure

4.5 shows a scenario where RUM confirms the installation of the rule that

matches packets with an IP source Rs and IP destination Rd and forwards

them to switch C. Assuming the action of the probed rule is to send the

traffic to switch C, we use switch C with its probe-catch rule matching on

H == Sc to receive the probes. To create the probe packet, RUM computes

an intersection of the probed rule on switch B and probe-catch rule on switch

C. In our example, the probe packet has IPsrc = Rs, IPdst = Rd, H = Sc

and arbitrary remaining header fields. This probe gets injected through

any neighbor of switch B (e.g., switch A). As soon as the tested rule gets

installed, the controller observes the probe packet coming from switch C

inside a Packet In message. The same method can detect rule deletions

(probes stop arriving at the controller) or rule modifications (probes reach

the controller from a different neighbor of B or have header fields modified

to new values in case of header rewriting rules).

Overlapping rules. The previous, simplified description does not take into

account the fact that there is more than one rule installed at a given switch.

When creating a probe packet for a particular rule, RUM needs to take into
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account other rules such that the probe does not get forwarded by any other,

already installed rule. In particular, probe generation needs to address two

issues.

First, the generated probe packet must not match any higher-priority rule

which overlaps with the probed rule. While finding a probing packet that

hits exactly the tested rule is NP in a general case, others [50,87] show that in

practice the problem can be solved quickly for real forwarding tables. Second,

the generated probe packet must have a different forwarding action (i.e.,

either a different output port or a different rewrite action) than the lower-

priority rule matching the probe when the probed rule is not installed yet

(otherwise we cannot distinguish if the packet was processed by the probed

rule or the lower-priority rule). Note that as a special case, we can probe

for rules dropping packets if there exists an overlapping lower-priority which

does not drop the packets (a common case of ACLs and forwarding rules

combination). If no suitable probe exists, RUM falls back to one of the control

plane-based techniques. For example, if the probed rule is fully covered by

higher priority rules, or if it covers other, already installed lower priority rules

that have exactly the same actions, probing cannot reveal when the rule got

installed.

Reducing the number of switch-specific values. This technique relies

on using a header field and values that are unused by the live traffic in the

network. Because there may be few such fields and values, it is essential to

reduce the number of required values. However, to prevent the tested switch

from sending the probe directly to the controller, each two adjacent switches

need to have different identifiers. Thus, instead of using a network-wide

unique value of Si for each switch i, one can solve an instance of the vertex

coloring problem for which there are well known heuristics [80].
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4.4 Implementation

We implement a RUM prototype that works as a TCP proxy between the

switches and the controller. The switches connect to the proxy as if it was

a controller, and the proxy then connects to a real controller using multiple

connections, impersonating the switches. This design allows us to modularly

compose RUM as a chain of proxies to add functionality and freely replace

components. For example, a barrier layer built on top of the acknowledg-

ment layer is just another proxy. We implement the proxies using the POX

platform.

In the current implementation we assume IP-only traffic and rely on the

ToS field for probing. Because there are only 64 ToS values, we need to

periodically recycle them in longer experiments. Moreover, we assume that

the rules do not overlap,2 and therefore, selecting a probing packet degrades

to using the same source and destination addresses as in the rule’s match.

While the OpenFlow specification lacks messages to confirm that a rule

modification was successfully applied, it defines error messages used when

something goes wrong. We reuse an error message with a newly defined

(unused) error code for positive acknowledgments. Alternatively, one could

potentially add vendor-specific messages to the protocol.

Finally, the hardware switch we use does not support priorities but takes

the rule installation order to define the rule importance. Therefore, we care-

fully place the low priority rules early, and make sure that other rules do not

hide the high priority ones.

2Except a low priority drop-all and high priority probe rules
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Figure 4.6: Flow update times when using control-plane only tech-
niques. The reliability depends on correct estimation of the switch
performance.

4.5 Evaluation

We evaluate RUM in the same end to end experiment as presented before,

and using a hardware OpenFlow switch (HP 5406zl) that incorrectly im-

plements barriers.3 Further, we use low level benchmarks to analyze the

properties and trade-offs in our techniques. Admittedly, these are just small

scale experiments. However, a large scale test would require a testbed built

of hardware switches because emulators use software switches that perform

differently than the real ones. We do not have access to such a testbed.

4.5.1 End to End Experiment

We first show that the presented techniques solve the dropped packets prob-

lem described in Section 4.1. The setup is as in Section 4.1 and we send data

plane traffic at a rate of 250 packets/s per flow (75000 packets/s in total). We

use the previously described control plane-only techniques and in Figure 4.6

3The precise characteristics can be found in Chapter 3.
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plot the times when the last data plane packet following the old path and

the first packet going along the updated path arrives at the destination. The

area between the two lines visually represents the periods when packets get

dropped.4

An update with Barriermessages is the fastest, but because the Barrier

replies are arriving too soon, rules at switch S1 get updated before rules at

switch S2 are in place, which leads to extensive periods of packet drops (a to-

tal of 6000-7500 packets got lost in each of multiple runs of this experiment).

The three visible steps in flow installation times are an artifact of the way

how the switch synchronizes the data and control plane (check Chapter 3).

Using a 300-ms timeout solves a packet drop problem, but increases the

average time it takes before a flow starts following a new path from 592 ms

to 815 ms. Finally, while the 300-ms timeout is sufficient when there are up

to 300 rules in the switch flow table, it becomes too short when the table

occupation grows (Chapter 3).

Based on the measurements, we set the adaptive timeout to assume that

a switch performs 200 and 250 rule modifications per second. We see that

the technique offers a stable performance over time, however when flow table

occupancy increases and the assumed update rate is overestimated (250), the

acknowledgments arrive too early and the network starts dropping packets.

Figure 4.7 shows the results of the same experiment but when using the

data plane probing techniques, which guarantee no packet drops. For com-

parison, we plot the result when all flow modifications are issued at once to

all the switches (no wait). It shows the shortest update duration one can get,

limited only by the slowest switch update rate, but also offers no theoretical

consistency guarantees. The sequential probing technique requires additional

4If the delay between the two packets is lower than our measurement precision, we plot
a single line.
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Figure 4.7: Flow update times with probing. There are no packet
drops and the overhead of the general technique is negligible com-
pared to the best achievable update time.

rule modifications (we modify a probing rule after every 10 real modifica-

tions). This fact is noticeable, because the data plane synchronization steps

are more frequent which hurts the update performance. On the other hand,

the general probing technique does not require additional rule updates, but

only sending and receiving data plane probes. If probing up to 30 oldest flow

modifications at once, every 10 ms, the flows get updated almost as quickly

as the lower bound.

We originally send packets belonging to each of the updated flows every

4 ms and observe no drops. To verify that there are no transient periods

shorter than 4 ms when packets are dropped, we randomly select a single

flow ten times and send traffic for the flow at 10000 packets a second. Once

again we observe no drops.

Barrier Layer Performance. To validate the overhead of a full barrier

layer, we rerun the same experiment with our reliable barrier layer introduced

before and sending a Barrier after every 10 flow modifications. When a

switch does not reorder modifications across barriers, the total update time
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and the particular curve of flow update times is the same as for the normal

sequential probing technique. On the other hand, if the switch can reorder

modifications and RUM needs to buffer them to ensure correct ordering, the

overhead is big and the total update time is twice that of the general probing

technique. Understandably, this time increases even more (up to 5 times) if

the barriers are more frequent (up to a barrier after each command).

4.5.2 Low Level Benchmarks

After observing that RUM achieves its main high level goal - allowing for

reliable network updates with consistency guarantees even on unreliable

switches, we analyze how changing variables in each technique affects various

aspects of the update.

The setup in the next two experiments is the same. Initially, there is a

single, low priority drop-all-packets rule at the switch. Then, a controller

modifies R rules in the switch in a way that at most K modifications are

unconfirmed at any time. When a modification confirmation comes, the con-

troller issues a new update. Meanwhile, we send data plane traffic matching

the modified rules again at a rate of 250 packets/s for each rule.

Data plane delay. First, we measure when packets matching a particular

rule start arriving at the destination (data plane activation) and when the

controller receives a confirmation that the rule was installed (control plane

activation). In Figure 4.8 we plot the delay between the data plane and

control plane activations for various techniques for R = 300 and K = 300

(send all rules at once). All values below zero mean incorrect behavior and

positive values cause a delay during an update. Thus, the ideal behavior

would be a vertical line at x = 0. We see that, as mentioned in the introduc-

tion, Barrier replies arrive even 300 ms before the rule gets applied. Using
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Figure 4.8: Delay between data plane and control plane activa-
tion. Using barriers leads to incorrect behaviors, control plane
techniques increase the update time and the data plane techniques
strike a balance.

a 300-ms timeout fixes the correctness problem in this case, but is very in-

efficient — for the median the update wastes 230 ms on each Barrier. The

adaptive timeout technique achieves very good results, however, it requires

precise models, otherwise the delay can fall below zero (possible inconsis-

tencies). Finally, both probing techniques never incur a negative delay and,

accordingly, are within 70 ms and 30 ms after the data plane modification

for 90% of modifications.

Impact of probing rules. A technique that relies on installing probing

rules to confirm that previous modifications took place requires finding a

balance between the frequency of such confirmations and measurement pre-

cision. In this experiment we issue R = 4000 modifications and vary the

number of modifications after which RUM sends a probing rule, as well as

the number of allowed, unconfirmed modifications (K). Table 4.1 shows that

the usable modification rate (rate of real modifications, not counting probes)

is proportional to the number of rules probed at once and is usually close
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Probing frequency K = 20 K = 50 K = 100
after 1 update 51% 51% 51%
after 2 updates 64% 68% 68%
after 3 updates 69% 77% 77%
after 4 updates 72% 82% 82%
after 5 updates 74% 86% 86%
after 10 updates 76% 93% 94%
after 20 updates 74% 95% 98%

Table 4.1: Usable rule update rate with the sequential probing
technique (normalized to a rate with barriers).

to the expected rate. When the number of allowed unconfirmed messages is

low compared to the number of rules confirmed at once, the controller does

not receive the confirmations quickly enough to saturate the switch.

Number of probes a switch can process. Sending data plane probes

requires a switch to process two types of messages. First, an injecting switch

receives a PacketOut and forwards a probe packet to the required port. Then,

the receiving switch gets the packet, encapsulates it in a PacketIn message,

and sends it to the controller. In the previous experiments, we used software

switches as sending and receiving switches. Here, we instead benchmark the

performance of a real hardware switch. We measure the PacketOut rate

by issuing 20000 PacketOut messages and observe when the corresponding

packets arrive at the destination. Similarly, we install a rule forwarding all

traffic to the controller and inject traffic to the switch to measure the PacketIn

rate. The rates are 7006 PacketOut/s and 5531 PacketIn/s, averaged over

5 runs. Both of these values are sufficient to allow RUM to probe the rules

frequently.

Finally, our additional experiments show that processing PacketIn re-

quests in parallel with rule modifications has minimal impact on the rule

modification throughput — new rate is over 96% of the original rate without

any other messages. Similarly, processing PacketOut messages in parallel
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with rule modifications decreases the rule update rate by at most 13% for

the ratio of PacketOut messages to rule modifications up to 5:1.

4.6 Summary

A system presented in this chapter shows how to utilize data and control

plane separation in SDN as well as software resources of the controller ma-

chine to improve reliability of computer networks. RUM, at the cost of short

added latency, makes unreliable switches usable in a network without requir-

ing any changes in the controllers or the devices themselves.
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Chapter 5

Related Work

Software Defined Networks are becoming popular in both the scientific and

commercial settings. Such interest leads to many research directions that

quickly advance the state-of-the-art. This chapter contains an overview of

work most closely related to the topics presented in this dissertation.

5.1 Functional Testing

Functional testing tools for SDN focus either on switches or controllers, where

the controller correctness is often checked by verification of rules and network

configurations that it generates.

5.1.1 Switch-Level Testing

Switch-level testing treats the device under test as a black box. To ensure

that the test results do not depend on external factors, the interactions with

the controller and other network elements are commonly emulated by the

testing framework. This approach typically requires a large number of test

cases to achieve high coverage. A test specification for OpenFlow 1.0 is over

100 pages long [1] and the test specification for 1.3 version of the protocol is

already 400 pages long [2]. Each test case is carefully designed to target a

specific feature and checks the correctness of simple functionalities. Develop-

ers, using tools such as OFTest (a unified framework used to test correctness

of OpenFlow switches) [8] have to manually provide step by step execution

scenarios containing the inputs and expected outputs. SOFT automates this

time-consuming and complicated process of designing test cases.
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Another, more automatized, approach to black-box testing of SDN de-

vices [83] relies on switch models to generate test cases. While the resulting

set of tests allows for systematic exploration of switch behaviors, its quality

depends on the model. Creating such models is difficult, requires adjustments

after any specification change and if done incorrectly negatively affects test

coverage. SOFT instead infers the model automatically by exploring the

code itself. It also does not require correct behavior specifications.

Instead of testing the switches before deployment, some argue for veri-

fication in production [74]. This approach adds an additional load on the

network and is more closely related to monitoring than testing. Cost of

bugs in a running network is usually higher than for ones uncovered before

deployment.

SOFT design is based heavily on recent developments in research on sym-

bolic execution. Symbolic execution [24] and selective symbolic execution [28]

is capable of testing even large systems. However, blindly applying symbolic

execution results in an exponential explosion of code paths. It also requires

excessive human effort to specify correct behavior. SOFT effectively over-

comes these issues and goes one step further by coalescing constraints that

result in the same output, and using the constraint solver to identify incon-

sistent behaviors.

Symbolic execution can be also efficiently applied to verify software data

plane pipelines [31]. The authors show that splitting packet processing pro-

grams into smaller segments improves verification times by orders of magni-

tude. While functionally similar to SDN switches, software packet processors

are easy to split by design and switches’ code is monolithic. SOFT uses a

similar idea when sending partially concretized input messages in separate

test cases.
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Complementary to SOFT, Kothari et al. [57] use symbolic execution to

identify protocol manipulation attacks. The goal here is for a node to try to

determine harmful behavior induced upon itself by received messages from

other participants. In contrast, SOFT systematically determines and com-

pares the input subspaces of multiple implementations to find inconsistencies,

without prior knowledge of correct behavior.

While the main focus of this dissertation is on SDN switches, the topic of

network devices testing is not new. We assume that the switch hardware is

verified using standard verification techniques [30, 33]. SOFT is designed to

check software instead. There are also various methods and tools that check

correctness and performance of routers and switches as a whole [22,27,41,89].

However, these methods are mostly ad-hoc and depend on a specific protocol

and device features. By simply comparing two implementations, the theory

behind SOFT is protocol independent.

5.1.2 Network-Level Testing and Debugging

In the recent years researchers developed a large set of tools designed to

verify network policies. However, tools such as Anteater [63], Header Space

Analysis [50], NetPlumber [51], VeriFlow [52] and Libra [88] cannot detect

any problem with switches. They model switch behavior instead of using

real implementations.

Other tools like NoD [61] and Batfish [34] incorporate a domain specific

language to analyze configuration correctness. But they also sidestep the

problem of real switch correctness.

Finally, NICE [26] is a tool for testing unmodified OpenFlow controller

applications. It combines model checking and concolic execution in order to

systematically explore the behavior of the network under a variety of possible
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event orderings. NICE and SOFT target fundamentally different parts of

the network: controller vs. switches. In NICE, only the controller is running

the unmodified application, while other elements (switches, end hosts) are

replaced with simplified models. In contrast, SOFT finds inconsistencies

among the implementations of OpenFlow agents that run in the switches.

5.2 Switch Performance Measurements

Switch data and control plane performance is essential for successful Open-

Flow deployments, therefore it was a subject of measurements in the past.

During their work on the FlowVisor network slicing mechanism, Sherwood et

al. [77] report switch CPU-limited performance of about few hundred Open-

Flow port status requests per second. Similarly, as part of their work on the

Devoflow modifications of the OpenFlow model [29], Curtis et al. identify

and explain the reasons for relatively slow rule installation rate on an HP

OpenFlow switch. OFLOPS [72] is perhaps the first framework for OpenFlow

switch evaluation. Its authors used it to perform fine-grained measurements

of packet modification times, flow table update rate, and flow monitoring ca-

pabilities. This work made interesting observations, for example that some

OpenFlow agents did not support the Barrier command. OFLOPS also

reported some delay between the control plane’s rule installation and the

data plane’s ability to forward packets according to the new rule. OFLOPS-

Turbo [71] is a more recent extension of the previous work. It improves mea-

surement precision and increases traffic generation speed. Huang et al. [44]

perform switch measurements while building High-Fidelity Switch models

that will be used during emulation with Open vSwitches. This work quanti-

fies the variations in control path delays and the impact of flow table design

(hardware, software, combinations thereof) at a coarse grain (average be-
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havior). This paper also reports surprisingly slow flow setup rates. Relative

to these works, we dissect switch performance at a finer grain, over longer

time periods, and more systematically in terms of rule combinations, initial

parameters, etc. In addition, we identify thresholds that reveal previously

unreported anomalous behaviors.

Another recent measurement study [42] focuses on data plane-based up-

date rates. We observe both data and control planes and compare states in

both. We also reveal performance variability present only in longer experi-

ments.

Jive [59] proposes to build a proactive OpenFlow switch probing engine.

Jive measures performance using predetermined patterns, e.g., inserting a

sequence of rules in order of increasing/decreasing priority, and reports large

differences in installation times in an hardware switch. The observed switch

behavior can be stored in a database, and later used to increase network

performance. We show that the switch performance depends on so many

factors that such a database would be difficult to create.

In the early days of SDN, Bianco et al. [20] measured and compared the

data plane packet processing performance of a software OpenFlow implemen-

tation in Linux. This work is orthogonal to our benchmarks, since we focus

on flow table updates, not the packet forwarding.

5.3 Network Monitoring and Debugging

Monitoring and debugging tools constantly observe and analyze the state of

the entire network. If a particular invariant gets violated, they raise an alarm.

All the techniques discussed in this section work in a running system and can

act only after a failure happens. Solutions presented in this dissertation work

offline, before deployment. Therefore, problems get detected before they can
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affect real traffic.

Automatic Test Packet Generation [87] is a solution based on Header

Space Analysis that creates a minimum set of test packets required to cover

all links or rules in the network. Then, ATPG uses these packets to detect

and localize failures.

Similarly, Monocle [66] generates probe packets for each forwarding rule

installed in a network. It then injects the probes in nearby switches to make

sure that all rules expected by the controller are actively forwarding packets.

Both these systems can quickly detect problems in networks, and po-

tentially pin them down to a single switch or even a single rule. However,

they cannot answer the question if a rule is incorrect because of a bug in

the switch, a faulty controller, an incorrect policy or any other reason. We

concentrate on the heterogeneity of switches.

NetSight [40] is a platform that records and allows for quick retrieval of

packet histories. The histories contain information about switches and rules

traversed by each packet. While useful in debugging of a running network,

this tool has the same limitation as the two works discussed above.

OFRewind [81] and STS [73] help with debugging network problems after

they occur. Both enable temporary consistent network event trace recording

in a running system. Since they rely on switch models when replaying control

messages, both tools are helpless if the root cause of a particular problem

lies in a switch.

5.4 Techniques to Improve SDNs

FlowVisor [77] is probably the first example of using a software layer between

switches and controllers in SDN in order to add new network functionality

without complicating the controller. It allows multiple controller applica-

112



tions to share the same network without risking conflicts with each other.

FlowVisor shows that introducing such a middle layer is acceptable from

the performance point of view, and is later followed by many proxy-based

solutions (RUM among them).

RUM is the first attempt to look at the network update consistency from

the practical point of view, using the real switches. There many solutions

that guarantee particular properties during an update, but they all assume

correctly-functioning switches. For example, consistent updates [70] guaran-

tee that packets can follow either a network configuration before the update

started or after it ended, never a mix of the two. Incremental consistent up-

dates [49] reduce the rule overhead required to provide consistent updates.

To avoid overloading links when rerouting big flows, zUpdate [60] takes into

account additional information about the load induced by each flow. Some

techniques [79] can guarantee consistency properties even in networks that

use both SDN and traditional switches at the same time. Finally, Mahajan

and Wattenhofer [62] introduce a taxonomy of network update consistency

levels and analyze the costs of each. Chapter 3 shows that an assumption

about correctly functioning switches does not hold, and RUM is a potential

workaround that allows the aforementioned solutions to work correctly.

Dionysus [46] and ESPRES [67] reduce mean flow rerouting times by

treating the entire network update as a scheduling problem with dependency

constraints. They rate-limit and reorder particular rule updates based on

runtime information to fully utilize available switches. Both systems are

based on an observation that switches may apply rule updates at different,

often unpredictable, speeds and therefore, following a static update schedule

is inefficient. Like RUM, Dionysus and ESPRES are software based solu-

tions, but instead of fixing switch limitations, they concentrate on improving
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performance. Moreover, ESPRES relies on a correctly working Barrier mes-

sage. RUM introduced an additional layer in the software stack that may

provide the required guarantees.

NOSIX [84] notices the diversity of OpenFlow switches and creates a layer

of abstraction between the controller and the switches. This layer provides

a translation of commands to optimize for a particular switch based on its

capabilities and performance. However, its authors do not analyze dynamic

switch properties, so the results from this thesis may be useful for NOSIX to

improve the optimization process. Tango [58] sets to solve a similar problem

as NOSIX and improves network performance by adjusting commands to

switch capabilities. Its authors go one step further and propose a method for

inferring switch performance similar to the one we presented in Chapter 3.

These two pieces of work are the closest in spirit to this dissertation.

In a similar fashion, Parniewicz et al. [65] design a hardware abstraction

layer (HAL). HAL is a software layer that adds OpenFlow functionality to

legacy network devices. It translates between OpenFlow messages and the

proprietary configuration interface commands to mask that there are various

switches in the network. We instead start with a more specific problem where

all switches support OpenFlow, but not equally well.
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Chapter 6

Conclusions and Future Work

Software Defined Networks owe their increasing adoption to the promise

that increased programmability will lower costs and simplify network man-

agement. However, unexpected failures in production networks can quickly

negate trust in such a new technology. Given how much the existing Open-

Flow switches diverge from the specification and differ from each other, pro-

gramming controllers is difficult. Developers have to, first, realize what spe-

cial behavior each switch exhibits, and then, incorporate appropriate case

handling in their code. Even measuring switch behavior in the corner cases

is not trivial and in the absence of systematic methods can lead to unnoticed

issues and show an incomplete picture. Further, the resulting controller soft-

ware is complex, difficult to test and not future-proof.

This dissertation makes first steps towards providing controllers with a

unified switch view. The two presented testing and benchmarking tools:

SOFT and the switch benchmark allow users to better understand heteroge-

neous switch behaviors. Moreover, switch vendors and network administra-

tors can use these tools to quickly detect problems and get confidence that

their devices work correctly. SOFT detected seven inconsistencies between

two software switches implementing the same specification version. They

vary from relatively harmless missing features and different error messages,

to such serious ones as program crashing and silently ignoring configuration

messages. The switch benchmark not only classifies flow table update perfor-

mance depending on changing parameters, but also revealed safety-affecting

errors. Untrustworthy barriers and nonatomic rule modifications are against
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common assumptions made by controller developers, and if left unaddressed

may compromise network security.

RUM is a software layer that sidesteps the problem of unreliable barriers

by providing true rule modification confirmations. It is also an implementa-

tion of a wider vision, where between SDN switches and controllers, there is

a software processing pipeline that hides issues caused by switch heterogene-

ity. It takes advantage of the “software” part in SDN, since applying fixes in

software is often quicker and cheaper than modifying switch hardware.

Finally, this dissertation would ideally serve as a call for other researchers

to contribute to building such a software switch unification layer.

6.1 Future Work

Solutions presented in this dissertation are sufficient to defect a wide range

of issues with SDN switches, but there are still many ways in which they can

be improved. The ideas presented here aim to simplify the benchmarking

process while improving its coverage. They also envision using collective

community efforts to advance our understanding of switches and improve

the quality of testing solutions.

6.1.1 Automatically Inferring Performance Corner Cases

Currently the switch benchmark includes a set of test cases that cover the

space of parameters that affect flow table update characteristics. The space

is sampled with statically chosen concrete values of these parameters. When

operators running the tool encounter unexplained switch behaviors, they

have to manually adjust the parameters in search of the root cause. Such a

human-driven investigation is time consuming and requires an expert to lead

the exploration.
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Instead, the benchmark could take advantage of recent advancements in

machine learning and optimizations. The parameter space could be explored

automatically, with a goal to maximize/minimize a given metric. Such a

metric can be defined, for example, as the delay between data and control

plane rule activation or the overall update rate.

The improvement here can go one step further. There are techniques that

automatically detect minimal causal sequences causing an error to occur [73,

85, 86]. Similarly, after finding dangerous switch behavior the benchmark

could trim the sequence of messages that caused it to a minimal subset

required to reproduce the case.

After incorporating such changes, the benchmark would become accessi-

ble to any switch owner. After recording an unexpected behavior and produc-

ing a minimal sequence required to reproduce the issue, users could simply

send it to the switch vendors for further analysis.

6.1.2 Trustworthy Switch Models

Limited access to switches posed one of the main challenges while performing

the studies reported in this thesis. A researcher or a controller developer

usually has access to only few devices. Considering how much the switches

differ, it is an insufficient number to properly test any solution that should

work in a real network. Instead, developers usually rely on emulators and

software switches. However, performance of such software switches rarely

corresponds to any hardware switch.

Preparing a collection of software models of hardware switches can solve

this problem. After a public release, many users of the automatized bench-

mark should be able to report measurements collected on devices they have

access to. Precise software models can be then constructed based on such
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reports and made available to the developers.

Such models would be useful in multiple contexts. First, tools like RUM

should take them into account to improve the precision of rule modification

confirmations. More importantly, such models are practical in controller

testing. Built as a proxy placed between the controller and a switch, such

a model intercepts the communication between the two. The proxy adjusts

the timing and content of messages, while staying transparent for both ends

of the communication channel.

We already prepared such models for HP and Pica8 switches based on

measurements reported in Chapter 3. They proved to be useful when evalu-

ating RUM and various other tools developed afterwards.
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A Call for a Discussion about a Cleaner OpenFlow API. In EWSDN.
IEEE, 2013.

[69] Pfaff, B., Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
et al. The design and implementation of open vswitch. In NSDI, 2015.

[70] Reitblatt, M., Nate Foster, Jennifer Rexford, Cole Schlesinger, and
David Walker. Abstractions for Network Update. In SIGCOMM, 2012.

[71] Rotsos, C., Gianni Antichi, Marc Bruyere, Philippe Owezarski, and An-
drew W Moore. Oflops-turbo: Testing the next-generation openflow
switch. In ICC, 2015.

[72] Rotsos, C., Nadi Sarrar, Steve Uhlig, Rob Sherwood, and Andrew W.
Moore. Oflops: An open framework for openflow switch evaluation. In
PAM, 2012.

[73] Scott, C., Andreas Wundsam, Barath Raghavan, Aurojit Panda, An-
drew Or, Jefferson Lai, Eugene Huang, Zhi Liu, Ahmed El-Hassany,
Sam Whitlock, et al. Troubleshooting blackbox sdn control software
with minimal causal sequences. In SIGCOMM, 2014.

[74] Sharma, S., Wouter Tavernier, Sahel Sahhaf, Didier Colle, Mario Pick-
avet, and Piet Demeester. Verification of flow matching functionality
in the forwarding plane of openflow networks. IEICE Transactions on
Communications, 98(11), 2015.

124



[75] Shenker, S., M Casado, Teemu Koponen, N McKeown, et al. The future
of networking, and the past of protocols. Open Networking Summit,
2011.

[76] Sherwood, R. Tutorial: White box/bare metal switches. In Open Net-
working User Group meeting, New York, 2014.

[77] Sherwood, R., Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Mar-
tin Casado, Nick McKeown, and Guru Parulkar. Can the Production
Network Be the Testbed? In OSDI, 2010.

[78] Singh, A., Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead,
Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Ger-
mano, et al. Jupiter rising: A decade of clos topologies and centralized
control in google’s datacenter network. In SIGCOMM, 2015.

[79] Vissicchio, S., Laurent Vanbever, Luca Cittadini, Geoffrey Xie, and
Olivier Bonaventure. Safe Updates of Hybrid SDN Networks. Tech-
nical report, UCL, 2013.

[80] Welsh, D. J. and Martin B Powell. An upper bound for the chromatic
number of a graph and its application to timetabling problems. The
Computer Journal, 10(1), 1967.

[81] Wundsam, A., Dan Levin, Srini Seetharaman, and Anja Feldmann.
OFRewind: Enabling Record and Replay Troubleshooting for Networks.
In USENIX ATC, 2011.

[82] Yang, J., Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang
Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. MODIST:
Transparent Model Checking of Unmodified Distributed Systems. In
NSDI, 2009.

[83] Yao, J., Zhiliang Wang, Xia Yin, Xingang Shiy, and Jianping Wu. For-
mal modeling and systematic black-box testing of sdn data plane. In
ICNP, 2014.

[84] Yu, M., Andreas Wundsam, and Muruganantham Raju. NOSIX: A
Lightweight Portability Layer for the SDN OS. ACM SIGCOMM Com-
puter Communication Review, 44(2), 2014.

[85] Zeller, A. Yesterday, my program worked. today, it does not. why? In
ESEC/FSE99, 1999.

[86] Zeller, A. and Ralf Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering, 28(2),
2002.

125



[87] Zeng, H., Peyman Kazemian, George Varghese, and Nick McKeown.
Automatic Test Packet Generation. In CoNEXT, 2012.

[88] Zeng, H., Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju,
Junda Liu, Nick McKeown, and Amin Vahdat. Libra: Divide and con-
quer to verify forwarding tables in huge networks. In NSDI, 2014.

[89] Zeng, H., Xun Zhou, and Bo Song. On testing of ip routers. In PDCAT,
2003.

126



Biography
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Peter Pereš́ıni, and Dejan Kostić, Proceedings of the 10th International
Conference on emerging Networking EXperiments and Technologies
(ACM CoNEXT) 2014

• ”ESPRES: transparent SDN update scheduling”, Peter Pereš́ıni, Ma-
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