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Abstract
Standard automatic speech recognition (ASR) systems follow a divide and conquer approach

to convert speech into text. Alternately, the end goal is achieved by a combination of sub-tasks,

namely, feature extraction, acoustic modeling and sequence decoding, which are optimized in

an independent manner. More recently, in the machine learning community deep learning

approaches have emerged which allow training of systems in an end-to-end manner. Such

approaches have found success in the area of natural language processing and computer

vision community, and have consequently peaked interest in the speech community. The

present thesis builds on these recent advances to investigate approaches to develop speech

recognition systems in end-to-end manner. In that respect, the thesis follows two main axes

of research. The first axis of research focuses on joint learning of features and classifiers for

acoustic modeling. The second axis of research focuses on joint training of the acoustic model

and the decoder, leading to an end-to-end sequence recognition system.

Along the first axis of research, in the framework of hybrid hidden Markov model/artificial

neural networks (HMM/ANN) based ASR, we develop a convolution neural networks (CNNs)

based acoustic modeling approach that takes raw speech signal as input and estimates phone

class conditional probabilities. Specifically, the CNN has several convolution layers (feature

stage) followed by multilayer perceptron (classifier stage), which are jointly optimized during

the training. Through ASR studies on multiple languages and extensive analysis of the ap-

proach, we show that the proposed approach, with minimal prior knowledge, is able to learn

automatically the relevant features from the raw speech signal. This approach yields systems

that have less number of parameters and achieves better performance, when compared to

the conventional approach of cepstral feature extraction followed by classifier training. As

the features are automatically learned from the signal, a natural question that arises is: are

such systems robust to noise? Towards that we propose a robust CNN approach referred to

as normalized CNN approach, which yields systems that are as robust as or better than the

conventional ASR systems using cepstral features (with feature level normalizations).

The second axis of research focuses on end-to-end sequence recognition. We first propose

an end-to-end phoneme recognition system. In this system the relevant features, classifier

and the decoder (based on conditional random fields) are jointly modeled during training. We

demonstrate the viability of the approach on TIMIT phoneme recognition task. Building on top

of that, we investigate a “weakly supervised” training that alleviates the necessity for frame level

alignments. Finally, we extend the weakly supervised approach to propose a novel keyword

spotting technique. In this technique, a CNN first process the input observation sequence

vii



Acknowledgements

to output word level scores, which are subsequently aggregated to detect or spot words. We

demonstrate the potential of the approach through a comparative study on LibriSpeech with

the standard approach of keyword word spotting based on lattice indexing using ASR system.

Key words: Deep learning, automatic speech recognition, end-to-end training, convolutional

neural networks, raw speech signal, robust speech recognition, conditional random fields,

weakly-supervised training, keyword spotting.
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Résumé
Les systèmes de reconnaissance automatique de la parole (RAP) standard suivent une ap-

proche basée sur l’adage "Diviser pour mieux régner" pour convertir de la parole en texte.

Autrement dit, le but final est atteint par une combinaison de sous-tâches, plus précisé-

ment : l’extraction de représentations, la modélisation acoustique et le décodage de séquence.

Ces sous-tâches sont optimisées indépendamment. Récemment, dans la communauté de

l’apprentissage automatique, des approches d’apprentissage profonds ont été développées,

permettant d’entrainer des systèmes “de bout en bout”. Ces approches ont été fructueuses

dans les domaines du traitement automatique des langues et de la vision par ordinateur et ont

par conséquent attirés l’attention de la communauté en reconnaissance de la parole. Cette

thèse se base sur ces avancées récentes pour étudier l’application de l’entrainement “de bout

en bout” aux systèmes de reconnaissance de la parole. A cet égard, cette thèse suit deux axes

de recherche. Le premier axe se focalise sur l’apprentissage joint des représentations et de la

modélisation acoustique. Le deuxième axe se focalise sur la modélisation jointe du modèle

acoustique et du décodage de séquence.

Suivant le premier axe, dans le cadre de la RAP basée sur l’approche hybride HMM/ANN, nous

développons une approche de modèle acoustique basée sur les réseaux de neurones à convo-

lution, qui prennent en entrée le signal audio brut et estiment les probabilités conditionnelles

des classes phonétiques. Plus précisément, le réseau est composé de plusieurs couches d’ap-

prentissage de représentation, suivi de couches de modélisation acoustique, implémentées

par un perceptron multicouche. Toutes les couches sont entrainées conjointement. Au travers

de plusieurs études de RAP sur différentes langues et d’analyses étendues, nous montrons

que l’approche proposée est capable d’apprendre automatiquement des représentations

pertinentes à partir du signal brut, en utilisant un minimum de connaissance préalable. Les

systemes basés sur cette approche sont tout aussi performant que les systèmes classiques

basés sur l’extraction de représentations cepstrales, en ayant moins de paramètres. Étant

donné que les représentations sont apprises automatiquement, on peut se poser la question

de la robustesse au bruit de ces systèmes. Dans cette direction, nous proposons une approche

robuste basée sur les réseaux à convolution, nommée réseaux à convolution normalisés. Nous

montrons que les systèmes basés sur cette approche sont aussi robustes que les systèmes

conventionnels basés sur le renforcement des représentations cepstrales.

Le deuxième axe de recherche se focalise sur la conversion de séquence à séquence, entrainés

de bout en bout. Premièrement, nous proposons un système de reconnaissance de séquence

de phonème, entrainé de bout en bout. Dans ce système, les représentations, la classifica-
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tion et le décodage de séquence, basé sur des Conditional Random Fields, sont modélisées

conjointement pendant l’entrainement. Nous démontrons la viabilité de cette approche sur

une tache de reconnaissance de phonème. Sur ces bases, nous étudions un entrainement

faiblement supervisé, qui permet d’éliminer l’utilisation d’alignement temporel. Finalement,

nous proposons une technique novatrice de détection de mot-clés basée sur l’approche d’en-

trainement faiblement supervisé. Dans cette technique, un réseau à convolution traite la

séquence d’entrée pour obtenir des scores au niveau des mots. Ces scores ont ensuite agrégés

pour détecter ou repérer des mots. Nous démontrons le potentiel de cette approche au travers

d’une étude comparative sur LibriSpeech avec un système de référence standard, basé sur

l’indexation des treillis.

Mots clefs : Apprentissage automatique profond, reconnaissance automatique de la parole,

entrainement de bout en bout, réseaux de neurones à convolution, signal brut de parole,

reconnaissance robuste de la parole, entrainement faiblement supervisé, détection de mot-

clés.
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1 Introduction

This thesis takes place in the context of Automatic Speech Recognition (ASR). The goal of

automatic speech recognition systems is to convert a speech signal into text. Standard ASR

systems divide this task into several sub-tasks, which are optimized in an independent manner.

In a first step, the speech signal is transformed into features, based on speech production and

auditory knowledge. In a second step, the relationship between the features and linguistic

units, such as phoneme, is modeled by estimating the acoustic likelihood. Finally, search-

ing for the most probable word hypothesis from the acoustic likelihood estimation under

syntactical and lexical constraints. This “divide and conquer” strategy has great advantages:

features extraction lead to “good” representation for the task, using linguistic units allows a

flexible lexicon and helps estimating the acoustic likelihood. Finally, such decomposition of a

problem considerably reduces the computational cost, each step being processed separately.

However, this approach could lead to sub-optimal systems. In other fields of research, e.g. text

processing, computer vision, it has been shown that learning sub-tasks jointly can yield better

systems when compared to the “divide and conquer” approach. In this thesis, we question the

“divide and conquer” approach of the standard ASR systems.

1.1 Motivations and Objectives

Recent advances in machine learning have made possible systems that can be trained in

an end-to-end manner, i.e. systems where every step is learned simultaneously, taking into

account all the other steps and the final task of the whole system. It is usually referred to as deep

learning, mainly because such architectures are usually composed of many layers (supposed

to provide an increasing level of abstraction), compared to classical “shallow” systems. In

contrast to “divide and conquer” approach (where each step is independently optimized)

this approach has the potential to lead to more optimal systems. In the literature, recent

work by Collobert et al. [2011b] presents a good illustration of this idea applied to Natural

Language Processing (NLP). In that study, the authors proposed a deep neural network,

which learns the word representation (the features) and the alignment discriminatively in

an end-to-end manner for various NLP tasks, such as part of speech tagging, name entity
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Chapter 1. Introduction

recognition or semantic role labeling. This approach was shown to achieve state-of-the-art

performance for all the NLP tasks investigated. In the field of image processing, LeCun et al.

[1998] proposed a cheque reading system, based on handwritten digits recognition. In this

system several tasks need to be performed: segmentation, feature extraction, single digit

recognition and finally digits sequences recognition. Again, all these tasks are trained jointly,

leveraging the deep learning approach. More recently, end-to-end approaches based on deep

convolutional neural networks have been shown to yield state-of-the-art performance in

object recognition [Krizhevsky et al., 2012, He et al., 2015]. Such an approach has also been

successfully applied to deep reinforcement learning, yielding the first system to master the

game of Go [Silver et al., 2016].

In speech recognition, acoustic models based on deep neural networks (DNNs) have received

a lot of attention in recent years. These kind of networks are composed of many hidden layers.

They are used in the framework of hybrid Hidden Markov Model/Artificial Neural Networks

(HMM/ANN) [Bourlard and Morgan, 1994]. They have been shown to yield better systems

than standard “shallow” neural networks [Hinton et al., 2012]. The first systems based on

the DNN approach relied on the standard cepstral-based features. Recently, there has been

growing interests in using “intermediate” representations, standing between raw signal and

classical cepstral-based features, such as filterbank energies or magnitude spectrum. Overall,

most of the ASR systems based on the deep neural network approach still rely on the “divide

and conquer” approach, where the main task is divided into sub-tasks. The success stories of

the end-to-end approach in other fields motivate us to ask: can we apply such approach to

speech recognition?

The objective of this thesis is to investigate end-to-end trained systems for automatic speech

recognition. Specifically, we investigate integrating each of the classical steps (features extrac-

tion, modeling and decoding), illustrated in Figure 1.1(a), in one single system, trained in an

end-to-end manner using deep architectures. To this end, we take an incremental approach to

the problem. First, we investigate an acoustic modeling approach that learns the relevant fea-

tures and the classifier jointly, using the raw speech signal as input, illustrated in Figure 1.1(b).

Next, we focus on end-to-end sequence recognition where the features, the classifier and the

decoder are globally trained in a discriminative manner, illustrated in Figure 1.1(c).

1.2 Contributions

As mentioned above, this thesis follows two main axes of research. The first axis is devoted to

joint learning of features and classifier for acoustic modeling using the temporal raw speech

signal as input. The second axis of research focuses on end-to-end sequence modeling.

Along the first axis of research, in the framework of hybrid HMM/ANN based ASR, we develop

a convolution neural networks (CNNs) based acoustic modeling approach that takes raw

speech signal as input and estimates phone class conditional probabilities. We will show that

using temporal raw speech as input to a CNN-based system leads to competitive systems on

2



1.2. Contributions

Raw speech

signal
Feature

extraction

Acoustic

Model

Sequence

Decoding

Word

sequence

Language

Model
Lexicon

Acoustic

Likelihood

(a)

Raw speech

signal

Features

Learning
Classifier

Sequence

Decoding

Word

sequence

Language

Model
Lexicon

Acoustic

Likelihood

NN-based model

(b)

Raw speech

signal

Features

Learning
Classifier

Sequence

Decoding

Phoneme

sequence
Language

Model

NN-based model Decoder

(c)

Figure 1.1 – Illustration of the incremental approach: (a) standard system, (b) joint feature and
classifier training and (c) end-to-end phoneme sequence recognition.

both phoneme recognition and continuous speech recognition task. This work was partly

published in [Palaz et al., 2013a, 2015b].

In the proposed approach, the features are learned automatically with the classifier. Thus,

two questions that arise are that what information is the neural network learning and how it

is learning? We present an analysis of the network, and compare these findings against the

classical approach of feature extraction. More specifically, we will show that:

• The first convolution acts as a filterbank, which (1) processes the signal at sub-segmental

level (∼ 2 ms) and (2) models the spectral envelope of the short-term signal. Specifi-

cally, in signal processing terms, a dictionary of matched filters is learned that capture

formant-like information “in-parts”.

• The features learned by the CNNs have some level of invariance across domains and

languages, and are more discriminative than the standard cepstral-based features
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A part of this work was published in [Palaz et al., 2015a].

Building on the discriminative capabilities of the learned features, we present a study of

the CNN-based system using deep features, i.e. many feature learning layers, and shallow

classifier, i.e. simple linear classifier. We will show that this approach allows to reduce the

number of parameters of the system while retaining the performance. A preliminary work in

this direction was published in [Palaz et al., 2014a].

As the features are automatically learned from the signal, a natural question that arises is: are

such systems robust to noise? To this aim, we propose a robust CNN approach, referred to as

normalized CNN, which is based on online normalization of intermediate representations.

We will show that the proposed CNN-based approach yields more robust systems when

compared to conventional approach using cepstral features (with feature-level normalization).

A preliminary investigation on noise robustness was published in [Palaz et al., 2015a].

The second axis of research focuses on end-to-end sequence-to-sequence conversion, where

the relevant features, classifier and decoder are learned jointly. In that regard, we propose an

end-to-end phoneme recognition system based on conditional random fields (CRF) that learns

in a weakly-supervised manner phoneme segmentation and predicts phoneme sequence given

raw speech as input. A part of this work was published in [Palaz et al., 2013b, 2014b].

Finally, we propose a weakly-supervised CNN-based approach that given a bag-of-word repre-

sentation of utterances in the training set learns to locate and classify words. We demonstrate

the potential of the approach through a keyword spotting study. A part of this work was

published in [Palaz et al., 2016].

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows:

• Chapter 2, Background, gives an overview of the standard ASR systems. A review on

neural network-based acoustic models is then presented. Sequence-to-sequence con-

version approach is then reviewed. An overview of keyword spotting systems is then

presented.

• In Chapter 3, CNN-based ASR using Raw Speech Signal as Input, we present the CNN-

based acoustic modeling approach, where the features are learned jointly with the

classifier. We present in detail the proposed architecture and evaluate it on multiple

tasks and languages.

• Chapter 4, Analysis of Proposed CNN-based System, presents the analysis of the feature

learning stage of the CNN-based system and contrasts with the conventional short-term

speech processing feature extraction.
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• Chapter 5, Deep Features and Shallow Classifier, is devoted to the study of the CNN-

based system using a linear classifier.

• Chapter 6, Towards Noise-Robust Raw Speech-based Systems, is devoted to the investi-

gation of noise robustness of the CNN-based system on two benchmark corpora.

• In Chapter 7, End-to-end Phoneme Sequence Recognition, we present the CRF-based

end-to-end sequence recognition approach where the features, the classifier and the

decoder are trained jointly in an end-to-end manner for phoneme recognition.

• Chapter 8, Jointly Learning to Locate and Classify Words, is devoted to the weakly-

supervised CNN-based approach using bag-of-words representations.

• Chapter 9, Conclusions, finally concludes the thesis along with possible directions for

future research.
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2 Background

In this chapter we provide a background on standard automatic speech recognition. We then

present an overview on the recent advances in neural network-based acoustic modeling. A

survey on the up-and-coming sequence-by-sequence conversion approach is then presented.

Finally, an overview of the keyword spotting task is presented.

2.1 Overview

Automatic Speech Recognition (ASR) aims at converting a waveform signal S into a sequence

of words W . In statistical terms, this problem can be formulated as finding the most likely

word sequence given the input S:

W ∗ = argmax
W ∈W

P (W |S,Θ), (2.1)

where W denotes the set of hypotheses and Θ denotes the parameters. In the remainder

of this chapter, Θ is dropped for the sake of clarity. To solve this problem, a general speech

recognition system usually splits the task into three steps, as illustrated in Figure 2.1: feature

extraction, acoustic modeling and sequence decoding.

Raw speech

signal
Feature

extraction

Acoustic

Model

Sequence

Decoding

Word

sequence

Language

Model
Lexicon

S X
Acoustic

Likelihood W ∗

Figure 2.1 – Overview of a general ASR system.
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Feature extraction In this thesis, we express the speech signal S = {sc
1 . . . sc

t . . . sc
T } as a series

of speech segments sc
t = {st−c . . . st . . . st+c }, composed of 2c speech samples st . In a first

step, the waveform signal S is transformed into sequence of features or acoustic observation

X = [x1 . . . xt . . . xT ], where xt is a feature vector of dimension d representing the speech

segment sc
t . The feature vector is usually obtained in two phases: an information selection

phase, based on the task-specific knowledge of the phenomena and a dimensionality reduction

phase. These two phases have been carefully hand-crafted, leading to state-of-the-art features

such as cepstral-based features [Gold et al., 2011].

Acoustic modeling The acoustic modeling step typically models a statistical relationship

between the features X and linguistically motived units, such as phonemes or phones.

Sequence decoding The sequence decoding step transcribes the input feature sequence X

into a word sequence W . Broadly, this step can be expressed as:

W ∗ = argmax
W ∈W

P (W |X ) (2.2)

= argmax
W ∈W

p(X |W )P (W )

p(X )
(2.3)

≈ argmax
W ∈W

p(X |W )P (W ) (2.4)

where the Bayes rule is applied to in Equation (2.3) and the P (X ) is dropped in Equation (2.4)

as it is independent of the word hypothesis and does not affect the maximization. In Equa-

tion (2.4), the acoustic likelihood of word hypothesis p(X |W ) is usually decomposed in sub-

word unit acoustic likelihood through the lexicon and the a priori word hypothesis probability

P (W ) is modeled by the language model.

2.2 Features

Speech signal is a non-stationary signal. Alternately, the statistical characteristics of the signal

change over the time due to various reasons such as speech sound being produced, speaker

variation, emotional state variation etc. In the case of ASR, we are primarily interested in the

characteristic of the speech signal that relates to or differentiates the speech sounds.

Speech coding studies in telephony have shown that speech can be processed as short seg-

ments, transformed, transmitted and reconstructed while keeping the intelligibility or mes-

sage intact [Rabiner and Schafer, 1978]. In particular, the studies have shown that short-term

speech signal can be considered as output of a linear time invariant vocal tract filter excited

by periodic or aperiodic vibration of vocal cords [Rabiner and Schafer, 1978]. Furthermore,

speech intelligibility can be preserved by preserving the envelop structure of the short-term

spectrum of speech signal, which characterizes the vocal tract system [Schroeder and Atal,
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Raw speech
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Figure 2.2 – MFCC and PLP extraction pipelines. |DFT| denotes the magnitude of the discrete
Fourier transform, DCT denotes the magnitude of the discrete cosine transform, AR modeling
stands for auto-regressive modeling, Δ and ΔΔ denote the first and second order derivatives
across time, respectively.

1985]. The two most common spectral-based features Mel frequency cepstral coefficient

(MFCC) [Davis and Mermelstein, 1980] and perceptual linear prediction cepstral coefficient

(PLP) [Hermansky, 1990] are built on those aspects while integrating the knowledge about

speech and sound perception.

As illustrated in Figure 2.2, the extraction of MFCC or PLP feature involves: (1) transformation

of short-term speech signal to frequency domain; (2) filtering the spectrum based on critical

bands analysis, which is derived from speech perception knowledge; (3) applying a non-

linear operation; and (4) applying a transformation to get reduced dimension decorrelated

features. This process only models the local spectral level information on a short time window

typically of 20-30 ms. The information about speech sound is spread over time. To model the

temporal information intrinsic in the speech signal dynamic features are computed by taking

approximate first and second derivative of the static features [Furui, 1986].

2.3 HMM-based Speech Recognition

State-of-the-art ASR systems are based on the Hidden Markov Model (HMM). An overview of

this approach is presented below. The reader can refer to [Rabiner, 1989] for more details.

A hidden Markov model is a discrete model based on latent variable used to model temporal

sequence. The features sequence X = {x1 . . . xt . . . xT } is assumed to be generated by a sequence

of hidden states Q = {q1 . . . qt . . . qT } ∈ Q. Each hidden state emits a observation from an

emission probability distribution p(xt |qt ), where the states are associated to a class i ∈ {1, . . . , I }.

Formally, the HMM approach is based on Equation (2.4) which separates the task in two

independent steps: the acoustic likelihood p(X |W ) estimation and the estimation of the prior

language model probability P (W ).

9
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2.3.1 Acoustic Likelihood Estimation

In the HMM framework, the acoustic likelihood p(X |W ) is estimated by:

p(X |W ) = ∑
Q∈Q

p(X ,Q|W ) (2.5)

= ∑
Q∈Q

p(X |Q,W )P (Q|W ) (2.6)

= ∑
Q∈Q

p(X |Q)P (Q|W ) (2.7)

≈ max
Q∈Q

p(X |Q)P (Q|W ) (2.8)

≈ max
Q∈Q

T∏
t=1

pe (xt |qt = i )Ptr (qt = i |qt−1 = j ) (2.9)

where the Bayes rules p(X ,Q|W ) = p(X |Q,W )P (Q|W ) is applied to Equation (2.6), it is as-

sumed that the acoustic likelihood p(X |Q,W ) is independent of words given the state se-

quence in Equation (2.7) and where the Viterbi approximation, where the sum over all possi-

ble state sequence is replaced by the most probable state sequence is used in Equation (2.8).

Equation (2.9) arises from the HMM assumptions, which are: (1) the acoustic observation

xt at time t depends only on the current state qt , i.e. the observations are i.i.d and (2) the

current state qt depends only on the previous state qt−1, following the first order Markovian

assumption. pe (xt |qt = i ) are the emission probabilities for class i and Ptr (qt = i |qt−1 = j ) are

the transition probabilities between classes i and j at time t .

Two main approaches that are typically used to estimate the emission probabilities pe (xt |qt =
i ) are Gaussian Mixture Model (GMM) and Artificial Neural Networks (ANN).

HMM/GMM Approach

In the HMM/GMM system, the emission probabilities are estimated by a mixture of Gaussian

distributions:

pe (xt |qt = i ) =
J∑

j=1
ci j N (xt ,μi j ,Σi j ), (2.10)

where J denotes the number of Gaussians, ci j denote the weight for Gaussian distribution

N (xt ,μi j ,Σi j ) .

N (xt ,μi j ,Σi j ) = 1

(2π)d/2|Σi j |1/2
exp

(
−1

2
(xt −μi j )T Σ−1

i j (xt −μi j )

)
(2.11)

where d denotes the dimension of xt , μi j and Σi j denotes the mean vector and the covariance

matrix, respectively.
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Hybrid HMM/ANN Approach

The hybrid HMM/ANN proposed by Bourlard and Morgan [1994] is an ASR system based on the

HMM approach, where the emission probabilities are estimated by artificial neural networks

(ANN). An ANN is a discriminative classifier, described in details later in the Section 2.4.1. In

this approach, the ANN estimates the class conditional probabilities P (qt = i |xt ) for the feature

frame xt , for each subword unit class i ∈ {1, . . . , I }. The emission probabilities pe (xt |qt = i ) of

the HMM states are scaled likelihoods which are obtained using the Bayes rule, by dividing

the ANN output by the class prior probability P (qt = i ),

pe (xt |qt = i ) ∝ p(xt |qt = i )

p(xt )
= P (qt = i |xt )

P (qt = i )
∀i ∈ {1, . . . , I } (2.12)

The prior state probability P (qt = i ) is often estimated by counting on the training set. This

framework will be used in this thesis in the first four chapters of this thesis.

It is worth mentioning that the feature input is usually composed of a feature vector xt of

the speech signal at time frame t and the feature vectors from preceding c time frames and

following c time frames.

In both approaches, the parameters are learned by optimizing a maximum likelihood-based

cost function using the expectation-maximization (EM) algorithm [Rabiner, 1989, Rabiner

and Juang, 1993]. The two main approaches for estimating the parameters of HMM are the

forward-backward algorithm or Baum-Welch algorithm [Baum et al., 1970, Rabiner, 1989]

and the Viterbi training [Juang and Rabiner, 1990]. ANNs are typically trained in Viterbi EM

framework, which consists of two iterative steps:

• Expectation (or E-step): Find the best state sequence given the current parameters.

• Maximization (or M-step): Train a new ANN with a cost function based on local classifi-

cation error.

This process is illustrated in Figure 2.3. In this approach, at each M-step, a new neural network

has to be trained from scratch, which requires each time several epochs of training. In that

respect, this approach can be time consuming for large databases. Instead, the common

approach is to train a HMM/GMM system to obtain a segmentation and then train an ANN

afterwards.

2.3.2 Lexicon

Modeling the relations between all possible words and the acoustic observation is practically

infeasible. Therefore, words are usually modeled as a sequence of subword units, given by

the pronunciation lexicon. The most popular subword unit is the phoneme (or phone), the

smallest unit in the phonology of languages [O’Shaughnessy, 1987]. The subword unit set
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Figure 2.3 – Bloc diagram of the Viterbi EM approach.

can be context independent units or context-dependent units [Schwartz et al., 1985]. In the

latter case, each context-independent unit in context with neighboring units is considered as

a separate unit. For example the word ’that’ would be represented as “/dh/ /ae/ /t/” in the

case of context-independent units and as “/dh+ae/ /dh-ae+t/ /ae-t/” in the case of context-

dependent units. However, there are many unobserved context-dependent units during

training. This issue is usually addressed by using clustering-based techniques [Young et al.,

1994]. State-of-the-art ASR systems use context-dependent units. This information is modeled

through the HMM states.

2.3.3 Language Model

P (W ) is estimated using a language model, which essentially models the transition between

words. Formally, P (W ) can be estimated as:

P (W ) =
M∏

m=1
P (wm |w1, w2, . . . , wm−1) (2.13)

However, such estimation is a difficult problem, as the number of previous words is variable.

Usually, n-gram statistical language models are used, where the probability of the current
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word depends only on the n −1 previous words:

P (W ) =
M∏

m=1
P (wm |wm−(n−1), . . . , wm−1) (2.14)

Typically, bigram language model (n = 2) and trigram language model (n = 3) are used [Bahl

et al., 1983, Jelinek, 1997]. Such models are usually estimated by counting on a large collection

of text. To handle the problem of unobserved word combination, a smoothing approach is

usually used, such as back-off, interpolation or discounting [Katz, 1987, Kneser and Ney, 1995].

Recently, more advanced language model based on recurrent neural network have also been

proposed [Mikolov et al., 2010, Lecorvé and Motlicek, 2012].

2.3.4 Decoding and Evaluation

During decoding, the acoustic likelihood estimation p(X |W ) and the language model P (W )

are combined to infer the most probable word sequence. The Viterbi algorithm [Forney, 1973]

is used to find the most probable word sequence. A full breadth search is however infeasible

in practice, therefore pruning using beam search techniques [Greer et al., 1982] is usually used

to efficiently infer the word sequence.

The performance of ASR systems is evaluated in term of phoneme error rate (PER) for studies

on phoneme sequence recognition and on word error rate (WER) for studies on continuous

speech recognition. These two metrics are computed using the Levenstein distance, a dynamic

programming algorithm, between the ground truth sequence and the recognized sequence,

expressed in percentage:

PER/WER = Del +Sub + Ins

N
· 100 [%] (2.15)

where N denotes the total number of phoneme or word occurrence in the ground truth, Del

denotes the number of deletions, Sub denote the number of substitution and Ins the number

of insertions. The performance can be also expressed in term of word recognition rate (WRR),

i.e. 100−WER [%].

2.4 Neural Networks-based Acoustic Modeling

In this section, we formally define the artificial neural networks framework and then present

an overview of the ANN-based acoustic modeling in speech recognition.

2.4.1 Artificial Neural Networks

Artificial neural networks are non-linear adaptive models which model the relationship be-

tween an vector input x of dimension dx and a vector output y of dimension dy . Historically,
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neural networks were inspired by biological systems [McCulloch and Pitts, 1943]. The first

attempt was the perceptron introduced by Rosenblatt [1958] as a linear classifier. It was then

extend to non-linear classification and shown to be an universal approximator [Cybenko, 1989,

Hornik et al., 1989].

In this thesis, we use the following framework. A neural network is composed of several

layers, each layer being a specific operation. The simplest architecture of a neural network is

composed of a linear layer, a matrix vector product, and a non linear transfer function. It can

be expressed as:

y = h(Mx+b) (2.16)

where M , the weight matrix of dimension dx ×dy and b the bias vector of dimension dx are

the parameters of the model, and h(·) is a non-linear transfer function, such as hyperbolic

tangent or sigmoid.

The most common architecture is composed of one or more hidden layers. It is often referred

to as multilayer perceptron (MLP). One hidden layer MLP can be written as:

yh = h(M1x+b1) (2.17)

yout = h( f (x)) = h(M2yh +b2) (2.18)

where yh denotes the hidden representation or output of the hidden layer and f (x) denotes

the network output. The parameters of the model are the weight matrix and bias vector of each

layer. The number of hidden units is a hyper-parameter, which has to be selected empirically.

Neural networks can be used for both classification and regression. In this thesis, we use

them for classification. In classification task, neural networks model the relationship between

an input x and a target, or class, label i ∈ {1, . . . , I }. The network output f (x) is thus a vector

of size I , where each component fi (x) represents a score for each class. To compute the

posterior probability P (i |x), a softmax non-linearity can be used on the output scores of the

network [Bridle, 1990b]:

P (i |x) = e fi (x)∑
j e f j (x)

(2.19)

In literature, it has been shown that neural networks can estimate the posterior probabilities

when trained using the cross-entropy or squared-error criteria [Richard and Lippmann, 1991,

Morgan and Bourlard, 1995], as presented below.

Given a training set of N examples and their respective labels (xn , in), n = 1, . . . , N , the neural

network can be trained by optimizing a cost function L (also called objective function, or

criterion). The typical cost function for pattern classification is the cross-entropy criterion,

based on a proximity measure between the network output and the “one hot” representation

of the class i , i.e. a vector of size I with 1 for the ith component and 0 elsewhere. Formally, it
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can be expressed as:

L(θ) =
N∑

n=1
log(P (in |xn ,θ)) (2.20)

where the log-probability is computed as:

log(P (i |x,θ)) = fi (x,θ)− logadd
j

( f j (x,θ)) (2.21)

and the logadd operation is defined as:

logadd
j

(z j ) = log(
∑

j
ez j ). (2.22)

The back-propagation algorithm [Rumelhart et al., 1985, LeCun, 1989] is used to train the

model. This algorithm consists of propagating the error backward in the network using the

chain derivative rule. The parameters θ are updated by making a gradient step:

θ←− θ+λ
∂ log(P (i |x,θ))

∂θ
(2.23)

where λ denotes the learning rate. The parameters are usually initialized randomly and can be

updated either by batch, i.e. by accumulating the cost gradient from several examples, or by

using the stochastic gradient descent technique [Bottou, 1991] which randomly iterates over

the training set, estimating the gradient of the likelihood for one example between each update.

The main issue when training neural networks models is overfitting, which is the tendency of

the network to learn the training set “by heart”, thus decreasing its generalization capabilities.

To prevent that, a validation set is often used during training. At each iteration, the model

predictions on the validation set are evaluated, and the training is stopped when the validation

set classification accuracy decreases [Morgan and Bourlard, 1989]. This method is referred to

as early stopping. The validation set can also be used for selecting the hyper-parameters, i.e.

selecting the best model.

2.4.2 Architectures

Neural networks-based systems have gained a lot of interest since mid 1980’s in speech recog-

nition for acoustic modeling. The first successful applications were obtained on phoneme

recognition [Hinton and Lang, 1988, Waibel et al., 1989]. Later, it was extended to isolated

word recognition [Bottou et al., 1989]. For continuous speech recognition, successful results

have also been obtained [Haffner, 1992], but on small vocabularies. At the same time, the

hybrid HMM/ANN approach [Bourlard and Wellekens, 1990, Bengio, 1993, Renals et al., 1994,

Morgan and Bourlard, 1995] was developed.

In the remainder of this section, we present the recent architectures developed for NN-based

acoustic modeling. A survey can be found in [Hinton et al., 2012].
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Deep Neural Network

Following the success of the hybrid HMM/ANN system, the recent increase in computing

resources have led to the development of Deep Neural Networks (DNNs). These types of

neural networks are composed of several hidden layers:

yout = h(Mnh(Mn−1 . . .h(M1x))) (2.24)

where Mn denotes the weight matrix of layer n and h(·) denotes the activation function. This

approach has been shown to improve performance in speech recognition tasks compared to

standard MLP with one hidden layer [Hinton et al., 2012]. However, these types of networks are

known to be difficult to train [Larochelle et al., 2009, Glorot and Bengio, 2010], specially when

the amount of data is limited. To address this issue, pre-training techniques have been devel-

oped. These techniques are based on learning “good” intermediate representation, usually

using unsupervised generative models. These representations then serve as starting point for

discriminative training. Approaches such as the greedy layer-wise training [Bengio et al., 2007]

or the noisy auto-encoder approach [Vincent et al., 2008] have been proposed. In the speech

community, one of the most popular technique is the deep belief networks [Hinton et al.,

2006] approach. This pretraining approach is based on the restricted Boltzmann machines

framework and aims at maximizing the likelihood of the joint probability of data and labels.

Other regularization techniques have also been proposed, such as the dropout approach [Sri-

vastava, 2013]. This technique is based on randomly setting to zero a certain amount of the

weights at each update during training. The effect of this approach is to force the neurons to

not rely on each other, thus improving the generalization capabilities of the network.

In literature, hybrid HMM/DNN systems have been proposed using standard cepstral-based

features as input for phone recognition [Mohamed et al., 2009] and continuous speech recogni-

tion [Seide et al., 2011, Mohamed et al., 2011, Dahl et al., 2012]. Extracting bottleneck features

have also been proposed [Yu and Seltzer, 2011, Sainath et al., 2012]. Using dropout has also

been investigated for continuous speech recognition [Dahl et al., 2013]. More recently, there

has been a growing interest in using “intermediate” representations (standing between wave-

form signal and classical features such as cepstral-based features) as input. Spectral-based

features have been investigated for phoneme recognition task [Lee et al., 2009] and continuous

speech recognition task [Mohamed et al., 2012, Bocchieri and Dimitriadis, 2013, Zhang et al.,

2014]. Learning features from spectrum has been proposed in [Sainath et al., 2013c]. Learning

feature from the raw speech signal has also been proposed [Jaitly and Hinton, 2011].

Convolutional Neural Network

Inspired by studies on visual cortex, a convolutional neural network (CNN) is the architecture

of choice when dealing with sequential data [LeCun, 1989]. Instead of applying a linear

transformation on a fixed-side input vectors, the CNN assumes that the input is a sequence of

vector, and then a convolution of a chosen length applies a linear transformation. It means

16



2.5. Sequence-to-sequence Conversion

that for each input vector, the same transformation is applied to a window around the input.

The output of the network can be seen as a higher-level representation of the input. One can

stack convolution layers, to obtain a more abstract representation. This kind of network seems

to be suited for speech, because the data is often represented as frame, and the surrounding

frames of the input (the context) carry information related to the task.

In speech recognition community, this kind of networks has been referred to as Time-Delay

Neural Network. They were initially studied on phoneme recognition using Mel-scale log

filterbank energies as input [Waibel et al., 1989] and on isolated word recognition using Bark-

scale log filterbank energies as input [Bottou et al., 1989]. In the recent years, using CNNs

with filterbank energies as input has regained interest on phoneme recognition [Abdel-Hamid

et al., 2012], continuous speech recognition [Deng et al., 2013, Sainath et al., 2013b,a] and

distant speech recognition [Swietojanski et al., 2014]. Speaker adaptation technique has also

been investigated in [Abdel-Hamid and Jiang, 2013].

Recurrent Neural Network

Recurrent Neural Networks (RNN) [Elman, 1990] are a class of neural networks in which

connections between the units (or neurons) form a directed graph. In other words, to classify

an example at a given time, a RNN-based model can access the predictions of the earlier

examples. Bi-directional RNN [Schuster and Paliwal, 1997] have also been proposed, which

are composed of two RNNs, one in each direction. Thus, the prediction at a given time can

access predictions in both direction.

In the context of HMM-based speech recognition, recurrent neural networks based systems

have been proposed. The alpha-net [Bridle, 1990a] is a RNN-based approach presented in the

HMM framework. Robinson [1994] also proposed a recurrent network, where the output of

the network is computed according to the present input and a hidden state variable, which

depends on all the previous inputs. The main limitation of these models is the vanishing

gradient problem, which limits their access to long range context. The Long Short Term

Memory networks (LSTM) [Hochreiter and Schmidhuber, 1997] have been shown to address

this issue. They are discussed in the next section.

Convolutional Neural Networks will be pivotal to this thesis, and will be formally dealt with in

the remainder of the thesis.

2.5 Sequence-to-sequence Conversion

Speech recognition is in essence a sequence-to-sequence conversion problem, more specifi-

cally predicting a word sequence given an input speech signal (a sequence of numbers). As

presented in the previous section, the HMM/ANN approach solves the problem into two steps:

(1) each input frame is modeled by a local estimation of the acoustic likelihood and (2) the
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sequence is decoded using a language model. Each step is optimized independently.

Alternate approaches based on sequence-to-sequence modeling have been proposed. These

approaches tend to estimate P (W |X ) in a more global manner. This is an emerging topic in

speech recognition. In this section, we review two approaches: Long Short Term Memory

(LSTM) and Conditional Random Fields (CRF).

2.5.1 Long Short Term Memory

Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] is a particular type

of recurrent neural network composed of LSTM gates. A LSTM gate is able to learn which

information to store or to delete. These gates can replace neuron units or be used in addition

to them. Therefore, use of LSTM gates allows the network to have access to a very long context

to model an input at a given time. The bi-directional LSTM (BLSTM) approach based on

bi-directional RNN allows the network to have access to input context in both direction. This

approach has been mainly studied for phoneme recognition [Graves and Schmidhuber, 2005,

Graves et al., 2013]. Preliminary studies on continuous speech recognition were recently

presented [Graves and Jaitly, 2014]. LSTM layers were also combined with other types of

neural networks, such as CNNs, in the context of hybrid HMM/ANN framework [Deng and

Platt, 2014, Sainath et al., 2015a].

2.5.2 Conditional Random Fields

The Conditional Random Fields (CRF), proposed by Lafferty et al. [2001], is a discriminative

probabilistic model for segmenting and labelling sequential data. It is defined as a directed

graphical model whose nodes are divided into two sets: the input sequence X and the label

sequence Y . In this model, the conditional relationship P (Y |X ) is modeled. Formally, the

CRF model is defined as a graph G = (E ,V ), where E denotes the edges and V the vertices (or

nodes). The conditional relationship is defined as:

P (Y |X ) = 1

Z
exp

( ∑
e∈E ,k

ak fk (e,Y |e , X )+ ∑
v∈V ,k

bk gk (v,Y |v , X )

)
(2.25)

where f (·) and g (·) are fixed features, a and b are their respective weights and Z the normal-

ization factor.

This model can be applied to phoneme recognition task, for example with f (·) representing

phone classes scores and g (·) representing phone classes transition. In literature, this model

has been investigated on phoneme recognition using MLP posteriors and phonological at-

tribute as features [Morris and Fosler-Lussier, 2008]. It was later extended to an approach

where the CRF backpropogates its error to the MLP-based classifier [Prabhavalkar and Fosler-

Lussier, 2010]. Use of DNN-based classifier has also been proposed [Mohamed et al., 2010,

Kubo et al., 2012]. This framework will be used in Chapter 7.
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2.6 Keyword Spotting

The keyword spotting (KWS) problem consists of detecting a query in a spoken document.

The query can be text-based or spoken. In the latter case, the task is called as query-by-

example. This thesis focuses on the text-based query inputs. Formally, the KWS problem can

be formulated as a statistical hypothesis testing problem:

p(X |H1)

p(X |H0)
>Δ (2.26)

where X denotes a sequence of acoustic features from the spoken document, H1 is the hy-

pothesis denoting the presence of the query term and H0 is a hypothesis denoting the absence

of the query term, p(X |H j ) is the likelihood of hypothesis H j and Δ the detection threshold.

In order to estimate the ratio in Equation (2.26), state-of-the-art KWS systems employ a few

or all components of HMM-based ASR system. In literature, different KWS approaches have

been proposed, which are discussed briefly below. This task will be used in Chapter 8.

2.6.1 Approaches

Acoustic Matching

In this approach, the system uses the trained acoustic model and lexicon of a existing ASR

system [Rohlicek et al., 1989, Rose and Paul, 1990, Wilpon et al., 1990, Bourlard et al., 1994a,

Szöke et al., 2005]. The query terms is therefore modeled as a sequence of sub-word unit

form the lexicon. Usually a sequence model is built where the query term is preceded and

followed by a “filler” HMM, which models a non-query term, typically a phone loop HMM.

The likelihood is then estimated using Viterbi algorithm, and then compared to a background

sequence model that does not contain the query term, and a decision is made based on the

ratio of likelihood. Another approach, instead of using the background likelihood, is to obtain

the first and last frame of the query term from the best path, and to estimate a confidence

score for the segment [Bernardis and Bourlard, 1998, Williams and Renals, 1999].

Lattice Search

One of the simplest way to detect query term is to transcribe the spoken data using an ASR

system, and perform a text search. But the system is then prone to the errors committed by the

ASR system. A way to remedy this problem is to perform a search using word-based lattices

generated by ASR system [Odell, 1995] instead of a single best output [Saraclar and Sproat,

2004, Can and Saraclar, 2011]. Phoneme-based lattice generation has also been proposed [Yu

and Seide, 2004, Szöke et al., 2005]. The main advantage of this approach is that the lattices

can be stored to perform multiple query searches.
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Discriminative Approach

Recently, a discriminative KWS approach based on Support Vector Machine (SVM) was pro-

posed in [Keshet et al., 2009]. The KWS system is trained discriminatively in an end-to-end

manner by optimizing the area under the Receiver Operating Characteristic curve. This ap-

proach has been found to outperform the acoustic matching approach and has the advantage

of using minimal resources of ASR system [Keshet et al., 2001].

2.6.2 Metric

Keyword spotting is a detection task, which consists of detecting all occurrences of a given

keyword in the spoken document. In other words, a KWS system can be seen as a binary

detection system for each utterance. Such systems can make two kind of mistakes: false

alarm and missed detection. To evaluate the performance, these two types or errors have to be

considered. The standard metric for binary detection task is the F measure or F1 score [Fawcett,

2006], which combines precision and recall. For keyword spotting, two metrics are often

used: the Receiver Operating Characteristic (ROC) [Fawcett, 2006] curve and Maximum Term

Weighted Value (MTWV).

ROC Curve

The Receiver Operating Characteristic [Fawcett, 2006] is often used to evaluate binary decision

processes. It consists of a plot of the true positive rate (TPR) against the false positive rate

(FPR) obtained by varying the detection threshold. To compare systems, the Area Under

Curve (AUC) [Fawcett, 2006] is derived from the ROC. Higher the AUC, better is the system.

AUC=1 means perfect detection. In keyword spotting, these metrics face the problem of

normalization (needed for computing the rates), as there is no clear definition of trials. To

remedy this issue, the National Institute of Standards and Technology (NIST) has proposed

another metric, referred to as Maximum Term Weighted Value (MTWV).

MTWV

The Term Weighted Value (TWV) metric was proposed by NIST during the 2006 STD pilot

evaluation [Fiscus et al., 2007]. It measures one minus the average value lost by the system.

The maximum possible value is 1, indicating a perfect output. An empty output yields a TWV

of 0. Negative value are also possible. Formally, TWV is expressed as:

T W V (Δ) = 1−aver ag e{Pmi ss(ter m,Δ)+βPF A(ter m,Δ)} (2.27)
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for a given threshold Δ, with Pmi ss denote the missed detection probabilities and PF A the false

alarm probabilities. They are computed as:

Pmi ss(ter m,Δ) = 1− Ncor r ect (ter m,Δ)

Ntr ue (ter m)
, (2.28)

PF A(ter m,Δ) = Nspur i ous(ter m,Δ)

NN T (ter m)
, (2.29)

where for a given term, Ncor r ect is the number of correct detections, Nspur i ous is the number

of incorrect detection, Ntr ue is the true number of occurrence and NN T is the number of

opportunities for incorrect detection. It is estimated as NN T = npr ∗Tspeech−Ntr ue , where npr

is the number of trials per second, and Tspeech is the total length of the test data in seconds.

The weight β is computed as:

β= C

V
(Pr−1

ter m −1) (2.30)

where C
V denote cost over value ratio and Prter m the prior probability of a term. In order to

perform a comparison between KWS systems, the Maximum TWV is often used. It is simply

defined as the maximum of the Term Weighted Value:

MT W V = max
Δ

T W V (Δ) (2.31)

2.7 Summary

In this chapter, we provided a brief overview of speech recognition systems, including the

HMM/GMM-based system and the hybrid HMM/ANN system. We then presented a literature

overview on NN-based acoustic modeling, sequence-to-sequence conversion and keyword

spotting.
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3 CNN-based ASR using Raw Speech
Signal as Input

In speech recognition, the standard acoustic modeling mechanism can be seen as a process of

applying transformations guided by prior knowledge about speech production and percep-

tion on the speech signal, and subsequent modeling of the resulting features by a statistical

classifier. More recently, inspired by the success of deep learning approaches in the field of

text processing and vision towards building end-to-end systems [Collobert et al., 2011b, He

et al., 2015] as well as by the success of DNNs in ASR, researchers have started questioning the

intermediate step of feature extraction. In that direction, several studies have been carried

where filterbank or critical band energies estimated from the short-term signal instead of cep-

stral features are used as input of convolutional neural networks based systems [Abdel-Hamid

et al., 2012, Sainath et al., 2013b, Swietojanski et al., 2014] or short-term magnitude spectrum

is used as input to DNN proposed [Mohamed et al., 2012, Lee et al., 2009]. Figure 3.1 illustrates

a case where, instead of transforming the critical band energies into cepstral features, the

critical band energies and its derivatives are fed as input to the ANN.

Raw speech

signal
|DFT| Critical bands

filtering

Derivatives

Δ + ΔΔ
+ CNN

NN

classifier
P (i|xt)

xtsct

Figure 3.1 – Typical CNN-based system using Mel filterbanks coefficient as input [Swietojanski
et al., 2014].

In this chapter, we go one step further and propose a novel approach where the features and

the classifier are jointly learned. Alternately, in this approach the raw speech signal is input

to an ANN that classifies speech sounds. During training the neural network automatically

learns both the relevant features and the classifier. The output of the trained neural network is

then used as emission probabilities of HMM states as done in hybrid HMM/ANN approach.

Such an approach can not only be motivated by recent advances in machine learning but also

from previous works in the speech literature in which direct modeling of raw speech signal

has been proposed for speech recognition.
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Chapter 3. CNN-based ASR using Raw Speech Signal as Input

In the remainder of this chapter, we present a brief survey of related literature. We then present

the proposed CNN-based approach and the recognition studies.

3.1 Related Work

The first initiative towards directly modeling the raw speech signal was inspired by speech pro-

duction model, i.e. an observed speech signal can be seen as an output of a time varying filter

excited by a time varying source. Specifically, one of the first theoretical work in that direction

by Portiz [Poritz, 1982] was inspired by linear prediction technique which can deconvolve the

excitation source and the vocal tract system through time domain processing. Poritz’s work

was later revisited as switching autoregressive HMM [Ephraim and Roberts, 2005], and more

recently in the framework of switching linear dynamical systems [Mesot and Barber, 2008].

These techniques were investigated in an isolated word recognition setup where word-based

models are trained. It was found that in comparison to HMM-based ASR system using cepstral

features these approaches yield performance comparable under clean conditions and signifi-

cantly better performance under noisy conditions [Mesot and Barber, 2008]. In [Sheikhzadeh

and Deng, 1994], an approach to model raw speech signal was proposed using auto-regressive

HMM. In this approach, each sample of the speech signal is the observation as opposed to a

vector of speech samples in the approach proposed in [Poritz, 1982]. Each state models the

observed speech sample as a linear combination of past samples plus a "driving sequence"

(assumed to be a Gaussian i.i.d process). The potential of the approach was demonstrated

on classification of speaker-dependent discrete utterances consisting of 18 highly confusable

stop consonant-vowel syllables. These works demonstrated the potential of modeling directly

the raw speech signal. However, their gain compared to conventional cepstral-based fea-

tures is not clear, and they were never studied on large scale task such as continuous speech

recognition.

More recently, using raw speech signal as input to discriminative systems has been investigated.

Combination of raw speech and cepstral features in the framework of support vector machine

has been investigated for noisy phoneme classification [Yousafzai et al., 2009]. Features

learning from raw speech using neural networks-based systems has been investigated in [Jaitly

and Hinton, 2011]. In this approach, the learned features are post-processed by adding their

temporal derivatives and used as input for another neural network. Thus, this approach

still follows the “divide and conquer” approach. In comparison to that, in our approach, the

features are learned jointly with the acoustic model in an end-to-end manner. There are

other more recent works that have followed the proposed approach. We discuss them later in

Section 4.3.
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Raw speech

segment sct
CNNs MLP HMM

Word

sequence

Language
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Lexicon

P (i|sct) W ∗

Joint Training

Figure 3.2 – Overview of the proposed CNN-based approach.

3.2 Proposed CNN-based Approach

We propose a novel acoustic modeling approach based on convolutional neural networks

(CNN), where the input speech signal sc
t = {st−c . . . st . . . st+c } is a segment of the raw speech

signal taken in context of c milliseconds. The input signal is processed by several convolu-

tion layers and the resulting intermediate representations are classified to estimate P (i |sc
t ),

∀i , as illustrated in Figure 3.2. P (i |sc
t ) is subsequently used to estimate emission scaled-

likelihood pe (sc
t |i ) as per Equation (2.12). As presented in Figure 3.3, the network architecture

is composed of several filter stages, followed by a classification stage. A filter stage involves a

convolutional layer, followed by a temporal pooling layer and a non-linearity, H ar dTanh(·).

The number of filter stages is determined during training. The feature stage and the classifier

stage are jointly trained using the back-propagation algorithm.

The proposed approach employs the following understanding:

1. Speech is a non-stationary signal. Thus, it needs to be processed in short-term manner.

Traditionally, in the literature guided by Fourier spectral theory and speech analysis-

synthesis studies the short-term window size is set as 20-40 ms. The proposed approach

follows the general idea of short-term processing. However, the size of the short-term

window is a hyper-parameter which is automatically determined during training.

2. Feature extraction is a filtering operation. This can be simply observed from the fact

that generic operations such as Fourier transform, discrete cosine transform etc. are

filtering operations. In conventional speech processing, the filtering takes place in both

frequency (e.g. filter-bank operation) and time (e.g. temporal derivative estimation).

The convolution layers in the proposed approach build on these understandings. How-

ever, aspects such as the number of filter-banks and their parameters are automatically

learned during training.

3. Though the speech signal is processed in short-term manner, the information about the

speech sounds is spread across time. In conventional approach, the information spread

across time is modeled by estimating temporal derivatives and by using contextual
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Chapter 3. CNN-based ASR using Raw Speech Signal as Input

information, i.e. by appending features from preceding and following frames, at the

classifier input. In the proposed approach the intermediate representations feeding

into the classifier stage are estimated using long time span of input speech signal, which

is again determined during training.

In essence the proposed approach with minimal assumptions or prior knowledge learns to

process the speech signal to estimate P (i |sc
t ).

3.2.1 Convolutional Neural Networks

Raw speech

segment sct
Convolution

Max

pooling

Hard

Tanh(·)

Filter stage × N

(feature learning)

MLP SoftMax

Classification stage

P (i|sct)

Figure 3.3 – Overview of the convolutional neural network architecture. Several stages of con-
volution/pooling/tanh might be considered. Our network included 3 stages. The classification
stage can have multiple hidden layers.

Convolutional Layer

While “classical” linear layers in standard MLPs accept a fixed-size input vector, a convolution

layer is assumed to be fed with a sequence of T vectors/frames {y1 . . .yt . . . yT }. In this work,

yt is either a segment of input raw speech sc
t (for the first convolution layer) or a intermediate

representation output by the previous convolution layers. A convolutional layer applies the

same linear transformation over each successive (or interspaced by dW frames) windows of

kW frames, as illustrated in Figure 3.4. The transformation at frame t is formally written as:

M

⎛
⎜⎜⎝

yt−(kW −1)/2
...

yt+(kW −1)/2

⎞
⎟⎟⎠ , (3.1)

where M is a dout ×di n matrix of parameters, di n denotes the input dimension and dout

denotes the dimension of the output frame. In other words, dout filters (rows of the matrix M)

are applied to the input sequence.
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Convolution
M × ·

din

dout

kWdW

Figure 3.4 – Illustration of a convolutional
layer. di n and dout are the dimension of
the input and output frames. kW is the
kernel width (here kW = 3) and dW is the
shift between two linear applications (here,
dW = 2).
.

Max-Pooling
max(·)

d

d

kWmp

Figure 3.5 – Illustration of max-pooling
layer. kWmp is the number of frame taken
for each max operation (here, kWmp =
2) and d represents the dimension of in-
put/output frames (which are equal). In
this case, the shift dWmp = kWmp .

Max-pooling Layer

These kind of layers perform local temporal max operations over an input sequence, as shown

in Figure 3.5. More formally, the transformation at frame t is written as:

max
t−(kWmp−1)/2≤k≤t+(kWmp−1)/2

yk [d ] ∀d (3.2)

with y being the vector/frames input and d the dimension. These layers increase the robust-

ness of the network to minor temporal distortions in the input.

SoftMax Layer

The So f tmax [Bridle, 1990b] layer interprets network output scores fi (sc
t ) of an input sc

t as

conditional probabilities, for each class label i :

P (i |sc
t ) = e fi (sc

t )∑
j

e f j (sc
t )

(3.3)
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Non-linearity

This kind of layer applies a non-linearity to the input. In this work, we use the H ar dTanh

layer, defined as:

H ar dTanh(x) =

⎧⎪⎨
⎪⎩

−1 if x <−1

x if −1 ≤ x ≤ 1

1 if x > 1

(3.4)

3.2.2 Network Training

The network parameters θ are learned by maximizing the log-likelihood L, given by:

L(θ) =∑
t

log(P (i |sc
t ,θ)) (3.5)

for each input sc
t and its corresponding label i , over the whole training set, with respect to

the parameters of each layer of the network, as presented in Section 2.4.1. Optimizing this

likelihood is performed using the stochastic gradient descent algorithm [Bottou, 1991].

3.2.3 Illustration of a Trained Network

In the proposed approach, in addition to the number of hidden units in each hidden layer of

the classification stage, the filter stage has number of hyper-parameters, namely, time span

of input speech signal wi n used to estimate P (i |sc
t ) (here, c = wi n

2 ), number of convolution

layers, kernel or temporal window width kW at input of each convolution layer, dW shift of

the temporal window at the input of each convolution layer, max pooling kernel width kWmp

and shift dWmp . In the present work, all of these hyper-parameters are determined during

training based on frame-level classification accuracy on validation data.

Figure 3.6 illustrates the trained feature stage of the proposed CNN approach on TIMIT corpus.

The details of the training can be found in the following Section 3.3. The filter stage has three

convolution layers and it takes a window of 250 ms speech signal wi n as input to estimate

P (i |sc
t ) every 10 ms. The figure also illustrates the temporal information κ modeled by the

output of each layer and the temporal shift δ. Briefly, the first convolution layer models in a

fine grain manner the changes in the signal characteristics over time, i.e. processes 1.8 ms

of speech (kW = 30 samples) every 0.6ms (dW = 10 samples). The subsequent convolution

layers then filter and temporally integrate the output of the first convolution layer to yield an

intermediate feature representation that is input to the classifier stage, which eventually yields

an estimate of P (i |sc
t )

It is worth pointing out that the dimensionality of the intermediate representation at the

feature learning stage output depends upon the number of convolution stages and the max-

pooling kernel width. As it can be seen that max-pooling is done without temporal overlap. So
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sct

win = 250 ms

Conv 1
kW = 30
dW = 10 κ = 1.8 ms

δ = 0.6 ms
. . .. . .. . . . . .

MP 1
kWmp = 3
dWmp = 3 κ = 3 ms

δ = 1.8 ms
. . . . . . . . . . . .

Conv 2
kW = 7
dW = 1 κ = 13.8 ms

δ = 1.8 ms
. . . . . .

MP 2
kWmp = 3
dWmp = 3 κ = 17.4 ms

δ = 5.4 ms

. . . . . . . . . . . .

Conv 3
kW = 7
dW = 1 κ = 49.8 ms

δ = 5.4 ms
. . . . . .

MP 3
kWmp = 3
dWmp = 3

κ = 60.6 ms

δ = 16.2 ms

. . . . . .

MLP

P (i|sct)

Figure 3.6 – Illustration of the feature stage of CNN trained on TIMIT to classify 183 phoneme
classes. κ and δ indicates the temporal information modeled by the layer and the shift
respectively. Non-linearity layers are applied after each max-pooling.

at each convolution stage, in addition to filtering minor temporal distortions, max-pooling

operation acts as a down sampler.

3.3 Recognition Studies

In this section, we present automatic speech recognition studies to show the potential of

the proposed approach. We compare it against the conventional approach of spectral-based

feature extraction followed by ANN training on different tasks and languages, namely, (a)
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TIMIT phoneme recognition task, (b) Wall street journal (WSJ) 5k task, (c) Swiss French

Mediaparl task and (d) Swiss German Mediaparl task. The objective of these studies is to

demonstrate the viability of the proposed approach by comparing it against standard MFCC

features for estimating phoneme class posterior probability.

The remainder of the section is organized as follows. Section 3.3.1 presents the different

datasets and setup used for the studies. Section 3.3.2 presents the different systems that are

trained and evaluated. Section 3.3.3 presents the results of the recognition studies.

3.3.1 Databases and Setup

TIMIT

The TIMIT acoustic-phonetic corpus [Garofolo et al., 1993] consists of 3,696 training utterances

(sampled at 16kHz) from 462 speakers, excluding the SA sentences. The cross-validation set

consists of 400 utterances from 50 speakers. The core test set is used to report the results. It

contains 192 utterances from 24 speakers. Experiments were performed using 61 phoneme

labels, with three states, for a total of 183 targets as in [Mohamed et al., 2009]. After decoding,

the 61 hand labeled phonetic symbols are mapped to 39 phonemes, as presented in [Lee and

Hon, 1989].

Wall Street Journal

The Wall Street Journal (WSJ) corpus is an English corpus based on read microphone speech.

The SI-284 set of the corpus [Woodland et al., 1994] is formed by combining data from WSJ0

and WSJ1 databases. The set contains 36416 sequences sampled at 16 kHz, representing

around 80 hours of speech. Ten percent of the set was taken as validation set. The Nov’92

set was selected as test set. It contains 330 sequences from 10 speakers. The dictionary was

based on the CMU phoneme set, 40 context-independent phonemes (including silence). We

obtained 2776 clustered context-dependent (cCD) units, i.e. tied-states, by training a context-

dependent HMM/GMM system with decision tree based state tying. We used the bigram

language model provided with the corpus. The test vocabulary contains 5000 words.

Mediaparl

MediaParl is a bilingual corpus [Imseng et al., 2012] containing data (debates) in both Swiss

German and Swiss French which were recorded at the Valais parliament in Switzerland. Valais

is a state which has both French and German speakers with high variability in local accents

specially among German speakers. Therefore, MediaParl provides a real-speech corpus that is

suitable for ASR studies. In our experiments, audio recordings with 16 kHz sampling rate are

used.
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The Swiss German part of the database, referred to as MP-DE, is partitioned into 5955 se-

quences from 73 speakers for training (14 hours), 876 sequences from 8 speakers for validation

(2 hours) and and 1692 sequences from 7 speakers (4 hours) for test. 1101 tied-states were

used in the experiments, following the best system available on this corpus [Razavi et al., 2014].

The vocabulary size is 16,755 words. The dictionary is provided in SAMPA format with a phone

set of size 57 (including sil) and contains all the words in the train, development and test set. A

bigram language model was used.

The Swiss French part of the database, referred to as MP-FR, is partitioned into 5471 sequences

from 107 speakers for training (14 hours) , 646 sequences from 9 speakers for validation (2

hours) and and 925 sequences from 7 speakers (4 hours) for test. 1084 tied-states were used

in the experiments, as presented in [Razavi and Magimai.-Doss, 2014]. The vocabulary size

is 12,035 words. The dictionary is provided in SAMPA format with a phone set of size 38

(including sil) and contains all the words in the train, development and test set. A bigram

language model was used.

3.3.2 Systems

In this section, for each task studied, we present the details of the conventional spectral feature

based baseline systems and the proposed CNN-based system using raw speech signal as input.

All neural networks were initialized randomly and trained using the Torch7 toolbox [Collobert

et al., 2011a]. The HTK toolbox [Young et al., 2002] was used for the HMMs and the cepstral

features extraction.

Conventional Cepstral Feature based System

On each task, we have two baseline hybrid HMM/ANN systems which differ in terms of ANN

architecture. More precisely, one hidden layer MLP (denoted as ANN-1H) based system and

three hidden layer MLP (denoted as ANN-3H) based system. These ANNs estimate P (i |xt

where xt is a cepstral feature vector. The details of the baseline systems for the different tasks

are as follows,

• TIMIT: We treat the one hidden layer MLP based system and the three hidden layer MLP

based system without pre-training i.e. random initialization reported in [Mohamed

et al., 2012, Figure 6] as the baseline systems. Our motivation in doing so is that they

are one of the best cepstral feature based systems reported in the literature on this

task. In these systems, the input to the MLPs were 39 dimensional MFCC features

(c0−c12+Δ+ΔΔ) with five frames preceding and five frames following context (i.e. input

dimension 39×11). ANN-1H has 2048 nodes in the hidden layer and ANN-3H has 1024

nodes in each of the three hidden layers.

• WSJ: We trained an ANN-1H and an ANN-3H to classify 2776 tied-states. The input to the

MLP was 39 dimensional MFCC features (c0 −c12 +Δ+ΔΔ) with four frames preceding
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and four frames following context (i.e. input dimension 39×9). The MFCC features are

computed using a frame size of 25ms and a frame shift of 10 ms. ANN-1H had 1000

nodes in the hidden layer and ANN-3H had 1000 nodes in each hidden layer.

• MP-DE: We use the setup of the best performing hybrid HMM/ANN using a three hidden

layers MLP classifying 1101 clustered context-dependent units reported in [Razavi et al.,

2014] as the baseline ANN-3H system. The ANN has 1000 nodes in each hidden layer.

We trained an ANN-1H with 1000 hidden units for the present study. The inputs to the

ANNs were 39 PLP cepstral features (c0 −c12 +Δ+ΔΔ) with four frames preceding and

four frames following context. The frame size and frame shift were 25 ms and 10ms,

respectively.

• MP-FR: We use the setup of the best performing hybrid HMM/ANN using a three hidden

layers MLP classifying 1084 clustered context-dependent units reported in [Razavi and

Magimai.-Doss, 2014] as the baseline ANN-3H system. The ANN has 1000 nodes in each

hidden layer. We trained an ANN-1H with 1000 hidden units for the present study. The

inputs to the ANNs were 39 PLP cepstral features (c0 − c12 +Δ+ΔΔ) with four frames

preceding and four frames following context. The frame size and frame shift were 25 ms

and 10ms, respectively.

Proposed CNN-based System

We trained the proposed CNN-based P (i |sc
t ) estimator using raw speech signal. The inputs are

simply composed of a window of the speech signal (hence di n = 1, for the first convolutional

layer). The utterances are normalized such that they have zero mean and unit variance, which

is in line with the literature [Sheikhzadeh and Deng, 1994]. No further pre-processing is

performed. The hyper-parameters of the network are: the time span of the input signal (wi n),

the kernel width kW and shift dW of the convolutions, the number of filters dout , maxpooling

width K Wmp and shift dWmp and the number of nodes in the hidden layer(s). Note that the

input di n for the first convolution layer is one (i.e. a sample of the speech signal). For the

remaining layers, the di n is the product of dout of the previous layer and kW of that layer.

These hyper parameters were determined by early stopping on the validation set, based on

frame classification accuracy. The ranges which were considered for a coarse grid search are

reported in Table 3.1. We used the TIMIT task to narrow down the hyper-parameters search

space, as it provided fast turn around experiments.

For each of the tasks, we trained CNNs with one hidden layer (denoted as CNN-1H) and

three hidden layers (denoted as CNN-3H) similar to the different MLP architectures in the

baseline systems. We found that three convolution layers consistently yields the best validation

accuracy across all the tasks. The CNN architecture found for each of the task is presented

in Table 3.2. The shift of max-pooling kernel dWmp = 3 was found for all the layers on all the

tasks. As we will observe later, the capacity of the CNN-based approach in terms of number

of parameters lies at the classifier stage. So, for fair comparison with the baseline systems,
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Table 3.1 – Range of hyper parameters considered for the grid search.

Parameters Units Range

Input window size (wi n) ms 100-700
Kernel width of the first conv. (kW1) samples 10-90
Kernel width of the nth conv. (kWn) frames 1-11
Number of filters per kernel (dout ) filters 20-100
Max-pooling kernel width (kWmp ) frames 2-6

Number of hidden units in the classifier units 200-1500

we restricted the search for the number of hidden nodes in the hidden layer(s) such that the

number of parameters are comparable to the respective baseline systems. The output classes

were same as the case of cepstral feature-based system, i.e. for TIMIT task 183 phone classes,

for WSJ task 2776 cCD units, for MP-DE task 1101 cCD units and for MP-FR task 1084 cCD

units.

Table 3.2 – Architecture of CNN-based system for different tasks. HL=1 denotes CNN-1H and
HL=3 denotes CNN-3H. wi n is expressed in terms of milliseconds. The hyper-parameters kW ,
dW , dout and kWmp for each convolution layer is comma separated. HU denotes the number
of hidden units. 3×1000 means 1000 hidden units per hidden layer.

HL wi n kW dW dout kWmp HU

TIMIT 1 250 30,7,7 10,1,1 80,60,60 3,3,3 1000
3 250 30,7,7 10,1,1 80,60,60 3,3,3 3x1000

WSJ 1 210 30,7,7 10,1,1 80,60,60 3,3,3 1000
3 310 30,7,7 10,1,1 80,60,60 3,3,3 3x1000

MP-DE 1 210 30,7,7 10,1,1 80,60,60 3,3,3 1000
3 310 30,7,7 10,1,1 80,60,60 3,3,3 3x1000

MP-FR 1 190 30,7,7 10,1,1 80,60,60 3,3,3 1000
3 310 30,7,7 10,1,1 80,60,60 3,3,3 3x1000

3.3.3 Results

In this section we present the results of the studies on different tasks. For the sake of complete-

ness, for the speech recognition studies we also report performance on HMM/GMM system.

For MP-DE and MP-FR, the best performing HMM/GMM systems reported in [Razavi et al.,

2014] and [Razavi and Magimai.-Doss, 2014], respectively are presented. It is worth pointing

out that they have more number of tied states than the hybrid HMM/ANN and the CNN-based

system presented here.
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TIMIT

Table 3.3 presents the results on TIMIT phone recognition task in terms of phoneme error

rate (PER). It can be observed that the proposed CNN-based approach outperforms the

conventional cepstral feature based system. In [Mohamed et al., 2012, Figure 6], ANNs with

different hidden layers were investigated with cepstral feature as input. The best performance

of 23.0% PER for the case of random initialization is achieved with 7 hidden layers, 3072 hidden

nodes per layer and 17 frames temporal context (8 preceding and 8 following) 23.0% PER. With

pre-training, the best performance of 22.3% is achieved with 6 hidden layers, 3072 hidden

nodes per layer and 17 frames temporal context. The CNN-3H system performs better than

those systems as well.

Table 3.3 – Phoneme error rate of different systems on the core test set of the TIMIT corpus.

#Conv. #Class. PER
Input System params. params. (in %)

MFCC ANN-1H [Mohamed et al., 2012] na 1.2M 24.5
MFCC ANN-3H [Mohamed et al., 2012] na 2.6M 22.6
RAW CNN-1H 63k 920k 22.8
RAW CNN-3H 52k 2.9M 21.9

Table 3.4 contrasts our results with a few prominent results on TIMIT using ANNs. Inputs of

these systems are either MFCCs (computed as presented in Section 3.3.2), Mel filterbanks ener-

gies (abbreviated FBANKs) or “improved” MFCC features (denoted MFCC+LDA+MLLT+fMLLR),

which are obtained by applying decorrelation processes (linear discriminant analysis and

maximum likelihood linear transform) and speaker normalization (feature-space maximum

likelihood linear regression) [Rath et al., 2013] to the original MFCC coefficient. One can see

that the proposed approach outperforms most of the systems using MFCCs features. Systems

using improved MFCCs features yields better results than the proposed approach, mainly due

to the speaker normalization technique, which could be developed for the proposed approach.

Finally, one can see that RNN-based systems (the three last entries of Table 3.4) clearly yield

the best performance.

WSJ

The results for the CSR study on the WSJ corpus in presented in Table 3.5. for the baseline

systems and the proposed system. As it can be observed, the CNN-1H based system outper-

forms the ANN-1H based baseline system, and the CNN-3H based system also outperforms

the ANN-3H based system, with as many parameters.
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Table 3.4 – Phoneme error rate of different systems reported in literature on the core test set of
the TIMIT corpus.

Method (input) PER (in %)

Augmented CRFs (MFCC) [Hifny and Renals, 2009] 26.6
HMM/DNNs 6 layers (MFCC) [Mohamed et al., 2012] 22.3
Deep segmental NN (MFCC) [Abdel-Hamid et al., 2013] 21.9
Proposed approach 21.9
HMM/DNNs 6 layers (MFCC+LDA+MLLT+fMLLR) [Lu et al., 2016] 18.5
CTC transducers (FBANKs) [Graves et al., 2013] 17.7
Attention-based RNN (FBANKs) [Chorowski et al., 2015] 17.6
Segmental RNN (MFCC+LDA+MLLT+fMLLR) [Lu et al., 2016] 17.3

Table 3.5 – Word Error Rate on the Nov’92 testset of the WSJ corpus

#Conv. #Class. WER
Input System params. params. (in %)

MFCC GMM na 4M 5.1
MFCC ANN-1H na 3.1M 7.0
MFCC ANN-3H na 5.6M 6.4
RAW CNN-1H 46k 3.1M 6.7
RAW CNN-3H 61k 5.6M 5.6

MP-DE

The results on the Mediaparl German corpus are presented in Table 3.6. The CNN-1H based

system outperforms the GMM-based system, the ANN-1H based system and the ANN-3H

system with four times less parameters. The CNN-3H system yields the best performance.

Table 3.6 – Word Error Rate on the testset of the MP-DE corpus.

#Conv. #Class. WER
Input System params. params. (in %)

PLP GMM [Razavi et al., 2014] na 3.8M 26.6
PLP ANN-1H na 2.2M 26.7
PLP ANN-3H [Razavi et al., 2014] na 8.8M 25.5
RAW CNN-1H 61k 1.6M 24.4
RAW CNN-3H 92k 8.7M 23.5
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MP-FR

The results on the Mediaparl French corpus are presented in Table 3.7. Again, a similar trend

can be observed, i.e. the CNN-1H based system outperforms the ANN-1H baseline and the

CNN-3H outperforms the ANN-3H based system.

Table 3.7 – Word Error Rate on the testset of the MP-FR corpus.

#Conv. #Class. WER
Input System params. params. (in %)

PLP GMM [Razavi and Magimai.-Doss, 2014] na 3.8M 26.8
PLP ANN-1H na 2.2M 27.0
PLP ANN-3H [Razavi and Magimai.-Doss, 2014] na 8.8M 25.5
RAW CNN-1H 61k 1.5M 25.9
RAW CNN-3H 92k 8.7M 23.9

3.4 Summary

In this chapter, we proposed a novel CNN-based acoustic modeling approach that auto-

matically learns relevant representations from the speech signal and estimates phone class

conditional probabilities for ASR. Our studies showed that with minimal assumptions the

proposed approach is able to learn to process the speech signal to estimate phone class condi-

tional probabilities P (i |sc
t ) and yield a system that outperforms conventional cepstral feature

based system using ANN with multiple hidden layers. Furthermore, we consistently observed

that the CNN-1H system yields performance comparable to ANN-3H system with considerably

fewer number of parameters.
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4 Analysis of Proposed CNN-based Sys-
tem

In the previous chapter, it was shown that the CNN-based approach using raw speech as

input yields an ASR system that performs better than the system based on conventional

approach with considerably less number of parameters. Thus, a question that arise is: what

information is the neural network learning and how it is learning? Since the features are

learned along with the classifier automatically from the data, yet another question that arises

is: are these features domain or language dependent? To understand these aspects we first

present an analysis of the system that gives insight about the information that is learned by

the filters at the first convolution layer (Section 4.1) We then focus the analysis at the output of

feature learning stage, where we evaluate the cross-domain and cross-lingual capabilities of

the learned features (Section 4.2). The analyses are done using the corpora and the systems

presented in the previous chapter.

4.1 First Convolution Layer

In this section, we present an analysis of the first convolution layer. We first provide an input

level analysis, where the hyper-parameters of the layer (found experimentally) are compared

against the conventional speech processing approach. We then show that the convolution

layer can be interpreted as a bank of matching filters. Finally, we analyze how these filters

respond to various inputs and present a method to understand the filtering process.

4.1.1 Input level Analysis

To learn to process raw speech signal and estimate P (i |sc
t ) the proposed approach employs

many hyper-parameters which are decided based on validation data. We can get insight into

the approach by relating or contrasting a few of the hyper-parameters to the traditional speech

processing. First among that is time span of the signal wi n used to estimate P (i |sc
t ). From

Table 3.2, we can observe that wi n varies from 190 ms - 310 ms. This is consistent with the

literature which supports the idea of processing syllable length speech signal (around 200 ms)
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for classification of phones [Hermansky, 1998]. This aspect can be also observed in another

way. Usually, in hybrid HMM/ANN system the input is the cepstral features (static + Δ + ΔΔ) at

the current time frame and features of four preceding frames and four following frames. If the

frame shift is 10 ms and the temporal derivatives are computed using two frames preceding

and two frames following context then the 9 frame feature input models about 170 ms of

speech signal.

Next we can understand how the speech signal of time span of 190 ms - 310 ms is processed

at the input of the network through the kernel width (kW ) and kernel shift (dW ) of the first

convolution stage. We can see from Table 3.2 that for all tasks kW is 30 speech samples and

dW is 10 speech samples. Given that the sampling frequency is 16 kHz, this translates into

a window of 1.8 ms and shift of about 0.6 ms. This is contrary to the conventional speech

processing where typically the window size is about 25 ms, the shift is about 10 ms and the

resulting features are concatenated at the classifier input. Note that in our case wi n is shifted

by 10ms, however with in the window of 190 ms - 310 ms the speech is processed at sub-

segmental level at the first convolution layer and subsequently processed by later convolution

layers with different temporal resolutions to estimate P (i |sc
t ).

Such a sub-segmental processing at the first convolution layer could possibly be reasoned

through signal stationarity assumptions. More precisely, the convolution filters at the first

stage are learned by discriminating the phone classes at the output of the CNN. So, for the

output of the convolution filter to be informative (for phone classification), the filter has to

operate on stationary segments of the speech signal spanned by wi n . It can be argued that

such a stationary assumption would clearly hold for one glottal cycle or pitch period of the

speech signal. In such a case suppose if the limit of the observed pitch frequency is assumed to

be 500 Hz, i.e. beyond adult speakers pitch frequency range, then a window size of 2 ms or less

would ensure that the filters operate where the vocal tract system can be considered stationary

i.e. with in a glottal cycle. This line of argument is also consistent with traditional feature

extraction methods which tend to model the smooth envelope of the short-term spectrum, i.e.

information related to vocal tract response, with quasi-stationarity assumptions.

4.1.2 Learned Filters

The first convolution layer learns a set of filters that operates on the speech signal in a similar

way to filter bank analysis during MFCC or PLP cepstral feature extraction. In the case of

MFCC or PLP cepstral feature extraction the number of filter banks and their characteristics

are determined a priori using speech perception knowledge. For instance, the filters are placed

either on Mel scale or on Bark scale. Furthermore, each of the filters cover only a part of the

bandwidth, out of which the response is strictly zero. The number of filters are chosen based

on bandwidth information. For instance, in the case of Mel scale around 24 filters for 4 kHz

bandwidth (narrow band speech) and 40 filters for 8 kHz bandwidth (wide band speech) are

typically used. While in the case of Bark scale, there are 15 filters for 4 kHz bandwidth and 19
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Figure 4.1 – Examples of three close pairs of filters learned. The left column is from CNN-1H
WSJ, the center one is from CNN-1H MP-DE, the right one is from CNN-1H MP-FR.
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filters for 8 kHz bandwidth (see e.g. [Hönig et al., 2005]).

In contrast, in the proposed approach the number of filters and their responses are automati-

cally learned in data-driven manner, i.e., while learning to estimate P (i |sc
t ). It can be observed

from Table 3.2 that the number of filters for all the tasks is 80. This is well above the range

typically used in speech processing. In order to understand the learned filter characteristics,

we analyzed the filters learned on WSJ, MP-DE and MP-FR task in the following manner:

(i) The complex Fourier transform F of the filters learned on the WSJ, MP-DE and MP-FR

tasks for CNN-1H case are computed using 1024 point FFT. The 512 point magnitude

spectrum |Fm | of each filter m is then normalized, i.e. converted into a probability mass

function. Fm denotes the normalized magnitude spectrum of filter m.

(ii) For each filter m = 1, · · ·80 learned on WSJ, we find the closest filter n = 1, · · ·80 learned

on MP-DE and MP-FR using symmetric Kullback-Leibler divergence,

d(Fm ,Fn) = 1

2
· [DK L(Fm || Fn)+DK L(Fn || Fm)], (4.1)

DK L(Fm ||Fn) =
512∑
u=1

Fm[u] ln
Fm[u]

Fn[u]
, (4.2)

where Fm[u] is the normalized magnitude at uth point of FFT of filter m of WSJ CNN-1H

and Fn[u] is the normalized magnitude at uth point of FFT of filter n of MP-DE CNN-1H

or MP-FR CNN-1H.

Figure 4.1 presents normalized frequency responses of a few filters learned on WSJ (on the

left column) and the closest filters learned on the MP-DE task (on the middle column) and

on the MP-FR task (on the right column). We can make two observations. First, the filters

are focussing on different parts of the spectrum. However, unlike the filter banks in the

MFCC or PLP cepstral feature extraction, the frequency response of the filters cover the whole

bandwidth. Second, it can be observed that similar filters can be found across domain and

languages, although there is a difference in the spectral balance, especially as observed in the

case of Figure 4.1(b).

To further understand the characteristics of the learned filters, we estimated the cumulative

frequency response of all the filters in the filterbank:

Fcum =
80∑

n=1
Fn (4.3)

Figure 4.2 presents the gain normalized cumulative frequency responses for CNN-1H WSJ,

CNN-1H MP-DE and CNN-1H MP-FR. We can make two key observations,

(i) Though the filters are learned on different languages and corpora, we can see that below
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Figure 4.2 – Cumulative frequency responses of the learned filterbank on WSJ, MP-DE and
MP-FR.

4000 Hz and above 6500 Hz the shape of frequency response for WSJ, MP-DE and MP-FR

are similar. As the filters are operating on sub-segmental speech, we speculate that

the peaks (high energy regions) are more related to the resonances in the vocal tract

or phoneme discriminative invariant information. Between 4000 Hz and 6500 Hz, we

can see that MP-DE and MP-FR have responses that closely match, but are different

than WSJ. Overall we observe that the spectral balance for WSJ is different than for

MP-DE and MP-FR. We attribute this balance mismatch mainly to the fact that the WSJ

and the Mediaparl corpora are different domains in terms of type of speech (read vs.

spontaneous) and recording environment (controlled vs real world). In the following

sub-section and Section 4.2.2 we touch upon this aspect again.

(ii) Auditory filterbanks such as Mel scale filterbanks or Bark scale filterbanks are usually

designed to have a cumulative frequency response that is flat. In other words, constant

Q bandpass filterbank. In contrast to that, it can be seen that the cumulative frequency

response of the learned filters is not constant Q bandpass. The main reason for that is

standard filterbanks emerged from human sound perception studies considering the

complete auditory frequency range or the bandwidth, so as to aid analysis and synthesis
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(reconstruction) of the audio signal. However, in our case these filters are learned for the

purpose of discriminating phones, and the speech signal contains information other

than just phones. The figure suggests that, for discriminating only phones, constant Q

bandpass filterbank is not a necessary condition.

4.1.3 Response of Filters to Input Speech Signal

In Section 4.1.1, we observed that the speech signal of time span 190 ms - 310 ms is processed

in sub-segmental manner. In the previous section, we observed that the filters that operate on

sub-segment of speech signal are tuned to different parts of the spectrum during training. In

other words, matched to different parts of the spectrum relevant for phone discrimination. In

this section, we ascertain that by analyzing the response of the filters to the the input speech

signal in relationship with phones.

The CNNs in the WSJ, MP-DE and MP-FR studies were trained to classify cCD units, which can

be quite distinctive across languages. So, in order to facilitate the analysis across languages,

we trained CNNs with single hidden layer on WSJ, MP-DE and MP-FR data to classify context-

independent phones with same hyper parameters. We denote these CNNs as CNN-1H-mono

WSJ, CNN-1H-mono MP-DE and CNN-1H-mono MP-FR, respectively.

As a first step, we analyzed the energy output of the filters to the input speech signal. Formally,

for a given input st = {st−(kW −1)/2 ... st+(kW −1)/2}, the output yt of the first convolution layer is

given by:

yt [m] =
l=+(kW −1)/2∑
l=−(kW −1)/2

fm[l ] · st+l ∀m = 1, ..,dout (4.4)

where fm denotes the mth filter in first convolution layer and yt [m] denotes the output of the

filter at time frame t . Figure 4.3 presents the output of the filters of CNN-1H-mono WSJ given

a segment of speech signal corresponding to phoneme /I / as input. It can be seen that at

each time frame only a few filters out of the 80 filters have high energy output. An informal

analysis across different phones showed similar trends, except that the filters with high energy

output were different for different phones. Together with the findings of the previous section,

this suggests that the learned filters could be a dictionary that models the information in the

frequency domain in parts for each phone. With that assumption, we extended the analysis

where,

1. the magnitude spectrum or frequency response St of the input signal st based on the

dictionary of learned filters is estimated as:

St = |
M∑

m=1
yt [m] ·Fm |, (4.5)
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Figure 4.3 – Normalized energy output of each filter in the first convolution layer of CNN-1H-
mono WSJ for an input speech segment corresponding to phoneme /I /.

where yt [m] is the output of filter m as in Equation (4.4) and Fm is the complex Fourier

transform of filter fm .

It is worth noting that if the filter-bank was to correspond to a bank of Fourier sine and

cosine bases then St is nothing but the Fourier magnitude spectrum of the input signal

st . As yt [m] would be a projection on to the Fourier basis corresponding to discrete

frequency m, and Fm would ideally be a Dirac delta distribution centered at the discrete

frequency m.

2. gain-normalized magnitude spectrum St is averaged across different frames and speak-

ers for each phone. The resulting average magnitude spectrums for the phones are then

compared.

We performed the analysis on the validation data of WSJ, MP-DE and MP-FR using the filters

in the first convolution layer of respective CNN-1H-mono. The log-magnitude spectrums

are displayed for a few prominent vowels (notated in SAMPA format) for WSJ in Figure 4.4,

for MP-DE in Figure 4.5 and for MP-FR in Figure 4.6. It can be observed that the average

magnitude spectrum is capturing envelope of the sub-segmental speech. Furthermore, it

is different for each vowel. The prominent spectral peaks could be related to the formants.

However, a detailed formant analysis is practically infeasible for three main reasons:

(a) First, poor frequency resolution. The filters are operating on sub-segmental speech of

about 1.8ms. This leads to poor frequency resolution. It can be also noticed from the

43



Chapter 4. Analysis of Proposed CNN-based System

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

Frequency [Hz]

G
ai

n
-n

o
rm

al
iz

ed
L

o
g

M
ag

n
it

u
d

e
/A/

/E/

/O/

/U/

/I/

Figure 4.4 – Mean frequency response on the WSJ-mono corpus for phonemes /E/, /A/, /O/,
/I / and /U /.
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Figure 4.5 – Mean frequency response on the MP-DE corpus for phonemes /E/, /A/, /O/, /I /
and /U /.
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Figure 4.6 – Mean frequency response on the MP-FR corpus for phonemes /E/, /A/, /O/, /I /
and /U /.
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Figure 4.7 – Mean frequency response for English, German and French for phoneme /I /.
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Figure 4.8 – Mean frequency response for English, German and French for phoneme /A/.

ripples in the magnitude spectrums (especially in the high frequency region);

(b) Second, the formant frequencies and their bandwidths for males and females are differ-

ent. The frequency responses here are result of averaging over several male and female

speakers in the respective validation data set; and

(c) Third, the analysis here has been carried on validation data, not on actual training data.

So there can be spurious information present due to unseen condition or variation.

For instance, in the case of /A/, see Figure 4.8, we observe a prominent peak at around 1000

Hz, which could be seen as merger of first formant and second formant as a consequence

of window effect and averaging over male and female speakers. Taking these aspects into

account, we examined the frequency responses in the case of WSJ (Figure 4.4). We found that

the prominent spectral peak locations tend to relate well to the first formant, second formant

and third formant information provided for English vowels in [Deng and O’Shaughnessy,

2003, p. 233]. When comparing across the languages (Figure 4.7 and Figure 4.8) we observe a

trend similar to the cumulative response of the filters (Figure 4.2). Specifically, the main peaks

locations and spectral balance match well for MP-DE and MP-FR. However, in the case of WSJ

the spectral peak locations tend to match but the spectral balance is different than MP-DE

and MP-FR.

Given the understanding gained by the first convolution layer analysis and CNN architecture,

it can be hypothesized that the second convolution layer model the modulation of the first

layer filter outputs.
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4.2 Intermediate Feature level Analysis

In this section, we focus on the analysis of intermediate feature representations that are being

learned at the output of the feature learning stage. In that regard, Section 4.2.1 focuses on the

discriminative aspects of the learned feature representations. Section 4.2.2 then focuses on

the cross-domain and cross-lingual aspects.

4.2.1 Discriminative Features

In the recognition studies presented earlier in Section 3.3, it was observed that CNN-1H system

with much fewer parameters outperforms ANN-3H system on all the tasks. Furthermore, we

also observed that the capacity of the proposed CNN-based system lies more at the classifier

stage. Given that the intermediate feature representations are learned in the process of training

P (i |sc
t ) estimator, it can be presumed that these features are more discriminative compared

to cepstral-based feature representations, and thus needs less parameters in the classifier

stage. To fully ascertain that aspect we conducted an experiment to compare the cepstral

features and the intermediate feature representations learned by the CNN. Specifically, we

trained and tested three single layer perceptron based systems on WSJ task. One with the

MFCCs with temporal context (39×9) as input and the others with intermediate features

learned by CNN-1H and CNN-3H. In the case of CNN-3H, wi n was kept same as CNN-1H

i.e. 210 ms. Table 4.1 presents the performances of the three systems. We can observe that

the learned features lead to a better system than the cepstral features. Thus, indicating that

the learned features are indeed more discriminative than the cepstral feature representation.

Furthermore, it is interesting to note that the features learned by CNN-1H and CNN-3H yield

similar systems. It suggests that the gain in ASR performance for WSJ task using CNN-3H is

largely due to more hidden layers.

Table 4.1 – Single layer perceptron based system results on the Nov’92 testset of the WSJ task.

Features Dimension WER
(in %)

MFCC 351 10.6
CNN-1H 540 7.9
CNN-3H 540 7.9

4.2.2 Cross-domain and Cross-lingual Studies

Conventional cepstral features, like MFCC, are known to be independent of the language or

the domain, which is one of the main reason they become “standard” features. In the proposed

system, the features are learned in a data-driven manner, thus they may have some level of

dependencies on the data. In order to ascertain to what level the learned features are domain

or language independent, we conducted cross-domain and cross-lingual experiments. More
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Figure 4.9 – Illustration of the cross-domain experiment. The filter stage is trained on domain
1, then used as feature extractor on domain 2.

precisely, as illustrated in Figure 4.9, in these experiments the filter stage is first trained on one

domain or language. It is then used as feature extractor to train the classifier stage of another

domain or language.

We used the TIMIT task and WSJ task for cross-domain experiments. We investigated

1. the use of feature stage of CNN-1H of WSJ task as feature extractor for TIMIT task. The

classifier stage with single hidden layer was trained on TIMIT to classify 183 phone

classes.

2. the use of feature stage of CNN-1H of TIMIT task as feature extractor for WSJ task. The

classifier stage with single hidden layer was trained to classify 2776 clustered context-

dependent units.

In both the studies, we set the number of hidden nodes to 1000, similar to the systems reported

in Section 3.3. The results of the two studies are presented in Table 4.2. In the case of TIMIT

task the results are presented in terms of PER, and in the case of WSJ task in terms of WER.

In the TIMIT task, we can observe that, despite the feature stage being trained to classify

clustered context dependent units on much larger corpus, the PER is inferior to the case where

the feature stage is learned on TIMIT. In the case of WSJ task, we observe that with feature

stage trained on TIMIT the WER is high.

In addition to the fact that TIMIT and WSJ are two different corpora, there are two other

differences which could have had influence. First, WSJ is a much larger corpus than TIMIT in

terms of data. Second, in TIMIT CNN-1H the feature stage is learned while classifying context-

independent phones. Similarly in WSJ CNN-1H the feature stage is learned while classifying

clustered context-dependent units. So, we conducted a study on WSJ task to understand the
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Table 4.2 – Cross-domain results on English. The TIMIT results are in terms of PER. The WSJ
task results are in terms of WER.

Classifier stage Feature stage Error Rate
(Domain 2) (Domain 1) (in %)

TIMIT Learned on TIMIT 22.8
Learned on WSJ 23.3

WSJ Learned on WSJ 6.7
Learned on TIMIT 7.8

influence of the type of units at the output of the CNN on the feature stage learning, while

negating the data effect. More precisely, we used the feature stage of WSJ CNN-1H-mono

(presented earlier in Section 4.1.3) as feature extractor and trained the classifier stage to classify

2776 clustered context-dependent units. This system leads to a performance of 7.3% WER,

which is inferior to 6.7% WER. This shows that indeed the type of units in the output of CNN

has an influence on the feature learning stage. When compared to the case where the feature

stage is learned on TIMIT, this result indicates that the majority of the performance gap can be

attributed to the differences in the WSJ and TIMIT data sets. It is worth observing that TIMIT

is a very small corpus compared to WSJ (3 hours vs 88 hours). However, the performance

difference is not drastic, which suggests that the relevant features can be learned on relatively

small amount of data.

We investigated the cross-lingual aspects on WSJ, MP-DE and MP-FR tasks. We conducted

studies where the feature stage is learned on one language and the classifier stage is learned

on the other language. For these studies, we used the feature stages of WSJ CNN-1H, MP-DE

CNN-1H and MP-FR CNN-1H systems presented in Section 3.3. The classifier stage in all

the studies consisted of a single hidden layer with 1000 nodes. The classes at the output of

classifier stage remained same as before, i.e. 2776 cCD units for WSJ task, 1101 cCD units for

MP-DE task and 1084 cCD units for MP-FR task. Table 4.3 presents the results of the study.

Before we analyze the results in detail, we can consider broader aspects. Specifically, in

terms of family of languages, English and German belong to Germanic language family while

French belongs to Romance language family. Given that, it can be expected that the feature

stage learned on MP-DE to suit well for WSJ task when compared to feature stage learned

on MP-FR and vice versa. In the case of WSJ task this trend is observed (12.1% vs. 12.8%).

However, it is not observed in the case of MP-DE task (30.9% vs. 26.1%). In general we observe

that feature stage learned on another language leads to inferior system. The performance

gap is drastic when the feature stage is learned on WSJ and the classifier stage is learned on

Medialparl (MP-DE or MP-FR) and vice versa. In addition to language differences, this can be

attributed to the other differences in WSJ corpus and Medialparl corpus. More precisely, WSJ

corpus contains read speech collected in controlled environment while Mediaparl contains

spontaneous speech collected in real world conditions. This is also supported by the findings
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Table 4.3 – Crosslingual studies result on English, German and French. The feature stage is
learned on Domain 1 and the classifier stage is learned on Domain 2.

Classifier stage Feature stage WER
(Domain 2) (Domain 1) (in %)

WSJ Learned on WSJ 6.7
Learned on MP-DE 12.1
Learned on MP-FR 12.8

MP-DE Learned on MP-DE 24.4
Learned on MP-FR 26.1

Learned on WSJ 30.9
MP-FR Learned on MP-FR 25.9

Learned on MP-DE 26.8
Learned on WSJ 31.7

of the analysis presented in Section 4.1. Since MP-DE and MP-FR are similar kind of data

except for the language, the drop in performance is small (24.4% to 26.1% in the case of MP-DE

task and 25.9% to 26.8% in the case of MP-FR task). Languages typically have different phone

sets and this difference gets further enhanced when modeling context-dependent phones. As

we saw earlier in the cross-domain studies the choice of output units influences the feature

stage. So, the small drop in performance in this case could be more attributed to the phonetic

level differences between German language and French language.

4.3 Relation to Recent Literature

Recently, there are other works, inspired by ours, that have investigated modeling of raw

speech signal directly using ANNs [Tüske et al., 2014, Golik et al., 2015, Sainath et al., 2015b].

In [Tüske et al., 2014], use of DNNs (or fully connected MLP) was investigated. It was found

that such an acoustic model yields inferior system when compared to standard acoustic

modeling. In a subsequent follow up work [Golik et al., 2015], it was found that addition of

convolution layers at the input helps in improving the system performance and reducing the

performance gap w.r.t standard acoustic modeling technique. In [Sainath et al., 2015b], an

approach was proposed using convolutional long short-term memory deep neural network

(CLDNN), where the input to CLDNN is raw speech signal. This approach was found to yield

performance comparable to the case where the input to CLDNN is log filter bank energies. In

comparison to these works, our work mainly differs at the feature stage or convolution layers.

Specifically, in these works the short-term window size is set to about 16ms based on prior

knowledge, while in our case it is a hyper-parameter and was determined to be around 2ms.

Furthermore, in these works the filters learned at the first convolution layer were found to be

similar to auditory filter-banks. In [Sainath et al., 2015b], these filters were close to Mel filter

banks, while in [Golik et al., 2015] the filters were found close to well-known spectro-temporal
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filters, such as MRASTA filters [Hermansky and Fousek, 2005] and Gabor filters [Chang and

Morgan, 2014]. In our case, the learned filters are a dictionary of matched filters that model

formant-like information in the sub-segmental speech. As a whole, these works, similar to

ours, show that the relevant features from the speech signal can be automatically learned

along with the classifier to estimate P (i |sc
t ).

4.4 Summary

In this chapter, we presented an analysis of the features learned by the CNN-based system

taking raw speech as input. We conducted the studies at two levels: on the filter level, i.e. the

first convolution layer and on the intermediate representations level. Our studies showed

that the first convolution acts as a filterbank and models “in-parts” the spectral envelope of

short-term signal of 1.8 ms duration. The studies also showed that the learned features have

some level of invariance across domains and languages. These learned features are also more

discriminative than standard cepstral-based features. The following chapter further pursues

this point.
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5 Deep Features and Shallow Classifier

In pattern recognition, the trade-off between feature efficiency and classifier capacity1 is

well-known, and can be illustrated by two extreme cases. In the first case, if one assumes that

the features represent the classes perfectly, the model can be as simple as possible. On the

other hand, if the features are not robust, the model would need more capacity in the classifier.

Typically, most systems operate at a middle point, where the feature are reasonably robust, so

the classifier capacity is acceptable.

As discussed earlier in the thesis, the deep neural network approach consists of using NN-

based classifiers with many hidden layers. The input of the DNNs is cepstral features or

spectral-based features. It has been found that these systems improve with deep architecture,

i.e. more hidden layers [Hinton et al., 2012]. However, the DNN approach of adding more

layers has been questioned recently: as shown by Ba and Caruana [2014], shallow networks

can be trained to perform similar to deep neural network. This raises the question: what is

“deep”?

As presented in the earlier chapters, the CNN-based system using raw speech as input is able

to learn relevant features in the filter stages. We also showed that the learned features are

more discriminative than standard cepstral-based features. With respect to the features/clas-

sifier trade-off presented above, the CNN-based system seems to lean towards the efficient

feature/simple classifier case. Motivated by these aspects, in this chapter we further study the

capabilities of the CNN-based approach to learn efficient features using a simple classifier.

More specifically, we investigate CNN-based architectures using deep features, i.e. many fea-

tures learning layers and a shallow linear classifier. This approach has potential implications

in controlling acoustic model capacity.

1In this chapter, we measure the capacity as the number of parameters of the classifier.
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5.1 Architecture and Network Design

As done previously, the CNN-based system is composed of two stages: the features learning

stage and the classifier stage. The filter stage is the same as the one described in Section 3.2.1,

composed of a convolution layer, a max-pooling layer and a non-linearity. The classifier

stage is a single layer perceptron (SLP), i.e. a linear classifier as opposed to MLP. Both stages

are trained jointly using the approach presented in Section 3.2.2. Figure 5.1 illustrates the

architecture of the proposed CNN-based acoustic model.

Raw speech

segment sct
Convolution

Max

pooling

Hard

Tanh(·)

Filter stage × N

(feature learning)

Linear

Classifier
SoftMax

Classification stage

P (i|sct)

Figure 5.1 – Convolutional neural network based architecture using a linear classifier.

In this architecture, the capacity of the classifier cannot be tuned by a hyper-parameter, as it

was the case in the previous chapters, because the classifier has no hidden layer. The classifier

capacity is given by:

dout ×Ncl ass (5.1)

where Ncl ass denotes the number of output classes and dout denotes the dimensionality of the

intermediate representations, i.e. the output of the feature learning stage. Thus, the number

of parameters of the classifier is entirely determined by dout , given by:

dout = Nout ×d (5.2)

where Nout denotes the number of frames at the output of the last filter stage and d the

dimension of these frames. d is a hyper-parameter, denoting the number of filters in the last

convolution layer. The number of frames Nout ,C for an architecture using C filter stages is

given by:

Nout ,1 = 1

kWmp,1

(
wi n −kW1

dW1
+1

)
(5.3)

Nout ,n = 1

kWmp,n

(
Nout ,n−1 −kWn

dWn
+1

)
, n = {2, . . . ,C } (5.4)

where kW and dW are the hyper-parameters of the convolution layers, kWmp and dWmp are

the hyper-parameters of the max-pooling layers and wi n is the input window, expressed in

number of samples, as presented in Section 3.3.2
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We can observe that the number of frames at the output of the feature learning stage Nout is

actually decreasing when more filter stages are used, because of the non-overlapping max-

pooling layers (Equation (5.4)). Thus, the capacity of the classifier decreases, see Equation (5.1),

while the capacity of the filter stages increases. In this case, adding more features learning

layers to the architecture has the effect of shifting the capacity of the whole system from the

classifier stage to the feature learning stage.

5.2 Experimental Setup

We present two studies to demonstrate the potential of shifting the capacity to the features

learning stage. The first study is a controlled study on TIMIT phoneme recognition task where

the total number of parameters is fixed. The second study is a continuous speech recognition

study on WSJ task, where the total number of parameters is variable.

Phoneme recognition study We first present a controlled study, where the depth of the

feature learning stage is studied where the sum of parameters in the features stage and the

classifier stage is a constant. As presented in the previous section, varying the depth of the

feature learning stage has the effect of shifting the capacity from the classifier to the feature

learning stage. In this study, we vary the depth of the features learning stage from one to four

filter stages. We perform this study on phoneme recognition task on the TIMIT corpus, the

details of the setup can be found in Section 3.3.1. The network hyper-parameters are carefully

selected to fulfil the fixed capacity constraint using the validation data. The hyper-parameters

selected are presented in Table 5.1. We first compare the architecture with a SLP-based hybrid

HMM/ANN system, with 64k parameters. We then compare with a MLP-based system with one

hidden layer of 500 units, which has 320k parameters. In this case, the number of parameters

of the CNN-based system is fixed to 132k and 320k.

Continuous speech recognition study The objective of the second study is to evaluate the

potential of shifting the capacity to the feature learning stage to reduce the capacity of the

system on a large-scale task. In this study, we vary the depth of the feature learning stage

from one to four filter stages. The hyper-parameters are tuned on a coarse grid search and

presented in Table 5.1. The study is performed on WSJ continuous speech recognition, as

presented in Section 3.3.1. We compare our system to HMM/ANN baselines using SLP and

ANN-1H classifier, using MFCC features as input. We also compare the proposed architecture

to the CNN-based system using MLP-based classifier, referred to as CNN-1H, presented in

Chapter 3.
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Table 5.1 – Network hyper-parameters.

# conv. # total
Corpus layer params. wi n kW dW dn kWmp

TIMIT 1 64k 310 ms 30 10 38 50
2 64k 310 ms 30,5 10,1 40,34 7,7
3 64k 310 ms 30,7,7 10,1,1 45,44,40 7,7,7
4 64k 310 ms 30,9,9,9 10,1,1,1 52,40,40,40 3,3,3,3

TIMIT 1 132k 310 ms 30 10 80 50
2 132k 310 ms 30,5 10,1 40,38 5,5
3 132k 310 ms 30,7,7 10,1,1 90,70,60 4,4,4
4 132k 310 ms 30,9,9,9 10,1,1,1 80,60,60,60 3,3,3,3

TIMIT 1 320k 310 ms 30 10 194 50
2 320k 310 ms 30,5 10,1 100,85 5,5
3 320k 310 ms 30,7,7 10,1,1 200,108,100 4,4,4
4 320k 310 ms 30,7,7,7 10,1,1,1 150,120,100,90 3,3,3,3

WSJ 1 1.3M 310 ms 30 10 80 50
2 1M 310 ms 30,7 10,1 80,40 7,7
3 800k 310 ms 30,7,7 10,1,1 100,100,50 4,4,4
4 590k 310 ms 30,7,7,7 10,1,1,1 80,60,60,60 3,3,3,3

5.3 Results

In this section, we first present the results of the study on TIMIT phoneme recognition task

and then the WSJ task.

5.3.1 Phoneme Recognition Study

Table 5.2 presents the results of the CNN-based system compared to the SLP baseline, where

the capacity is fixed to 64k parameters. The results are expressed in term of PER. We can see

that the CNN-based system is able to yield similar performance to the baseline with only one

convolution stage. Adding more filter stages shifts the capacity of the system from the classifier

stage to the feature learning stage of the system and at the same time improves performance.

We compare the CNN-based system to the ANN-1H baseline with 320k parameters with a

fixed number of parameters of 132k and 320k. The results are presented in Table 5.3. It can be

observed that the CNN-based system using four filter stages outperforms the baseline with the

same amount of parameters (320k). Moreover, the CNN also outperforms the baseline with

less than half of the parameters (132k). When compared to the results presented in Chapter 3,
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Table 5.2 – Results on the TIMIT core testset with 64k parameters.

# conv. # conv. # classifier Total
Features layers param. Classifier param. # params. PER

MFCC na na SLP 64k 64k 37.2 %
RAW 1 1k SLP 63k 64k 37.7 %
RAW 2 8k SLP 56k 64k 30.5 %
RAW 3 28k SLP 36k 64k 29.3 %
RAW 4 50k SLP 14k 64k 27.3 %

Table 5.3 – Results on the TIMIT core testset with 132k and 320k parameters.

# conv. # conv. # classifier Total
Features layers param. Classifier param. # params. PER

MFCC na na ANN-1H 320k 320k 25.6 %
RAW 1 2k SLP 130k 132k 35.4 %
RAW 2 8k SLP 124k 132k 30.9 %
RAW 3 76k SLP 56k 132k 28.7 %
RAW 4 110k SLP 22k 132k 25.4 %
RAW 1 6k SLP 314k 320k 33.9 %
RAW 2 45k SLP 275k 320k 28.3 %
RAW 3 233k SLP 87k 320k 26.6 %
RAW 4 277k SLP 43k 320k 25.2 %

5.3.2 Continuous Speech Recognition Study

The results for the study on continuous speech recognition task on the WSJ corpus are pre-

sented in Table 5.4 along with the SLP and MLP baselines results. The performance is expressed

in terms of word error rate (WER). We observe a similar trend as in the TIMIT studies, i.e.

the performance of the system improves with increase in filter stage capacity and reduction

in the classifier stage capacity. More specifically, it can be observed that with only two con-

volution layers the proposed system is able to achieve performance comparable to the SLP

baseline. With four convolution layers, the system is able to yield performance comparable

to the ANN-1H baseline using MFCC as input and the CNN-1H system with six times fewer

parameters.

5.4 Discussion and Summary

In this chapter, we investigated the trade-off between feature learning stage and classifier

stage in the proposed CNN-based acoustic modeling approach. Our studies indicate that

the capacity of the acoustic model can be effectively controlled or reduced by increasing the
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Table 5.4 – Results on the Nov’92 testset of the WSJ corpus.

# conv. # conv. # classifier Total
Features layers param. Classifier param. # params. WER

MFCC na na ANN-1H 3M 3M 7.0 %
RAW 3 55k CNN-1H 3M 3M 6.7 %

MFCC na na SLP 1M 1M 10.6 %
RAW 1 5k SLP 1.3M 1.3M 15.5 %
RAW 2 27k SLP 1M 1M 10.5 %
RAW 3 108k SLP 700k 800k 8.5 %
RAW 4 180k SLP 410k 590k 6.9 %

depth of the feature learning stage using a simple linear classifier stage, while keeping the

performance of ASR system intact. A question that arises is that: can the deep feature stage

also be replaced by a shallow network? It seems not to be the case. As shown by Urban et al.

[2016], unlike DNNs, it is not trivial to replicate the performance of deep CNNs by shallow

CNNs.

In the literature, the issue of capacity has been addressed early since the emergence of neural

networks. LeCun et al. [1989] proposed the optimal brain damage approach, where the network

is iteratively pruned. More recently, model compression has been proposed by Bucilua et al.

[2006]. In speech, recent works by Ba and Caruana [2014] and Hinton et al. [2015] show that

similar performance are yielded by small networks trained using the knowledge acquired

by large networks. Overall, in these works, the approach mainly consists of training a large

network and then reducing its capacity. However in our case, the network is directly trained

with small capacity and yields performance comparable to system with more capacity. This

has potential implication in training or adapting systems on scarce data.
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6 Towards Noise-Robust Raw Speech-
based Systems

The previous chapters showed that using the raw speech signal as input leads to competitive

ASR systems. It was also found that the features learned by such system tends to model the

spectral envelop of the sub-segmental speech signal and yields some degree of invariance

across languages. A natural question which arises from these previous findings is that: whether

the proposed CNN-based approach using raw speech is robust to noise?

In this chapter, we propose a robust CNN-based architecture, referred to as Normalized

Convolutional Neural Networks (NCNN). This architecture is based upon the CNN-based

architecture presented in Section 3.2.1, where normalization layers are introduced at each

filter stage, which normalize the intermediate representations learned by the network to have

zero mean and unit variance. Such a normalization is analogous to feature mean and variance

normalization, which has been shown to provide robustness to noise in conventional ASR

systems [Furui, 1981].

In the remainder of this chapter, we provide a brief literature review. We then present the

proposed architecture. The recognition studies are then presented, followed by an analysis.

6.1 Related Literature

Robustness to noise is an important aspect of ASR system. Noise can be defined as undesirable

sounds or signals corrupting the speech signal. Noises can be grouped in two types: additive

and convolutive noise. Additive noise is added to the signal and usually it originates from

the environment. Convolutive noise represent the effect of the channel between the speaker

and the receiver, which can be expressed as a convolution operation. In the literature, this

problem has been approached in two different ways: Model-based approach and feature

based approach. In this section, we provide a brief review.

Model-based approaches assume that the features are sensitive to noise, and aim to model this

sensitivity by adapting the acoustic model. The most popular approach is multi-conditional

training, where the training set is corrupted by a set of representative noise conditions [Furui,
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1992]. Another model-based approach is the signal decomposition approach, which is based

on modeling each decomposable component of the noisy signal by separate models [Varga

and Moore, 1990]. The parallel model combination is a similar approach, where the separate

models are combined for recognition [Gales and Young, 1996]. Multi-band processing has also

been proposed, where each frequency band of the signal is modeled separately [Bourlard and

Dupont, 1997]. Following a similar approach, multi-stream processing has been investigated

for robust ASR [Bourlard et al., Hagen, 2001, Misra et al., 2006, Ikbal, 2004]. The missing

data approach is based on selecting reliable regions of the signal to train the model [Cooke

et al., 2001, Raj et al., 2001]. Vector Taylor series approach also has been proposed for noise

compensation [Li et al., 2007].

The feature-based approach consists of enhancing the input features prior to recognition.

An early method is the spectral subtraction [Boll, 1979], which is based on estimating the

noise power spectrum. This approach has been extended to non-linear spectral subtrac-

tion [Lockwood and Boudy, 1992] and continuous spectral subtraction [Flores and Young,

1994]. It was later extended to unsupervised spectral subtraction [Lathoud et al., 2005]. The

feature enhancement approach has also been investigated for cepstral-based features. The

most popular approaches are the Cepstral Mean Normalization [Furui, 1981] and the Cepstral

Variance Normalization [Viikki and Laurila, 1998]. More recently, SNR features [Garner, 2009]

have also been proposed.

In ANN-based framework, the ANN has been used to extract robust features [Tamura and

Waibel, 1988, Sharma et al., 2000, Vinyals and Ravuri, 2011]. Recently, DNN-based systems

have been investigated for robust ASR. In [Seltzer et al., 2013], the DNN-based system is

shown to outperform HMM/GMM systems in multi-condition training setup without any

enhancement techniques. Feature enhancement techniques have also been investigated

for DNNs, such as Vector Taylor Series [Li and Sim, 2013]. Recurrent Neural Networks have

also been investigated for robust ASR [Weng et al., 2014], showing that such approach can

outperform the DNN approach in the multi-conditional training setup.

Unlike the conventional approach, in the proposed CNN-based acoustic modeling approach

the feature stages and the classifier are jointly learned. As observed earlier in Chapter 4, the

first convolution layer models in part the formant-like information in the envelop of sub-

segmental speech. These regions are typically high signal-to-noise ratio regions. Thus the

CNN-based system can be expected to be less susceptible to noise. A possible way to further

improve robustness would be to enhance intermediate representations. In the following

section, we present an approach.

6.2 Normalized Convolutional Neural Networks (NCNN)

The Normalized CNN is based on the CNN presented in Section 3.2.1. It is composed of several

filter stages, followed by a classification stage, as illustrated in Figure 6.1. The filter stage is

composed of a convolution layer followed a max-pooling layer. The representations learned by
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Figure 6.1 – Illustration of the normalized convolutional neural network architecture with N
filter stages.

these layers are then given as input to a normalization layer. The normalized representations

are then given as input to a non-linearity. The representations learned by these stages are then

given as input to the classifier stage, composed of a standard MLP.

6.2.1 Normalization Layer

The normalization layers perform a temporal normalization over the input window wi n on

each dimension of the outputs of the max-pooling layer, as illustrated in Figure 6.2. Formally,

given the outputs of a max-pooling layer O = {o1 · · ·oN } composed of N frames of dimension

dout , the normalization operation on one frame on is defined as:

Nor m(on) = on[d ]−μ[d ]

σ[d ]
∀d = {1, . . . ,dout } (6.1)

where μ denotes the mean input vector, computed over all N frames,

μ[d ] = 1

N

N∑
n=1

on[d ] (6.2)

and the variance σ2[d ] is computed using the unbiased variance estimation

σ2[d ] = 1

N −1

N∑
n=1

(on[d ]−μ[d ])2. (6.3)

This normalization is applied on every output frame. It is worth mentioning that the number

of output frames N can vary according to the position of the filter stage in the architecture, as

presented earlier in Figure 3.6. It is worth mentioning that this layer was inspired by the batch

normalization technique [Ioffe and Szegedy, 2015]. The key difference in our case is that the

normalization is performed over time, not over a batch of examples.

6.2.2 Rectifier Linear Unit

Irrespective of whether normalization layers are employed or not in the CNN, we use the Rec-

tified Linear Unit (ReLU ) [Nair and Hinton, 2010] as non-linearity instead of the H ar dTanh,

as it has been shown to bring robustness to DNN-based systems [Sivadas et al., 2015]. The
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Normalization
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Figure 6.2 – Illustration of the first filter stage of the normalized convolutional neural network.

Rectifier Linear Unit is defined as:

ReLU (x) =
{

0 if x ≤ 0

x if x > 0
(6.4)

6.3 Connected Word Recognition Study

In this section, we present our studies on Aurora2 benchmark corpus.

6.3.1 Database

The Aurora2 corpus [Hirsch and Pearce, 2000] is a connected digit corpus which contains 8,440

sentences of clean and multi-condition training data, representing around 4 hours of speech,

and 70,070 sentences of clean and noisy test data, sampled at 8 kHz. We report the results on

test A and test B, composed of 10 different noises at 7 different noise levels (clean, 20dB, 15dB,

10dB, 5dB, 0dB, -5dB), totaling 70 different test scenarios, each containing 1,001 sentences.

The alignment is obtained using the HTK-based HMM/GMM system provided along with the

database. It consists of whole word HMM models with 16 states per word to model the digits.

The states are connected in a simple left-to-right fashion. The number of states is 179.
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6.3.2 Baselines

We compare our approach with the HMM/GMM baseline provided with the corpus [Hirsch

and Pearce, 2000], which uses 16 Gaussian per state, and 179 states. We also train a HMM/ANN

system, where the ANN has one hidden layer of 1000 units. As per the protocol, 39 dimension

MFCCs input features are used, computed using HTK. The cepstral mean and variance nor-

malization techniques are also used, applied on each utterance separately. These normalized

features are referred to as MFCC-CMVN. We also consider the case where the speech signal

is enhanced using Advanced Front End (AFE) tool [Hirsch, 2002b, Hirsch and Pearce, 2006]

and MFCC are extracted. AFE is an ETSI standard describing the front-end of a distributed

speech recognition system. It consists of a waveform noise reduction stage followed by a

MFCC extractor.

6.3.3 CNN-based Systems

In these studies, we compare two architectures: the NCNN architecture, presented earlier

in Section 6.2 and the CNN architecture, described in Section 3.2.1, except that the non-

linearity is the ReLU instead of the H ar dTanh. The network hyper-parameters defining the

CNN architecture were based on the studies performed in Chapter 3. They are presented in

Table 6.1.

Table 6.1 – Architecture of CNN-based system for the Aurora2 studies. wi n is expressed in
terms of milliseconds. The hyper-parameters kW , dW , dout and kWmp for each convolution
layer is comma separated. HU denotes the number of hidden units.

HL wi n kW dW dout kWmp HU
1 310 30,7,7 10,1,1 80,60,60 3,3,3 1000

The input of the CNN is a window of the speech signal normalized such that it has zero

mean and unit variance, as described earlier in the studies presented in Chapter 3. We also

investigate the case where the speech signal is enhanced before being fed to the CNN using

AFE tool. This was done by taking the output of the two stage Weiner filter with the AFE tool

and performing overlap add [Allen and Rabiner, 1977] followed by one bit dithering.

6.3.4 Results

We report the results in term of word recognition rate (WRR), on the clean test set, the test

set A and test set B (as defined in Section 6.3.1). As per the protocol, the average values for all

noise conditions between 0 and 20 dB are reported for test set A and test set B.
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Original Waveforms

Table 6.3 presents the results on the clean and multi-conditional training setup. On the clean

training, the CNN system yields better performance than the baseline system using MFCC

features (without CMVN). The proposed NCNN approach outperforms the original CNN

architecture by 18 % in absolute. It also outperforms the baselines systems using MFCC

features. When compared to baseline using the CMVN technique, the NCNN approach clearly

outperforms the HMM/GMM system, and yields similar performance to the HMM/ANN

baseline. On the multi-conditional training setup, the NCNN and the CNN systems outperform

the baselines, with and without using the CMVN techniques. Also, it can be observed that the

NCNN system yields similar performance to the CNN-based system, which indicates that the

normalization layers might not be necessary in the multi-conditional training setup. When

compared to the literature, the proposed CNN-based system yields similar performance, as

presented in Table 6.2.

Table 6.2 – Comparison with the literature on Aurora2 multi-conditional training setup, ex-
pressed in Word recognition rate (WRR). DAE stands for denoising auto-encoder and DVAT
stands for discriminative adaptive training using vector Taylor series.

System Clean Test A Test B

NCNN 98.95 94.23 92.24
Recurrent DAE [Maas et al., 2012] 99.06 89.78 82.52

DVAT HMM/GMM [Ragni and Gales, 2012] - 95.4 95.1

Enhanced Waveforms

Table 6.4 presents the results using the enhanced waveforms in clean and multi-conditional

training setup. In clean training setup, one can see that using the AFE enhancement technique

on MFCC features improves the performance of the baseline systems. It can also be observed

that RAW AFE inputs improves the performance of the CNN system by 11% on test set A and

by 7.8% on test set B. However, using enhanced waveforms on the NCNN system actually

decreases the performance by 2% on test sets A and B. This could be explained by the presence

of artefact in the denoised waveforms of the training set. To confirm that aspect, we ran an

experiment where the NCNN system is trained using original waveforms, and the test set are

denoised. Using this setup, we see an improvement in performance for both tests: the NCNN

system yields 87.1% WRR on test set A and 85.9% WRR on test set B. We also see an improve-

ment compared to the case where original waveforms are used (see Table 6.3). However, either

way the NCNN and the CNN system yield lower performance than the baseline.

In the multi-conditional training setup, one can see that the CNN system and the NCNN

system outperforms all the baselines. When compared to using the original waveforms, both

system yields similar performance, indicating that the waveform enhancement might not
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be necessary in this case. To understand the effect of AFE enhancement technique in the

multi-conditional training setup, we ran the same experiment, where only the test sets are

enhanced using AFE tool. Surprisingly, the performance is worse: the NCNN system yields

88.5% WRR on test set A and 86.0% WRR on test set B, which represents a drop in performance

of about 7%. The same trend can be observed for the CNN system, which yields 83.6% WRR

on test set A and 80.5% WRR on test set B, representing a performance drop of about 12%.

A possible reasoning for this trend could be that the AFE tool was developed considering

MFCC extraction with subsequent post-processing and its transmission for distributed speech

recognition. This could be partly observed when comparing baseline systems with and without

CMVN. Specifically, without any speech enhancement, the baseline systems improve with

CMVN. However, with speech enhancement the performance of the baseline systems actually

drop with CMVN.

Table 6.3 – Word recognition rate (WRR) on the Aurora2 test sets. HMM/GMM baseline
performance using MFCC are reported in [Hirsch and Pearce, 2000] and the HMM/GMM
baseline performance using MFCC-CMVN are reported in [Garner, 2009].

Clean training Multi-cond. training
Features System Clean Test A Test B Clean Test A Test B

MFCC HMM/GMM 99.02 61.34 55.74 98.52 87.81 86.27
HMM/ANN 99.13 60.96 64.63 98.47 92.14 82.37

MFCC-CMVN HMM/GMM 99.13 77.98 78.78 97.97 90.94 90.75
HMM/ANN 99.50 85.79 85.20 98.69 93.36 90.68

RAW CNN 99.44 69.10 66.37 99.04 94.20 92.22
NCNN 99.36 86.64 84.92 98.95 94.23 92.24

Table 6.4 – Word recognition rate (WRR) on the Aurora2 test sets, using enhanced waveforms.
HMM/GMM baseline performance using MFCC are reported in [Hirsch and Pearce, 2006].

Clean training Multi-cond. training
Features System Clean Test A Test B Clean Test A Test B

MFCC HMM/GMM 99.22 87.74 87.09 99.21 92.29 91.77
HMM/ANN 99.37 78.96 76.32 99.30 94.11 92.10

MFCC-CMVN HMM/GMM 99.15 88.73 89.23 98.81 90.83 89.64
HMM/ANN 99.46 86.77 85.91 99.05 93.69 91.84

RAW AFE CNN 99.37 80.26 74.21 99.12 95.08 93.31
NCNN 99.35 84.64 82.96 98.91 94.32 92.99
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6.4 Continuous Speech Recognition

In this section, we present the continuous speech recognition study on the Aurora4 corpus.

This corpus is a subset of the Wall street journal corpus used in Chapter 3, corrupted with

additive and convolutive noises.

6.4.1 Database

The Aurora4 corpus has been created from the standard Wall Street Journal (WSJ0) corpus,

corrupted with six additive noises. The training set consists of 7180 utterances, representing 15

hours of speech. Two training conditions are provided: clean and multi-conditional training.

The validation set is composed of 330 utterances. The data is sampled at 16 kHz. The test

set is composed of 330 utterances. 14 conditions are provided, consisting of two different

channels conditions. The test set is split into 4 subsets. Test A consists of the clean condition

test (condition 1). Test B consists of the noisy utterances using a matched channel (conditions

2-7). Test C consists of the clean utterances using a mismatched channel (condition 8). Finally,

Test D consists of noisy utterances using a mismatched channel (conditions 9-14). More

details can be found in [Hirsch, 2002a]. The dictionary is based on the CMU phoneme set, 40

context-independent phonemes. We obtained 3000 clustered context-dependent (cCD) units,

i.e. tied-states, by training a context-dependent HMM/GMM system with decision tree based

state tying. We used the bigram language model provided with the corpus. The test vocabulary

contains 5000 words.

6.4.2 Baselines

We compare our approach with the HMM/GMM system. We also train a HMM/ANN system,

where the ANN has one hidden layer of 1000 units. Both systems use 39 dimension MFCC

features, computed using HTK. Again, we investigate the case where cepstral mean and

variance normalization of the features is performed at utterance level. These normalized

features are referred to as MFCC-CMVN.

6.4.3 CNN-based Systems

As in the previous study, we compare two architectures: the NCNN architecture and the CNN

architecture where the non-linearity is the ReLU non-linearity instead of the H ar dTanh. The

hyper-parameters of the features stage are based on the hyper-parameters found for the WSJ

study presented in Section 3.3.2 and are presented in Table 6.5.

66



6.5. Analysis

Table 6.5 – Architecture of CNN-based system for the Aurora4 studies.

HL wi n kW dW dout kWmp HU

1 310 30,7,7 10,1,1 80,60,60 3,3,3 1000

6.4.4 Results

The results on the Aurora4 corpus on the clean condition training setup are presented in

Table 6.6, expressed in terms of word recognition rate. On test A (clean condition), one can

see that the CNN system and the NCNN system yield similar performance to the baseline

systems, with the CNN system sightly outperforming the NCNN system. On test set B (additive

noise), one can see that the CNN barely reaches the performance of the HMM/GMM baseline

using MFCC as input. The NCNN system outperforms all the baseline systems and the CNN

system. On test set C (channel noise), the CNN system yields again similar performance to the

GMM baseline with MFCC. The NCNN performance is on par with the baseline systems using

MFCC CMVN. This suggests that the normalization layers are not very efficient for handling

convolutional noise or channel effect. On test set D (additive and convolutional noise), the

CNN system is outperformed by baseline systems using CMVN techniques and the NCNN

outperforms all the baseline systems.

Table 6.7 presents the results using the multi-condition training setup. It can be observed that

the baseline systems performance improves when using the CMVN techniques. On the four

test sets, the NCNN system and the CNN system outperform all baselines. Interestingly, in

this case the CNN system outperforms the NCNN system. This confirms the findings on the

Aurora2 corpus that the normalization layers are not needed in the multi-conditional training

setup.

Table 6.8 presents a comparison with the recent literature, where the proposed CNN system is

compared on the multi-conditional training setup with a DNN-based system with 5 hidden

layers (DNN-5H) and a CNN-based system with 4 hidden layers (CNN-4H), both using Mel-

Filterbank energies as input. It can be observed that the CNN-based approach yields similar

or better performance than these systems.

6.5 Analysis

In order to better understand the proposed NCNN architecture, we present in this section three

analyses. We first analyze the role of the ReLU and the normalization layers on the robustness

of the system. We then analyze the filters learned by the first convolution layer in clean

and multi-conditional training setup. Finally, we study the effect of the AFE enhancement

technique with respect to signal-to-noise ratio conditions.
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Table 6.6 – Word recognition rate of the Aurora4 test sets on the clean training setup.

Features System Test A Test B Test C Test D Ave.

MFCC HMM/GMM 90.73 41.72 51.65 25.65 52.43
HMM/ANN 90.19 35.91 44.42 25.91 49.10

MFCC CMVN HMM/GMM 93.14 56.25 61.29 35.76 61.61
HMM/ANN 91.61 57.63 67.78 40.90 64.48

RAW CNN 93.61 40.23 53.71 25.24 53.19
RAW NCNN 92.02 77.57 66.88 51.47 71.98

Table 6.7 – Word recognition rate of the Aurora4 test sets on the multi-conditional training
setup.

Features System Test A Test B Test C Test D Ave.

MFCC HMM/GMM 84.81 72.91 52.29 55.55 66.39
HMM/ANN 86.29 73.59 75.51 58.56 73.48

MFCC CMVN HMM/GMM 89.28 79.80 78.11 63.10 77.57
HMM/ANN 89.39 78.34 79.88 62.71 77.58

RAW CNN 92.10 88.06 84.49 74.28 84.73
RAW NCNN 91.74 87.50 83.43 73.22 83.97

Table 6.8 – Comparison with literature on the multi-conditional training setup.

Feature System Test A Test B Test C Test D Ave.

Mel-filterbank DNN-5H [Mitra et al., 2014] 89.7 84.1 84.8 74.8 83.35
Mel-filterbank CNN-4H [Mitra et al., 2014] 90.0 85.6 86.6 78.1 85.07

Raw Proposed CNN 92.1 88.1 84.5 74.3 84.73

6.5.1 Architectures Analysis

When compared to the CNN-based system presented in Chapter 3, the NCNN architecture

has two differences: the non-linearity and the normalization layers. In this section, we analyze

their role on the robustness of the system on Aurora2.

Normalization We first evaluate the effect of the normalization layers by comparing the

NCNN architecture, i.e. where the normalization is applied at each filter stage, with an

architecture where the normalization is only applied in the last convolution layer. The results

are presented in Table 6.9. One can see that applying a normalization at each layer clearly

improves the performance in clean training setup. The performance in multi-conditional
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training setup is similar for both cases, supporting the argument that the normalization is not

necessary in this setup.

Non-linearity We then evaluated the effect of the non-linearity layer. We compared the

ReLU layer to the H ar dTanh layer, as defined in Section 6.2 of the present chapter and

in Chapter 3 respectively. We trained a CNN system with H ar dTanh and compared it to

the CNN system with the ReLU non-linearity. The results are presented in Table 6.10. The

ReLU non-linearity clearly leads to better system the H ar dTanh non-linearity on clean and

multi-conditional training setup.

Table 6.9 – Word accuracy on the Aurora2 corpus for different normalization strategies.

Clean training Multi-cond. training
Normalization Clean Test A Test B Clean Test A Test B

At every filter stage 99.36 86.64 84.92 98.95 94.23 92.24
At the last filter stage 99.42 77.16 76.77 98.85 94.37 92.41

Table 6.10 – Word accuracy on the Aurora2 corpus for different non-linearities.

Clean training Multi-cond. training
Non-linearity type Clean Test A Test B Clean Test A Test B

ReLU 99.44 69.10 66.37 99.04 94.20 92.22
H ar dTanh 99.34 67.68 64.20 98.66 93.45 90.76

6.5.2 First Convolution Layer Analysis

In order to gain further insights on the effects of the normalization, we computed the cumula-

tive responses of the first convolution layer, as earlier done in 4.1.2. Specifically, we compared

the NCNN architecture response with the CNN architecture responses using H ar dTanh and

ReLU as non-linearity.

The cumulative frequency responses on Aurora2 are presented in Figure 6.3 for the CNN

architecture using H ar dTanh as non-linearity, using ReLU as non-linearity and for the

NCNN architecture. On the clean training setup, presented in Figure 6.3(a), one can see that at

low frequencies, the three responses are close, they all have emphasis around 1.5 kHz. At high

frequencies however, the NCNN response is different mainly around 3.3 kHz. This region is

not emphasized by the CNN systems, and could explain the performance difference in the

clean training setup.

The responses of the systems trained using the multi-conditional setup, presented in Fig-
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Figure 6.3 – Cumulative frequency responses on the Aurora2 corpus on (a) clean training, (b)
multi-conditional training.

ure 6.3(b), show that the spectral balance is similar between the three systems. There is slight

differences at high frequencies between the NCNN system and the CNN systems. When com-

pared to the clean training setup, the spectral balance is different between the two training

setups, as in multi-conditional training, the responses are more balanced across the whole

spectrum. This can be explained by the fact that effect of noise tend to spread across all

frequencies. One can also see that the emphasis around 1.5 kHz is flat on multi-conditional

training setup. We also see that on both clean condition and multi-condition, the NCNN

system lays emphasis around 3.0 - 3.5 kHz. Note that in this study, the CNN-based system

classifies word states so relating these responses to phonemes is difficult.

The frequency responses on Aurora4 are presented in Figure 6.4. Before going into the details,

it is worth noting that the response of the CNN system using the H ar dTanh non-linearity

on clean training matches the response on the WSJ corpus, presented in Figure 4.2. Using

the clean training setup, presented in Figure 6.4(a), we can see that the responses of the

three systems are close at low frequency and mismatch at high frequency. This is consistent

with the Aurora2 findings. Using the multi-conditional training setup, a similar trend to the

responses using clean conditions training can be observed. In fact, the frequency emphasis

are consistent across training setups. There is however a difference in the spectral balance.

6.5.3 Waveform Enhancement Study

As presented in Section 6.3.4, use of the AFE waveforms enhancement technique with the

NCNN systems leads to a drop in performance in the clean training case and do not improve

performance in multi-conditional training setup. In order to understand the effect of the AFE

technique, we analyzed the performance of the NCNN system with respect to the SNR level,

using original and enhanced waveforms during training. We also analyzed the performance
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Figure 6.4 – Cumulative frequency responses on the Aurora4 corpus on (a) clean training and
(b) multi-conditional training.
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Figure 6.5 – Comparison of recognition performance on the test set A of Aurora2 using original
and enhanced waveforms, on (a) the clean training setup and (b) the multi-conditional training
setup.

when the system is trained with original waveforms and tested with enhanced waveforms. In

the clean training setup, presented in Figure 6.5(a), using enhanced waveforms improves the

performance only at very low SNR (0 and -5 dB) levels and decreases the performance at others

SNR levels. The same trend can be observed when using enhanced waveforms only during

testing, although there is a slight improvement at high SNR level. On the multi-conditional

training setup, presented in Figure 6.5(b), using enhanced waveforms also only improves the

performance at low SNR level. Using the enhancement waveforms leads to a performance

drop at almost all SNR levels. This is consistent with our previous findings on Aurora2 in

Section 6.3.4. Overall, these studies show that the benefit of using enhancement technique
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with data-driven feature learning approaches is not clear, i.e. open for further research.

6.6 Summary

In this chapter, we investigated the robustness of the CNN-based system to noise. To this

aim, we proposed a novel approach based on intermediate representation normalization. Our

studies showed that the proposed approach outperforms the baseline systems using feature

level normalization. Furthermore, the studies also showed that the normalization layer is not

needed when the CNN-based system is trained on multi-conditional dataset. Finally, we also

investigated waveform enhancement using AFE tool on Aurora2 and we did not observe any

benefit for the CNN-based system.
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7 End-to-end Phoneme Sequence
Recognition

In chapters 3 to 6, we investigated an end-to-end training approach applied to acoustic mod-

eling in the hybrid HMM/ANN framework. We showed that such approach yields competitive

performance on speech recognition tasks. In this framework, the phoneme sequence pre-

diction is performed in two steps: first, the CNN-based acoustic model locally estimates the

acoustic likelihood for each segment of the input speech utterance. In a second step, the

sequence is decoded by the HMM, often using a language model. This approach is thus

locally discriminative but globally generative. The training and the recognition are performed

by maximizing P (L,S), where S denotes the speech utterance and L its corresponding label

sequence. Following the end-to-end approach, can we go one step further and train jointly

the features, the classifier and the sequence decoding step?

In this chapter, we investigate an acoustic sequence to phoneme sequence conversion model,

which takes a raw speech utterance as input and outputs a sequence of phoneme. This model

consists of a local CNN-based classifier followed by a Conditional Random Fields (CRF). The

system is trained based on the Graph Transformer Network [Bottou et al., 1997] approach,

where the cost function discriminates the ground-truth sequence from all possible sequences.

We investigate the approach in a systematic manner through three studies,

1. Separate training: In this system, the local classifier (CNN) and global sequence model-

ing (CRF) are trained separately, like in the hybrid approach.

2. Joint training: The system is trained in an end-to-end manner, where the CRF back-

propagates the error gradient to the CNN-based classifier.

3. Weakly-supervised training: In separate training and joint training, we assume that

the segmentation is available. In this system, we go one step further and investigate a

training setup where only the phoneme transcription is available, not the segmentation.

We extend the joint training approach to simultaneously infer the phoneme sequence

segmentation and prediction.
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7.1 End-to-end Sequence Recognition

The proposed system is composed of two stages: the sequence acoustic model based on

Convolutional Neural Network, and the decoder, based on Conditional Random Fields. As

illustrated in Figure 7.1, both stages are trained jointly through back-propagation.

Raw speech

utterance
CNNs MLP CRF

Phoneme

sequence

S L∗

Joint Training

Figure 7.1 – Illustration of proposed system.

Acoustic Modeling

The acoustic modeling stage models a whole speech utterance. It is composed of the CNN-

based architecture presented in Chapter 3. This stage is given a raw speech utterance S as

input and outputs a score f i
t (S,θ f ) for each class i ∈ {1, . . . , I } at each frame t , where θ f denotes

the parameters of the networks.

Sequence Decoding

For the sequence decoding, we consider a simple CRF, where we define a graph with nodes for

each frame in the input sequence, and for each label. Transition scores, denoted as a matrix A,

are assigned to the edges between phonemes, and network prediction scores f (·) are assigned

to the nodes. This CRF allows to discriminatively train a transition model over the network

output scores. Given an input sequence S and a label path L = {l1 . . . lT }, lt ∈ {1, . . . , I }, of length

T on the graph, a score for the path can be defined:

c(S,L,Θ) =
T∑

t=1

(
f lt

t (S,θ f )+ Alt ,lt−1

)
(7.1)

where Θ = {θ f , θA} denotes the parameters, with θ f the CNN parameters and θA the CRF

parameters, i.e. the matrix A. An illustration is provided in Figure 7.2. At inference time, the

best label path can be found by maximizing (7.1). The Viterbi algorithm is used to find

L∗ = argmax
L

(c(S,L,Θ)) . (7.2)
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phone1

phone2

phone3

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 7.2 – Illustration of the CRF graph for 3 classes.

7.1.1 Supervised Training

In supervised training, we assume that the phoneme segmentation L is available during

training. The system parameters Θ are learned by maximizing the log-likelihood L, given by:

L(Θ) =
N∑

n=1
log(P (Ln |Sn ,Θ)) (7.3)

for each input speech sequence S and label sequence L over the whole training set. In a

standard CRF setup, scores c(S,L,Θ) are interpreted as a conditional probability P (L|S,Θ) by

taking them to the exponential (such that there are positive) and normalizing them over all

possible label paths U in the fully connected lattice UT of length T :

log(P (L|S,Θ)) = c(S,L,Θ)− logadd
U∈UT

c(S,U ,Θ) , (7.4)

where the logadd operation is defined in Equation (2.22).

Minimizing the negative likelihood L is performed using the stochastic gradient descent

algorithm, where the parameters are updated by making a gradient step:

Θ←−Θ+α
∂L(Θ)

∂Θ
(7.5)

where α is the learning rate.

Two training strategies are considered: joint training and separate training. They are illustrated

in Figure 7.3.

Joint Training

The networks and the CRF are trained jointly. In this case, The likelihood L is optimized with

respect to the CRF parameters θA and to the network parameters θ f , as presented above. The
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Raw speech

utterance S
CNN SoftMax CRF
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c
t) P (lt|sct)

∀t L∗
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(a)

Raw speech

utterance S
CNN CRF

ft(S)

∂ft(S)
∂θf

L∗

Joint training

(b)

Figure 7.3 – Illustration of the two training strategies: (a) separate training and (b) joint
training.

gradient of the network output
∂ f lt

t (S,θ f )
∂θ f

is back-propagated to the network.

Separate Training

The networks and the CRF are trained separately. In this strategy, a softmax layer is added

to the network to obtain posteriors probabilities P (lt |sc
t ) for each speech segment sc

t at the

output of the network. In this case, the CRF score c(S,L,Θ) then becomes:

c(S,L,θA) =
T∑

t=1

(
log(P (lt |sc

t ,θ f ))+ Alt ,lt−1

)
(7.6)

The network parameters θ f are learned using the cross-entropy criterion, as presented in

Section 3.2.2. The likelihood L is then optimized using (7.5) only with respect to the CRF

parameters θA :

∂L(Θ)

∂Θ
= ∂L(θA)

∂θA
. (7.7)

Note that using this strategy implies that the acoustic model is trained locally, like as in the

hybrid HMM-based approach.

7.1.2 Weakly-supervised Training

In weakly-supervised training, we assume that the phoneme segmentation L is not available,

only the phoneme transcription Λ= {λ1, λ2 ..., λN } of length N is available. The problem of

segmentation consists in finding a sequence L (over T frames) of labels, such that aggregation
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of successive identical labels in L matches the sequence Λ. To infer the segmentation, we need

to constrain the CRF graph such that it covers all possible sequences L that could match Λ

after label aggregation.

Segmentation Graph

The constraints over time imposed by the label sequence Λ can be written as a directed cyclic

graph, where each node represents one label from the sequence, as illustrated in Figure 7.4. At

every time step, the path can either stay in the current node through the loop or go to the next

node (or label).

phone1

phone2

phone3

Figure 7.4 – Illustration of the cyclic graph for 3 classes.

phone1

phone2

phone3

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 7.5 – Illustration of the acyclic expanded graph for 3 classes, with tmi n = 3 and tmax = 5.

In order to implement such graph, we need to expand it to an acyclic graph over a sequence

duration of T frames. We introduce two parameters, tmi n and tmax , which represent the
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minimum and maximum time the path can stay in the same label, expressed in terms of

number of frames. To enforce these conditions, the acyclic graph must have multiple parallel

branches for each label. All parallel branches of the same label share their weights, i.e. ft (S) is

the same for each time t in each parallel branch. An illustration is provided in Figure 7.5.

In this graph, the number of nodes depends on the length of the phoneme transcription N .

The number of parallel branches Nbr is given by the sum of the parallel branches for each

phoneme

Nbr =
N∑

n=1
(n −1) · (tmax − tmi n)+1. (7.8)

As each branch contains tmax nodes, the total number of nodes Nnode is given by

Nnode = tmax ·Nbr . (7.9)

For example, for a transcription of length 20 with tmax = 30 frames and tmi n = 3 frames, the

graph has 450k nodes.

Training

In the following, we denote the unconstrained CRF graph over T frames as UT (Figure 7.2),

and we denote the graph constrained to the right sequence of labels Λ as CT (Figure 7.5).

Finding the best sequence L∗ (L∗ ⊂ CT ) matching the right sequence of labels Λ sequence

corresponds to solving the following maximization problem

max
C∈CT

c(S,C ,θ). (7.10)

This is achieved with a Viterbi algorithm, as in (7.2). Specifically, by integrating this best path

into (7.4) leads to the following likelihood:

L(Θ) = max
C∈CT

c(S,C ,Θ)− logadd
U∈UT

c(S,U ,Θ) . (7.11)

The parameters of the network θ f and of the CRF θA are learned jointly by stochastic gradient

descent algorithm.

7.2 Phoneme Sequence Recognition Study

In this section we present the experimental setup and the results of the phoneme recognition

study on the TIMIT corpus.
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7.2.1 Experimental Setup

TIMIT Corpus

The training set, validation set and test set are same as in the previous chapters, detailed in

Section 3.3.1. The phoneme set is composed of 61 phonemes. For evaluation, the 61 phonemes

are mapped to the 39 phoneme set [Lee and Hon, 1989]. A phoneme segmentation is provided

with this corpus. We refer to this segmentation as “manual segmentation”.

CNN-based System Setup

The input features for this part of the study are raw speech waveform, as described in Chapter 3.

The architecture is composed of four filter stages. The hyper-parameters are tuned based on

the phoneme error rate of the validation set, and are presented in Table 7.1.

Table 7.1 – Network hyper-parameters.

# hidden
System layers wi n nhu kW dW dn kWmp

CNN 1 310 ms 1000 30,7,7,7 5,1,1,1 200,100,100,100 4,2,2,2
2 310 ms 1000,1000 30,7,7,7 5,1,1,1 200,100,100,100 4,2,2,2
3 310 ms 1000,1000,1000 30,7,7,7 5,1,1,1 200,100,100,100 4,2,2,2

In the CNN-based architecture, the number of output labels, i.e. the length of the inferred

phoneme sequence, is given directly by the hyper-parameters. The duration of one output

label Tl ab (in seconds) is given by the duration of one sample of the input waveform (given by

the inverse of the sampling frequency fs) multiplied by the total pooling Npool , i.e.

Tl ab = 1

fs
∗Npool (7.12)

Using 4 filter stages, the number of pooling is given by:

Npool =
4∏

i=1
dWi ∗dWmp,i (7.13)

To be consistent with the baselines, the output label duration was set to Tl ab = 10ms, thus

Npool = 160. The hyper-parameters grid search was limited to fit this constraint.
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Raw speech
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Figure 7.6 – Illustration of the ANN-based system using MFCC features as input.

Baselines

We compare the CNN-based system using raw speech as input to ANN-based systems using

MFCC features as inputs. The score for a path in Equation (7.1) becomes:

c(X ,L,Θ) =
T∑

t=1

(
f lt

t (X ,θ f )+ Alt ,lt−1

)
(7.14)

where X = {x1 . . . xT } is a sequence of feature, as illustrated in Figure 7.6. The system is trained

using the three training strategies presented above. We use the same MFCC features as used

in the previous TIMIT study in Chapter 3. The classifier is a MLP composed of one to three

hidden layers. The number of hidden units for each layer is set to 1000.

For the sake of completeness, we also compare our results to the CRF based system proposed

in [Morris and Fosler-Lussier, 2008]. This system uses local posterior estimates provided by an

ANN (trained separately using PLP features) as features for the CRF. This system is referred

as “CRF”. The second baseline is a ANN/CRF based system [Prabhavalkar and Fosler-Lussier,

2010], where the ANN using PLP features as input is trained jointly with the CRF by back-

propagation. It is referred to as “ML-CRF”. All these systems are trained using the 61 phoneme,

mapped to the 39 phonemes set for evaluation.

CRF Hyper-parameters

The hyper-parameters of the segmentation graph are the minimum and maximum phoneme

duration tmi n and tmax . They are tuned on the phoneme error rate of the validation set. The

minimum duration tmi n was set to 30ms, or 3 frames. The maximum duration tmax was set to

300ms, or 30 frames. The maximum duration of the silence class is set to 150 frames, or 1.5 s.

7.2.2 Results

The results on the phoneme sequence recognition task are reported in Table 7.2 for the two

training strategies using manual segmentation, namely separate training and joint training,

and for the weakly-supervised training strategy. Using manual segmentation, one can see that

the ANN-based system with single hidden layer yields similar performance to the CRF baseline

(30.2% and 30.7% PER) and to the ML-CRF baseline (29.1% and 28.9% PER). Adding more layer
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improves the performance. The end-to-end CNN-based system clearly outperforms the CRF

baselines and the ANN-based systems. Moreover, the CNN-based system with one hidden

layer yields better performance than the ANN-based system using three hidden layers. One

can see that the joint training approach leads to similar or better systems than the separate

approach.

Systems trained using the weakly-supervised training approach yield similar or better perfor-

mance than systems trained using manual segmentation. Figure 7.7 illustrates the segmenta-

tion obtained by the proposed approach with the manual segmentation for an utterance. It can

be observed that there are only minor differences between the segmentations. These results

clearly indicate that the proposed weakly supervised training approach, which maximizes

P (L|X ), can be a good alternative to the independent training approach, based on maximizing

P (L, X ).
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Figure 7.7 – Phoneme segmentation example using the 39 phoneme set, for sequence ���� of
speaker �����.

Table 7.2 – Evaluation of the proposed approach on the TIMIT core testset. Results are
expressed in terms of PER. The CRF baseline performance is reported in [Morris and Fosler-
Lussier, 2008] and the ML-CRF performance is reported in [Prabhavalkar and Fosler-Lussier,
2010].

# Hidden Separate Joint Weakly-sup.
Input Systems Layers Training Training Training

Previous works
MFCC CRF 1 30.7 - -

PLP ML-CRF 1 - 28.9 -
Proposed approach
MFCC ANN 1 30.2 29.1 28.7
MFCC ANN 2 29.9 28.0 27.9
MFCC ANN 3 29.7 27.6 27.3
RAW CNN 1 25.6 25.5 26.6
RAW CNN 2 25.0 25.4 25.7
RAW CNN 3 24.9 25.4 25.7
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7.3 Discussion

In this section, we provide an analysis of the CNN architecture used in this chapter and

compare it against the CNN architecture used in Chapter 3. We then contrast the proposed

CRF-based approach to the literature.

7.3.1 Analysis and Assessment of the Proposed Approach

In this chapter, we investigated end-to-end training using raw speech as input. Like in Chap-

ter 3, the network hyper-parameters were tuned experimentally on the validation set. The

best performance using the end-to-end system was found with a set of hyper-parameters

different from the set found with the CNN-based system using HMM-based decoding. The

main differences are: (1) the end-to-end system need more filter stages (4 stages) than the

hybrid system (3 stages); (2) The first convolution shift is 5 samples, or 0.3 ms, which is shorter

than in the hybrid system (10 sample or 0.6 ms); (3) the number of filters in each convolution

is higher for the end-to-end system (100 vs 60), specially in the first convolution (200 vs 80).

This could be explained by the fact that in the end-to-end system, the CNNs have to model

input frames according to the whole utterance, thus the variability of the examples is larger

than the hybrid case using limited context.

The performance of the end-to-end system demonstrates the viability of the proposed ap-

proach. However, it can be noted that the approach underperforms compared to the hybrid

CNN-based system (see Table 3.3). A possible explanation is the estimation of unseen phone

transitions. In the HMM-based system, a phone n-gram model is used to decode, which has

the in-built capability to handle well unseen phone transitions, e.g. back-off. In the proposed

approach, the unseen transition are not handled explicitly and that could be the reason the

performance drop. In addition to that in the present study 61 states were used as opposed to

183 states.

7.3.2 Relation to Global Training Methods

End-to-end sequence-to-sequence conversion has been of interest since 1990s. Global training

of the acoustic model has been investigated early in the context of hybrid HMM/ANN [Bengio

et al., 1991]. The REMAP approach [Bourlard et al., 1994b, 1995] has also been proposed,

where P (W |X ) is modeled through recursive estimation of static probability conditioned

on the current observation and the previous state. Recently, inspired by segment-based

approaches [Glass, 2003], segmental CRFs approach [Zweig and Nguyen, 2009] has been

proposed for continuous speech recognition task. This approach is based on CRF using

segment-level features operating at multiple time scales and language model-level features.

Thus, in this approach the acoustic and language models are trained jointly in a discriminative

manner. More recently, there has been a growing interest in investigating end-to-end sequence

recognition approaches that are able to alleviate the need of pre-segmented labels. The
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Connectionist Temporal Classification (CTC) approach [Graves et al., 2006, 2013] has been

proposed. It is discussed in the next section. Building on top of that, recurrent models with

an attention mechanism have been proposed in speech recognition. Such models are able

to select relevant information iteratively. Such approaches have been successfully applied

to phoneme recognition [Chorowski et al., 2015] and speech recognition [Chan et al., 2015].

Segmental recurrent neural networks have also been proposed for phoneme recognition [Lu

et al., 2016].

Table 7.3 contrasts the proposed approach with above discussed approaches along four di-

mensions: whether raw speech or spectral based feature is used as input; whether the system

is based on frame-level or segment-level classification; whether the acoustic model and the

language model (or the phone transition model) are trained jointly and whether the segmen-

tation is obtained by an external system or learned jointly with the system. We can observe

that the proposed approach scores positively in three of the four dimensions. However, it is

worth noting that segmental CRFs could be used in the proposed approach.

Table 7.3 – Comparison of global training methods. RAW denotes the use of raw speech as
input, SA denotes the segment-based classification, JALM denotes the joint training of the
acoustic and language model and SL denotes the segmentation learning.

Method RAW SA JALM SL

Global training of HMM/ANN [Bengio et al., 1991] � � � �

REMAP [Bourlard et al., 1994b] � � � �
Segmental CRFs [Zweig and Nguyen, 2009] � � � �

Connectionist Temporal Classification (CTC) [Graves et al., 2013] � � � �
Proposed CRF � � � �
Attention-based Models [Chorowski et al., 2015] � � � �
Segmental RNN [Lu et al., 2016] � � � �

7.3.3 Relation to Connectionist Temporal Classification

The Connectionist Temporal Classification approach [Graves et al., 2006] proposed a method

for labeling sequences without the need for pre-segmented data. More specifically, this

approach is presented as a method to train RNN-based acoustic model. The training criterion

is based on maximizing the conditional probability of the correct phoneme sequence given

the input sequence. This approach, similar to our approach, is able to learn the segmentation

jointly with the acoustic modeling. The key differences between the CTC approach and our

approach are the following:

1. The CTC approach does not model the phoneme transition.

2. In the CTC approach, the output of the network is constrained to be posterior probabili-

ties by using a softmax layer. We do not use such constraint.
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3. The acoustic model in the CTC approach is a recurrent neural network. Thus, the time

dependence between successive acoustic observations are modeled explicitly in the

network, where in our approach, it is modeled implicitly, as the NN-based model is

trained through the CRF.

4. In terms of performance, the best result reported by the first CTC-based study [Graves

et al., 2006] on the TIMIT corpus is 30.1 % PER, which is worse than the performance

of our approach. This performance is evaluated on the full test set, known to be easier

that the core test set used in this thesis. This shows that our approach can be a good

alternative to CTC.

5. Recently, the CTC approach was used in the context on BLSTM-based transducers [Graves

et al., 2013]. This system yields state-of-the-art performance on TIMIT core testset

(17.4% PER). In this case, the phoneme transitions are modeled independently.

7.3.4 Relation to Sequence-discriminative Approaches for Acoustic Modeling

In the proposed approach, the models are trained by emphasizing the score of the true se-

quence while de-emphasizing the score of all other or competing sequences. In that sense, the

proposed approach can be seen as similar to the sequence-discriminative training framework,

which uses criteria inspired from HMM/GMM systems [Gales and Young, 2007], like Maximum

Mutual Information (MMI), state Minimum Bayesian Risk (sMBR) or Minimum Phone Error

(MPE) [Kingsbury, 2009, Guangsen and Sim, 2011, Andrew and Bilmes, 2012, Vesely et al.,

2013] and thus could have potential implications for discriminative acoustic modeling . The

key difference between the two approaches is that in [Vesely et al., 2013] sequence discrimina-

tive training is done in several steps. More precisely, training of a local ANN (or deep neural

network) classifier with cross entropy criterion followed by sequence discriminative training

of the ANN using a cost function based on maximum mutual information [Bahl et al., 1986]

or minimum phone error [Povey and Woodland, 2002] criteria. In the proposed approach,

as described earlier, there is no intermediate local classifier training. All the parameters are

trained in end-to-end manner based on sequence discriminative error criteria. The other

difference lies in the implementation of sequence discrimination criteria. In the MMI or MPE

case, the score normalization is done by summing over all possible word hypotheses, which is

practically infeasible to estimate. So it is approximated by decoding the training data using

a bigram or trigram language model and generating a lattice. In our case, it is computed

by using a fully connected phone model, which can encompass the phone state sequences

corresponding to all possible word sequences.

Thus, the proposed approach could alternately be used to estimate sequence-discriminative

local phone posterior probabilities given the global input signal. Indeed this can be done by

using forward-backward algorithm in CRF [Lafferty et al., 2001, Fosler and Morris, 2008].
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7.4 Summary

In this chapter, we proposed a sequence-to-sequence conversion approach which takes raw

speech utterance as input and outputs a phoneme sequence. The system is trained in an

end-to-end manner, where every step is trained jointly with the others. We also presented a

weakly-supervised training strategy, where the system learns the phoneme segmentation from

the transcription. We showed that use of raw speech as input to a CNN yields better system

than ANN-based system using cepstral feature as input, which is consistent with the findings

in Chapter 3.
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8 Jointly Learning to Locate and Clas-
sify Words

In the previous chapter, we investigated a sequence-to-sequence conversion approach, which

takes a speech utterance as input and outputs a phoneme sequence. We showed that such a

system can be trained in a weakly-supervised manner, where only the phoneme transcription

is needed for the training. In this chapter, we investigate relaxing the label sequence ordering.

In other words, we discard the sequence information at the output of the system and treat the

sequence-to-sequence prediction problem as a multi-label classification problem.

Specifically, we propose a novel multi-word detection system. The system is composed of two

stages: a sequence modeling stage, based on convolutional neural networks, which performs

the acoustic modeling and outputs a score for each frame, for each word. The second stage is

the aggregation stage, which aggregates the score computed by the CNNs along the temporal

dimension. The system is trained using bag-of-word as label, which denotes the presence

information of words in a speech utterance, and is able to learn the words localization and

classification jointly.

8.1 Related Work

There is a growing interest in applying the deep learning approach to weakly-supervised

systems. At the time of training, these pattern recognition systems have only access to the

“presence or absence” information of a pattern in a given input, and learn which part of the

input is relevant for classifying the pattern. In computer vision, this approach has been

successfully applied to image segmentation [Pinheiro and Collobert, 2015]. Attention-based

recurrent models have also been developed recently, which iteratively process their input by

selecting relevant information at every step. They have been successfully applied to hand-

writing synthesis [Graves, 2013], visual object classification [Mnih et al., 2014] and machine

translation [Bahdanau et al., 2014]. Recently, such an approach has been applied to phoneme

recognition task [Chorowski et al., 2015] and yields state-of-the-art performance while being

able to infer phoneme segmentation. In these approach however, it was always assumed that

either the segmentation of the training data or at least the sequence information (order of the
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Figure 8.1 – Illustration of the proposed system. The gray input frames represent the padding.

words) is provided. The proposed approach does not make such an assumption.

8.2 Proposed Approach

The proposed approach takes a feature sequence X as input, and outputs the probability of

each word w in the dictionary D being present in the utterance. During training, the targets

are Bag-of-Word labels, which is a binary vector denoting the presence or absence information

of words in the utterance.

8.2.1 Two-stage CNN-based System

Figure 8.1 presents the proposed system which is composed of two stages: the sequence

modeling stage processes a sequence of features and outputs a score for each word at each

frame. The aggregation stage performs the aggregation of the scores along the temporal

dimension and outputs a score for each word for the whole utterance. Both stages are trained

jointly.

Sequence Modeling Stage

The sequence modeling stage models the acoustic sequence. More precisely, the network is

given a sequence of features X = [x1 x2 . . . xT ], where xt stands for a feature vector at time

frame t . The output is a score φw
t (X ) for each frame t and each word w ∈D. This score is
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referred to as the localisation score.

This stage is implemented by a succession of N convolution layers. A convolutional layer

applies the same transformation over each successive (or interspaced by dW frames) windows

of kW frames, as presented in Section 3.2.1. In this chapter, we refer to the convolution layer

operation on input X followed by a non-linearity as Conv(X ). The localisation score can thus

be expressed as:

φw
t (X ) =ConvN (ConvN−1(...Conv1(X ))) (8.1)

Aggregation Stage

For a given sequence X of length T , the sequence modeling stage produces a score φw
t (X )

for each frame t and each word w ∈D. Given that at the training time we have only access

to the bag-of-word labels, we need a way to aggregate these frame-level scores into a single

sequence-level score Φw = ag g r eg (φw
t ), referred to as the detection score.

The aggregation ag g r eg (·) should drive the network towards correct frame-level assignments.

A possible aggregation would be to take the sum over all frames: Φw =∑
t φ

w
t (X ). This would

however assign the same weight on all frames of the speech sequence during the training

procedure, even to the ones which do not belong to the words corresponding to the labels. On

the other hand, one could apply a max aggregation: Φw = maxt (φw
t ). This would encourage

the model to increase the score of the frame which is considered as the most important for

the classification of a given word. With this approach, the position of a given word would be

correctly predicted, but its duration would not, as only one frame is encouraged. We propose a

trade-off solution between these two cases, which is the ��������	 [Boyd and Vandenberghe,

2004] (LSE):

Φr
w (X ) = 1

r
log

(
1

T

T∑
t=1

exp(r ·φw
t (X ))

)
(8.2)

where r denotes the hyper-parameter controlling how smooth one wants the approximation

to be: high r value (r � 1) implies having an effect similar to the max, very low value (r � 1)

will have an effect similar to the score averaging. The advantage of this aggregation is that the

frames which have similar scores will have a similar weight in the training procedure.

8.2.2 Training

Bag-of-word Labels

As mentioned previously, we use Bag-of-words (BoW) labels. Based on the bag-of-word model

used in natural language processing, for a given utterance these labels denote the “presence or

absence” information of each word in the dictionary. They are extracted from the transcription,
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and are represented by a binary vector y, of dimension equal to the dictionary size. Note that

such labels neither take into account the words order nor quantity. For example, given the

transcription “John likes to watch movies. Mary enjoys movies too.”, the resulting BoW labels

are: {“enjoys”,“likes”, “movies”,“to”, “too”,“watch” }, assuming that "John" and "Mary" are not

in the dictionary. The binary label vector for this utterance can then be built by setting to 1 the

entries corresponding to the indices of the words and −1 all the other entries of the dictionary.

Cost Function

As more than one word can be present in an utterance, the standard cross-entropy cost func-

tion is not suited in this case. We propose to treat the task as a separate binary classification

problem for each word. Given the bag-of-word label y = [y1 . . . ym . . . y|D|], with ym ∈ {−1,1},

denoting the presence or absence of the word w in the input utterance X , the cost function L
is thus a sum of of |D| binary logistic regression classifiers:

L(Φ(X ),y) =
|D|∑

w=1
log(1+e−ywΦw (X )) (8.3)

with Φw (x) being the detection score for the word w . Treating a multi-label classification

problem as a sum of independent classifiers may seem to be inadequate, but in our approach,

the binary classifiers are not totally independent as they share hidden layers (in the sequence

modeling stage), which could model the inter-label dependencies, if any.

8.2.3 Inference

During inference, the unseen utterance X is given as input to the system. The system will

produce as output the detection score Φw (X ) (as defined in Equation (8.2)) for each word in

the dictionary. Using this score, the probability P (w |X ) of the word w being present in the

utterance can be computed as:

P (w |X ) = 1

1+e−Φw (X )
(8.4)

This probability can be used to decide presence of absence of the word w in the utterance.

In some cases, the detection information alone is not enough, for instance when the word

localisation information is required. We assume that, for a given word, the localisation score

φw
t is a measure of the likelihood of the word being in the utterance at time t . Based on that

assumption, the most likely position posw of a given word, i.e. the most probable frame, can

be computed as:

posw = argmax
t

(φw
t ) (8.5)
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In order to obtain the duration of a given word, a simple model is proposed: a threshold is

applied to the localisation score for the given word. Thus, the word localisation is given by

each frame whose scores are higher than the threshold. A threshold per word is used, and is

determined experimentally,

φw
t > θw , ∀t , (8.6)

with θw being the threshold for the word w . Note that it is possible to detect more than one

occurrence of a given word in the utterance with this method.

8.3 Experimental Setup

In this section, we present the database, the setup of the proposed system and the studies,

namely, the word localization study and the keyword spotting study.

8.3.1 Database

The LibriSpeech corpus [Panayotov et al., 2015] is an English corpus derived from read audio

books, sampled at 16 kHz, The trainset consists of 280k utterances, representing 960 hours of

speech. Two development and test sets are available. In both cases, the first set is composed

of high quality utterances (i.e. having the lowest WER when recognized by ASR system)

and is referred to as dev_clean and test_clean. The second one is composed of low quality

utterances (i.e. having the highest WER when recognized by ASR systems), and referred to as

dev_other and test_other. Each of these sets consists of 40 speakers, and represents about 5

hours of speech. To obtain the word alignments, we use the �� recipe, provided by the Kaldi

toolbox [Povey et al., 2011]. It is a HMM/GMM system using MFCCs; more details can be

found in [Panayotov et al., 2015].

8.3.2 Proposed System Setup

To demonstrate the viability of the proposed approach, we use Mel Filterbanks energies as

input features instead of raw speech signal as used in the previous Chapters. These features

were computed using the ������	
 package1. They consist of 40 coefficients, computed on a

25 ms window, with a 10 ms shift, without any temporal derivatives. The hyper-parameters of

the network were tuned on the validation set by maximizing the F1 score. In the results, we

used a detection probability threshold of 0.4, that yields a F1 score (on words) of 0.72 on the

clean development set, and 0.6 on the other development set. The proposed architecture is

composed of 10 convolutions layers. The first layer has a kernel width kW of 5 frames, the 9

other layers have a kernel width of 10 frames. They all have a shift dW of 1 frame, and 80 filters.

The dictionary D consist of 1000 most common words in the training set. The BoW target were

1https://github.com/mwv/spectral
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based on that dictionary. We train the network using stochastic gradient descent [Bottou, 1991]

with a learning rate of 10−5. The experiments were implemented using the Torch7 toolbox.

8.3.3 Evaluation Studies

We present here the details of the word localization study and the keyword spotting study that

are used to demonstrate the potential of the proposed approach.

Word Localisation Study

To evaluate the capability of the proposed approach to learn the word localisation in a weakly-

supervised manner, we conducted two studies,

1. Word position study: In this study, we first evaluate the capability of the system to

detect the correct word position in an utterance in the following manner. For each

utterance, the most probable position of a given word is computed using Equation (8.5).

We then check if this position is correct (i.e. if the word is present at this frame on the

ground-truth labels). We propose two evaluation settings. In the first one, referred to as

oracle, the word detection capability of the system is assumed to be perfect, i.e. we use

the ground-truth BoW labels to detect words in utterance. In the second setup, referred

to as actual, we perform a word detection by thresholding the probability of the word

being present in the sequence using (8.4), and then compute the position accuracy as

presented above. In this case, the threshold was tuned to maximize the F1 score on word

classification on the validation set.

2. Word duration study: In this study, we evaluate the system’s capabilities to predict the

correct word duration. As presented in Section 8.2.3, the duration of a given word is

inferred by thresholding the localisation score. For evaluation, we use the Intersection-

over-Union (IoU) metric. This metric can be seen as a proximity measure between two

patterns, as it is equal to 0 if they do not overlap, and equal to 1 if they are perfectly

matching. A IoU score of 0.5 indicates that half of the patterns match. It is well used

for image segmentation (see [Pinheiro and Collobert, 2015] for example). Formally, it is

defined as:

U (w)
iou (L̃,L) =

∑
t �{l̃ t=w∧lt=w}∑
t �{l̃ t=w∨lt=w}

(8.7)

with L̃ = {l̃1 . . . l̃T } denotes the inferred sequence, L = {l1 . . . lT } denotes the reference,

w ∈D denotes a given word and �{pr edi cate} denotes the indicator function, which is 1

if the predicate is true and 0 otherwise.

For these two studies, we use the frame-level word alignment obtained by the HMM/GMM

system as ground-truth.
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Keywords Spotting Study

To demonstrate a real word application of the proposed approach, we present a keyword

spotting study, where

1. The keywords spotted are in-vocabulary words, i.e. words seen during training.

2. As mentioned in Section 8.3, the word dictionary is limited to the 1000 most common

words in the corpus. Thus, the keywords selected for the study are part of this subset.

This is unusual for KWS studies, as the selected keywords are usually quite uncommon.

This constraint is selected for practical reasons, mainly for training speed. However, the

number of words in the dictionary is a hyper-parameter, and could be extended to any

number of words.

The set of keywords used is presented in Table 8.1.

Table 8.1 – Keywords list (in vocabulary).

any battle birds cannot
easily fifty filled great

known land lie never
only perfect perhaps presence
show thank them years

For evaluation, we used the Maximum Term Weight Value (MTWV) metric as expressed in

Equation (2.31) with the number of trial per second npr = 1, the cost over value ratio C /V = 0.1

and the term prior probability Ptr = 10−4, as presented in Section 2.6. We used the F4DE

tool [f4d] provided by NIST for scoring.

Proposed approach To detect and localize keywords with the proposed system, we use

the following procedure. For each utterance, the presence of keyword is determined by

thresholding the probability P (w |X ) as defined in Equation (8.4). The starting and ending

time stamps of the keyword are then computed by thresholding the localisation score, as

presented in Equation (8.6).

Baseline We use the LVCSR lattice-based KWS system provided with the Kaldi toolbox2 as

baseline.

2http://kaldi.sourceforge.net/kws.html
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8.4 Results

In this section, we present the results for the word localization study and the keyword spotting

study.

8.4.1 Word localisation study

The results for the word position study are presented in Table 8.2 in terms of position accura-

cies, for the oracle setup and for the actual setup. Using the oracle setup, where the detection

capability of the system is perfect, one can see that the proposed system is able to correctly

detect the position of most of the word occurrences in the test sets. In the actual setup, the

result indicates that more than half of word occurrence are correctly detected and correctly

localized.

Table 8.2 – Word position accuracies.

Set Oracle Actual

test_clean 87.1 % 60.1 %
test_other 83.5 % 55.2 %

Figure 8.2 presents the results for the word duration study, in term of mean IoU for each

word in the dictionary. One can see that on average, about one third of the word duration is

captured. Figure 8.3 presents an illustration of an inferred sequence and the ground-truth.

Unsurprisingly, the proposed system predicts shorter duration.
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Figure 8.2 – Mean IoU for each word on the test_clean set.

8.4.2 Keywords Spotting Study

Table 8.3 presents the results for the keyword spotting study for the proposed system and the

baseline system, expressed in terms of MTWV. On the test_clean, the proposed system yields
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WE LEFT THE HOUSE AND STARTED ON OUR RETURN TO
0

WE LEFT THE HOUSE AND STARTED ON OUR RETURN TO
0

Figure 8.3 – Illustration of an inferred sequence on the top and its corresponding ground-truth,
on the bottom.

similar results to the baseline. This result clearly indicates that the proposed system is able to

jointly learn to localize and classify words. On the test_other set, the performance gap between

the proposed system and the baseline suggests that the proposed system is less robust than

the baseline under mismatched conditions.

Table 8.3 – Keyword spotting performance on the test_clean and the test_clean set of Lib-
riSpeech.

Set System MTWV

test_clean Baseline 0.72
Proposed 0.69

test_other Baseline 0.49
Proposed 0.33

8.5 Analysis

Our studies demonstrated that the proposed approach is able to learn word localisation in

a weakly-supervised manner and could yield performance similar to the baseline system on

keyword spotting task. S question that arises is: what have the networks learned?

In the proposed architecture, the word classification and localisation is performed by the layer

just before the aggregation, i.e. the layer which computes the localisation score sw
t , defined
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in Equation (8.1). This score sw
t for a given word wi can be seen as the dot product between

the i th row of the weight matrix and the sequence representation computed by the previous

layer. Thus, each row can be seen as a vector representation of a given word. In the literature,

this kind of word representation are often referred as word embedding, mainly used in natural

language processing [Collobert and Weston, 2008]. In speech recognition, such approach has

been successfully investigated by [Bengio and Heigold, 2014].

To gain insights on these embeddings, we examined the nearest neighbors in terms of Eu-

clidean distance of the embeddings. Table 8.4 presents the 10 nearest neighbors for six selected

examples. It can be observed that most of the neighbor sound similar to the reference words.

Alternately, the learned embeddings seems to capture the acoustic similarity between words.

Leveraging these embeddings is open for further research.

Table 8.4 – Nearest neighbors examples (in column).

place own way drawn marry beginning

places old away grown mary dinner
face hold wait strong married begin

placed whole lay brought marriage come
french beautiful laid upon american began
prince almost later bright very again

race lower late broad land didnt
pleased home length son large get

case fellow work cause learned given
raised rather lady sun with doing
grace arm word trying man happened

8.6 Summary

We presented a novel approach to jointly localize and classify words based on CNNs. The

proposed approach is trained in a weakly-supervised manner, using bag-of-words labels. We

demonstrated that the proposed system is able to learn to localize and classify word jointly and

could yield a keyword spotting system competitive to standard lattice-based search system.
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9 Conclusions

This thesis was devoted towards the development of end-to-end speech recognition systems.

To this aim, our research focussed along two main directions: learning the features and the

classifier jointly for acoustic modeling and joint modeling of the acoustic model and the

sequence decoder. In this thesis, Chapters 3 to 6 were devoted to the first research direction,

i.e. end-to-end acoustic modeling. Chapter 7 presented an end-to-end sequence to sequence

conversion approach for phoneme sequence recognition. Finally, Chapter 8 investigated a

weakly-supervised word localization and recognition system.

In Chapter 3, we investigated a novel CNN-based acoustic modeling approach that auto-

matically learns relevant representations from the speech signal and estimates phone class

conditional probabilities for ASR. In this approach, the acoustic model consists of a feature

stage and a classifier stage which are jointly learned during training. Specifically, the input

to the acoustic model is raw speech signal, which is processed by several convolution layers

(feature stage) and classified by an MLP (classifier stage) to estimate phone class conditional

probabilities. We evaluated the approach against the conventional acoustic modeling ap-

proach, which consists of independent steps: short-term spectral based feature extraction

and classifier training. Phone recognition studies on English and ASR studies on multiple

languages (English, French, German) showed that the proposed acoustic modeling approach

can yield better recognition systems.

In Chapter 4, we presented an analysis of the CNN-based approach using raw speech as input.

The proposed analysis was undertaken at two levels: we first analyzed the first convolution

layer and then the intermediate features, i.e. the features learned by the feature learning stage.

The key findings of the first convolution layer analysis are the following:

1. Both the conventional acoustic modeling approach and the proposed approach tend to

model spectral information present in time span of about 200 ms for phone classification.

However, they differ in the manner analysis is performed over that time span and

feature representations are obtained. Indeed in the proposed approach, contrary to the

conventional wisdom of short-term processing, the signal is processed at sub-segmental
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level (speech signal of about 2 ms) by the first convolution layer. The subsequent

convolution layers temporally filter and integrate the output of first convolution layer to

yield an intermediate representation. In other words, the intermediate representation is

obtained by processing the information present in the sub-segmental speech signal at

multiple temporal resolutions.

2. The filters in the first convolution layer learn from the sub-segmental speech signal a dic-

tionary of matched filters that discriminate phones. Specifically, these filters were found

to model formant-like information in the spectral envelop of the sub-segmental speech.

These findings are particularly interesting. First, it validates the notion of formants

and phone discrimination in a data-driven manner, i.e. without making any explicit

assumption about the speech production model. Secondly, sub-segmental spectral

processing means high time resolution and low frequency resolution. Conventional

method of short-term processing (i.e. determination of the window size) has been

developed considering the trade-off between time resolution and frequency resolution.

Our investigations show that loss of frequency resolution due to sub-segmental speech

processing is not affecting the ASR performance.

The intermediate feature representation analysis led to the following insights:

1. The representations have some level of invariance across domains and languages. More

specifically, we observed that the variation of the learned features seems to come more

from the domain characteristics as opposed to the set of subword units from the lan-

guages. This indicates that learning features in a data-driven manner could lead to

language-independent features, like the standard cepstral-based features.

2. These learned representations are more discriminative than standard cepstral-based

features. This observation confirms the hypothesis that learning the features and the

classifiers jointly leads to more optimal systems (compared to standard “divide and

conquer” approaches).

In Chapter 5, motivated by the findings of the discriminative features study, we further in-

vestigated the CNN-based approach, where the feature stage has a deep architecture and

the classifier has a shallow architecture. We showed that the proposed CNN-based approach

allows shifting of the capacity of the system from the classifier to the feature stage with little or

no drop in performance. We applied this approach realistically on continuous speech recogni-

tion task to demonstrate that it can indeed result in a system that is as efficient as standard

HMM/ANN-based system using cepstral features or CNN-based approach with on hidden

layer in terms of ASR performance while drastically reducing the capacity of the system.

Learning the feature automatically from the raw speech signal raises the issue of noise robust-

ness of such system. In Chapter 6, we studied the noise robustness of the CNN system using

raw speech as input. We presented a robust CNN-based approach where the intermediate
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representation are normalized in an online manner. This approach was shown to outperform

baseline systems using normalized cepstral-based features as input. We also showed that the

CNN-based system can be robust in multi-conditional training setup without the normaliza-

tion technique, unlike the cepstral-based feature based systems, which systematically gain

from the cepstral mean and variance normalization technique. We also studied enhancement

of speech using ETSI AFE before being fed into the CNN. The results did not show any clear

benefits. Whether speech enhancement would really help the proposed CNN-based approach

is open for further research.

In Chapter 7, we proposed a novel phoneme sequence-to-sequence conversion model which

takes raw speech sequence as input and outputs a phoneme sequence. The system is trained

in an end-to-end manner using a weakly-supervised training approach, where the system is

able to learn the phoneme segmentation jointly with the phoneme sequence prediction. We

showed that this approach yields similar or better performance than baseline systems trained

using manual segmentation. This study demonstrated the viability of the proposed approach.

Finally, in Chapter 8, we proposed a word detection system, trained in a weakly-supervised

manner using bag-of-word label representation of training utterances. Our studies demon-

strate the viability of the weakly-supervised approach for word detection and localization.

It could be a first step towards the development of weakly-supervised ASR systems through

exploitation of partly labeled data.

In conclusion, this thesis showed that:

1. Feature relevant for ASR can be automatically learned from the speech signal and better

systems can be developed using end-to-end acoustic modeling.

2. Weakly-supervised sequence-to-sequence conversion is a viable alternative to the stan-

dard ASR approach.

9.1 Direction of Future Research

Raw speech based system The proposed raw speech-based system could be improved along

the following directions:

• The features learned by the CNN from the raw speech have been shown to have some

level of invariance across languages. One possible approach to increase the robustness

could be multi-lingual training, where the system is trained using several languages. This

can be achieved using multi-lingual phone set. Multi-task training approach [Caruana,

1997] could also be considered, where the filter stages are shared across languages and

the classifier is unique for each language.

• We have observed that the feature stage has considerably fewer parameters than the clas-

sifier stage. This provides new means to rapidly adapt the acoustic model. Specifically,
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one of the main challenge often faced in adapting the acoustic model to new domains is

the amount of adaptation data available. The data may not be sufficient to effectively

adapt all the parameters in the acoustic model. In the proposed approach, this challenge

could be addressed by only adapting the feature stage. Such an approach would be

analogous to maximum likelihood linear regression (MLLR) adaptation approach [Gales

and Woodland, 1996] where MLLR is used to transform the features as opposed to the

models (i.e. means and variances of the Gaussians). However, in comparison to that,

adaptation in the proposed framework would present two distinctive advantages. First,

the adaptation would by default be discriminative, i.e. learned by improving discrimina-

tion between the phone classes. Second, upon availability of more data adaptation of

both feature stage and classifier stage could be effectively employed.

• As the proposed approach makes minimal assumptions and uses minimal prior on the

data, the raw speech-based approach could be considered in other speech process-

ing applications, such as speaker recognition or emotion recognition. In that respect,

it is worth mentioning that inspired by our end-to-end acoustic modeling approach,

multi-channel acoustic modeling [Hoshen et al., 2015] and end-to-end emotion recog-

nition [Trigeorgis et al., 2016] approaches have been proposed.

End-to-end sequence recognition system In this thesis, we presented a phoneme recog-

nition study to study the viability of the the proposed CRF-based approach for end-to-end

sequence conversion. Extending this approach to continuous speech recognition is an open

problem that pose several great challenges, such as the language model estimation. In the

standard HMM-based approach, the language model is estimated independently, usually on a

large text corpora. In the proposed approach, the language model would be estimated jointly

with the acoustic model, on the same data. Thus, it implies having a dataset suitable for both

tasks. This is a highly challenging problem and is an up-and-coming research direction [Graves

and Jaitly, 2014, Amodei et al., 2015].

Weakly-supervised multi-word detection system The weakly-supervised multi-word de-

tection system could be extended to a continuous speech recognition system, by adding a

decoder. Also, a limitation of the proposed approach on keyword spotting task is that keywords

have to be in the dictionary used during training. To address the issue of out-of-vocabulary

keyword spotting, one possible approach could be to take advantages of the word embeddings

learned by the system. For example, an approach based on generating proxy embeddings, i.e

use of embeddings of acoustically close words could be considered.
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