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Abstract
With ever-increasing computational power, and improved sensing and communication capa-

bilities, smart devices have altered and enhanced the way we process, perceive and interact

with information. Personal and contextual data is tracked and stored extensively on these

devices and, oftentimes, ubiquitously sent to online service providers. This routine is proving

to be quite privacy-invasive, since these service providers mine the data they collect in order

to infer more and more personal information about users.

Protecting privacy in the rise of mobile applications is a critical challenge. The continuous

tracking of users with location- and time-stamps exposes their private lives at an alarming level.

Location traces can be used to infer intimate aspects of users’ lives such as interests, political

orientation, religious beliefs, and even more. Traditional approaches to protecting privacy

fail to meet users’ expectations due to simplistic adversary models and the lack of a multi-

dimensional awareness. In this thesis, the development of privacy-protection approaches

is pushed further by (i) adapting to concrete adversary capabilities and (ii) investigating the

threat of strong adversaries that exploit location semantics.

We first study user mobility and spatio-temporal correlations in continuous disclosure scenar-

ios (e.g., sensing applications), where the more frequently a user discloses her location, the

more difficult it becomes to protect. To counter this threat, we develop adversary- and mobility-

aware privacy protection mechanisms that aim to minimize an adversary’s exploitation of user

mobility. We demonstrate that a privacy protection mechanism must actively evaluate privacy

risks in order to adapt its protection parameters. We further develop an Android library that

provides on-device location privacy evaluation and enables any location-based application

to support privacy-preserving services. We also implement an adversary-aware protection

mechanism in this library with semantic-based privacy settings.

Furthermore, we study the effects of an adversary that exploits location semantics in order to

strengthen his attacks on user traces. Such extensive information is available to an adversary

via maps of points of interest, but also from users themselves. Typically, users of online social

networks want to announce their whereabouts to their circles. They do so mostly, if not always,

by sharing the type of their location along with the geographical coordinates. We formalize this

setting and by using Bayesian inference show that if location semantics of traces is disclosed,

users’ privacy levels drop considerably. Moreover, we study the time-of-day information and

its relation to location semantics. We reveal that an adversary can breach privacy further by
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exploiting time-dependency of semantics. We implement and evaluate a sensitivity-aware

protection mechanism in this setting as well.

The battle for privacy requires social awareness and will to win. However, the slow progress

on the front of law and regulations pushes the need for technological solutions. This thesis

concludes that we have a long way to cover in order to establish privacy-enhancing technolo-

gies in our age of information. Our findings opens up new venues for a more expeditious

understanding of privacy risks and thus their prevention.

Keywords: location privacy, privacy concerns, location semantics, mobile applications, privacy

sensitivities, inference attacks, bayesian inference, bayesian networks
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Résumé
Avec toujours plus de puissance de calcul et l’amélioration de leur capacités sensorielles et de

communication, les appareils intelligents ont modifié et amélioré la façon dont nous traitons,

percevons, et interagissons avec l’information. Les données contextuelles personnelles sont

largement stockées et exploitées sur ces appareils et, souvent, envoyées aux fournisseurs de

services en ligne. Cette façon de faire s’est révélé être très envahissant pour la sphère privée,

puisque ces fournisseurs de services extraient les données qu’ils recueillent afin de déduire de

plus en plus de renseignements personnels sur les utilisateurs.

Protéger la vie privée avec la croissance des applications mobiles est un défi crucial. Le suivi

continu des utilisateurs avec l’heure et l’emplacement expose leur vie privée à un niveau

alarmant. L’historique des positions peut être utilisé pour déduire les aspects intimes de la

vie de l’utilisateur, tels que ses intérêts, son orientation politique, ses croyances religieuses, et

plus encore. Les approches traditionnelles pour protéger la vie privée ne parviennent pas à

répondre aux attentes des utilisateurs en raison de modèles adverses simplistes et d’absence

de multidimensionnalité. Dans cette thèse, nous poussons plus loin le développement d’ap-

proches de protection de vie privée (i) en l’adaptant aux capacités réelles de l’adversaire et (ii)

en enquêtant sur la menace des adversaires qui exploitent la sémantique des lieux.

Tout d’abord, nous étudions la mobilité des utilisateurs et les corrélations spatio-temporelles

des déplacements de l’utilisateur dans des scénarios de suivi continu (par ex. applications de

mesures continues), dans lequel plus un utilisateur révèle son emplacement, plus il devient

difficile de le protéger. Pour contrer cette menace, nous développons des mécanismes de

protection de la vie privée, tenant compte des adversaires et de la mobilité, qui visent à

minimiser l’exploitation par un adversaire de la mobilité de l’utilisateur. Nous démontrons

qu’un mécanisme de protection doit activement évaluer les risques sur la vie privée afin

d’adapter ses paramètres de protections. Nous développons également une bibliothèque

Android qui fournit une évaluation du risque directement sur l’appareil et qui permet à

toute application basée sur la localisation de préserver la vie privée de ses utilisateurs. Nous

implémentons dans cette bibliothèque un mécanisme de protection conscient des adversaires

potentiels et avec des paramètres de confidentialité fondés sur la sémantique.

De plus, nous étudions les effets d’un adversaire qui exploiterait la sémantique des lieux pour

renforcer ses attaques sur les déplacements des utilisateurs. Ces informations détaillées sont

disponibles pour un adversaire via des cartes de points d’intérêt, mais aussi via les utilisateurs
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eux-mêmes. En règle générale, les utilisateurs de réseaux sociaux en ligne veulent annoncer

leurs allées et venues à leurs cercles d’amis. Ils le font la plupart du temps, sinon toujours,

en partageant leur activité avec les coordonnées géographiques. Nous formalisons ce cadre

et en utilisant l’inférence bayésienne montrons que si la sémantique des lieux visités est

divulgué, le niveau de vie privée des utilisateurs s’en trouve considérablement réduit. De

plus, nous étudions les informations temporelles et de leur relation à la sémantique du lieu.

Nous découvrons qu’un adversaire peut encore mieux infiltrer la vie privée en exploitant les

dépendances sémantico-temporelles. Nous implémentons et évaluons, dans le même cadre,

un mécanisme de protection tenant compte des différentes sensibilités.

La bataille pour la vie privée exige une conscience sociale et de la volonté pour gagner. Ce-

pendant, la lenteur des progrès sur le front de la loi et de la réglementation pousse le besoin

de solutions technologiques. Cette thèse conclut que nous avons encore un long chemin à

parcourir pour établir des technologies améliorant la confidentialité dans notre ère de l’infor-

mation. Nos résultats ouvrent la voie à une compréhension plus rapide des risques pour la vie

privée, et ainsi à leur prévention.

Mots clefs : protection des données de localisation, préoccupations concernant la vie privée,

sémantique de la localisation, applications mobiles, sensibilités de la vie privée, attaques par

inférence, inférence bayésienne, réseaux bayésiens
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great people were a source of joy, contributed to my life and helped me grow further in many

ways. I am indebted to you all.

The last, chaotic, year of this journey would be devastating without the support and love of

Gökçen, who helped me through difficult times. Your presence always calmed me and helped

me clear my mind. Thank you for all the encouragement, happiness and sharing my most

v



Acknowledgements

important moments in life so far and also walking with me many years to come.

Finally, I want to thank my family and particularly my mother, Betül. Your unconditional love,

support and guidance have been the main driving force for me to become who I am now, with

the latest addition of the title ‘doctor’. Betül, Yeşim, Rengin, Gönenç, Süleyman, Ali Osman,
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Introduction

Mobile technologies are evolving at a dazzling rate leading to adoption of always-on, always-

connected smart devices by individuals. With ever-increasing computational power, and

improved sensing and communication capabilities, these smart devices have altered and

enhanced the way we process, perceive and interact with information. Masses are not only

information consumers anymore, they have become data producers as well by integrating to

the Web with their smartphones, activity trackers and more. Users of these mobile devices

(i.e., mobile users) not only publish their opinions, photos or videos online, but also, potentially

unknowingly, upload a great deal of their personal activities as a direct result of contextual

sensing abilities of these devices and ubiquitous connections to service providers. Applications

built on top of this type of technology can use contextual information to produce added value,

as they can provide recommendations, predictions and other processed information back to

the users.

However, it is obvious that with these developments in the last two decades, the threat to

privacy of mobile users has been an ever-increasing side effect. This subject has several

battlegrounds such as law, policy-making, regulations and technology. Thereby, privacy issues

have received substantial attention from the research community, though insufficient when

compared to the advances in technology that make privacy vulnerable. With the invention

and widespread adoption of mobile devices, the technology has caught individuals off-guard

and online users took the ride of rapid consumption of smart devices and gadgets, unaware

of how vulnerable their privacy has become. Unfortunately, laws, policies and regulations

tend to take a long time to be defined and implemented, and usually after the technology is

put in place. Currently, they have not caught up with the technology. The exposure of PRISM

program created by the National Security Agency (NSA) of the United States of America (USA)

to collect large scale data for mass surveillance [55], dubbed the PRISM scandal by many and

rightly so, proved that the threat to individuals’ privacy is real. Another example is the recent

request by Federal Bureau of Investigation (FBI) in the USA from Apple to help hack iPhones.

The threat is clarified by the Apple CEO Tim Cook himself in a letter to their customers [33]:

[The FBI has] asked us to build a backdoor to the iPhone. Specifically, the FBI

wants us to make a new version of the iPhone operating system, circumventing

several important security features, and install it on an iPhone recovered during
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Introduction

the investigation. In the wrong hands, this software — which does not exist

today — would have the potential to unlock any iPhone in someone’s physical

possession.

Recently, the European Union started to take a firmer stand on protection of individuals’ data

especially after the exposure of the PRISM program. A European court issued the “Right to

be Forgotten", which dictates search engines to remove any link to private data on European

citizens if they request so [45] (unless the data is published in a journalistic work or the request

clashes with freedom of expression). The applicability of this decision and how search engines

can implement such a mechanism are still in question. In summary, there is much to do on the

side of laws and regulations for privacy whereas the threat to privacy is imminent. Therefore, it

is important to develop solutions on the technology side to protect privacy while laws, policies

and regulations catch up with the pervasive privacy challenges.

In information systems, privacy can be defined as the control of users over their personal

information in terms of managing, editing and deleting. As the aforementioned examples

present, ubiquitous connectivity and data flow to service providers hinder this control. There-

fore, technological solutions for addressing privacy challenges are in fact tools for providing

users the ability to control their personal information. Notwithstanding the research efforts

on designing such technological solutions, i.e., privacy-protection mechanisms (PPM), an ad-

versary having access to a user’s data may try to extract further personal information based on

his existing knowledge regarding that user, the context and the relationship between various

dimensions of the targeted information. Therefore, a potential adversary’s capabilities and

knowledge must be concretely defined and addressed when designing PPMs.

In this thesis, we focus on location tracking of mobile users by mobile applications. Increas-

ingly more people use GPS-enabled mobile devices to enjoy location-based services and

location-based social networks. Users of such applications provide location information to the

service providers in return for useful information, such as the location of the nearest restau-

rant, cinema or nearby friends, or simply to keep their friends posted about their activities.

Many of these mobile applications are presented as free, but in fact, they obtain fine-grained

user traces that can be used to infer more personal information: the price a user pays for

benefiting from such services is her location data, which is detrimental to her privacy. The

online technology community and news agencies draw attention to the problem of location

privacy every now and then pointing to the fact that the risks are actual [95,106]. This problem

was broadly investigated by the research community, focusing mostly on geographical location

privacy and related protection mechanisms [67, 68]. It was also shown how an adversary can

locate/track users’ whereabouts based on location samples that are potentially anonymized

and/or obfuscated, and on mobility history (e.g., [68, 100]).

There are three main assumptions in the approach to tackling the privacy issues presented in

this thesis:

2



Introduction

• An adversary may have potentially incomplete background information, when perform-

ing an attack on user traces, including users’ mobility history and location semantics,

• The existing online systems (e.g., aggregation servers, location-based services and

location-sharing based services) are not willing to make extensive changes to their

system architectures to support privacy protection at the expense of utility and/or time,

but may accept obfuscated locations, which means that the required changes to their

systems would be minimal,

• It is difficult to establish and maintain a trusted third-party that handles the protection

of privacy on behalf of users, and therefore the solutions for protecting location privacy

should be implemented on user devices.

These assumptions are in line with the current systems in place given the minimal potential

changes, and therefore realistic. They enable the implementation of related solutions to be

deployed sooner than those that require extensive system changes or from-scratch system

designs. On the other hand, it has to be noted that many online applications must inevitably

be redesigned with a privacy-friendly approach.

Contributions

In this thesis, we focus on the context of location information in mobile applications and

the related privacy issues. More specifically, we consider the correlations among user events

in spatio-temporal dimensions and also the effect of location semantics (i.e., the type of

locations) on location privacy. In this sense, we formally define and model adversaries, develop

obfuscation-based protection mechanisms against them, and evaluate how successful the

adversaries are in various scenarios. Overall, the approach of the thesis to research on location-

privacy can be summarized by the relationship between an adversary and a user trying to

maximize their gains against each other by adapting to different dimensions and properties of

location in a continuous game (as illustrated in Figure 1).

•
•
•
→

•
•
•
→

Figure 1 – We embrace a two-sided medallion in privacy research: The adversary and users
move in opposite directions. The adversary obtains both public and side information about
users in order to breach privacy. Conversely, users should anticipate the adversary’s capabili-
ties in order to protect their location privacy adaptively.

In Part I, we tackle the location-privacy issues in continuous information disclosure scenarios
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such as sensing systems. In these scenarios, the privately-held mobile devices generate geo-

tagged events very frequently (e.g., every 1, 5 or 10 minutes) and submit them to an aggregation

server (which may or may not be a service provider). The main problem in these scenarios

is the correlation between disclosed events from a spatio-temporal perspective, namely the

speed and direction of users, and the users’ mobility history that might be known to potential

adversaries. We argue that these aspects, that is the context of location and the adversary’s

capabilities, need to be taken into account when protecting location privacy, especially by the

user device. Specifically, we:

• propose a location-privacy protection mechanism that adaptively determines the size

of a rectangular area that replaces the actual location of the user by taking into account

consecutive events she publishes. This is achieved by (i) estimating through Bayesian

inference the expected privacy level, and (ii) analyzing the reachability among consecu-

tive events with the maximum possible speed of the user. This novel approach is shown

to be superior to non-adaptive protection mechanisms. (Chapter 2)

• develop a heuristic algorithm that complements the adaptive protection mechanism

presented in Chapter 2 to protect location-privacy better: we model the mobility of

users and consider the most probable transitions when determining the obfuscation

area. The proposed mechanism is shown to be more effective against a mobility-aware

adversary than a random obfuscation approach. (Chapter 3)

• develop a location-privacy library on the Android platform that implements the adap-

tive protection mechanism we propose by extending it with user privacy sensitivities

w.r.t. location semantics. The library demonstrates the applicability of adaptive pro-

tection mechanisms and location privacy evaluation on user devices. It is shown to be

lightweight in terms of performance. (Chapter 4)

In Part II, we focus on the sporadic event generation by users, which typically occurs in online

social networks such as Facebook, Twitter and Foursquare. In such applications, events are

generally generated by users on-demand (i.e., not automatically). The main problem we tackle

in this type of scenario is that users may disclose the type of their location (i.e., the location

semantics), which increases the threat to their location-privacy. In other words, we approach

location-privacy issues from a semantic-aware point of view. More specifically:

• We show that a semantic-aware adversary is more capable of inferring the true location

of users against semantic-oblivious privacy-protection mechanisms than a traditional

adversary assumed in most of the related work. (Chapter 5)

• We argue, based on the analysis of a real dataset, that location semantics are time-

dependent, i.e., people go to specific types of places at specific times of day, and we

analyze the potential threats by formalizing a time-aware adversary. (Chapter 6)

• We propose a semantic and history aware protection mechanism that specifically takes

into account user sensitivities w.r.t. certain types of location in order to protect location-
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privacy against semantic-aware adversaries. We demonstrate experimentally that such

a protection approach is more successful at protecting the location-privacy of users

than static protection mechanisms that do not consider any background information.

(Chapter 6)

Overall, this thesis models adversary capabilities (considering multiple dimensions of location

information) and investigates inference attacks in order to better understand the threats, and

presents novel intelligent privacy-protection mechanisms for mobile users that run on user

devices without relying on third parties.
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1 State of the Art

Location privacy attracted a lot of interest from the research community in the last two decades

in parallel to the developments in mobile systems. How to protect location from service

providers and thus potential adversaries, and how can an adversary infer location traces when

protection mechanisms are applied on them have been the main research questions. In this

sense, there have been several main directions of research on location privacy. These can be

summarized as follows ordered from the most tackled issues to the least:

1. Protection-mechanism design for location-privacy.

2. Evaluation of protection mechanisms w.r.t. real attacks and datasets.

3. User privacy preferences and sensitivities.

4. Semantic location-privacy.

5. Trade-off between privacy and application utility.

Hereafter, we discuss the state of the art in terms of protection approaches that constitute the

bulk of this chapter, evaluation of privacy, privacy preferences and utility. The non-exhaustive

list of work, but representative of the most-commonly used approaches in the field related to

this thesis, is presented in Table 1.1, that positions them w.r.t. three main aspects of location-

privacy research (and their titles in Table 1.2 for convenience): protection techniques used,

the adversary model they assume, and also how they evaluate their work. More specifically,

the first three columns of ‘Protection’ column represent the main methods adopted in most

protection mechanisms in the existing work. These are anonymization, i.e., removing user

identities and making it difficult to identify users, obfuscation and perturbation of location

for confusing the adversary, and fake data injection to mislead the adversary by distorting

his knowledge on user traces. We also analyze the related work w.r.t. various approaches

they adopt in privacy protection: Do they take into account the simple mobility constraints

such as velocity? Do they take into account the location types, i.e., semantics? Do they

provide personalization for the level of privacy users require? Do they consider the adversary

capabilities actively and adapt the privacy protection parameters accordingly?

7



Chapter 1. State of the Art

Table 1.1 – State-of-the-art on location privacy w.r.t. which protection approaches they use,
whether they implement inference mechanisms and their evaluation approach. Last two rows
shows the aspects of location privacy this thesis addresses/considers in respective parts.
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[98–100] � � � � � � � �
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Part I � � � � � � � �
Part II � � � � � � � � � � �

Under the ‘Adversary’ title, we categorize the related work according to the following charac-

teristic of an adversary:

• Taking into account the user mobility history,

• Considering the landscape of the map, i.e., the road network, city topology, etc.,

• Exploiting semantics in order to increase inference success,

• Exploiting the user regularity and hence dependence on time dimension.
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Table 1.2 – State-of-the-art from Table 1.1 with their titles (in the same order).

Citation Title

Beresford et al. [16] Location Privacy in Pervasive Computing
Duckham et al. [41] A Formal Model of Obfuscation and Negotiation for Location Privacy
Ghinita et al. [51] MobiHide: A Mobile Peer-to-Peer System for Anonymous Location-

Based Queries
Gedik et al. [49] Protecting Location Privacy with Personalized k-Anonymity: Architec-

ture and Algorithms
Pingley et al. [89] CAP: A Context-Aware Privacy Protection System for Location-Based

Services
Gruteset et al. [57] Anonymous Usage of Location-based Services Through Spatial and

Temporal Cloaking
Meyerowitz et al. [79] Hiding Stars with Fireworks: Location Privacy Through Camouflage

Shokri et al. [98–100]
A Distortion-based Metric for Location Privacy
Quantifying Location Privacy
Quantifying Location Privacy: The Case of Sporadic Location Exposure

Yiu et al. [118] Spacetwist: Managing the Trade-Offs Among Location Privacy, Query
Performance, and Query Accuracy in Mobile Services

Xiao et al. [112] p-Sensitivity: A Semantic Privacy-Protection Model for Location-based
Services

Xue et al. [116] Location Diversity: Enhanced Privacy Protection in Location Based
Services

Ardagna et al. [13] Landscape-aware Location-Privacy Protection in Location-based Ser-
vices

Ghinita et al. [50] Preventing Velocity-based Linkage Attacks in Location-aware Applica-
tions

Xu et al. [114] Feeling-based Location Privacy Protection for Location-based Services
Freni et al. [48] Preserving Location and Absence Privacy in Geo-Social Networks
Damiani et al. [34] The PROBE Framework for the Personalized Cloaking of Private Loca-

tions
Monreale et al. [81] C-safety: A Framework for the Anonymization of Semantic Trajectories
Dewri et al. [37] Local Differential Perturbations: Location Privacy under Approximate

Knowledge Attackers
Bordenabe et al. [21] Optimal Geo-indistinguishable Mechanisms for Location Privacy
Primault et al. [91] Differentially Private Location Privacy in Practice

Lastly, we provide an overview of how the related work does ‘Evaluation’ in geographical and

semantic dimensions of location privacy. The majority of the work is under anonymity/cloak

size columns, which represent the simplistic evaluation approaches that do not reflect well

the privacy levels. In summary, these include measuring the level of privacy in terms of

size of the anonymity set or size of the obfuscation area generated. The other two types

of columns, namely adversary/confusion and adversary/correctness correspond to more

rigorous analysis of an adversary’s success at inference. Adversary/confusion state whether a

related work analytically or experimentally calculates the probability that an adversary infers

the actual location (or semantics) of a user. Adversary/correctness shows whether a related

work implements an actual attack and experimentally computes, or analytically analyzes the

adversary’s error in inferring a user’s geographical or semantic location.
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Chapter 1. State of the Art

1.1 Privacy-Protection Mechanisms

The purpose of this section is to give an overview of the most commonly used techniques to

protect location-privacy of users in mobile systems. The state-of-the-art we present below

generally considers a scenario where users query a location-based service and therefore have

the liberty to modify their identities and locations in return of a degraded utility. These works

do not support sharing location with friends (with exceptions) or announcing the semantics

of the user location.

Many previous works focused on anonymizing users in order to prevent an adversary from

linking disclosed location data to the origin user. One idea is replacing the identities of users

with pseduonyms when using location-based services so that the service provider would not

receive the real identity of the user. However, as Bettini et al. [17] point out, multiple location

points, consecutively disclosed by a user, can quickly become quasi-identifiers meaning that

they can be used to identify the user and hence link the location traces back to her. Beresford

et al. [16] proposed a solution to this named Mix-zones, in which unobserved areas would

enable the users to exchange their pseudonyms thus making it difficult to trace individuals.

The frequency of changing the pseudonyms affects the level of privacy.

Another well-known approach to protect location-privacy is called k-anonymity [102], a

technique borrowed from data privacy field. In location-privacy context, k-anonymity means

that a protection mechanism is required to build a geographical cloaking area such that there

exists at least k −1 other users in it, so that the users are indistinguishable from each other,

which is first proposed by Gruteser and Grunwald [57]. The idea is that the adversary should

not be able to link the location and query to the actual user. Their system require a trusted

third-party to act as the anonymizer that gather queries from users and forwards them to the

LBS servers after anonymizing them. Note that in order to meet the k-anonymity requirement,

they apply geographical cloaking that contains the locations of all k users so that when the

users make a new query as part of a new anonymity group, their traces will not be easily

constructed.

Xiao et al. [112] and Xue et al. [116] argue that k-anonymity and geographical cloaking may

not be effective against a reasoning adversary that is aware of the semantics of location.

They propose protection mechanisms that are semantic-aware and on the same line as l-

diversity [77] that tries to minimize the probability an attacker can guess the semantics of user

location. The purpose is to generate geographical cloaks that contain diverse semantic tags in

order to protect the semantic location-privacy. The downside of these approaches is that they

lack extensive evaluation of privacy by challenging their mechanisms with the assumed attack

scenarios. Typically, k-anonymity techniques (e.g., [49, 57, 71, 79, 112, 114]) rely on a trusted

third-party to cluster the users’ queries in order to create anonymity sets. Ghinita et al. [51]

proposed MobiHide to eliminate the need of a trusted third-party by coordinating users to

anonymize their queries in a distributed fashion.

Overall, there have been quite extensive research efforts on anonymization in the context
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1.1. Privacy-Protection Mechanisms

of location-privacy in mobile systems. This raised the question of how well anonymity is

preserved even if some k-anonymity technique is applied. In fact, it has been shown to be

quite ineffective [52, 58, 119]: it is relatively easy to link an individual to her anonymized trace,

especially by using her mobility history, etc.

As can be observed from Table 1.1, obfuscation is the dominantly used technique in the state

of the art, as is the case in this thesis. Apart from anonymity, various obfuscation-based

protection mechanisms have been proposed with different algorithms and constraints. The

idea of obfuscation for location privacy was initially introduced by Duckham and Kulik [41]

where the notions of inaccuracy, i.e., giving a location measurement different than the real

one, and imprecision, i.e., reporting a large area instead of a precise location, were formalized.

Ghinita et al. [50], Freni et al. [48] and Agir et al. [11] (i.e., Chapter 2) take into account

the velocity of users when generating geographical cloaks, which is especially important in

continuous disclosure scenarios as tackled in Part I of this thesis. Another constraint that

affects the privacy level obtained by using an obfuscation mechanism is the knowledge the

adversary has. Although there are many obfuscation-based mechanisms proposed, only a

handful of them [11, 21, 34, 37, 57] consider the adversary’s knowledge on users.

In the general context of location sharing, a number of cryptographic protocols have been

proposed (e.g., [27] for private and cheat-proof “mayorship”-badges, one of the main feature

of location-based social networks, and [39, 59] for sharing location with friends without the

service provider learning the users’ locations). Such solutions, however, involve cryptographic

operations and require technical modifications of the service. Related cryptographic protocols,

which provide privacy-preserving features, are proposed in [82] and [121]. They rely on

secure multi-party computations (garbled circuits) and homomorphic encryption schemes,

respectively. Such approaches can be applied to, for instance, friend-finding applications

without revealing user locations, but they require careful analysis and extension to incorporate

the semantic dimension of location in semantic-aware applications. These mechanisms aim

to provide privacy-preserving features in specific applications, and it is not straightforward to

modify them in order to cover the cases where people want to disclose their current activities,

i.e., their location semantics.

We refer the reader to Krumm [67], Toch et al. [105] and Wernke et al. [108] for more detailed

overviews of the related work on privacy-protection mechanisms.

Semantic Location-Privacy

Location is a context-rich piece of information; simple numbers such as coordinates can reveal

the type of location a user is at. Regular disclosure of visits by a user can reveal certain patterns

and hence lead to the prediction of personal information and even future visits [15]. As a

result, there have been approaches to protect the semantics of user locations. The motivation

is that a semantic-aware adversary can still infer private information about users, even if

their locations are obfuscated, as long as they contain minimal amount of location semantics.
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For example, if a user visits a hospital and she makes a query at a location-based service by

obfuscating her location, the server can see that she is at a hospital if her geographical cloak

only contains the hospital. The fact that she is at a hospital can be sensitive information

leading to suspicions about serious illnesses.

Consequently, some of the research efforts (including this thesis) focus on the semantic

dimension of location in order to improve location-privacy protection. Xue et al. [116], Yiu

et al. [118], Xiao et al. [112] and Damiani et al. [34] use location semantics to determine the

size of geographical cloaks for user locations. The PROBE framework by Damiani et al. [34]

propose the most comprehensive mechanism in terms of semantics by taking into account

the ratio of each sensitive type of place occupies in a geographical cloak. Xu and Cai [114] also

consider location semantics in an implicit way: they argue that public places are where users

generally feel comfortable and hence have less privacy-protection requirements. They build

their mechanism with this assumption to obfuscate locations accordingly, however, they do

not use any semantically annotated map data.

Overall, there is a gap in the state of the art regarding research on semantic location privacy.

Even though semantic-aware adversaries are assumed, no concrete attacks and evaluation

on semantic location privacy have been done. Moreover, the effect of exploiting location

semantics on geographical location privacy has not been extensively investigated.

1.2 Evaluating Privacy

The research efforts on designing location-privacy protection mechanisms for mobile systems

have been increasing, yet the evaluation of the proposed mechanisms does not always give

a concrete idea about how much information an adversary could obtain. Most of the state-

of-the-art assume a reasoning adversary as summarized in the ‘Adversary’ column of Table

1.1, but do not actually implement an attack and test the effectiveness of their proposed

mechanisms. In fact, inference attacks play an important role in privacy evaluation. Attacking

a protected user trace considering realistic background information can give good insight

about how well the privacy can be preserved. This also brings the question of how to quantify

location-privacy. In the literature, several metrics have been proposed for measuring the level

of location privacy. For instance, Duckham and Kulik [41] first propose the idea of obfuscating

location for protection, but they do not provide any experimental evaluation. Many other

related works (e.g., [49]) also use as the evaluation metric the size of the anonymity sets or

geographical cloaks obtained by their mechanisms. However, these metrics do not reflect how

much an adversary can truly infer. As an improvement, Ghinita et al. [51] and Meyerowitz et

al. [79] not only evaluate their mechanisms by cloak size, but also the a-posterior belief of the

adversary considering certain attacks.

A more useful metric is entropy, which is an information theoretical approach to privacy

measurement. In [38, 94], entropy H is proposed as an anonymity metric to measure the

privacy offered by a system. It is defined as H = −∑
i pi log2 pi , where pi is the attacker’s
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estimate of the probability that a participant i is responsible for some observed action. In the

context of this thesis, the observed actions consist of reported locations by mobile users at

a specific time, thus entropy can be used to measure how well the actual location is hidden

in a cloaking area, i.e., the uncertainty of the adversary about the actual location of a user.

Although entropy adequately assesses the uncertainty of the adversary, it does not measure

the correctness of the adversary’s estimation. Krumm [68] demonstrated the success of an

inference attack that identifies the home locations of users, which can be used in conjunction

with such metrics for privacy evaluation to an extent.

The aforementioned issues are formally addressed by Shokri et al. [98] and an evaluation

approach w.r.t. the error an adversary makes and the confusion he has when attacking the

location traces of users is proposed. To this end, the error and the confusion of the adversary

are measured by assigning probabilities to all possible user events and by calculating the

distances between the actual user locations from all the observed locations for each time

instant. The distances are then multiplied with their respective probabilities in order to

obtain the expected distortion LPu (i.e., location privacy measured as the expected error of the

adversary) for a corresponding user. LPu is given by the following formula:

LPu(t ) =∑
Ψ

dist(au(t ),Ψ(t )) ·Pr(Ψ, t ) (1.1)

where LPu(t) is the location privacy of user u at time t and Ψ represents all the observed

trajectories of user u. au(t ) gives the actual location of user u at time t and Ψ(t ) is the location

on trajectory Ψ at time t . Pr(Ψ, t ) is the probability assigned to trajectory Ψ at time t by the

adversary. di st(·, ·) is a distance function for two given locations and can be the absolute

distance function, in which case the location privacy would be in km or meters.

Shokri et al. [99, 100] extended their idea behind the aforementioned distortion-based metric

and presented a comprehensive location-privacy quantification framework. This framework

formalizes the attack of the adversary, takes into account its background information on

users’ mobility patterns and calculates users’ location-privacy protection levels based on the

adversary’s accuracy, correctness and certainty about users’ actual trajectories. The authors

also propose a software tool, called Location Privacy Meter (LPM), which implements this

framework. The LPM consists of several attack strategies based on Hidden Markov models.

Chen et al. [29] further extended this framework and focused on the activity of users at points

of interest (POIs) in relation to their mobility. They consider time spent at POIs in order to

enhance the attack and evaluate expected error of the attack using a real dataset. However,

their evaluation is weak in terms of trajectory length and due to the lack of specificity of

obfuscation employed. Furthermore, they do not employ semantic annotations for the POIs.

Nevertheless, this kind of improvements on existing work paves the way for better evaluation

approaches.

Chatzikokolakis et al. [28] utilize the well-known differential privacy concept introduced for

databases by Dwork [42] in order to provably protect location-privacy with certain privacy
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guarantees. Originally, the concept of differential privacy [42] is a privacy measurement ap-

proach for statistical databases. The privacy is measured by the predictability of the existence

of a single record based on a statistical result obtained from a database. Chatzikokolakis et

al.’s [28] use of differential privacy for location inherently evaluates a potential adversary’s

expected error in inferring the actual user location. Thus, their differential privacy based

metric fits the theme and approach of this thesis, enabling as a future work the enhancement

of the proposed schemes and evaluation results presented in the following chapters.

Another important issue when evaluating privacy is the conformity of the evaluation results

to real life, i.e., what kind of dataset is used to evaluate location-privacy. Obviously, real user

traces may not be available to researchers. The San Francisco Cab [90] and Nokia Lausanne

Data Collection Campaign [85] datasets contain rich and continuous location traces. Such

datasets are useful for the experimental evaluation of location-privacy from a geographical

point of view. The datasets are poorer on the semantic side in the sense that there is not

a publicly available dataset of semantically annotated location traces that can be used in

research. Note that, Yan et al. [117] and Krumm [69] propose methods to automatically

annotate traces with semantic and even means of transport tags; however, experiments that

are based on traces annotated by such methods do not guarantee realistic results. In this

thesis, to overcome this problem, we collected geo-tagged tweets that are public through

Twitter’s public stream [9]. By processing the tweets, we obtained considerable amounts of

Foursquare check-ins, that by design include semantic tags for the venues visited. This kind of

approach gives us the ability to conduct experimental evaluation on real traces. The downside

is that such a dataset contains only sporadic user events and is not useful for evaluation in

continuous disclosure scenarios. In the future, building a sound and non-intrusive dataset of

semantically annotated traces can accelerate the research on location-privacy.

1.3 Privacy Preferences and Sensitivities

Individuals may have different privacy needs in different contexts. In mobile applications,

users’ need for privacy may arise from the possibility of inference of personal information

from shared data such as location, semantics, etc. Also, each individual’s privacy requirement

can be different from others in the same context. For example, a doctor may feel comfortable

sharing his/her location at the hospital he/she works at, but a patient may not have the

same comfort. This dimension of privacy needs investigation in order to provide users with

sufficient privacy levels by setting healthy protection parameters. This means that users need

to understand their privacy needs, perceive the protection mechanisms clearly, and act upon

them by determining their sensitivities accurately. Unfortunately, there is no magic solution

or one-size-fits-all scheme for privacy preferences or sensitivities of users at the moment.

A 2011 survey by Toch et al. [105] approaches the privacy issues in personalization-based

systems, which rely on data collection from users. They refer to social studies with users of

online social networks and state that users become increasingly privacy-aware and sensitive
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due to mass collection and processing of their data by the very systems they use. They conclude

that client-side privacy profiles can be useful when the personalization algorithms can run on

the client-side as well. Such client-side privacy profiles, in fact, are crucial to give users the

control over their privacy and related protection mechanisms.

Toch [103] proposes a crowdsourcing framework for privacy sensitivities in order to build a

collective sensitivity profile, which then can be used to manage individual privacy needs of

users in context-aware applications. Their approach is to help build sensitivity- and privacy-

aware location-based services by automating privacy protection decisions based on inferred

sensitivities of users. They also provide a semi-automatic approach to this method and show

that sporadic input by users in determining the sensitivity for certain locations or semantics

provide a better protection of privacy through increased accuracy of sensitivity inference.

Overall, the aim is to minimize the effort by users to set their sensitivities for a privacy-aware

mobile application. Such approaches are useful to enhance sensitivity-aware protection

mechanisms implemented on user devices.

1.4 Trade-off between Privacy and Utility

Utility depends on the type of application and in mobile systems there are two main categories

of applications in terms of utility. In the first one, a data collector receives data from users

and then this data is used to generate a value for the data collector. Typical examples include

sensing and crowd-sourcing applications, which require an abundant amount of data to do, for

instance, research. The other category is the case when the users of the system receive a service

from a service provider. Assuming the utility is not dependent on the users’ identities, the most

utility-friendly protection techniques are pseudonym-based anonymization mechanisms that

do not employ obfuscation. Obviously, applying obfuscation on location data degrades the

utility of a location-based mobile application.

Krause and Horvitz [66] investigate the trade-off between privacy and utility in the context of

web search analytically in order to find a near-optimal balance between them. They quantify

the relationship between them using entropy and show that it is possible to provide the users

with tools to help them make privacy-preserving decisions when web searching while keeping

their utility fairly optimal. Singla and Krause [101] further investigate the trade-off between

privacy and utility in the context of participatory sensing applications. They experimentally

evaluate the loss in utility as privacy protection requirements increase. They formalize the

utility needs of the system, design incentives for contributing users and propose a privacy-

protection mechanism to provide users a balanced privacy level: as users provide more

information, they get ‘paid’ by the system as this means higher utility.

Bilogrevic et al. [19] study the effect of privacy protection on utility from users’ perspective.

They conduct a user study for understanding the impact of various protection approaches on

the perceived utility of users. Their findings show that users’ utility in online social networks is

quite dependent on semantics and protecting location in the geographical dimension is less
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detrimental to utility compared to protection in the semantic dimension. This kind of work is

crucial for better analyzing the utility in privacy research and complements our efforts in this

thesis.

1.5 Emerging Privacy Challenges and Directions

With new application directions in mobile systems, new privacy threats, hence new research

directions emerge. In the context of location-privacy, one of the new challenges is about

co-location privacy, i.e., how disclosing one’s location can affect the privacy of those around

her. This problem is first studied by Olteanu et al. [86] and it has been shown that an adversary

can infer individuals’ actual locations by using co-location information obtained from social

networks such as Foursquare. This kind of problem was first formally defined as interdepen-

dent privacy and studied by Biczók et al. [18], according to whom “the privacy of individual

users is bound to be affected by the decisions of others".

Another research direction is privacy-aware decision making in mobile applications. This line

of work aims to make sharing of information decisions based on user preferences. One ap-

proach to achieve this, as implemented by Bilogrevic et al. [20], is to learn from user decisions

the privacy preferences and after a learning period, make sharing decisions automatically.

This kind of machine-learning based approaches are promising as the smartphones are getting

quite powerful and capable of running complex algorithms continuously in the background.

As we will discuss and prove in the following chapters of this thesis, location privacy is subject

to multi-dimensional threats. With mobile users sharing their opinions and activities on

online social networks, their location becomes more susceptible to inference attacks. For

instance, Liu et al. [75] show how tweet contents in Twitter can be used to guess types of

locations a user visits, whereas Cheng et al. [30] demonstrates that tweets can be geo-tagged by

exploiting their content. This line of prediction, in other words inference, schemes introduce

new challenges regarding location-privacy protection.

Lastly, Barak et al. [14] propose a scheme that anonymizes user traces by replacing the ge-

ographical location coordinates with semantic tags and clustering users w.r.t. this type of

semantic cloaks. According to their study on how unique user visits are, semantic cloaking of

location traces improves anonymity. In overall, this work suggests to create datasets of seman-

tically cloaked traces rather than geographical traces for data requesters where coordinates

are not necessary.
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2 Adaptive Location-Privacy Protection

The recent advances in sensor technology have led to a wide availability of privately-held

low-cost sensors in mobile phones, vehicles, home appliances, etc. In turn, this has led to

the development of the participatory sensing paradigm, that enables vast sensor data–from

privately-held sensory devices–to be collected. In this paradigm, mobile devices send, either

continuously or on demand, sensor data along with their locations and timestamps to an ag-

gregation entity. The participatory sensing paradigm paves the way for innovative applications

of great social and business interest, such as air pollution monitoring [84], early earthquake

detection [76], and electrosmog exposure. This concept has attracted much attention from the

research community, e.g., [35, 40], as it is an alternative to the costly and difficult-to-manage

deployment of dedicated sensor-network infrastructures. However, participatory sensing faces

serious challenges: data accuracy (i.e., due to the low-cost sensors), user privacy protection,

finding incentives for users to contribute to the system, etc. Most importantly, users who

are sensitive about their private information, such as their location (and inferred activities),

are not expected to be willing to contribute to the system. Therefore, it is necessary in such

systems to implement privacy-protection mechanisms such as anonymization of the source,

and obfuscation of the location and/or time information attached to data. The usefulness of

the sensed data for the corresponding application, however, depends on the accuracy, the

availability and the spatio-temporal correctness of the data, all of which are negatively affected

by privacy-protection mechanisms. For example, data accuracy decreases when location or

time information are obfuscated, hence a trade-off emerges between data utility and user

privacy. If a certain scheme that rewards mobile users according to the utility of their sensed

data is in place, then, assuming that users are utility maximizers, they can more willingly

provide data and enjoy a satisfactory level of privacy-protection.

An adversary who has access to users’ spatio-temporal traces can find users’ activity schedules

[117]. To this end, the main objective of a protection mechanism is to provide untraceability.

There exist location-privacy protection mechanisms [67] employing techniques such as data

hiding or location obfuscation, with limited effectiveness against powerful adversaries that

can exploit spatio-temporal associability of users’ observable events, in order to partially or
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fully discover user trajectories. This happens because these techniques are employed with

static parameters that cannot satisfy the user privacy requirements when the correlation

between sequential user actions (i.e., user mobility and data emissions) and user’s context

lead to excessive leakage of personal information. Therefore, a user can never be sure that

a static privacy protection will be successful against adversaries at all times. Another core

problem of most of the existing approaches is the assumption that all users require the same

level of privacy. This results in an unnecessarily high level of protection for some users and

in insufficient protection for others. This second problem was addressed by Xiao et al. [111]

in the context of anonymization of datasets, which is not directly comparable to our context

(where we do not consider anonymization).

In this chapter, we propose an innovative approach for adaptive location-privacy protection

in the participatory sensing context. Our objective is to provide the user with a statistical

privacy guarantee at the lowest possible utility loss for the application. In order to achieve this

objective, we define a personal privacy threshold θ, which is a lower bound on user location

privacy. Before taking any privacy-protection action, in order to meet θ at the minimal utility

cost, the privacy level of the user is dynamically measured on the user’s device and compared

with θ. Our adaptive scheme for location-privacy protection is lightweight, realistic and

thus easily deployable at mobile devices. We consider two threat models: (a) A semi-honest

aggregation server that attempts to extract and exploit private location information based on

the emitted sensor data. (b) An active-tracking aggregation server, which employs both the

(partial) location history of the user and the emitted data for extracting and exploiting private

location information. Using artificial- and real-data traces, we experimentally show that our

approach, when feasible, satisfies the personal location-privacy protection requirements,

based on the privacy techniques employed. By comparing our results with both real and

artificial trajectories, we establish that the effectiveness of our approach is independent

of mobility patterns. Moreover, it is shown that our approach increases the utility of the

participatory sensing application, as compared to static privacy-protection policies, especially

when user mobility history is partially available at the adversary. We experimentally analyze in

a thorough manner the trade-off between utility and privacy in the context of participatory

sensing. Note that our approach is compatible with most continuous or sporadic location-

based applications (including location-based services).

2.1 System Model and Performance Metrics

People are concerned about the potential (though unconfirmed) health risks due to base sta-

tions [110]. Therefore, in this chapter, we consider the application of electrosmog monitoring

by means of participatory sensing, as this case study fits the continuous data dissemination

scenario.

We assume that a mobile user can always submit sensor data using her own data plan through

the cellular network. In this context, mobile users (or just “users") sense their environment
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and send their sensor data to a certain data-collection entity called an aggregation server (AS).

Such data is valuable only if it is accompanied by the location and time information, hence

the reported data packets are triplets in the form of 〈value, locati on, t i me〉. Our objective is

to provide the user with a statistical privacy guarantee at the lowest possible utility loss for the

application in this setting.

In our approach, we avoid relying on a trusted third party, because in reality it is difficult

to establish such an entity that is trusted by all participants. Furthermore, we assume that

users do not collaborate with each other in order to protect their location privacy, because

this approach is energy-costly and enables users to collude in order to breach others’ privacy.

In such a setting, hiding the identities of mobile users is rather unrealistic in the existing

systems where registration by users is generally required. Consequently, we focus on user

untraceability and do not consider hiding user identity as a protection mechanism (i.e., the AS

knows the source of each sensed data).

For presentation clarity and computational limitations, throughout the remainder of the

chapter, we assume the monitored area to be partitioned into cells and the time to be slotted.

Henceforth, we use the terms ‘location’ and ‘grid cell’ interchangeably. In the remainder of this

section, we specify the adversary models, define personalized privacy, and describe metrics

for the evaluation of privacy and utility.

2.1.1 Threat Models

We consider two threat models; the adversary in both is assumed to be the AS, who records

and exploits the private information that it obtains. The communication between the AS and

the users is assumed to be encrypted, and the AS knows the identities of users.

In the first model, the AS is assumed to be semi-honest [24], meaning that it follows the

protocols, it does not collude with other entities and it does not tamper with the system to

obtain private information about the users. Furthermore, it does not deploy devices to monitor

the whereabouts of users (no global or local eavesdropping). As a result, it can only try to infer

private information based on the data it collects from the users. In this model, the AS has no

background information on the users’ mobility.

In the second model, the AS is assumed to be an active adversary and to deploy a limited

number of tracking devices constrained by cost and resources. In this regard, we assume that

the AS is able to detect user presence in a fraction of locations and it uses the information

collected to reconstruct the original traces. For example, the AS can do this by sniffing the

control channels of the cellular communication where the handshakes between the users

and the base stations are exchanged in clear text. At this point, we argue the AS cannot

optimally choose the monitored locations, because it cannot know the location sensitivities

of the individuals. One approach would be to monitor the hotspot or generally-sensitive

areas (such as hospitals) in a city, but then any other user movement would not be captured.
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Moreover, some users might not be very privacy-sensitive to their presence in hotspot areas.

Therefore, we assume that the AS chooses randomly the locations to monitor. The AS uses the

tracking data to build a spatio-temporal probability distribution for each user. For example, on

Mondays 9am with probability 0.8 a particular user is at work, and the probabilities assigned

to user’s other possible locations sum up to 0.2. To reveal the user trajectories, this background

knowledge is combined with the location information contained in the emitted data from

the mobile users. Note that the notion of the spatio-temporal probability distribution is very

generic and can model other kinds of background knowledge as well, i.e., user habits, user

location sensitivity, location semantics, etc.

We also assume that, in both threat models, the only other background information that the

AS has about the users is their maximum possible speed (also known to the users themselves).

Nevertheless, mobile users are assumed to be honest, which means that they do not attempt

to tamper with their sensor measurements or collude with the adversary, but they might

reduce the data accuracy (in terms of location/time), in order to protect their privacy. Last, we

assume no interaction among users; consequently, there is no risk of potentially malicious

users aiming to track other ones.

2.1.2 Personalized Privacy

In most of the existing location-privacy protection approaches [67], fixed parameters are

statically employed in the proposed mechanisms for all the users. This approach has a

negative effect on both the privacy levels of the users and the utility of the system, as will be

shown in Section 2.3.

First of all, such a static approach does not take into account the trajectory history of users.

It implicitly assumes that a uniform parameter for a particular location-privacy protection

mechanism will always provide the same level of protection, which is not the case because

spatio-temporal correlation between disclosed events might reveal partial or full trajectories

of users.

Another problem resulting from this approach is the negative effect on the utility of the system

due to the fact that in some cases the provided location privacy can be much higher than what

a user actually wants. For example, a user might still achieve satisfactory privacy-protection

by providing four grid cells in an obfuscated area instead of six, and therefore increase the

system utility.

According to A. Westin [109], “each individual is continually engaged in a personal adjustment

process in which he balances the desire for privacy with the desire for disclosure and commu-

nication of himself to others, in light of the environmental conditions and social norms set by

the society in which he lives". In this spirit, considering the aforementioned issues about the

static/uniform parameter selection, we define personalized privacy as follows:
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Definition 1 Given a set P of protection mechanisms and P ai ⊆ P being the subset of mecha-

nisms that can be implemented by the user i with ability ai , the personalized privacy for user i

with privacy threshold θi is defined by the formula:

∃p ∈ P ai : p(z,ω, H) ≥ θi , (2.1)

where z ∈ Z is an instantiation of adversary capabilities Z , ω ∈Ω is a particular user action

from the set of available actions Ω, H is the history of user actions, and p(.) is the privacy level

resulting from the mechanism p as estimated by the user.

According to this definition, personalized privacy is the individual’s ability to employ all the

necessary privacy protection mechanisms so as to adapt to privacy leakage resulting from

his/her activities and/or the changing privacy-breaching capabilities of the adversary, as

observed by the individual.

2.1.3 Privacy Metric

In our work, we measure location privacy as the expected error of the adversary by calculating

the expected distortion as proposed by Shokri et al. [98] (see Section 1.2). In this chapter, we

define the distance function dist(loc1, loc2) as a normalized Euclidean distance that gives

distance between locations loc1 and loc2 in [0,1]. As a result, the computed privacy level is in

the interval [0,1], where 0 means no privacy protection and 1 means full privacy protection.

This is done by normalizing the actual distance by an upper bound distance per time step

(e.g., the maximum driving speed in our case). We choose to normalize it in this chapter for

the sake of presenting results with a uniform upper bound on the privacy level.

2.1.4 Utility Metrics

The utility of participatory sensing applications is crucial to their emergence and economic

sustainability. The utility in this context depends on the data quality, the data relevance to the

application and the data availability. Here, we focus on data quality and availability aspects,

namely the data accuracy, the data completeness and the area coverage. We analyze the effect

of privacy protection on utility, based on the aspects explained below:

• Data Accuracy: As the users report imprecise or coarse-grained location (and/or time)

information in their sensed data, an error is introduced in the measurements of other

locations(and/or time instants). We measure the data inaccuracy by means of the

average absolute error (L1 norm) introduced to the sensed data due to location/time

obfuscation. We express the average absolute error as a percentage of the data range.

• Data Completeness: One important factor that affects data availability is data loss; some

of the sensed data collected by the users might not be emitted (data hiding) to the AS
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due to privacy concerns. We define the data completeness as the percentage of the

sensed data received by the AS.

• Area Coverage: Another component of the data availability is the percentage of the area

of interest, where sensor measurements are done by users. Various privacy-enabling

techniques differently affect the size of the total monitored area: e.g. while data hiding

tends to decrease it, location obfuscation tends to increase it, as observed by the AS.

As higher data hiding and larger obfuscation negatively affect the data completeness

and accuracy, we define the area coverage as the fraction of the areas in which data is

sensed over all areas for which data is reported by the users. Note that this metric is

maximized at 1, i.e., all areas where data is reported correspond to real points of sensor

measurements.

2.2 Adaptive Protection Scheme

Figure 2.1 – Absolute distance vs. Distortion. θ is the desired privacy threshold and dθ is the
corresponding absolute distance to achieve θ.

In this section, we introduce a simple, yet effective location-privacy protection scheme, that

is built upon the existing privacy-preserving techniques of location obfuscation and hiding.

The main idea is that before each user submits data, she should be able to estimate locally her

expected privacy-level and configure the protection mechanisms accordingly. This requires us

to emulate an adversary’s attack on user devices; however, due to limitations on processing

power and also battery capacities, we need to achieve this by implementing a light-weight

approach. The location-privacy quantification framework proposed by Shokri et al. [99, 100]

is very comprehensive and useful, but it is computationally heavy, as explained in Section

2.1.3. Thus, we employ the distortion-based metric [98] and a Bayesian-network approach on

the user-side, in order to calculate locally an estimate of user privacy-level on mobile devices.

Note that in the remainder of this section, the term ‘node’ is used to refer to the users’ mobile

devices, because it is user’s devices where the scheme runs and users do not take action.

We employ location obfuscation for confusing the aggregation server (AS) about the actual

location of the sensed data. Location obfuscation is the generalization of the fine-grained

location information; we designate its granularity with λ, which is the obfuscation parameter.

As stated in Section 2.1, a location is a grid cell, and therefore, an obfuscated area is a set of
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grid cells. In our strategy, a reasonable upper bound λmax on λ is assumed, so that the sensor

data remains useful for the participatory sensing application.

In our scheme, we want to let people have the privacy protection level they desire. In order

to provide this, we define θ, the personal privacy threshold, which expresses the desired level

(i.e., the lower bound) of expected distortion (i.e., distance) from the actual user location. This

privacy threshold depends on the user’s sensitivity about her privacy at a particular location,

and it can be chosen by a user-specific function of the desired absolute distance from the

sensitive location (cf. Figure 2.1).

Figure 2.2 – Adaptive Location-Privacy Protection System. Expected distortion estimation
keeps track of user history in case of active adversary assumption.

The algorithm for determining the obfuscation is as follows. When a node has data to submit,

it calls the location obfuscation module with the lowest λ, i.e., λ = 1. Then, it provides the

output of this module —a set of locations constituting the obfuscation area— to the privacy

level estimation module. The estimation is then compared against the node’s privacy threshold

θ. If θ is reached, then the node submits the data to the AS with the last generated obfuscation

area. Otherwise, it increases λ and repeats the process. If λmax is reached, but not θ, then the

data is not submitted.

Our obfuscation algorithm randomly determines the obfuscation area as explained in Section

2.2.1. A randomly chosen obfuscation area might be ineffective, whereas another obfuscation

area of the same size can provide sufficient privacy protection. Finding the optimal obfuscation

area would be time and energy consuming, hence we introduce a limit (i.e., by means of a

counter) on the number of obfuscation areas we try: αmax per λ level. α is the number of

obfuscation areas that have been tried for satisfying θ with the same λ value. As long as θ is
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not reached and α<αmax , another obfuscation area of the same size is generated and privacy

level is estimated based on this new area. Otherwise, if λ < λmax , then λ is incremented

and the process is repeated. Figure 2.2 shows this adaptive privacy protection strategy as a

flowchart.

We explain, in Section 2.2.1, the obfuscation mechanism we employ and in Section 2.2.2 how

local estimation is done.

2.2.1 Location Obfuscation Mechanism

The location obfuscation mechanism we employ in our proposed scheme and in the static

mechanisms takes two inputs: the obfuscation level λ and the actual location l that is subject

to obfuscation. Since the area of interest is discretized, the obfuscation area to be generated

consists of a set of grid cells including the actual location/cell l . λ actually encodes the size of

the obfuscation area in terms of cells. First, we determine the size sx × sy of the obfuscation

area according to λ as follows:

sx := 1+�λ/2	
sy := 1+
λ/2� ,

where �.	 and 
.� are the ceiling and floor operations, respectively. Then, the area of size sx × sy

cells is randomly positioned over the actual location l . Note that any deterministic choice for

this positioning would render the area generalization ineffective in terms of privacy, because

the adversary can find the actual location by trying different obfuscation areas iteratively.

Randomization avoids the adversary from finding the actual location l , because in this case

any of the locations in an obfuscation area is equally likely the actual location without any a

priori knowledge. Note that some of the locations in an obfuscation area may be infeasible

to reach from observed location in the previous time instant due to the maximum speed

constraint. Such constraints are taken into account in the local privacy-level estimation

described in the next subsection.

Figure 2.3 – The area in which an obfuscation area of size 4×4 (sx = sy = 4) can be positioned
based on actual location l given λ= 6.
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Figure 2.3 shows an example of this obfuscation mechanism over a gridded area, where the

actual location l is in the center and λ = 6. The obfuscation area can be positioned in the

bounding box in this figure, so long as l remains part of it. The two 4×4 squares in the figure

represent the top-left and bottom-right possible obfuscation areas with λ= 6.

2.2.2 Local Privacy-Level Estimation

We calculate locally the expected privacy-level at the node, as explained below. We maintain

locally an event linkability graph at each node, as the one depicted in Figure 2.4. Each vertex in

this graph represents an event observable by an adversary at the corresponding time instant.

An observable event corresponds to a data item associated to a particular location, which is

sent to the AS. The linkability graph helps us to identify the trajectories that the AS observes

and also to estimate its belief about their authenticity.

In order to build the linkability graph, a node needs to know the geographical topology of

the area, i.e., it needs to know the potential connectivity among different locations. It also

needs to know the assumptions made by the AS for inferring user trajectories. To this end,

one important assumption made by the AS is the maximum possible speed of a mobile node,

which also determines the maximum possible distance between sequential vertices in time. A

node can extract its own maximum speed from its traces, but it is not practical for the AS to

know this value for each individual node. Nevertheless, he can make a global estimation on

the average maximum speed and choose it as the upper bound for all the nodes he wants to

attack. A node can construct, based on this knowledge, its linkability graph by connecting the

vertices (i.e., the observable events) that are adjacent in time and space.

Since the user may have to continuously disclose her data, hiding at a specific time instant

does not provide her with full privacy protection. Technically, hiding, as perceived by the

adversary, produces yet another obfuscation area that is the maximum feasible one based on

the maximum speed and the user’s previous reported locations. In practice, for the current

time instant, this yields all the locations that are reachable from the locations in the previous

time instant, and we consider all such locations as observable events in the privacy-level

estimation.

The linkability graph is progressively constructed as new events are produced over time. The

vertices corresponding to the current time-instant are connected to the vertices from the

previous time-instant, based on the feasibility of being adjacent in space and time. If there are

vertices with no children in the previous time instants, then these vertices are identified to be

impossible and are removed. The same is applied to the vertices with no parents in the current

time-instant. Note that the elimination of vertices needs to be propagated in the whole graph

because some vertices in older time instants might lose all their children, which suggests that

they are no longer probable locations of the node.

We use the linkability graph and employ the Bayes’ rule to calculate the probability that
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(a)

(b) (c)

Figure 2.4 – Example of estimation of probabilities of possible trajectories for 3 time steps of a
node. (a) Possible moves in a single step for a node on the given area. (b) Real trace of a node
and its obfuscation decisions at each time instant. (c) Inferred linkability graph, on which the
probabilities of being there are assigned to each edge and vertex. Each vertex on this graph
represents an observed event from the node and the indices on the vertices are the location
ids w.r.t. the area in Figs. (a) and (b).

an observed event corresponds to the actual location of the node. The first time observed

events are inserted to the graph, a uniform probability 1/k is assigned to each vertex, as

dictated by the k-anonymity employed by the chosen location obfuscation level, where k is

the number of vertices. As new vertices are added at a subsequent time-instant, they can

only be children of those in the previous time-instant and their probabilities of being genuine

are calculated according to the Bayes’ rule. Also, after the elimination of impossible events,

the probabilities assigned to the siblings or parents of these events are updated and these

updates are propagated in the graph. The probability of an event being genuine is depicted

in Figure 2.4 as a label beside its corresponding vertex. We explain the calculation of these

probabilities following the example of Figure 2.4. Initially, at time t1, locations (1,3) and (1,4)

are reported by the node and thus Pr(loct1 = (1,3)) = Pr(loct1 = (1,4)) = 1/2. Then, at time t2,

the node reports two locations to the AS, namely (2,4) and (2,5). We calculate the probability

that location (2,4) is genuine as follows:

Pr(l oct2 = (2,4)) = Pr(loct2 = (2,4)|loct1 = (1,3)) ·Pr(loct1 = (1,3))

+Pr(loct2 = (2,4)|loct1 = (1,4)) ·Pr(loct1 = (1,4))

= 1 · 1

2
+ 1

2
· 1

2
= 3

4

The same approach is applied for location (2,5) and for the 4 observed locations reported by

the node at time t3. 1

1Note that the size of the obfuscation area at time t3 is 2×2 (as shown in Figure 2.4-(b)), therefore there are 4
vertices corresponding to 4 reported locations at this time instant.
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After having calculated the probability of each leaf vertex being genuine, a node calculates its

location privacy according to Equation 1.1. For example, the location privacy LP of the node

in our example at time t3 is calculated as follows:

LPu(t ) =∑
Ψ

dist(au(t ),Ψ(t )) ·Pr(Ψ, t )

= 1 · 7

16
+0 · 7

16
+�

2 · 1

16
+1 · 1

16
,

where dist(·, ·) stands for the Euclidean distance in this example.

Background Information So far, we have explained how the privacy leakage is estimated

locally by a mobile node, under the assumption of no background information about the

node’s mobility at the adversary side. Now, we consider that some background information on

the node’s mobility is possessed by the adversary. Specifically, we assume that the adversary

has, for each mobile node, a prior spatio-temporal probability distribution with PDF π(X , t )

over the locations X at time t that is built based on partial leakage of location information. As

the mobile node does not know the exact leakage of its mobility, it samples its mobility history

and builds a similar prior distribution, in order to accurately estimate its privacy leakage to the

adversary by its emitted data. The prior distribution is employed to calculate the transition

probabilities between successive locations.

For example, in Figure 2.5, assume a prior spatio-temporal distribution as follows:

π(X = (1,3), t = t1) = 1/16, π(X = (1,4), t = t1) = 1/8

π(X = (2,4), t = t2) = 1/10, π(X = (2,5), t = t1) = 1/20

π(X = (1,5), t = t3) = 1/10, π(X = (2,5), t = t3) = 1/5

π(X = (1,6), t = t3) = 1/10, π(X = (2,6), t = t3) = 1/20 .

By employing this prior distribution for calculating the transition probabilities, we derive that:

Pr(loct1 = (1,3)) = π(X = (1,3), t = t1)

π(X = (1,3), t = t1)+π(X = (1,4), t = t1)
= 1/3

Pr(loct1 = (1,4)) = π(X = (1,4), t = t1)

π(X = (1,3), t = t1)+π(X = (1,4), t = t1)
= 2/3

Pr(loct2 = (2,4) | loct1 = (1,3)) =1

Pr(loct2 = (2,4) | loct1 = (1,4)) = π(X = (2,4), t = t2)

π(X = (2,4), t = t2)+π(X = (2,5), t = t2)
= 2/3

Pr(loct2 = (2,5) | loct1 = (1,4)) = π(X = (2,5), t = t2)

π(X = (2,4), t = t2)+π(X = (2,5), t = t2)
= 1/3
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Then, based on these transition probabilities, Pr(l oct2 = (2,4)) can be calculated again as

follows:

Pr(l oct2 = (2,4)) = Pr(loct2 = (2,4)|loct1 = (1,3)) ·Pr(loct1 = (1,3))

+Pr(loct2 = (2,4)|loct1 = (1,4)) ·Pr(loct1 = (1,4))

= 1 · 1

3
+ 2

3
· 2

3
= 7

9

Therefore, the background information can significantly affect the expected distortion that

can be achieved by a privacy-protection strategy.
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Figure 2.5 – Inferred linkability graph when background information is assumed to be avail-
able at the adversary. The prior spatio-temporal distribution is employed to find transition
probabilities between successive location.

Complexity Analysis The complexity of our algorithm is dominated by the maintenance

of the linkability graph. Each time a data submission is about to be made, the obfuscation

module generates a maximum number of L locations constituting an obfuscation area. This

operation has time complexity O(L). The pairwise connectivity check between the locations

in consecutive time instants takes O(L2) times. Later, the probabilities assigned to the current

observed events are calculated in O(L). Therefore, the time complexity of the whole process

is O(L2). Note that this process has to be repeated until θ is met. The number of repetitions,

however, is bounded by a constant maximum obfuscation parameter λ, thus, the total time

complexity of the whole estimation and protection operation remains O(L2).

Shokri et al. [99, 100] developed a software tool, called Location Privacy Meter (LPM), which

implements a quantification framework along with a localization attack based on Hidden

Markov models. The purpose of this localization attack is to find the most likely location of

a user, at each time instant, among all of her observed locations, based on her observable

events both in the past and in the future. The complexity of this attack is O(T M 2) [100] for one

trace, where T is the number of time instants and M is the number of locations in the area of

interest (i.e., the monitored area). Compared to our simpler, but more lightweight inference

scheme, the LPM has worse performance, as we explain in the following example: Given an
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area of interest of 20×25 grid cells (i.e., M = 500) and a maximum obfuscation parameter

λ= 10, our algorithm’s complexity is O(362), whereas the complexity of LPM is O(5002) for one

time instant, i.e., almost 200 times slower (even more when considering more time instants).

Our approach is lightweight in terms of space requirements as well. In addition to map topol-

ogy —which would be required by any client-side location-privacy protection mechanism—

our scheme only stores the linkability graph, where each vertex has a probability value and

location information. This results in O(T L) vertices and O(T L2) edges in the worst-case, where

T is the number of elapsed time instants. These storage requirements can be easily handled

by modern mobile devices, that presumably have several GBs of storage capacity.

2.3 Evaluation

In this section, we assess the performance of our adaptive approach for protecting location-

privacy and compare its effectiveness with that of static protection policies in terms of utility

and privacy. To this end, we perform simulation experiments, with not only artificial data sets,

but also real data traces (explained in Section 2.3.1). The estimate of the privacy level of a

user, as observed by the AS, is measured by the LPM [99, 100]. This software tool provides an

objective estimate of the privacy level of users, and its output belongs in [0,1] based on our

normalized Euclidean distance function, with 0 meaning no privacy protection and 1 meaning

maximum protection.

We replayed real data traces in a simulation environment, that we developed in C++, and

ran experiments using artificial data traces (cf. Section 2.3.2). We implemented our adaptive

strategy, along with static protection mechanisms of obfuscation and hiding, which works

with fixed λ and hiding probability Prh , respectively. λmax was set to 10, which means that the

largest possible obfuscation area is of size 6×6 grid cells. For expected distortion computation,

we used Euclidean distance.

For the scenario in which some background information is assumed to be available at the

adversary, we let the AS monitor all user presence in 25 random locations. Given a total of 500

grid cells in the sensed area, the expected number of node events observable at the adversary

is given by the formula below:

500∑
i=1

25

500
· (# events generated in li ) (2.2)

In our dataset, each node has around 20,000 events on the average. Given the above formula,

the expected number of exposed events of a node corresponds to 1% of its generated events.

The mobile node does not know which locations are monitored by the adversary. Although,

knowing that the expected total number of its leaked events to the adversary is 1%, it can

consider a random 1% of its generated events as the background knowledge available at the

adversary. This gives the node a chance to take into account the adversarial background
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Table 2.1 – Experiment Parameters.

Adaptive Static
θ 0.1 - 0.9 N/A
λ Adaptive 1 - 10

Prh
N/A (Adaptive

hiding)
0 - 0.9

# of Nodes (i.e., users) 20
Monitored Area 25×20
λmax 10

knowledge in the local inference module.

First, we compare our adaptive strategy to combinations of the aforementioned static mecha-

nisms and experimentally prove the ineffectiveness of static policies at satisfying user privacy

requirements. Then, we demonstrate that our simple local estimation of privacy is an ac-

curate measurement. Subsequently, we analyze the trade-off between utility (i.e., accuracy,

area coverage, data completeness) and privacy for different static policies and our adaptive

privacy-enabling policy. To this end, we define two different static policies for a given θ:

• Avg Static: This policy defines fixed Prh and λ that meet θ on the average; privacy

violations are allowed from time to time.

• Max Static: This policy defines fixed Prh and λ so that θ is met most of the time. This is

a rather conservative privacy-protection policy.

Note that these static policies employ the obfuscation mechanism described in Section 2.2.1

and apply this mechanism statically with the predefined parameters. They do not consider

past or future events of the node when obfuscating the actual location.

Table 2.2 shows the experimentally identified static privacy-protection policies corresponding

to each privacy threshold adapted in simulations, and Table 2.1 shows the parameters we have

used for the experiments.

2.3.1 Real Data Trace

During the Lausanne Data Collection Campaign (LDCC) [85], run by Nokia Research Center

(Lausanne), a dataset of around 200 users was collected. The data was collected over a year

from 2009 to 2011, from smart-phones that were provided to the participants. We utilize 20

time-continuous user traces and we consider an area of 1.25×1.00km from this dataset and

partition it into 25×20 grid cells. The traces we used in our simulations are one-day long

and the time is slotted into 40 instants. We fixed the maximum possible speed to 4 grid cells

per time instant after analyzing the maximum speed achieved in the real traces. Finally, for

electrosmog measurements, we employ the logged signal strength in dBm from the campaign.
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Table 2.2 – Parameters λ, Prh of the Avg and Max static policies experimentally found to satisfy
the various privacy thresholds on average and most of the time respectively.

Avg Static Max Static
w/out BK w/ BK w/out BK w/ BK

θ λ Prh λ Prh λ Prh λ Prh

0.1 1 0 1 0.2 1 0.1 2 0.3
0.2 1 0.1 3 0.3 1 0.2 3 0.5
0.3 2 0.1 3 0.5 2 0.2 4 0.6
0.4 4 0.1 4 0.6 4 0.2 5 0.7
0.5 4 0.2 6 0.7 4 0.3 7 0.8
0.6 8 0.2 6 0.8 8 0.3 8 0.4
0.7 8 0.4 7 0.9 7 0.5 8 0.5
0.8 9 0.6 9 0.6 9 0.7 9 0.8
0.9 10 0.8 10 0.9 10 0.9 10 0.98

2.3.2 Artificial Data Trace

To facilitate the comparison of our results with artificial data to those obtained with real data,

we assume an area of the same size (25×20 grid cells) as in the case of the experiments with

real data. We assume 20 mobile nodes that move around with the random waypoint mobility

model. The maximum speed is assumed to be 4 grid cells per time slot. At each time slot,

a mobile node senses an electrosmog measurement (i.e., the signal strength) and submits

through privacy protection mechanisms.

We model the electrosmog generation for our simulations with artificial data as follows. The

transmission power of base stations ranges from 10 W to 40 W, depending on the network

characteristics; we choose 20 W as the base station transmission power in our setting. The

frequency of channel is set to 900 MHz as in GSM. We implement free space path loss on

this value for each grid cell. There is one base station centered in the area of interest and it

covers the whole area in our simulation. We also apply the Rayleigh fast-fading model upon

the free-space path loss to simulate a realistic urban area electromagnetic field distribution.

Equation 2.3 shows the free-space path loss PL, where f is frequency in MHz and d is distance

in meters. Equation 2.4 shows the Rayleigh distribution, where R is the power in Watt, and

σ is the parameter of the Rayleigh distribution; we use the Rayleigh simulator proposed by

Komninakis [64] to apply Rayleigh fading in this setup. Note that, for different frequencies, the

characteristics of the electrosmog change, but currently the other existing frequencies in use

are greater than 900 MHz, which means that the path loss will be much higher. Therefore, the

measurements will yield lower values of electrosmog as the distance increases. In this sense,

the loss of generality is negligible in regard to our choice of channel frequency.

PL = 20log( f )+20log(d)−27.55 (2.3)

Pr(R) = R

σ2 e−
R2

2σ2 (2.4)
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2.3.3 Results

Ineffectiveness of Static Policies
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Figure 2.6 – Privacy levels measured by the LPM over time (40 time instants in this example)
for part of one real trajectory in cases of adaptive and average static policies given θ = 0.5.

As explained in Section 2.1.2, as nodes move and emit sensor data, the spatio-temporal

correlation between events can occasionally violate user θ when a static privacy policy is

employed. For example, we consider the time series of electrosmog measurements emitted

by a certain real user. We assume that θ = 0.5 for this user. As depicted in Figure 2.6, a

static protection policy, which satisfies θ on the average, often results in significant privacy

violations. Our adaptive privacy-protection strategy, on the contrary, dynamically adjusts

location obfuscation and hiding behavior to almost always meet θ. Note, at this point, that we

measure user privacy in an objective way from the AS point of view by employing the LPM

in this figure. The LPM tends to be a bit more conservative than the privacy level estimated

locally at the node (although highly correlated as shown later), which does not violate the user

privacy requirement by definition, as long as hiding is not chosen (hiding is the last resort for

a node to protect privacy. If θ is not met with even the largest λ, then it is possible that hiding

is also not enough). Another interesting aspect in Figure 2.6 is that our adaptive privacy policy

meets θ as minimally as possible, given the employed techniques for location obfuscation.

For all nodes from the real-data traces, the adaptive privacy policy needs to use a number of

different obfuscation levels and hiding probabilities in order to meet different θ values, as

depicted in Figure 2.8. Evidently, due to the fluctuations of the privacy exposure of the users

caused by their mobility patterns, a wide spectrum of parameters has to be used for achieving

different privacy thresholds. This result is also experimentally verified by the artificial data

traces. In addition, as shown in Figure 2.7, the “Avg Static” policy violates thresholds almost

half of the time, whereas the adaptive strategy almost always meets them for both real and

artificial data. Average values over all users and over all times are plotted in this figure, with a
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(a) (b) (c)

Figure 2.7 – Level of privacy achieved by adaptive vs. static policies with (a) real and (b)
artificial data traces. (c) Level of privacy achieved in the case of background information
available to the adversary with real data traces.

confidence of interval 95%. Note that meeting θ = 0.9 is very strict and sometimes infeasible

with the employed location privacy-enabling techniques.

(a) Without background information (b) With background information

Figure 2.8 – Parameters (λ= sx + sy −2) chosen by the adaptive strategy for all (real) users over
all time steps vs. the local estimations of privacy levels (a) without background information
and (b) with background information.

Local Estimation of Privacy

Figure 2.9 shows the privacy levels achieved by the adaptive strategy, as estimated locally at

the nodes and externally by the LPM for different θ values. These results represent average

values and confidence intervals over all nodes. As shown for both real- and artificial-data

traces, privacy estimations by our simple approach are highly correlated to the estimations

by the LPM (i.e., Pearson correlation > 0.5) for all θ values. Therefore, our simple approach is

accurate enough to locally estimate the level of location-privacy of mobile users.
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(a) Real data traces (b) Artificial data traces

Figure 2.9 – Comparison of local privacy estimation (Node) to measurements by LPM (AS)
over time with (a) real and (b) artificial data traces.

Utility vs. Privacy

In Figure 2.7, observe that the adaptive protection strategy meets the various privacy thresh-

olds more narrowly, as compared to the “Max Static” policy. As a result, the adaptive strategy is

expected to deteriorate the utility of the participatory sensing application less than any static

one, while satisfying the privacy requirements of the users. Indeed, the absolute error as a

percentage of the data range introduced by the adaptive strategy is lower than the respective

errors by the two static policies, as shown in Figure 2.10. The results in this and the subsequent

figures are average values over all data items from all users and over all times with a confidence

interval of 95%. Note that the results of the real- and the artificial-data traces are similar,

despite the significant difference in the mobility behavior of the users.

Moreover, we show the data loss from the two static policies and our adaptive policy in Figure

2.11. Notice that the data loss is significantly lower for reasonable privacy requirements of

the users, i.e., lower than 0.8 for real data and always for artificial data. Also, the data loss for

θ ≤ 0.6 is almost insignificant (∼ 15% or less) for the adaptive policy, and it is double or more

for the two static policies for θ ≥ 0.2. This was expected, as static policies need to employ a

non-zero Prh throughout the sensing process in order to satisfy even low θ values, as opposed

to our adaptive strategy that hides sensor data only when needed.

We measure the deterioration of the area coverage by the ratio of the actual sensed area over

the total area reported as sensed. As shown in Figure 2.12, this utility metric deteriorates

significantly with high θ values. Although, the area coverage degrades smoothly when the

adaptive strategy is employed, as opposed to the static policies. Note that in Figures 2.10 and

2.11 there are small fluctuations; this is due to mobility patterns of the users and also the

probabilistic nature of data hiding for static policies.

Overall, Figures 2.10, 2.11, and 2.12 clearly demonstrate the trade-off between utility and
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Figure 2.10 – Percentaged absolute error (dBm) for (a) real and (b) artificial traces.

Figure 2.11 – Data completeness with (a) real and (b) artificial traces.

Figure 2.12 – Area coverage with (a) real and (b) artificial traces.

privacy. Our results can be employed to derive feasibility conditions on the application-utility

and user-privacy requirements for the realization of a participatory sensing application. Our

adaptive privacy-protection strategy dominates any static strategies that involve the same

location-privacy protection techniques in terms of utility for any user-privacy requirements

that render the participatory sensing application feasible.

37



Chapter 2. Adaptive Location-Privacy Protection

Adversary Background Information

Here, we run experiments with the threat model that involves background information at the

adversary. The impact of adversarial background information on the chosen privacy param-

eters by the adaptive privacy-protection strategy is depicted in Figure 2.8(b). As observed

therein, our adaptive strategy performs almost as well as in the case of no background infor-

mation (cf. Figure 2.8(a)). This is due to the fact that the nodes choose obfuscation parameters

smartly being aware of the adversary’s background information. Moreover, in fact, the prior

background information causes the adversary to be biased and therefore enable the nodes to

choose parameters lower than before. For example, for θ = 0.3, some nodes chose strategy 2,2

in Figure 2.8b, as opposed to the case in Figure 2.8a. Also, as depicted in Figure 2.7, the user

loses some privacy due to the adversary background information, but the amount of loss is

negligible. Our adaptive approach is still adaptive enough to protect the user privacy in this

threat model, despite the existence of background information at the adversary.

Figure 2.13 – Data completeness in percentage in the case of adversarial background informa-
tion.

Regarding utility, comparing the data completeness in the cases with background information

at the adversary (cf. Figure 2.13) and without background information (cf. Figure 2.11), we

observe that they exhibit similar trends. Thus, introducing some background information to

the adversary does not cause utility deterioration when the adaptive privacy-protection strat-

egy is employed. However, notice that both static privacy-protection strategies significantly

deteriorate utility, since they need to employ larger static parameters than before, in order to

meet the various privacy thresholds. Similar findings are observed for the other utility param-

eters, namely data accuracy and area coverage, when background information is available

at the adversary. Therefore, in the presence of background information at the adversary, the

employment of an adaptive privacy-protection scheme becomes more important.
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2.4 Discussion

In this chapter, so far we have considered the maximum speed of users, known real identities

of sensor-data sources, and additional background information on user mobility history as

background knowledge at the adversary. Repetitive trajectories of a user can be another type

of background knowledge, which, when accumulated at the adversary, can pose additional

privacy threats for the user: People generally move in regular patterns (i.e., on a daily basis),

for example from home to work in the morning. If a user generates a different obfuscated

trajectory each time he moves along the same trajectory, then an adversary can find the real

trajectory in time. However, a simple modification to our adaptive privacy-preserving scheme

can eliminate this threat. Specifically, a mobile user has to keep track of her privacy preserving

actions along repetitive trajectories (i.e., the obfuscated area for each actual location, per

repetitive trajectory) and reuse them in the future. In this way, the privacy leakage due to

repetitive trajectories would be limited. Moreover, in order to keep storage overhead bounded,

a LRU replacement policy could be employed. The experimental evaluation of this approach

is left for future work.

Also, an adversary might employ other background information, such as location semantics,

which could be of great help for identifying the real user traces and the user activities. This

kind of background information can be modeled as probability distributions over space and

time for each user and included in the Bayesian inference model employed on the user device.

We investigate the effect of location semantics on location privacy in Chapter 5.

Another issue that needs addressing is the usability of our approach. We designed our scheme

with an automated software tool embedded in localization modules in mind. The average

mobile user would not like having to interact with his device every time his location is used

by an application. Therefore, our system should be triggered automatically whenever an

application asks for the user’s location. Such an automation will provide users with a peace of

mind in terms of privacy protection. Furthermore, it might not be straightforward for mobile

users to interpret the privacy levels (i.e., the expected distortion values, and hence their θ

inputs). Here, the privacy levels need to be conveyed to users in the form of “average confusion

from actual location in meters", which can be done using the normalization factor used in the

estimation. For example, in our experiments, the normalization is done by 4-hop distance

(i.e., the max-speed) which is around 200 meters. In this case, a privacy level of 0.7 yields a

confusion of around 140 meters from the actual location.

Last but not least, our system can be extended with location sensitivities, where users input

different θ values for their sensitive locations. This would result in an even more dynamic

and personalized privacy-protection system. Such an extension can even take into account

location semantics, which would enable the batch setting of the user privacy thresholds.
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2.5 Related Work

Privacy-preserving participatory sensing has been widely addressed by the research com-

munity in the past [31] including privacy of data itself, of data source identity and of user

location. The downside of any privacy-preserving mechanism in data-driven applications

such as participatory sensing is the potential loss of accuracy or precision in the reported data

and/or loss of samples. Krause et al. [65] address location privacy and experimentally analyze

the trade-off between accuracy and privacy. They employ two methods of location-privacy

protection: location obfuscation and sparse querying. The combination of these two methods

diversify the users chosen for querying in order to minimize the privacy breach of a single

individual user. In this chapter, we significantly enhance the study of the trade-off between

utility and privacy by studying the effect of privacy on additional utility aspects apart from

accuracy, namely data completeness and area coverage.

According to Xiao et al. [111], any privacy-preserving mechanism should consider the per-

sonalized privacy requirements of the participating users, because individuals typically have

varying privacy requirements. In addition, we argue and experimentally show in Section 2.3

that data utility can also be improved by personalized privacy protection that avoids excessive

privacy preservation. Xiao et al. [111] formalize personal privacy specifications and apply a

data generalization technique for satisfying individual privacy requirements. Gedik et al. [49]

propose a location-privacy protection mechanism based on personalized k-anonymity for

location-based services (LBS). However, they employ a trusted third-party that implements

the privacy-protection scheme, which is contrary to our approach; similarly, Vu [107] et al. also

propose a trusted third-party based k-anonymity approach. In [35, 83], the users might decide

to selectively activate sensing (and hide in other times) depending on a variety of factors,

such as presence in sensitive locations (home or office), or their current social surroundings

(presence of friends or family members). However, hiding is applied not based on a rigorous

privacy assessment, but based on a fixed probability value. Minami et al. [80] analytically

prove that trajectory inference is still possible in a LBS if data hiding is the only mechanism

used for location-privacy protection and they suggest designing new policies that consider

users’ past events, as we do in this chapter in the context of participatory sensing.

In addition to being a client-based location-privacy preserving mechanism, our approach

supports continuous location dissemination. Several client-based solutions exist in the lit-

erature [60, 61, 89, 96]. SybilQuery [96] generates, for each user’s query, k −1 other queries

so that the LBS server cannot distinguish the real query from the Sybil ones. However, this

work requires the user to determine a priori the source and destination of the real query, thus

it does not support real-time continuous dissemination. In addition, it does not apply any

transformation/obfuscation on the trajectories, which allows an adversary to obtain the full

real trajectory, once it is identified partially. A distributed k-anonymity cloaking mechanism is

proposed in [60], which identifies neighbors using on-board wireless modules and exploits

secure multi-party computation in a collaborative manner in order to compute a cloaking

region. However, this work does not support continuous querying. Finally, Jadliwala [61] et al.
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present a concept called privacy-triggered communications, which is a generic framework that

fits the work we present in this chapter; however our work differs in detailed utility and privacy

analysis. Cappos et al. [26] proposes a concrete framework for access control to private sensor

data on mobile devices. Their framework wrap the sensors on a mobile device and let privacy

filters to be applied on them based on the user’s requirements.

Last but not least, other work [32, 36] propose cryptographic approaches for protecting the

identity of the participants in participatory sensing. Groat et al. [56] consider multidimensional

data to evaluate the user privacy, i.e., they consider spatio-temporal dimensions, the sensed

data and more. But, they do not take into account the continuous data disclosure, which

would be disastrous for the users in case of an attack on a multidimensional scale. More on

the privacy issues in participatory sensing applications can be found in the survey paper by

Christin et al. [31].

In summary, to the best of our knowledge, none of the existing work proposes a location-

privacy protection scheme combining the following properties: (i) dynamic estimation of user

privacy based on the history of mobility and data submissions, (ii) adaptive satisfaction of

personalized privacy requirements, (iii) user-side residence, and (iv) independence of any

trusted third parties.

2.6 Summary

In the context of participatory sensing, we have defined a simple, yet effective, adaptive

location-privacy protection scheme. Our approach is based on estimating locally in real-time

the expected location-privacy level at the user-side, which enables her to adapt her privacy

parameters with respect to her mobility, in order to satisfy an individual privacy constraint.

We have experimentally showed the accuracy of our approach for privacy estimation and

the effectiveness of our adaptive privacy-protection strategy, as opposed to static ones. Our

adaptive approach achieves more application utility than static policies, and satisfies the

individual privacy requirements of the users in case whether background information on the

user’s mobility history is available to the adversary or not. Furthermore, we have demonstrated

the trade-off between application utility and user privacy in the context of participatory

sensing. As experimentally found, our adaptive privacy-protection scheme is able to maintain

high data utility, while satisfying the user privacy requirements. Our results can be used to

derive feasibility conditions on the desired application utility and user privacy requirements.

The proposed approach is easy to deploy on current mobile devices and supports continuous

and sporadic location dissemination by users.
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3 Mobility-aware Location-Privacy
Protection

Various approaches have been proposed to ensure good levels of location privacy in location-

based mobile systems. A commonly adopted approach, as stated in Chapter 1, is to apply

obfuscation on locations of users (i.e., to deliberately degrade the quality of location infor-

mation). However, as discussed in Chapter 2, location obfuscation has shown effectiveness

but studies also revealed some weaknesses of the approach in mobile applications where

location data was continuously disclosed. Against a reasoning adversary that has access to

the geographical context and the mobility of a user, simple obfuscation might prove to be an

inadequate privacy-protection mechanism (PPM) and may result in reduced levels of location

privacy in successive time steps, as the user moves.

In this chapter, we propose a heuristic location-privacy protection mechanism that is aware of

the user mobility when determining the obfuscation area for location in order to minimize

the deterioration of location privacy over time. We call this heuristic approach mobility-

aware location-privacy protection due to its awareness of user mobility history, direction of

movement and speed of the user. We experimentally evaluate our heuristic mechanism and

show that this approach provides a high level of location-privacy as compared to a random

obfuscation mechanism against attackers both with and without knowledge on user history.

This algorithm can be combined with the adaptive protection scheme in Chapter 2 in order to

benefit from the power of mobility-awareness and adversary-awareness all at the same time.

* The work presented in this chapter is joint work with Iris Safaka and Malik Beytrison.
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3.1 Framework

In principle, we use the same framework as in Chapter 2: We consider mobile users equipped

with smartphones moving in a geographical area that is discretized to M non-overlapping

regions, i.e., R = {r1,r2, ...,rM } in discrete time space T = {t1, t2, ..., tN }. They send their lo-

cation at every time instant ti ∈ T to a server for, e.g., receiving a location-based service or

contributing to a sensing application. When sending her data, a user obfuscates her location.

An obfuscated location Lt at time t is a set of locations from R, ie Lt ⊂R.

(a) Actual location of a user (b) Obfuscated location

Figure 3.1 – Location obfuscation example

While performing location obfuscation, a user is revealing a set of c locations, i.e., c regions,

at each time instant ti . We will be referring to the parameter c as the location obfuscation

parameter. Clearly, the value of this parameter is determined by the level of privacy the

user wishes for and there exists a trade-off between the utility of the application (location-

based service or sensing application) and the user’s level of privacy. Deciding on the location

obfuscation parameter is out of the scope of this chapter and we will be using a constant value

for this parameter.

The following example summarizes the above. The area in Figure 3.1 is discretized into 16

regions and a user is moving in this area. At each time instant, she has to report c locations,

out of which, one is her actual location and c-1 are fake. For example, on time instant ti the

user declares the set {5,6,7,9,10,11} (Fig. 3.1b) instead of only 6 (Fig. 3.1a) which is her real

position. In this example, the fake locations were selected randomly. In Section 3.3, we will

explain how to choose the fake locations so as to minimize the deterioration of privacy level at

time instant ti+1.

We use the notation in Table 3.1 in the rest of the chapter.

3.1.1 Adversary Model

We assume a passive and curious adversary (which can be the server), i.e., he will be able

to observe the (obfuscated) locations a user reports to the server and try to infer her actual

trace from his observations, but never attempt to break protocols or hack otherwise to obtain

more information. Furthermore, he may know a user’s past traces (which is called background

knowledge) and use them in his inference attacks to reduce his confusion. The intuition
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Table 3.1 – Table of Notations

c ≥ 2 location obfuscation parameter
T = {0,1,2, . . . , t } set of time instants
R= {r1,r2, . . . ,rN } set of N distinct regions in the area of interest
Lt ⊂R set of locations reported by the user at time t
a(t ) ∈Lt the actual location of the user at time t
li ∈Lt the ith fake location at time t , where 1 ≤ i ≤ c −1
neigh :R→P(R) function that gives the neighboring locations of a location
Prrρ :R×R→ [0,1] the probability to go to region r from region ρ given by Equation 3.3

behind this is that people tend to have regular mobility. The background knowledge he has

may or may not be complete. Additionally, he knows the maximum possible speed in terms of

regions per time instant, at which a user can move. The adversary’s goal is to infer the actual

location of a user at each time instant by using his background information and the user’s

obfuscated trace.

3.1.2 User Mobility Model

In our setup, we are considering location obfuscation in successive time steps. Given the

knowledge of the maximum speed, the past behavior and the direction of the user, the tran-

sitions between successive cells are characterized by probabilities. An adversary who has

knowledge of these probabilities could reduce his uncertainty regarding the user’s real location

after observing her obfuscated location. The adversary can also benefit from road networks

and maps of inaccessible locations when constructing such probabilities. For the sake of sim-

plicity, we do not consider this type of knowledge, but our model is independent of it (i.e., this

type of knowledge can be easily integrated into the model). In this subsection we explain the

user-mobility prediction models that we use in the design of the heuristic algorithm. We use

three mobility models: a history-based, a direction-based and a combination of the two.

History-based Mobility Model

We adapt the human mobility model proposed by Calabrese et al. [22], which aims to predict a

person’s future location based on the individual’s past behavior.

We denote the location of a user at time t as a(t ) = ρ. The model predicts the user’s next loca-

tion a(t +1) using past data. This is done by following a probabilistic approach: A probability

is defined for each region r ∈R to be the next location of the user as a function of the user’s

past behavior. We assume that the behavior of user is periodic over time with period T as

modeled in [22]. More precisely, this probability is given by the formula:

Prh(a(t +1) = r |a(t ) = ρ) =
∑
t/T �

m=1 fh(a(t −Tm +1) = r |a(t −Tm) = ρ)


t/T � ,∀r ∈R (3.1)
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where the frequency fh on the right hand side is defined as:

fh(a(t +1) = r |a(t ) = ρ) =
{

1 if a(t +1) = r and a(t ) = ρ

0 otherwise
(3.2)

This model says that the probability of a region r to be the next destination of the user is equal

to the frequency of visiting that region starting from region r j during all previous periods

t −T +1, t −2T +1, . . . . In [22], experimental results demonstrate a rather promising accuracy

of this human-mobility model as compared to original traces used.

Direction-based Mobility Model

Direction-based mobility models are often used to model mobility in ad-hoc networks [23],

since they are considered more realistic compared to fluid-flow or random-walk mobility

models. The Gauss-Markov mobility model [73] falls into this category of models. Using this

model, the mobile-user’s next location is predicted based on the information gathered from

the user’s last location report, velocity and direction. We adopt a simple version of the model:

The idea is that it is more probable for a user to continue straight ahead rather than abruptly

turning back while moving. The following example aims to give an intuition of this model.

(a) User direction vector �d with its angle
Θ w.r.t. previous direction.

(b) The probability distribution over direction
change angle Θ showing that keeping the direction
has the highest probability.

Figure 3.2 – The direction-based model that considers the angle of direction change in user
movement.

Consider a user at time t and let �d be the vector of her velocity, i.e., his direction, at time

t as shown in Figure 3.2. The probability Pr(Θ) that the user will change her direction by

Θ ∈ [−180°,180°] degrees at time t + 1 takes values with respect to a normal distribution.

Finally Prd (a(t +1) = r |a(t ) = ρ, a(t −1) = ρ′) = Pr(Θ), where the coordinates of regions ρ ∈R
and ρ′ ∈ R are used to identify the direction �d at time t , i.e., we need the last two visited

regions to determine the movement direction of the user.
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The Combined Model

In this Section, we define a model to predict a user’s behavior as a combination of the history-

based model and the direction-based model:

Prrρ(a(t +1) = r |a(t ) = ρ) =α ·Prh + (1−α) ·Prd (3.3)

where α ∈ [0,1] is the combination parameter and can change over time to model occasions

when the user’s behavior is more likely to be accurately predicted by her history data, if these

are enough and available, and occasions where the direction-based model is better suited to

predict future movement of the user.

3.2 Problem Statement

Before presenting the heuristic algorithm, we state the algorithm design problem through

an example. For demonstration reasons we use a directed linkability graph as shown in

Figure 3.3, where the vertices are labeled after the reported locations at each time instant

and a link between two vertices exists if a transition is possible between them in successive

time instants. Each vertex is assigned a presence probability Pr(a(t) = r ), where r is also

the label of the vertex representing region r . Each link is assigned a transition probability

Pr(a(t ) = r |a(t −1) = ρ) ·Pr(a(t −1) = ρ) �= 0, where ρ is the origin vertex and r the destination

(zero if the link does not exist). Using Bayesian inference we can calculate that a location r is

the real one as follows:

Pr(a(t ) = r ) = ∑
ρ∈Lt−1

Pr(a(t ) = r |a(t −1) = ρ) ·Pr(a(t −1) = ρ) (3.4)

For the sake of simplicity, we assume in this section that transitions between vertices are

equiprobable, therefore Pr(a(t) = r |a(t − 1) = ρ) follows the uniform distribution, where∑
r∈Lt

Pr(a(t ) = r |a(t −1) = ρ) = 1, ∀ρ ∈Lt−1. Also, the maximum speed of a user is one region

per time instant. We will demonstrate that under these assumptions, a user, who obfuscates

her location, can get decreased privacy levels in consecutive time instants. Consider the

discretized area seen before and illustrated in Figure 3.1. We set the obfuscation parameter

c to 2, the user moves within an area of 16 regions, her maximum speed is one cell per time

unit and her trace is {2,6,7}. Ideally, for privacy protection, the linkability graph should not

become disjoint and there should always an outgoing edge from every vertex in the previous

time instants.

Let’s assume that the user reports her actual location a(t0) = 2 along with a fake one l1 = 1

to the server at time t0, thus Pr(a(t0) = 2) = Pr(a(t0) = 1) = 1
2 . At time t1, the user reports

a(t1) = 6 and l1 = 5 and we can compute the probability for each one of those being the real

position using Equation 3.4, namely Pr(a(t1) = 6) = Pr(a(t1) = 5) = 1
2 . An adversary still has the

highest uncertainty regarding the real position (Figure 3.3a). At t2 the user chooses to report
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Figure 3.3 – Example showing deterioration in privacy level

a(t2) = 7 and l1 = 8. Apparently, there are some links missing now, since region 7 is impossible

to reach from region 5 and region 8 from both 5 and 6 in one time instant. An adversary

has now information that would reduce his uncertainty: by exploiting the information at

time t2 and using Bayesian inference, he can recompute the probabilities at time instants

t0 and t1. Applying Equation 3.4 to the new values she concludes that Pr(a(t2) = 7) = 1 and

Pr(a(t2) = 8) = 0, meaning that he inferred the actual location of the user (see Figure 3.3b).

One can easily observe that the decrease of privacy level at time t2 occurred due to the fact

that the selection of region 8 as fake was done randomly. If the selection criterion was to select

as fake a region that is a direct neighbor of both regions 5 and 6, then the linkability graph

would not have become disjoint and no vertex would be removed, thus the uncertainty would

have remained high at time step t2. This is a design specification that we take into account in

the proposed heuristic algorithm of the next section.

Moreover, from the analysis above one can notice that deterioration of privacy level might

occur due to transition probabilities assigned to links. A sophisticated adversary, that has

knowledge of the geographical area and the mobility model of the user, can compute more

accurate values of the conditional probability Pr(a(t) = r |a(t − 1) = ρ) instead of simply

assuming that they are equiprobable. For example, if a location r is not accessible by the user

(even if ρ and r are direct neighbors), the probability Pr(a(t ) = r |a(t −1) = ρ) = 0, ∀ρ ∈Lt−1,

resulting in a different value of Pr(a(t ) = r ). This is the second design specification taken into

account in our heuristic algorithm.

3.3 Mobility-aware Obfuscation Algorithm

In this section, we describe our heuristic obfuscation algorithm that is mobility-aware. The

algorithm takes as input the user actual location a(t ), her current velocity vt and the obfusca-

tion parameter c , and returns the set Lt of c locations, representing the obfuscated location of

the user. The algorithm checks the reachable locations from the last time instant w.r.t. vt and
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by using the transition probabilities from the user mobility model, determines the c −1 fake

locations to be included in Lt along with the actual location. The principle idea is that the

algorithm chooses locations to populate Lt such that they will be the most probable locations

along with a(t) to go to from the locations in Lt−1. Hence, the adversary’s confusion will

potentially be the maximum possible.

There are two base cases for our algorithm, namely for t = 0 and t = 1. For the sake of

presentation and ease of understanding, we first explain the body of the algorithm for t > 1

and explain the base cases later. In summary, the algorithm consists of 3 steps. First, it

determines the reachable locations at time t from the locations at time t −1 w.r.t. the velocity

vt . We call these locations the candidate locations S under consideration for Lt . Secondly,

the algorithm chooses c −1 locations from S such that they will have the highest transition

probabilities w.r.t. Lt−1. Finally the set Lt is formed by a(t ) and the determined c−1 locations

and returned. The algorithm’s pseudo-code is presented in Algorithm 1 with conditions t = 0

and t = 1 not included for readability purposes. Note that the algorithm has access to all past

reported locations, i.e., Lk for k < t , and user history.

Algorithm 1: Mobility-aware Obfuscation Algorithm

Input: a(t ), c, vt

Output: Lt – the set of c locations acting as the obfuscation area
1 Lt = {a(t )} ;
2 for each ρ ∈Lt−1 do
3 Find locations that can be reached from ρ, i.e., neigh(ρ, vt );

4 I =⋂
ρ neigh(ρ, vt ) ;

5 S = (I \ a(t ))
⋂

neigh(a(t ), vt ) ;
6 for each r ∈S and each ρ ∈Lt−1 do
7 Compute the probability Prrρ(a(t ) = r |a(t −1) = ρ);

8 i = 0;
9 while i < c −1 do

10 li = argmaxr

(∑
ρ∈Lt−1

Prrρ
)

;
11 Lt =Lt

⋃
{li } ;

12 i = i +1 ;

13 return Lt

At the beginning of the algorithm, Lt is initialized to {a(t)} as it has to include the actual

location of the users. Afterwards, in the first step (lines 2-5), the set S of candidate locations is

determined by finding the set of neighbors of each location j in Lt−1 with the limited range

vt , the velocity of the user. Then it finds the intersection of these sets to increase number of

combinations of paths in the linkability graph to ensure maximum confusion for the adversary.

The set S of candidate locations is finalized by first removing the actual location a(t) from

it and then intersecting it with the neighboring locations of a(t). This last part filters the

candidate locations to those within the proximity of the actual user location and also are

accessible by all the locations in Lt−1.
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After determining the set S , the transition probabilities from the locations reported previously,

i.e., in Lt−1, to the ones in S are computed in the second step (lines 6-7). In the last step, c − 1

locations are chosen from S that provide the highest transition, hence presence, probabilities

for time t and inserted to Lt . Note that, in our experiments, we actually implement this step

in a way that Lt consists of locations that form a joint polygon, in other words to avoid disjoint

areas in Lt . However, Lt may form areas of not regular shape (i.e., square, rectangle, etc.).

We now explain the details for the base cases of our algorithm, i.e., for t = 0 and t = 1. For t = 0,

we do not have any transition to compute due to nonexistence of Lt−1. Instead, the algorithm

computes the presence probabilities of each location that is a neighbor of a(0), replacing

the lines 2-7. These probabilities can easily be computed from the history of user. Step 3

(lines 8-13) remains same except that instead of Prrρ on line 10, the presence probabilities

Pr(a(0) = k) are used. Secondly, for t = 1, we do have transitions, however, we cannot check a

direction change because we need at least 3 points in space to be able to determine an angle

of movement. Hence, we compute the transition probabilities Prrρ based only on the history

mobility model explained in Section 3.1.2 on line 7 of Algorithm 1.

Example: We now go briefly through the example presented in Section 3.2 again (where the

trace of the user is {2, 6, 7} w.r.t. the area in Figure 3.1) in order to demonstrate the difference

between the random selection of locations to report and our heuristic algorithm. We assume a

maximum speed of 1 location per time instant with c = 2. At t = 0 with a(0) = 2, the set S is

populated with all the one-hop distance neighbors of a(0), i.e., S = {1,2,3,5,6,7}. Here we have

no access to past traces, so we just pick one location from the set S to report. Assume that

we randomly choose to report location 1 as the fake location. Therefore L0 = {1,2}. For t = 1,

we determine the candidate set S = {1,2,3,5,6,7} based on the previous locations reported.

Again, we pick one out of these locations with uniform probability and report L1 = {5,6}. The

algorithm’s role becomes apparent now at t = 2. For every previously reported location, i.e., in

L1 = {5,6}, we find their neighbors, and intersect the two sets of neighbors to get the set I . We

have I = {1,2,5,6,9,10}
⋂

{1,2,3,5,6,7,9,10,11} = {1,2,5,6,9,10}. We then prepare S as described

previously (i.e., according to line 5 of the algorithm): S = {2,6,10}. Now that we have too many

candidate locations to report, we have to compute the probability for all the elements of S .

But in this example we cannot compute the probability distribution so we just select a cell

that could be reached from the previously reported locations, say cell 6. We finally report L2 =

{6,7}. We can easily see that if we draw the linkability graph for this example we will get a fully

connected graph (unlike with the random selection of locations), i.e., we have no transition

probability that is zero. Obviously this is only a small example and not all the parameters are

taken into account but it gives a good intuition of how the algorithm works and how it differs

from a random obfuscation model.

3.4 Evaluation

We evaluate our heuristic algorithm by comparing it to a random obfuscation mechanism

and using a dataset of real traces. We evaluate location privacy of users for both mechanisms

50



3.4. Evaluation

using the Location-Privacy Meter developed by Shokri et al. [99, 100]. In the remainder of

this section, we describe our dataset and methodology, explain the privacy metric we use and

present our experimental results.

3.4.1 Dataset and Methodology

We use the real-world traces from the data collection campaign carried out by Nokia in

Lausanne region [85] from 2009 to 2011 (i.e., the same dataset as in Chapter 2. The area-of-

interest we consider in Lausanne region is of size 1.25×1.0 km, which is discretized to 25×20

regions for computational limitations. We filter the dataset w.r.t. to this area and choose the

users that have at least 15 chunks of 40-event long traces in this area. We train the adversary

with the additional traces of each user while obfuscating and attacking one of them. This

results in a final set of 33 users. We run our experiments for varying α and c values with

heuristic and random obfuscation mechanisms separately. Finally, we attack all the generated

obfuscated traces with two attackers (i.e., using the Location-Privacy Meter), one with and

one without the background knowledge on users’ history.

3.4.2 Measuring Location Privacy

In our scenario, as in the case of Chapter 2, the adversary has access to the obfuscated trace of

a user. Her objective is to reconstruct the user’s real trace based on this observation. The more

accurately she succeeds in the reconstruction, the lower the level of location privacy that we

obtain in our system. An effective metric for measuring location privacy is the distortion-based

metric by Shokri et al. in [98].

In order to evaluate the effectiveness of our heuristic obfuscation algorithm, the Location-

Privacy Meter (LPM) [99, 100] was used and the expected error of the adversary is employed

with Euclidean distance. The observed traces serve as input to the tool as well as a distance

Function, and a transition matrix, a matrix that describes which transitions between regions

are possible over consecutive time steps, given the geographical area and the maximum speed

of the user (in regions per time unit). The output is the level of location privacy in terms of

expected distortion in meters at each time instant.

3.4.3 Experimental Results

Here we show the different results we obtained for the different tests we ran. We ran our

experiments with varying c and α values for our heuristic algorithm. We ran tests on the

obfuscated traces with two different attackers (with and without background knowledge of

the users’ mobility). All location privacy levels are presented as the expected error of the

adversary’s inference in meters. We refer to the attacker with background knowledge as the

“strong attacker", and the one without background knowledge as the “weak attacker".
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Figure 3.4 – Privacy protection over time for one user, c = 5, α= 0.5, against the weak adversary.

In Figure 3.4 we show the average location-privacy level of a user over time in meters for c = 5

and α= 0.5 and against the weak attacker. We observe that the location privacy is relatively

constant over time, except the first two time instants. This is due to the fact that we used

uniform probabilities when choosing the fake locations for obfuscation in these time instants

(i.e., the base cases of the algorithm). But as of the third time instant, our actual heuristic

algorithm shows its effect on the location privacy and we observe a jump around 100%. Also, as

the algorithm can retain linkability among successive time instants, we see consistent privacy

level protection over time as in Chapter 2.

We now show the impact of the parameters c and α on obfuscation. On Figure 3.5, we plot

the average privacy levels over all users and all time instants over c obtained against the weak

Figure 3.5 – Location privacy over the obfuscation parameter c averaged over all users and
time instants, against the weak attacker.
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attacker. The results include privacy levels obtained with heuristic algorithm with α= 0, with

α = 1 and a random obfuscation algorithm that generates a randomly placed obfuscation

area. We observe that the value of α does not significantly change the results against the weak

attacker. When we analyzed the results with the strong attacker, we observed the same trend.

Figure 3.6 – Location privacy over the obfuscation parameter c averaged over all users and
time instants for heuristic and random mechanisms against both attackers.

Finally, we compare the random obfuscation and our heuristic algorithm against the two

attackers. Figure 3.6 shows the results of the algorithms for different values of obfuscation

parameter c, and a comparison w.r.t. two adversary models (i.e., the weak and the strong

attackers). For the heuristic algorithm, we averaged the privacy levels with different values

for α, (i.e., for α = 0, 0.25, 0.5, 0.75 and 1) because the differences were negligible. The first

observation on this plot is that the heuristic algorithm clearly outperforms the random one

for c ≥ 4. Even when the heuristic algorithm is attacked by the strong attacker, it still provides

a better location-privacy level than the random obfuscation mechanism against the weak

attacker. This result demonstrates the importance of considering the mobility of the user when

applying protecting location privacy. Obviously, the strong attacker obtains more information

than the weak one for both heuristic and random mechanisms. However, the relative loss

in the case of heuristic algorithm is considerably less than the loss in the case of random

obfuscation. As expected, the location privacy is higher for larger values of c in all cases.

3.5 Related Work

The research community is aware of the privacy risks arising from mobility of users in con-

tinuous disclosure scenarios. There have been some attempts [50, 113] to address this issue

by proposing velocity or mobility aware protection mechanisms. However, they fail to meet
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certain requirements which we addressed in this chapter. Xu et al. [113] proposes to analyti-

cally consider a user’s transition probability distributions among locations in order to derive

certain cloaking areas. They achieve this by constructing a linear program and solve it for the

optimal solution for building a cloaking area. Their idea is similar to our heuristic approach,

yet they do not consider direction-based mobility in their system. Furthermore, they do not

evaluate their protection mechanism against a powerful adversary with real traces. Instead,

they attack either isolated user events or a short sequence of user events (i.e., 2-3 events) and

evaluate the privacy levels with Entropy metric.

Ghinita et al. [50] proposes a protection mechanism to protect location privacy in a velocity-

aware way. Their model lacks user mobility history in protection mechanism. They also do not

evaluate their mechanism’s effectiveness against a localization attack with strong adversary

assumptions. They do, however, consider sensitive semantic places on the map in order to

determine the size and placement of a cloaking area.

Finally, Götz et al. [54] propose a mobility-aware protection mechanism based on Hidden

Markov models that take into account the knowledge of the adversary. Their proposed mecha-

nism provide optimal solutions for keeping the confusion of the adversary high; however, the

system requires an expensive initialization phase, thus requiring offloading some work to a

remote server.

3.6 Summary and Discussion

In this chapter, we explored how we can provide a strong obfuscation-based protection mech-

anism that is mobility-aware. We formulated the choice of obfuscated locations at time instant

t , such that the deterioration in the privacy level at time t +1 will be minimized while the

privacy levels in backward are retained. We proposed a heuristic algorithm that takes into

account the mobility of the user (i.e., past behavior and the direction of movement) when ap-

plying obfuscation. The effectiveness of the heuristic algorithm was evaluated experimentally

and the results are remarkable. This work supports the idea that protection mechanisms must

be designed to take into account the user behavior and how the adversary might use such a

knowledge against privacy.

As a limitation, although trying to be more realistic in the mobile setup has proved to provide

better experimental results, this is not a formal proof that they constitute necessary and suffi-

cient conditions. Working towards identifying these conditions and providing a formal proof

is an interesting research direction. Furthermore, the heuristic algorithm can be extended to

consider variable location-obfuscation parameter c over time. In fact, it can be merged with

the adaptive protection approach in Chapter 2 and implemented on smartphones, e.g., the

Location-Privacy library (Chapter 4).
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4 Location-Privacy Library on Android
Platform

We present in this chapter an Android library we developed to provide location-privacy esti-

mation and protection to mobile users. We implement in it our adaptive privacy-protection

mechanism presented in Chapter 2. We separate the privacy estimation algorithm we devel-

oped and make it a separate module, thus enabling independent privacy measurement for any

additional privacy-protection mechanism or feedback to the user. Furthermore, as a user may

require using a different location-privacy protection strategy depending on the type of place

where she is, i.e., the location semantics, we build a privacy sensitivities setting interface for

users. For instance, she may not want to have her location revealed when she is in a hospital.

The sensitivities can be set for a specific type of place, i.e., semantic tag, or a geographical

region. Our adaptive algorithm takes into account the privacy sensitivity corresponding to the

current location of the user and utilizes the privacy estimation module to protect the user’s

actual location.

Most of the existing approaches to location-privacy protection have not explored these scenar-

ios, and instead provide a static mechanism, i.e., they set a fixed protection parameter such as

the size of the obfuscation area. Moreover, as we will see later, very few previous approaches

consider the applicability and effectiveness of their methods, let alone implement a real pro-

tection program for mobile applications. We try to fill this gap with our Location-Privacy

Library that we made available as an open-source project [4]. Location-aware applications

can provide location-privacy protection to their users by integrating this library.

We have integrated this library with the generic tinyGSN Android application that integrates

heterogeneous sensing devices running on the smartphone, and makes them available as

virtual sensors that can interact through the GSN (Global Sensor Networks) middleware [10].

To the best of our knowledge, this is the first Android library/application that adaptively

protects location privacy in a way aware of privacy sensitivities and location semantics. Finally,

we evaluated this library in terms of performance, resource usage, and expected privacy in a

real-life scenario based on air-pollution sensing for personalized health monitoring [5].
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4.1 Adaptive Privacy-Protection

In this section, we summarize the adaptive privacy-protection system we use to build our

library. As mentioned earlier, this system is based on the work in Chapter 2. As we know, the

adversary has a certain knowledge about each user u, more specifically the observed history

and the obfuscation mechanism being employed. If the protection mechanism employed

by the user uses this information, then it provides privacy-protection in an adaptive manner.

In a nutshell, our protection mechanism reasons about the information the adversary has,

anticipates on what he can infer from the disclosed data, and decides on the protection

strategy accordingly. It also regards the semantics of the user’s location and the privacy

sensitivities, which it integrates in its decision process. To achieve this, our location-privacy

library performs a simulated attack on the user’s obfuscated trace and performs an evaluation

of the expected privacy level. Then our protection mechanism uses this information to change

the protection level if necessary. However, as applications on the user side do not have as

much computational power as the adversary has, this needs to be modeled in an efficient

way. Thus, the simulated attack in our library is weak, but sufficient to approximate what the

adversary can achieve.

We introduce two separate core building blocks in our adaptive privacy-protection scheme:

the first is in charge of the local estimation of location-privacy, while the second essentially

applies the protection techniques on user locations. Figure 4.1 shows the interactions between

these blocks and their dependencies with the user history and sensitivity profile.

Privacy
Estimation

Privacy
Protection

Sensitivity
profile

History
profile

estimate

candidate

Figure 4.1 – The adaptive protection approach is based on two main building blocks: local
privacy-estimation privacy protection. They interact with each other for adaptation in real-
time by using user history and the sensitivity profile.

The privacy estimation keeps track of the user’s past events (where the user was, and when)

and the history profile. Then, it uses Bayesian inference to attack user’s own trace as described

in Chapter 2. This is achieved by storing user obfuscated events in an inference graph, and

updating the graph in real-time as the user generates new events. Privacy estimation fuses

information from the Bayesian inference results with history data and computes an estimated

privacy level using the expected distortion metric proposed by Shokri et al. [98]. This metric is

basically an expected value computation on distances between the user’s actual location and

56



4.2. Location-Privacy Protection Library

the observed locations in his obfuscated event. Note that what the user estimates here is in fact

the posterior distribution h resulting from the adversary attack. However, the adversary attacks

the obfuscated trace as a whole; the user only attacks the disclosed part of her obfuscated

trace. As a result, the user achieves an approximation of h.

Whenever the user generates a new event, the protection component obtains the actual

location and the corresponding semantic tag; then it checks the user’s sensitivity profile δu

and drafts an obfuscated location by also considering the user’s history profile Hu . It invokes

the privacy estimation by passing it the generated obfuscated location and then receives the

expected privacy-level as if the user would disclose the current obfuscated location. Upon

receiving this estimation of the privacy-level, the protection component checks if it satisfies

the user’s sensitivities. If it matches the user sensitivity, it discloses the obfuscated location.

Otherwise, it adjusts its parameters and generates a new obfuscated location, and goes through

the same procedure again. In summary, the protection mechanism iteratively adjusts its

obfuscation parameters until the user’s sensitivity preferences are satisfied.

4.2 Location-Privacy Protection Library

In order to demonstrate the feasibility and usefulness of our adaptive protection model, we

have implemented it as a library for Android [1] version 5.0 (i.e., Lollipop) and above. The

library is designed in a way that any Android application that aims to protect its users’ location

privacy can integrate the library easily and without manually initializing its database (with

configuration information such as a semantically-annotated map and a sensitivity profile).

We integrated our library to tinyGSN [8, 43], a sensor data collection application for Android

devices, in order to test its applicability in real-world scenarios. In this section, we elaborate

on the library architecture, the implementation details of its features and how it is integrated

to tinyGSN.

4.2.1 Architecture

In this section, we explain in more detail how the theoretical system introduced in section 4.1

is turned to a concrete architecture. Our library consists of four modules that interact with

each other and also with the main application hosting the library. This architecture is shown

in Figure 4.2.

The interaction rationale among these modules is as follows: The location-privacy protection

mechanism, that implements obfuscation for protecting the location, requires a privacy-

level estimation whenever it creates an obfuscation area for a given precise location. The

privacy estimation module (PEM) provides this functionality and after evaluating any given

obfuscation area, returns a privacy-level estimation. Upon this, the protection mechanism

decides whether this estimation meets the privacy requirements or not. At this point, the

protection mechanism requires the privacy sensitivities of the user based on the current
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Figure 4.2 – Architecture of the Location-privacy protection library for Android.

location to be able to make the above-mentioned decision. Hence, we introduce the privacy

sensitivity profile that stores and provides this information. As the privacy sensitivities are

personal, we provide interfaces for the user to modify them as she sees fit, be it semantic or

geographical. Coming back to the PEM, the evaluation of a given obfuscation area requires

keeping track of previously disclosed locations (i.e., obfuscation areas) and also knowledge

about the user’s movement patterns. The PEM stores the recent trace of the user locally, but for

the movement patterns, it relies on the User History module. Movement patterns are designed

to be in the form of transition probabilities, denoting the probability of going to a region r

given that the user’s current location is ρ. This information is provided by the User History

Module, that keeps track of which locations the user visited, at what time, and which location

he visited afterwards. Basically, this module gets its location feed of the user from the main

Android application that uses the library, but it can potentially connect directly to the Android

OS’s localization services and save user history frequently.

4.2.2 Implementation

The geographical information in our model is discretized for increasing time and space ef-

ficiency of the protection mechanism. In terms of implementation, all the modules in the

library use location information in (and converts the geographical coordinates to) a discretized

representation. This requires a mapping from coordinates system to a set of regions. For

this, we use the Cantor pairing function [25, 74] which is a bijective function π : N×N→N as

follows:

π(x1, x2) = (x1 +x2) · (x1 +x2 +1)

2
+x2 (4.1)

This pairing function allows us to convert geographical coordinates to natural numbers, hence

the region ids. For any given geographic coordinates, we first determine the region this point

is in based on what size the regions are defined. Due to computational limitations for the PEM,
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we use an approximate size of 100×100 m for regions. By using the Haversine formula1 [92],

we determine the top left corner of the region the point is within. After that, we convert the

latitude and longitude values of this region’s top left corner (that are real numbers) to integers

by multiplying them by 10,000 which gives around 11 meters of precision in the geographic

coordinate system. The precision changes as we move towards the poles of the Earth; however,

this does not affect our application as we do not impose perfect alignment of the regions on

the map. Consequently, our library does not require a pre-loaded database of regions, it can

download and cache current areas automatically.

Sensitivity Profile

Our adaptive protection mechanism aims to satisfy a desired level of privacy given any location,

based on either the location itself or its semantics. To fulfill this objective, it requires a

threshold to compare the estimated privacy level obtained from the PEM in order to make a

decision regarding the size of the obfuscation area. Our approach in this regard is to define

sensitivity values for semantic tags and geographic regions, that act as the threshold. In this

sense, we determine a list of semantic tags obtained from OpenStreetMap [6], which is an open

and free map project. Moreover, we let users set sensitivity levels for geographical locations in

the form of regions as introduced earlier in this section. Whenever a user sets a sensitivity level

for a region, this overrides any semantic sensitivity level that might concern this region, for

instance, if the sensitivity level in the library for a bar is low and a specific region that contains

a bar is set to have high sensitivity level for the user, then the library considers the location to

have high sensitivity whenever the user is there.

We provide the user with a configuration panel in the Android App, to customize the sensitivity

levels for semantic tags and locations easily through a graphical interface. Figure 4.3 shows the

screenshots of this panel. The demonstrated ‘min’ and ‘max’ sensitivity levels are represented

by 0.0 and 1.0, respectively, and saved to the local SQLite database for each semantic tag and

also for the selected geographical locations. For semantic tags, a slider is used for setting the

sensitivity level for each semantic tag, whereas for locations, we benefit from Google Maps

widget to visually let the user determine and pick the location for which she wants to set a

sensitivity level. After picking the desired location, she can simply check the override semantic

sensitivity box to determine the location-specific privacy sensitivity level.

User history

In order for the PEM to take into account the most visited places by the user in the inference

attack, we keep track of the user’s mobility history. The reason behind this is that the adversary

could already have obtained information on the user’s mobility patterns through privacy-

intrusive channels (for example, through an application the user installed on her device that

1Haversine formula is used to compute the great-arc distance between two points on a sphere using their
latitudes and longitudes.
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Figure 4.3 – Screenshots of the privacy-sensitivities settings panel. On the left, the user sets the
sensitivity levels for various semantic tags. On the right, the user can choose and highlight the
location she wants to set the sensitivity level and override the semantic sensitivity levels. The
brown region is the currently selected location and red regions are the ones for which specific
sensitivity levels are set.

does not have a location-privacy protection function). We keep this information in an SQLite

database locally and in the form of transitions. In practice, people have routines and hence

their mobility is quite repetitive [53]. Thus, to reflect this, the history should be recorded

frequently (for example, once every 10-15 minutes). In our library, we implement a service that

can be configured to save the location of the user periodically as well as provide an interface

for the main application to take care of invoking the location recording if necessary (and

preferred). Each time the location is saved, the current location and time of day are inserted

to the database as well as the previous location and time of day. This lets us aggregating the

time-dependent movement patterns of the user as transition probabilities. Basically, the PEM

requests the transition probability between two locations based on the obfuscation areas

generated.

Transition probabilities are calculated simply from the number of transitions observed from

one location to another which is then divided by the total number of transitions observed

from the same location. As it was shown that human mobility is quite time-dependent [53], we

narrow down this to the number of transitions observed within the user’s current time period

in the day, for instance, taking into account the transitions observed between 12-13 o’clock
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in the past. This information is provided to the PEM by getting the count information from

the SQLite database and then returning the outcome as a probability. The following formula

expresses this calculation:

Pr(r2|r1) = #(r1 → r2)∑
ρ

#(r1 → ρ)
(4.2)

where #(r1 → r2) is the number of transitions observed from region r1 to region r2 in the

user history which is stored in the local SQLite database.
∑

ρ #(r1 → ρ) is the number of all

transitions observed from region r1 to any other region.

Privacy Estimation Module

The PEM is computationally the most complex and hence demanding part of our library.

It houses a basic Bayesian inference scheme that determines the regions in an obfuscation

area that will be believed to be the actual location of the user from the adversary’s point of

view. This is achieved by keeping track of the user events, i.e., the obfuscation areas disclosed

with the time information and also the actual user events in a linkability graph such as the

example in Figure 4.4. Basically, each node in this graph represents a region in the obfuscation

area disclosed at a given time instant ti . Whenever a new obfuscation area is generated, it is

appended to the graph and the regions in the previous time instant are connected to the new

event based on physical reachability between them (based on the maximum speed allowed to

go from one place to another, which is set to 70 km/h in our library – the typical speed limit

in cities is 50 km/h). Links between the regions are assigned the corresponding transition

probabilities obtained from the user history module. This helps us to compute the presence

probability per node, i.e., region. In Figure 4.4, the transition probabilities from all the nodes

are uniform, meaning that in this example history is not used.

Figure 4.4 – An example linkability graph that shows the transition probabilities between
locations on the edges and the presence probabilities derived from them and then assigned to
the locations shown next to the nodes.

As more user events are generated (i.e., visited locations), the number of nodes and levels in

the linkability graph will explode. To avoid this, we remove old events from the graph and keep
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only the most recent 30 events. In this case, the latest probability values assigned to the nodes

in the first-level event in the graph are retained. This ensures the correct update of probability

propagation in the graph in the event of a link removal.

Finally, the estimation of privacy level is done as follows. As we derive the presence probability

for each region in the latest obfuscation area, we calculate the distance between them and

the actual region of the user. We use the GPS coordinates of the center points of the regions

for this. Then, we calculate the expected distance to the original location by multiplying the

distances with their corresponding presence probabilities. This gives an approximation of

the adversary’s error in guessing the actual location of the user [98]. The formula for this

calculation is as follows:

LP = ∑
r∈R

Pr(au(t ) = r ) ·dist(r, au(t )) (4.3)

where dist(·, ·) is the Euclidean distance between two given regions and au(t) is the actual

location of user u at time t .

Adaptive Protection Mechanism Module

This module consists of the iterative algorithm presented in Chapter 2, which generates an

obfuscation area and checks if it satisfies the privacy requirements based on the current

location of the user. For this, it starts with an unprotected location first, i.e., no obfuscation

area. Note that this still needs to be inserted to the user’s trace in the PEM, hence it is submitted

to the PEM and an estimation of privacy level is obtained, which is 0.

At this point, the sensitivity level of the current location or its semantics needs to be checked.

For this, the module first checks with the sensitivity profile, whether there is a sensitivity level

set for the current location specifically. If yes, this sensitivity level is used. Otherwise, the

semantics need to be checked. As we cannot load the semantic map information for the whole

world, this semantic data needs to be fetched online as needed. OpenStreetMap provides

an API, called OverpassAPI, for querying map by providing a bounding box and also a list of

semantic tags. The API returns a list of polygons, ways and nodes, that are annotated by one

of the semantic tags included in the query. We use this API to automatically obtain semantic

details of the user’s current vicinity (or her destination). The information is saved to a local

Spatialite2 [7] database that supports geometrical queries such as intersection and minimum

bounding box. This functionality eases the determination of the dominant semantic tag in a

given region. In this way, we obtain the semantic tag for the current location and query the

sensitivity profile accordingly. Note that, fetching data from OpenStreetMap can be perceived

as privacy-invasive as well. We avoid this by fetching data for large areas (e.g., 2× 2 km)

and save it for a long period of time (i.e., cache it). This ensures that no tracking occurs by

OpenStreetMap.

2Spatialite is a specialized version of SQLite database system that supports geometric objects as column types,
such as polygon and point.
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Once the sensitivity level is obtained for the current location, the mechanism needs to compare

this to the privacy estimation. Note that the estimation is actually a distance value, whereas

the sensitivity levels are scalar in the interval [0,1]. We use a coefficient Θ at this point that

represents the maximum value for the desired level of privacy. We multiply the sensitivity

value with Θ to obtain the final threshold for the desired level of privacy. In our library, we

have set Θ= 0.2 which is 200 meters (this value can also be set by users). If the estimated level

of privacy is less than the desired level of privacy threshold, then the obfuscation mechanism

increases the obfuscation area size and generates a new obfuscation area. This obfuscation

area is randomly positioned over the current location of the user. A new privacy estimation is

requested from the PEM and then compared to the privacy threshold. If it is not met again, the

mechanism tries another obfuscation area with the same size again, but positions differently

on the current location. Whenever the desired level of privacy is reached with an obfuscation

area, then this area is returned to the requesting application and it is retained in the PEM. On

the side note, the protection mechanism tries two different obfuscation areas of the same size

before incrementing the area size, because a different positioning of an obfuscation area on

the map may provide different privacy levels.

TinyGSN Integration

For testing and prototyping, we integrated our library to tinyGSN application [8, 43], that is

developed for sensing environmental data on the Android platform. As sensing data is only

meaningful with time and location stamps, this application allows setting sensors with location

recording (obtained through GPS module). The application allows a user to set wrappers for

real sensors to collect data and create virtual sensors to fuse data from any source (sensor

wrappers and/or virtual sensors) before recording the final outcome. This flexibility enables

collection of multidimensional data together and process them as required. We have modified

the virtual sensor implementation of this application to let users enable location-privacy

protection in case this virtual sensor uses GPS data. Figure 4.5 shows this modification.

4.3 Evaluation

We evaluate our library on functional and performance aspects; namely, the correctness

and adaptiveness of the protection algorithm, its effects on memory, CPU usage and battery

(through power consumption) as compared to the case where the library is not employed by

tinyGSN [8, 43].

4.3.1 Location Privacy

To evaluate the location privacy, we have used a dataset that consists of GPS traces of users

that participate on a health-monitoring data collection campaign (approved by the local ethics

committee). The campaign aims to collect environmental data (i.e., air quality, exposure to

63



Chapter 4. Location-Privacy Library on Android Platform

Figure 4.5 – tinyGSN with the Location Privacy Library integrated. “GPS Privacy” checkbox lets
the user to enable adaptive location-privacy protection.

pollutant gases) for individuals by asking participants to carry Android smartphones running

the tinyGSN application [43] and various air quality sensors. The participants carry the pro-

vided devices for one day. The campaign is coordinated by the CHUV, the cantonal university

hospital in Lausanne, Switzerland, in the context of OpenSense Project [5]. We obtained GPS

traces of 15 participants, length of which vary from 79 to 678 location observations. We loaded

these traces to the tinyGSN application integrated with our library and replayed a sensing

scenario using these traces. For this experimental evaluation, we set sensitivity levels for a set

of semantic tags in the application to reflect the outcomes in different scenarios. Table 4.1 lists

these semantic tags and the sensitivity levels assigned to them. All the other semantic tags

are assigned a sensitivity level of 0. Note that these sensitivity levels may be different among

individuals, but preloading a common sensitivity profile to the library would help users to

start using the library immediately. However, this requires a social research that complements

the work in this chapter.

Table 4.1 – Privacy sensitivities used in the experiments.

Tag Sens. Tag Sens. Tag Sens. Tag Sens.

Clinic 1.0 Hospital 1.0 Prison 1.0 Embassy 0.9
Bank 0.8 Nightclub 0.8 Commercial 0.75 Aerodrome 0.7
Police 0.7 University 0.5 Hotel 0.5 Bar 0.4
Fast Food 0.3 Restaurant 0.3 Cemetery 0.3 Zoo 0.3
Stadium 0.25 Train Station 0.15 Post Office 0.10 Museum 0.1

In Figure 4.6, we present the privacy levels estimated by the PEM of the Location Privacy
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Library based on the privacy sensitivity settings on the device. Specifically, this graph plots

the estimated level of geographical location-privacy vs. the desired level of privacy for each

user event for all the users in our dataset. Evidently, the Location Privacy Library manages

to satisfy the desired level of privacy in all cases as there is no data point under the threshold

line shown as a dashed line. Of course, this graph reflects the local estimation of the privacy

level, meaning that a stronger attack might breach some level of privacy even in the case of

an adaptive protection approach that considers a certain attack scenario. Nevertheless, it is

experimentally shown in [11] that such an attack manages to obtain only very little and hence

an adaptive protection approach remains strong.

Figure 4.6 – The estimated privacy level of users based on their obfuscated traces as compared
to their desired level of privacy measured as an expected error of the adversary in km.

4.3.2 Performance

For performance evaluation, we ran experiments on a Samsung Galaxy S4 smart phone. We

evaluate our library in terms of CPU usage time, power consumption and memory usage. We

ran tests with four different scenarios:

1. with obfuscation and without active usage of the device by the user

2. with obfuscation and with active usage of the device

3. without obfuscation and without active usage of the device

4. without obfuscation and with active usage of the device

For the power consumption, we benefit from PowerTutor developed by Zhang et al. [120]

that estimates the power consumption by different modules of an Android device as well as

the applications through the CPU. By using this application on our device, we have sampled

around 4000 measurements (over 4000 seconds) for each of the four scenarios. We have
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plotted the averaged power consumption in Figure 4.7. The average power consumption by

TinyGSN is more than doubled when the Location Privacy Library is used (∼1.25 mW and ∼3.4

mW respectively). However, when compared to the average total power consumption by all

the remaining apps on the device, this increase is negligible and not impactful on the battery

life.

(a) tinyGSN power consumption (b) tinyGSN compared to other apps

Figure 4.7 – Average power consumption of tinyGSN per second with and without Location
Privacy Library. Our Location Privacy Library introduces considerable amount of CPU-related
power consumption compared to the original tinyGSN application as shown in (a), however
further analysis reveals that the extra power consumption is negligible as tinyGSN consumes
considerably less power compared to the average power consumption of the sum of all other
applications on the device as seen in (b).

We observed the memory usage of TinyGSN with our library and observed that the library

introduces around 10 to 20MB memory usage. In Figure 4.8, we see that the allocated memory

for TinyGSN as observed in Android Studio’s debugger, reaches up to 36 MB and then drops

to 24 MB (as a result of the garbage collection system). Consequently, our library does not

introduce a big overhead in the memory usage.

Figure 4.8 – Memory usage of the tinyGSN application with Location Privacy Library.

We determined the CPU usage by using the Android Device Monitor. We sampled 50 mea-

surements for all scenarios. Figure 4.9 shows the CPU Time usage in milliseconds by TinyGSN

in all scenarios, where Data Process is the operation in the TinyGSN’s corresponding virtual
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sensor in which the data acquisition from the hardware, processing of the data (including

the obfuscation if enabled) and storing is done. We also explicitly plot the time taken by the

protection mechanism to show its effect in terms of time delay. As can be seen, TinyGSN runs

around ∼25 times longer than the usual in the case of without active device usage and around

∼10 times longer in the case of with active device usage, when the protection mechanism is

enabled. These factors are quite large, however it is important to analyze how this affects the

application’s functionality. In TinyGSN, the location acquisition service runs every 15 seconds.

Normally, this is quite frequent as the context is a sensing scenario. We take this frequency

as a baseline and regard it as a lower bound. In our experiments, the maximum real time

taken by the data process operation of tinyGSN with obfuscation is 4086.85 milliseconds. As a

result, the delay introduced by the Location Privacy Library does not hurt the application’s

main functionality. We also measured the difference between CPU time usage and real time

usage: average time difference between the real time and the CPU time it takes for tinyGSN

to process the data with obfuscation is 126.77 milliseconds. On the side note, one strange

outcome in Figure 4.9 is that the CPU time for the scenarios with active device usage is less

than the case without active device usage. We believe this is caused by the fact that in sleep

mode, the CPU switches to lower frequency modes and therefore processing gets slower.

Figure 4.9 – CPU usage of Location Privacy Library within tinyGSN with and without user
activity on the device.

4.3.3 Utility

Utility is quite application dependent and for the case of tinyGSN, we do not have access to

a sensor data we can use for utility evaluation in this work. Nevertheless, it is intuitive that

an adaptive location-privacy protection mechanism generates obfuscation areas of varying

sizes instead of setting one-size cloaks. Consequently, varying sizes mean that there will

be small obfuscation areas depending on the user’s privacy sensitivities and hence cause
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less utility loss while still providing enough protection to the user. This was experimentally

investigated in Chapter 2 [11] and shown that our adaptive approach degrades the application

utility considerably less compared to static obfuscation mechanisms that always generate

obfuscation areas of the same size.

4.4 Discussion

The work presented in this chapter is a demonstration of the applicability of an adaptive, yet

lightweight, location-privacy protection mechanism for mobile devices, without relying on an

external server for estimating the privacy level of the user. This library paves the way for further

developments in this direction and enables us to pursue the following issues arising from this

implementation. First of all, the representation of privacy sensitivities is not straightforward

and our current approach in this matter might be too abstract for many users. This aspect

of the work needs improvement and research from a human-computer interaction point of

view. Additionally, we assigned default sensitivity values to some semantic tags based on

a small-scale survey among the scientists involved in this work and it may not represent a

common sensitivity profile in the society. A research on such a sensitivity perception from

users is necessary to complement the presented work in this thesis.

Additionally, different people may have different perceptions of the semantics of some loca-

tions. This means that personalization in the semantic dimension for sensitivities is required.

In the future, we are planning to improve the sensitivity profile interface to let users add per-

sonal tags and annotate locations with them. The current implementation of our library lets

developers add a user interface that gives users a history of their obfuscated traces and related

privacy levels evaluated by the local privacy estimation module. Similar to the case of sensitiv-

ities, such a feature requires a social research for communicating the privacy implications to

the user and what the privacy levels actually mean.

Last but not least, further analysis of utility in different application types should be studied

in relation to location privacy. Depending on the utility requirements, the impact of privacy

protection on utility is expected to vary from negligible to substantial. Also, as in the case

of participatory sensing, if any additional sensor data is disclosed along with the location

traces, it can also be exploited by a potential adversary to infer user location. This dimension

of location privacy pose a challenging task and is worth to explore.

4.5 Related Work

Even though there have been numerous works on providing privacy-protection solutions for

mobile users in the context of location privacy, there are a handful of implementation attempts

for realization of these solutions. In this regard, Fawaz et al. [46] analyzed the efficacy of the

operating system-level access permission settings for location privacy. They show that the

existing designs in the OSs do not give users enough power for access control and propose the
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LP-Doctor application on Android that lets users decide per-session access control for location

information to location-aware applications. They also proposed a location-privacy protection

framework for Android OS called LP-Guardian [47] that is user mobility aware and based on

permissions. It differs from our work in the modeling of user mobility and also sensitivity

awareness. Nevertheless, their architecture should allow integrating of our library to their

framework to benefit from the functions of both approaches.

Enck et al. [44] approaches the privacy problem on mobile devices from a violation point of

view. They developed the TaintDroid application for the Android platform in order to monitor

what privacy information on the user device the applications access (with permission) and

potentially abuse it (i.e., excessive data collection). TaintDroid very extensively monitors ap-

plications’ activity by hooking into private information in the OS and follows if any requested

private information is sent to a network device. Though TaintDroid does not offer any protec-

tion mechanism against privacy threats, it helps expose privacy-unfriendly applications and

act upon that.

Finally, BlurSense [26] and SemaDroid [115] are two data-oriented frameworks developed for

mobile devices that controls access to the devices’ sensor data and (semi-)automatically allow,

block access or provide coarse-grained data to the requester applications. The frameworks’

main purpose is to enable privacy-preserving solutions to be easily integrated for various

sensor data types. Both applications require the requesting applications to adapt requesting

data through these frameworks.

4.6 Summary

We presented an Android library that hosts local privacy level estimation based on user history

and an adaptive location-privacy protection mechanism. Our library is based on a novel

approach that is aware of location semantics and user sensitivities. It takes into account a

sophisticated adversary by emulating his attack and thus estimates the users’ location privacy

continuously. The library has been integrated with the tinyGSN Android application for

participatory sensing, showing that it can be easily embedded in real-life applications. We

also evaluated this library in terms of performance, resource usage, and expected privacy in a

real-life scenario with participants of an air-pollution campaign.
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5 Privacy Implications of Location
Semantics

Many online service providers interact with their users on a multidimensional scale. Foursquare,

for instance, lets its users check-in at specific nearby venues (selected from the Foursquare

database of registered and confirmed venues, e.g., ‘Super Duper Burger’ in San Francisco),

attach pictures and messages to their check-ins and report co-location with other users. Such

location check-ins by themselves contain geographical information but also semantic infor-

mation: For instance, the aforementioned venue is located at ‘2304 Market St’ and is tagged as

‘Burger Joint’, which is a sub-category of ‘Restaurant’, which itself is a sub-category of ‘Food’ in

Foursquare categories (see Figure 5.2). Hence, the approach to location privacy from a purely

geographical perspective is not sufficient anymore. Additional dimensions of information

about the activity of users can be exploited by service providers, thus reducing the effective-

ness of existing privacy-protection mechanisms and threatening users’ privacy. First, semantic

information serves as additional location information: Knowing that a user is in a restaurant

reveals some information about her location. Second, semantic information, combined with

location information, can be exploited by learning patterns at the semantic level (e.g., people

go to cinemas after going to restaurants). Such patterns are already available to (and used

by) Foursquare, which makes next-venue recommendations to its users, e.g., “Places people

like to go after ‘Super Duper Burger’: ‘Castro Theatre (Movie Theatre, 429 Castro St)’” (see

Figure 5.2).

Figure 5.1 depicts two examples where the semantic dimension (i.e., the venue type) of a

location can be exploited to infer the actual location and where the semantics of the user’s

location is not being protected at all. In Figure 5.1a, we observe that a user who visits a cinema

discloses that she is in the depicted cloaking area and at a cinema. Because there is only one

cinema in this cloaking area, one can easily pinpoint the user. In another example, depicted in

Figure 5.1c, a user is at a hospital and wants to protect her location privacy. Unfortunately, her

cloaking area is mostly occupied by the hospital, hence even though her exact location might

not be pinpointed, the fact that she is at a hospital can be inferred with high confidence.

In this chapter, we consider the case where users disclose not only their (obfuscated) geo-

graphical locations but also the (obfuscated) types of venue they are at in the form of check-ins
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I’m at a cinema in

: cloaking area

(a) (b)

: cloaking area

I’m in   

(c)

: cloaking area

I’m in   

(d)

Figure 5.1 – Illustrative examples of the privacy threat caused by location semantics.(a) A user
reports that she is in the depicted cloaking area and also that she is at a cinema. Her location
can be easily pinpointed as there is only one cinema in the user’s reported cloaking area, and
this cinema occupies a small area compared to the cloaking area. The situation depicted in
(b) demonstrates how the issue illustrated in (a) can be reduced by enlarging the cloaking area
to include another cinema. An adversary can still narrow down the set of possible locations in
the cloaking area, but now there are two locations with the tag cinema. (c) A user at a hospital
reports a cloaking area without revealing her semantic information. As the hospital occupies
a large proportion of the cloaking area, an adversary can infer that she is at a hospital, thus
threatening the user’s semantic location privacy. The situation depicted in (d) demonstrates
how semantic location privacy can be protected better by generating large cloaking areas to
avoid domination of only one type of location in the reported cloaking areas to address the
issue illustrated in (c).

on social networks, e.g., “Restaurant, downtown San Francisco”. Being able to report such ob-

fuscated information would require to make some modifications on the service. For instance,

users could obfuscate their Foursquare check-ins and re-post an obfuscated version of them

in a textual message on another social network (e.g., Twitter). Another solution would be that

the service provider returns a list of venues to a user based on her coarse-grained location and

lets her select a coarse-grained semantic information (e.g., “Food and beverage”). We focus on

the semantic dimension of location check-ins and study its effects on location privacy, both

at the geographical and semantic levels. To the best of our knowledge, the work presented

in this chapter is the first to confront, through data-driven experimentation, semantic infor-

mation and semantic-aware location privacy protection mechanisms with a practical attack

conducted by a concrete adversary. In a nutshell, we formalize the problem and build specific

Bayesian networks to model users’ behavior on which an adversary runs its inference attacks

and we experimentally evaluate both geographical and semantic location privacy under such

an adversarial model. In our experiments, we use the semantically-annotated location traces

composed of Foursquare check-ins (collected through Twitter’s public stream) of hundreds

of users distributed across six large cities in North America and Europe. We also rely on a

predictive utility model for obfuscated Foursquare check-ins [19]. We show that disclosing

information about the type of visited locations, i.e., semantic location-information, decreases

geographical location privacy by more than 50% (see Figure 5.8). For instance, in the extreme

case where users disclose the precise type of venue they are at, their location privacy drops
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Figure 5.2 – Illustration of the information available to location-based social networks such
as Foursquare: geographical (i.e., address) and semantic (i.e., venue category) information,
semantic mobility profiles (i.e., ‘Places people like to go after. . . ’), etc. The most relevant pieces
of information are circled in red.

by 55% (from 420 m to 190 m). We also present the threat on semantic location privacy that

deteriorates quickly as the adversary gains background information on user-mobility profiles,

that are easy to build by crawling data publicly available on various social networks. To the

best of our knowledge, this is the first work that quantifies semantic location privacy and

demonstrates the effects of location semantics on location privacy.

5.1 Background and System Model

We consider mobile users equipped with smartphones that have localization capabilities and

Internet connectivity. These users move in a geographical area and make use of location-

based online services. We consider that users sporadically report their (potentially obfuscated)

locations and, in some cases, semantic information (i.e., the type, in the form of tags such

as ‘restaurant’) of their locations. In this setting, we consider an honest-but-curious service

provider that is interested in inferring, based on its observations, users’ actual geographical

locations and the semantic tags associated with them, if any. Table 5.1 lists the notations used

in this chapter. Our model is built on top of Shokri et al.’s [100]; we detail the differences in

Section 5.5.

1P : Power set.
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Table 5.1 – Table of Notations.

R Set of geographical regions
S Set of semantic tags
au(t )=(r, s) User u’s actual location at time instant t , where r ∈R and s ∈S
ou(t )=(r ′, s′) User u’s obfuscated location at time instant t , where r ′ ∈P(R)1

au Actual trace of user u
ou Obfuscated trace of user u
Rt ,R′

t The actual and obfuscated geographical location variables for time t
St ,S′

t The actual and obfuscated semantic location variables for time t
hu(r,r ′, s, s′) A PPM modeled as a probability distribution function (PDF) employed by

user u (decomposed into fu(r,r ′) and gu(s, s′))
qg , qs The PDF output by the inference attack
distG (·, ·),distS (·, ·) Geographical and semantic distance metrics used for quantifying privacy
GPu(t ),SPu(t ) User u’s geographical and semantic location privacy at time t

5.1.1 Users

Mobile users with GPS-equipped connected devices move in a given geographical area that

is partitioned into M non-overlapping geographical regions/cells R = {R1,R2, . . .RM }. Geo-

graphical regions are usually coarse-grained (typically cells associated with cell towers or

regular square tiles of a several hundreds of meters). A subset of, or all, the regions in R
contain venues annotated with semantic tags from the set {S1,S2, . . . ,SK }, i.e., a predefined

list of categories (e.g., Foursquare defines such a list, organized as a tree [3] and all registered

venues are tagged with such a category). Whenever a venue is visited by a user, it is mapped to

the geographical region from R it falls in. We denote by ⊥ the semantics of regions for the case

when a user is in a geographical region, but does not visit a particular venue with a semantic

tag, meaning that her location does not have semantic information. Hence, we define the set

S of semantic tags as the union {S1,S2, . . . ,SK }∪ {⊥} to cover all semantic cases. Moreover, we

consider discrete time instants over a limited-time period {1, . . . ,T }. Note that the notion of

venue types was introduced in the work of Shokri et al. [97].

As users move, they sporadically use online services and share their (potentially obfuscated)

locations together with the corresponding (potentially obfuscated) semantic tags. Formally,

whenever a user u visits a geographical region r at a time instant t ∈ {1, . . . ,T }, she generates

an event consisting of her actual geographical region r ∈R and a corresponding semantic tag

s ∈S . This user event at time t is denoted by au(t ) = (r, s); in other words, the actual location

of user u at time instant t is represented by the pair (r, s). We denote by au = {au(1) . . . au(T )}

the whole trace of user u.

5.1.2 Privacy Protection Mechanisms

For privacy reasons, users employ privacy-protection mechanisms (PPMs) before reporting

their location and semantic information to an online service provider2 Their privacy goal is to

2In the remainder of the chapter, we refer to the online service provider as the service provider or the adversary
for short.
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5.1. Background and System Model

prevent the adversary from inferring at what geographical location and in what type of venue

they are at. Typically, a PPM, that aims to protect the geographical location of a user, replaces

her actual location with another location (i.e., perturbs the location) or with a list of locations

(i.e., a cloak), or hides the location information completely. In this chapter, we consider such

PPMs and the PPMs that protect the semantic dimension of the location, specifically the

semantic tag of a user’s event. In particular, these PPMs generalize the semantic tag (i.e., report

a parent tag of the venue’s actual tag, w.r.t. a tag hierarchy, e.g., replace ‘Burger joint’ with

‘Restaurant’3 or ‘Food’) or hide it completely. We assume that a set of PPMs obfuscates a user’s

actual event at time t independently from her other events at other time instants. Such a

PPM model can also cover the cases where the underlying localization technique used by the

adversary returns coarse-grained and possibly bogus information about the users.

After applying PPMs on her actual geographical region r and the corresponding actual seman-

tic tag s, a user u reports her obfuscated geographical region r ′ and the obfuscated semantic

tag s′ to the service provider. r ′ (resp. s′) is typically a subset of R (resp. S). We assume that

the service provider only observes the obfuscated trace ou = {ou(t) = (r ′, s′)},∀t ∈ {1 . . .T } of

user u. We model a PPM as a probability distribution function that maps actual events to

obfuscated ones (note that in the case of generalization, the PPM is deterministic). Specifically,

we denote by functions h(r,r ′, s, s′) the probabilities to generate the obfuscated location/se-

mantic tag r ′, s′(i.e., Pr(r ′, s′|r, s)) that constitute the obfuscated event ou(t ) = (r ′, s′) given the

actual event au(t ) = (r, s). Note that the location of a user at a given time instant is obfuscated

independently from the other time instants.

Finally, we do not consider collaboration between users to protect their privacy (and prevent

loss of privacy from each other). In addition, we assume that users’ events are not anonymized.

5.1.3 Adversary

The adversary we consider in this chapter is typically a service provider or an external observer

who has access to obfuscated traces of users. He has two main purposes: (1) locate users

at specific time instants, and (2) identify the types of the locations a user visits at specific

time instants, in terms of the semantic tags associated with them. While carrying out his

attack, the adversary takes into account the relationship between geographical and semantic

dimensions of location, as explained in Section 5.2. Note that the inference process described

below also applies to other adversaries such as users’ friends and third party services on which

users’ check-ins are reposted (e.g., Twitter). However, the amount and the granularity of the

information that is available to them can be more limited.

The adversary runs his attack a posteriori, i.e., after having observed the whole obfuscated

trace ou of a user u. Even though the obfuscation of an event is done independently from the

other events of the user, the adversary assumes that a user’s actual events are correlated and

therefore models the users’ mobility/behavior. He is assumed to have access to users’ (partial)

3Note that this is strictly equivalent to reporting the sets of all tags that are sub-categories of tag ‘Restaurant’
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past events that he exploits to build a mobility profile for each user u, on both the geographical

and semantic dimensions. Essentially, a user’s mobility profile represents the user’s transition

probabilities over successive time instants, i.e., between geographical regions and between

semantic tags. Formally, such a mobility profile (under a first-order Markovian assumption) is

the set of the probability distribution functions Pr(r |ρ), Pr(s|σ) and Pr(r |s), where ρ and σ

represent the user’s previous location and semantic tag (as explained in Section 5.2).

The adversary also knows which PPMs a user u employs and with what parameter(s), i.e., the

function hu . Together with the PPMs and the mobility profile he generates, the adversary

performs his attack on a user trace given her obfuscated trace ou .

5.2 Inference and Privacy

We explain our model of inference and background knowledge of the adversary in the sub-

sequent subsection. In summary, we build two user behavior models by using Bayesian

networks [63, 88] under the assumption that people follow a bi-modal Markovian mobility

process4 (along the geographical and semantic dimensions) which we describe below. These

models take into account both the geographical and semantic dimensions of the location and

also the relationship between them. Based on these two models, we evaluate geographical

and semantic location privacy.

5.2.1 Inference and Background Knowledge

We assume that the adversary uses the following simple behavioral user model in the inference

process5: Users move based on what they plan to do next given their current context, i.e., in

this case, their locations and semantic information. We determine the following two scenarios

(illustrated in Figure 5.3):

1. The adversary knows the users’ geographical transition profile, i.e., the geographical

background, and assumes that the users move to new locations primarily based on

their current locations. The type of place they visit (i.e., semantic tags) depend only on

their current locations. For instance, a user might go to a location in downtown after

visiting another location in nearby downtown. The semantics of these locations then,

for instance, might happen to be a cinema and a restaurant.

2. The adversary knows both the users’ geographical and semantic transition profiles,

together referred to as geographical & semantic background. Unlike the first scenario, in

this case the user first determines what type of place she will go to (i.e., her next activity,

4This means that a user’s events at a given time instant only depend only on that user’s event at the immediate
past time instant.

5Note that the user traces we use in our experiments are real and are not generated from this model. Therefore,
the fact that the considered user models rely on a set of simplifying assumptions limits the performance of the
inference; as such, the experimental results presented in this chapter constitute a lower bound of the privacy
implications of semantic information.
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characterized by the semantic tag of the venue she visits next) given the semantic tag of

her current location, and then chooses the region she will go to based on the determined

next semantic tag and her current location. For instance, if a user is at a restaurant in

downtown and wants to go to a cinema, she chooses to go to a cinema that is close to

her current location (that she often visits).

For the sake of simplicity for our experimentation, from this point on, we assume that geo-

graphical and semantic information are obfuscated independently from each other, using two

functions fu and gu respectively (note that it is straightforward to include such joint PPMs in

our formalism). Joint PPMs could be used to avoid the situations where a user reports a set

of geographical locations and a semantic tag such that only some of the reported locations

contain a venue with this tag.

We elaborate more on our scenarios and their respective Bayesian networks in the following

sections.

Time

Geo. Background Geo. & Sem. Background

Figure 5.3 – The Bayesian networks representing the user models employed by the adversary.
Nodes denote random variables and edges denote probabilistic dependencies between them
(e.g., the arrow from R1 to R′

1 corresponds to the obfuscation function fu). The model on
the left-hand side prioritizes geographical transitions with only geographical background
known to the adversary. The model on the right-hand side prioritizes semantic transitions
over geographical transitions with both geographical and semantic background. Protection
mechanisms work separately on regions and semantic tags and they are independent.

Geographical-Only Background

As stated previously, the adversary has access to the users’ geographical transition profile

(built from past traces) in this scenario and carries out his attack by using (only6) this infor-

mation as background information. He can correlate the sequential events of a user by using

geographical background information, hence we build a Bayesian network in which only the

region (i.e., the geographical location) nodes are connected to each other among user events.

6The purpose of considering such a limited adversary, used as a baseline, is solely to show the inference power
of semantic background used in Section 5.2.1.
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As the adversary still wants to infer the semantic tags in the user events, semantic nodes are

also created and they are dependent on the region nodes. This ensures that the adversary

benefits from the semantic information disclosed by the users in his inference, even though

he does not have any semantic background information.

This model is illustrated in Figure 5.3 (left), where each line of nodes represent a user event

in time, both actual (Rt ,St ) and obfuscated (R′
t ,S′

t ), where Rt , St , R′
t and S′

t represent the

random variables for a user’s actual and obfuscated events at time t . The conditional proba-

bility distributions for the obfuscated events’, i.e., for R′
t and S′

t ), are the privacy-protection

mechanism distributions fu and gu , explained in Section 5.1.2. If a static privacy-protection

mechanism (PPM) is used by the users, then these functions map the actual regions and the

actual semantic tags to obfuscated regions and obfuscated semantic tags with probability 1

(i.e., for a given region, resp. a semantic tag, the PPM always generates the same obfuscation

outcome). More powerful PPMs can be employed and used in this network, e.g., hiding the

actual information completely with a given hiding probability.

The remaining conditional probabilities are those of the user’s actual semantic tag given her

actual location Pr(S|R) and the user’s next location given her current location Pr(Rt+1|Rt ).

We calculate Pr(S|R) based on the semantic tags’ associations to regions as the adversary

is assumed to have no semantic background information. Essentially, Pr(S|R) represents a

uniform distribution over all semantic tags associated with a region r , e.g., if a region has 4

semantic tags associated with it, then the probability for each of these tags to be the actual

tag given this location is 0.25. Lastly, we compute Pr(Rt+1|Rt ) by counting the number of

transitions among all regions in a user trace and then using the knowledge construction

approach from [100].

Geographical and Semantic Background

In this scenario, we consider an adversary that models user mobility-behavior in an activity-

driven fashion: A user first determines the type (i.e., the semantic tag) of her next geographical

region given the type of her current geographical region; then, she determines the next

geographical region given her current geographical region and the next semantic tag. For

example, a user decides to go to a restaurant, then she chooses which restaurant she wants to

go to. Afterwards, she decides to go to a cinema, as she usually does after going to a restaurant.

Considering her previous location, she picks the cinema that is most convenient for her. This

model is depicted in Fig. 5.3 on the right-hand side.

The conditional probability distributions for the obfuscated events (i.e., R′
t and S′

t ) are the

same as in the scenario with only the geographical background knowledge. The transitions

between user events, however, now require a semantic-transition distribution (Pr(St+1|St ))

and a geographical-transition distribution, which is also conditioned on the semantics of the

next user-event (Pr(Rt+1|Rt ,St+1)), meaning that Rt+1 depends on the user’s current semantic

tag St+1 and her previous geographical region Rt .
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The semantic transition distribution Pr(St+1|St ) is constructed in the same way the geographi-

cal transition distribution Pr(Rt+1|Rt ) is constructed. However, as we consider geographical

and semantic background information separately, the adversary is assumed not to know

the distribution Pr(Rt+1|Rt ,St+1). In short, the adversary is assumed to have knowledge

on Pr(St+1|St ), Pr(Rt+1|Rt ) and Pr(Rt |St ) to some extent regarding user history. Therefore,

he needs to use Pr(Rt |St ) and Pr(Rt+1|Rt ) to derive Pr(Rt+1|Rt ,St+1). We achieve this sim-

ply by normalizing the marginal probability distribution Pr{Rt+1|Rt } for a given semantic

tag s (i.e., over regions that have s) and by combining it with the conditional distribution

Pr(Rt |St = s). For the rest of the geographical regions, i.e., those that do not have the semantic

tag s, the probability is zero. This translates into the following formula:

Pr(Rt+1 = r |Rt = ρ,St+1 = s) = (5.1)⎧⎪⎪⎨
⎪⎪⎩

0 if s ∉ r

α · Pr(Rt+1 = r |Rt = ρ)∑
Rm s.t. s∈Rm

Pr(Rt+1 = Rm |Rt = ρ)
+ (1−α) ·Pr(Rt+1 = r |St+1 = s) otherwise

,

where Rm denotes the set of regions that contain at least one venue with tag s and α is a factor

to set the weight of geographical transitions against the probability that Rt+1 is r given St+1 = s

(which is derived from the number of visits to a region r given the semantic tag s in the user

history). In other words, α is used to control how much importance is distributed among

different types of user history, i.e., geographical transitions and steady user events. In our

experiments, we set α to 0.5, which we believe is a balanced treatment of user history.7 Note

that considering geographical and semantic background information separately enables the

adversary to exploit the semantic mobility of a user’s behavior data in one city to infer user

events in another city, where he might lack the knowledge.

Note that the aforementioned models might not reflect the users’ actual behaviors. However,

such models (in particular the Markovian mobility assumption) are widely used in practice

(and considered in the literature) as they enable the adversary to develop efficient algorithmic

and computational methods to infer the users’ locations. The accuracy of the inference attack

carried out by the adversary partially depends on how well the user model fits the users’ actual

behaviors.

5.2.2 Privacy Measurement

Due to different privacy concerns in both geographical and semantic dimensions of location,
we measure the privacy level in both dimensions separately. Privacy levels in both dimensions
are measured as a function of the expected error of the adversary. The inference based on
our Bayesian networks yields probability distributions over regions and semantics that fit this
measurement approach. In other words, the output of the inference algorithm is a probability
distribution function (PDF) for each node in a given Bayesian network, i.e., the PDF qg over all

7We ran test experiments with different values of α; we observed only small variations (∼ 5%) of the median
error, with better results for large values of α (> 0.5).
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regions at every time instant for user location and the PDF qs over all semantic tags at every
time instant for user semantic tag. The geographical and semantic privacy levels of a user u at
time instant t , denoted by GPu(t ) and SPu(t ), are computed as follows:

GPu(t ) =
M∑

m=1
qg (Rm , t ) ·distG (Rm ,r ), (5.2)

SPu(t ) =
K∑

k=1
qs (Sk , t ) ·distS (Sk , s), (5.3)

where distG (·, ·) and distS(·, ·) are geographical and semantic distance functions, and (r, s) is

the actual event of user u at time instant t .

We use the Euclidean distance (in the projected coordinate system, i.e., Universal Transverse

Mercator or UTM)8 to compute the geographical distances between two regions by using the

projected coordinates of their respective center points. We use the distance metric d(·) from

graph-theory (i.e., the length of the shortest path between two nodes) on the category tree

to compute the semantic distance between two tags, meaning that if two semantic tags are

equal, then the distance is 0, if they have the same parent tag (e.g., ‘American restaurant’ and

‘Burger joint’ are both children categories of the ‘Restaurant’ category), the distance is 2, etc.

We normalize the semantic distance between two tags by the sum of the tags’ depths (i.e., the

distance to the root).

distS(s, s′) = d(s, s′)
d(‘venue’, s)+d(‘venue’, s′)

(5.4)

This distance function takes into account the fact that, as one goes deeper in the tree, the graph-

distance denotes a less significant semantic difference. For instance, “Italian Restaurants” and

“American Restaurants” are not so different but “Food” and “Travel place” are.

5.3 Evaluation

We experimentally evaluate privacy on a real dataset of user traces composed of location

check-ins that contain not only geographical location data but also semantic information in

most cases (see Section 5.3.1). In our experiments, we study the effects of location semantics

on the geographical location privacy by comparing the privacy of users under a semantic-

oblivious and a semantic-aware inference attack, in various configurations and with different

PPM settings.

5.3.1 Dataset

In order to experimentally evaluate users’ semantic location privacy and the effect of semantic

information on users’ location privacy, we rely on a dataset of real user check-ins, which

include geographical and semantic information about the venues visited by the users of a large

8Note that we did not take elevation into account in the computation of the geographical distance.
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location-based social network. In addition, we rely on a predictive utility model based on user

feedback collected through a personalized online survey targeted at Foursquare users (N = 77)

recruited via the Amazon Mechanical Turk platform. This dataset was collected by the authors

of [19] and made available online at https://homepages.laas.fr/khugueni/drupal/datasets. In

this section, we give details about our data sources, including the data collection, filtering and

processing methodology and general descriptive statistics about the data.

Location Traces with Semantics

Because we could not find large datasets of user check-ins with semantic information, we built

our own dataset by running a data collection campaign through crawling. As a starting point,

we use a tweet dataset we collected between January 2015 and July 2015 through Twitter’s

public stream. The dataset contains public geo-tagged tweets (i.e., Twitter lets users to attach

their GPS coordinates to their tweets); we focused on six large cities: Boston (MA, USA),

Chicago (IL, USA), Istanbul (Turkey), London (UK), New York (NY, USA) and San Francisco (CA,

USA). We collected these tweets by identifying users through Twitter’s public stream (i.e., ∼1%

of the Twitter public timeline) and by fetching timelines of these users. A summary of the

statistics of the dataset is provided in Table 5.2: We collected location check-in traces of a total

of 1065 users. As we collected only public data and we neither interacted with the user nor

inferred information not present in the dataset, IRB approval was not required.

Table 5.2 – Filtered Dataset Statistics

City Users Tweets Check-ins
Boston 79 6,687 5,276
Chicago 136 14,248 11,755
Istanbul 196 22,203 17,005
London 239 18,685 15,018
New York 242 21,249 14,240
San Francisco 173 16,739 13,650

The coordinates embedded in the geo-tagged tweets, however, do not contain semantic infor-

mation (which we need for our evaluation). To obtain such information, we rely on Foursquare.

Foursquare offers its users the option of linking their Foursquare accounts with their Twitter

accounts in such a way that, whenever a user checks-in, Foursquare generates an automatic

text message with a short URL to the Foursquare check-in and tweets it, along with the GPS

Table 5.3 – Experimental Setup

Number of iterations 10
Size of each area 2.4×1.6 km

(12×8 cells)
Average Proportion of Foursquare tweets per user (i.e., tweets w/ seman-
tic information)

77%
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Figure 5.4 – Foursquare venue and check-in heat maps (i.e., count distribution) in six cities
from the raw dataset.

coordinates, on the user’s Twitter timeline. We select such Foursquare-generated tweets from

our Twitter dataset and, for each, we parse the URL to the Foursquare check-in from the tweet

text. Using these URLs, we fetch (through the Foursquare API) the corresponding check-in and

the venue. For each venue referenced in a check-in of our dataset, we collect rich statistical

information such as total number of visits, total unique visitors, rating, etc. Most importantly,

we collect the coordinates9 and the semantic tag(s) (a primary tag and possibly a secondary

tag), selected from a pre-defined set of 763 tags (i.e., referred to as Foursquare categories)

organized as a tree (see Figure 5.5 for a snapshot of the tree), assigned to the venue. We used

Foursquare’s definition and implementation of location semantics as is. The results of our

evaluation are dependent of the underlying semantic model; investigating alternative defini-

tions of location semantics and other categorizations (e.g., from Facebook) is an interesting

lead for future work. Because it uses semantic tags (organized as a tree) and because its main

feature is to let users check-in at venues, Foursquare constitutes a perfect data source for our

evaluation. Note that, unlike in works such as Krumm’s [69] in which semantic information

is inferred from the users’ location traces, we use only ground-truth semantic data extracted

from the users’ check-ins. We show the venue density and the Foursquare tweet density in the

considered cities in Figure 5.4, which shows a Foursquare venue heat map and a Foursquare

check-in heat map.

In our evaluation, we focus (due to computational limitations) on the tweets and check-ins

in small geographical areas of size approximately 2.4×1.6 km around the cities of Boston,

Chicago, Istanbul, London, New York and San Francisco. We define one such area around

each of the six cities, and we divide each of them into 96 cells by using a regular grid of 12×8

cells (each of size 200×200 m). We determine the most dense such areas and extract users

with at least 40 tweets in each region. We further filter out users whose Foursquare tweets

(i.e., check-ins) account for less than 50% of all their tweets (i.e., most of the tweets used in the

experiments contain venue information). The final dataset contains a total of 1065 users (57%

9Note that GPS coordinates in the tweets might slightly differ from registered venue coordinates at Foursquare.
In such cases, we use the coordinates of the venues from Foursquare.
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Figure 5.5 – Partial view of the Foursquare category hierarchy that we use as our semantic tag
tree in our evaluation. The ‘Venue’ tag is the root of the category tree.

Figure 5.6 – Number of Foursquare check-ins/tweets and the total number of tweets per user
(in decreasing order) in the filtered dataset used in our experiments (log-scale on the y-axis).

male, 41% female, 2% unknown); see Table 5.2 for detailed statistics and Figure 5.6 for users’

count of Foursquare and total tweets. We included all the tweets of a user in the knowledge

construction of the adversary and for each user we use a randomly selected sub-trace of length

5 in each experiment. There are 10,970 venues in our filtered dataset and the tag distribution

over these venues is shown in Figure 5.7.

Dissemination of the dataset Although the terms and conditions of Twitter10 and Foursquare11

prevent us from making the dataset directly available for download as we need to make sure

that the requesting party agrees to comply with these terms, we will be happy to provide our

dataset (and the script used for collecting the data) to other researchers upon request.

The dataset contains all the considered check-ins, each of which is characterized by a times-

tamp, a user id, a geographical location (as reported in the tweet), a geographical location (as

10https://dev.twitter.com/overview/terms/agreement-and-policy
11https://developer.foursquare.com/overview/venues
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Figure 5.7 – Number of venues per semantic tag in the filtered dataset for the top 40 common
tags (log-scale on the x-axis).

reported in the Foursquare venue information), and the Foursquare venue type in the form

of a tag, and will be made available in the csv file format. It will also contain a snapshot of

Foursquare category tree at the time of data collection.

Predictive Utility Model

Semantic obfuscation, usually achieved through generalization as discussed in the previous

sections, is likely to have a negative effect on the utility of the service as perceived by the users.

As the notion of (perceived) utility is quite subjective, user feedback is needed to model and

quantify the utility implications of the use of obfuscation techniques. In order to build such

a model, we rely on a dataset collected and made available by the authors of [19]. The fact

that the survey focuses on Foursquare check-ins makes it perfectly adequate for our dataset

and hence for our evaluation. In this work, the authors performed a personalized survey with

77 active Foursquare users recruited through Amazon Mechanical Turk. In the survey, each

participant was shown 45 of her own past Foursquare check-ins; for each of these check-ins,

the participant was presented with four different obfuscated versions of the check-in and she

was requested to rate, on a scale from 1 to 5 (where 1 is “not at all” and 5 is “perfectly”), to

what extent the purpose of her check-in would still be met if the precise venue location was

replaced with the obfuscated version of it. The four obfuscated versions of the check-in were
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Table 5.4 – Example of obfuscated check-ins with different combinations of geographical and
semantic obfuscation (source: [19]).

Obfuscation levels Example
Original check-in The Westin Hotel, 320 N Dearborn St. (Chicago 60654, IL, United States)
Low semantic, Low geographical (Ls-Lg) At a hotel, on Dearborn St. (Chicago 60654, IL, United States)
High semantic, Low geographical (Hs-Lg) At a travel & transport place, on Dearborn St. (Chicago 60654, IL, United States)
Low semantic, High geographical (Ls-Hg) At a hotel, in Chicago (IL, United States)
High semantic, High geographical (Hs-Hg) At a travel & transport place, in Chicago (IL, United States)

generated by applying the possible combinations of low/high semantic obfuscation (Ls or Hs)

and low/high geographical obfuscation (Lg or Hg) as illustrated in Table 5.4 (extracted from

the original article). One finding from the article is that semantic obfuscation has a higher

negative effect on utility than geographical obfuscation does.

Using this data, to predict the utility of an obfuscated version of a check-in (on a discrete

scale from 1 to 5), the authors propose a utility model that relies on a number of features

extracted from the users’ check-in, including the check-in location, date, time, text, and the

venue type. The predictive model proposed in the original paper achieves high accuracy with

a median error of around 0.5. In order to quantify utility, we build a simplified version of the

predictive utility model proposed in [19] (based on the same data). Our model is based on

only two different features: the venue type and the obfuscation level. The median error of our

simplified model is 1.1, which is sufficient for our purpose (i.e., exploring the privacy-utility

trade-off).

5.3.2 Experimental Setup

Methodology: We partitioned each of the six considered areas (one for each city considered

in the dataset) into 96 cells, each identified by an ID, using an 12×8 regular square grid. We

then mapped the locations in the users’ traces to the corresponding region IDs, and we kept

the semantic tag. We implemented our Bayesian network-based models in Python by using

the Bayesian Belief Networks library provided by eBay [2]. We applied certain protection

approaches (listed below) on the users’ traces, obtaining protected/observed traces that our

Bayesian networks use as observations, and applied the junction-tree inference algorithm [62]

which achieves optimal inference. The output of the inference algorithm is a probability

distribution function for each unknown (inferred) variable, which we use in our privacy

metrics (see Equations (5.2) and (5.3)).

Background Knowledge: In our experiments, the adversary always has geographical back-

ground knowledge on the users’ history (i.e., transitions). Based on this we have two different

scenarios (explained in detail in Section 5.2.1):

1. Geographical Background: In this scenario, the adversary is assumed to have knowl-

edge on geographical transition patterns of users and no semantic background informa-

tion. We run experiments for this scenario by using our first Bayesian network model
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that prioritizes the geographical transitions for user behavior introduced in Section 5.2.1.

The transition probabilities are estimated from the number of geographical transitions

in the whole traces of users.

2. Geographical and Semantic Background: The adversary is assumed to have more

knowledge about users’ histories: transitions in both geographical and semantic dimen-

sions. He also knows the distribution of geographical region visits, given the semantic

information on user traces, i.e., how many times a region r was visited, given that the

user event’s semantic tag was s. This type of background information enables us to

use our second Bayesian network model that prioritizes the semantic transitions for

event sequences, meaning that the users move by first choosing the semantic tag of the

location they want to go to and then determine a geographical region associated with

this semantic tag based on their previous location.

In many cases, such information can be obtained by the service provider. In cases where only

little background information about individual users is available, the service provider can

aggregate data across users with similar profiles.

Protection Mechanisms: We implement geographical and semantic location privacy protec-

tion approaches separately, meaning that geographical protection does not take into account

the semantic information of the user’s actual location, and vice versa. As mentioned above,

joint protection mechanisms could be used for improved performance; we leave the design of

such mechanisms to future work.

We implement a geographical location-privacy protection mechanism as an obfuscation

mechanism that either generates an obfuscation area of a certain size or hides the geographical

location completely with a predetermined probability (called the hiding probability λ). This

mechanism replaces any given region (i.e., the actual location of a user) with a larger, square

area in our map. For instance, a 2×2 obfuscation: (i) with probability 1−λ, generates an

obfuscation area consisting of 4 adjacent regions/cells, one being the actual location of the

user, or (ii) with probability λ, hides the location.

We consider the following four scenarios regarding the semantic protection and, to compare

their effects, employ each of them in separate experiments:

1. No protection. In this case, we directly disclose the actual semantic tag all the time.

From a privacy perspective, this constitutes a worst-case scenario.

2. Parent-tag obfuscation. This is a generalization based on the semantic tag tree derived

from Foursquare’s category hierarchy. In this case, given the actual semantic tag of

the user, we determine its parent tag in the tree and disclose this tag as the semantic

information of the user’s current location. It has been shown, for Foursquare check-ins,

that reporting the parent tag of a venue is often sufficient to meet the purpose of the

original check-in [19].
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3. Parent-tag obfuscation with hiding. In this case, we disclose the parent tag of the user’s

location with probability 1−λ or hide the semantic information completely with hiding

probability λ.

4. Complete hiding of semantic tags [baseline]. In this case, we never disclose semantic

tags. This corresponds to a pure geographical approach (as taken in previous works); as

such it constitutes our baseline.

In our experiments, we employ the geographical protection mechanism in combination with

each of the aforementioned semantic protection scenarios with varying hiding probabilities.

5.3.3 Experimental Results

In this section, we analyze the experimental results with different protection mechanisms in

various settings.

Effect of Semantic Information on Location Privacy

We first analyze the effect of adding semantic information to a user’s check-in on her geo-

graphical location privacy. We consider four protection scenarios with low to high granularity

of semantic information combined with fixed geographical obfuscation over gradual hiding

probability λ. Specifically, given a geographical obfuscation parameter (e.g., 2×2 obfuscation),

for each λ we evaluate four different semantic protection approaches (explained in Section

5.3.2) that are employed together with the obfuscation mechanism.

We present the results in Figure 5.8, where the x-axis represents the hiding probability λ

(used for geographical obfuscation and parent-tag semantic generalization) and the y-axis

represents the geographical location privacy in kilometers (i.e., the distance between a user’s

actual discretized location and that inferred by the adversary, as described in Equation (5.2)).

A privacy of a few hundreds of meters (typically a city-block) provides a reasonable protection

against precise localization/tracking and limits the possibility to infer the exact place a user

visits or her exact address. We plot the geographical location privacy aggregated over all

users, all events and all iterations of simulations for each protection mechanism and hiding

probability (λ) pair using box plots. These box plots show the 1st, 2nd, 3rd quartiles of the

data and the 98% confidence intervals.

We consider four scenarios (geographical obfuscation and semantic generalization) and plot

the corresponding results, e.g., “Geo. (obf 2×2, λ) | Sem. (parent, λ)” means that (1) geo-

graphical locations are hidden with probability λ and obfuscated by reporting 2×2 cloaking

areas otherwise, and (2) semantic tags are hidden with probability λ and generalized by re-

porting the parent tag otherwise; the darker a box-plot is, the higher the amount of disclosed

information is. In our experiments, we employed both 2×2 and 4×4 cloaking.

We observe that as we disclose more semantic information, along with the obfuscated geo-
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Hiding Probability (¸)
Geo. (obf 2x2, ¸) | Sem. (?, 1)
Geo. (obf 2x2, ¸) | Sem. (parent, ¸)
Geo. (obf 2x2, ¸) | Sem. (parent, 0)
Geo. (obf 2x2, ¸) | Sem. (actual, 0)

(a) 2×2 Obfuscation w/o Sem. Background

Hiding Probability (¸)

(b) 4×4 Obfuscation w/o Sem. Background

Hiding Probability (¸)

(c) 4×4 Obfuscation w/ Sem. Background

Figure 5.8 – Geographical location privacy over different protection and learning scenarios.

graphical location (from left to right for each λ value), the median location privacy consistently

decreases in all cases. For instance, it can be observed in Figure 5.8c (λ= 1), that disclosing the

actual semantic tag decreases the median location privacy by 55% (from 420 m to 190 m) and

disclosing the parent tag decreases it by 43%. Also, unsurprisingly, the privacy level increases

as we increase the granularity of the location (i.e., from 2×2 obfuscation in Figure 5.8a to 4×4

obfuscation in Figure 5.8b). Note that for λ= 1.0, the parent-tag generalization with hiding

probability λ is exactly the same as hiding the semantic information completely and, similarly,

it is exactly the same as the direct parent-tag generalization (i.e., always disclosing the parent

tag instead of the actual tag) for λ= 0.0. These can be observed in Figure 5.8.

We also analyze the effect of employing semantic background information (i.e., the histories of

users’ transitions between semantic tags) in the inference process, in addition to the geograph-

ical background information that is already employed in all our experiments. We compare

the two scenarios where 4× 4 geographical obfuscation with hiding probability λ is used
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Hiding Probability (¸)

Geo. (obf 4x4, ¸) | Sem. (?, 1)
Geo. (obf 4x4, ¸) | Sem. (parent, ¸)
Geo. (obf 4x4, ¸) | Sem. (parent, 0)
Geo. (obf 4x4, ¸) | Sem. (actual, 0)

Figure 5.9 – Difference of geographical location-privacy levels between the cases with semantic
background and without semantic background with 4×4 geographical obfuscation and varying
λ. When users disclose some semantic information, the performance of the inference increase
when using semantic background information about users. Interestingly, hiding the semantic
tag of the user event results in the adversary being less successful when he uses the semantic
background information.

(i.e., Figures 5.8b and 5.8c, with and without semantic background information respectively).

We observe that, for instance in the case of λ= 0.4, the median geographical privacy decreases

when the adversary employs the semantic background information of users. This pattern

is visible for most of the cases from without semantic background to with semantic back-

ground. It can also be observed that the semantic background information is very influential

on geographical location privacy in the cases of direct parent-tag generalization and semantic

disclosure (i.e., the two darkest boxes). We notice that, in some cases (typically for the light

case where the semantic information is hidden all the time), the adversary is more confused

(and hence less successful) when he employs semantic background knowledge. The main

reason for this outcome is that the adversary’s knowledge on the semantic transitions of the

user is less effective in his attack when the attacked traces’ length is short. In general, we

observe that employing semantic background knowledge in the inference helps the adversary

increase his median accuracy by 10 to 115 meters when the users disclose some semantic

information in their traces. This is clear in Figure 5.9, that shows the difference between

Figures 5.8b and 5.8c (i.e., the information gain of the adversary between the two scenarios).

The reason why the adversary gains more information in the case of parent-tag obfuscation

compared to no semantic protection is that when users disclose their semantic tags, their

privacy level is already lower; hence the potential information gain of the adversary in with

semantic background scenario is naturally lower.

Figure 5.10 depicts the average geographical location privacy in each of the six considered

cities (with and without semantic background, aggregated over all values of λ and over the two
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Figure 5.10 – Average geographical location privacy over all users in each considered city.

sizes of the cloaking area). It can be observed that it is quite comparable among cities: Despite

the difference in terms of culture and urban planning, we did not observe major differences

across cities in terms of user privacy in the presence of semantic information. It can also be

observed that semantic background information improves the performance of the inference,

thus decreasing users’ geographical location privacy. Note that our experiments include some

randomness and as a result, in some situations (e.g., New York) the background information

slightly misleads the adversary.

Privacy vs. Utility Trade-Off

We now explore the trade-off between privacy and utility by evaluating both location privacy

and utility for different levels of obfuscation. To comply with the experimental setup of [19], we

consider four protection mechanisms by combining a low or high level of semantic obfuscation

with a low or high level of geographical obfuscation as described in Table 5.5 and illustrated in

Figure 5.11. We set the hiding probability λ to 0.2.

Table 5.5 – Description of the different obfuscation levels.

Obfuscation Description
Ls-Lg Semantic tag, 2×2 geographical region
Hs-Lg Parent semantic tag, 2×2 geographical region
Ls-Hg Semantic tag, 4×4 geographical region
Hs-Hg Parent semantic tag, 4×4 geographical region

We plot the results in Figure 5.12. The points represent the average privacy and utility. It

can be observed that the four points corresponding to the different obfuscation levels form
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×

travel & transport place −→ hotel

Figure 5.11 – Illustration of the obfuscation levels used in the experiments. Light blue frames
denote low levels of obfuscations whereas dark blue frames denote high levels of obfuscation.

a diamond shape: Ls-Lg provides the highest level of utility and the lowest level of privacy;

Hs-Hg provides the highest level of privacy but the lowest level of utility; Ls-Hg provides a

better level of (location) privacy than Hs-Lg and a lower level of utility. This last observation is

quite intuitive as geographical obfuscation is expected to protect location privacy better than

semantic obfuscation and semantic obfuscation has been proved to be more detrimental to

utility than geographical obfuscation has been [19]. This means that, as far as geographical

location privacy is concerned, users should always prefer Ls-Hg over Hs-Lg. As for semantic

location privacy (which we analyze in detail in the next sub-section), it can be observed

that geographical obfuscation is quite beneficial as the use of high geographical obfuscation

substantially increases the users’ semantic location privacy at a cost of a small decrease in

utility. In the case where low semantic obfuscation is used, the semantic location privacy is

zero as the users reveal the actual semantic tags of their locations.

Figure 5.12 – Privacy vs. Utility in four different scenarios (Ls-Lg, Hs-Lg, Ls-Hg, Hs-Hg, for
λ= 0.2).
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Semantic Location Privacy

In this section, we evaluate the semantic location privacy and present the loss of privacy in

the semantic dimension of location. As in the figures depicting geographical location privacy,

we plot the aggregated privacy-level over all users, all simulation iterations and all user events

using box plots. The semantic location privacy is calculated as the expected error of the

adversary.

Hiding Probability (¸)

Geo. (obf 4x4, ¸) | Sem. (?, 1)
Geo. (obf 4x4, ¸) | Sem. (parent, ¸)
Geo. (obf 4x4, ¸) | Sem. (parent, 0)
Geo. (obf 4x4, ¸) | Sem. (actual, 0)

(a) 4×4 Obfuscation w/o Sem. Background

Hiding Probability (¸)

(b) 4×4 Obfuscation w/ Sem. Background

Figure 5.13 – Semantic location privacy levels over different protection scenarios with geo-
graphical and semantic background knowledge of the adversary.

In Figure 5.13, we present the semantic location-privacy results for 4×4 obfuscation with hiding

probability λ in both ‘Geographical background’ and ‘Geographical & Semantic Background’

scenarios. In both cases (shown separately in figures 5.13a and 5.13b), as we protect the

semantic information in the users’ traces less and less (from the lightest boxes to the darkest

ones), the semantic location privacy consistently decreases. We also observe that protecting

the geographical location privacy more, i.e., increasing the hiding probability λ, also helps

increase the semantic location privacy in most of the cases. Whereas, semantic location privacy

is naturally always 0 in the case of disclosing semantic information all the time. Moreover,

unsurprisingly, when the adversary has semantic background information in addition to the

geographical one, he learns more about the users’ location semantics in his inference, i.e., the

semantic location privacy decreases. However, compared to the geographical dimension, this

decrease in the semantic location privacy is more substantial as can be seen in Figures 5.13a

and 5.13b: Even if the semantic tags of the user events are hidden all the time, the privacy loss

is between 30-50%. The loss reaches up to 80% in other protection scenarios.

Lastly, we present the geographical and semantic location privacy jointly in Figures 5.14a

and 5.14b, without and with semantic background information, respectively. These plots

represent the density of the privacy levels over both the geographical vs. semantic location

privacy (on the [0,1]× [0,1] planes depicted in Figure 5.14). The darker the plot gets, the

more data points there are in the corresponding geographical and semantic intersections.
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We exclude the scenario where the semantic tag of the events is always disclosed, because

semantic location privacy is always 0 in this scenario, hence it does not contribute to these

plots. These figures present the change in the relationship between the geographical and

semantic location privacy. The obvious change occurs in the semantic dimension, though the

change in the geographical location privacy is non-negligible as well. It can be observed, for

instance, that users are somewhat clustered with respect to semantic location privacy. This

corresponds to differences between cities in terms of venue distribution and diversity.

(a) Geo. Background (b) Geo. & Sem. Background

Figure 5.14 – Geographical location privacy vs. semantic location privacy. Note that we
excluded the case of ‘Sem. (actual, 0)’ as it provides no semantic privacy.

Analysis of the Effect of α

Finally, we present the results of our analysis of the effect of parameter α (used in the transition

probabilities of the Bayesian model, see Equation (5.1)), in the case where the adversary

has access to both geographical and semantic background information. In Figure 5.15, we

plot the geographical location privacy obtained for different values of α (with mixed hiding

probabilities). We observe that with increasing α (i.e., prioritizing geographical information

over semantic information), users obtain higher location privacy (i.e., the adversary is less

successful) when they disclose the semantic tag. However, in the cases of hiding the semantic

tags and parent-tag cloaking with hiding, the α value has less effect. This shows that an actual

adversary could and should tune the model used in the attack, based on his observations, in

order to improve the performance of the inference.
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®

Geo. (obf 4x4, ¸) | Sem. (?, 1)
Geo. (obf 4x4, ¸) | Sem. (parent, ¸)
Geo. (obf 4x4, ¸) | Sem. (parent, 0)
Geo. (obf 4x4, ¸) | Sem. (actual, 0)

Figure 5.15 – Effect of parameter α on the users’ geographical location privacy.

5.4 Discussion

In this chapter, we presented a semantic-aware location inference scheme, which we tested

against several simple privacy-protection mechanisms (PPM), to prove that the threat on

location privacy is more acute when the semantic dimension of location is taken into account.

However, this is just a first step towards developing smarter PPMs, which take into account

the semantic dimension of location privacy (together with the geographical dimension). The

results we demonstrated in this chapter serve an important purpose: Understanding how to

develop joint PPMs that protect geographical and semantic location privacy together and by

taking into account user history and profiles. Our work in this chapter enables evaluation of

such PPMs by paving the way for testing and adapting them w.r.t. the success of the adversary

in an adaptive manner as well as optimizing jointly privacy and utility. As part of future work,

we plan to use this framework to develop smarter PPMs. For instance, we intend to consider

PPMs such as “If the cloaking area contains only one Burger joint opened at the considered

time instant, either increase the size of the cloaking area or use the parent semantic tag,

depending on which option brings the lowest utility loss”.

A first limitation of this work is the fact that the adversary we considered uses a basic user

behavioral model. As such, the results we present constitute a lower bound on the privacy loss:

The adversary can actually strengthen his attack by increasing the complexity of the model he

uses. For instance, he could exploit the temporal properties of locations and semantics: Users

tend to have periodic routines (e.g., daily/weekly), such as staying home at night, going to

work or school during the day and having lunch around noon, and venues have characteristic

opening hours. By taking into account the time dimension, we could show that the threat is

actually greater than what we demonstrate. Furthermore, the information we considered is

in fact a subset of what a typical adversary (i.e., a service provider) can collect. The fact that
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the adversary has access to geographic and semantic profiles (i.e., background information)

may be considered as rather strong. However, such knowledge can be built not only from

obfuscated traces, but also by aggregating the data of several similar users, thus building more

generic models (as done by Foursquare for next place recommendations).

A second limitation of this work is the size and the nature of the dataset: We considered “only”

1065 users (whom we have only little demographic information about) in six cities, who linked

their Foursquare and Twitter accounts and made the tweets generated by Foursquare public.

Such a sampling method could introduce a bias in the experimental results.

5.5 Related Work

A large amount of work has been devoted to quantifying location privacy, in particular when

extra information (i.e., different from location information e.g., co-locations and location

semantics) is available to the adversary. [68] is one of the first papers to identify and study

inference attacks on location traces. Another notable example, on which our work is partially

built, is presented in [99, 100]. In these papers, the authors propose a formal framework to

quantify users’ location privacy when some (obfuscated) location information is available to

the adversary. Their proposed framework relies on hidden Markov models for the location

inference process and uses the expected error of the adversary as a metric for location privacy.

The work presented in this paper enriches this framework by incorporating the rich semantic

information increasingly disclosed by users on social networks. Note that Shokri’s framework

can be used as is to include semantic information by defining a location as a couple (geograph-

ical location, semantic location). This however, makes existing techniques for background

construction inefficient due to the sparsity of the transition data (although many transitions

go from one geographical region to another, the number of transitions from a couple (region,

semantic tag) to another is significantly reduced). Also, recent work have shown that moving

from Hidden Markov Models to Bayesian networks enables the adversary to take into account

more complex information such as co-location [87]. The main differences between our work

and Shokri et al.’s are (1) the use of general Bayesian networks to model users’ behavior and

(2) a two-step background construction (i.e., first semantic, then geographical) to deal with

sparse data. Similarly, but orthogonal, to our work, in [87], the authors study the effect of

co-location information (e.g., Alice and Bob are at the same (unknown) location at 2pm) on

users’ location privacy.

On the front of location semantics, several works study the semantic dimension of location

information (some of them in the context of privacy). Several works, including [69], [75], [70]

and [72], address the problem of identifying the points-of-interest (POIs) users visit, based on

location traces. Unlike our work, these works do not consider semantic information reported

by the users. Hence, obfuscating semantic information is not directly possible. Barak et al.

propose an anonymization technique based on semantic cloaking, that is, replacing actual

coordinates by personal semantic labels such as ‘home’ (by opposition to the universal labels

we considered, such as ‘restaurant’) [14]. Rossi et al. [93] benefits from semantic information
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in user check-ins in Foursquare to infer user identities based on anonymized user visits and

prior information. Some works extend existing location privacy metrics and definitions to

take semantics into account. For instance, in [70], the authors propose a location-cloaking

technique that ensures that the reported regions have a high semantic diversity in terms

of the number of distinct venue types in the area. In [34], the authors propose the PROBE

framework for implementing efficient, semantic-aware and personalized location cloaking.

The concept of semantic diversity was originally formalized as l-diversity in [77] followed

by related models including p-sensitivity [112], location diversity [116] and t-closeness [71].

Again, these works focus mostly on providing formal semantic location privacy guarantees

by obfuscating location information, whereas our work considers both geographical and

semantic information and investigates the privacy implications on both dimensions, based on

statistical inference. Similarly, in [28], the authors extend the concept of geo-distinguishability,

which applies differential privacy to location privacy [12], to take into account the semantic

diversity of the reported locations. Differential privacy-based frameworks and inference-based

frameworks are fundamentally different in their approach to privacy quantification. In [81],

the authors propose the notion of C -safety, which not only takes into account semantics

but also the sensitivity (in terms of privacy) of the different venue types. Using a taxonomy

of venue types, the authors propose an efficient semantic-aware obfuscation mechanism.

Our work distinguishes itself from existing works as it incorporates semantic information in

the inference process to better recover the users’ locations, thus demonstrating the sensitive

nature and the associated privacy risks of semantic information.

Finally, complementary to our approach, in [19], the authors study the implications of ge-

ographical and semantic obfuscation (through generalization) of users’ check-ins on their

perceived utility; in the evaluation of our work, we make use of the predictive model proposed

in this paper.

5.6 Summary

In this chapter, we have investigated the effects of location semantics on geographical location

privacy of mobile users. We have considered two essential scenarios, specifically the case

when an adversary, without knowing the semantic mobility patterns of the users, exploits

the publicly available semantic information on locations, and secondly the case when the

adversary knows the semantic mobility patterns of the users, in addition to knowing the

location semantics. We have modeled the adversary that is aware of location semantics by

using Bayesian networks and demonstrated that disclosing any level of semantic information

on the visited locations improves his success.

In summary, both the geographical and semantic location privacy are at greater risk than

revealed before, due to the multidimensional nature of location data. When designing privacy-

protection mechanisms, our aim must be to protect location privacy on a multidimensional

scale, i.e., considering the types of locations.
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6 Time-Aware Inference and Sensitive
Protection

In the previous chapter, we demonstrated that an adversary can increase his success in

obtaining a user’s true location if the user discloses some level of semantic information about

her location online. This is due to the regularity in people’s lives, not only geographically but

also semantically. Moreover, people tend to do similar things at regular schedules (e.g., they

work during weekdays, have lunch around noon, etc.), which is not taken into account in the

aforementioned adversary model.

In this chapter, we develop and present an extended Bayesian model that considers a user’s

daily habits as compared to a time-oblivious manner that was studied in the previous chapter.

Specifically, we analyze our real dataset of geo-tagged tweets that include Foursquare check-

ins from the previous chapter and show that the semantics of visited locations exhibit a time

dependency. We exploit this aspect in order to study a more complex adversary. The results

of our experiments show that exploiting time-dependency indeed helps an adversary gain

more information, especially when the semantics are not disclosed at all, compared to a

time-oblivious adversary.

Furthermore, inspired by the results from Part I of this thesis, we implement a sensitivity-

aware and obfuscation-based protection mechanism and evaluate it in comparison to a static

obfuscation mechanism with fixed size parameters. We refer to this protection mechanism

simply as sensitive protection for the sake of brevity. We use the user’s background information

while determining the final sensitivity in a probabilistic manner and iteratively increase the

obfuscation size if necessary by taking into account the granularity of the disclosed semantic

information (e.g., disclosed, generalized, hidden). Note that, however, we do not implement

a linkability graph in this scenario as we focus on sporadic event disclosure in this part of

the thesis. Our evaluation reveals that a sensitivity and semantic aware approach to privacy

protection provides a more preferable experience by keeping up with the desired geographical

location-privacy levels of users while not overprotecting.
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Chapter 6. Time-Aware Inference and Sensitive Protection

6.1 Preliminaries

As in the previous chapter, we consider users who use mobile devices to sporadically report

their locations, sometimes annotated with a semantic tag. This is the typical behavior in online

social networks, where users generate events on-purpose. In this context, the application can

serve different purposes, for instance to post an opinion (e.g., on Twitter), or query a nearby

location (e.g., from Foursquare), or to check-in (e.g., could be both Twitter and Foursquare).

We assume that users may sometimes apply obfuscation or generalization on their locations

and semantic tags (if any). Finally, an honest-but-curious adversary tries to infer the actual

location and semantic tag of users based on his observations and background knowledge

about them.

Users We modify and use the formalization from the previous chapter (Chapter 5) in this

work. A user event au(i ) = (t , s,r ) is a tuple where t ∈ [0,23] is time of day, r ∈ R is the

geographical region user u is in and s ∈S is the semantic tag associated to the user’s visit in r

(i.e., the venue type). au = {au(1), au(2), · · · , au(N )} is user u’s trace that consists of a total of

N events. R= {R1,R2, . . .RM } represents the area of interest in an application, which consists

of non-overlapping (potentially uniform) geographical regions, whereas S = {S1,S2, . . . ,SK ,⊥}

denotes the set of all semantic tags used to denote the venue types in R including the non-

annotated visits (i.e., with ⊥, we denote the case when a user visits a region r , but without a

specific venue type). Users may generate different numbers of events independently from

each other. Finally, we do not consider interactions among users.

Note that since we consider semantically annotated events to be generated by users in a

sporadic manner (i.e., on-demand), the context in which these events are published gener-

ally requires the users to log in. This means that anonymization techniques are not easily

applicable. Even if the service providers are convinced to modify their systems to enable

anonymization of users, the anonymization techniques were shown to be not sufficiently

effective [52, 58]. Moreover, as discussed in State of the Art (Chapter 1), many anonymization

techniques require additional infrastructure (e.g., a trusted third party) or communication

costs.

Protection Mechanisms A protection mechanism fu maps an actual user event au(i ) =
(t , s,r ) to an obfuscated event ou(i ) = (t , s′,r ′) with a probability, where r ′ ∈ P(R)1 is an

obfuscated geographical location and s′ is some generalized semantic tag w.r.t. some rule.

Typically, a semantic tag can be generalized by either replacing it with its parent or extending

it with all its siblings in a preset tag taxonomy, e.g., Foursquare’s hierarchical categories [3]. As

it can be seen, we do not consider time obfuscation in our formalization, but our modeling

does not restrict it. Lastly, as individuals may have different privacy requirements [104],

i.e., sensitivities, in different places and types of places, a protection mechanism fu may

potentially consider users’ privacy sensitivities w.r.t. geographical regions or semantic tags,

1P is the power set.
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hence be personal to each user.

Adversary The adversary is, as in the rest of this thesis, an honest but curious entity, typically

the service provider. We assume that the adversary already has access to user history, which

may be incomplete. He may also know which protection mechanism is employed by the users.

He observes the obfuscated user traces ou = {ou1 ,ou2 , · · · } and tries to infer the actual user

traces a = {au1 , au2 , · · · } from them by using the knowledge he has, i.e., the history and the

protection mechanism fuwith some accuracy.

Privacy metrics In order to evaluate an adversary’s attack effectiveness (which is also the

ineffectiveness of a protection mechanism), we need metrics that take into account the

correctness of the adversary’s inference and his confidence, as discussed in the previous

chapters as well. We compute the expected error of the adversary both in the geographical

and semantic dimensions as was done in the previous chapter. The base formulas to compute

the privacy levels for a user event au(i ) = (t , s,r ) is as follows (identical to those in Chapter 5):

GPu(i ) =
M∑

m=1
qg (Rm , i ) ·distG (Rm ,r ), (6.1)

SPu(i ) =
K∑

k=1
qs(Sk , i ) ·distS(Sk , s), (6.2)

where GPu(t ) (resp. SPu(i )) is the geographical (resp. semantic) location-privacy of user u for

event i . qg and qs are the marginal distributions for regions and semantic tags as a result of

the adversary’s attack. In our experiments, we use Euclidean distance for regions (distG ) and

a tree-based graph distance for semantic tags (distS). More specifically, we use the distance

metric d(·) from graph-theory (i.e., the length of the shortest path between two nodes) on

the Foursquare category tree [3] to compute the semantic distance between two tags. We

normalize the shortest-path distance between two tags by the sum of the tags’ depths (i.e., their

respective distances to the root). Please refer to Section 5.2.2 and Equation 5.4 for details.

6.2 Time-Aware Inference

Previously in Chapter 5, we modeled user mobility with the assumption that people first

decide what type of place they want to go to and then the location. We did not, however,

include the time dimension of the visits in the model as our purpose was to demonstrate that

disclosing some level of semantic information decreases the geographical location privacy. We

still keep the same assumption on human mobility, but consider that people exhibit patterns

in terms of location and semantics in the same time period of a day. Taking into account these

patterns, we model our adversary –hence the inference process– accordingly. To validate our

assumption, we have analyzed Foursquare check-ins (see Section 6.4.1 for the dataset).

Figure 6.1 shows examples that support the aforementioned idea on the time-dependency of
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(a) Collective (b) User A (c) Collective (d) User A

Figure 6.1 – Visit distributions for the Foursquare categories Arts & Entertainment in (a) and
(b), and Food in (c) and (d), showing the different behavior patterns in the city of London
collectively (i.e., of all users combined) with comparison of (a) to (c) and by one user with
comparison of (b) to (d). The visit concentration goes from light to dark, dark representing the
more concentrated cells.

user behavior. The heatmap plots represent the visit distribution over days of week and time

of day for users in a dense area of the city of London. Figures 6.1-a and 6.1-c show collective

distributions from all users on categories Arts & Entertainment and Food, respectively. Figures

6.1-b and 6.1-d show distributions on the same categories, respectively, but only from a user

A in the same region. For user A, places labelled as Arts & Entertainment are visited mostly

on weekdays at around 17:00 - 19:00, and also on Saturday throughout the day. The same

user visits (and checks-in at) Food places dominantly during weekdays around noon. The

collective behavior shows that people in London go to Arts & Entertainment places throughout

the week, including Saturday, and dominantly on the evenings. Additionally, Saturday and

Sunday noons also appear to be attractive for visiting such places. On the other hand, places in

the Food category are visited quite diversely, yet the clear pattern is that during the weekdays:

they are visited dominantly around noon and between 18:00 to 20:00, corresponding to lunch

and dinner times. There is more continuity on Saturday and Sunday, which is most probably

the result of non-working days for most people and hence less restriction on lunch times. Last

but not least, in all plots, we observe that Sunday is the day with the least amount of check-

ins leading to the idea that people are less active on Sundays. These examples support our
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6.2. Time-Aware Inference

Figure 6.2 – The Bayesian network that models the daily behavior of a user. A daily model is
dynamically generated by the adversary upon observing a day of events from a user.

intuition of including the time dimension in user modeling from an adversary’s perspective.

Another observation on Figure 6.1 is that visits to a specific type of place have a dependency

on time of day, though it is not strict. In other words, a user may not visit a type of place always

at the same time of day, but on a variable interval. With this in mind, we model a time-aware

adversary for which we generate Bayesian networks for weekdays and weekends separately in

an observed user trace ou . We attack each observed day in ou independently since causality

between successive events in a single day is more likely than across days. As a result, each

generated Bayesian network is dynamic (i.e., with varying number of events) and specific to

one day (but with knowledge on the whole weekdays or weekend based on what day it is).

Figure 6.2 presents a sample Bayesian network with random variables for an event i as Ti ,

Si , Ri and Oi . As it can be observed, the time variables Ti depend only on the time of day

of the previous event (if any). Semantic variables Si depend on the time of day of the event

and also previous semantic tag. Region variables Ri depend both on Si and Ri−1 as a result of

our core assumption that people first determine the type of place they want to go to. Finally,

the observed event variable Oi depends on Si and Ri , which corresponds to the probabilistic

PPM fu that takes as input the semantic tag and region. fu ’s output, i.e., the tuple (s′,r ′), is the

evidence for Oi where s′ is the (potentially) generalized semantic tag and r ′ is the (potentially)

obfuscated region. fu = Pr(Oi = (s′,r ′)|Si = s,Ri = r ) may or may not be correctly known to

the adversary as it might be personalized to user u and hence have some private parameters

such as sensitivity levels for different regions and tags.

Except T1 —the first observed event’s time of day— in a Bayesian network, all the variables

take value within their domains w.r.t. conditional probability distributions. In our context,

we assume that the adversary may have access to background information and hence tries to

approximate these distributions with some degree of accuracy.

For inference, we set the observed event i ’s value (i.e., Oi ) to (s′,r ′) from ou(i ) = (t , s′,r ′). Note

that Oi is not directly dependent on Ti in the Bayesian model and hence does not contain the

time of day t , yet the adversary knows at what time the event takes place. This information

must be used on Ti . However, as we noted before, a user may visit some place around the
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same time of day but not necessarily always at the exact same time. Hence, instead of strictly

setting the evidence for Ti to t in ou(i ), we opt for setting the domain of Ti to a time range,

e.g., [t −2h, t +2h]. This automatically considers a variance in timestamps among successive

visit patterns as well, for instance going for lunch first around noon and afterwards visiting a

coffee shop in the afternoon. The domains of the remaining semantic and region variables

can be set to S and R, respectively, which are the targets of the adversary. The marginal

distributions with these settings are obtained by running inference algorithms on the Bayesian

network, such as Junction-tree algorithm [62] or belief propagation [88].

6.3 Sensitivity-Aware Protection

We implement a sensitivity and history aware PPM that automatically determines the size of an

obfuscation area for a given user event; we call it the sensitive PPM for short. In principle, this

PPM is similar to the one we implemented in the Location-Privacy Library (see Chapter 4, [4])

with a different approach to processing the sensitivities assigned by the user. Likewise, we let

users set sensitivity levels for semantic tags and regions in this PPM as well. The difference

is that the sensitive PPM uses these settings in order to obtain an expected sensitivity level

instead of using an individual sensitivity level from the user’s sensitivity profile. The desired

geographical location-privacy is then defined as the expected sensitivity multiplied by the

maximum desired geographical location-privacy Θ. The exact formula for computing the

expected sensitivity E .S. is as follows:

E .S. =∑
r

Pr(Ri = r )×
⎧⎨
⎩Sens(r ) if Sens(r ) > 0∑

s Pr(Si = s)×Sens(s) otherwise
(6.3)

D.P. = E .S.×Θ, (6.4)

where Sens(.) is the sensitivity level for semantic tag s or region r , and D.P. is the desired level

of geographical location-privacy. In this formula, we prioritize any geographical sensitivity

setting w.r.t. the semantic sensitivities. It means that if a user sets a sensitivity level for a

specific region r , any other sensitivity level corresponding to the semantic tags within region r

is overridden. Such a scenario can occur for home and work addresses of an individual, which

may have very high (or low) sensitivity levels regardless of the semantics.

In summary, the PPM takes as input the semantic tag and region pair (s,r ) as well as the

generalization level for s, i.e., the semantic privacy-protection level. Then the geographical

obfuscation is determined iteratively by calculating and comparing the estimated geographical

location-privacy and D.P.. Whenever D.P. is higher than the estimated location geographical

location-privacy, we increase the obfuscation size. The reason behind this is that, according

to Bilogrevic et al. [19], people tend to value the semantics more when valuing the utility

they get. Thus, our algorithm is semantic-driven. Note that the maximum protection is to

hide the semantic tag/region completely. However, we do not hide both at the same time,

i.e., whenever the semantic protection is set as ‘hide’, we limit the geographical obfuscation
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to a maximum area size set as a parameter of the PPM. The idea is that users usually aim to

have a utility either on the semantic or the geographical dimension when generating their

events sporadically, for example to ‘inform about activity’, ‘appear cool’, ‘inform about the

location’, ‘get a reward’, etc. [19]. As a result, it is not logical to hide all the data, otherwise it

kills the whole purpose of the application. It also means that there is a trade-off between the

semantic and geographical location-privacy levels. The pseudo-code algorithm of this PPM is

given in Algorithm 2.

Algorithm 2: Sensitive Protection Mechanism

Input: s, r, semantic_protection
1 s_observed = semantic_generalization(s, semantic_protection);
2 r_observed = r;
3 α = 0;
4 while desired_privacy_level(s_observed, r_observed) > expected_privacy_level(r_observed, r) do
5 α += 1;
6 if α == max_obfuscation && semantic_protection == ’Hidden’ then
7 break;
8 else
9 r_observed = geographical_obfuscation(r, α);

10 return (s_observed, r_observed);

For the semantic location-privacy protection, our algorithm considers three protection levels:

• Disclose: the semantic tag of the user event is not protected. It is disclosed as it is.

• Parent: the semantic tag of the user event is replaced by its parent in a tag taxonomy to

decrease the amount of semantic information disclosed.

• Hidden: the semantic tag is hidden altogether and nothing is disclosed regarding the

semantic tag of the user event.

For the case when the semantic tag is hidden, as mentioned above, we do not apply hiding

on the geographical region even if the desired level of privacy is not met. Computing the

expected geographical location-privacy is straightforward: the user (or her device) is aware

of her history (i.e., visit counts), thus can compute the probability distributions over r ∈R
given ou = (t , s′,r ′). Using these distributions we calculate and compare the expected level of

privacy to the desired level of privacy in order to determine the final size of the obfuscation.

Note that when a user wants to disclose her location’s semantic tag, her location sensitivity may

be lower than the case when she hides the semantic tag. This is especially true if a user sets a

sensitivity level based on a semantic tag. If the semantic tag is protected, i.e., generalized or

hidden, and if there exists other semantic tags with lower sensitivity levels in the obfuscation

area, then the expected sensitivity level may be lower than the set sensitivity level for the

current semantic tag of the user event. This results in a lower desired protection level and
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hence a lower geographical location-privacy. Consequently, with this protection scheme

we introduce a trade-off between semantic and geographical location-privacy levels. Lastly,

this scheme can be extended by letting users determine whether their sensitivities are also

time-dependent, for instance going to a bar in the evening may not be sensitive for most

people, but it might be during morning.

6.4 Evaluation

We experimentally evaluate geographical and semantic location-privacy w.r.t. our inference

scenario and also compare the effects of our sensitive protection mechanism to a static

geographical obfuscation. We use real user traces whose majority is semantically annotated

(i.e., more than 50% of the events in each trace).

6.4.1 Dataset

We benefited from the same dataset as in the previous chapter. Namely, it is a dataset where

geo-tagged tweets from Twitter are joined with Foursquare venues. We matched the tweets

and Foursquare venues through the publicly tweeted Foursquare check-ins by users having an

account on both social networks. The dataset was collected from January 2015 until the end of

July 2015 (please refer to Section 5.3.1 in Chapter 5 for the explanation of how the dataset was

collected). We filter the data based on certain criteria in order to have user traces that contain

Foursquare check-ins with at least 50% proportion. We further limit the geographical areas

we run our experiments on due to computational limits; more specifically, to avoid domain

explosion of the random variables in our Bayesian network model. We chose users with trace

length of at least 70 in order to avoid data sparsity: shorter traces would not provide enough

data for the adversary. The number of users we evaluate in our experiments from six big cities

(Boston, MA, USA; Chicago, IL, USA; Istanbul, Turkey; London, UK; New York, NY, USA; and

San Francisco, CA, USA) is 690. The areas of interest from these cities are of size 2.4×2.4 km2.

6.4.2 Experimental Setup

We partitioned each area of interest in our dataset into 12× 12 cells (of size 200× 200 m).

Coordinates from each event in a user trace are mapped to one of these regions, and we used

the center point of the regions as the coordinates in our distance calculations. As we rely

on Foursquare check-ins obtained through Twitter, we use the Foursquare category tree for

semantic generalization. This means that with different sources of location semantics and

tag taxonomies, we may obtain different results, but we do not expect the main findings to

change drastically in the case of sensitive protection, because the sensitivity levels with the

2The essential differences from the filtered dataset used in the previous chapter are the area size and the
minimum trace length criteria. This results in a richer dataset required for validating our approach that is based
on daily behavior.
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new semantic system should automatically adapt.

We implemented our adversary and the daily Bayesian model in Python using the Bayesian

Belief Networks library provided by eBay [2]. We used the junction-tree algorithm [62] to

optimally infer the final marginal distributions on semantic and region variables with the

evidence set from the observed traces.

For the background information of the adversary, i.e., the presence and transition probabilities

used in the Bayesian model, we count all the relevant occurrences of events or transitions

and apply Laplace smoothing [78] for ensuring non-zero probability for all possible values of

random variables. Finally, we normalize the outcome histogram to determine the probability

distributions.

As for the time variables in our Bayesian networks, we determine a range to focus on instead of

evidencing them on the observed time in the user events, as discussed in Section 6.2. Based on

some preliminary investigation we did for various ranges (from ±0 to ±5 hours), we observed

that the adversary is most successful when we set the time domain to [t − 2.5h, t + 2.5h]3

(i.e., ±2.5 hours). As a result, we use this time range for time variables Ti in our attacks.

Protection mechanisms We implement two types of privacy-protection mechanisms (PPMs):

our sensitive PPM and also a static PPM that generates obfuscation areas of fixed size (which

is used in the previous chapter as well). Both are joint protection mechanisms that take a

semantic tag, a region, and the amount of semantic protection as input and output a tuple

(s′,r ′). The static PPM also takes the obfuscation size as input, which stays fixed throughout a

user trace. In each mechanism the geographical obfuscation is the same, meaning that with a

certain size, they will generate the same obfuscation area. We use 2×2 and 4×4 obfuscation

sizes in our scenarios, dynamically in the sensitive protection and as a fixed parameter in the

static protection. As a result, we have three different geographical protection scenarios:

• Sensitive Protection: the mechanism automatically decides the size of the geographical

protection which can be: no protection, 2×2 obfuscation, 4×4 obfuscation or hidden.

• Static Protection with 2× 2 obfuscation for all users and events independent of the

semantic tag

• Static Protection with 4× 4 obfuscation for all users and events independent of the

semantic tag

The semantic generalization cases are also three as stated in Section 6.3: ‘Disclosed’, ‘Parent’

and ‘Hidden’, which results in a total of nine combinations of scenarios to run our experiments

in.

3Obviously, this range yields successful results for the dataset we use, but with different datasets, a different
setting may need to be identified for improved inference.
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For the sensitivities, we have not come across a real dataset for individuals’ privacy sensitivi-

ties/preferences w.r.t. location semantics that we can use in conjunction with the Foursquare

categories tree. This subject requires its own research based on extensive user studies which

is beyond the context of this thesis. For the time being, we rely on our small scale survey of

the scientists involved in this work and determine an example sensitivity profile used in our

experiments. This profile is presented in Table 6.1. Note that we did not set any sensitivity

level for a region as this would be too arbitrary to rely on. The values we use for the semantic

tags are nevertheless perceivable.

Table 6.1 – Privacy sensitivities used in the experiments.

Tag Sens. Tag Sens. Tag Sens. Tag Sens.

Prison 1.0 Doctor’s Office 0.9 Hospital 0.9 Medical Center 0.9
Embassy 0.9 Bank 0.8 Nightclub 0.8 Police Station 0.7
Hotel 0.4 Bar 0.4 Restaurant 0.3 Cemetery 0.3
Fast Food 0.3 Office 0.3 University 0.2 Train Station 0.15
Zoo 0.1 Stadium 0.1 Post Office 0.1 Museum 0.1

Cross Validation We adapt a cross-validation approach in our experiments: we slice user

traces into chunks of 13 to 17 events (based on the length of each user trace independently)

and use each chunk as a test trace while using the remaining chunks as training data for this

test case. For example, if a user trace consists of 100 events, and it is sliced into 5 chunks,

then we run 5 different experiments with each chunk as test trace to attack while using the 4

remaining chunks to train the Bayesian networks. Each test trace is obfuscated before running

the attacks. If the adversary does not have any knowledge on user behavior for a particular

day of week (e.g., Wednesday), then we use the aggregated data of the user over all week. In

such cases, the adversary would not have enough information to decide in favour of any of the

other days. Figure 6.3 shows this experimental framework visually.

Figure 6.3 – Our approach on inferring location-privacy in a time and semantic aware way in a
nutshell.
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6.4.3 Results

We present our experimental results on time-aware inference and the proposed sensitive PPM

in this section.

Effect of Time-awareness on Inference

Figure 6.4 shows the average geographical location-privacy levels over time of day for various

semantic and geographical protection scenarios w.r.t. the time-oblivious and the time-aware

attacks. From left to right, the plots represent results with 2×2 static protection, 4×4 static

protection and sensitive protection employed for geographical location-privacy. From top to

down, plots refer to different semantic protection scenarios in the order: actual tag, parent-tag

generalization and hidden. The first observation is that time-aware attack outperforms the

time-oblivious one at inferring the geographical locations of users when the semantic tags are

hidden, for all 3 geographical protection scenarios. Also, the time-aware attack outperforms

the time-oblivious one noticeably around morning. As we will discuss in the next subsection,

this is due to the various activities of users that exhibit regularity. Conversely, the time-aware

attack fails to outperform the time-oblivious one (though statistically insignificant) when

the semantic tags are generalized by their parent tags with 4×4 static protection on regions.

The time-oblivious attack slightly outperforms the time-aware attack in the afternoon and

evening. This happens due to the noise introduced by unusual user activities, i.e., some users

occasionally leave their usual pattern and visit places that they do not usually go (geograph-

ically, semantically, or both). Apparently, when they disclose reduced amount of semantic

information about their locations, an adversary is misled by his background knowledge on

them. This is emergent also in Figure 6.5 (which shows the same setting for semantic location

privacy) for all geographical PPMs with parent-tag generalization. When the semantics are

hidden completely, however, the adversary is most successful at exploiting the time dimension

on semantics for both geographical and semantic location-privacy. Not surprisingly, when the

semantic tags are disclosed to the adversary, the time dimension does not play much role in

the inference of geographical locations. The geographical location privacy levels as a result of

both attacks in the first row of Figure 6.4 are almost perfectly aligned.

Performance of Sensitive PPM

Now we analyze and discuss the experimental results on sensitive PPM in detail and how it

performs as compared to the static PPMs. Note that since the trends in the results are same for

both time-aware and time-oblivious attack scenarios, we only present the results with only

the time-aware attack scenario in this subsection.

We plot the results of the evaluation of the geographical location-privacy in Figure 6.6a. The

figure plots the average geographical location privacy (the average error of the adversary

inference in km.), compared to the desired location-privacy, established by the sensitivity
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(a) Over the desired level of privacy (b) Over time of day

Figure 6.6 – Average geographical location-privacy of user events over (a) desired privacy level
and (b) time of day.

profile. We plot both the static and the sensitive PPMs. For the static PPM, we plot the results

for both a 2×2 and 4×4 obfuscation scheme. The ideal protection level is plotted as a linear

dashed segment. As it can be seen, for from low to medium desired privacy levels the sensitive

protection mechanism is able to cope with the sensitivity requirements of the users. However,

for very high sensitivity levels the mechanism is not able to keep up to the expected level

of privacy. One of the explanations for this behavior is the fact that the number of event

occurrences at places with high level of privacy is also considerably higher. The distribution

of events can be seen in Figure 6.7a, and there is a noticeable peak for events that have a

high desired privacy level, which in turn provides the adversary more information to predict

the user location more accurately. Nevertheless, these results also show that the sensitive

protection outperforms the static protection in most cases, even for the 4×4 obfuscation, and

often with a significant difference.

In order to understand the time-variability of the PPMs, we plot in Figure 6.6b the static and

sensitive PPMs over the time of the day (i.e., from 0 to 23h). It is visible that the average desired

(a) Over the desired level of privacy (b) Over time of day

Figure 6.7 – Average number of occurrences of the observed events in the adversary’s back-
ground knowledge over (a) the desired privacy level and (b) time of day.
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location-privacy increases during night time (between 10pm and 3 am). When we analyze

further to see if this is related to the frequency of events w.r.t. time (see Figure 6.7b), it is

clear that the number of events known to the adversary per observed event actually increases

starting at 21pm and stays relatively high (compared to afternoon) until morning. As we can

see, the 4×4 static obfuscation always provides a higher protection level on average over

time-of-day than the sensitive approach (knowing that for higher desired privacy levels, 4×4

static obfuscation may fail). However, this is in reality a case of overprotection, as the 4×4

obfuscation is overprotecting the user location, which could potentially degrade the overall

utility of the application.

(a) Sensitive Protection (b) Static Protection (2x2) (c) Static Protection (4x4)

Figure 6.8 – Average of the desired location-privacy subtracted from geographical location-
privacy plotted over time of day and day of week for different geographical protection scenarios.
0 means the desired privacy level is met. The sensitive protection approach meets the desired
privacy level almost all the time while not overprotecting.

In order to better visualize this effect, Figures 6.8a, 6.8b and 6.8c show heatmaps of average

geographical location-privacy minus the desired location-privacy over time of day and day of

week, for different geographical protection scenarios. We observe that the sensitive protection

manages to meet the desired privacy level on average almost all the time while not overpro-

tecting. In the case of 2×2 static obfuscation, we see that the desired privacy level cannot be

met more and more, especially during nights. Figure 6.9 reveals that this trend is due to the

number of activities the users engage in throughout the day in each hour. Figure 6.9 shows

the number of distinct tags identified in the user events in each hour of day. Not surprisingly,

people check-in at more diverse places during the day than night, at which time most people
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Figure 6.9 – Number of unique semantic tags observed in the user events over time of day.

(who do check-in) visit nightlife places. More diverse activities during the day actually help

people to hide their activities and locations easier, because this is reflected in the background

knowledge of the adversary as more confusion.

We also present results concerning the semantic location privacy in Figure 6.10. In this case

the obtained privacy level is computed as a normalized tree distance between the inferred

and the actual semantic tags. As it can be observed both the sensitive and static protection

mechanisms throw similar results (Figure 6.10a) This is due to the fact that we applied a fixed

semantic protection scenario throughout all the experiments for each geographical PPM.

Also, the effect of applying different levels of geographical obfuscation is negligible on the

semantic location-privacy; however, it is important to note that these results are obtained

for semantically rich and dense areas. We can argue that in places with few semantic tags

available, the semantic location-privacy would be more sensitive to the size of geographical

obfuscation areas. Moreover, we plot semantic location-privacy over time of day for different

semantic privacy-protection mechanisms (PPM) in Figure 6.10b.

(a) Over the desired level of privacy (b) Over time of day

Figure 6.10 – Average semantic location-privacy of user events over (a) desired privacy level
and (b) time of day.
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6.5. Summary

Unsurprisingly, hiding the semantic tags provides the best protection and parent-tag general-

ization achieves some degree of protection, which might be useful in certain scenarios where

the utility is based on semantics. Furthermore, we observe a correlation between the drop

in semantic location-privacy and the event occurrence (in conjunction with Figure 6.7b), yet

little sign of effect by the number of distinct tags exposed by the users throughout the day

(Figure 6.9).

6.4.4 Discussion

The results obtained with the proposed sensitive PPM yield insightful outcomes given that we

trained the attacker with the aforementioned dataset. The lack of rich and diverse datasets of

real traces limits the research on this subject. Confirming the results obtained in this chapter

with additional datasets, and also larger areas of interest is essential. We expect the trends in

the results to be similar.

Another question regarding this work would be to seek the possibility to implement a protec-

tion mechanism that runs on the user-side similar to the Location-Privacy Library presented

in Chapter 4. It is feasible to implement such an extension to the existing Location-Privacy

Library, however it is not straightforward to implement a more complex privacy-estimation

module that is in line of Part II of this thesis. Such adversary models are more complex and

require a lot of resources to attack user traces. Nevertheless, the evaluation in this chapter

demonstrates that a sensitivity-aware protection mechanism that takes into account user

history is capable of meeting the desired privacy levels up to a certain point against a strong

adversary.

6.5 Summary

In this chapter, we presented a time-aware adversary model and the related inference ap-

proach that is shown to be stronger than a time-oblivious adversary in various time periods.

Additionally, we presented a sensitivity-aware privacy-protection mechanism that automati-

cally protects the geographical location of a user based on the desired level of protection on

the semantic dimension and also the privacy sensitivities of the user. This approach to privacy

protection is shown to be superior to static protection approaches that do not consider user

history, sensitivities and location semantics. The experimental results provide insights that

can further push the development of such privacy-protection mechanisms against strong

adversaries. Furthermore, we realized the evaluation of protection mechanisms w.r.t. stronger

adversaries by actually implementing them and performing attacks to obfuscated traces

multi-dimensionally.
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In this thesis, we focused on privacy protection and inference attacks regarding location

privacy in mobile applications. Service providers such as location-based services and online

social networks have almost uncontrolled access to massive amounts of user data enabling

them to mine intimate details about individuals. As more and more users are utilizing smart

devices every day to interact on the Internet, they unknowingly commit data to various service

providers and thus potential adversaries. Users will not stop using the services they get as their

access to information is enhanced with mobile applications. Hence, to address this privacy

vulnerability, protection mechanisms are designed and proposed to be integrated to such

applications. We approached this problem by considering what an adversary can exploit in his

attack in relation to user traces. It is essential to realize that protecting and attacking privacy

are two sides of the same medallion. This realization helped us build adaptive location-privacy

protection mechanisms (i.e., location PPMs) that take into account an adversary’s knowledge

on user mobility and also a user’s privacy needs. On the other hand, we also focused on how to

infer users’ location traces better by exploiting location semantics and their time dependency,

hence demonstrating a more concrete power of a potential adversary.

More specifically, in Part I, we studied user mobility and mobility constraints such as velocity

in order to counter the threats by mobility-aware adversaries. In Chapter 2, we designed a

privacy-protection approach that relies on local privacy-level estimation based on Bayesian

inference. This enabled us to adapt a PPM’s parameters and thus create a more resistant pri-

vacy protection. Our evaluation of the adaptive protection against a mobility-aware adversary

shows that the adaptive approach not only protects users’ location privacy better w.r.t. their

requirements than a static protection mechanism, but also avoids over-protection and thereby

improves application utility. Our findings helped us understand that a PPM must consider

the adversary capabilities more concretely unlike the most of the existing work and should be

able to estimate the privacy level.

In Chapter 3, we focused on mobility of users in terms of mobility history, direction of move-

ment and velocity. The intuition was that an adversary, who knows a user’s most visited places

and also reasons about user mobility, can identify the fake parts of a random obfuscation area.

Therefore, it is important to generate obfuscation areas with maximum confusion possible.

Consequently, we formalized probability distributions over user movements and designed

a PPM that uses these distributions and heuristically determines obfuscation areas with the
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highest chance to confuse an adversary. The success of the heuristic approach at protecting

location privacy proved to be remarkably outperforming compared to random obfuscation

approaches when facing a strong adversary. Our findings in this chapter, together with Chap-

ter 2, suggest that strategic PPMs can be developed and deployed on mobile devices that

automatically protect location privacy. Merging the adaptive approach with local estimation

of privacy level in Chapter 2 with the mobility-aware PPM in this chapter can yield a protection

scheme for mobile devices that provides near-optimal privacy levels.

Our work in chapters 2 and 3 inspired us to actually implement and evaluate a protection

mechanism on mobile devices to study the applicability of our approaches, as to the best

of our knowledge, the implementation of such extensive PPMs on actual devices has not

been investigated before. We implemented our adaptive approach in Chapter 2 on Android

platform as a library consisting of three main modules: (i) a privacy-level estimation module,

responsible for evaluating the expected privacy level of the user, (ii) a PPM that adaptively

increases the size of obfuscation to apply based on the feedback from the estimation module,

and (iii) a sensitivity module that lets users to provide their privacy sensitivities w.r.t. certain

semantic tags and locations. The library is integrated to a real sensing application called

TinyGSN [8] and tested in terms of correctness and performance. The results show that our

library is lightweight on modern smartphones and runs smoothly, consequently paving the

way for making active privacy protection on mobile devices a reality.

In Part II, we investigated the additional power factor of an adversary that exploits semantic

dimension of location information, i.e., the types of visited locations. The privacy concern

regarding such an adversary rised from the fact that users publish information regarding

their locations on online social networks to inform their friends, to state an opinion about a

place or simply to check-in. These disclosures provide potential adversaries with additional

information that they can exploit in their inference attacks on user traces. We formalized

and designed this setting with Bayesian networks in Chapter 5, and performed attacks on

semantically-annotated traces obtained from Twitter and Foursquare. We quantified the

privacy loss induced by disclosed semantic information along with user location and saw that

considering location semantics improves the strength of an attacker remarkably.

In Chapter 6, we further extended our adversary model to include the time dimension of user

visits based on our findings that the semantics in user traces exhibit time dependency. We

show that this time- and semantic-aware adversary is more successful at inferring the traces

of users from protected traces. The results of our evaluation provide a better understanding

of location privacy from a multi-dimensional point of view. They also indicate that complex

modeling of both PPMs and adversaries is required in order to study location privacy in mobile

applications, and to provide strategic ways of protecting to users. Lastly, we implemented an

adaptive and sensitivity-aware PPM, similar to the one in Chapter 2 in order to investigate

whether privacy sensitivities of users can be protected against such powerful adversaries. Our

experiments demonstrate that this is indeed possible, yet significantly challenging if the users

already leaked considerable amount of information regarding their sensitive visits in the past.
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Consequently, it is clear that location privacy is susceptible to location semantics and habits

of users under strong and realistic adversary models. The author believes the findings in this

thesis provide a better understanding of location privacy from a multi-dimensional point

of view and evaluation techniques with the introduced adversary models. The proposed

protection approaches along with the location-privacy library and the adversary models

comprise a useful toolbox both for enabling privacy protection in location-based mobile

applications and for further research on location privacy.
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