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Abstract

Composite materials and, in particular, Carbon Fibre Reinforced Polymers (CFRP) have been
well studied and developed in the past years due to their advanced mechanical characteristics.
These materials are used in several different application fields, such as aerospace, automotive,
energy production, civil constructions, bio-prosthesis and sport equipment. The combination of
carbon fibers with epoxy resin allows obtaining materials characterized by high specific stiffness,
low weight, and extremely high ultimate strength, properties almost impossible to obtain by the
standard metallic materials.

Although the mechanical properties of the single carbon fiber are impressive, damage ini-
tiation often occurs at lower stresses. These materials are produced by stacking a sequence of
several layers, which makes them prone to delamination. This process may lead to the creation
of bridging fibers across the crack surfaces, which increases the total fracture toughness. Sev-
eral important efforts have been devoted in the past years to study the delamination process of
composite materials under pure Mode I, characterized by a high bridging contribution, and pure
Mode II where no bridging fibers are involved. However, studies of delamination and bridging
in Mixed Mode have not received adequate attention in the literature.

The first goal of this project is to study the delamination process for unidirectional CFRP
under Mixed Mode conditions. Experiments are performed over a wide range of different mode
mixities μ = GII

Gtot
, where GII represents the Mode II energy release rate component and Gtot =

GI + GII the total one, by using a Mixed Mode Bending (MMB) setting and monitoring the
applied displacement, reaction force, crack propagation and internal strains. Axial strain values
are measured in specific specimens by embedding optical fibers with Bragg grating sensors
(FBGs) between the carbon layers, during the manufacturing process. Delamination tests are
performed at pure Mode I, Mixed Mode at 20%, 30%, 40%, 60% and pure Mode II, in order to
obtain a complete set of experimental data. The results allowed characterizing both the energy
release rate at crack initiation Gc and the corresponding bridging energy contribution Gb, as a
function of the applied mode mixity. The fracture toughness Gc increases with μ while it is found
out that large scale bridging occurs in pure Mode I and Mixed Mode up to μ = 30%, affecting
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the stress field and the crack propagation, while a negligible bridging contribution occurs for
higher mode mixities.

The second goal of this work is to create a numerical FE Model, based on cohesive elements,
able to reproduce the correct delamination behavior and bridging contribution for each tested
mode mixity, by using a unique cohesive law. Unfortunately, the cohesive law formulations
for Mixed Mode delamination known so far show several limitations since they are not able to
properly predict the delamination behavior in a MMB test when large scale bridging occurs.
These models are based on the assumption that the local mode mixity β = δshear

δnormal
, which

represents the ratio between the shear and normal displacements for each cohesive element, is
directly related to the energy mode mixity μ according to the formula μ = β2

1+β2 . This work
points out the limitations of this formulation, showing that it can be used only if β is constant
along the entire process zone. Since for a Mixed Mode delamination test, based on a MMB
setting, the β value keeps changing even if the applied energy mode mixity μ is constant, this
approach cannot be used to properly simulate the experiments. For this reason, an innovative
mode-dependent cohesive formulation is implemented: it extends the constitutive laws of the
previous models to incorporate the proper bridging contribution, by using an external customized
routine which uses the computed displacement mode mixity β as an indicator, named β∗.

The bridging tractions are defined by three parameters: the corresponding energy contri-
bution Gb, the maximum stress σmax and the crack opening displacement at failure δf . These
bridging parameters are described by three different functions, dependent on the mode mixity
indicator β∗, by means of the coefficients ξi =

[
ξGb

, ξσmax , ξδf

]
. The coefficients ξi are obtained

by using an inverse method, where the strains measured by the FBGs and the ones computed
by the Finite Element Model (FEM) are involved in an optimization process. In contrast to the
standard Mixed Model models, this algorithm provides a unique mode-dependent cohesive law
able to properly simulate all the different delamination tests, from pure Mode I up to pure Mode
II, predicting the load, the crack propagation, the energy release rate (ERR) and the strains
evolution.

Keywords: Mixed Mode, delamination, CFRP, fibre bridging, fibre Bragg grating sensors,
cohesive elements, FE modelling



Résumé

Les matériaux composites, et en particulier les polymères renforcés avec des fibres de carbone
(CFRP), ont été longuement étudiés, analysés et développés ces dernières années du fait de
leurs hautes caractéristiques mécaniques. Les matériaux composites sont utilisés dans différents
domaines, comme l’automobile, l’aérospatial, la production d’énergie, des constructions civiles,
les prothèses et l’équipement sportif. La combinaison de fibres de carbone avec la résine époxy
permet d’obtenir un matériau d’une grande rigidité spécifique, léger, et d’une limite à la rup-
ture extrêmement élevée, soit des propriétés presque impossible à obtenir par des matériaux
métalliques standards.

Bien que les propriétés mécaniques de la fibre de carbone seule soient impressionnantes,
l’endommagement ou la rupture totale survient souvent à des charges moins élevées. Les matéri-
aux composites sont produits en empilant une séquence de plusieurs couches, ce qui les rend
enclins à la délamination. Ce processus peut mener à la création de pontage de fibres entre les
deux surfaces de la fissure, ce qui augmente la ténacité du matériau. Beaucoup d’efforts ont été
consacrés ces dernières années à étudier le processus de délamination de matériaux composites
en pure Mode I, caractérisé par une haute contribution du pontage de fibres, et le pur Mode II
où le pontage de fibre n’intervient pas. Cependant, l’étude de la délamination et du pontage en
mode mixte n’a pas reçu l’attention adéquate dans la littérature.

Le premier objectif de ce projet est d’étudier le processus de délamination pour des CFRP
unidirectionnels dans des conditions de Mode Mixte. Les expériences sont exécutées sur une
vaste gamme de mixités de modes μ = GII

Gtot
, où GII représente la composante du taux de

restitution d’énergie en Mode II et Gtot = GI + GII le taux de restitution d’énergie total
(ERR), en utilisant la configuration du test Mixed Mode Bending (MMB) et le monitoring du
déplacement imposé, de la force de réaction, de la propagation de fissure et des déformations
internes. Les déformations axiales sont mesurées dans des spécimens spécifiques en intégrant
pendant la fabrication, des capteurs à fibres optiques contenant des réseaux de Bragg multiplexes
(FBG) entre les couches de CFRP. Les tests de délamination sont exécutes en Mode I pur, en
Mode Mixte 20%, 30%, 40%, 60%, et en Mode II pur, en vue d’obtenir un set complet de données
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expérimentales. Les résultats ont permis de caractériser l’ERR à l’initiation de propagation de
fissure Gc, ainsi que la contribution d’énergie due au pontage de fibres Gb, comme une fonction de
la mixité de mode appliquée. La ténacité Gc augmente avec μ, et il a été montré que le pontage
de grande échelle intervient uniquement dans le Mode I pur et le Mode Mixte jusqu’à μ = 30%,
affectant le champ de contraintes et la propagation de fissure, tandis que la contribution du
pontage de fibres est négligeable des mixités de mode plus élevés.

Le deuxième objectif de ce travail est de créer un modèle numérique à éléments finis, basé sur
des éléments cohésifs, capable de reproduire le comportement en délamination correct ainsi que la
contribution du pontage de fibres pour chaque mixité de mode testée, en utilisant une loi cohésive
unique. Malheureusement, les formulations des lois cohésives pour la délamination de Mode
Mixte connues montrent jusqu’ici plusieurs limitations puisqu’ils peuvent ne pas correctement
prédire le comportement en délamination dans un test de MMB en cas de pontage de grande
échelle. Ces modèles sont basés sur l’hypothèse que la mixité de mode locale β = δcisaillement

δnormal
,

qui représente le ratio entre les déplacements en cisaillement et les déplacements normaux pour
chaque élément cohésif, est directement corrélé a l’énergie de mixité de mode μ selon la formule
μ = β2

1+β2 . Ce travail souligne les limitations de cette formulation, montrant qu’il peut être
utilisé seulement si β est constant le long de la zone de processus entière. Sachant que pour un
test de délamination en Mode Mixte, basé sur de la configuration MMB, la valeur de β continue
à changer même si l’énergie de mixité de mode appliquée μ est constante, cette approche ne
peut pas être utilisée pour correctement simuler les expériences. C’est pourquoi, une innovante
formulation cohésive dépendante du mode est implémentée : elle étend les lois constitutives
des modèles précédents pour incorporer la contribution de pontage de fibres appropriée, ce en
utilisant une routine externe personnalisée qui utilise le mode de déplacement calculé mixity β

comme un indicateur, nommé β∗.
Les tractions de pontage sont définies par 3 paramètres: la contribution énergétique cor-

respondante Gb, la contrainte maximale σmax et l’ouverture de la fissure à la rupture δf . Les
paramètres de pontage sont décrits par trois fonctions différentes, selon l’indice de mixité des
modes β∗, au moyen des coefficients ξi =

[
ξGb

, ξσmax , ξδf

]
. Les coefficients ξi sont obtenus en

utilisant une méthode inverse, où les déformations mesurées par les FBGs et celles calculées
par le Modèle par Éléments Finis (FEM) sont impliquées dans un processus d’optimisation.
Contrairement aux Modèles standards de modes mixtes, cet algorithme fournit une loi cohésive
unique, dépendante du mode, capable de correctement simuler tous les tests de délamination
du Mode I pur jusqu’au Mode pur II, prévoyant la force, la propagation de fissure, l’ERR et
l’évolution des déformations.

Mots-clés: Mode Mixte, délamination, CFRP, pontage de fibres, réseau de Bragg, élément
cohésifs, FE modelling
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Chapter 1

Introduction

1.1 Motivation

The research for innovative materials is always one of the main and fascinating topics since
it is strictly related to the new challenges that the extreme engineering is called to overcome.
Engineers, physicists and chemists deeply affected the whole world by their improvements and
discoveries over the years. In this panorama, composite materials represent one of the most
important challenges, since the topic is still relatively recent and has a strong potential for
current and future applications.

Fibre Reinforced Polymers (FRP) are receiving more and more attention due to their superior
mechanical properties. This kind of composite material is widely used for several applications
such as sport equipment, prosthesis for health care, automotive, aerospace, boats, wind turbines,
civil structures, etc. Nowadays, we can find it also in the daily life when we use a tennis racket,
if we wear a helmet, if we ride a racing bike or even if we carry a luggage.

The improved mechanical properties combined with low weight, high stiffness, the incoming
reduction of raw material costs and the increase of automation, are the reasons why composite
materials are replacing steel, iron and aluminum over a wide range of applications. Comparing
with iron, composite Young’s modulus is lower (half or less) but the density can be five times
lower and the ultimate strength can reach 2000MPa. This allows designing structures keeping
the same stiffness and with an impressive reduction of weight.

Composite materials are created by stacking fibre layers followed by a curing, which allows for
resin polymerization. The most common reinforcements are carbon, glass or natural fibres mixed
with epoxy or polyester resin. The intrinsic anisotropy of the composite materials allows for
designing optimized geometries by combining layers with different fibers orientation, obtaining
the best mechanical properties along the desired direction, according to the external loads.

1
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Composite production is mainly made by hand due to the complexity of the process. This
allows fabricating very complicated geometries but it also involves drawbacks such as scatter
on the final quality and high costs, due to the high working time. If simple parts are needed,
automatic systems can be used, such as injection moulding and hot press with the counterpart
of high initial costs required for the production chain.

Despite the impressive mechanical properties, composite materials are prone to delamination
which may lead to loss of structural integrity and premature failure. Delamination is a common
process which involves layered structures and consists in the separation of two adjacent layers.
This phenomenon can be caused by impacts, stress intensification and, in general, by critical
tensile or shear local stresses. Delamination often represents the weakest link for structures
made of carbon FRP, despite the superior mechanical characteristics of the fibres themselves.
This kind of failure is potentially very dangerous since it may occur inside the composite without
any external evidence.

Delamination may start in three different fracture modes. Mode I represents the normal
opening of the crack, Mode II the shear component and Mode III the tearing [1, 2].. All these
fracture modes have been extensively studied during the years in terms of crack initiation and,
in case of Mode I, also bridging contribution.

Since composite structures are often subjected to tensile and shear loads, a complete study
of delamination under Mixed Mode conditions is mandatory. Up to now, as shown in the
ASTM, only the critical energy at crack initiation is used to design composite structures but
no predictions are available about crack propagation with bridging. In order to obtain a com-
plete overview of the crack propagation and to provide additional information about composite
toughness under Mixed Mode conditions, large scale bridging effects must be characterized.

This work aims to provide the experimental fracture initiation values for unidirectional CFRP
and to reveal an innovative numerical tool able to model the whole fracture propagation, adding
the proper bridging contribution over a wide range of different mode mixities.

1.2 Objectives

A complete characterization of the delamination process in Carbon Fiber Reinforced Polymers
(CFRP) under Mode I and Mode II conditions has been already studied, both in terms of crack
initiation and bridging contribution [3]. It is well described the important influence of bridging
in Mode I and its absence in pure Mode II delamination. In the first case, bridging contribution
is extensive, heavily conditioning the crack propagation and the local stresses. For a typical
Double Cantilever Beam (DCB) test, the amount of energy provided by the bridging tractions
deeply affects the load-displacement curves and slows down the crack propagation, due to the
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increase of fracture toughness. In the second case, a four-point bend End Notched Flexure test
(4-ENF) shows the absence of bridging, revealing a flat energy release rate (ERR) and, therefore,
no toughening processes acting during crack propagation.

The objective of this work consists in obtaining a whole characterization of the delamination
process in Mixed Mode, both in terms of fracture initiation values and bridging contribution.
In order to achieve this objective, several steps must be completed, such as:

• Validate of Mixed Mode Bending setting (MMB), used to impose the required mode mixity
during the experiments.

• Stability check of crack propagation over different mode mixities.

• Calculate the ERR at initiation Gc according to the ASTM specifications.

• Embed multiplexed Fiber Bragg Grating sensors (FBGs) in the carbon specimens, in
order to measure the internal strains and, indirectly, to obtain the corresponding bridging
tractions acting on the crack plane.

• Validate of a numerical Finite Element Model (FEM), by using cohesive elements, able to
simulate the crack propagation over a wide range of mode mixities, taking into account
the corresponding bridging contribution.

• Find a correlation between the angle β, which represents the orientation of the bridging
tractions due to the presence of shear and tensile components, and the global mode mixity.

1.3 Outline

In Chapter 2, literature about Mode I, Mode II and Mixed Mode delamination, fibre bridging
and optical fibers is reviewed. This represents the state of the art of the actual research and the
basis to start our work.

Chapter 3 combines all the main practical aspects: it describes the material manufacturing,
the measurement systems, the testing machine, the working principle of the FBG sensors and
the cohesive elements.

Chapter 4 discusses the experimental results obtained in pure Mode I, Mixed Mode at 20%,
30%, 40%, 60% and pure Mode II. The influence of the applied mode mixity on the fracture
toughness Gc and on the corresponding bridging contribution is analyzed. These results repre-
sent the basis to implement a numerical model.
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Chapter 5 describes the numerical model. It provides a detailed overview about the standard
Mixed Mode numerical approaches, revealing their limitations and issues, and describes an
innovative cohesive law formulation which better represents the experimental results.

In Chapter 6 a complete comparison between the experimental results and the numerical
ones obtained by using three different approaches is shown. This part well points out that the
standard FE Models are not suitable to properly represent the experimental curves and the
development of bridging tractions.

Chapter 7 includes the conclusions and the main goals of this work, combined with the
suggestions for a future development.



Chapter 2

State of the art

Delamination in composites is still a challenging topic in mechanics and materials research field.
Several studies have been published up to now with the target of obtaining a better under-
standing about the mechanisms which control the propagation of delamination. This chapter
aims to provide a complete overview of the current literature about Mode I, Mode II and Mixed
Mode delamination, plus the bridging tractions and their contribution to fracture toughness.
The Fiber Bragg Grating sensors are also described since they represent a fundamental and in-
novative tool extensively employed in this work, which allows to shed light on the delamination
process.

2.1 Delamination in composites

An extensive amount of literature on delamination in composites and the correlating results is
provided by review papers [4, 5] and textbooks [6]: the fracture mechanics theory is fundamental
for an in depth comprehension of the topic [2, 7].

Delamination in composites can occur for several different reasons reducing the stiffness and
the reliability of the components. Damage initiators are represented by drilled holes [8], local
impacts or internal defects [9, 10, 11]. The fact that composite materials are nowadays widely
used, makes delamination a hot topic, for all the researchers involved [12, 5].

The initiation of delamination and its propagation are influenced by several parameters,
such as ply thickness and fibers orientation [13, 14]. The Young’s modulus is another important
parameter to take into account since it has been shown that fracture toughness under Mode I and
Mixed Mode conditions decreases as the fibre modulus increases [15]. Fatigue and monotonic
loading need to be separated since, in composite materials, they may cause a different behavior
in terms of delamination process and damage initiation [16, 17, 18]. Temperature and moisture

5
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also have an important influence and must be kept under control in order to obtain repeatability
on the experimental results [19].

A fundamental approach to describe, analyze and predict delamination is represented by the
numerical simulation based on the Finite Element Method (FEM) [20]. By using the virtual
crack closure technique [21], we are also able to calculate both the energy release rate and the
mode mixity. In order to simulate a crack propagation, cohesive elements provide an extremely
interesting tool for several different delamination cases [22, 23]. Cohesive elements are placed
in the crack propagation path and their behavior is set by multiple parameters such as the
initial stiffness, the ultimate strength, the corresponding energy and the linear or exponential
stress degradation. All these parameters are chosen according to the material properties and
fracture modes [24, 25]. This kind of approach, thanks to its flexibility, is used to simulate the
delamination process under Mode I, Mode II and Mixed Mode conditions, both for monotonic
and fatigue loads [26, 27].

2.2 Delamination tests

During the past years, specific tests and settings have been developed for Mode I, Mode II and
Mixed Mode delamination tests, in order to standardize and compare the final results in terms
of ERR. Brunner et al. [28] reviewed several methods for testing the fracture toughness.

In case of Mode I delamination, the Double Cantilever Beam setting (DCB) is widely used
and accepted as a reference. The specimen is symmetrically loaded at the end of the beam.
Load, displacement and crack length are simultaneously monitored. The corresponding ASTM
standard [29] describes in detail all the steps to be followed to perform a quasi-static delamination
test. Another standard [30] has been developed for Mode I fatigue tests. An analytical model,
able to represent the phenomenon, is well described by Camanho et al [31]. A close analytical
solution to calculate the stress intensity factors for a double cantilever beam is also present in
literature [32]. A correction in the calculation of the GIc must be also taken into account since
the assumption that the two beams behave as a built-in cantilever is not accurate [33].

A standardized procedure for Mode II delamination is still lacking. Problems related with
crack growth and position monitoring are the main reasons why an accurate calculation of GIIc is
not trivial. If in Mode I tests the crack tip is clearly visible, with pure shear the crack detection is
more problematic [34]. There are three fundamental experiments to measure GIIc. The first and
most common is the End Notched Flexure test (ENF) [35, 36], initially developed for wooden
materials characterization. It is easy to implement since it consists in a three point bending
test but the disadvantage is represented by an unstable crack propagation and a non-constant
flexural moment over the crack path. In order to improve the stability of crack propagation,
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some changes have been proposed [37]. Another setting to characterize Mode II delamination,
called End Loaded Split test (ELS), is based on a cantilever beam geometry which provides a
larger range for crack propagation [38]. A third method is represented by the four-point End
Notched Flexure test (4ENF) which allows for a constant moment zone between the two upper
pins and, therefore, for a more stable crack propagation [39, 40]. The 4ENF setting has been
used in this work for the characterization of Mode II delamination. For the aforementioned
tests, friction contribution must be also taken into account [41, 42].

A Mixed Mode delamination setting is been recently standardized to determine the inter-
laminar fracture toughness of unidirectional fiber composites [43]. In the past years, a large
amount of different settings to perform Mixed Mode tests has been presented, trying to find
a combination between Mode I and Mode II setup. Figure 2.1 shows all the different types
of apparatus for Mixed Mode delamination tests. The Cracked Lap Shear setting (CLS) is
composed of a specimen where the load is applied to a single arm [44, 45]. The Edge Delamination
Tension (EDT) specimen combines Mode I and Mode II contributions due to the particular layer
layup (± 35/0/90) and the consequent mismatch in the Poisson’s ratio [46]. Another Mixed
Mode test is represented by the Arcan configuration, where the specimen is bonded to a rigid
support and then loaded with different angles in order to produce the desired mode mixity [47].
A variation of the standard DCB test has been proposed by Bradley and Cohen [48], consisting
in a different loading system for the two beams. A wide range of possible Mixed Mode conditions
can be achieved from pure Mode I to pure Mode II. Another Mixed Mode setup is proposed
by Russell and Street [19], who fabricated unsymmetrical specimens to impose a local mode
mixity. Several different settings and analytical methods implemented to obtain the critical
energy at crack initiation in Mixed Mode have been explored and reviewed by Hashemi [49],
splitting the critical energy Gc into the corresponding Mode I and Mode II components. The
last and currently most used setting, able to reproduce a wide range of Mixed Mode conditions,
is represented by the Mixed Mode Bending test (MMB) developed by Reeder and Crews [50].
Starting from a three point bending configuration, an upper bar is added in order to allow for
the Mode I component. Pure Mode II is obtained if the load is placed over the central pin
while pure Mode I is reached when the crack front reaches the last pin. This means that, by
changing the lever arm length, it is possible to apply a full range of Mode I/II ratios. Stability
and instability of crack propagation are a function of the initial crack length and applied mode
mixity. Additional attempts, aiming to improve the stability of the crack propagation, are
described by Martin and Hansen [51].

In order to develop a criterion able to predict the failure under different Mixed Mode condi-
tions, by collecting the experimental data from pure Mode I/II tests and the intermediate mode
mixities, a lot of effort has been devoted during the past years. A classic form based on energy
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release rate [52, 53], able to predict the delamination initiation, is expressed as:

(
GI

GIc

)m

+
(

GII

GIIc

)n

+ k

(
GI

GIc

) (
GII

GIIc

)
= 1 (2.1)

where m,n and k are coefficients to be determined from the experimental results. Another
criterion developed by Benzeggagh and Kenane [54], aims to fit the experimental critical energies
Gc as a function of the applied mode mixities μ, by using the following formula:

Gc = GIc + (GIIc − GIc)μη (2.2)

where μ = GII/(GI+GII) represents the mode mixity and η the fitting parameter.

2.3 Bridging and cohesive law

When a delamination propagates in a unidirectional carbon fiber composite material, it is com-
mon to see fiber bundles bridging the crack faces. In this case, the delamination involves a
first narrow process zone which represents the cracked matrix zone failure plus a second larger
region in which bridging fibers cross the crack front, providing additional tractions. This phe-
nomenon, called fibre bridging, provides an additional energy to be dissipated during the crack
propagation, thus acting as a toughening process. The reasons and the way how fibers pull-out
develops can be determined by studying the micro-mechanical processes, close to the crack tip.
Defects, porosity, layers compaction and moisture may affect the amount of bridging developed
during the delamination process [55]. A review article by Bao and Suo describes several aspects
involved in the bridging development [56].

By implementing a micro-mechanical model, the shape of the bridging tractions has been
established. Highest normal stresses act very close to the crack tip while they quickly decrease
as the crack opening displacement increases [57, 58]. In case of small scale bridging and uniform
tractions, the Dugdale model is adequate but it fails if large scale bridging occurs [59].

Experimental observations show that fibers misalignment in composites influences the bridg-
ing process and, consequentially, the corresponding energy contribution. Specimen geometry
effects are also important [60].

The bridging tractions, acting between the crack faces, can be derived by using indirect
methods, by experimentally measuring the crack opening displacement (COD) or the strains
over the bridging zone [61, 62, 63, 64].

Delamination can also occur in z-pinned laminates. This technique aims to increase the
fracture toughness, introducing fibers in an out of plane direction, which link two adjacent
layers. It is shown that a bi-linear cohesive law well describes the delamination process in terms
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Figure 2.1: Mixed Mode apparatus
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of load-displacement curves and ERR [65, 66]. This kind of approach is used and checked for
Mode I, Mode II and Mixed Mode delamination [67, 68, 69].

2.4 Fiber Bragg Grating sensors

Optical Fiber Bragg Grating sensors (FBGs) have received a lot of attention during the past
years due to their innovative characteristics, to measure strains and temperature variations in
composite materials. The Bragg grating consists in a periodic variation of the refractive index
along the optical fiber, so that if a broad band source light travels through it, a narrow part of
the whole spectrum is reflected. Discovered and developed by Hill et al. in 1978 [70], the sensor
works as a spectral filter, changing characteristics when a variation of strain or temperature is
applied. The reflected spectrum is centered in the so-called Bragg wavelength. A very important
contribution to the optical Bragg fibers development comes from Meltz et al. [71], who managed
to introduce the grating by using a phase mask.

FBG sensors have been used for multiple purposes, such as the monitoring of composite
materials during the curing process [72], the moisture absorption and hygrothermal aging in
epoxy [73, 74], the presence of local damages due to impacts [75, 76], the measurement of
strains for nautical applications [77] or to detect acoustic emissions [78]. FBGs are also used for
structural health monitoring for aerospace/aeronautical applications [79, 80, 81].

Review articles are also available to get additional information about the optical theory
[82, 83].

Optical fibers are often embedded in composite materials and used as strain gauges. This
means that optical fibers act as an inclusion for the surrounding material. It is shown that the
optical fibers, due to the small diameter equal to 125μm, do not influence the crack propagation
and the ERR, in particular if they are embedded in the direction of the reinforcing fibers and
if the ply thickness is higher than the optical fiber diameter. A good compromise is to embed
the optical fiber at distance from the crack plane at least double than the fiber diameter [84].
Influences, due to the presence of optical fibers, are verified when they are embedded too close to
the crack plane, in particular in case of fatigue tests and in cross-ply laminates [85, 86, 87, 88].

2.4.1 Multiplexed sensing

FBG sensors represent a very interesting tool, able to accurately measure strains or a tempera-
ture variation. A main limitation consists on the fact that, in a real structure, there are several
different spots to be monitored while the optical fibers provide the measurement just in a single
spot. There are two different ways to measure strains at the same time over different locations,
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Figure 2.2: Multiplexed sensing, serial and parallel scheme

by using a parallel or a serial approach [89, 81], as shown in Figure 2.2.

Both schemes work by using a single broad band light source and detector. In the parallel
scheme, the source light is split through different fibers and the reflected spectra are coupled
and detected at the same time. This technique allows for measurements in different locations of
the structure, even far from each others, but it increases the inclusions due to the optical fiber
presence.

In the serial one, the light propagates through a single fiber where multiple Bragg gratings
are inscribed. In this case, only one fiber is needed, reducing the issues related to the presence
of several optical fibers embedded. A drawback is that strains are measured only over the fiber
path [90].

In both cases, serial and parallel, the Bragg gratings inscribed must reflect different wave-
lengths in order to avoid overlaps on the reflected spectra and, thus, issues on the peak detection
computed by the electronic device. Note that, too close reflected wavelengths may bring to an
overlap during the acquisition process, due to different strain profiles over the sensors array.

The spatial distance between two Bragg sensors can be reduced up to 2mm, while the sensor
length up to 1mm. Such a spatial resolution, combined with the possibility to have several
sensors over a single fiber, allows for measuring the strain profile over very small regions.
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2.5 Summary

Composite materials, due to their increased importance in multiple applications and the issues
represented by their brittle failure, still represent a very interesting and challenging research
field for worldwide engineers. Several efforts have been devoted to study Mode I and Mode II
delamination processes by using advance measurements techniques and numerical simulations.
Nonetheless, an important contribution must be still provided to better characterize the Mixed
Mode delamination, especially if large scale bridging occurs. The delamination tests performed
in Mode I, Mode II and Mixed Mode, the optical fibers equipped with Bragg grating sensors
and the numerical models, represent the basis to shed some light on this challenging topic.



Chapter 3

Materials and methods

The goal of this chapter is to provide the fundamental information about the materials and
techniques used during the whole project. In particular the specimens preparation, material
layup, the main steps to properly embed the optical fiber, the experiments definitions and the
data reduction are described. This part is essential due to the important influence on the
repeatability of the final results. Finally, an introduction to cohesive elements involved in the
numerical model is presented.

3.1 Material properties, manufacturing and testing parameters

The material used for the tests described in this work consists in unidirectional carbon fibre layers
combined with epoxy resin SE 70 from Gurit SPTM. It comes as prepreg, which means the resin
is already mixed with carbon fibers. The use of prepregs is very common and useful when strong
process reliability is required, since the resin amount is fixed and homogeneous, unlike the wet
layup where the operator is in charge to manually distribute the resin. The fibre volume ratio
after curing is kept constant over all the different fabricated batches. The material comes as
a big roll protected by a plastic film on both sides in order to avoid any contamination with
moisture or dust. To improve the protection against moisture contamination, the roll is stored
in an additional external sealed bag and vacuum is applied. These precautions are fundamental
since a moisture contamination can deeply affect the delamination behavior, preventing the
possibility to compare the experimental results obtained from different batches. The carbon roll
is finally stored in a fridge at -18°C, up to the expiring date.

Specimens are prepared by stacking 20 layers of carbon-epoxy prepreg. The roll is cut into
sheets of 200 × 200mm. The single layer thickness � 0.2mm is approximately provided by the
material data sheet, thus a plate � 4mm thick is normally obtained. All the layers are stacked

13
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Aluminum plate

Composite

Aluminum frame 3.95 mm thick

Vacuum bag

3 bars extra pressure

Figure 3.1: Material manufacturing, layout for curing in autoclave

sequentially with the same fiber direction. Vacuum is applied every five layers for ten minutes
to remove air bubbles and improve material compaction. A PTFE film 13μm thick and 50mm

long is placed in the middle of the stacking sequence, between layer 10 and 11, in order to create
a crack initiator. This material allows the perfect separation of the two crack faces since it
doesn’t react with the epoxy resin.

Once the stacking sequence is completed, the material is placed on the autoclave hot plate,
using a release film as support. The exact final thickness is obtained by using a surrounding
aluminum frame 3.95mm thick and a very rigid aluminum plate on top. The plate rests on the
external frame and on the material at the same time, improving compaction and final surface
quality as shown in Figure 3.1. The vacuum bag is finally added to improve compaction and
remove bubbles during the curing process. Once all the steps are correctly completed, the
autoclave is turned on and temperature is properly set according to the material data sheet.
Figure 3.2 shows the whole curing cycle, with an initial temperature ramp and a plateau kept for
13 hours. The initial ramp is very slow to allow a homogeneous heat flow through the thickness.
Two additional thermocouples are added to monitor the temperature over different regions of the
plate. In addition to the vacuum, which is kept all over the curing cycle, 3 bars extra pressure
is applied. After several pilot tests and attempts, the described fabrication setting is found to
be the best in terms of quality and reproducibility.

The quality of the plate after curing and the repeatability of the process is mandatory
to compare strains, load profiles and fracture behavior for specimens coming from different
batches. In order to reach such a goal, several attempts have been made to check the influence of
parameters such as frame thickness and extra pressure. Figure 3.3 shows two transverse sections
of the cured material, obtained by a high resolution microscope able to capture the presence of
voids and compaction quality. In Figure 3.3(a) the material is fabricated with a 4.05mm frame
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Figure 3.2: Curing cycle for composite fabrication. Vacuum and 3 bars extra pressure applied

E1 [MPa] E2=E3 [MPa] υ12=υ13 υ23 G12 = G13[MPa] G23 [MPa]
Composite 118700 7725 0.314 0.427 3837 3121

Table 3.1: Material properties

thickness and applied vacuum during the curing, while Figure 3.3(b) shows a plate made by
using 3.95mm frame thickness and 3 bars extra pressure to improve the compaction. In the
second case, the amount of internal voids is almost negligible and the compaction of the layers is
also improved. The difference between the two techniques is significant and it shows how much
attention must be paid during the whole fabrication process to assure such a quality result.

The final thickness of the plate is 3.9mm. This is found to be well reproducible between
different batches. The small difference with the aluminum frame thickness is due to the thermal
shrinking after curing.

Once the fabrication process is defined, tensile and bending tests are carried out in order
to obtain the material properties such as the elastic and shear moduli and the Poisson’s ratio.
Table 3.1 shows the material properties obtained from the experiments and then used for the
numerical models.

The optical fibers used during the tests are wavelength multiplexed, composed by ten Bragg
gratings. These gauges reflect ten different wavelengths of the coupled broadband light source.
This gives the opportunity to obtain information about local strains in different regions at the
same time during the delamination test. In this specific case, the distance between each sensor
is 3mm and the Bragg grating length is only 1mm, which allows a very local measurement.
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(a) (b)

Figure 3.3: Transverse sections of a carbon plate fabricated with (a) 4.05mm frame thickness
and applied vacuum, (b) 3.95mm frame thickness, vacuum and 3 bars extra pressure

L=200mm
50mm

PTFE

Bragg sensors Optical fiber

~3.9mm

0.195mm

Figure 3.4: Schematic layout of a specimen with embedded optical fiber

The fabrication with embedded optical fibers requires additional precautions. The FBG sensors
are surrounded by an external coating all over the fiber for better handling toughness. By
using sulfuric acid, the coating is removed over the Bragg grating region to obtain a better
adhesion with the surrounding material, improving the measurement accuracy. After this step,
the fiber is placed on the prepreg, setting the required sensors position. The optical fiber is
placed between layer 19 and 20, which means 9 layers over the crack plane. This position is
chosen as a compromise between the requirement of measuring very local strains close to the
crack tip and to avoid local discontinuities, due to the presence of bridging fiber bundles pulled
out. On the edge of the plate, the exit points of the optical fibers are covered by shrinkable
sleeves to protect them from fracture. The connectors are covered by L-shape metallic profiles.
The schematic layout of the embedded optical fiber in the specimen is shown in Figure 3.4.

Figure 3.5 displays a polished cross section of a specimen with an embedded optical fiber.
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Figure 3.5: Specimen cross section with an embedded optical fiber

The FBG sensor is placed between two layers and well surrounded by carbon fibers. In this
section no relevant voids, which may affect the measurement, are present close to the optical
fiber.

3.1.1 Specimen preparation

The 200×200mm unidirectional carbon plate, at the end of the curing process, is cut by using a
diamond disc to obtain specimens of 25mm in width. The presence of water during the cutting
procedure assures low local temperatures and allows for reducing the amount of carbon particles
for health reasons. Each specimen side is painted white by an ultra-thin acrylic layer. Markers,
obtained by scratching the white paint with a sharp blade, are added every 1mm, to monitor
the crack propagation during the experiments. In order to connect the specimen to the loading
machine, steel blocks are added, differently for Mode I, Mode II and Mixed Mode tests, on the
specimen surface by using epoxy resin. The steel blocks, used for Mode I and Mixed Mode tests,
have a dimension of 10×10×25mm while for the Mode II case the block has a triangular section
to constrain the horizontal axis during the bending test. Figure 3.6 shows two specimens for
Mode I (a) and Mode II (b) delamination test equipped with the corresponding steel blocks and
markers.

Before any test, the crack must be initiated in order to overcome the pop-in effect due to the
rich resin zone present at the end of the PTFE film. The specimen is clamped in a vise 4mm
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after the PTFE layer in order to stop any unstable crack propagation and a wedge is inserted to
allow the crack to start. This technique allows an accurate control of the initial crack advance
and a good repeatability of the process.

If an optical fiber is embedded, attention must be paid to avoid any damage. The fiber is
kept in the middle of the specimen width and one side of the optical fiber is cut, which is used
as reference to determine the FBG sensors positions, by using an OLCR measurement system,
as described in section 3.3.1.

3.1.2 Testing machine and settings

Mode I, Mode II and Mixed Mode bending tests are run on the same Walter+Bai AG EC80-
MS� testing machine able to monitor the applied displacement and load. This last is measured
by a 1kN load cell previously calibrated and no extra moments are applied on it, to ensure
the reliability of the measurement. The acquisition sample rate is set to 10Hz for all the tests,
which is found to be more than sufficient for quasi-static applied loading.

All the tests are performed in constant displacement control. The applied displacement rate
is different depending on the delamination tests, since this parameter has an important influence
on the crack propagation stability. For Mode I tests, a DCB setting is used and the displacement
rate set to 1.2mm/min that is in the range 0.5 − 5mm/min proposed by the ASTM standards
[29]. For Mode II tests there are no standards, thus a lower value equal to 0.6mm/min is
found to be experimentally suitable to improve the stability of crack propagation by using a
4ENF setting. The stability of crack propagation in Mixed Mode delamination tests strongly
depends on the applied mode mixity. Thus, the corresponding displacement rate is changed,
from 1.2mm/min at μ = 20% up to 0.6mm/min for μ = 30% − 60%.

Table 3.2 resumes all the displacement rate values used during the experiments.

Setting test DCB MMB MMB 4ENF
Mode Mixity [%] Mode I 20 30,40,50,60 Mode II

Displacement rate [mm/min] 1.2 1.2 0.6 0.6

Table 3.2: Testing machine displacement rates

Mixed Mode Bending setting (MMB), shown in Figure 3.7, is widely described in the ASTM
standard [43] which provides all the necessary steps to properly perform the delamination test.
Here, the necessary equations, to impose the desired mode mixity by changing the C-arm,
are summarized. The C-arm is a function of the material properties, specimen thickness and,
obviously, the applied mode mixity as following:
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Figure 3.7: Mixed Mode Bending setting

C =
12β2 + 3α + 8β

√
3α

36β2 − 3α
· L (3.1)

where L is the half span and α and β are parameters given by:

α =
1 − GII

Gtot

GII
Gtot

(3.2)

β =
a + χh

a + 0.42χh
. (3.3)

where h is the half thickness, the term GII
Gtot

represents the desired mode mixity, a is the crack
length and χ is:

χ =

√√√√ E11

11G13

{
3 − 2

( Γ
1 + Γ

)2
}

(3.4)

with:

Γ = 1.18
√

E11E22

G13
. (3.5)

In the standard, the half span L is proposed to be ∼ 50mm, to avoid geometrical non-
linearities. In this work, L is set equal to 90mm in order to increase the crack propagation
range and to better evaluate the bridging contribution. Any non-linearities are verified by the
unloading curve at the end of the test, when the applied displacement is maximum. Even if the
displacement value is high, the non linearity is found to be negligible as shown in Figure 4.19.
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Mix mode conditions 20% 30% 40% 60%
C-arm [mm] 178.5 118 91.5 65

Table 3.3: MMB setting: C-arm length as a function of the applied mode mixity

In table 3.3, the C-arm lengths for all the tested mode mixities are collected.

In order to avoid any friction contribution on the loading pins, ball bearings are used and
the connections, between the machine and the steel blocks bonded on the specimen, are treated
with grease. The displacement is applied on the upper bar in two points, by using a fork. This
contact must be perfectly balanced by using thin shims in order to avoid any rotation of the bar
and, thus, an uneven crack front.

3.1.3 Crack measurement

The measurement of crack length is obtained by using two high resolution cameras, focused on
the markers made on both sides of the specimen. This allows for averaging the crack length value
in case of differences between the two sides. The sampling rate is set at 1Hz, which ensures
several images for each crack advance and, therefore, a precision of about ±0.5mm.

Figure 3.8 shows that the crack profile is not perfectly straight but has a curved shape
through the specimen width due to the transition from plane stress to plane strain. Crack
length is thus different if measured on the side or in the middle of the specimen. However this
difference is small (∼ 1.5mm) and is kept constant during the crack propagation. This means
that the calculation of ERR is not affected, since it depends on the derivative dC

da and it is not
linearly related to the absolute crack length value (see section 3.2 ).

3.2 Experimental energy release rate

The following explanation is based on Griffith theory [91], the first to assume that the presence of
defects inside the material may lead to stress concentrations and premature breakage. Assuming
a cracked plate with linear elastic material properties, loaded by a remote load P and with a
crack inside, as shown in Figure 3.9, the corresponding total energy Ψ is calculated as [7]:

Ψ = Π + Ws (3.6)

where Π represents the potential energy of the system and Ws is the work spent during crack
propagation to create new surfaces. The term Π is defined as:
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Figure 3.8: Crack front for a Mixed Mode delamination test
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Figure 3.9: Crack in Griffith theory
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Π = U − F (3.7)

where U is the strain energy and F is the work provided by the external load P. This can be
expressed as:

F = PΔ (3.8)

where Δ represents the applied displacement. Since the material is linear elastic, the strain
energy can be written as:

U =
ˆ Δ

0
P (Δ)dΔ =

1
2

PΔ (3.9)

Substituting the equations 3.8 and 3.9 into 3.7, Π becomes:

Π = −1
2

PΔ (3.10)

The energy derived by the creation of new surface during crack propagation is linearly
dependent with the crack length a as following:

Ws = 2γa (3.11)

where γ is a constant coefficient.
The crack initiation depends on the total energy first derivative with respect to crack surface

A and it is defined as:

dΨ

dA
=

dΠ
dA

+
dWs

dA
= 0 (3.12)

where A = a · B. The condition for an unstable crack involves the second derivative as:

d2Ψ

dA2 =
d2Π
dA2 +

d2Ws

dA2 < 0

in which the term d2Ws
dA2 = 0 because dWs

dA is a constant.
The term −dΠ

dA has been defined as the Energy Release Rate (ERR) by Irwin in 1954 [92],
also called as crack driving force. It can be written as:

G = −dΠ
dA

(3.13)

Substituting the equation 3.10 into 3.13, the ERR becomes:
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G =
P 2

2B

dC

da
(3.14)

where the compliance C = Δ
P .

3.2.1 Compliance method

The definition of ERR from equation 3.14 involves the variation of compliance with respect to
the crack length. This relation can be derived from the beam theory equation as suggested
by the ASTM standards. Unfortunately the analytical approach provides accurate results only
for very simple cases and it may be inadequate if bridging, friction or large displacements are
present. For this reason, compliance calibration method is widely used to obtain the ERR from
experimental results. It consists of fitting the experimental compliance versus crack length, by
using a 2nd degree polynomial or a power law expression. Since, when derivatives are involved
on experimental data, a lot of attention must be paid not to introduce noise and errors, a power
law expression with 3 coefficients is used in order to provide the best possible fitting. The
compliance expression becomes:

C = m + naρ (3.15)

where m, n, ρ are the fitting parameters and a is the crack length.

If the experiment is affected by crack jumps or if the bridging influence is very strong, the
compliance calibration may fail. This means that the Equation 3.15 is not able to properly
represents the experimental compliance. If this happens, the derivative of the compliance will
introduce significant errors in the final ERR calculation. Figure 3.10(a) shows an experimental
compliance versus crack length fitted by a 2-terms (C = naρ) and 3-terms (C = m + naρ) power
law. Figure 3.10(b) highlights the behavior of the compliance derivatives dC/da. Even if the
quality between the two compliance fittings doesn’t seem to be that different, the derivatives
show complete different values causing non-negligible errors on the ERR calculation.

The use of high degree polynomial expressions will improve the fitting quality in terms of
total residuals but it also increases local fluctuations, in particular in the first part which strongly
affects the derivative. The 3-terms power law is found to be the most reliable expression in terms
of fitting quality and stability of the derivative evolution.
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3.3 Measurements by fiber Bragg grating sensors

Optical fibers provide the strain field around the crack tip and all over the bridging zone. They
represent a key tool which allows to indirectly measure the bridging tractions in Mode I, Mode II
and Mixed Mode delamination. The Multiplexed FBGs acquisition is performed by the Micron
Optics® electronic device. An OLCR measurement is performed before the delamination test
in order to detect the exact sensors position with respect the edge of the specimen. A good
choice is to place the FBG sensors in a zone where the bridging is completely developed. In
order to obtain a rough measurement of the maximum bridging length, a preliminary DCB test
is performed to extract the ERR curve as a function of the crack increment. The beginning of
the ERR plateau represents the complete development of bridging since the energy contribution
is subsequently kept constant.

The optical fibers are composed by a 9μm core, made by silica doped with germanium for
a better refractive index plus an external cladding (125μm diameter, pure silica). In order to
improve the mechanical properties, an external coating made of acrylate is added (Figure 3.11).
The slight difference between the core and cladding refractive indexes, allows for the propagation
of light along the fiber without any loss [82].

The Bragg sensor consists in a periodic variation of refractive index by exposing the core to
ultraviolet light. By changing the exposure time of the core to a laser beam, different kind of
Bragg sensors can be obtained. The effective core refractive index n(z) , along the axial z-axis
of the fiber, is described as:
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n(z) = n0 + Δnac(z)cos

(2π

Λ
z + θ(z)

)
+ Δndc(z) = neff + Δnac(z)cos

(2π

Λ
z + θ(z)

)
(3.16)

where n0 is the initial core refractive index, Δnac(z) is the amplitude index change, Δndc(z)
the mean index change, θ(z) the grating chirp, ηeff the effective reflective index and Λ represents
the grating period.

When a broadband light is coupled into the fiber, the Bragg wavelength λB,0 is reflected
according to the formula:

λB,0 = 2ηeff · Λ0 (3.17)

By applying a strain to the optical fiber, Λ changes and, consequentially, λB. By monitoring
the reflected wavelength, it is possible to obtain the applied strain. The relationship between
multi-axial strains and λB is derived from the formula:

λB − λB,0

λB,0
= εz +

n2
eff

2
[p11εx + p12(εx + εy)] + (αf + ξ)ΔT (3.18)

where p11 ≈ 0.112 and p12 ≈ 0.252 are the Pocket’s optic constants [93], αf = 0.5 · 10−7◦C−1

is the thermal expansion coefficient, ξ = 8.916 · 10−6°C−1 the thermo-optic constant [94], ΔT

the temperature variation and εx, εy, εz are the mechanical strains, according to Figure 3.12.

In case εx, εy are small comparing to εz:
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εx = εy = −υf εz (3.19)

Combining eq. 3.18 with eq. 3.19 we obtain:

pe =
n2

eff

2
[p12 − υf (p11 + p12)] (3.20)

The term pe represents the Pockel’s photo elastic coefficient taking into account the radial
strains due to Poisson’s coefficient. Thus, the following formula correlates the peak shift λB to
the axial strain εz by assuming that the equation 3.19 is valid:

λB − λB,0

λB,0
= (1 − pe)εz + (αf + ξ)ΔT (3.21)

The value pe can be experimentally obtained by loading the optical fiber with suspending
weights and measuring the wavelength shift, since the applied axial strain εz is derived by the
Young’s modulus while the temperature is kept constant [95]. The experimental obtained value
is pe = 0.2148.

The reflected Bragg wavelength consists in a narrow spectrum if Λ(z) is constant along the
fiber grating. If uniform loads or temperature variations are applied, the peak λB shifts as
shown in Figure 3.13(a). If the presence of axial loads causes a deformation of the fiber section,
from circular to elliptical, or if a strain gradient is applied on the grating, the refractive index
is not unique anymore and the fiber is called birefringent. The reflected peak is split, creating
problems for the λB detection and making the measurement less accurate (Figure 3.13(b)).

In this work the acquisition system is performed by the Micron Optics® electronic device.
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Figure 3.13: Reflected FBG spectrum from (a) homogeneous strain field and (b) non-
homogeneous strain field

The implemented peak detection algorithm allows a sampling rate up to 1000Hz. For our tests
the sampling rate is decreased to 10Hz since the applied load is in quasi-static conditions.

3.3.1 Optical Low-Coherence Reflectometry

Optical Low-Coherence Reflectometry (OLCR) represents a measurement optical system in
which the sensor consists in a very long Bragg grating, in contrast with the classic FBGs where
the grating is kept as small as possible in order to get a high precision for local strain mea-
surements. This method allows the measurement all over the Bragg sensor, without all the
limitations of having a finite amount of discrete sensors. In this section the working principle
and the advantages and disadvantages are analyzed.

The working principle of the Bragg grating is identical to the one described in section 3.3
with the advantage of a higher reflected spectrum intensity due to the longer grating. Since the
grating spacing is constant, the reflected spectrum consists in a unique peak centered on the
initial Bragg wavelength. The high length of the grating allows for the presence of non-uniform
strains on and thus different grating spacing on the fiber. In this case the reflected spectrum
will show multiple peaks, one for each wavelength activated by the local strains, with different
intensities depending on the Bragg zone length involved. This is due to the fact that the intensity
of the reflected spectrum depends on the grating length.

Unfortunately for the Bragg gratings, the reflected spectrum has no spatial information,
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meaning that there is no correlation between a wavelength peak and the corresponding location
along the fiber. For this reason the Optical Low-Coherence Reflectometry is needed, since it
allows for associating the strains to the actual position on the fiber.

In case of perfect fiber without any loss, the evolution of forward and backward propagating
field envelopes come from the following equations:

du(z, δ)
dz

= iδu + q(z)ν (3.22)
dν(z, δ)

dz
= −iδν + q ∗ (z)u (3.23)

where q(z) is the complex coupling coefficient, δ = β − π
Λd

is the wave number detuning, β =
2πηeff

λd
is the propagation constant and q ∗ (z) is complex conjugate of q(z). The corresponding

amplitude | q(z) | and phase Φq(z) are given by:

| q(z) |= ηπΔηac(z)
λd

(3.24)

Φq(z) =
π

2
+ θ(z) − 2ηk

ˆ z

0
Δηdc(z

′
)dz

′
(3.25)

where η is the fraction of modal power in the fiber core, k = 2π/λd and λd is the design
wavelength peak.

This method involves a broad-band light source and a Michelson interferometer. On one arm,
the interrogator works with the FBG under test while on the other side a broadband mirror
acts as reference. The source light is equally split in the two arms. The mirror can translate as
a function of the sensors distance and the so obtained signal is analyzed in terms of amplitude
h(τ) and phase . The spectral signal coming from the testing arm is calculated by applying the
Fourier transform to h(τ) while q(z) is obtained from the complex spectral response r(λ), by
using the layer-peeling reconstruction algorithm [96].

Figure 3.14 schematically shows the whole process. The laser and broad band light are
activated and the optical switch alternates the two flows. After the circulator, the light is split
in the reference and testing arm by a 3dB coupler. The reflected light coming from the two
arms interferes in the coupler only if the optical length difference is smaller than the coherence
length Lc = 25μm. By moving the mirror in the reference arm, the optical length changes until
the two signals are synchronized. The displacement �z, imposed to the mirror, is related to the
distance �z

′ at which the the optical fiber is interrogated, according to the formula:

�z
′

=
�z

ηg
(3.26)
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Figure 3.14: OLCR schema

where ηg is fiber refractive group index. By imposing a continuous displacement to the
mirror, the optical fiber can be scanned all over the long Bragg grating.

The local Bragg wavelength λB(z) is calculated by deriving the phase of the complex coupling
coefficient:

λB(z) = 2ηeff Λd

(
1 +

Λd

2π

dφq(z)
dz

)
.
−1

(3.27)

Inserting the equation 3.27 in 3.21, relation becomes:

λB(z) − λB,0(z)
λB,0(z)

= (1 − pe)εz + (αf + ξ)ΔT. (3.28)

The Bragg wavelength λB(z) is finally associated to a specific position of the mirror and
thus to the axial coordinate z on the fiber.

Figure 3.15 shows a typical signal from an OLCR test performed to obtain the exact position
of ten Bragg gratings inscribed on a multiplexed optical fiber, with respect to its end. The end
of the fiber is detected because it reflects a portion of the light spectrum and, therefore, provides
an additional peak.

The OLCR can be used to measure the strains during quasi-static delamination tests but the
biggest disadvantage is represented by the low speed of the acquisition. During the experiment,
indeed, the testing machine must be stopped for some minutes to allow the OLCR to complete
the measurement. Unfortunately, during this interval, the crack tends to propagate even if the
applied displacement is stopped and the measurements are consequentially affected.

In this work, OLCR measurements are performed only to get the precise sensors position
along the optical fiber, once it is embedded in the composite material. This measurement is
performed before the delamination test.
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3.4 Cohesive Elements

The numerical simulation for a delamination process can be performed by using cohesive ele-
ments. In this section, a general overview about cohesive elements is provided. The state of the
art and the main references are collected in Section 2.3.

The behavior of these elements, as shown in Figure 3.16(a), is characterized by a linear
initial part in which the stress increases with the applied displacement and by a second region,
representing the damage, in which the stress decreases down to zero. The relationship between
stresses and the crack opening displacements is the so called cohesive law. This is characterized
by the initial stiffness value K, the critical stress and corresponding displacement σc(δc) and the
total area Gc which represents the critical energy release rate. This king of cohesive law is able
to simulate fracture propagation if no toughening processes are involved.

When bridging occurs, the corresponding energy contribution must be taken into account.
This is possible by adding a trailing part, where the corresponding area represents the bridging
contribution Gb, as shown in Figure 3.16(b). In literature, this contribution mostly consists in a
decreasing linear trailing part. This approach is found to be appropriate if a load-displacement
curve fitting is required while it fails if a strain distribution, provided by the FBGs, has to be
predicted. For this second case, a non- linear decreasing part is found to be more accurate.
Bridging tractions are assumed to provide the maximum stress close to the crack tip, since the
bridging fiber density is higher, and to decrease their contribution as it moves far, following
a negative exponential trend. The bridging tractions σb can be written as a function of the
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distance z from the crack tip and defined by the maximum stress σmax, a coefficient γ and the
maximum length zmax for which the tractions decrease to zero, as indicated by the following
equation:

σb(z) = σmax · e−γz ·
(

1 − z

zmax

)
(3.29)

Figure 3.17 shows a schematic of the bridging tractions, acting on the specimen crack plane.
Since the relationship between the z coordinate and the crack opening displacement δ is obtained
by the FE Model, the bridging tractions σb(z) can be written as σb(δ), which represents the
bridging trailing part for the cohesive law. The bridging energy Gb is obtained by integrating
the tractions over δ as:

Gb =
δmaxˆ

0

σb(δ)dδ. (3.30)

The total energy release rate is obtained by adding the two contributions as follows:

Gtot = Gc + Gb. (3.31)

In order to properly simulate the interlaminar fracture process, the thickness of the cohesive
layer is set to zero, by collapsing the upper and the lower nodes.





Chapter 4

Experimental results

This chapter aims to show and discuss the experimental results obtained in Mode I, Mode
II and Mixed Mode delamination tests. The main characteristics of each setting are pointed
out. The delamination behavior in terms of load-displacement curve, crack advance and ERR
is discussed. The strains provided by the embedded optical fibers, used to indirectly identify
bridging tractions as described in Chapter 5, are also presented. The data from these tests
represent the basis to characterize the bridging tractions over a wide range of mode mixities.

4.1 Mode I delamination test

Mode I delamination has been already well described and investigated over the years in terms of
Gc and bridging tractions. ASTM standard [29] provides all the main information to properly
run the DCB test, as already described in section 3.1.2 . Figure 4.1 shows the specimen used
for the DCB test. The optical fiber is embedded in the upper part of the specimen.

The typical load-displacement curve is shown in Figure 4.2. After the rising linear part, the
crack propagates when G reaches the critical value Gc for the Mode I delamination. The crack
propagation is found to be very stable and smooth without any crack jump. This is mainly due
to the large extent of bridging, developed during the crack propagation.

The corresponding crack length, obtained by the markers on both sides of the specimen, is
shown in Figure 4.3(a). The difference between the two sides is almost negligible which means
the crack front propagates evenly. An averaged value between the two signals can be considered
as the actual crack length, as shown in Figure 4.3(b). Note that the value measured by the
markers is actually underestimated due to the curved shape of the crack front, as discussed in
section 3.1.3. The difference between the crack length measured by the external markers and
the one in the middle of the specimen is ∼ 1.5mm. A good compromise is to define the crack

35



36 4.1. MODE I DELAMINATION TEST

88.7mm

55mm

FBG sensors

Optical fiber

33.7mm

200mm

PTFE film

~3mm
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Figure 4.2: Mode I typical load-displacement curve obtained by a DCB test
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Figure 4.3: Mode I, crack length versus applied displacement obtained by markers; (a) mea-
surement on both sides, (b) averaged value increased by 0.75mm to take into account the crack
front curvature

length value as an average between the two values, which means to shift by 0.75mm the crack
length curve. From this point on, all the averaged crack length curves shown in this work take
into account this detail.

An accurate measurement of the crack length is extremely important in order to obtain a
reliable fitting of the compliance C versus the crack length a. By fitting the curve with a power
law, it is possible to analytically calculate the corresponding derivative dC

da to obtain the ERR.
Figure 4.4 shows the compliance versus crack length and the corresponding fitting curve. The
power law equation, as discussed in section 3.2.1, provides an optimal fitting over the whole
range of the experimental data.

The energy release rate, shown in Figure 4.5, is obtained by using the compliance calibration
method. The critical energy at initiation is found to be equal to Gc = 280 J

m2 . The rising
part of the curve well points out that large scale bridging occurs on the crack faces, increasing
the fracture energy up to a plateau around Gtot = 720 J

m2 . The difference between Gtot and
Gc represents the maximum bridging energy contribution Gb = Gtot − Gc = 440 J

m2 . Once the
bridging tractions are completely developed, the ERR curve becomes flat.

The bridging contribution Gb in Mode I delamination is found to be a relevant toughening
process since it represents ∼ 60% of the total energy Gtot. For this reason, bridging tractions
must be taken into account to properly simulate the crack propagation in a finite element model.

The load-displacement curve and, mainly, the ERR well indicate an important influence of
bridging. In order to obtain a visual evidence, a high resolution camera is used to show the
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Figure 4.6: Mode I, bridging tractions in the middle of the crack with the toughening process
completely developed

Sensor n° 1 2 3 4 5 6 7 8 9 10
Position [mm] 88.7 92.2 94.8 98.1 100.6 103.8 106.7 110.3 113.2 117.1

� [mm] 3.5 2.6 3.3 2.5 3.2 2.9 3.6 2.9 3.9

Table 4.1: Mode I: FBGs positions measured with respect to the edge of the specimen on the
crack side

bridging bundles acting between the two crack faces once the toughening process is completely
developed. Figure 4.6 shows a very dense and dark bridging area close to the crack tip which
indicates a high level of tractions. If we move far from the crack, the amount of bridging fibers
decreases. The approximation chosen to represent the bridging tractions, as discussed in section
3.4, equation 3.29, which implicates a negative exponential, comes from this assumption. Since
the delamination process is symmetrical, the direction of the bridging tractions is considered to
be normal with respect to the crack plane.

In a delamination process with large scale bridging, the tractions affect not only the behavior
of crack propagation and the ultimate load but also the curvature of the specimen and, therefore,
the strains along the bridging area. Multiplexed optical fibers represent an extremely important
tool able to monitor the strains inside the specimen. As explained in section 3.1, the optical
fiber is placed between the layer 19 and 20. The position of the ten sensors, with respect to
the edge of the specimen on the crack side, is measured by using the OLCR (see section 3.3.1),
as shown in table 4.1. Even if the optical fiber manufacturer indicates a 3mm spacing between
the Bragg sensors, the measurement obtained by the OLCR revealed that this value is accurate
with a scatter of ±0.87mm.

Figure 4.7 shows the strains measured by the ten FBGs as a function of the applied dis-
placement. The small dip at the end of the steep part of each curve is due to the stress field
perturbation generated by the crack tip. Consequently, this additional information can be used
as crack tip indicator. Figure 4.8 shows a comparison between the crack length visually mea-
sured by the markers on the side of the specimen and the one indicated by the embedded FBGs.
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Figure 4.7: Mode I, strains measured by Multiplexed FBGs as a function of the applied dis-
placement

It is found out that the crack length measured by the FBGs is ∼ 1.5mm higher, which perfectly
matches with crack front curvature analyzed in section 3.1.3. This comparison is a proof of the
high measurement accuracy provided by the FBGs.

In order to check the self-similarity of crack growth, the strain values are plotted in Figure 4.9
as a function of the crack length and then shifted to common crack tip position. The fact that
the strains in the bridging zone perfectly coincide, indicates that a self-similar crack propagation
occurs.

The strain values, measured when the crack tip coincides with the 10th Bragg sensor, are
plotted as a function of the FBGs position in Figure 4.10. This method allows to know the
strain profile over the crack plane and along the bridging area. This curve will be used in the
iterative optimization process (see Chapter 5), combined with the corresponding finite element
model, as objective function, in order to indirectly obtain the bridging tractions.
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Figure 4.10: Mode I, strain profile measured by the FBGs above the crack plane, along the
bridging zone

4.2 Mixed Mode Delamination tests

In this section, the experimental results obtained from 20%, 30%, 40% and 60% Mixed Mode
delamination tests are shown. The tests are performed by using the MMB setting according
to the ASTM standards [43]. The stability of the crack propagation and the repeatability of
the results represent an important issue in Mixed Mode delamination, since the behavior after
the crack onset is very sensitive to the material properties and the applied mode mixity. In
order to compare results in terms of load-displacement curves, crack propagation and ERR
over different batches of specimens, the fabrication process must be highly reproducible. Since
scatter is still present, mostly in 40% and 60%, a large number of specimens are tested in the
same test conditions in order to average the experimental data. For this reason, in the following
subsections, average curves are shown with the corresponding standard deviations.

According to Figure 4.11, the optical fiber is placed in the upper part of the specimen,
subjected to a higher curvature with respect to the lower one, to increase the sensitivity of the
measurement. The applied mode mixity changes with the length of the C-arm, as discussed in
section 3.1.2. The half-span L = 90mm has been increased with respect to the one recommended
in the ASTM standards (L = 50mm ) in order to extend the crack propagation and to allow
a complete development of bridging. Any geometrical non-linearities are checked by looking at
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Figure 4.11: Mixed Mode Bending setting, specimen and embedded optical fiber

the unloading curve at the end of the test, as pointed out in the following results.

4.2.1 Mixed Mode test: 20%

Figure 4.12 shows the load-displacement curve obtained by a Mixed Mode delamination test
performed at μ = GII

Gtot
= 20% . The curve shows the average load calculated over six specimens

and the corresponding standard deviation. The test is found to be very stable in terms of
crack propagation, without any jump during the whole process. The standard deviation in the
first linear part is almost negligible, meaning that thickness, initial crack length and material
properties are very similar between each specimen. In the crack propagation region, the standard
deviation increases due to the fact that the crack interface characteristics play a major role.

The crack length versus applied displacement is shown in Figure 4.13. The standard deviation
is similar to the one obtained in the load-displacement curve, pointing out that the scatter over
the two curves is not mutual independent.

The energy release rate is obtained by compliance calibration method. Figure 4.14 shows
the initiation value and the trend along the crack propagation. The average energy at initiation
is Gc = 335 J

m2 while it increases as the crack advances up to Gtot = 515 J
m2 , indicating the de-

velopment of a bridging toughening process. The scatter over the Gc is relatively small while, as
already checked, the crack propagation region is more affected to noise. The standard deviation
of the ERR is computed by combining the one measured on the load and the one measured
on the crack length, taking into account that the two factors are not mutually independent.
Unfortunately the set-up does not allow the energy to achieve a steady state, due to the short
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Figure 4.12: Mixed Mode μ = 20%, average load-displacement curve and standard deviation
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Figure 4.14: Mixed Mode μ = 20%, ERR. Critical value at crack initiation and evolution with
the crack propagation

crack propagation range. For this reason, we cannot calculate the actual bridging contribution
as the difference Gb = Gtot − Gc, but it can be assumed that Gb ≥ Gtot − Gc = 180 J

m2 .
The presence of a large scale bridging is also shown in Figure 4.15, captured at the end of the

test when the crack advance is at �a = 20mm, just before the central pin of the MMB setting.
As it happens for Mode I delamination, an important amount of bridging fibers is visible in
the cracked area. Even if a large scale bridging still occurs, the maximum range of influence is
clearly reduced with respect to the Mode I case.

Another relevant difference between Mode I and Mixed Mode is represented by the bridging
fibers direction. Unlike the bridging developed in Mode I, the tractions in Mixed Mode are
clearly set according to an angle θ due to the simultaneous presence of sliding and opening.

The multiplexed optical fiber is embedded into the specimen with the Bragg sensors placed
over the bridging zone. Table 4.2 shows the position of each sensor, measured by OLCR, with
respect to the edge of the specimen.

Figure 4.16 shows the strains measured by the FBG sensors as a function of the applied
displacement. Unlike the strain curves obtained in Mode I delamination test, the dip shape at
the end of the rising part is less evident. Taking as crack tip reference the end of the rising part
as indicated, the comparison between the crack length obtained by markers and FBGs is shown
in Figure 4.17. The difference between the two curves, as obtained in the Mode I delamination
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Figure 4.15: Mixed Mode μ = 20%, bridging tractions in the middle of the crack at �a = 20mm

Sensor n° 1 2 3 4 5 6 7 8 9 10
Position [mm] 59.7 62.8 65.5 68.3 71.6 74.4 77.4 80.7 83.5 86.5

� [mm] 3 2.8 2.8 3.3 2.8 3 3.3 2.8 3

Table 4.2: Mixed Mode μ = 20%, FBGs positions measured with respect to the edge of the
specimen

test, is ∼ 1.5mm, which indicates the same curved crack front shape.
As already discussed, the ERR does not show any steady state, which indicates that the

bridging tractions are not fully developed. For this reason, as shown in Figure 4.18, the FBGs
strains measured in the bridging zone are not superimposed, indicating that self-similar crack
propagation is not achieved. This behavior must be taken into account if the strains coming
from FBGs are used to indirectly measure the bridging tractions and, therefore, to implement
the numerical model.

The higher length of the half-span used in the MMB setting imposes to check if the linearity
of the system is kept. A reliable way to verify this assumption is to look at the unloading curve
starting from the maximum displacement. Figure 4.19 shows a typical loading and unloading
curve. The linear fitting of the unloading part, with the R2 = 0.9987, shows that the geometrical
non-linearity is almost negligible. The initial drop of the load when the unloading part begins
is due to the bridging fibers that switch from tensile to compression stresses. At the end of the
unloading curve, the bridging fibers in buckling cause the final non-linear part.
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Figure 4.16: Mixed Mode μ = 20%, strains measured by Multiplexed FBGs as a function of the
applied displacement
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Figure 4.17: Mixed Mode μ = 20%, crack length measured by side markers and FBGs, versus
applied displacement
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Figure 4.18: Mixed Mode μ = 20%, shifted FBGs strains to common crack tip position
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Figure 4.19: Mixed Mode μ = 20%, unloading curve to check the linearity of the system
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Figure 4.20: Mixed Mode μ = 30%, average load-displacement curve and standard deviation

4.2.2 Mixed Mode test: 30%

Figure 4.20 shows the load displacement curve at μ = 30%. Average load and standard deviation
are computed over eight specimens, tested in the same conditions. Comparing with the curve
obtained with μ = 20%, the load after crack initiation drops more quickly but no instabilities
are present.

The crack length versus displacement is shown in Figure 4.21. As in the previous case, the
test is not affected by any crack jump, resulting in stable and smooth crack propagation.

Figure 4.22 shows the ERR as a function of the crack advance. With μ = 30% the contribu-
tion of bridging is clearly reduced with respect to Mode I and Mixed Mode at μ = 20%. After a
short initial rising part, the steady state is reached after a few millimeters of crack advance. The
initiation is found to be Gc = 400 J

m2 , the plateau Gtot � 470 J
m2 and the contribution of bridging

in terms of energy is Gb = Gtot − Gc � 70 J
m2 . The standard deviation over the initiation value

is within the 3% while in the crack propagation region is within the 10%. The small amount
of bridging is proved by Figure 4.23, which shows the fibres in the middle of the delamination
plane. Fiber bundles are still present but the density is lower if compared with Mode I and 20%
Mixed Mode tests.

Table 4.2 indicates the position of each sensor, measured by OLCR, with respect to the edge
of the specimen and the strains, measured by FBGs, are shown in Figure 4.24. Taking the end
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Figure 4.21: Mixed Mode μ = 30%, crack length measured by markers versus applied displace-
ment
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Figure 4.23: Mixed Mode μ = 30%, bridging tractions in the middle of the crack at �a = 20mm

Sensor n° 1 2 3 4 5 6 7 8 9 10
Position [mm] 58.4 61.8 65.4 69.2 72.6 75.7 79.2 82.7 86.3 90.2

� [mm] 3.4 3.6 3.8 3.4 3.1 3.5 3.5 3.5 3.9

Table 4.3: Mixed Mode μ = 30%, FBGs positions measured with respect to the edge of the
specimen

of the rising part as crack tip reference, as already done in the previous case at μ = 20%, the
crack length compared to the one obtained by the markers is shown in Figure 4.25. Also in
this test the optical fiber is found to be a reliable tool to measure the crack length since the
difference between the two curves still represents the curvature of the crack front.

Figure 4.26 shows the strains measured by the ten FBGs, shifted in order to obtain coinciding
crack tip. As the ERR indicates that the delamination process reached a steady state, also the
strains in the bridging zone are superimposed which proves that the assumption of self-similar
crack propagation is verified.
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Figure 4.24: Mixed Mode μ = 30%, strains measured by Multiplexed FBGs as a function of the
applied displacement
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Figure 4.25: Mixed Mode μ = 30%, crack length versus applied displacement measured by side
markers and FBGs
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Figure 4.26: Mixed Mode μ = 30%, shifted FBGs strains to common crack tip position

4.2.3 Mixed Mode test: 40%

The Mixed Mode test performed at 40% is found to be more problematic than the previous ones
in terms of stability at crack initiation and smoothness of the post-peak region. The higher Mode
II percentage and a lower toughening contribution in crack propagation, make the threshold
between stability and instability closer. Small differences of material properties between the
tested specimens generate large scatter. Figure 4.27 shows the average load-displacement curve
computed over five specimens. The amount of tested specimen is higher but the ones in which the
crack jumped after initiation are not considered, since it is not possible to apply the compliance
calibration method and, therefore, to compute the ERR.

The crack length shown in Figure 4.28 represents the average of the stable tests. The
standard deviation is higher if compared to the one obtained at μ = 20% and 30%, indicating
that the crack propagation can be easier affected by variations of the material properties along
its path.

The ERR is shown in Figure 4.29. The critical energy at initiation is Gc = 460 J
m2 , the

Gtot = 520 J
m2 and, therefore, Gb = Gtot −Gc � 60 J

m2 . The fact that for μ = 40% only tests with
a stable crack propagation are taken into account, makes these results less representative of the
applied mode mixity. Indeed the crack propagation stability improves as bridging contribution
increases. This means that the unstable specimens did not develop enough bridging tractions.
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Figure 4.27: Mixed Mode μ = 40%, average load-displacement curve and standard deviation
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Figure 4.28: Mixed Mode μ = 40%, crack length measured by markers versus applied displace-
ment
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Figure 4.29: Mixed Mode μ = 40%, ERR. Critical value at crack initiation and evolution with
crack propagation

For this reason, it can be assumed that the curves obtained at μ = 40% are representative of
specimens with higher bridging contribution. This may explain why the bridging contribution
Gb is similar to the one obtained at μ = 30%.

Figure 4.30 shows the bridging bundles between the crack faces. The image proves that
bridging occurs in 40% Mixed Mode test but the contribution is small compared to lower mode
mixities.

Figure 4.31 shows the strains measured by the ten FBGs, positioned according to the Table
4.4, with respect to the applied displacement. By looking at the FBGs strains, it is clear that,
for this particular test, a crack jump at initiation is present. After this instability, a smooth
crack propagation occurs.

Figure 4.32 shows the crack length measured by FBGs and markers. Due to an initial crack
jump, the first 3 sensors do not allow to obtain a reliable crack length. The remaining sensors,
instead, provide an accurate measurement of the crack propagation, with the usual difference
due to the curved crack front.

Since the contribution of bridging is small all along the crack propagation, a self-similar crack
propagation can be assumed. Figure 4.33 shows the FBGs strains shifted in order to obtain a
coinciding crack tip. The strains in the cracked region are almost superimposed which indicates
a self-similar crack propagation.
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Figure 4.30: Mixed Mode μ = 40%, bridging tractions in the middle of the crack at �a = 20mm

Sensor n° 1 2 3 4 5 6 7 8 9 10
Position [mm] 55.1 58.1 61.3 64.5 67.5 70.3 73 76.3 79 82

� [mm] 3 3.2 3.2 3 2.8 2.8 3.2 2.8 3

Table 4.4: Mixed Mode μ = 40%, FBGs positions measured with respect to the edge of the
specimen
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Figure 4.31: Mixed Mode μ = 40%, strains measured by Multiplexed FBGs as a function of the
applied displacement
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Figure 4.32: Mixed Mode μ = 40%, crack length versus applied displacement measured by side
markers and FBGs
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Figure 4.33: Mixed Mode μ = 40%, shifted FBGs strains to common crack tip position

4.2.4 Mixed Mode test: 60%

The Mixed Mode delamination tests performed at 30% and 40% of mode mixity well show
that the amount of bridging generated between the crack faces is small, especially if compared
with the one obtained in Mode I and 20% Mixed mode. The test at μ = 60% is, therefore,
performed to obtain extra information in terms of load displacement curve, crack length and
ERR to compare with a numerical finite element model. As expected, the test is found to
be the more unstable, with frequent crack jumps and, therefore, relevant scatter between the
different specimens. As for the 40% case, only stable tests are kept to compute average curves.
Figure 4.34 shows the average load-displacement curve while the crack propagation is displayed
in Figure 4.35. The standard deviation is clearly high, especially after the initiation, generated
by the lack of bridging and the high Mode II component.

The measured ERR, shown in Figure 4.36, points out that the energy at crack initiation
Gc = 530 J

m2 is higher with respect to the lower mode mixities. However, the contribution of
bridging Gb � 40 J

m2 is almost negligible, as proved by Figure 4.37 which shows the lack of
bridging fibres in the middle of the crack.

Since the scatter over the 60% mode mixity is relevant and the bridging tractions are almost
negligible, the results from the optical fiber are not meaningful.



CHAPTER 4. EXPERIMENTAL RESULTS 59

0 1 2 3 4 5 6 7 8 9

20

40

60

80

100

120

140

160

180

200

Displacement [mm]

Lo
ad

 [N
]

 

 

std
Average load

Figure 4.34: Mixed Mode μ = 60%, average load-displacement curve and standard deviation
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Figure 4.35: Mixed Mode μ = 60%, crack length measured by markers versus applied displace-
ment
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Figure 4.36: Mixed Mode μ = 60%, ERR. Critical value at crack initiation and evolution with
crack propagation

Figure 4.37: Mixed Mode μ = 60%, bridging tractions in the middle of the crack at �a = 20mm
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Figure 4.38: Mode II 4ENF setting. Specimen and embedded optical fiber

4.3 Mode II delamination test

The Mode II delamination test is performed by using a 4ENF setting. This setup allows for
obtaining a wide central region for crack propagation in which the applied moment is constant.
The stability of crack propagation represents the main requirement when the behavior after the
onset is studied. By literature review and the experiments, the 4ENF if found to be the best
choice to study the crack propagation in pure shear. Figure 4.38 shows the schematic setting,
the specimen and the position of the embedded fiber.

By using the 4ENF setting, the crack propagation is found to be stable if combined with very
low displacement rates, equal to 0.6mm/min. Figure 4.39 shows the average load-displacement
curve and standard deviation calculated over five specimens. The crack length versus applied
displacement is shown in Figure 4.40.

In order to calculate the ERR, the initiation point is set by evaluating a 5% difference on
the initial compliance. The first part shows a nonlinear compliance which is due to the fixture
as also discussed in the ASTM standards for 3ENF tests [97]. The curve, shown in Figure 4.41,
is almost flat which indicates a lack of fiber bridging. The energy at initiation is Gc = 1100 J

m2

with a standard deviation of ±40 J
m2 . The complete lack of bridging is well pointed out by the

Figure 4.42, in which the specimen is opened by using a wedge after the 4 ENF test.
Optical fibers are also embedded in the specimen. Figure 4.43 shows the strains measured

during the Mode II delamination test.
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Figure 4.39: Mode II, average load-displacement curve and standard deviation
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Figure 4.40: Mode II, crack length measured by markers versus applied displacement
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Figure 4.41: Mode II ERR. Critical value at crack initiation and evolution with crack propagation

Figure 4.42: Mode II, no bridging tractions in the middle of the crack. Picture taken by opening
the specimen in Mode I after the 4ENF test



64 4.3. MODE II DELAMINATION TEST

0 1 2 3 4 5 6 7 8 9

500

1000

1500

2000

2500

3000

3500

4000

Displacement [mm]

μ
ε

 [-
]

 

 

Figure 4.43: Mode II, strains measured by Multiplexed FBGs as a function of the applied
displacement
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Figure 4.44: Mode II, shifted FBGs strain to common crack tip position



CHAPTER 4. EXPERIMENTAL RESULTS 65

0 20 40 60 80 100
200

300

400

500

600

700

800

900

1000

1100

Mode mixity μ [%]

G
c [J

/m
2 ]

Figure 4.45: ERR at crack initiation as a function of mode mixity μ[%]

4.4 Summary

This work combines several delamination tests performed in pure Mode I, 20%, 30%, 40%, 60%
Mixed Mode and pure Mode II. The corresponding experimental results provide an important
set of data to shed some light on the influence of the mode mixity on the fracture toughness Gc

and the contribution of bridging in unidirectional composite laminates.
Figure 4.45 shows the trend of the Gc as a function of the applied mode mixity. The curve

can be fitted by the Benzeggagh and Kenane relationship [54].
The contribution of bridging also changes with the mode mixity. In Mode I delamination,

bridging represents an important contribution to the total fracture energy as proved by the
significant amount of bridging fibers clearly visible in the cracked area. On the other side,
in pure Mode II delamination, no toughening processes occur. In Figure 4.46 the bridging
contribution in terms of energy is shown as a function of the applied mode mixity. Since in
the 20% delamination test a complete development of bridging is not reached, we can assume
that the corresponding energy contribution is higher than the one calculated as Gtot − Gc, as
indicated by the bar line.

A visual comparison of the bridging fibers, developed during the delamination process, is
shown in Figure 4.47. As it is clear from the pictures, in Mode I and 20% Mixed Mode delamina-
tion a large scale bridging occurs. An important amount of fibers, represented by the dark area
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Figure 4.46: Bridging contribution Gb as a function of mode mixity μ[%]

in the middle of the crack, is involved acting as a toughening mechanism. If the mode mixity
increases, the amount of active bridging fibers quickly decreases. The specimen performed in
Mode II is opened after the 4ENF test in order to show the complete lack of bridging fibers.

Figure 4.48 shows the combined ERR curves, obtained from the experiments performed at
different mode mixities. Note here the difference in terms of bridging contribution between Mode
I delamination and the other tests. Delamination in Mode I occurs at a lower Gc value compared
to the other curves but it develops enough bridging to increase the fracture toughness up to
∼ 720 J

m2 . For higher mode mixities, the initiation point increases but the bridging developed
during the crack propagation does not increase significantly the total toughness. Starting from
these experimental results, it is possible to conclude that a large scale bridging mainly occurs
in Mode I and 20% Mixed Mode delamination tests, while its contribution becomes small for
mode mixities μ > 30%.

A numerical model shown in Chapter 5, with cohesive elements to simulate the crack prop-
agation, will better highlight the influence of bridging for each delamination test in terms of
crack propagation, load displacement curve, ERR and strains over the FBGs path.
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Figure 4.47: Bridging fibers involved during the delamination process, for different mode mixities
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Figure 4.48: ERR curves for different mode mixities, as a function of the crack propagation



Chapter 5

Traction separation law in Mixed
Mode delamination and optimization
approach

The numerical FE Models known so far, implemented in the commercial software to simulate
the fracture behavior in Mixed Mode delamination, do not provide accurate results, especially
when large scale bridging occurs. In this chapter both the standard numerical models and an
innovative implementation based on cohesive elements are described. The main issues which
affect the numerical simulations of Mixed Mode delamination are pointed out, analyzed and
solved.

The optimization process scheme, used to characterize the bridging tractions, is also de-
scribed for Mode I and Mixed Mode tests. The optimization process allows obtaining the
parameters which characterize the bridging tractions acting on the crack faces. This approach,
also called indirect method, combines experimental results with the ones obtained by the FE
Model. The main characteristics of the numerical model, the corresponding mode mixity defini-
tion and the method to distribute the proper bridging contribution are described in the following
sections.

5.1 Optimization scheme

The optimization scheme, presented in this work, combines experimental and numerical results.
In this particular case, the objective function is represented by the least square mismatch of
the strains measured by the Multiplexed FBGs embedded in the tested specimens and the ones
obtained by the FE Model. By changing the bridging parameters in the numerical model, the

69
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optimization process is able to determine the best set of parameters which allows the optimal
match between the experimental and the numerical results. The optimization code is imple-
mented by using the lsqnonlin solver of the commercial software Matlab®.

The error function F , dependent on the parameters x = [xi] describing the bridging tractions,
is defined as:

F (x) =
1
2

‖εF BG − εF EM

εF BG
‖2 (5.1)

where εF BG and εF EM respectively represent the strains measured by the FBGs and the
ones obtained by the numerical model.

The best set of parameters is based on the evaluation of the Jacobian, which represents the
partial derivative of F (xi) with respect to the corresponding parameter xi. The nonlinear equa-
tion is solved by using the trust-region-reflective algorithm which involves the Newton method
and allows for parameter bounds.

The optimization process starts from a first set of parameters X = [xi], close to the optimal
solution in order to avoid convergence issues and being trapped into a local minimum. The
algorithm first calculates F (X) and then evaluates the perturbation by changing by 1% the initial
parameters. Once the Jacobian is calculated, the algorithm computes a new set of parameters.
The routine keeps on until the variation of the residuals is lower than a certain threshold or
by fixing the maximum number of iterations. Figure 5.1 shows the steps of the optimization
scheme.
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Figure 5.1: Optimization scheme for the evaluation of bridging tractions

5.2 Mode I: numerical model and bridging identification

5.2.1 Numerical model for bridging identification

The numerical approach used for bridging identification in Mode I delamination consists of a 2D
planar model, composed by the upper and the lower beam meshed with quadratic elements. It
does not involve cohesive elements. The mesh size is set to ∼ 0.25mm. The crack length coincides
with the position of the last FBG sensor and the corresponding displacement obtained by the
experimental results is applied. On both crack faces, bridging tractions are added according to
the equation 3.29. Figure 5.2 shows the FE model and the bridging tractions.

5.2.2 Optimization process for bridging identification

In Mode I delamination, a clear steady state and, therefore, a self-similar crack propagation
are obtained as shown in the experiments. The FBGs sensors are placed so that the strains
are measured when bridging is completely developed. Figure 5.3(a) better explains the FBGs
position and the correlated strains over the bridging zone. The strain profile, measured when
the crack coincides with the last sensor represents the objective data used in the optimization
process. By assuming self-similar crack propagation, the strain values are measured with a
variation of ±1.5mm of crack length in order to improve the spatial resolution provided by the
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Figure 5.2: FE Model for bridging identification in Mode I delamination

10 sensors. The objective strain distribution, obtained by the FBGs, is shown in Figure 5.3(b).

The bridging traction model and the parameters σmax, zmax and γ, chosen to represent the
bridging tractions in the FE Model, are defined in section 3.4, equation 3.29. The strain field
measured by the FBGs is influenced by the bridging tractions and, therefore, by σmax, zmax

and γ. The FE model is constructed specifically to represent the experimental conditions at the
identification point: the experimentally applied displacement is also imposed on the loading point
and a parametric surface traction model representing σb is implemented to reflect the effect of
bridging tractions on the local strains captured by the FBGs. By using the optimization routine,
the three parameters are gradually varied until the objective function is properly minimized.

The initial parameters values, used at the beginning of the optimization process, are defined
after a coarse manual fitting. In this way the possibility that the algorithm could fall in a local
minimum far from the best solution is avoided. Figure 5.4 shows the percentage variation of
σmax, zmax and γ with respect to the initial values, during the whole optimization process. The
optimization algorithm allows for the parameters to change in order to decrease the error vector
F (x), defined in equation 5.1. The algorithm is found to be able to immediately reduce the
error vector until a steady state is reached for both parameters and residuals. The optimized
parameters set xopt corresponding to the lowest value of F (x) is collected in Table 5.1.

Figure 5.5 shows the comparison between the axial strains measured by the FBGs and the
ones obtained by the FE model with and without bridging tractions. The relevant influence of
bridging over the axial strains is pointed out by the fact that the curve with no bridging tractions
is not able to properly match the FBG strains. The curve obtained after the optimization process
provides an optimal fitting with the experimental one.

The corresponding cohesive law is obtained by tabulating the bridging tractions as a function
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Figure 5.3: Axial strain profile over the bridging zone measured by the FBG sensors: (a)
schematic view (b) actual FBGs strains
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Figure 5.4: Evolution of the bridging parameters during the optimization process

Mode I bridging parameters σmax[MPa] zmax[mm] γ COD δmax=δ(zmax)[mm]
0.986 41.22 0.079 5.1

Table 5.1: Optimized bridging parameters for Mode I delamination
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Figure 5.5: Fitting of the objective function

of the crack opening displacement δ instead of the distance from the crack tip z, as discussed in
section 3.4.

A second FE Model is created and cohesive elements are added over the delamination plane
in order to simulate the crack propagation. The upper and the lower cohesive nodes are collapsed
in order to have a zero-thickness layer. The optimized cohesive law for Mode I delamination is
shown in Figure 5.6. The critical stress at damage initiation σ3,0 = 20MPa is a good approxi-
mation obtained from the epoxy resin properties. The final result in terms of crack initiation and
maximum load is weakly affected by σ3,0 while it is strongly dependent by the energy GI,c. The
bridging tail is very long, especially if compared with the first cohesive triangle which represents
the fracture process zone. The maximum crack opening displacement at complete failure δ3,f ,
which corresponds to the maximum bridging length zmax, is δ3,f (Zmax) = 5.1mm. The cohesive
stiffness in the linear part is set to 20.000MP a/mm based on a convergence analysis. According
to the experimental results, the critical energy at initiation is Gc = 280J/m2.
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Figure 5.6: Optimized cohesive law for Mode I delamination

5.3 Mixed Mode: numerical model and bridging identification

The aim of this work is to provide a numerical tool able to simulate the crack propagation over
the whole range of mode mixities between pure Mode I and Mode II. By using the same method
for bridging identification used for Mode I, we can only obtain several cohesive laws, one for
each mode mixity, which would represent a trivial result. For this reason, a Mode Dependent
approach must be followed. In the following section, the method to obtain a mode dependent
cohesive law with the proper bridging contribution is described.

5.3.1 Mode mixity with cohesive elements

If a mode dependent approach is used, the behavior of a single cohesive element depends on the
applied mode mixity. The work proposed by Camanho [98] and recalled by the Abaqus� manual,
aims to correlate the mode mixity μ = GII

Gtot
with the ratio of shear and normal displacements

as:

β =
δ1

δ3
(5.2)

where δ1 and δ3 respectively represents the shear and normal displacements applied to the
cohesive element.



76 5.3. MIXED MODE: NUMERICAL MODEL AND BRIDGING IDENTIFICATION

In the following part, all the main equations, used to define the stresses provided by the
cohesive elements as a function of β, are explained. The general idea of these developments is to
compute the Mode I and Mode II ERR by integrating the cohesive law. To do so, the following
assumptions are made:

• the mode mixity is kept constant during loading

• the displacement field is self similar in the process zone.
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Nomenclature

Normal direction (Mode I)

• δ3 : displacement in normal direction

• σ3 :normal stress

• σ3,0 : critical normal stress in pure Mode I at damage initiation

• σ3,i : normal stress component at failure initiation under Mixed Mode conditions

• δ3,i : normal displacement component at failure initiation under Mixed Mode conditions

• δ3,f : normal displacement at complete failure (zero stress)

Shear direction (Mode II)

• δ1 : displacement in shear direction

• σ1 : shear stress

• σ1,0 : critical shear stress in pure Mode II at damage initiation

• σ1,i : shear stress component at failure under Mixed Mode conditions

• δ1,i : shear displacement component at failure under Mixed Mode conditions

• δ1,f : shear displacement at complete failure (zero stress)

Mixed Mode

• μ = GII
Gtot

: energy mode mixity

• β = δ1
δ3

: displacement mode mixity

• δm : norm of the displacement vector in mixed mode

• σm : norm of the mixed mode cohesive surface tractions

• σm,i : norm of the mixed mode tractions at damage initiation

• δm,i : norm of the mixed mode displacements at damage initiation

• δm,f : norm of the mixed mode displacements at complete failure (zero stress)

• δ̄m : critical displacement at a given damage D |δm
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Cohesive elements

• E0 : initial element stiffness in normal and shear direction

• D : damage parameter
{

D = 0 No damage

D = 1 Full damage

}

• E = E0 · (1 − D) : element stiffness associated to damage D

Energies

• GI : ERR in Mode I

• GI,c : critical ERR in Mode I

• GII : ERR in Mode II

• GII,c : critical ERR in Mode II
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Relation between stresses and displacements

In Abaqus� , the stresses in the damaged region are defined trough the damage parameter D

as:

σ3 = E0 · (1 − D) · δ3 (5.3)

σ1 = E0 · (1 − D) · δ1 = E0 · (1 − D) · β · δ3. (5.4)

Dividing member by member:

σ1

σ3
=

δ1

δ3
= β (5.5)

meaning that, when E0 is the same for Mode I and Mode II, the ratio of displacements
corresponds to the ratio of stresses and thus the stresses are collinear to displacements.

The displacement magnitude in Mixed Mode is defined as:

δm =
√

δ2
3 + δ2

1 = δ3 ·
√

1 + β2 (5.6)

Therefore:

δ3 =
δm√

1 + β2
(5.7)

and

δ1 =
β · δm√
1 + β2

. (5.8)

the Mixed Mode traction magnitude σm can be written as:

σm =
√

σ2
3 + σ2

1 = σ3 ·
√

1 + β2 = E0 · (1 − D) · δ3

√
1 + β2 = E0 · (1 − D) · δm (5.9)

and the damage parameter as:

D = 1 − σm

δm · E0
. (5.10)
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Fracture initiation criterion

For pure Mode I and Mode II conditions, damage initiation occurs when the stress reaches
respectively σ3,0 and σ1,0. In Mixed Mode delamination, a criterion which combines the two
extremes must be used. In our case, a quadratic criterion is used as follows:

(
σ3,i

σ3,0

)2

+
(

σ1,i

σ1,0

)2

= 1. (5.11)

The equation 5.11 can be written as:

1 =
(

σ3,i

σ3,0

)2

+
(

βσ3,i

σ1,0

)2

=
σ2

1,0 · σ2
3,i + σ2

3,0 · σ2
3,i · β2

σ2
3,0 · σ2

1,0
=

σ2
3,i ·

(
σ2

1,0 + σ2
3,0 · β2

)
σ2

3,0 · σ2
1,0

(5.12)

which leads to the corresponding normal and shear stresses and displacements at fracture
initiation:

σ3,i =

√√√√ σ2
3,0 · σ2

1,0

σ2
1,0 + σ2

3,0 · β2 (5.13)

σ1,i = β ·
√√√√ σ2

3,0 · σ2
1,0

σ2
1,0 + σ2

3,0 · β2 (5.14)

δ3,i =
σ3,i

E0
(5.15)

δ1,i =
σ1,i

E0
(5.16)

The stress and displacement magnitudes in Mixed Mode at fracture initiation are written
as:

σm,i =
√

σ2
3,i + σ2

1,i =

√√√√ σ2
3,0 · σ2

1,0

σ2
1,0 + σ2

3,0 · β2 · (1 + β2) (5.17)

δm,i =
σm,i

E0
. (5.18)
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5.3.1.1 Relationship between β and μ

Case 1: δ = δf

According to the formula proposed by Camanho, the relationship between the mode mixity μ

in terms of energy and β is obtained from the following equations:

GI =
σ3,i · δ3,f

2
(5.19)

GII =
σ1,i · δ1,f

2
=

β2 · σ3,i · δ3,f

2
(5.20)

Gtot = GI + GII =
σ3,i · δ3,f

2
·
(
1 + β2

)
(5.21)

μ(β) =
GII

Gtot
=

β2

1 + β2 . (5.22)

Equation 5.22 is calculated for δ = δf . This means that for δi < δ < δf the relationship
is not supposed to be valid anymore. Note that the calculation of GI and GII performed here
supposes that the mode mixity does not change in the process zone and thus the integrals are
very simple to compute.

The definition of the mode mixity for δi < δ < δf is explained in Case 2.
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Figure 5.7: Cohesive law with linear decay

Case 2: δi < δ < δf

According to Figure 5.7, the stresses provided by a cohesive element at a constant mode mixity
β are defined as:

σE
m = linear elastic stress before fracture initiation

σD
m = stress in damaged region

σR
m = release linear elastic stress at damage D

K = σm,i
δm,f −δm,i

a = σm,i·δm,f

δm,f −δm,i

σm |β=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σE
m

σD
m

σR
m

=

E0 · δm 0 < δm ≤ δm,i

a − K · δm δm,i < δm ≤ δm,f(
1 − D |δm

)
· E0 · δm 0 < δm < δm

(5.23)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E0 · δm 0 < δm ≤ δm,i

σm,i·δm,f

δm,f −δm,i
− σm,i

δm,f −δm,i
· δm δm,i < δm ≤ δm,f(

1 − D |δm

)
· E0 · δm 0 < δm < δm

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E0 · δm 0 < δm ≤ δm,i

σm,i·(δm,f −δm)
δm,f −δm,i

δm,i < δm ≤ δm,f(
1 − D |δm

)
· E0 · δm 0 < δm < δm
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=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E0 · δm 0 < δm ≤ δm,i

E0·δm,i·(δm,f −δm)
δm,f −δm,i

δm,i < δm ≤ δm,f(
1 − D |δm

)
· E0 · δm 0 < δm < δm

(5.24)

The damage parameter D can be written as:

σD
m = (1 − D) · E0 · δm

→
(
1 − D |δm

)
=

δm,i ·
(
δm,f − δm

)
(δm,f − δm,i) δm

(5.25)

→ D |δm
= 1 −

δm,i ·
(
δm,f − δm

)
(δm,f − δm,i) δm

(5.26)

Combining equations 5.24 and 5.25, σm |β becomes:

σm |β=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E0 · δm 0 < δm ≤ δm,i

E0·δm,i·(δm,f −δm)
δm,f −δm,i

δm,i < δm ≤ δm,f

δm,i·(δm,f −δm)
(δm,f −δm,i)δm

· E0 · δm 0 < δm < δm

(5.27)
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Integrals

The ERR at a constant mode mixity β in Mixed Mode conditions is calculated as the integral
of σm with respect to δm:

G |β=
ˆ δm

0
σm · dδm. (5.28)

The integrals in the linear elastic and damaged regions are defined as:

• For 0 < δm < δm,i σE
m(δm) = E0 · δm

GE |β=
ˆ

E0 · δm · dδm =
E0 · δ2

m

2
(5.29)

• For δm,i < δm < δm,f σD
m(δm) = a − K · δm

GD |β=
ˆ

a − K · δm · dδm = a · δm − K · δ2
m

2
=

σm,i · δm,f

δm,f − δm,i
· δm − 1

2
σm,i · δ2

m

δm,f − δm,i

=
E0 · δm,i · δm,f

δm,f − δm,i
· δm − 1

2
E0 · δm,i · δ2

m

δm,f − δm,i
(5.30)

• For 0 < δm < δm,i

GR |β=
ˆ δm,i ·

(
δm,f − δm

)
(δm,f − δm,i) δm

· E0 · δm · dδm =
δm,i ·

(
δm,f − δm

)
(δm,f − δm,i) δm

· E0 · δ2
m

2
(5.31)
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Figure 5.8: Evolution of μ (β), comparison between equations 5.22 and 5.37

Although equation 5.37 is a function of δm and β, it is found to be weakly dependent on
δm. This means that energy mode mixity μ does not vary much during loading at a constant
displacement mode mixity β. For this reason, it is possible to calculate μ at δm = δf without
committing an important error.

Figure 5.8 shows the relationship between μ and β calculated by equations 5.22 and 5.37
for δm = δf . The value μ(0) = 0 represents the pure Mode I while μ(β → +∞) = 1 the pure
Mode II. The small mismatch between the two curves is due to the different approach, since
the formula proposed in [98] computes the decoupled mode mixity starting from the energies
in Mode I and Mode II while in the other case the integrals are performed at all intermediate
openings δm, using the mixed mode displacements and stress norms δm and σm . The difference,
however, is relatively small and, as shown in equations 5.38, the limits for β → 0 and β → ∞ are
the same. For this reasons, the formula proposed by Camanho is used in this work to correlate
μ and β whenever applicable. It should be reminded here that those formulas can be considered
valid under the assumption of self-similar displacement field and uniform displacement mode
mixity β in the process zone.

This approach could be extended to take into account bridging by considering piece-wise non
linear traction separation relationships in the integrals. However due to the complexity of those
computations and the limitations of the methods, this calculation is not performed here.

Figure 5.9 shows the cohesive laws corresponding to the pure modes and the intermediate ones



90 5.3. MIXED MODE: NUMERICAL MODEL AND BRIDGING IDENTIFICATION

G
II,c

G
I,c

δ
f

δ
3

δ
1

δ
m,f

2 2

3 1

3,0 1,0

1
σ σ

σ σ

⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
σ

3,0

σ
1,0

, , ,( )
c I c II c I c
G G G G

η
μ= + − ⋅

σ

Shear Mode Normal Mode

Mixed Mode

Figure 5.9: Schematic cohesive law for Mixed Mode conditions

for Mixed Mode conditions. It points out how δf and σm,i vary if the ratio of the displacements
β changes. The energy at crack initiation Gc in Mixed Mode is defined by the B-K relationship
(equation 2.2).

5.3.2 Cohesive law in Mixed Mode

In order to obtain a unique cohesive law able to predict the delamination behavior for whatever
mode mixity, we need a model describing the evolution of the bridging tractions σb as a function
of both opening δm and displacement mode mixity β. The model can be generically described
by a tabular function D(δm, β) in which the damage evolution is computed by interpolation over
a grid of prescribed points Di,j(δi, βj). This model can also be seen as a collection of cohesive
laws corresponding to constant β values. All the next Figures are defined up to βmax = 5
which represents the most meaningful part while the numerical simulations are performed with
βmax = 20 which improves the accuracy of the final result.
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The cohesive law is composed by the first triangle which represents the ERR at initiation and
a second tail to simulate the bridging tractions. The experimental data, discussed in Chapter 4,
provide the Gc values at fracture initiation for pure Mode I, Mode II and for the intermediate
mode mixities. The data are fitted with the B-K formula (equation 2.2) using as parameter the
displacement mode mixity β with an the exponent η = 1.61. Figure 5.10 shows the experimental
Gc as a function of β(μ) and the fitting function. The energy in pure Mode II is not plotted
since it corresponds to β → ∞.

Once Gc(β) is set, the critical load at damage initiation must be defined as a function of β,
as obtained in equation 5.17. Figure 5.11 shows the trend of σm,i(β) , which changes between
20MPa for β = 0 (pure Mode I) and 38MPa for β → ∞ (pure Mode II).

The contribution of bridging can be added by defining the corresponding parameters as a
function of β. The parameters, shown in Figure 5.12, are:

• σmax(β) : maximum bridging stress

• Gb(β) =
´ δmax

0 σm(δ)dδm |β : energy provided by bridging tractions

• δf (β) =
√

δ2
3 + δ2

1 : ultimate opening.

In this case two different zones can be identified: a first process zone represents the cracked
matrix region while the bridging zone implies the presence of bridging fibres.



92 5.3. MIXED MODE: NUMERICAL MODEL AND BRIDGING IDENTIFICATION

0 1 2 3 4 5
20

22

24

26

28

30

32

34

36

38

β

σ
  

  
 [

M
Pa

]
m

,i 

Figure 5.11: Mixed Mode stress at damage initiation σm,i as function of β

δ
m

σ
m

G
C

G
b

σ
m,i

δ
top

δ
f
*

σ
b
(δ)

σ
max

δ
b

δ
f

GG
C

Process zone

G
b

σ
b
(δ)

Bridging zone

Figure 5.12: Cohesive law for a constant β value: definition of the bridging parameters



CHAPTER 5. TRACTION SEPARATION LAW IN MIXED MODE DELAMINATION AND
OPTIMIZATION APPROACH 93

The shape of the functions σmax(β), Gb(β) and δf (β) is initially unknown. Looking at the
trend of Gb obtained by the experimental results (see Figure 4.46), it is evident that the bridging
contribution shows a quick drop between Mode I and 30% Mixed Mode and than decreases
slower as the mode mixity increases. Thus, the functions σmax(β) and δf (β) are supposed to
be monotonically decreasing. According to these considerations, three different functions are
defined by equations 5.39, 5.40, 5.41 and shown in Figure 5.39 5.40 5.41 respectively.

Gb(β) =

⎧⎪⎨
⎪⎩

Gb(β) = Gb,30 + (Gb,ModeI − Gb,30) ·
(
1 − β

βb,30

)
· e(ξGb

·β) 0 < β < βb,30

Gb(β) = Gb,30 ·
(
1 − β

βb,end

)
· e(−ξGb

·β) βb,30 < β < βb,end

(5.39)

σmax(β) = σmax,ModeI ·
(

1 − β

βb,end

)
· e(ξσmax ·β) (5.40)

δf (β) = δf,ModeI ·
(

1 − β

βb,end

)
· e

(
ξδf

·β
)

(5.41)

where:

• Gb,ModeI : bridging energy contribution for pure Mode I test

• Gb,30 : bridging energy contribution for 30% Mixed Mode test

• σmax,ModeI : maximum stress provided by the bridging tractions in Mode I test (see Tab
5.1)

• δf,ModeI = δ(zmax) maximum COD for bridging tractions in Mode I test (see Tab 5.1)

and ξi are the bridging parameters which will be obtained by the optimization process:

• ξGb
: bridging parameter describing the evolution of Gb as a function of β

• ξσmax : bridging parameter describing the evolution of σmax as a function of β

• ξδf
: bridging parameter describing the evolution of δf as a function of β

The definitions of βb,30 and βb,end are explained in section 5.3.6 since they derives from the
numerical results.

By assuming a decreasing trend for the three bridging parameters Gb, σmax, δf , a preliminary
mode-dependent cohesive law is shown in Figure 5.16. The stresses are tabulated as a function
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of δm and β. The curve for β = 0 corresponds to the cohesive law in pure Mode I, where the
relevant amount of bridging generates a long tail for high opening values δm. As β grows, the
contribution of bridging decreases until the tail disappears. The remaining curves represent the
linear decay of the stress without any toughening process. In the next sections, the optimization
process and the choice of the bridging functions, to define the corresponding parameters, are
discussed.
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Figure 5.17: FE Model for Mixed Mode delamination

5.3.3 FE Model for Mixed Mode delamination

Figure 5.17 shows the FE Model designed for simulating the Mixed Mode delamination process.
The specimen and the MMB jig are meshed with quadratic elements CPE8R with an average
size of 0.2mm. Cohesive elements are placed on the delamination plane and the nodes are
collapsed in order to obtain a zero-thickness layer. In order to improve the convergence, the
cohesive elements mesh size is set to 0.04mm, which implies having five cohesive elements for
each element belonging to the specimen. A surface-to-surface contact simulates the interaction
between the central pin and the specimen, without any friction contribution.

Since a static time integration step showed convergence issues during crack propagation,
a implicit dynamic analysis is used. This allows to overcome small instabilities which may
occur during the damaging of the cohesive elements. In order to avoid any influence due to the
mass of the system, the density is set 100 times lower than the real one. If the mass is kept
low, no differences are present between using the Transient Fidelity, Moderate Dissipation or
Quasi-Static time integration method.

The displacement, highlighted by the arrow, is applied at the end of the upper bar.
Abaqus� allows to use a mode dependent approach by using an internal cohesive model

formulation or providing a tabular form to describe the mixed mode damage evolution D(δm, β).
In the following subsections 5.3.3.1 and 5.3.3.2 both approaches are explained and discussed.

5.3.3.1 Abaqus� internal model based on B-K relationship

The internal cohesive model formulation is based on the B-K relationship for mode mixity com-
bined with a bilinear traction separation model, which implies the fracture behavior only depends
on the critical energies Gc(β) without any bridging contribution. The computed cohesive law is
defined by:

• the initial elastic stiffness E0 of the element
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• the ultimate stress σ3,0 and σ1,0 for pure Mode I, II

• the critical energies GI,c and GII,c

• the exponent η of the B-K formula which fits the critical energies over different mode
mixities.

By filling these values, the solver automatically computes the local mode mixity for each cohesive
element based on β. However, by using this internal formulation, any bridging effects are not
taken into account.

5.3.3.2 Cohesive law in tabulated form

In order to take into account the bridging effects, a tabulated form of the cohesive law is used and
filled in the Abaqus� code. To tabulate the cohesive law in mode dependent, Abaqus� requires
the magnitude of the crack opening displacement δm, the corresponding damage parameter D

and displacement mode mixity computed as 2
π arctan(β) . The cohesive law is linearly discretized

by using 300 points along the δm axis and 400 points along the β axis over a range of 0 to 20.
To calculate the fracture initiation, σ3,0 and σ1,0 are also required for the pure Modes I, II.

5.3.4 External and local mode mixity

A preliminary simulation of the 40% Mixed Mode delamination with a MMB setting is per-
formed by a tabulated form of the mode-dependent cohesive law with bridging tractions. The
corresponding bridging parameters are chosen as an initial guess. This allows to better under-
stand how the mode mixity β is related to the external mode mixity μ, applied by imposing the
C-arm length as discussed in section 3.1.2, for a MMB setting.

Figure 5.18 shows the evolution of β for the first six cohesive elements and the damage
parameter D correspondent to the element 1, as a function of the COD δm =

√
δ2

3 + δ2
1 . The

β value continuously varies as the damage parameter increases, meaning that the local mode
mixity in the damaged region is not constant. As the cohesive element is damaged, the local
mode mixity changes and, therefore, also the corresponding cohesive law.

It is very important to note that the local mode mixity β of all elements converge to a common
asymptotic value ∼ 0.4 which is significantly different from the value of β = 0.8 expected from
the μ(β) = β2

1+β2 relationship (see Figure 5.8). Indeed, if this relationship was true, β = 0.4
would correspond to a much lower mode mixity of μ(0.4) � 14%.

The fact that at damage initiation the β value is very close to the one supposed by the
relationship μ(β) has no actually meaning. A mode mixity represents the ratio between released
energies, thus it is meaningful in the damaged region when the crack propagates or at δ = δf .
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1 for a 40% Mixed Mode FE Model

The relationship μ(β) = β2

1+β2 by Camanho was derived by assuming a constant β during the
damage evolution and thus is clearly inapplicable to the present case. Indeed, due to the non
uniform distribution of β in the process zone, each element follows a different damage evolution
path. Thus the energy dissipated in the process zone in normal and shear directions become
complex integral of space and time varying terms.

The same evolution of β in the process zone is also found by using a mode-dependent cohesive
law based on the B-K relationship without any bridging tractions. This proves that the non-
constant β value is caused by the kinematic of the MMB setting and is not due to the presence
of bridging tractions which may affect the local stresses in the damage region.

Figure 5.19 shows the evolution of β and D for the first cohesive element with respect to the
applied displacement, in order to correlate the damage initiation to the applied displacement.
According to the experimental load-displacement and crack length-displacement curves shown
in Chapter 4, Figures 4.27 and 4.28, the crack propagation starts at an applied displacement
of � 7.5mm while the first cohesive element has a damage initiation at � 1.5mm. This better
explains why the β value at damage initiation cannot be taken as reference for a global mode
mixity.

Based on these results, the numerical model cohesive formulation used in Abaqus� and
described in sections 5.3.1 and 5.3.1.1, which correlates the local mode mixity in terms of β = δ1

δ3



100 5.3. MIXED MODE: NUMERICAL MODEL AND BRIDGING IDENTIFICATION

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Displacement [mm]

[-
]

Cohesive element

damage initiation

Experimental crack 

initiation

β

Damage D

Figure 5.19: β curve associated to the first cohesive element as a function of the applied dis-
placement for a 40% Mixed Mode FE Model

to the one calculated in terms of energies μ(β) = GII
Gtot

= β2

1+β2 , is not valid to simulate a MMB
test both with and without bridging tractions. The correlation μ(β) is actually verified only if
β is kept constant during the delamination process. If β varies in the damaged part, the model
is not able to properly represent the external mode mixity μ with the local one.

5.3.5 Bridging modeling

Looking at the Figure 5.20, at damage initiation the β value is relatively high (0.8) and thus
the cohesive traction will develop according to a mixed mode cohesive law corresponding to
μ = 40%. In the matrix cracking process zone, the local mode mixity β decreases up to ∼ 0.4
(that would correspond to μ(0.4) � 14%) at the end of the matrix cracking process zone when
the damage parameter D is ∼ 0.99. This will then trigger the development of significant bridging
tractions as the local mode mixity becomes lower than the mode mixity threshold for bridging
development. In the fiber bridging zone, the local mode mixity decreases even further, which
leads towards an even more intense fiber bridging development similar to Mode I. This process
goes clearly against the experimental observations in which tests at μ = 40% did not show
significant bridging fibers in the wake of the crack as well as a very small R-curve effect. This
evolution is thus clearly an artifact of the cohesive modeling. Physically, the observed behavior
in the model would correspond to the generation of new bridging fibers far from the crack tip,
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which appears as very unrealistic based on the observation.
To summarize, two main issues have been found when implementing bridging tractions with

a direct dependence on the local mode mixity β:

1. the β value in the matrix cracking process zone evolves towards lower values, which in-
validates the use of the relationship linking the global energy mode mixity μ to the local
displacement mode mixity measure β. The experiments are always performed with a con-
trolled μ, but unfortunately, when looking at the local damage evolution problem, this
single energy mode mixity will not correspond to a single value of β, but to a range of
values. This means that we cannot directly translate identified bridging tractions at a
given mode mixity μ to a given cohesive law for a corresponding β. Instead, a full mixed
mode cohesive model is necessary to simulate a test, even when the mode mixity μ remains
constant.

2. the local mode mixity β drops significantly in the matrix cracking process zone and de-
creases even faster in the fiber bridging region, leading to an artificial increase of bridging
tractions far from the crack tip.

Phenomenologically, it is observed that the bridging fibers are mostly generated in the matrix
cracking process zone and then will evolve independently of the crack tip fracture mechanisms
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afterwards. The initial bridging fiber density which controls the intensity of the fiber bridging
tractions is thus expected to depend mostly on the mode mixity in the matrix cracking process
zone and not so much by the mode mixity evolution in the fiber bridging zone. According to this
reasoning, the initial fiber density, and thus bridging traction intensity, would be controlled by
the local mode mixity β = βb reached at the end of the matrix cracking process zone. The mode
mixity at fiber bridging initiation βb thus indirectly represents the initial bridging fiber density
and can be used as a constant state variable controlling the evolution of bridging tractions in
the bridging zone instead of the local mode mixity measure β.

This approach can be implemented by using a custom mode mixity measure β∗ to implement
our cohesive laws. The value of β∗ is set equal to the local displacement mode mixity β in the
matrix cracking region, leading to a similar behavior to classical linear B-K cohesive models.
Though, at the critical damage corresponding to fiber bridging initiation, the value of β∗ is then
frozen to its current value as βb = β∗and will remain constant in the bridging zone. As a matter
of fact, the bridging tractions will then further develop according to a single "mode mixity" βb

thus avoiding the artifact observed previously.
In order to overcome this numerical artifact, an external Fortran� USDFLD sub-routine is

coded to implement the proposed alternative method for the evolution of the local mode mixity
indicator β∗ in the process zone. This routine, schematically shown in Figure 5.22, is called at
the beginning of each step for each integration point in the cohesive zone and it computes the
following variables:

• local mode mixity β = δ1/δ3

• current damage D = 1 − E/E0

• critical damage D corresponding to the beginning of fiber bridging Dtab(β) = D(δb, β)

• mode mixity indicator β∗: if D � Dtab(β): β∗ = β else β∗ is kept constant to its previous
value

As damage D can only increase, this ensures that β∗ is constant in the bridging zone and can be
called βb. The function Dtab(β) combines the Dσmax,b

values, which corresponds to the damage
at bridging initiation as a function of β, as shown in Figure 5.21.

Similarly to the tabular mixed-mode cohesive model D = D(δm, β) presented previously,
a tabular cohesive model D(β) = D(δb, β∗) is implemented in Abaqus� which uses the mode
mixity indicator β∗ instead of the local mode mixity β calculated internally.

Figure 5.23 shows the evolution of β∗ versus the applied displacement by using the external
routine for the 40% Mixed Mode model. After the condition D(β∗) > Dtab(β∗) is verified,
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40% Mixed Mode model

μ [%] 20 30 40 60
βb 0.25 0.33 0.38 0.6

Table 5.2: βb values obtained by the FE Model

β∗ is kept constant and called βb. This algorithm is based on the assumption that bridging
characteristics depend on the stress field in the cracked matrix region (see Figure 5.21), which
corresponds to the first part of the cohesive law. By running several simulations for the 20%,
30%, 40% and 60% Mode Mixity is found out that βb only depends on the mode mixity applied
by the MMB setting and is weakly influenced by the bridging parameters ξGb

,ξσmax and ξδf
.

The βb values are computed for all the cohesive elements involved in the delamination process.
It is found out that they all approximately converge to the same βb, which means that the
bridging contribution associated to each element is the same, as shown in Figure 5.24 for μ = 40%
.The table 5.2 resumes the βb values obtained by the numerical simulations for different applied
mode mixities.

5.3.6 Optimization process for bridging parameters

The bridging parameters to be optimized, defined in section 5.3.2, are ξi =
[
ξGb

, ξσmax , ξδf

]
plus

βb,30 and βb,end.
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The 30% Mixed Mode delamination test represents the threshold between the large scale
bridging, which occurs in Mode I and 20% Mixed Mode, and the second part in which a lower
bridging contribution is found. For this reason, the first parameter to set is the mode mixity
threshold βb,30, which comes from the constant β∗ value, associated to the 30% Mixed Mode FE
model. The low contribution of bridging for μ = 30% makes the βb,30 value almost independent
of the ξi parameters. For this reason, βb,30 can be easily obtained by running a simulation with
a preliminary ξi set of bridging parameters. The simulation result provides βb,30 = 0.33 (see
table 5.2).

The mode mixity μ = 60%, according to the experimental results, shows that the amount of
bridging is very low. This fact makes the influence of βb,end quite low and it can be estimated
by the value defined in Table 5.2. Since a small amount of bridging is still present, βb,end = 0.7
is initially supposed.

The next step consists in the definition of the optimization algorithm to obtain the bridging
parameters ξi =

[
ξGb

, ξσmax , ξδf

]
. The mode mixity which is most affected by bridging is μ =

20%. For this reason the optimization process is run by using a 20% Mixed Mode FE Model
which allows a better accuracy for the bridging parameters definition. If the optimization process
was run for μ = 60%, the negligible amount of bridging would make the final results unreliable
since the FBG strains would be weakly affected by any ξi variation.
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The experimental strains evolution εi(t) i = 1 : 10 obtained by the ten FBG sensors em-
bedded are used as objective data for optimization. Since for μ = 20% a clear steady state is
not reached during the experiment, a self-similar crack propagation cannot be assumed and the
approach used for the Mode I optimization is not allowed. The optimization process is per-
formed by fitting the strain curves, one for each FBG sensor, all along the applied displacement
(shown in Chapter 4, Figure 4.16), which allows to detect the evolution of bridging over the
whole delamination test. The objective function used for the identification in Mixed Mode is
obtained from the general one defined in Equation 5.1 is thus defined as:

F (t) =
1
2

·
10∑

i=1
‖εi,F EM (t) − εi,F BGs(t)

εi,F BGs(t)
‖2 (5.42)

where t indicates the time.

Figure 5.25 shows the optimization scheme used to define the bridging parameters ξi =[
ξGb

, ξσmax , ξδf

]
. Note that the FE model used in the present identification simulates the whole

crack propagation using cohesive elements and thus takes significantly more time to solve than
the quasi-static model used for Mode I identification.

The evolution of the bridging parameters ξi during the optimization process is shown in
Figure 5.26. Before starting the optimization, a set of parameters close to the optimum solution
is chosen. After a first part in which mainly ξGb

and ξσmax vary, the optimization scheme is able
to reduce the difference with the objective function and to reach the minimum of the function
F (x). Table 5.3 shows the final optimized bridging parameters ξi =

[
ξGb

, ξσmax , ξδf

]
.

Optimized bridging parameters ξδf
ξσmax ξGb

[-] 1.23 -4.36 3.95

Table 5.3: Bridging parameters ξi =
[
ξGb

, ξσmax , ξδf

]
obtained from the optimization process

Figure 5.27(a) shows the comparison between the strains measured by the ten FBGs, which
represent the objective function, and the ones calculated by the FE Model by using the global
cohesive law with mode dependent approach. The fitting of the objective function is very
accurate for both the steep region, which indicates the crack tip, and the one affected by the
bridging tractions. Figure 5.27(b) shows the same results but only for 3 FBG sensors in order
to make them more understandable.
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Figure 5.26: Evolution of the Mixed Mode bridging parameters along the optimization process

5.3.7 Variation of the B-K relationship

According to Section 5.3.5, the local displacement mode mixity β is able to properly represent
the energy mode mixity μ only if β is constant in the process zone. Since for a MMB setting the
local mode mixity keeps varying, the formula proposed by Camanho cannot properly simulate the
process, both for crack initiation and propagation. For this reason, the B-K exponent η = 1.61,
obtained by fitting the experimental ERR curves Gc at initiation as discussed in Section 5.3.2,
is not able to simulate the correct crack onset and, therefore, the ERR at initiation. Since β

approaches to lower values as soon as the cohesive element is damaged (as already discussed and
shown in Figure 5.19), the energy at crack initiation is underestimated and the load-displacement
curve is shifted to lower values with respect to the experimental ones, as shown in Figure 5.28
for a 40% mode mixity. The same underestimation is common to all the tested mode mixity.

Based on these reasons, the energies Gc at initiation, which define the first triangle of the
cohesive law, cannot be tabulated versus μ = β2

1+β2 since β does not represent the energy mode
mixity imposed by the MMB setting. Therefore, the exponent η is defined by running a manual
optimization process which aims to obtain the correct crack onset. The exponent η is thus
changed and imposed equal to 1.3, which is found to be an optimal value to properly fit the
crack initiation for all the Mixed Mode tests, as shown in Chapter 6.
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Figure 5.28: Load-displacement curve for Mixed Mode 40%, mismatch of the maximum load at
crack initiation of the numerical model based on a B-K relationship with η = 1.61



Chapter 6

Comparison between experimental
and numerical results

This chapter combines the experimental results shown in Chapter 4 with the numerical results
obtained by the FE Models based on different numerical approaches. In order to simplify the
presentation, we can refer to them depending on the cohesive law formulation adopted as:

• FEM 1 - mode dependent Abaqus� internal tool, based only on the B-K relationship
Gc(β) (no bridging tractions)

• FEM 2 - mode dependent tabulated cohesive law with appended bridging tractions which
are directly defined by the displacement mode mixity β

• FEM 3 - mode dependent tabulated cohesive law with appended bridging tractions and
external routine to control the evolution of the displacement mode mixity β.

The second as well as the third approach implies the use of the global mode-dependent cohesive
law shown in Figure 5.16, defined by the B-K relationship Gc(β) and the bridging coefficients
ξi =

[
ξGb

, ξσmax , ξδf

]
. The comparison between the experimental results and the different FE

Models will better point out the limitations of the numerical approaches known so far and the
prediction obtained by our implementation.

6.1 Mode I

The numerical results, obtained by the FE Models based on the cohesive formulations FEM
1,2,3, are discussed in terms of load, crack propagation, ERR and FBGs strains evolution.
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Figure 6.1: Mode I, comparison between experimental and numerical load-displacement curves

Figure 6.1 shows the comparison between the load-displacement curve obtained by the ex-
periment and the numerical models FEM 1,2,3. The FEM 1 approach is not able to properly fit
the experimental curve due to the lack of bridging contribution, which actually largely affects the
Mode I delamination process. The damage initiation is almost reached but the bridging develop-
ment is not taken into account, which does not allow to fit the experimental load when the crack
propagates. The large difference between the two curves points out the major role of bridging
tractions in Mode I delamination. The numerical results based on FEM 2-3, characterized by
the presence of bridging tractions, offer an optimal fitting for both damage initiation and crack
propagation. In this case, due to the symmetry of the DCB setting, the cohesive elements are
kept vertical all along the crack propagation, which corresponds to a constant β = 0. For this
reason, there are no differences between the numerical model FEM 2 and 3 , since βb = β = 0.
The fact that β does not change during the simulation, makes a mode-independent approach
also suitable to represent the delamination process.

Figure 6.2 shows the evolution of the crack length versus the applied displacement. The
FEM 2,3 well capture the experimental results while FEM 1 overestimates the crack length due
to the lack of any toughening process. Without bridging tractions and the corresponding energy
contribution, the crack would propagate faster since the fracture toughness does not increase as
the crack tip advances.

The ERR curve as a function of the crack increment is shown in Figure 6.3. The energy
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Figure 6.2: Mode I, comparison between experimental and numerical crack length-displacement
curves

Gc at initiation is perfectly matched by all the FE Models since it is a constant input value
for each cohesive law. The ERR obtained by the cohesive formulation based on FEM 2-3 and
calculated by using the compliance method, well predicts the experimental trend, meaning that
the bridging energy contribution, defined by the parameters σmax, δfmax and γ (see Table 5.1),
is correct. The small mismatch in the rising part is due to the fact that the cohesive law is
assumed to be representative of a steady state, causing a slight different transient region as
already mentioned in [99]. The ERR computed by FEM 1 does not show any increase since no
bridging effects are taken into account.

For Mode I delamination test, the optimization process and the implementation of the global
mode-dependent cohesive law properly represent the delamination process and the bridging
development. The evolution of the load, crack length and ERR are very well predicted by using
the numerical approaches FEM 2,3 while, if the proper bridging contribution is not added as in
FEM 1 case, the FE Model is able to catch only the damage initiation but cannot simulate the
crack propagation.

The strain curves are already shown in Figure 5.5. Note that the experimental FBG data
are involved in the objective function, used to perform the optimization process.
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Figure 6.3: Mode I, comparison between experimental and numerical ERR curves

6.2 Mixed Mode

In this section, the Mixed Mode results obtained by the three different numerical approaches
FEM 1,2,3 are shown and discussed. The importance to add the proper bridging contribution
and to control the evolution of the β parameter is pointed out by showing the differences in terms
of load-displacement, crack propagation, total energy and strains evolution. The numerical
results for Mixed Mode delamination and their differences, finally demonstrate the fact that the
standard numerical models known so far are not able to accurately predict the delamination
process when large scale bridging occurs.

6.2.1 20% Mixed Mode

The Mixed Mode delamination test performed at μ = 20%, according to the experimental results
discussed in Chapter 4, shows that large scale bridging affects the delamination behavior. The
curves obtained by the average of the experiments and the ones computed by the FE Models
based on the numerical approaches FEM 1,2,3 are shown in terms of load-displacement in Figure
6.4, crack-length-displacement in Figure 6.5 and ERR in Figure 6.6.

• FEM 1 - The numerical approach FEM 1, based on the B-K relationship without any
bridging contribution, shows important differences with respect to the experimental re-
sult. The lack of bridging tractions causes an important underestimation and a different



CHAPTER 6. COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS 115

shape of the load-displacement curve. The crack evolution is also affected since the model
overestimates the value obtained during the experiment. This means that the bridging
energy contribution involved in the experiments allows the crack to slow down and, there-
fore, to increase the fracture toughness. Note that the ERR for the FEM 1 approach is
perfectly flat since no toughening processes are involved, which does not well represent
the rising energy experimentally obtained. The strains evolution, corresponding to the
FBG sensors, is shown in Figure 6.7(a), which points out the large mismatch between
the numerical and the experimental results. Figure 6.7(b) omits some FBGs curves for a
better viewing. Based on these considerations, it is possible to assert that the Abaqus�

internal cohesive formulation for Mixed Mode delamination is not appropriate to describe
a delamination process when large scale bridging occurs.

• FEM 2 - The numerical approach FEM 2 adds the bridging tractions to the mode-
dependent cohesive law by using the optimized bridging parameter set ξi =

[
ξGb

, ξσmax , ξδf

]
,

described in Table 5.3. In this case, bridging contribution only depends on the displace-
ment mode mixity β all along the delamination process, which involves the issues discussed
in Section 5.3.5. As expected, the load is overestimated with an evident rising trend due
to the variation of β in the process and bridging zone, which approaches to lower values,
involving extra bridging tractions as the delamination process goes on. This numerical
artifact is thus well pointed out by the corresponding rising load-displacement curve. This
effect also influences the crack propagation, by underestimating the experimental values.
The excess of bridging contribution increases the fracture toughness which slows down the
crack propagation. The ERR is, therefore, higher than the experimental one and shows a
continuous increasing trend. The strains evolution, corresponding to the FBG sensors, is
displayed in Figure 6.8, which shows an important overestimation of the numerical model
due to an excess of bridging tractions. Based on these considerations, the FEM 2 nu-
merical approach cannot be used to simulate a delamination process under Mixed Mode
conditions and large scale bridging, due to the uncontrolled evolution of β.

• FEM 3 - The numerical approach FEM 3 combines the proper bridging contribution with
the Fortran� external routine to control the evolution of β∗. The bridging parameters
ξi =

[
ξGb

, ξσmax , ξδf

]
, obtained by fitting the strain curves along the FBGs path, are found

to be appropriate to properly represent the experimental load-displacement curve, showing
a negligible difference within the standard deviation limits. The crack evolution is also
perfectly simulated both in terms of actual values and trend. The ERR matches with
the experimental one, showing that the proper bridging energy contribution is added and
that no steady state is reached. The strains, already shown in Figure 5.27, are adopted



116 6.2. MIXED MODE

0 2 4 6 8 10 12 14 16 18

10

20

30

40

50

60

Displacement [mm]

Lo
ad

 [N
]

std
Experimental average
FEM 1
FEM 2
FEM 3

Figure 6.4: Mixed Mode 20%, comparison between experimental and numerical load-
displacement curves

as objective data to define the correct bridging parameters. Therefore, the assumption
made in Section 5.3.5, which implies the bridging contribution depending on the β∗ value
at the end of the process zone without any extra evolution, allows to accurately describe
the Mixed Mode delamination process when large scale bridging is involved.
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Figure 6.5: Mixed Mode 20%, comparison between experimental and numerical crack length-
displacement curves
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Figure 6.6: Mixed Mode 20%, comparison between experimental and numerical ERR curves
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Figure 6.7: Mixed Mode 20%, comparison between the experimental FBGs and the correspond-
ing FEM 1 numerical strain curves, (a) all the FBG sensors (b) three FBG sensors
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Figure 6.8: Mixed Mode 20%, comparison between the experimental FBGs and the correspond-
ing FEM 2 numerical strain curves, (a) all the FBG sensors (b) three FBG sensors
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6.2.2 30% Mixed Mode

The Mixed Mode delamination test performed at μ = 30% represents, as discussed in Section
5.3.2 and shown in Figure 5.13, a threshold between the large scale bridging which occurs
between μ = 0% and 20% and the small scale bridging in μ = 40% and 60%. Although the
bridging energy contribution for μ = 30% is lower than the one obtained for μ = 20%, the load-
displacement in Figure 6.9, the crack length-displacement in Figure 6.10 and the ERR curves in
Figure 6.11 still show the importance to add the correct bridging tractions to properly predict
the delamination behavior.

• FEM 1 - The numerical approach FEM 1 underestimates the load in the crack propaga-
tion region due to the lack of bridging tractions. Therefore, the crack propagates faster
overestimating the experimental one. Consistently, the ERR is flat, lower than the ex-
perimental one, without showing any rising part while the strains, corresponding to the
FBGs position, are shown in Figure 6.12. The difference between the strains computed by
using the FEM 1 approach and the ones measured by the FBGs, is almost negligible at
the end of the rising part, which represents the crack tip position, while it increases as the
crack propagates and bridging develops. However, the fact that the bridging contribution
in 30% mode mixity is low makes the difference between the experimental results and the
FEM 1 numerical simulations smaller with respect to the 20% Mixed Mode case.

• FEM 2 - The numerical approach FEM 2 provides the contribution of bridging tractions
to the mode-dependent cohesive law. As already discussed, the continuous variation of β

in the process and bridging zones causes an overestimation of tractions which implies a
higher load-displacement curve and a slower crack propagation. Therefore, the ERR shows
an important increase due to the fact that, as β varies and approaches to low values, extra
tractions arise providing additional energy. The strains are plotted in Figure 6.13, which
points out how much they are affected by an excess of bridging tractions. The strains keep
rising since the crack does not properly propagate.

• FEM 3 - The numerical approach FEM 3 provides optimum results also for the 30% mode
mixity. The evolution of load, crack length and ERR are perfectly predicted. This result
is very important since the bridging coefficients ξi =

[
ξGb

, ξσmax , ξδf

]
are obtained by an

optimization process performed with a 20% Mixed Mode Model. The numerical results at
μ = 30% acts, therefore, as a check of the assumptions made in Chapter 5. The strains
are also well predicted both for the steep and crack propagation zone, as shown in Figure
6.14.
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Figure 6.9: Mixed Mode 30%, comparison between experimental and numerical load-
displacement curves
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Figure 6.10: Mixed Mode 30%, comparison between experimental and numerical crack length-
displacement curves
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Figure 6.11: Mixed Mode 30%, comparison between experimental and numerical ERR curves
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Figure 6.12: Mixed Mode 30%, comparison between the experimental FBGs and the correspond-
ing FEM 1 numerical strain curves, (a) all the FBG sensors (b) three FBG sensors
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Figure 6.13: Mixed Mode 30%, comparison between the experimental FBGs and the correspond-
ing FEM 2 numerical strain curves, (a) all the FBG sensors (b) three FBG sensors
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Figure 6.14: Mixed Mode 30%, comparison between the experimental FBGs and the correspond-
ing FEM 3 numerical strain curves, (a) all the FBG sensors (b) three FBG sensors
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Figure 6.15: Mixed Mode 40%, comparison between experimental and numerical load-
displacement curves

6.2.3 40% Mixed Mode

The 40% mode mixity, according to the experimental results shown in Chapter 4, shows a small
and almost negligible amount of bridging. Looking at the load-displacement curve in Figure 6.15,
crack length-displacement curve in Figure 6.16 and the ERR curve in Figure 6.17, the difference
between the numerical results obtained by using the cohesive formulation based on the FEM 1
and FEM 3 approach is very small. This means that the experimental bridging contribution is
low enough to allow using a cohesive formulation only based on the B-K relationship, without
any bridging contribution.

The FEM 2, instead, provides results very far from the experimental ones. The not-controlled
evolution of β in the bridging zone keeps generating new bridging tractions even if the two crack
faces are already separated, which implies a higher load and energy evolution. The strains
values are not plotted since, due to the higher scatter over the experimental results, the FBGs
strains obtained by the single specimen with the embedded optical fiber do not well represent
the average.

�
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Figure 6.16: Mixed Mode 40%, comparison between experimental and numerical crack length-
displacement curves
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Figure 6.17: Mixed Mode 40%, comparison between experimental and numerical ERR curves
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Figure 6.18: Mixed Mode 60%, comparison between experimental and numerical load-
displacement curves

6.2.4 60% Mixed Mode

According to the experimental results, the delamination process performed at μ = 60% shows
a negligible bridging contribution. Consequentially, the numerical results, obtained by the FE
Models based on the FEM 1 and FEM 3 cohesive formulations, are superimposed. The load-
displacement curves in Figure 6.18, the crack length-displacement curves in Figure 6.19 and the
ERR curves in Figure 6.20 follow the same path. Accordingly to these results, it is possible to
assert that both FEM 1 and FEM 3 cohesive formulation approach are perfectly able to predict
the 60% Mixed Mode delamination, since the experimental bridging contribution is negligible.

As expected, also in this case the FEM 2 approach overestimates the bridging tractions,
providing wrong results over all the objective curves.

�
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Figure 6.19: Mixed Mode 60%, comparison between experimental and numerical crack length-
displacement curves
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Figure 6.20: Mixed Mode 60%, comparison between experimental and numerical ERR curves
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Figure 6.21: Mode II, comparison between experimental and numerical load-displacement curves

6.3 Mode II

The Mode II delamination test is performed by using a 4-ENF setting. The delamination occurs
due to pure shear, without any bridging toughening process, as discussed in Chapter 4. Since
only shear is present without any opening, the displacement mode mixity is constant and tends
to infinity β = δ1

δ3
→ ∞ which corresponds to pure Mode II μ = 1 (see Equation 5.38).

In this particular case, where bridging is not involved and β is constant, the three numerical
approaches FEM 1,2,3 coincide as expected. The prediction for the load-displacement, crack
length-displacement and ERR is very accurate as shown respectively in Figures 6.21, 6.22,
6.23. The FE Models provide an optimal prediction also for the strain curves corresponding to
the FBGs position, as shown in Figure 6.24. The slight mismatch over the last FBG sensor is
consistent with the small overestimation of the crack length curve at the end of the delamination
process: this may be due to the friction effects that are not taken into account in the numerical
simulation.

�
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Figure 6.22: Mode II, comparison between experimental and numerical crack length-
displacement curves
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Figure 6.23: Mode II, comparison between experimental and numerical ERR curves
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Figure 6.24: Mode II, comparison between the experimental FBGs and the corresponding nu-
merical FEM 1,2,3 strain curves, (a) all the FBG sensors (b) four FBG sensors
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6.4 Summary

This chapter outlines the comparison between the experimental results and three different nu-
merical approaches for a mode-dependent cohesive law formulation, characterized by the B-K
relationship without any bridging traction (FEM 1 ), by the bridging contribution only depen-
dent on β (FEM 2) and by the combination of bridging and the external routine to control the
displacement mode-mixity evolution β∗(FEM 3). The parameters ξi =

[
ξGb

, ξσmax , ξδf

]
(Table

5.3), which defines the bridging tractions as a function of β, are obtained by the optimization
process discussed in Chapter 5.

The numerical results show that the cohesive law formulation FEM 3 is able to predict the
delamination behavior over a wide range of mode mixities, from pure Mode I which is largely
affected by bridging, up to pure Mode II, going through the 20%,30%,40% and 60% Mixed
Mode delamination. By using a unique mode-dependent cohesive law, based on the displacement
mode-mixity β∗ computed by the external routine, and blocking its evolution at the end of the
process zone, the customized FE Model is able to describe properly the bridging contribution
over multiple mode mixities, thus predicting the load, crack and ERR evolution.

These results gain more importance if compared with the ones obtained by using the con-
ventional Abaqus� internal cohesive formulation (FEM 1 ) which is found to be inappropriate
for the simulation of the MMB delamination test. The fact that β varies in the process zone
makes this approach not valid as proved by the fact that the B-K exponent η cannot be derived
by the experimental results but it must be obtained by performing FE simulations to catch the
correct crack initiation, as previously discussed in Section 5.3.7. In addition, the conventional
approach does not take into account the bridging effects and therefore it is not able to predict
the experimental delamination process when an important bridging contribution is present.

Also the cohesive formulation FEM 2, which makes the bridging contribution only dependent
on the displacement mode mixity β, is not suitable to properly represent the delamination process
since it causes a numerical artifact in which new bridging tractions may appear when the two
crack faces are already separated. This particular behavior is due to the not-controlled evolution
of β.





Chapter 7

Conclusions

This work provided the possibility to study in detail the behavior of delamination for unidirec-
tional CFRP materials subjected to different mix mode ratios, both by running experiments and
numerical simulations. In particular, the effects of mode mixity on the fracture toughness at
damage initiation and the corresponding bridging contribution are analyzed. Experiments are
performed at pure Mode I, Mixed Mode at 20%, 30%, 40%, 60% and pure Mode II, monitoring
the applied load, crack evolution and internal strains by using embedded optical fibers with
Bragg gratings. The obtained results allow to shed light on the influence of bridging tractions
for different mode mixities and the stability of the crack propagation. The main experimental
results can be summarized as follows:

• the critical ERR Gc at crack initiation increases with the applied mode mixity

• the bridging contribution depends on the applied mode mixity

• large scale bridging occurs in pure Mode I and in Mixed Mode up to μ = 30%

• negligible bridging contribution is found in Mixed Mode delamination performed at μ =
40% and 60%

• no bridging contribution in pure Mode II delamination.

The innovative customized Mixed Mode FE numerical model based on cohesive elements, which
aims to properly predict the delamination behavior over a wide range of different mode mixities,
represents the core of the this work since the standard cohesive law formulations implemented
in commercial software are not able to accurately describe the experimental results. This study
allowed for better understanding the main limitations and issues associated with this approach.
In particular it should be noted that:

135



136

• the formulation implemented in Abaqus� and proposed by Camanho [98], which correlates
the global mode mixity in terms of energy μ = GII

Gtot
to the local mode mixity β = δshear

δnormal

according to the formula μ = β2

1+β2 , is valid only if β is constant over the whole damage
process zone. Since it is found that the local displacements mode mixity β varies in the
process zone for a Mixed Mode test based on the MMB setting, the correlation between
the local and global mode mixity is not valid anymore, as discussed in Section 5.3.4

• the bridging tractions and the corresponding energy contribution cannot be directly related
to the local mode mixity β since, as previously mentioned, it keeps changing both in the
process and bridging zone, thus it cannot be related to the global mode mixity μ applied
by the MMB setting. This problem is discussed in detail in Section 5.3.5

• the β evolution corresponding to different cohesive elements is different even if the theo-
retical global mode mixity μ, applied by the MMB setting, is constant

• the β value changes in the bridging zone and approaches to lower values which are charac-
terized by the presence of bridging tractions. This causes a numerical artifact consisting
of extra tractions arising far from the crack tip, exceeding the experimental bridging con-
tribution.

The aforementioned issues, which affect the standard Mixed Mode models, are now solved. The
innovative customized Abaqus� model is based on the displacement ratio β∗, computed by an
external Fortran� routine (see Section 5.3.5), which is used as a mode mixity indicator but not
correlated to the global mode mixity μ. The main characteristics of this Abaqus� model are:

• in the process zone, β∗ corresponds to the local displacement mode mixity β

• the B-K relationship Gc = GIc + (GIIc − GIc)μη, which correlates the critical energy at
damage initiation Gc to the applied mode mixity μ, by imposing an exponent η to fit
the experimental critical energies, does not necessarily reflect correctly the energy when
cohesive elements are involved, since μ and β cannot be related. Therefore, the exponent
η is changed and defined by performing numerical simulations for different Mixed Mode
models until the right crack initiation is obtained (see Section 5.3.7)

• at the critical damage corresponding to bridging initiation, β∗ is kept constant as βb = β∗.
This algorithm is based on the assumption that the bridging characteristics depend on the
stress field in the cracked matrix region, without any further evolution

• three different functions are defined, as a function of β∗, to describe the evolution of
the bridging energy contribution Gb, the maximum stress σmax provided by the bridging
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tractions and the maximum COD at failure δf . The shape of these functions can be
changed by varying the corresponding bridging parameters ξi =

[
ξGb

, ξσmax , ξδf

]
• the optimized set of bridging coefficients ξi is defined by performing an optimization process

for a 20% Mixed Mode model, where the objective data are represented by the strains
measured by ten FBG sensors located over the crack plane

This work provides a detailed analysis of the main characteristics for the experiments and
numerical approaches related to Mixed Mode delamination, when large scale bridging occurs.
The limitations associated with the standard Mixed Mode models are pointed out, analyzed and
finally a new cohesive approach is established, providing a numerical tool able to predict the
correct delamination behavior over a wide range of different mode mixities, from pure Mode I
up to pure Mode II, by using a unique mode-dependent cohesive law which allows to evaluate
the proper bridging contribution.

7.1 Future work

The Mixed Mode experiments performed up to now provide a complete set of data to describe
the delamination process in unidirectional CFRP. Therefore, an interesting evolution of this work
consists on performing additional Mode I, Mode II and Mixed Mode experiments by changing
both the geometry of the specimen, such as the thickness, and the fibers orientation. Even if
the bridging contributions will be different with respect to the ones here obtained, it would be
very interesting to check the evolution of the bridging coefficients ξi =

[
ξGb

, ξσmax , ξδf

]
, which

represent the variation rate of Gb, σmax and δf with respect to β∗. Experimentally, the Digital
Image Correlation (DIC) method can serve well to measure local crack opening displacements
to validate and extend the macro and micro mechanical models.

The numerical model can be also improved, in particular the way to insert the global cohesive
law in Abaqus�. Up to now, if the cohesive law has to be customized in order to add bridging
tractions, the tabulation form is the only option currently available. This requires the evolution
of the damage parameter D with respect to the magnitude of the crack opening displacement
δm and the displacement mode mixity β. If the cohesive law is discretized by using 300 points
along the δm axis and 400 points along the β axis, it means tabulating 120.000 values. The
Abaqus� solver, therefore, has to interpolate these curves at each time step for each cohesive
element, which clearly slows down the simulation. Since the mesh size chosen for the cohesive
layer is very fine, in order to improve the accuracy of the solution, the amount of cohesive
elements is high: therefore, the tabulated form does not represent the optimal solution for
computational efficiency. For this reason, it would be very useful to describe the evolution of the
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damage parameter D by defining an analytical function in two variables so that D = D(δm, β).
This approach would strongly reduce the computational time needed to complete the numerical
simulation and it would provide a better accuracy.

A micro-mechanical approach for a crack subjected to mixed mode conditions with bridging
will be of importance to validate and support the macro-mechanical model developed in this
work.
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