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Abstract

Transaction processing is a mission critical enterprise application that runs on high-end

servers. Traditionally, transaction processing systems have been designed for uniform core-

to-core communication latencies. In the past decade, with the emergence of multisocket

multicores, for the first time we have Islands, i.e., groups of cores that communicate fast among

themselves and slower with other groups. In current mainstream servers, each multicore

processor corresponds to an Island. As the number of cores on a chip increases, however,

we expect that multiple Islands will form within a single processor in the nearby future. In

addition, the access latencies to the local memory and to the memory of another server over

fast interconnect are converging, thus creating a hierarchy of Islands within a group of servers.

....

Non-uniform hardware topologies pose a significant challenge to the scalability and the

predictability of performance of transaction processing systems. Distributed transaction

processing systems can alleviate this problem; however, no single deployment configuration

is optimal for all workloads and hardware topologies. In order to fully utilize the available

processing power, a transaction processing system needs to adapt to the underlying hardware

topology and tune its configuration to the current workload. More specifically, the system

should be able to detect any changes to the workload and hardware topology, and adapt

accordingly without disrupting the processing.

....

In this thesis, we first systematically quantify the impact of hardware Islands on deployment

configurations of distributed transaction processing systems. We show that none of these

configurations is optimal for all workloads, and the choice of the optimal configuration

depends on the combination of the workload and hardware topology. In the cluster setting,

on the other hand, the choice of optimal configuration additionally depends on the properties

of the communication channel between the servers. We address this challenge by designing a

dynamic shared-everything system that adapts its data structures automatically to hardware

Islands. To ensure good performance in the presence of shifting workload patterns, we use

a lightweight partitioning and placement mechanism to balance the load and minimize the

synchronization overheads across Islands.

....

Overall, we show that masking the non-uniformity of inter-core communication is critical

for achieving predictably high performance for latency-sensitive applications, such as trans-
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Abstract

action processing. With clusters of a handful of multicore chips with large main memories

replacing high-end many-socket servers, the deployment rules of thumb identified in our

analysis have a potential to significantly reduce the synchronization and communication

costs of transaction processing. As workloads become more dynamic and diverse, while still

running on partitioned infrastructure, the lightweight monitoring and adaptive repartitioning

mechanisms proposed in this thesis will be applicable to a wide range of designs for which

traditional offline schemes are impractical.

....

Keywords: Database management systems, Transaction processing systems, Multisocket mul-

ticore hardware, Hardware Islands, Non-uniform hardware topologies, Distributed transaction

processing systems
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Résumé
Le traitement de transactions est une application d’entreprise critique qui fonctionne sur des

serveurs haut de gamme. Traditionnellement, les systèmes de traitement de transactions ont

été conçus pour des latences de communication core-to-core uniformes. Ces dix dernières

années, avec l’émergence de systèmes multi-sockets multi-cores, pour la première fois nous

avons des Îles (Islands), à savoir, des groupes de cores qui communiquent rapidement entre

eux et plus lentement avec d’autres groupes. Dans les serveurs traditionnels actuels, chaque

processeur multi-cores correspond à une Île. Avec le nombre de cores par puce qui augmente,

nous nous attendons à ce que plusieurs Îles soient formées au sein d’un seul processeur dans

un futur proche. En outre, les latences d’accès à la mémoire locale et à la mémoire d’un autre

serveur sur interconnexion rapide convergent, créant ainsi une hiérarchie d’Îles au sein d’un

groupe de serveurs connectés sur un réseau à grande vitesse.

....

Les topologies matérielles non uniformes constituent un défi important pour l’évolutivité et

la prévisibilité des performances des systèmes de traitement de transactions. Les systèmes

de traitement de transactions distribués peuvent atténuer ce problème ; cependant, aucune

configuration de déploiement n’est optimale pour toutes les charges de travail et les topologies

matérielles. Afin d’utiliser pleinement la puissance de traitement disponible, un système de

traitement de transactions doit s’adapter à la topologie du matériel sous-jacent et doit adapter

sa configuration à la charge de travail courante. Autrement dit, le système devrait être capable

de détecter toute modification de la charge de travail et de la topologie du matériel, et s’adapter

sans perturber le traitement.

....

Dans cette thèse, premièrement nous quantifions systématiquement l’impact des latences

de communication non uniformes sur les configurations de déploiement de systèmes de

traitement de transactions distribués. Nous montrons qu’aucune de ces configurations n’est

optimale pour toutes les charges de travail, et le choix de la configuration optimale dépend

de la combinaison de la charge de travail et de la topologie matérielle. Dans le cadre d’un

cluster, le choix de la configuration optimale dépend en plus des propriétés du mécanisme de

communication entre les serveurs. Nous abordons ce défi en concevant un système dynamique

shared-everything qui adapte automatiquement ses structures de données aux Îles matérielles.

Pour assurer une bonne performance en présence de charges de travail changeantes, nous

utilisons un mécanisme de partitionnement et de placement léger pour équilibrer la charge et

réduire l’overhead de synchronisation à travers les Îles.
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Résumé

....

Dans l’ensemble, nous montrons que le masquage de la non-uniformité de la communication

inter-core est essentiel pour l’obtention prévisible de hautes performances pour les applica-

tions sensibles à la latence, tels que le traitement de transactions. Avec des clusters composés

d’une poignée de systèmes comportant des puces multi-core avec de grandes mémoires

principales qui remplacent les serveurs haut de gamme, embarquant de nombreux proces-

seurs, les principes de déploiement, identifiées dans notre analyse ont le potentiel de réduire

considérablement les coûts de synchronisation et de communication lors du traitement des

transactions. Comme les charges de travail deviennent plus dynamiques et diversifiées, tout

en fonctionnant sur une infrastructure partitionnée, le monitoring léger et les mécanismes de

repartitionnement adaptatifs proposés dans cette thèse seront applicables à un large éventail

de modèles pour lesquels les systèmes hors ligne traditionnels sont inadéquats.

....

Mots clefs : Système de gestion de base de données, Les systèmes de traitement de transac-

tions, Systèmes multi-sockets multi-cores, Îles matérielles, Les topologies matérielles non

uniformes, Les systèmes de traitement de transactions distribués
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1 Introduction

Online Transaction Processing (OLTP) is a multi-billion dollar industry [51] and one of the

most important and demanding database applications. Innovations in OLTP continue to

garner significant attention, advocated by the recent emergence of appliances [116], startups

[29, 100, 105, 112, 160], hosted cloud solutions [10], and research projects (e.g. [30, 71, 78,

81, 90, 118, 144, 157]). OLTP applications are mission-critical for many enterprises with little

margin for compromising either performance or scalability. Thus, it is not surprising that

all major OLTP vendors invest considerable effort in developing highly-optimized software

releases, often with platform-specific optimizations.

OLTP workloads are characterized by many concurrent requests. Each transactional request

typically reads about a dozen and writes a handful of data items in the database. The users of

the system expect predictably low response times and high availability regardless of the degree

of concurrency or the size of data. Increasing throughput and decreasing latency require-

ments, as well as the high cost of licenses for traditional database management systems when

deployed in the web-scale scenarios gave rise to eventually consistent key-value stores [159].

Nowadays, OLTP infrastructure at Facebook processes 174 million transactions per second

to service a wide variety of applications, including the main Facebook website, messaging

and serving advertisements [25]. These transactions generate 12 billion reads and 65 million

updates per second.

Increasing demands from the new generation of applications for both larger data sizes and

higher throughput require ever more scalable transaction processing system designs. While

key-value stores offered low latency and good horizontal scalability, they shift the burden

of ensuring ACID (atomicity, consistency, isolation, and durability) properties traditionally

provided by an OLTP system to the application developers, significantly increasing the appli-

cation complexity. Thus, it is not surprising that the web-scale companies have reversed their

position in recent years and invested heavily in developing highly scalable geo-distributed

transaction processing systems such as Google’s Spanner [30].
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Chapter 1. Introduction

The rest of this chapter briefly motivates this work by first providing an overview of the chang-

ing hardware landscape and the rise of non-uniform hardware platforms before surveying

recent work on transaction processing systems. Next, Section 1.4 summarized the thesis state-

ment and outlines intellectual and technological contributions. Finally, Section 1.5 outliens

the organization of this dissertation.

1.1 Modern Servers
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Figure 1.1: A schematic view of a multisocket multicore server. We identify a hardware Island:
a group of cores that communicate faster with each other than with the cores from another
island.

Hardware has long departed from uniprocessors, which have predictable and uniform per-

formance. Due to thermal and power limitations, vendors cannot improve the performance

of processors by clocking them to higher frequencies or by using more advanced techniques

such as increased instruction width and extended out-of-order execution. Instead, vendors

rely on two approaches that allow explicit parallelization of tasks to increase the processing

capability of a machine. The first approach is to put together multiple processor chips that

communicate through shared main memory. For several decades, such multisocket designs

provided the only way to scale performance within a single node and the majority of OLTP

systems have historically used such hardware. The second approach places multiple process-

ing cores on a single chip, such that each core is capable of processing concurrently several

independent instruction streams or hardware contexts. The communication between cores

in these multicore processors happens through on-chip caches. In recent years, multicore

processors have become a commodity.

Multisocket multicore systems are the predominant configuration for database servers today

and are expected to remain popular in the future. Figure 1.1 shows a simplified diagram of

a typical machine that has two sockets with quad-core CPUs. Communication between the

numerous cores happens through different mechanisms. For example, two threads running on
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the same core can communicate very fast through the core’s L1 cache. When they’re running

on different cores on the same socket, they communicate through the socket’s last-level (L3)

cache. Finally, two threads running on different sockets need to use inter-socket links (called

QPI for Intel processors). The result is that the inter-core communication depends on the

placement of communicating threads.

1.2 Rack-Scale Computing Platforms

In parallel with the increase in the number of processor cores, the bandwidth of network

interconnects and main memory are converging [46]. Technologies such as Remote Direct

Memory Access (RDMA) allow applications to access memory on a remote machine without

involving either the operating system or the processor. High speed fabrics that support RDMA,

such as Infiniband [63] and converged Ethernet [62], with bandwidths reaching up to 100Gbps,

are already standard in supercomputers and high-end appliances.

Modern RDMA technology enables accessing the memory of another server within an order

of magnitude of the latency to the local memory [156]. Relative remote access latency using

RDMA is comparable to one in the traditional large shared memory machines, whose niche

market are the mission-critical OLTP applications [60, 137]. Such high-end machines with

more than 8 processors require specialized interconnects and controller chips to maintain

cache coherence [53, 92]. However, maintaining cache coherence comes with high overheads.

In the state-of-the-art systems, remote memory access latencies are 5.5x to 10.7x higher than

the local memory ones [83].

Abundant parallelism and fast commodity networks are leading to the emerging class of

commodity cluster computing platforms that will offer performance comparable to today’s

large shared memory machines. These rack-scale platforms achieve high compute density

at low power budget and cost by eliminating unnecessary system components via highly

customized system-on-a-chip (SoC) nodes. Individual nodes, which contain only processing

cores, memory, and I/O interfaces, communicate using low-latency interconnect fabrics [38].

1.3 Transaction Processing

Efficiently utilizing the processing power available on modern hardware platforms for trans-

action processing remains a challenge despite the multitude of efforts from academia and

industry. Until recently, shared-everything was the most popular deployment strategy on

a single node, and OLTP has been studied extensively on shared-everything databases. It

has been shown that shared-everything systems exhibit frequent shared read-write accesses

[18, 54], which are difficult to predict [142]. Therefore, these systems enter numerous con-

tentious critical sections even when executing simple transactions to ensure ACID properties

[73]. The presence of critical sections affects single-thread performance, requires frequent

inter-core communication, and causes contention among threads [71, 118, 119]. Recent work
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suggests a departure from the traditional transaction-oriented execution model, to adopt a

data-oriented one, circumventing the aforementioned properties - and flaws - of traditional

shared-everything OLTP [118, 119].

Shared-nothing deployments [143], based on fully independent (physically partitioned)

database instances that collectively process the workload, are an increasingly appealing design

even within a single node [78, 136, 144]. The main advantage of shared-nothing deployments

is the explicit control over the contention within each physical database instance. As a

result, shared-nothing systems exhibit high single-thread performance and low contention.

In addition, shared-nothing databases typically make better use of the available hardware

resources whenever the workload contains transactions touching data on a single database

instance. Systems such as H-Store [144] and HyPer [78] apply the shared-nothing design to

the extreme, deploying one single-threaded database instance per CPU core.

Shared-nothing systems appear ideal from the hardware utilization perspective, but they

are sensitive to the ability to partition the workload. Unfortunately, many workloads are

not perfectly partitionable, i.e., it is hardly possible to distribute the data such that every

transaction touches a single instance. Whenever multiple instances must collectively process

a request, shared-nothing databases require using expensive distributed consensus protocols,

such as two-phase commit, which many argue are inherently non-scalable [23, 58]. Similarly,

handling data and access skew is problematic [151].

The overhead of distributed transactions urged system designers to explore partitioning

techniques that reduce the frequency of distributed transactions [32, 121], and to explore

alternative concurrency control mechanisms, such as speculative locking [74], multiversion-

ing [19] and optimistic concurrency control (OCC) [87, 90], to reduce the overheads when

distributed transactions cannot be avoided. Designers of large-scale systems have circum-

vented problems with distributed transactions by using relaxed consistency models such

as eventual consistency [159]. Eventual consistency eliminates the need for synchronous

distributed transactions, but it makes programming transactional applications harder, with

consistency checks left to the application layer. The emergence of the non-uniform hardware

platforms adds further complexity to the on-going debate between shared-everything and

shared-nothing OLTP designs.

1.4 Thesis Statement and Contributions

The goal of this dissertation is to quantify the challenges posed by the non-uniformity of

communication between different cores within a multisocket and across multisockets to

transaction processing systems. We identify opportunities and propose techniques to address

these challenges by dynamically tuning transaction processing systems to the underlying

hardware and current workload properties.
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Thesis Statement

Transaction processing scalability deteriorates as the number of cores is increased, due
to real-time changes in workloads and to non-uniform communication latencies

amongst hardware contexts. Using hardware-aware data structures and algorithms
inside transaction processing engines is key to sustaining scale-up throughput during
workload execution. Scale-up techniques are necessary but insufficient for scale-out

deployments.

We analyze the impact of non-uniformity on transaction processing systems for a wide range

of deployment configurations and workloads. We advocate for nimble system designs that

dynamically adapt to the workloads and hardware based on the following insights:

• We identify Hardware Islands as the groups of cores that communicate faster with cores

that belong to the same group and much slower with cores from other groups. We

can use the Islands concept to model the horizontal non-uniformity in communica-

tion latencies in multisocket multicore servers and analyze its impact on transaction

processing systems.

• Through experimental study, we show that the fine-grained shared-nothing deploy-

ments achieve significantly higher throughput than the shared-everything ones on a

multisocket multicore when the workload is perfectly partitionable. By contrast, when

the workload is not partitionable and/or exhibits skew, a shared-everything deployment

has higher performance than a shared-nothing one. Therefore, there is no unique

optimal deployment strategy for all workloads. In addition, when the workload or hard-

ware topology change, switching to another configuration requires expensive physical

repartitioning.

• We demonstrate that scalable transaction processing systems for multisocket servers

must avoid modifying any centralized data structure in the critical path. With more cores

that communicate less uniformly, any such access eventually becomes a bottleneck.

We demonstrate that a shared-everything design can scale as well as a fine-grained

shared-nothing one for perfectly partitionable workloads by using Island-aware data

structures.

• We show that the scalable transaction processing designs for multicores face significant

challenges when deployed in cluster environment due to messaging delays in the

critical path of transaction execution. However, for the traditional system designs the

messaging delays can be overlapped with other processing and the network is not the

dominant factor impacting the throughput of different deployment configurations.

This thesis makes the following technical contributions:
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• We quantify the impact of non-uniform core topology on the performance of transaction

processing systems and conclude that high performance software has to minimize

contention among cores and avoid frequent communication between cores located on

different hardware islands. We provide and validate the Islands performance model

where we express the performance of an OLTP system as a function of the deployment

configuration and the percentage of multipartition transactions on a wide variety of

workloads and hardware topologies. The particular cross-over points that make a

specific configuration optimal differ depending on the particular scenario. The relative

performance trends, however, remain the same in all cases.

• We propose ATraPos, an OLTP system design that is aware of the non-uniform access

latencies of multisocket systems. On top of its Island-aware data structures, ATraPos

adopts a lightweight monitoring and repartitioning mechanism that adapts the parti-

tioning strategy upon workload changes. It relies on the hardware and workload-aware

partitioning and placement scheme to achieve balanced load and maximize locality of

communication in the critical path.

• We quantify the similarities and differences between OLTP deployments on multisocket

multicores and clusters with fast interconnects. We show that different configurations

are optimal for different combination of workload and cluster properties. Choosing

the right granularity of instances is essential for taking advantage of the fast network,

yet, careful placement of threads to cores within an instance can substantially improve

throughput.

1.5 Thesis Roadmap

This section outlines the structure of the thesis and summarizes the next chapters.

• Chapter 2 provides the background and motivation for this work. We introduce the

traditional transaction processing system designs in the single node and distributed

deployments. Then we quantify the basic properties of Hardware Islands using mi-

crobenchmarks, and discuss the major distinguishing characteristics of emerging rack-

scale hardware platforms and compare them against other high performance server

designs. Finally, we survey the related work.

• Chapter 3 quantifies the impact of Hardware Islands on a variety of transaction process-

ing workloads and distributed deployment configurations. We use both microbench-

marks and standard TPC benchmarks to explore different dimensions including the

impact of distributed transactions, hardware topology, skew, as well as the number

and type of operations performed within a transaction. We conclude that no single

deployment configuration is optimal for all scenarios and that the best configuration

depends on the hardware topology and workload characteristics.
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• Chapter 4 presents ATraPos, a scalable shared-everything system design that minimizes

the impact of inter-socket communication in the critical path of transaction execution

by utilizing data oriented transaction execution and hardware-aware data structures.

In order to adapt to different workloads, ATraPos relies on precise data partitioning

and placement to maximize locality of data accesses and on adaptive repartitioning to

maintain data locality when the workload changes.

• Chapter 5 expands the analysis to clusters of multisockets connected with fast inter-

connects. We analyze different distributed deployments using standard and synthetic

benchmarks that include distributed transactions to quantify the challenges and oppor-

tunities for OLTP designs on rack-scale platforms.

• Finally, Chapter 6 summarized the findings and their impact, and concludes the thesis

by discussing possible avenues of future work.
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2 Background

This chapter starts with a brief overview of the basic properties of transactions and transaction

processing system designs, including a survey of related work. Then we discuss properties

of modern multisocket multicore servers and quantify basic trade-offs involved in thread

synchronization on these platforms before surveying recent processor trends. We conclude

with the discussion of the characteristics of fast interconnects and the data management

systems that take advantage of them.

2.1 Online Transaction Processing Systems

According to the popular database systems textbook by Ramakrishnan and Gehrke [130]: ”A

transaction is any one execution of a user program in a DBMS. (Executing the same program

several times will generate several transactions.) This is the basic unit of change as seen by

the DBMS.“ Each database transaction satisfies the following set of properties (commonly

demoted as ACID):

• Atomicity: Execution of each transaction is atomic: either all operations are executed and

visible to other transactions or none are.

• Consistency: Every transaction run by itself must preserve consistency of the database.

Ensuring the consistency is the responsibility of the user while the system ensures that this

property is preserved in the presence of concurrent transactions.

• Isolation: Execution of concurrent transactions is isolated, i.e., the effects of incomplete

transactions are not visible to other in-progress transactions.

• Durability: Once a transactions completes successfully, its effects are persistent in the

database.

In traditional database management systems, ensuring ACID properties is done in the storage

manager that typically comprises the following four components [59]: the lock manager in
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charge of concurrency control, the log manager in charge of recovery, the buffer pool in

charge of caching the data pages in memory, and the access methods used for accessing data

stored on the data pages. Concurrency control methods ensure consistency and isolation of

transactions, while recovery manager guarantees atomicity and durability. In a traditional

storage manager all of these components are centralized and accessed by a worker thread

in the critical path of transaction execution. This leads to scalability issues on multicores as

threads enter numerous contentious critical sections, e.g., a transaction that updates a single

data item requires execution of over 70 critical sections [73].

Shared-everything OLTP. Within a database node, shared-everything is any deployment where

a single database instance manages all the available resources. As database management

systems have long been designed to operate on machines with multiple processors, shared-

everything deployments assume equally fast communication between all processing cores,

since each thread needs to exchange data with all of its peers. Until recently, shared-everything

was the most popular deployment strategy for scale-up transactions processing and it is used

by all major commercial database systems. OLTP has been studied extensively on shared-

everything databases. For instance, the workload characterization studies that analyze micro-

architectural behavior of the OLTP workloads demonstrate that shared-everything systems

exhibit significant stalls during execution [4, 15, 54, 152]; a result we corroborate in Section

3.3.2. These systems enter numerous contentious critical sections even when executing

simple transactions, affecting single-thread performance, requiring frequent inter-core com-

munication, and causing contention among threads [73, 71]. These characteristics make

distributed memories (as those of multisockets), distributed caches (as those of multicores),

and prefetchers ineffective.

Many recent techniques aim to improve scalability of individual components of traditional sys-

tems, including locking, latching and logging on multicores, by specializing synchronization

primitives to a particular component [70, 72, 76, 82]. Alternative to the traditional transaction-

oriented execution model is a data-oriented execution model, that circumvents the aforemen-

tioned properties - and flaws - of traditional shared-everything OLTP [83, 118, 119]. Another

promising direction is taking advantage of the hardware transactional memory support avail-

able in recent Intel processors to implement efficient concurrency control [91].

The large main memories available in modern servers have sparked a lot of interest in the main-

memory optimized transaction processing designs for multisockets. Such systems have been

marketed by major vendors for many years, including IBM solidDB [95] and Oracle TimesTen

[89], however, only now are they becoming mainstream. Modern multicore optimized main-

memory transaction processing systems, such as Hekaton, Silo, Foedus, and Ermia, use

multi-versioned latch-free data structures and optimistic concurrency control mechanisms

to achieve good scalability by reducing the number of critical sections and their duration

[80, 81, 90, 93, 157]. Yet, a recent study shows that none of the current concurrency control

mechanisms scales to 1000 cores and suggests that extending hardware support is a promising

way for overcoming this obstacle [171, 172].
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Scalability concerns in face of increasing parallelism gave rise to a new generation of main

memory optimized transaction processing designs, many of which adopt single threaded

shared nothing execution model. In the shared-nothing systems, data is partitioned among a

number of instances that collectively serve transactional requests.

Shared-nothing OLTP. Shared-nothing deployments [143], based on fully independent (physi-

cally partitioned) database instances, are an increasingly appealing design even within a single

node [78, 136, 144]. This is due to the scalability limitations of shared-everything systems,

which suffer from contention when concurrent threads attempt to access shared resources

[73]. The main advantage of shared-nothing deployments is the explicit control over the con-

tention within each physical database instance. As a result, shared-nothing systems exhibit

high single-thread performance and low contention for workload that can be partitioned.

Systems such as H-Store [144] and HyPer [78] apply the shared-nothing design to the extreme,

deploying one single-threaded database instance per CPU core. This enables simplifications or

removal of expensive database components such as locking and latching. However, if a trans-

action requires data from different instances, it typically executes a distributed transaction

that uses a coordination protocol.

Two phase commit. The standard coordination protocol for distributed transactions is the

two-phase commit (2PC) [52, 104]. One instance in the system acts as a coordinator of a dis-

tributed transaction while the others are participants. During the first phase, the coordinator

sends messages containing operation requests to the participants and receives replies con-

taining results of requested operations. After completing all operations, the coordinator sends

a prepare message to each participant which replies with a vote containing an outcome of its

part of the transaction. The first phase ends when the coordinator collects all votes. Based

on the votes, the coordinator decides whether to commit the transaction (if all participants

voted commit or read-only) or abort it (if at least one participant voted abort). In the second

phase, the coordinator sends the decision to all participating instances who complete the

transaction fragments locally and send the acknowledgement. When the coordinator collects

all acknowledgments, it completes the distributed transaction.

Even a small percentage of distributed transactions in the workload severely harms the scala-

bility of systems like H-Store as distributed transactions effectively block all partitions involved

in that transaction [74]. An alternative approach is taken by the Multimed project, which views

the multisocket multicore system as a cluster of machines [136]. Multimed uses replication

techniques and a middleware layer to split database instances into those that process read-

only requests and those that process updates. A similar approach is used in HyPer to support

OLTP and OLAP in the same system by executing analytical queries on the snapshots of the

transactional database [78].

OLTP partitioning mechanisms. One can reduce the negative impact of distributed trans-

actions by minimizing the overhead of distributed transactions either by predicting which

distributed transactions are effectively local [121] or by finding a good partitioning scheme
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for a specific workload. Schism proposes a graph-based partitioning and replication method

for OLTP workloads [32]. The graph is constructed from transaction access traces such that

vertices represent tuples and edges connect the tuples used in the same transaction. The parti-

tions are selected using the min-cut algorithm. An extension of Schism, Sword [129], proposes

a different graph compression approach that allows incremental data movement between two

partitioning solutions for different workloads. Another approach for automatic partitioning in

shared-nothing OLTP systems is Horticulture [122], which utilizes large neighborhood search

(LHS). It uses the database schema, the code of the stored procedures, the workload trace

consisting of data items that were accessed, and timestamps. The output of the partitioning

strategy is a set of decisions whether to range or hash partition a table or replicate it to all

nodes. All these techniques can generate good initial partitioning, however, they are off-line

methods that cannot be used to adapt to the workload changes at runtime.

Repartitioning and load balancing. On the other hand, one of the recent proposals for adap-

tive repartitioning algorithms targets physiologically partitioned shared-everything systems

[151]. The load on each partition is monitored using histograms and work queues. Whenever

a load imbalance exceeds the threshold, data is repartitioned. Similar approach can be used

in distributed OLTP systems that rely on physiological partitioning [138].

A related set of challenges arise in multitenant shared-nothing deployments in the distributed

system setting where load balancing and efficient tenant placement is essential to meet service

level objectives (SLOs). ElasTras is a pioneering project that provides elasticity in multi-tenant

environment with efficient live migration (repartitioning) in case of load imbalances [33].

Accordion focuses on efficient partitioning placement and minimal data repartitioning cost

using mixed integer linear programming for fine-grained shared-nothing OLTP system [139].

E-store is a similar effort aimed at elasticity and load balancing in dynamic fine-grained

shared-nothing systems [146].

Stored procedures. Even though transactions in general can contain an arbitrary sequence

of SQL statements, in practice, they fall into one of the predefined transaction types and are

executed using parametrized stored procedures [144, 149]. Furthermore, large majority of

transaction types are one-shot, i.e., based on the values of the input parameters, one can

determine a set of data items accessed by a transaction. For one-shot transactions, executing

the first phase of the 2PC protocol requires a single message exchange: the coordinator sends

the prepare message containing the input parameters to the participant who replies with

both the result of the execution and the vote. In this work, we primarily consider one-shot

distributed transactions.

2.2 Hardware Islands

In step with Moore’s Law, hardware provides increasing opportunities for parallelism rather

than faster processors since 2005. Therefore, instead of increasing frequency, we observe

an increase in the number of cores on a processor. In addition, multiple such processors
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are usually placed in the same server, creating hardware islands. Hence, there are two main

trends in modern server hardware: the variability in communication latencies and the abun-

dance of parallelism. In the following two subsections we discuss how each trend affects the

performance of software systems before surveying related work.

2.2.1 Variable Communication Latencies

The impact of modern processor memory hierarchies on the application performance is signifi-

cant because it causes variability in access latency and bandwidth, making the overall software

performance unpredictable. Furthermore, it is difficult to implement synchronization mecha-

nisms that are globally optimal for different applications and multicores and multisockets with

different topologies [35]. Using learning techniques to choose the optimal synchronization

mechanism for a specific use case is a promising way to alleviate this problem [40].
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Figure 2.1: Results of a counter benchmark where groups of 10 threads increment a shared
counter. Allocating threads and memory in a topology-aware manner provides the best
performance and lowest variability.

We illustrate the impact of non-uniform topology on the efficiency of synchronization among

threads with a simple microbenchmark. Figure 2.1 plots the throughput of a program running

on a machine that has 8 CPUs with 10 cores each (the “Octo-socket” machine of Table 3.1).

There are 80 threads in the program, divided into groups of 10 threads, where each group

increments a counter protected by a lock in a tight loop. There are 8 counters in total, matching

the number of sockets in the machine. We vary the allocation of the worker threads and plot

the total throughput (million counter increments per second). The first bar (“Spread” threads)

spreads worker threads across all sockets. The second bar (“Grouped” threads) allocates all

threads in the same socket as the counter. The third bar lets the operating system do the

thread allocation. Allocating threads and memory in a manner that maximizes locality results

in the best performance and lowest variability. Leaving the allocation to the operating system

leads to non-optimal results and higher variability. Although this has been an area of active

research in recent years [17, 34], general purpose approaches do not work well for database

systems due to their dynamic nature. Database-specific thread schedulers and interfaces that
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enable the application to hint its requirements to the operating system are a very promising

line of research [48].

Figure 2.2: Throughput of the system when varying placement of 4 worker threads. Running
the ����������	
 workload with all threads on the same socket achieves 20-30% higher
performance than other configurations.

We obtain similar results when running OLTP workloads. To demonstrate the impact of

non-uniform communication latencies on OLTP, we run ����� �����	
 transactions on a

machine that has 4 CPUs with 6 cores each (“Quad-socket” in Table 3.1). Figure 2.2 plots the

average throughput and standard deviation across multiple executions on a database with

4 worker threads. In each configuration we vary the allocation of individual worker threads

to cores. The first configuration (“Spread”) assigns each thread to a core in a different socket.

The second configuration (“Group”) assigns all threads to the same socket. The configuration

“Mix” assigns two cores per socket. In the “OS” configuration, we let the operating system do

the scheduling. This experiment corroborates the previous observations of Figure 2.1: the

OS does not optimally allocate work to cores, and a topology-aware configuration achieves

20-30% better performance and less variability. The absolute difference in performance is

much lower than in the case of counter incrementing because executing a transaction has

significant start-up and finish costs, and during transaction execution a large fraction of the

time is spent on operations other than accessing data. For instance, studies show that around

20% of the total instructions executed during OLTP are data loads or stores (e.g., [15, 54]).

2.2.2 Abundant Hardware Parallelism

Another major trend is the abundant hardware parallelism available in modern database

servers. Higher hardware parallelism potentially causes additional contention in multisocket

multicore systems, as a higher number of cores compete for shared data accesses. Figure 2.3

plots the results obtained on the octo-socket machine when varying the number of worker

threads accessing a set of counters, each protected by a lock. An exclusive counter per core
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Figure 2.3: Results of a counter benchmark where we always use 80 threads and change the
number of counters they increment. Improving locality of communication improves the
performance by an order of magnitude.

achieves lower variability and 18x higher throughput than a counter per socket, and 517x

higher throughput than a single counter for the entire machine. In both cases, this is a super-

linear speedup. Shared-nothing deployments are better suited to handle contention, since

they provide explicit control by physically partitioning data, leading to higher performance.

Figure 2.4: Running the ����� benchmark with only local transactions. Fine-grained shared-
nothing deployment configuration is 4.5x faster than shared-everything.

Similarly, when the OLTP workload is perfectly partitionable, the fine-grained shared-nothing

configuration provides better performance. As an example, we compare the performance

of the shared-everything version of Shore-MT with the fine-grained shared-nothing version

with 24 instances on the quad-socket machine. Both systems run a modified version of the

����� benchmark [154] Payment transaction, where all the requests are local and, hence, the

workload is perfectly partitionable on ����	
���s. We plot the results on Figure 2.4. The

fine-grained shared-nothing configuration outperforms shared-everything by 4.5x, due in

large part to contention on the Warehouse table in the shared-everything case.
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2.2.3 NUMA-aware System Design

NUMA-aware operating systems. Adapting operating systems to non-uniform hardware is an

area of active research. Some operating system kernels such as the Mach [2] and exokernel [43],

or, more recently, Barrelfish [17], employ the message-passing paradigm. Message-passing

potentially facilitates the development of NUMA-aware systems since the communication

between threads is done explicitly through messages, which the operating system can schedule

in a NUMA-aware way. Other proposals include the development of schedulers that detect

contention and react in a NUMA-aware manner [22, 34, 147]. Such schedulers have recently

been adapted to task-oriented analytical database engines [48, 126], however, they likely

require extensive changes to a traditional database engine.

Synchronization. Adapting software systems to today’s non-uniform hardware primarily

requires efficient synchronization primitives [35]. Scalable synchronization structures typi-

cally rely on efficient inter-core communication using atomic operations. Since an atomic

operation becomes much slower over inter-socket links, proposals for scalable NUMA-aware

locks rely on hierarchically partitioned structures to maximize access locality [24, 39]. On

the system level, a recent study on the performance of garbage collectors on multisocket

multicores analyzes synchronization patterns and systematically removes bottlenecks without

completely redesigning the system [49]. We take inspiration from these efforts as we redesign

our storage manager for multisockets.

NUMA-aware data management systems. A lot of past work focuses on adapting databases

for SMP systems. For instance, commercial database systems provide configuration options

to enable NUMA support, but this setting is often optimized for legacy hardware where each

individual CPU is assumed to contain a single core. With newer multisocket servers, enabling

NUMA support might lead to high CPU usage and degraded performance [28, 165]. Similarly,

modern operating systems offer better support for NUMA arhitectures, however, they do

not improve application performance out-of-the-box. Tuning existing database systems to

multisocket multicores is still a very challenging task [60, 161].

The majority of the proposals that target building NUMA-aware data management systems

focus on removing memory bandwidth bottlenecks for analytical applications [127] and

specifically devising efficient join and sorting algorithms that minimize data movement [5,

14, 94, 123]. However, OLTP workloads cannot saturate memory bandwidths and their main

problem is ensuring efficient synchronization among threads [125]. Statistical analysis is

another challenging data management task and a recent study explores different trade-offs in

the design space to conclude that hardware topology-awareness can improve performance by

an order of magnitude compared to the state-of-the-art systems [174].
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2.2.4 Beyond Hardware Islands

Manycore designs. While hardware islands capture well the topology of today’s mainstream

servers, many other designs are more complex. Contemporary low power multicores have

dozens of cores on the same chip: some of them have shared last level caches [27, 36, 164],

while proposals for others argue for independent Islands on the same die [97]. However, with

manycore designs, we cannot expect core-to-core latencies to be uniform. For example, the

latest generation of low power chips from Tilera family [164] have cores that are organized

in the form of a mesh. In this case, communication latency depends on the number of hops

between two cores, e.g., for the 36 core chip, it ranges from 45 to 65 cycles [35].

Hierarchy of Islands. We expect that multicore chips with a large number of cores will have

less uniform core-to-core communication latencies. For example, Oracle’s latest M7 32-core

chip [141], which is specifically designed for database appliances, features eight 4-core clusters

with dynamically shared last level cache and data analytics accelerators. Each core in a cluster

has private L1 data and instruction caches. The L2 instruction cache is shared by all the cores

in a cluster, while each of the two L2 data caches is shared by a pair of cores, thus creating

a hierarchy of inter-core latencies within a chip. Another interesting example is the latest

generation of Intel’s Xeon E5 chips [65]. In high core count configurations with 14 to 18 cores,

it features three different cache coherence modes, including the new ”cluster-on-die(COD)“

setting. In this mode, two cache coherence rings on the same chip are completely independent

which decreases the communication latency among the cores on the same ring. Practically,

two rings form islands on the same chip and can increase performance for application that are

island-aware. ARM server processor designs typically place a cluster of smartphone-optimized

cores and add a shared last level cache and a memory controller. The resulting designs can

have very complex topology and unpredictable latencies, e.g, cache hit latency on a Mars

64-core chip ranges from 2 to 70 cycles depending on the location of the cache line [175].

Dark silicon. A major challenge to continued scalability of multicore chips is the significant

increase in power density that leads to dark silicon - the inability to power all cores simulta-

neously [55]. Limited number of pins and off-chip bandwidth pose additional challenges for

future high performance chips. A promising way to overcome off-chip bandwidth issues is to

stack multiple memory chips on top of the processor chip [21]. Silicon photonic interconnects

between multiple smaller multicores offer a practical design for energy-efficient 1000-core

systems [37, 85, 88].

Accelerators. As a consequence of dark silicon, heterogeneous chips containing specialized

logic are becoming more appealing. Recent proposals range from custom chips that accelerate

individual operations such as partitioning [167] and hashing [84], to query task accelerators

[141], to designs that specialize chips to complete analytical queries [168]. These proposals

are generally targeted at accelerating specific software codepaths. The more general approach

is using reconfigurable chips, such as field programmable gate arrays (FPGAs), for offloading

selected data processing paths [69, 166], or adding a layer of security through encryption [11].
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This idea is already used in practice to accelerate parts of processing pipeline for Microsoft’s

Bing search engine [128]. Furthermore, Intel is already offering FPGAs integrated with its Xeon

processor in the same coherent package that is socket-compatible with other Xeon processors

[67].

Takeaways. In summary, modern hardware poses significant new challenges to software

systems. Contention and topology have a significant impact on the performance and its

predictability. Predictably fast transaction processing systems have to take advantage of the

hardware islands in the system. They need to (a) avoid frequent communication between

“distant” cores in the processor topology and (b) keep the contention among cores low. With

ever more complex processor designs as well as heterogeneity within a core, making software

aware of the underlying hardware is essential for sustaining high performance.

2.3 Rack-scale Computing Platforms

In addition to abundant parallelism, another major hardware trend is the decreasing distance

between servers through fast interconnects. In this section, we discuss advances in networking

in both datacenters and database appliances and forecast their impact on the general purpose

transaction processing systems.

Fast network. Low latency interconnects are becoming mainstream [20, 135]. High-

performance interconnect fabrics such as Infiniband, with bandwidths up to 100Gbps, are

already standard in supercomputers and are making inroads into enterprise datacenters and

database appliances [116, 101, 137].

Traditionally, commodity clusters use the TCP/IP software stack that poses a high overhead

limiting the potential improvements of the faster interconnects. RDMA enables faster commu-

nication by allowing applications to access the main memory of a remote machine without

involving an operating system or even a processor on a remote machine. With the growing

popularity of Converged Enhanced Ethernet [62], RDMA capabilities are becoming available at

lower price point in commodity datacenters. RDMA can enable access to the remote memory

of another server in a rack at around 10x latency of the local memory node [156].

The impact of fast network on data analytics. As today’s applications store more and more

data, distributed data processing architectures are proliferating. They are typically deployed

on commodity machines in datacenters and are using commodity Ethernet networks. Even

though the the conventional wisdom is that network is the bottleneck in distributed data ana-

lytics, a recent study demonstrates that the CPU is the bottleneck and that optimizing network

performance can only improve median job completion time by 2% [117]. One recent proposal

has demonstrated significant improvements in performance by focusing on improving CPU

efficiency instead of network and disk I/O [31].
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Large shared memory servers. Traditional large shared memory machines with more than 8

processors use specialized interconnects and controller chips to maintain cache coherence

[53, 92, 115]. However, such complex designs add significant overheads: for example, remote

memory access latencies on a modern 64 processor SGI UV 2000 machine, marketed as a

database machine, are 5.5x to 10.7x higher compared to local memory accesses [83]. With the

high latency overheads of maintaining cache coherence, software designers need to optimize

their code for locality to achieve good performance on large shared memory machines, which

in addition to high price limits them to niche applications [120].

Futhermore, the coherence overheads increase with the number of cores and in the near

future high performance systems will consist of coherence domains connected by low-latency

incoherent interconnect [57]. Each coherence domain will host independent operating system

instances similar to commodity clusters today. However, the fast interconnects will decrease

the gap between accessing local and remote memory by facilitating access to the remote

memory without involving the operating system and with minimal CPU overhead.

Cluster consolidation. From the earliest days of computer clusters, system designers strove

to provide an illusion of a single system by using shared file systems and peripheral devices

[162, 169]. Server vendors have long embraced consolidation using blade server designs to

improve energy efficiency and eliminate redundancies in datacenters. In the near future,

rack-scale datacenter designs such as cluster-in-a-box with low power system-on-a-chip (SoC)

multicore designs that integrate fast interconnect interfaces will further increase density and

reduce energy consumption [38]. Integrating memory and network controllers is already

becoming standard in low power server designs for highly parallel workloads [107, 158].

Global shared memory has been an appealing abstraction for decades, especially in the super-

computing domain [8]. A number of recent proposals offer mechanism for achieving such

functionality at lower cost. For instance, memscale design [106] allows dynamic sharing of

memory among servers in a cluster through an add-on card that leverages existing processor

interconnect such as HyPerTransport for accessing remote memory. Scale-out NUMA [111]

goes a step further by introducing specialized chips and protocols that can bring remote mem-

ory to 4x latency of the local memory within a rack. BlueDBM uses custom network interfaces

in addition to FPGA interface to flash arrays to improve performance of data analytics on

flash by an order of magnitude [75]. Data processing in general is a very appealing target for

specialized hardware/software co-design due to many data parallel tasks that are amenable to

acceleration [7, 114].

Scaling out scale-up OLTP. Modern scale-up shared-everything designs optimized for mul-

ticores cannot be used directly on rack-scale hardware since they take advantage of cache

coherent global shared memory. Their latch-free data structures and algorithms for concur-

rency control are optimized for short transactions and even shorter critical sections. Dis-

tributed transactions involve network delays that are significantly longer than the individual

transactions and can introduce imbalances in the system. For example, Microsoft’s Hekaton,
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the state-of-the-art commercial in-memory transaction processing engine, does not support

distributed transactions in SQL Server 2014 [102] which hints at the challenges of supporting

this scenario.

Distributed transaction protocols. Any distributed transaction in a shared-nothing system

needs to use a consensus protocol, such as two-phase commit (2PC) [104], to ensure ACID

properties. Many have argued that two-phase commit is inherently unscalable [23, 58] and

designers of many large-scale distributed systems have avoided these issues by using weaker

consistency like eventual consistency [159]. While relaxed models remove the need for a

synchronous consensus protocol, they significantly increase the complexity since consistency

needs to be ensured in the application. One way to remove the need for agreement protocol at

commit time in a transaction processing system is using a deterministic transaction execution

protocol [148, 149]. Calvin deterministicaly schedules all incoming transactions to ensure

conflict-free execution and achieve high throughput in a distributed system deployed in a

datacenter [149].

An alternative to determinism for improving efficiency of transactions in distributed environ-

ment is using semantic information about the workload to avoid unnecessary coordination

[13, 47]. The RAMP model [12] proposes atomic visibility as a weaker alternative to serializ-

ability to scale much better than the two-phase commit and satisfy requirements of web-scale

companies whose systems typically use eventual consistency for better performance. MDCC

is a recent commit protocol optimized for long roundtrip latencies in data centers [86] that

improves upon 2PC by requiring only one round of communication when concurrent transac-

tions are conflict-free. With a few additional assumptions, it is possible to design a one-phase

commit protocol for general transactions [1]. It is an interesting avenue of future work to

optimize such a protocol for modern scale-out clusters. However, all of these recent proposals

are targeting datacenter deployments and thus utilize complex conflict detection algorithms

that introduce too much overhead to be practical for low latency rack-scale deployments.

RDMA key-values stores. Many projects have explored network-specific optimizations for

distributed data management systems, including Hadoop, HBase and memcached [61, 68, 145].

Simply using faster network significantly decreases time spent on network-related tasks,

however, further improvements require optimization of the whole communication stack

around RDMA. Several projects have gone a step further in designing distributed key-value

stores specifically for RDMA using user level networking. Pilaf [103] uses one-sided RDMA

reads to achieve high throughput and low CPU usage. FaRM [41] is a distributed computing

platform that exposes memory of a cluster of machines as a shared address space which

can be used for designing systems on top of it. HERD [77] is a recent design that improves

performance of Pilaf and FaRM key-value stores by using two-sided RDMA reads and thus

harnessing full potential of the current RDMA hardware.

RDMA and data analytics. Optimizing distributed data analytics for fast networks has re-

cently gained popularity with ever increasing data sizes and network bandwidths that require
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rethinking traditional distributed database architectures [20]. The HyPer team showed that

their system can scale across multiple servers connected with Infiniband using the hybrid

parallelism model that combines the morsel-driven parallelism with the communication

multiplexer [133]. AnalyticsDB is a prototype analytical in-memory database system that lever-

ages RAMCloud [113] cluster infrastructure to enable elastic sizing of memory per machine

[150]. Large joins in distributed databases, that are very common in analytical workloads,

severely stress bandwidth among machines in a cluster. Parallel hash join implementation

can be optimized for rack-scale hardware by carefully tuning data exchange to the network

characteristics [16]. CycloJoin is a proposal for clusters with fast interconnects that have ring

topology that exploits the fast data movement to fully utilize available processors [45]. NeoJoin

uses careful scheduling of network communication to improve locality and remove delays

introduces by network saturation [132]. TrackJoin minimizes network traffic by scheduling

processing on a per key basis [124]. Overlapping precisely inter-node communication with

computation within a node also can be used for efficient sorting on clusters with fast inter-

connects [79]. While this line of work provides insight into the trade-offs between processing

and communication for bandwidth sensitive data processing operations, it is orthogonal to

transaction processing requirements that stress latency.

Takeaways. Rack-scale computer systems are the emerging commodity computing platform

characterized by multiple multisocket servers with large main memories connected using a

high-speed network [6]. Neither scale out nor scale up OLTP designs are optimal for rack-scale

hardware platforms due to conflicting requirements. Scale-out designs completely ignore the

opportunities for optimizing communication between instances located on the same physical

machine. State-of-the-art scale-up systems, when deployed in a distributed way, are sensitive

to the delays introduced by the network communication involved in executing distributed

transactions. We also believe that transaction processing systems need to take holistic view

when optimizing for rack-scale computing platforms.
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3 OLTP on Hardware Islands

Multisocket multicores are highly parallel and characterized by the non-uniformity in the

communication costs: sets, or islands, of processing cores that communicate with each

other very efficiently through shared on-chip caches, and less efficiently with cores from

other islands through bandwidth-limited and higher-latency links. Even though multisocket

multicore machines are prevalent in modern data-centers, it is unclear how well software

systems in general and OLTP systems in particular exploit multisockets.

In this chapter, we characterize the impact of non-uniformity of modern multisocket multicore

servers on transaction processing systems. We use both microbenchmarks and standard

benchmarks (TPC-B, TPC-C), with and without data skew. The workloads are executed using

different deployments of distributed transaction processing systems of varying granularity as

well as shared-everything deployments. We place particular emphasis on the impact of the

percentage of multipartition transactions.

This chapter starts with an overview of the Islands performance model and the discussion

about different deployment options in Section 3.1. Next, it contains the detailed experimental

setup description as well as the methodology in Section 3.2. The next four sections outline

experimental results grouped in the following way: Section 3.3 quantifies the impact of mul-

tipartition transactions on the throughput in a variety of settings; Section 3.4 expands the

analysis to measure the sensitivity to varying the database size, number of processors, data

access skew, and disk accesses; Section 3.5 discusses the impact of distributed transactions in

the context of more complex workloads, and Section 3.6 expands the analysis in the context

of the main-memory optimized system. Finally, Section 3.7 summarizes the findings and

discusses the implications.
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Figure 3.1: Different shared-nothing configurations on a four-socket four-core machine.

3.1 Islands: Hardware Topology-aware Shared-nothing OLTP De-

ployments

Traditionally, database systems fall into one of two main categories: shared-everything or

shared-nothing. The distinction into two strict categories, however, does not capture the

fact that there are many alternative shared-nothing deployment configurations of different

granularities, nor how to map each shared-nothing instance to CPU cores.

Figure 3.1 illustrates three different shared-nothing deployment configurations. The two

left-most configurations, labeled “2 Islands” and “4 Islands”, dedicate different number of

cores per instance, but, for the given number of cores, minimize the communication cost

as much as possible. Computation within an instance is done in close cores. The third

configuration, ”4 Spread” has the same size per instance as “4 Islands”. However, it does

not minimize the communication cost, as it forces communication across sockets when it

is strictly not needed. The first two configurations are islands in our terminology, where an

island is a shared-nothing configuration where each shared-nothing instance is placed on the

minimal number of sockets (in order to maximize locality). The third configuration is simply

a shared-nothing configuration. As hardware becomes more parallel and less uniform, the

design space over the possible shared-nothing configurations increases, and it is harder to

determine the optimal deployment configuration.

On top of the hardware complexity, we have to consider that the cost of a transaction in a

shared-nothing environment also depends on whether this transaction is local to a database

instance or distributed. A transaction is local when all the required data for the transaction

is stored in a single database instance. A transaction is distributed when multiple database

instances need to be contacted and a distributed consensus protocol (such as two-phase
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commit) needs to be employed. Thus, the throughput also heavily depends on the workload,

adding another dimension to the design space and making the optimal deployment decision

nearly “black magic.”

An oversimplified estimation of the throughput of a shared-nothing deployment as a function

of the number of distributed transactions is given by the following. If Tlocal is the throughput

of the shared-nothing system when each instance executes only local transactions, and Tdi str

is the throughput of a shared-nothing deployment when every transaction requires data from

more than one database instances, then the total throughput T is:

T = (1−p)∗Tlocal +p ∗Tdi str

where p is the fraction of distributed transactions executed.

In a shared-everything configuration all the transactions are local (pSE = 0). On the other hand,

the percentage of distributed transactions in a shared-nothing deployment depends on the

partitioning algorithm and the system configuration. Typically, shared-nothing configurations

of larger size, i.e., the ones deployed over more cores, execute fewer distributed transactions,

as each database instance contains more data. That is, a given workload has a set of local

transactions that access data in a single logical site, and multisite transactions that access data

in multiple logical sites. A single database instance may hold data for multiple logical sites.

In that case, multisite transactions can actually be physically local transactions, since all the

required data reside physically in the same database instance. Distributed transactions are

only required for multisite transactions whose data reside across different physical database

instances. Assuming the same partitioning algorithm is used (e.g., [32, 122, 129]), then the

more data a database contains the more likely for a transaction to be local.

Given the previous reasoning one could argue that an optimal shared-nothing configuration

consists of a few coarse-grained (i.e., large-sized) database instances. This would be a naïve

assumption as it ignores the effects of hardware parallelism and variable communication

costs that we explore in Section 2.2. For example, if we consider contention, then the cost

of a (local) transaction of a coarse-grained shared-nothing configuration Ccoar se is higher

than the cost of a (local) transaction of a very fine-grained configuration C f i ne , because the

number of concurrent contending threads is larger. That is, Tcoar se < T f i ne , since throughput

is inversely proportional to the execution cost of a single transaction, i.e., T = 1
C . If we consider

communication latency, then the cost of a topology-aware islands configuration Ci sl and s of a

certain size is lower than the cost of a topology-unaware shared-nothing configuration Cnai ve .

That is, Ti sl and s > Tnai ve .

Figure 3.2 illustrates the expected behavior of Islands, shared-everything, and fine-grained

shared-nothing configurations as the percentage of multisite transactions in the workload

increases. Islands exploit the properties of modern hardware by utilizing the sets of cores that

communicate faster with each other. Islands are shared-nothing designs, but partially combine

the advantages of both shared-everything and shared-nothing deployments. Similarly to a
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Figure 3.2: Performance of various deployment configurations as the percentage of multisite
transactions increases.

shared-everything system, Islands provide robust performance even when transactions in the

workload vary slightly. At the same time, performance on well-partitioned workloads should

be high, due to less contention and avoidance of higher-latency communication links. Their

performance, however, is not as high as a fine-grained shared-nothing system, since each

node has more worker threads operating on the same data. At the other side of the spectrum,

the performance of Islands will not deteriorate as sharply as a fine-grained shared-nothing

under the presence of multipartition transactions.

3.2 Experimental Setup and Methodology
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Figure 3.3: Topology of the three machines used in the experiments.

In this study we quantify the impact of non-uniform hardware topology using three modern

multisocket multicore machines, one with two sockets of 8-core CPUs, one with four sockets
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Table 3.1: Description of the machines used.

Machine Description
Dual-socket 2 x Intel Xeon E5-2640 v2 @ 2.00GHz

8 cores per CPU
Fully-connected with QPI
256 GB RAM
64 KB L1 and 256 KB L2 cache per core
20 MB L3 shared CPU cache

Quad-socket 4 x Intel Xeon E7530 @ 1.86 GHz
6 cores per CPU
Fully-connected with QPI
64 GB RAM
64 KB L1 and 256 KB L2 cache per core
12 MB L3 shared CPU cache

Octo-socket 8 x Intel Xeon E7-L8867 @ 2.13GHz
10 cores per CPU
Connected using 3 QPI links per CPU
192 GB RAM
64 KB L1 and 256 KB L2 cache per core
30 MB L3 shared CPU cache

of 6-core CPUs, and one with eight sockets of 10-core CPUs. The topology of these machines

is depicted in Figure 3.3: smaller machines are fully connected, while the octo-socket one

uses the twisted cube topology such that each pair of sockets is at most two hops away 1. The

two socket machine is a typical representative of the multisockets used by the major cloud

service providers such as Amazon Web Services [9]. The four socket machine, that is used in an

experiment unless otherwise noted, is an example of a current mainstream high performance

server, while the eight socket one represents the type of servers used in high-end applicances

marketed by major vendors [101, 116].

Hardware and tools. Table 3.1 describes in detail the hardware used in the experiments. We

disable HyperThreading to reduce variability in the measurements. The operating system

is Red Hat Enterprise Linux 6.2 (kernel 2.6.32). In the experiment of Section 3.4.4, we use

two 146 GB 10kRPM SAS 2,5" HDDs in RAID-0. We use Intel VTune Amplifier XE to collect

basic micro-architectural and time-breakdown profiling results. VTune does hardware counter

sampling, which is both accurate and lightweight [64].

IPC mechanisms. The performance of any shared-nothing system heavily depends on the

efficiency of its communication layer. Figure 3.4 shows the performance in the quad-socket

machine of various inter-process communication (IPC) mechanisms provided by the operating

systems using a simple benchmark that exchanges 256 byte messages between two processes

which are either located in the same CPU socket or in different sockets using operating system

1 For more details see ������������	�
�������������	��������
�����������������������
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Figure 3.4: Throughput of message exchanging (in thousands of messages exchanged per
second) for a set of inter-process communication mechanisms. Unix domain sockets are the
highest performing.

facilities. Unix domain sockets achieve the highest performance and are used throughout the

remaining evaluation. In Section 3.3.4 and with Silo, we use more efficient shared memory

messaging implementation that bypasses the operating system, however, it does not change

the trends in our experiments.

3.2.1 Prototype Systems

In order to evaluate the performance of deployments of different granularities, we prototype

distributed transaction processing systems on top of two storage managers: Shore-MT2 [71]

and Silo3 [157]. Most of our experiments use Shore-MT and we use Silo to generalize our

conclusions to the main memory systems. We use the same distributed transaction processing

logic and communication mechanisms with both storage managers and apply the same

optimizations.

We opted for Shore-MT as a representative traditional system since it is an open-source storage

manager that scales very well on servers with a single multicore processor [71]. Shore-MT

is the improved version of the SHORE storage manager, originally developed as an object-

relational data store [26]. Shore-MT is designed to remove scalability bottlenecks, significantly

improving Shore’s original single-thread performance. Its performance and scalability are

at the highest end of open-source storage managers. Silo is an open source scalable shared-

everything storage manager that is representative of the new wave of main-memory optimized

transaction processing systems.

Both Shore-MT and Silo use shared-everything designs. Therefore, we extended them with

2 https://sites.google.com/site/shoremt/
3 http://github.com/stephentu/silo
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the ability to run in shared-nothing deployments, by implementing a distributed transaction

coordinator using the standard two-phase commit (2PC) protocol. Our 2PC protocol imple-

mentation includes an optimization for the execution of the read-only parts of the distributed

transactions: if the execution site has decided that the transaction is read-only, it is committed

at the end of the first phase and the site is not involved in the second round of communication.

Both systems used in this study are storage managers that do not include some components

found in a typical commercial database system such as a query optimizer and a client commu-

nication library. Instead, the benchmark application directly accesses the storage manager

through the API calls. We use hardcoded transaction execution plans for all benchmarks and

implement distributed transactions in one-shot fashion [144] with local and remote transac-

tion parts known apriori. This allows coordinator and participating instances to exchange only

one message in the first phase of 2PC. These techniques are commonly used in commercial

high performance deployments using stored procedures in order to eliminate unnecessary

overheads.

Shore-MT includes a number of state-of-the-art optimizations for local transactions, such as

speculative lock inheritance [70] and Aether holistic logging [72]. Speculative lock inheritance

reduces the contention on the lock manager by caching locks acquired in the shared mode

and reusing them for subsequent transactions. Aether reduces log buffer contention using

cooperative log buffer insertions and flush pipelining to move system calls involved in writing

log records to the durable storage off the critical path of transaction execution. We extended

these features for distributed transactions, providing a fair comparison between the execution

of local and distributed transactions.

Shore-MT-based system is compiled using GCC 4.4.7 with maximum optimizations, while

experiments with Silo use version 5.1.0 as it requires the support for c++11 language features.

In most experiments with Shore-MT, the database size fits in the aggregate buffer pool size. As

such, the only I/O is due to the flushing of log entries. However, since the disks are not capable

of sustaining the I/O load, unless otherwise noted, we use memory mapped disks for both

data and log files. Overall, we exercise all code paths in the system and utilize all available

hardware contexts. In the experiments with Silo, we use only main memory storage and do

not generate any I/O requests.

3.2.2 Microbenchmark Workload and Experimental Methodology

In the experiments, we vary the number of instances of the database system. Each instance

runs as a separate process. Within each experiment, we use the same input data size for all

deployment configurations and range-partition the data into logical sites across all instances

in the deployment. Sites are disjoint subsets of the dataset with one or more sites located in

the same instance in the distributed deployment. We allocate one site to each processor core.

For the majority of microbenchmark experiments, we use a small dataset with 10 000 rows per

site (e.g., on a quad socket machine it amounts to 240,000 rows ∼ 60 MB in Shore-MT), and
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describe the specific larger datasets for other experiments. We show results using different

deployment configurations, but we always use the same total amount of data, processor cores,

and memory resources for every deployment in the experiment. Only the number of instances

and the distribution of resources across instances change.

We ensure that each database instance is optimally deployed. That is, each database process

is bound to the cores within a single socket when possible, and its memory is allocated in the

nearest memory bank. We made this decision as allowing the operating system to schedule

processes arbitrarily leads to suboptimal placement and frequent thread migration, which

degrades performance, as explored in more detail in Section 2.2.

In the experiments, we typically compare a number of deployment configurations of different

granularities. The configurations on the graphs are labeled with " ISL" where represents

the number of instances. For example, in the experiments on a quad socket server with 24

cores, ISL represents the configuration with 8 database instances, each of which has 1/8th

of the total data and uses 3 processor cores. The number of instances varies from 1 (i.e., a

shared-everything system) to 24 (i.e., a fine-grained shared-nothing system). We tune all

configurations, by turning on and off different optimizations when applicable and provide

details when describing a particular experiment. For example, in Shore-MT experiments,

fine-grained shared-nothing instances that run single-threaded do not latch data pages.

Local transaction 

Multisite transaction 

Figure 3.5: Examples of microbenchmark transactions with N = 5 where the second partition
is the local one.

We use microbenchmarks that come in two flavors: (1) read-only where each transaction

retrieves N rows, and (2) update where each transaction updates N rows. For each microbench-

mark, we run two types of transactions, local and multisite. Intuitively, we assign a site (i.e., a

subset of rows) to the processor core and then place in the same instance all rows assigned to

the cores on which that instance runs. We illustrate this scheme in Figure 3.5 and define the

two transaction types as follows:

• Local transactions perform their action (read or update) on the N rows from the local site;

• Multisite transactions perform their action (read or update) on one row from the local site

while the remaining N−1 rows are chosen uniformly from the whole data range. Transactions

are distributed if some of the input rows happen to be located in remote instances.
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We chose these microbenchmarks because they allow us to quantify the impact of different

factors on the cost of executing local and distributed transactions including the number

of rows accessed in a transaction and the number of instances involved. The flexibility of

the microbenchmark allows us to explore a wide range of workload types from the perfectly

partitionable to the completely un-partitionable ones that access rows from many partitions

requiring distributed transactions.

The percentage of multisite transactions that are executed as distributed transactions depends

on the deployment configuration and the number of rows accessed. Let’s illustrate the de-

pendency through an example. For the transaction that accesses 2 rows in the configuration

with N instances, there is a 1
N probability that the multisite transaction will be local since the

remote row is chosen from a site residing in the local instance. In the case of 20% multisite

transactions, we have 19.17% distributed transactions for the 24ISL configuration and 15%

for the 4ISL one. In the case of transactions that access 20 rows, the probability of a multisite

transaction being local is extremely low ( 1
N 19 ) and every distributed transaction involves all

instances.

3.2.3 Standard Workloads

TPC-B [153] is a transaction processing benchmark that models debit and credit operations of

a bank. It is designed as a stress test for OLTP systems, particularly their concurrency control

and logging components. The TPC-B schema contains four tables: ������, ��		��, 
�����,

and ������. The TPC-B workload consists of a single transaction type, 
����������,

that updates one record in ������, ��		��, and 
����� tables and inserts one record to

the ������ table. It is easily partitionable on the BranchID attribute of the ������ table.

According to the benchmark specification, 85% of the transactions are local, i.e., they access

data from the same branch, whereas the remaining remote transactions update one teller in

the remote branch.

The more complex TPC-C [154] benchmark models a transactional database of the wholesale

supplier. Its schema contains nine tables and can be partitioned on the WarehouseID key

of the ��������� table that is part of the primary key of six other tables [144]. The bench-

mark defines five different transactions, a mix of read-only and read-write ones, that each

access at least three tables. We will focus only on the two read-write transactions, ��������

and ������, because 1) they comprise 88% of the transactions in the standard mix and 2)

they are the only ones that potentially require distributed transactions in a shared-nothing

deployment. �������� is a medium length transaction that models placing a new order for

5-15 items, where an item is selected from the remote warehouse with the probability of 1%.

This leads around 10% of the transactions to be multisite. ������, on the other hand, is a

short transaction that updates customer’s balance as well as the warehouse and district sales

statistics. In 85% of the cases, the chosen warehouse represents home warehouse for the

customer and district. In the remaining 15% of the cases, the chosen warehouse is a different

31



Chapter 3. OLTP on Hardware Islands

one which causes this transaction to be multisite, as it involves both logical sites associated

with the home and remote warehouses.

3.3 Impact of Multisite Transactions

1 ISL 4 ISL 24 ISL
Figure 3.6: Main deployment configurations illustrated on the 4 socket server.

In this section we analyze in depth the impact of good partitioning scheme on performance of

different configurations. If good partitioning scheme exists for a particular workload, there will

be fewer multisite transaction and vice versa. The impact of partitioning is different for read-

heavy, update-heavy and workloads whose transactions contains both reads and writes. We

simulate different types of workloads by varying the percentage of multisite transactions for the

microbenchmarks that read or update 10 rows. This setting gives us good baseline observations

about the behavior of main configurations that we compare in this study (illustrated using the

quad socket server and depicted in Figure 3.6):

• Fine-grained shared-nothing (labeled 24ISL) is a deployment configuration where data is

divided into as many partitions as there are cores in the system. Each partition is assigned

to a single database instance that serves all transactions accessing data from that partition.

These instances are pinned to different cores of the machine with one instance per core.

Each instance uses a single worker thread which eliminate the need to synchronize accesses

to the data.

• Island-sized shared-nothing (labeled 4ISL) is a deployment configuration where data is

divided into as many partitions as there are sockets in the system. Each partition belongs to

a single database instance that is pinned to a particular processor socket. We use as many

worker threads as there are cores on the processor and they collectively serve transactions
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that access data belonging to a specific instance. Memory is allocated in the local memory

node.

• Shared-everything (labeled 1ISL) is a deployment configuration with a single database

instance that utilizes all cores in the system and processes all transactions. In contrast to the

shared-nothing configurations, in this case all transactions are local and we never have to

execute distributed transactions.

In the common case, we use a small dataset with 240,000 rows, Unix domain sockets as

the communication mechanism and the system built on top of Shore-MT. We chose the

small dataset because it is almost cache-resident which highlights the positive impact of data

locality in shared-nothing configurations. We quantify the effects of dataset sizes by examining

performance trends as well as microarchitectural behavior of different configurations when

dataset does not fit in the caches. We also replace Unix domain sockets with shared memory

communication mechanisms for inter-process communication and evaluate their impact

on performance by breaking down the costs of local and multisite transactions into system

components. Finally, we expand our analysis to different hardware platforms with varying

numbers of sockets and cores per socket to quantify the impact of hardware topology on the

behavior of different deployment configurations.

3.3.1 Distributed Transactions

Distributed transactions are known to incur a significant cost, and this problem has been the

subject of previous research, with e.g., proposals to reduce the overhead of the distributed

transaction coordination [74] or to determine an initial optimal partitioning strategy [32,

122, 129]. Our experiment, shown in Figure 3.7, corroborates these results. We run two

microbenchmarks whose transactions read and update 10 rows respectively on the quad-

socket machine. As expected, the configuration 1ISL (i.e., shared-everything) is not affected

by varying the percentage of multisite transactions. However, there is a drop in performance

of the remaining configurations, which is more significant in the case of the fine-grained one.

Both fine-grained (24ISL) and island-sized(4ISL) shared-nothing configurations have high

performance for the workloads that contain only local transactions. The performance improve-

ment compared to the shared-everything is especially high for the read-only transactions and

fine-grained configurations that run in the single-threaded mode without locking or latching.

As the percentage of multisite transactions in the workload increases, the performance of

24ISL configuration decreases mainly due to the messaging overhead involved in the execution

of distributed transactions. The trends for the 4ISL configuration are similar with progressively

lower performance as the percentage of multisite transaction increases. However, the drop

in performance is smaller due to fewer instances that participate in the execution of a single

distributed transaction and, consequently, fewer messages that need to be exchanged. At the

same time, performance for local-only transaction is not as high as in the 24ISL case because

33



Chapter 3. OLTP on Hardware Islands

Last Level Cache-resident dataset 

Memory-resident dataset 

0
50

100
150
200
250
300

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (K

Tp
s)

% multisite transactions

Retrieving 10 rows

0
20
40
60
80

100
120

0 20 40 60 80 100
% multisite transactions

Updating 10 rows 24ISL

4ISL

1ISL

0
50

100
150
200
250
300

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (K

Tp
s)

% multisite transactions

Retrieving 10 rows

0
20
40
60
80

100
120

0 20 40 60 80 100
% multisite transactions

Updating 10 rows 24ISL

4ISL

1ISL

Figure 3.7: Performance as the percentage of distributed transactions increases on cache
and memory resident datasets. While shared-everything remains stable, performance of
share-nothing configurations decreases. Smaller instances benefit a lot from cache-resident
datasets.

of multiple worker threads that execute transactions in the same instance and thus have to

use locking and latching to ensure isolation.

While the trends for the update case (Figure 3.7, top right) are similar to the read-only one,

the shape of the lines is different. As in the previous case, partitioned configurations have

higher performance than the shared-everything one for local-only transactions, however, the

difference is smaller because updates require logging that is more expensive that just accessing

data. When the percentage of multisite transaction in the workload increases, distributed

transactions cause performance to drop faster than in the case of read-only transactions.

This is because distributed update transactions are more expensive due to the two rounds of

messaging, additional logging after the first phase, and the increased contention as exclusive

locks are held until the end of the second phase of the 2PC protocol.

In addition to lower synchronization costs compared to the shared-everything system, parti-

tioned configurations in this experiment have a benefit of cache locality as the data set almost

fits in the last level caches. To quantify the impact of locality on the performance, we repeat

this experiment with a larger dataset of 2.4 million rows (∼ 600 MB) and plot throughput on

the lower half of Figure 3.7. We observe that while the performance of the shared-everything
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system remains almost the same, the performance of partitioned configurations decreases by

5-25% with larger decrease for the fine-grained configuration. The relative decrease is larger

for local-only transactions, since access to the data takes larger portion of the execution time

compared to multisite transactions (as we show in more detail in Section 3.3.3).

3.3.2 Microarchitectural Behavior

To better understand the impact of thread synchronization and data locality for different types

of configurations, we profile their behavior for local-only transactions by accessing hardware

performance counters using VTune. For this experiment, we run read-only microbenchmark

which accesses 10 rows from the local site and use both last level cache-resident (Figure 3.8

(top)) and memory-resident datasets (Figure 3.8 (bottom)).
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Figure 3.8: Microarchitectural data for different deployments and datasets: smaller instances
benefit a lot from locality in the workload.

The leftmost graph of the top row in Figure 3.8, which plots the number of instructions

retired per cycle (IPC), shows that the shared-nothing configurations, whose instances have

fewer threads, have better utilization of the CPU. Single-threaded instances, apart from not

communicating with other instances, use simpler execution model leading to shorter code

paths, which decreases the number of instruction misses. On the other hand, instances that

span across sockets have a much higher percentage of stalled cycles (shown in the second
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graph from the left of Figure 3.8 (top)). This is due to the presence of—expensive—last-level

cache (LLC) misses (shown in the right-most graph in Figure 3.8 (top) as the percentage of all

memory requests that result in LLC data misses). In contrast, shared-nothing instances have

zero LLC misses as the data fits in the last level cache of each processor and all transactions are

local. Finally, within the same socket, smaller instances have higher ratio of instructions per

cycle due to fewer stalls while accessing shared data structures since fewer threads share the

same data. This effect is observed on the “data sharing” graph in the Figure 3.8 (second from

the right in the top row) that plots the ratio of cycles the system is accessing remote cache

lines to all cycles.

The benefit of fewer threads per instance is reduced when the data does not fit in processor

caches, which is the common case in real-life workloads, as shown in the bottom row of Figure

3.8. In this case, fine-grained shared-nothing instances still manage to retire more instructions

per cycle compared to the larger instances, however, their IPC rates are lower than in the case

with cache-resident data. This is due to the long latency LLC misses that cannot be effectively

overlapped by the modern superscalar processors. LLC misses also increase for the coarse-

grained shared-nothing instances leading to higher percentage of stalled cycles. Overall, the

diminished locality in the workload, due to data not fitting in the LLC, causes the smaller

instances to have more stalled cycles compared to the shared-everything instance. Finally, the

data sharing patterns do not change compared to the case of cache-resident dataset, leading

to the conclusion that the lower processor utilization for shared-nothing configurations is due

to the reduced cache locality in the workload.

3.3.3 Profiling
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Figure 3.9: Time breakdown for a transaction that retrieves (left) or updates (right) 10 rows
and uses unix domain sockets for communication. The cost of communication dominates in
the cost of distributed transaction in the read-only case, while in the update case overheads
are divided between communication and additional logging.

In order to characterize the overhead of inter-process communication costs in relation to the

remaining costs of a distributed transaction, we profile the execution of a set of read-only and

update transactions on the quad-socket machine, using the 4ISL configuration. Figure 3.9

plots time breakdown for the microbenchmark transaction which reads or updates 10 rows
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from the small dataset. The messaging overhead is high in the read-only case, although it has

a constant cost per transaction. The relative cost of communication can be seen by comparing

the 0% multisite (i.e. local transactions only) and the 100% multisite bars. Also, we observe an

increase in the cost of transaction management due to bookkeeping overheads.

Even though messaging overhead is high for the distributed read-only transactions, they

require a single round of communication since we can use the following optimization of

the 2PC protocol: if the transaction fragment contains only read-only operations, it sends a

read-only vote at the end of the prepare phase and does not participate in the second phase.

In contrast, update transactions have to vote either commit or abort at the end of the first

phase. If they vote commit, i.e., the processing is successful, they have to hold all exclusive

locks until they get the decision message from the coordinator in the second communication

phase. These factors make the distributed transaction significantly more expensive than their

read-only counterparts. Although distributed transactions require exchange of twice as many

messages in the update case, this overhead is comparatively smaller because of additional

logging, as well as increased contention which further increase the cost of a transaction.

3.3.4 Impact of the Communication Channel
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Figure 3.10: Performance as the percentage of multisite transactions increases using shared
memory communication channel. Read-only distributed transactions benefit from faster
communication much more than the update ones.

Although unix domain sockets are the fastest messaging mechanism provided by the oper-

ating system (Section 3.2), they still cause large communication overheads when executing

distributed transactions (as we can observe in Figure 3.9). This is primarily due to the fact

that they involve expensive system calls. In order to remove the overhead of system calls, we

implement a prototype shared memory communication mechanism. While shared mem-

ory communication is more complicated to use and implement, it is used for inter-process

communication in all major commercial database systems.

We repeat the experiment from Section 3.3.1 with a small dataset and plot the throughput in

Figure 3.10. We observe that the performance trends of various configurations are the same

as in the case of unix domain socket communication channels (Figure 3.7 (top)). However,
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Figure 3.11: Time breakdown for a transaction that retrieves (left) or updates (right) 10 rows and
uses shared memory channels for communication. Lower cost of communication decrease
significantly decrease the costs in the read-only case, while other costs increase in the update
costs as they cannot be overlapped with communication anymore.

the relative decrease in performance, as the percentage of the multisite transaction in the

workload increases, is lower. For example, the throughput of 24ISL configuration for the

read-only transactions improves by 60% and 4ISL by 25% for the workload consisting of 100%

of multisite transactions. This improvement is smaller for the update case, measuring 22%

and 12% respectively. Even though communication overhead represented significant part

of the cost of distributed transactions (Figure 3.9) for both types of transactions, improved

communication is more beneficial for the read-only ones.

To characterize the impact of faster communication mechanism, we repeat the profiling

experiment from the Section 3.3.3 with the shared memory communication channel and

show the results in Figure 3.11. Since in this case communication bypasses the operating

system and the instances avoid making system calls, communication overhead diminishes

significantly. The lower communication cost directly results in better throughput of read-only

microbenchmark transactions. In the update case, however, the benefits are significantly

smaller due to the other overheads of the 2PC protocol that cannot be overlapped with

communication anymore, including additional logging and increased lock contention.

3.3.5 Different Topologies

The number of islands is one of the most important factors that determines their impact on

the transaction processing systems. In this experiment, we extend our analysis to two very

different multisocket machines with two and eight processors (their configuration is outlined

in Table 3.1). We repeat the experiments with microbenchmark that reads and updates 10 rows

and compare shared-everything and fine- and coarse-grained shared-nothing configurations.

Figure 3.12 (top) plots the throughput of the different configurations as we increase the

percentage of multisite transactions on the octo-socket server. We use the cache-resident

dataset with 10,000 rows per core for a total of 800,000 rows. Each of the eight processors in

this machines has ten cores, hence we have 80 instances in the fine-grained (labeled 80ISL)
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and 8 instances in the island-sized shared-nothing deployment (labeled 8ISL). Similarly to

the smaller, quad-socket, server used in the experiment in Section 3.3.1, throughput of the

shared-everything system is constant irrespective of the percentage of multisite transactions.

However, it is much lower compared to the partitioned configurations. We further examine

the scalability of different configurations as the number of sockets increases in Section 3.4.2.

As the percentage of multisite transaction increases in the read-only case, the performance of

80ISL configuration decreases more than the 8ISL one due to the higher communication over-

heads. In addition to more instances that are involved in the execution of a single distributed

transaction, fine-grained deployment has higher static communication overheads due to the

larger number of instances in the system. The trends are similar for the update case with larger

decrease in performance due to higher overheads of distributed update transactions.
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Figure 3.12: Performance as the fraction of multisite transactions increases on dual and octo
socket servers. Trends are common across machines, however, hardware topology determines
relative performance of different configurations.

In contrast to the octo-socket server, the impact of islands is much smaller on the dual-socket

server. We plot the results of the dual-socket server experiment on the bottom part of Figure

3.12. This server has two eight core processors, so we deploy fine-grained shared-nothing

configuration with 16 instances and the island-sized one with 2 instances. In this case, the

cache-resident dataset contains 160,000 rows. For the read-only microbenchmark, 16ISL

configuration has almost two times better throughput compared to the other configurations

for the local-only transactions. The performance drops with the increase in the percentage of
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multisite transactions, however, this drop is smaller compared to fine-grained instances on the

larger servers due to fewer instances in the system which lowers communication overheads.

The 2ISL configuration has slightly better performance compared to the 1ISL one for local

transactions due to the fairly large number of threads that need to synchronize their accesses

to the shared data structures. At the same time, the overhead of distributed transactions is

small as the percentage of multisite transaction increases since each distributed transaction

requires exchange of a single pair of messages. The situation is different for the update

microbenchmark where the overheads of distributed transactions cause sizable performance

drop for partitioned configurations as the percentage of distributed transaction increases.

This is the case even for 2ISL configuration as the main overheads related to additional logging

and bookkeeping are proportional to the number of updated rows. The shared-everything

deployment benefits from optimized logging to offer consistently good performance for update

transactions.

3.3.6 Summary

Our experiments show that the performance trends for different deployment configurations

are consistent with the Islands performance model. Finer-grained shared-nothing configura-

tions have better throughput for mostly local transactions, while coarser-grained ones have

higher throughput in the presence of many multisite transactions. The exact cross-over point

depends on the type of operations as well as the hardware topology.

3.4 Sensitivity Analysis with Microbenchmarks

In this section we perform sensitivity analysis using microbenchmark workloads by varying a

number of parameters. We start by expanding the range of configurations to include the ones

larger and smaller than an island and measuring the cost of transactions as a function of the

number of rows accessed. Next, we project how the deployments will scale with the increasing

number of islands in the system and evaluate the tolerance to skew. Finally, we investigate the

effects of dataset sizes that cannot entirely fit in the main memory.

3.4.1 Impact of the Size of Transaction

In this experiment we use the quad-socket machine and all reasonable configuration choices.

We start with the configurations we introduced in the previous section: shared everything

(1ISL), coarse-grained shared-nothing (4ISL), and fine-grained shared-nothing (24ISL). Ad-

ditionally we introduce coarser-grained configuration whose instances span across sockets

(2ISL) and two finer-grained configuration with multiple instances per socket (8ISL and 12ISL).

We tune each configuration for the optimal performance: disable locking and latching for the

single-threaded instances and enable Aether logging optimizations for larger instances where

constructive sharing among threads decreases the pressure on the logging subsystem. We
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focus on the costs as opposed to throughput since we analyze trends separately for the local

and multisite transactions.
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Figure 3.13: Cost of local and multisite transactions in the read-only microbenchmark. For
multisite transactions, communication costs rise until all instances are involved in every
transaction.

Read-only Case: Overhead Proportional to the Number of Participating Instances

Figure 3.13 (left) represents the time it takes to execute a single local read-only transaction in

various database configurations as the number of rows retrieved per transaction increases.

The 24ISL configuration runs with a single worker thread per instance, so locking and latch-

ing are disabled, which leads to roughly 40% lower costs than the next best configuration,

corroborating previous results [56].

The costs of multisite read-only transactions (Figure 3.13 right) show the opposite trend

compared to the local read-only transactions for shared-nothing configurations. First, for

small number of rows per transaction, we observe super linear increase in cost as more

instances become involved in the execution of a single transaction. This trend flattens out

once all instances are involved in the execution of every transaction and the number of

messages exchanged per transaction becomes constant. However, for the shared-everything

case, the costs of accessing sharing data structures is so high that for large transactions, it

has worse performance than all shared-nothing configurations which execute distributed

transactions.

Update Case: Additional Logging Overhead Is Significant

The left graph of Figure 3.14 present the time it takes to execute a single local transaction of

the update microbenchmark. The cost of a transaction increases with the number of threads

in the system, due to contention on shared data structures. As in the read-only case, the 24ISL

configuration runs without locks or latches and hence, has lower costs.

In contrast to the read case, multisite shared-nothing transactions (Figure 3.14, right) are sig-

nificantly more expensive than their local counterparts. This is due to the overhead associated
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Figure 3.14: Cost of local and multisite transactions in the update microbenchmark. Shared-
everything can take advantage of consolidated logging that is especially significant for multisite
transactions.

with distributed transactions and to the (mandatory) use of locking. Any configuration that

requires distributed transactions is more expensive than the shared-everything configuration.

We can observe the same trend as in read-only case with super linear increase in costs as

number of instances involved in the transaction rises which later flattens out. In addition,

we have another trend of the increase in costs of transaction that access the large number

of rows since holding locks for a longer period of time increases contention. Finally, for the

shared-everything configuration costs rise linearly and quickly become smaller than all the

other configurations, primarily due to use of efficient logging with Aether [72].

3.4.2 Increasing Hardware Parallelism

Hardware parallelism as well as communication variability will likely continue to increase

in future processors. Therefore, it is important to study the behavior of alternative database

configurations as hardware parallelism and communication variability grow. In Figure 3.15,

we run the microbenchmark which reads (left) or updates (right) 10 rows with fixed percentage

of multisite transactions to 20%, while the number of cores active in the machine is increased

gradually. Results are shown for both the quad-socket and the (more parallel and variable)

octo-socket machine.

The shared-nothing configurations scale linearly, with CG (coarse-grained shared-nothing)

configuration being competitive with the best case across different machines and across

different levels of hardware parallelism. The configuration labeled SE (shared-everything)

does not scale linearly, particularly on the machine with 8 sockets. In the SE configuration,

there is no locality when accessing the buffer pool, locks, or latches. To verify the poor locality

of SE, we measured the QPI/IMC ratio, i.e. the ratio of the inter-socket traffic over memory

controller traffic using Intel’s PCM tool [66]. A higher QPI/IMC ratio means the system does

more inter-socket traffic while reading (i.e. processing) less data overall: it is less NUMA-

friendly. The QPI/IMC ratio for the experiment with read-only workload on octo-socket server

using all 80 cores is 1.73 for SE, 1.54 for CG, and 1.52 for FG. The FG and CG configurations still
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Figure 3.15: Performance of alternative configurations as the hardware parallelism increases.
Coarser-grained shared-nothing provides an adequate compromise between performance
and predictability.

have a relatively high ratio due to multisite transactions but, unlike SE, these consist of useful

work. When restricting all configurations to local transactions only, we observe a steady data

traffic of 100 Mb/s on the inter-socket links for FG and CG (similar to the values observed

when the system is idle), while SE exceeds 2000 Mb/s.

Clearly, to scale the SE configuration to a larger number of cores, data locality has to be

increased. Additionally, one of the main reasons for poor performance of SE configuration is

high contention on locks and latches. Using partitioned shared-everything designs with data-

oriented execution can significantly improve locality of accesses and remove or minimize the

overheads coming from locking and latching components in the system [118, 119]. We explore

this direction further in Chapter 4 and design ATraPos, a system that uses NUMA-friendly

data structures and data-oriented execution to minimize inter-socket synchronization in the

critical path of transaction execution.
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Chapter 3. OLTP on Hardware Islands

Figure 3.16: Performance of read-only (top) and update (bottom) workloads with skewed
accesses. As skew increases, shared-everything suffers from increased contention, while fine-
grained shared-nothing suffers from a highly-loaded instance that slows others. Island-sized
shared-nothing configuration cope better with a highly loaded instances, due to multiple
internal threads.

3.4.3 Tolerance to Skew

In many real workloads, skews on data and requests, as well as dynamic changes are the norm

rather than the exception. For example, many workloads seem to follow the popular 80-20

distribution rule, where the 80% of requests accesses only the 20% of the data. This subsection

describes experiments with workloads that exhibit skew.

The following microbenchmark reads or updates two rows chosen with skew over the whole

data range. We use Zipfian distribution, with different skew factors s, shown on the x-axis of

Figure 3.16. The figures show the throughput for varying percentages of multisite transactions.

We employ similar optimizations as described in Section 3.4.1.

Skew has a dramatic effect on the performance of the different configurations. For shared-

everything, heavily skewed workloads result in a significant performance drop due to in-

creased contention. This effect is apparent particularly in the update case. When requests

are not strongly skewed, shared-everything achieves fairly high performance in the update

microbenchmark, mainly due to optimized logging, which significantly improves the perfor-
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mance of short read-write transactions [72]. In coarser-grained deployments, the increased

load due to skewed accesses is naturally distributed among all worker threads in the affected

instance. With fine-grained instances, which have a single worker thread, the additional load

cannot be divided and the most loaded instance becomes a bottleneck. Furthermore, as the

skew increases to the point where all remote requests go to a single instance, the throughput

of other instances drops significantly as they cannot complete transactions involving the

overloaded instance.

3.4.4 Increasing Database Size
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Figure 3.17: Performance of the various configurations on workloads, as we gradually increase
the database size from almost cache-resident to I/O-resident.

Although main memory sizes in modern servers continue to grow, there are many work-

loads that are not main memory resident and rely on disk-resident data. To evaluate various

database configurations on growing dataset sizes, we gradually increase the number of rows

in the dataset from 240,000 to 120,000,000 (i.e., from 60 MB to 33 GB). Contrary to previous

experiments, we place the database on two hard disks configured as a RAID stripe. We use a

12 GB buffer pool, so that the smaller datasets completely fit in the buffer pool. In the shared-

nothing configurations, the buffer pool is proportionally partitioned among instances, e.g. in
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the 4ISL case each instance has 3 GB buffer pool. We run read and update microbenchmarks

with two rows accessed and 0% and 20% multisite transactions.

In Figure 3.17, we plot the performance of the read-only microbenchmark on the left-hand

side and the update microbenchmark on the right-hand side as the number of rows in the

database grows. For the smaller dataset, shared-nothing configurations exhibit very good

performance as a significant part of the dataset fits in last-level caches of the processor. Since

the instances do not span multiple sockets, there is no inter-socket traffic for cache coherence.

As data sizes increase, the performance of shared-nothing configurations decrease steadily,

since smaller portions of the data fit in the caches. Finally, when the dataset becomes larger

than the buffer pool, the performance drops sharply due to disk I/O. These effect are less

pronounced when the percentage of multisite transaction is higher, since the longer latency

data accesses are overlapped with the communication.

3.4.5 Summary

The size of a transaction and the number of instances in the deployment are the main factors

that determine the relative impact of 2PC overheads on the cost of a distributed transaction.

Island-sized shared-nothing configurations exhibit good performance in the presence of skew,

as they suffer less from increased contention and are more resistant to load imbalances. Finally,

relative performance of different configurations does not change as parallelism or data sizes

increase.

3.5 Standard Workloads
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Figure 3.18: Performance of the AccountUpdate transaction in the TPC-B benchmark for the
local only and standard-benchmark settings.

In this section we expand our analysis of the impact of hardware islands on transaction

processing systems with the characterization of the behavior of industry standard benchmarks,

46



3.5. Standard Workloads

TPC-B and TPC-C, and, in particular, their remote transactions. The main difference compared

to the microbenchmarks discussed in the previous sections lies in the relative distribution of

the work among different instances involved in the execution of a distributed transactions.

In the case of microbenchmarks, the work in the distributed transactions is split roughly

equally among the participating instances (as discussed in Section 3.2.2). Whenever a trans-

action involved accessing more than 2 rows, it was likely to involve more than 2 instances

in fine-grained shared-nothing configuration. On the other hand, distributed transactions

defined by the TPC-B and TPC-C specifications share the property that the local part of the

transaction contains many more operations compared to the remote one. Also, the number of

participating instance is two for all ����� ����	
������ and ����� �����
� and the vast

majority of ����� �������� transactions.

In the majority of microbenchmark experiments presented in Section 3.3 and Section 3.4, rows

were selected randomly from a single table. In contrast, in the TPC benchmarks, transactions

involve multiple tables, including the ones containing few rows. Furthermore, these transac-

tions typically update the hot rows. When the hot rows are involved in a distributed transaction,

they are locked until both phases of the 2PC protocol are completed which prevents any other

transaction from accessing them. We run benchmarks with only local transactions as well as

varying percentage of distributed transactions and analyze their behavior.

3.5.1 TPC-B

Figure 3.18 compares the throughput of different configurations when they run only local or

a mix of local and remote TPC-B transactions. We run the experiment on the quad socket

server and use the dataset with 24 branches equally partitioned among instances in the

shared-nothing configurations. In this experiment we compare shared-everything (1ISL) and

coarse (4ISL) and fine-grained shared-nothing (24ISL) configurations. Shared-everything

configuration benefits from the Aether logging optimizations and 24ISL is configured without

latching. We use unix domain sockets as the communication mechanism. The remote version

of the ����� ����	
������ transaction updates one row in the ������ table chosen ran-

domly from a remote branch. We use the mix that has 15% of the remote transactions as this

percentage is defined in the TPC-B specification.

����	
������ is a transaction that stresses the concurrency control and logging compo-

nents of the transaction processing system. Thus, it is not surprising that the partitioned

configurations have higher throughput for the local only transactions due to less synchroniza-

tion among threads in the same instance. However, their performance drops by 22% when we

introduce distributed transactions. Even though the distributed version of the AccountUpdate

transaction involves only two instances, and hence, does not have high communication and

bookkeeping overhead, it increases the time that the hot row in the ���
�� table is locked,

thus increasing contention.
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Figure 3.19: Performance of different configurations as the percentage of distributed transac-
tions increases for the TPC-B workload. Distributed transactions increase contention for hot
data causing the drop in performance for shared-nothing configurations.

3.5.2 Impact of Distributed Transactions on TPC-B

We further examine the impact of distributed transactions on the performance of TPC-B

for different configurations by running an experiment with varying percentage of remote

transactions in the workload. We use the same setting as in the experiment in Section 3.5.1,

but we gradually increase the percentage of remote transactions from 0% to 100% and plot the

throughput in Figure 3.19.

The shared-everything system is not affected by the remote transactions and its stable perfor-

mance benefits from optimized logging, similarly to the update version of the microbench-

mark. Also, we observe the trend of deteriorating performance of shared-nothing configu-

rations as we increase the percentage of distributed transactions. However, in contrast to

the update microbenchmarks, here both coarse-grained and fine-grained shared-nothing

configurations follow the same trend. This is due to the fact that the number of participating in-

stances in both cases is the same, thus, making the relative cost of remote to local transactions

constant.

3.5.3 TPC-C

In this experiment, we quantify the impact of remote transactions for TPC-C benchmark

by separately looking at the ������� and ��	
���� transactions. We use the quad socket

server and the dataset with 24 warehouses. For shared-nothing configurations, we partition

the data with one warehouse per core. We compare shared-everything (1ISL), and coarse

(4ISL) and fine-grained shared-nothing (24ISL) system configurations. Since both of these

transactions contain updates, we enable Aether logging optimization for the shared-everything

configuration and disable latching for the fine-grained shared-nothing configuration. We use

unix domain sockets as the communication mechanism. We compare the setting with only

local transaction and the mix of local and remote transactions using the percentages of remote
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Figure 3.20: Performance of different transactions in the TPC-C benchmark for their local only
and standard-benchmark settings. Distributed transactions are more expensive than their
local counterparts and they have higher impact on the finer-grained configurations.

transactions defined in the benchmark specification: 15% for the ������� transaction and

10% for the ��	
����.

Figure 3.20 (left) plots the throughput for different configurations of the ������� workload,

while Figure 3.20 (right) plots the throughput for the ��	
���� case. Similarly to the TPC-B

workload, shared-everything system is oblivious to the remote transactions, while the perfor-

mance of the shared-nothing configurations drops with distributed transactions. The drop is

higher for the ������� workload since it has higher percentage of distributed transactions.

Also, ������� workload is more sensitive to the distributed transactions as it updates one

row of the �������� table. On the other hand, ��	
���� transactions update one row in

the �������� table that contains 10 rows for each warehouse. In practice, this means that we

can have more concurrent transactions in the system for the ��	
���� workload (up to the

number of �������� rows) compared to the ������� one (up to the number of ��������

rows).

3.5.4 Impact of Distributed Transactions on TPC-C

Finally, we characterize the impact of distributed transactions on the ����� ������� work-

load as we gradually increase the percentage of distributed transactions in the workload. We

plot the throughput in Figure 3.21 and observe the sharp drops in the performance of shared-

nothing configurations as the contention on the hot rows increases with more distributed

transactions. At the same time, the performance of shared-everything configuration remains

stable.
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Figure 3.21: Performance of different configurations as the percentage of distributed transac-
tions increases for the TPC-C Payment transactions. Shared-everything configuration offer
robust performance in the presence of remote transactions which cause throughput drops for
partitioned systems.

3.5.5 Summary

The impact of distributed transaction overheads on TPC-B and TPC-C workloads is lower than

for microbenchmark workloads due to fewer participants in the execution of a distributed

transaction. When varying the percentage of distributed transactions, we observe trends

consistent with the microbenchmarks.

3.6 Main-memory optimized system
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Figure 3.22: Performance of different deployments of Silo as the number of multisite transac-
tions increases. It shows the same trends as the deployments based on Shore-MT.

In this section we quantify the impact of hardware islands on the performance of different

deployments of a modern main-memory optimized system. We use Silo [157] which is a

multicore optimized system that utilizes cache-conscious multiversioned Mass-tree design

[98] as the data storage and employs optimistic concurrency control protocol that scales well

on multicores.
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We use the same distributed coordination layer as for the Shore-MT experiments. Since Silo

does not support distributed transaction out of the box, we split its commit processing into

a pre-commit and a post-commit phase. The pre-commit phase, which performs all the

validation checks and locks rows that have been changed in a transaction, is executed at the

end of the first phase of the 2PC protocol, while the post-commit phase, which applies the

changes on the Mass-tree, is executed in the second phase of 2PC. As Silo is a main-memory

optimized system that achieves very high throughput, we only run experiments with shared

memory communication channels tuned with appropriately sized buffers. We implement the

same microbenchmark described in Section 3.2 and use the same transaction execution logic

as in the Shore-MT experiments. We run all experiments on a quad socket machine and use a

dataset with 240 000 rows. As in the previous experiments, we compare shared-everything

(1ISL), and coarse (4ISL) and fine-grained shared-nothing (24ISL) deployment configurations.

3.6.1 Read-only Transactions

Figure 3.22 plots the results of the experiment with increasing percentage of multisite transac-

tions in the workload for the microbenchmark that reads 10 rows. We observe that the smaller

instances have higher performance for local-only transactions as data is accessed by fewer

cores and hence, the accessed have more locality. Even though Silo’s transaction execution

protocol does not have any global synchronization points, it does not use any partitioning and

the data is shared by all the threads in the instance. As the percentage of multisite transactions

in the workload increases, throughput of partitioned configurations decreases sharply since

distributed transactions are more expensive.
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Figure 3.23: Time breakdown for a transaction that retrieves 10 rows in 4ISL deployment.
Communication costs determine the overall cost of a transaction.

In order to characterize the impact of communication, we profile the execution of a 4ISL

deployment with different percentages of multisite transactions for the microbenchmark

that reads 10 rows. Figure 3.23 breaks down the time needed to execute one transaction into
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transaction execution, transaction management and communication. As we increase the

percentage of multisite transactions, the time required for communication rises while the

other two components remain the same. This trend shows that the communication costs are

the dominant factor in the cost of the distributed transactions.
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Figure 3.24: Cost of local and multisite transactions in the read-only microbenchmark. The
cost of multisite transactions rises until all instances participate in every transaction.

Next, we quantify the impact of transaction size on the cost of local and multisite transactions

by increasing the number of rows read, using the same methodology as in Section 3.4.1. The

left hand side of Figure 3.24 shows the time it takes to execute a single local transaction. All

deployments show linear increases in costs as the number of rows accessed per transactions

increases with smaller instances having lower costs. The relative performance trend for the

multisite case, presented on the right hand side of Figure 3.24, is completely opposite. Smaller

configurations have higher costs that increase with larger number of rows accessed. The

increasing trend flattens after all instances in the configuration become involved in every

transaction.
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Figure 3.25: Performance of different deployments of Silo as the percentage of multisite
transactions increases. The trend is the same as with read-only transaction, however, update
transactions are much more expensive.
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3.6.2 Update Transactions

Finally, we investigate the behavior of the update distributed transactions as we increase the

percentage of multisite transactions. In contrast to the read-only case, in this experiment

we use the microbenchmark that updates 2 rows and plot the throughput in Figure 3.25. We

use fewer rows because heavier transactions increase contention even further resulting in a

very low throughput. Figure 3.25 shows the same trends as the update microbenchmarks that

runs on top of Shore-MT, however, the performance degradation is much more severe. This

is due to much bigger impact of the communication delays which increase contention and

cause many aborts. In Silo, when distributed update transaction successfully finishes the first

phase of the 2PC protocol, it locks the affected rows until it completes the second phase. Any

transaction attempting to access the locked rows will be aborted.

3.6.3 Summary

Overall, different distributed deployments of Silo, a main-memory optimized system, exhibit

the same behavior as Shore-MT, in line with the model described in Section 3.1, even though

the designs of these two systems are very different. Furthermore, performance trends in the

experiments with increasing percentage of multisite transactions in Silo are even more clear as

it is a much leaner system with fewer components that interact with each other. For example,

when we switched to shared memory communication mechanism for Shore-MT prototype,

the communication overhead has diminished significantly. On the other hand, even shared

memory communication adds significant overhead to the read-only distributed transactions

when many instances need to be involved in a transaction. Additionally, since Silo relies on

short critical sections to achieve high performance, it is very sensitive to the increase in their

effective length caused by the distributed update transactions.

3.7 Summary and discussion

Modern multisocket multicore servers are characterized by abundant hardware parallelism

and variable communication latencies. This non-uniformity has an important impact on

OLTP databases and neither shared-everything configurations, nor shared-nothing designs,

are an optimal choice for every class of OLTP workloads on modern hardware. In fact, our

experiments show that no single optimal configuration exists: the ideal configuration is depen-

dent on the hardware topology and workload, but the performance and variability between

alternative configurations can be very significant, encouraging a careful choice. There is,

however, a common observation across all experiments: the topology of modern servers fa-

vors a configuration we call Islands, which groups together cores that communicate quicker,

minimizing access latencies and variability.

We show that OLTP Islands provide robust performance under a variety of scenarios. Is-

lands, being hardware topology-aware, provide some of the performance gains of shared-
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nothing databases while being more robust to changes in the workload than shared-nothing.

Their performance under heavy skews and multisite transactions also suffers, but overall,

Islands are robust under the presence of moderate skews and multisite transactions.

As for previous approaches, our experiments corroborate previous results in that shared-

everything OLTP provides stable but non-optimal performance. Shared-everything

databases are robust to skew and/or updates in their workloads. However, their per-

formance is not optimal and in many cases, significantly worse than the ideal configuration.

In addition, shared-everything OLTP is likely to suffer more on future hardware. As the

hardware parallelism continues to increase, it becomes increasingly important to make

shared-everything databases NUMA-aware. Also, extreme shared-nothing OLTP is fast but

sensitive to the workload. Extreme shared-nothing databases, as advocated by systems

such as H-Store, provide nearly optimal performance if the workload is perfectly partition-

able. Shared-nothing databases, however, are sensitive to skew and multisite transactions,

particularly in the presence of updates.

The percentage of distributed transactions in the workload is one of the main factors that

determine the performance of any OLTP deployment. It directly depends on the partitioning

scheme of data into logical sites that determine which transactions are going to be multisite.

Depending on the number of multisite transactions in the workload, different hardware

topologies favor different deployments. For perfectly partitionable workloads, such as single

row reads or updates that are very common in web applications, fine grained configurations

are an ideal choice since they incur no synchronization overheads. Many common workloads

such as TPC-B and TPC-C we analyzed in Section 3.5 have few multisite transactions and favor

partitioned deployments whose optimal granularity depends on the specifics of the workload.

In this case, socket-sized islands are a good choice and are commonly used in practice to

improve scalability of IBM DB2 deployments [99]. Finally, many complex workloads, including

TPC-E benchmark [155], are not easily partitionable as they contain multiple tree schemas and

transactions that access data from many different tables [152]. In this case, even a very good

partitioning scheme will generate many multisite transactions [32, 122]. We further discuss

the impact of good partitioning scheme on throughput in Chapter 4.
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In Chapter 3, we have demonstrated that different workloads favor different deployment con-

figurations. Changes in the workload characteristics cause optimal configuration to change,

which requires costly repartitioning of data across many physically partitioned instances.

However, instead of paying the price of physical repartitioning, we can incorporate adaptivity

inside a single transaction processing system. In this chapter, we present ATraPos, a scalable

shared-everything system that minimizes the impact of inter-socket communication in the

critical path of transaction execution (i.e., the sequence of actions that determine the duration

of the transaction). ATraPos relies on precise data partitioning and placement to maximize

locality of data accesses and on adaptive repartitioning to maintain data locality even when

the workload changes.

ATraPos first partitions the data logically, by allowing only specific threads to access each

data item, and then physically, by partitioning tables and indices with respect to the logical

parts. It puts emphasis on the data locality by keeping the system state in hardware-aware

data structures. These data structures are specially designed to require only socket-local data

accesses in the critical path. ATraPos ensures stable performance by choosing the appropriate

partitioning scheme, which maximizes resource utilization and balances the load. The choice

is based on a cost model that takes into account a) the static data dependencies, b) the

dynamic workload information, and c) the underlying hardware topology. Finally, ATraPos

uses a lightweight monitoring mechanism to continuously track the transaction behavior.

When it detects that the workload has changed, it adjusts the data partitioning and partition

placement to guarantee high and predictable performance.

In this chapter, we first present the different design trade-offs for scalable transaction process-

ing systems on multisockets, in Section 4.1. That analysis motivates our design of hardware-

aware system components that we show to scale linearly for perfectly partitionable workloads

in Section 4.2. We present our hardware and workload-aware partitioning and placement

scheme in Section 4.3 and the adaptation mechanism in Section 4.4. Section 4.5 details an

experimental evaluation of different aspects of the ATraPos prototype. Finally, we summarize

the findings and explore directions of future work in Section 4.6.
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4.1 Design Trade-offs for OLTP on Multisocket Multicores

In this section, we analyze the behavior of various system designs when running transactional

workloads on multisocket multicore servers. We compare centralized shared-everything,

shared-nothing, and physiologically partitioned shared-everything designs on workloads that

are perfectly partitionable and less amenable to partitioning. We show that none of these

designs can fully exploit the multisockets due to data sharing across sockets.

We run the experiments presented in this section on the octo-socket server described in Table

3.1. We use the Shore-MT storage manager [71] (introduced in Section 3.2.1) and Intel’s VTune

Analyzer XE [64] for profiling.

4.1.1 Design Options

Centralized shared-everything. We evaluate the traditional shared-everything configuration

by running Shore-MT as a single process using on available processor resources. In this case,

all data structures accessed by transaction execution threads are centralized, e.g., the lock

manager, the log, and the buffer pool. We enable the optimizations that are beneficial to the

workloads we run, including speculative lock inheritance [70] and optimized logging using

Aether [72].

Shared-nothing. We benchmark two shared-nothing configurations by running multiple

instances of Shore-MT. All instances communicate using the thin distributed transaction

execution layer described in Section 3.2.1. Specifically, we simulate the fine-grained shared-

nothing architectures, by running one instance of Shore-MT per processor core. Each record

and page are touched by a single thread, while locking and latching are disabled for read-only

workloads. For workloads that contain updates, we still need to use locking. We also test a

Island shared-nothing deployment configuration, having one instance per processor socket,

where locking and latching are enabled.

PLP. One of the main problems of centralized shared-everything systems on multicores is

the contention in the lock manager. This problem can be eliminated by using physiological

partitioning (PLP) [118, 119]. PLP first logically partitions the data and assigns each partition

to a separate thread. Transactions are decomposed into small actions, which are routed to the

relevant threads. Each thread contains a local lock table that eliminates the need to access

the centralized lock manager for the majority of locks that each transaction needs to acquire.

Eliminating the lock manager bottleneck exposes the bottleneck of latching on database pages.

PLP removes this bottleneck by using multi-rooted B-trees and seamlessly changing the record

insert operation. Multi-rooted B-trees partition the original B-tree by having one root per each

logical partition. All data pages are pointed by a single leaf page. Since subtree accesses are

thread-local, both B-tree and data page accesses can be latch-free. PLP scales very well on

single processor systems [119].
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4.1.2 Perfectly Partitionable Workloads

We start with a simple perfectly partitionable workload where each transaction reads one

row from a table that contains 10 integer columns. Different transactions in this workload

have no dependencies or conflicts, so the performance of a scalable system should increase

linearly with more resources. We choose this workload because it clearly illustrates structural

problems of shared-everything designs on multisockets. We run the benchmark for the

shared-nothing and island shared-nothing configurations, the traditional centralized shared-

everything configuration, and PLP. We use a dataset of 800K rows, equally divided between the

participating instances, for various numbers of processors (1, 2, 4, and 8 processor sockets).
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Figure 4.1: Instructions retired per cycle.

In Figure 4.1, we evaluate how well the above configurations use the available processor

resources by measuring the number of retired instructions per cycle (IPC). Although we

use a processor that can achieve up to 4 IPC, OLTP workloads can barely exceed 1. Low

IPC is a general characteristic of OLTP [140, 152] due to the large instruction footprints and

unpredictable data accesses.
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Figure 4.2: Throughput of the shared-nothing, centralized, and PLP architectures.
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The shared-nothing architectures have constant IPC for all configurations. As we see in Figure

4.2, which shows the throughput of the four configurations as we increase the number of

sockets, they scale linearly because the requests are completely independent from each other

and instances do not need to exchange messages to execute them.

When we examine the traditional centralized architecture, we observe a slight decrease in IPC

when we go from 1 to 2 sockets followed by an increase when we go to 4 and 8 sockets, where

IPC exceeds 1.2. However, in these cases, high IPC is due to high cache hit rates while waiting

to acquire contended locks. The time wasted on waiting is the reason why the throughput

decreases with more sockets in Figure 4.2. This effect is more pronounced as the number of

threads in the system increases.

When we run the perfectly partitionable microbenchmark using PLP on more than one socket,

we observe a performance degradation similar to the centralized configuration. However, the

trends on the IPC graph are completely different. The striped bars in Figure 4.1 indicate large

drops in IPC due to accesses to centralized data structures that are implemented using atomic

compare-and-swap (CAS) instructions. While CAS instructions are executed efficiently on the

same socket, they become very expensive across sockets, as they require accessing cache lines

on remote processors.

Implication: Accessing any centralized data structure in the critical path is a potential bottle-

neck on multisockets.

4.1.3 Workloads That Are Less Amenable to Partitioning
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Figure 4.3: Throughput of different deployment configurations as percentage of multisite
transactions increases.

While the shared-nothing architectures exhibit great performance on perfectly partitionable

workloads, they suffer when the workload is not as partitionable. We illustrate this problem

with a microbenchmark that updates 10 rows (see Section 3.2.2 for the detailed description).
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Table 4.1: Throughput (in transactions per second) for various memory allocation policies.

Policy Socket1 Socket2 Socket3 Socket4 Socket5 Socket6 Socket7 Socket8
Local 6992 7028 6913 7075 6991 7029 7016 7036

Central 6591 6643 6774 6645 6578 6839 6816 7018
Remote 6521 6774 6532 6775 6752 6588 6773 6575

We run these transactions on the shared-nothing configuration, the Island shared-nothing

configuration, and the traditional shared-everything configuration. In all cases, we use a

dataset of 800K rows, equally divided between the participating instances.

In Figure 4.3, we plot the throughput when we vary the percentage of multi-site transactions

from 0 to 100. We use shared memory communication channels, which are significantly

faster than other communication mechanisms that involve the operating system, such as

UNIX domain sockets and named pipes. However, we still observe a significant drop in the

performance of partitioned systems as the fraction of multisite transactions increases. The

reason is that they execute multisite transactions as distributed transactions.

0

300

600

900

1200

1500

1800

0 50 100

Ti
m

e 
pe

r t
ra

ns
ac

tio
n 

(μ
s)

% multisite transactions

xct management
xct execution
communication
locking
logging

Figure 4.4: Time breakdown for Island shared-nothing configuration.

In Figure 4.4, we analyze the overheads of distributed update transactions by breaking down

the execution time to different system components as we vary the percentage of multisite

transactions for the Island shared-nothing configuration. The breakdowns are similar for the

shared-nothing configuration. As we increase the percentage of multisite transactions, we see

a significant increase in time spent in all components, especially in logging and locking.

Implication: Even with fast interprocess communication, the overhead of distributed update

transactions limits the benefits of shared-nothing designs to perfectly partitionable or read-

only workloads.
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4.1.4 Accessing Remote Memory

One significant advantage of shared-nothing configurations, where instances run within a

single processor socket, is the ability to achieve perfect NUMA locality by allocating all memory

in the local NUMA node. In this section, we quantify the impact of memory allocation on

the performance. We run one Shore-MT instance per socket and change memory allocation

policy using the Linux utility numactl [96]. We test the system in 3 different settings: 1) each

instance allocates memory in the local NUMA node, 2) all instances allocate memory in one

NUMA node, and 3) every instance allocates memory in a different remote NUMA node.

We use a microbenchmark that reads 100 rows chosen randomly from a 1 million row dataset

(1.5GB), which is enough to fill the memory of a large NUMA node in our server (32GB). We

choose data randomly to 1) minimize the chance of a data hit in the last level cache and

2) limit the effectiveness of data prefetchers. We summarize the performance in terms of

the throughput in Table 4.1. When memory is allocated locally (Local), throughput of each

instance is within 1% of the average for all instances. When we allocate all memory on a

single node (Central), for example on Node 8, instance 8 achieves throughput similar to

all local cases, while other instances lose 2.5-6.2% of the performance. Finally, when every

instance accesses remote memory (Remote), the performance is 3.3-7% worse compared to

the local case. Experiments with transactions that read fewer rows show smaller differences in

throughput, while the ones that read more rows show similar performance drops.

To explore the causes of these performance drops for different configurations, we use the

Intel’s Performance Counter Monitoring tool [66] to examine the interconnect utilization. We

measure that the ratio of interconnect (QPI) to memory controller (IMC) data traffic is 0.01

for the local case, in contrast to 1.36 for the central case, and 1.49 for the remote case. Total

utilization of all QPI links for accessing memory and maintaining cache coherence increases

from 13Gb/s for local node allocation to 21 Gb/s and 22 Gb/s, respectively. Even in the case

where all instances allocate memory on a single node, QPI links are lightly utilized with the

most used link being utilized at 14%. The behavior of analytical queries is completely opposite:

with memory bandwidth being the critical resource [127].

Implication: In contrast to the performance bottlenecks of accessing the shared data struc-

tures that are often found in remote caches, the performance impact of accessing remote main

memory is limited to less than 10% and is not critical.

4.2 Hardware-aware System Design

As we show in the previous section, the state-of-the-art techniques that achieve scalability on

multicores are not sufficient for multisockets. This is caused by the bottleneck of accessing the

centralized data structures in the critical path, e.g., the list of active transactions and various

mutexes. Sharing data among threads that run on different sockets is expensive due to the cost

of cache coherence and high latency of accesses to cache lines on remote sockets. ATraPos
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solves this problem by partitioning these structures among sockets to increase the locality of

accesses. This section details our general approach to hardware-aware data structures.

Critical path. Most centralized data structures in a typical storage manager are used for main-

taining the global system state and are protected by read/write locks. Typically a transaction

acquires a lock in read mode for a short period of time in order to change state, e.g, a trans-

action acquires volume read lock during the initialization phase. This is a fairly inexpensive

operation on a single chip, but becomes increasingly expensive when we need to update data

that is located on a remote chip or in memory. These locks are never acquired in write mode

in the critical path of transaction execution. They are only used in write mode by threads

performing background tasks, e.g., checkpointing, to ensure that no transaction changes state

during this operation. Hence, we use the insight that the thread executing a transaction does

not require a global view of the system state in the critical path. Instead, it accesses the local

view only taking advantage of the locality.

Shared locks. We reduce the cost of acquiring read locks by replacing centralized read/write

locks with partitioned NUMA-aware ones. In this design, we have one read/write lock for each

processor socket. This way, acquiring a read lock entails accessing data cached on the local

socket or stored in the local memory node. Additionally, there is less contention as the lock is

shared only by the threads running on a specific processor socket. Acquiring write locks is

a significantly less frequent operation and does not occur in the critical path. For example,

a write lock on the checkpoint mutex is required only when the checkpointing procedure

is running to ensure that no transaction has changed state (committed or aborted). In the

centralized case, acquisition requires grabbing one write lock, while in the partitioned case it

requires grabbing a write lock on every socket.

List of transactions. When a transaction starts, it is added to the list of active transactions

and it stays there until it is completed. In Shore-MT, this structure is a lock-free list that

requires a transaction to do one compare-and-swap on the list head to add itself to the list.

When the system is running over many sockets, and especially when it is executing short-lived

transactions, this operation becomes very expensive. ATraPos greatly reduces this cost by

using a separate list of transactions for each socket, which makes the process of adding and

removing elements from the list socket-local. In this way, accessing the list of transactions

in the critical path never requires inter-socket memory access. Background operations that

need to traverse the whole list of active transactions, such as checkpointing and page cleaning,

simply need to go through all local lists. Furthermore, these accesses can be parallelized by

using multiple threads that perform background operations on a single socket or a group of

sockets.

Thread binding. In ATraPos we exploit information about the underlying hardware to further

improve scalability and performance. On top of data partitioning to ensure locality, we bind

threads to specific processor cores and cache information about their socket. This ensures that

each thread always accesses the same partition of any partitioned data structure to guarantee
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correctness. For example, each transaction is removed from the list of active transactions by

the same thread that added it, which ensures that both operations are performed on the same

partition. Each partition is always local to the socket where the thread is running on.
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Figure 4.5: Throughput of a perfectly partitionable workload.

Proof of concept. In Figure 4.5, we repeat the experiment of Figure 4.2 and include ATraPos.

Since we remove expensive accesses to the centralized data structures from the critical path,

ATraPos can scale over multiple sockets and make full use of the fact that the workload is

perfectly partitionable. In this case, we use the naïve partitioning scheme where a table is range

partitioned across cores with one partition per core. ATraPos matches the performance of the

Island shared-nothing configuration that has perfect locality because it runs one instance per

socket. Both of these architectures scale similarly to the shared-nothing architecture.

4.3 Workload-aware Partitioning and Placement

Hardware-aware data structure enable scalability for perfectly partitionable workloads. In that

case, ATraPos scales linearly since each worker thread operates independently on its own data

partition. For more complex workloads, however, we need to partition and place the data on

cores in a way that reduces the inter-socket data exchange as much as possible.

In this section, we first discuss the intuition behind our partitioning scheme. Then, we present

the cost model and the search strategy that ATraPos uses to decide the appropriate partitioning

and placement scheme.

4.3.1 Factors Influencing Transaction Processing

There are a number of factors that we have to consider when choosing a partitioning scheme

for an OLTP workload. Typically, the database schema is fixed and known a priori. In addition,

most or all transactions fall into one of the predefined transaction classes expressed as param-

eterized stored procedures [144]. Furthermore, the input parameters of a transaction point
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to all data items a transaction is going to access (with the exception of the items accessed

through the secondary indices). ATraPos exploits all this knowledge about the workload and

the underlying hardware topology to efficiently choose a good partitioning scheme.

The goal of ATraPos is twofold: a) to maximize the CPU utilization and b) to minimize the

transaction synchronization cost. We express the CPU utilization as the sum of work done

by its individual cores. We model the synchronization cost of a transaction based on the

placement of partitions that need to communicate at each synchronization point. We present

the cost model in more detail in Section 4.3.2.

Static workload information. We use database schema information, such as foreign keys, to

extract the static data dependencies. We automatically infer the following static information

about transaction classes from the transaction code: a) the number of actions that access each

table, b) the dependencies between pairs of actions (via foreign keys of the tuples they access),

and c) the number of synchronization points. A synchronization point in the transaction flow

graph is the point where two or more actions need to exchange data. Its cost depends on which

sockets the actions are running on and on the size of data they need to exchange. The syn-

chronization cost of a transaction is the sum of the costs of all the individual synchronization

points it includes.

Dynamic workload information. We track the dynamic aspect of a transactional workload by

tracking the amount of work that is done by each partition and which partitions are involved

in each synchronization point. This information allows us to estimate the core utilization

and synchronization costs for any partitioning and placement scheme and to choose the best

scheme for the current workload.

Hardware topology. The static and dynamic workload information already provides valuable

pointers for deciding a good partitioning scheme. Additionally, ATraPos takes into considera-

tion the underlying non-uniform hardware topology to specialize the partitioning scheme for

each machine. This information can also be dynamic; as in the case that the system is running

on a virtual machine whose available computing resources change over time.

Probe A Probe B

Figure 4.6: Simple transaction flow example.

Simple transaction example. The following example illustrates the impact of the various

factors in our partitioning scheme. We use two tables, A and B, and the following transaction

whose input parameters are ���� and ����:
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������ � ��	
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We illustrate the execution plan of this transaction in Figure 4.6. Figure 4.7 shows the through-

put on various configurations. We use the centralized shared-everything and the PLP designs

as baselines. We compare them against the naïve partitioning scheme introduced in Section

4.2 and the ATraPos model using the criteria discussed above.
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Figure 4.7: Throughput of a simple transaction with varying partitioning and placement
strategies.

The naïve partitioning scheme (HW-aware) creates one partition of each table per processor

core. As both tables have the same number of rows and we use range partitioning, this scheme

achieves perfect locality for this simple workload. The hardware-awareness of the underlying

storage manager produces 1.7-2x better performance compared to the baseline configurations.

However, it suffers from oversaturation as in every core there are two partitions that contend

for resources. To eliminate oversaturation, we place only one partition per core. In this case,

we create 40 partitions for each table and compare two placement strategies: 1) the partitions

are placed in a hardware-oblivious manner (Workload-aware) and 2) the partitions are placed

in a workload and hardware-aware way (ATraPos). By removing oversaturation, we achieve

2.3x better performance even though the partitions of tables A and B are spread over 4 sockets

each. However, this placement incurs inter-socket synchronization for every transaction.

Therefore by placing dependent partitions on the same socket, the performance improves

by 10%. Overall, for this workload we can get over 4x performance improvement by using

hardware and workload-aware partitioning and placement.
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Figure 4.8: Transaction flow graph for the TPC-C NewOrder transaction.

Complex transaction example. In this example, we briefly illustrate a more complex scenario,

i.e., the �������� transaction in the TPC-C benchmark and explain the challenges in choosing

a good partitioning and placement scheme. This transaction models the ordering for 5 to 15

items from one warehouse and Figure 4.8 depicts its execution plan.

The �������� transaction accesses 8 tables, and has fixed and variable parts. Both of these

parts contain read, insert, and update operations, denoted as �, �, and 	, respectively. The

fixed part accesses one tuple each from 5 different tables, while the variable part accesses one

tuple per ordered item from 3 different tables. Furthermore, in our transaction flow graph, we

have four synchronization points that all, except for the second, involve a variable number

of partitions. The number of partitions that need to synchronize depends on the number of

items in the order. Regarding the partitioning decision, we have to assign more CPU cores

to tables that are accessed more times. Finally, regarding the partition placement policy, we

should place the partitions that are involved in the same synchronization point on cores that

belong to the same socket to reduce the synchronization overhead.

Conclusions from examples. From the previous two examples, we can conclude that using

the naïve partitioning scheme is not enough; both workload and hardware-awareness of the

partitioning mechanism are important for achieving high performance. Our system uses

the data-oriented transaction execution model [118] where each worker thread operates on

a single partition of a specific table. Using well-known partitioning schemes for TATP and
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TPC-C workloads (which are practically identical to the naïve partitioning in our system)

causes severe overloading.

4.3.2 Cost Model

ATraPos uses a partitioning and placement scheme that achieves two goals: maximal resource

utilization and minimal transaction synchronization overhead. One of our main metrics is

balanced resource utilization. In the case of multicore systems, we define balanced resource

utilization as the ability to avoid overloading any particular core. If some of the cores are

100% utilized, they cannot process more requests. By balancing the load, we aim to leave the

same amount of free resources on each core so that they can process proportionally more

requests and the system can achieve higher throughput. Our other metric is the transaction

synchronization overhead. We assess the quality of a placement scheme according to its ability

to reduce the inter-socket communication costs; i.e., the smaller these costs are, the better the

placement scheme is.

We express the resource utilization metric RU for the workload trace W and the partitioning

and placement scheme S as:

RU (S,W ) =∑

c

∣∣RU (c)−RUav g
∣∣

where RU (c) is the utilization of a particular core c and

RUav g =
∑

c RU (c)

N

is the average utilization for all N cores. We compute the utilization of one core c as:

RU (c) = ∑

p∈Pc

∑

a∈A(p)
C (a)

where Pc is the set of partitions that are placed on core c, A(p) is the set of all actions that use

partition p, and C (a) is the time we need to execute action a.

We compute the transaction synchronization overhead T S(S,W ) for the workload trace W

and the partitioning and placement scheme S as

T S(S,W ) = ∑

T∈W
Sync(T )

where Sync(T ) is the synchronization cost of a single transaction T . We express this cost with

the following formula:

Sync(T ) = ∑

s∈S(T )
Cost (s)
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where Cost(s) represents the synchronization cost for a particular synchronization point s.

We express cost Cost (s) of the synchronization point s as:

Cost (s) = (nsocket (s)−1)∗Dat a(s)

where nsocket (s) is the number of unique sockets that actions in s run on and Dat a(s) is the

cost of the data exchange operation in this synchronization point. The synchronization cost

of two actions that are running on the same socket is zero, while when they are on different

sockets it can be a considerable cost depending on their distance. The data exchange cost is

expressed as:

Dat a(s) = Di st ance(s)∗Si ze(s)

where Di st ance(s) is the average communication cost between the participating sockets and

Si ze(s) is the size of data that has to be exchanged.

Algorithm 1 Choose Partitioning

1: // Greedily choose initial partitioning S
2: repeat
3: Good ⇐ tr ue
4: for all underutilized core c do
5: Sc ⇐ move a sub-partition to c
6: if RU (Sc ,W ) < RU (S,W ) then
7: S ⇐ Sc

8: Good ⇐ f al se
9: break

10: until Good
11: Spar t ⇐ S

4.3.3 Search Strategy

The goal of the ATraPos partitioning and placement mechanism is to be able to quickly find

a good solution that will maximize the throughput of the system for the current workload.

To that end, we use a two step exhaustive search strategy that first chooses the partitioning

scheme and then decides a good partition placement.

In the first step, we use information about the current load for sub-partitions of every existing

partition to choose a new partitioning scheme. As shown in Algorithm 1, we group sub-

partitions into new partitions that balance the resource utilization according to our cost

model. We initially assign one new partition per core in a greedy fashion: we first estimate

the target average utilization and keep adding sub-partitions until we exceed that load. Then,

move to the next core. Next, we iteratively try to improve the assignment by choosing a new

partition placed on a core with the highest under-utilization, moving a sub-partition of the

same table to that partition, and recomputing the utilization metric. If an under-utilized core

contains the only partition of a table, we place a sub-partition of another table on that core to
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improve overall utilization. If the global utilization balance improves, we use this solution as

the current best case and restart the search. We conclude the search when we cannot improve

the overall utilization of the scheme by moving sub-partitions to under-utilized cores.

Algorithm 2 Choose Placement

1: S ⇐ Spar t

2: repeat
3: Good ⇐ tr ue
4: for all s such that C (s) > 0 do
5: Ss ⇐ switch partitions to minimize C (s)
6: if T S(Ss ,W ) < T S(S,W ) then
7: S ⇐ Ss

8: Good ⇐ f al se
9: break

10: until Good
11: Sopt ⇐ S

After finding the partitioning that balances the resource utilization, we choose the place-

ment that aims to reduce the synchronization overhead using Algorithm 2. We start from a

placement that evenly distributes partitions of every table to different sockets. We iteratively

examine various alternatives that move the partitions involved in a costly synchronization

point to the same socket by switching them with other partitions. If the switch lowers the

global synchronization cost, we keep the placement as the new best and restart the search. We

reach the solution when we can no longer improve the placement.

4.4 Adaptive Dynamic OLTP Design

In this section we illustrate how we leverage the cost model described in Section 4.3.2 to adapt

to any changes in the workload properties or hardware topology. While the hardware topology

and the static workload characteristics are inferred beforehand, the dynamic properties are

measure at runtime. Our goal is to trace all the required information we use in our cost model

in a lightweight manner.

Monitoring overhead. We minimize the monitoring overhead by storing the traces in thread-

local data structures and aggregating system-wide traces periodically. In this way, we do not

add unnecessary inter-socket accesses in the critical path. The global traces are collected

by a special monitoring thread that is also in charge of deciding the best partitioning and

placement scheme for the captured traces. To minimize the storage overhead, we discard the

traces after each computation.

Monitoring data structures. Since both the number of tuples in a table and the number of

transactions that arrive in a time period vary greatly across different workloads, the space

overhead of the tracing structure should not depend on the dynamic characteristics of the

workload. Hence, we choose to have fixed-sized tracing structures tied to the number of

68



4.4. Adaptive Dynamic OLTP Design

elements in a partition. We use two thread-local arrays per partition: a) one that stores the

cost of all actions executed by a specific sub-partition, and b) one that keeps the number of

synchronization points executed for each local sub-partition. We initialize arrays based on

the number of sub-partitions upon a new partition creation. In our experiments we use 10

sub-partitions per partition as it offers a good trade-off between the size of the arrays and

the number of repartitioning operations needed to adapt to even the most drastic changes in

the workload. Using more sub-partitions would increase precision at the cost of quadratic

space increase required for keeping synchronization information. It will also increase the

time it takes to evaluate the cost model, however, as this is done in a separate thread, it does

not impose overheads on the normal processing. Fewer sub-partitions reduces overheads,

however, it might require an additional round of repartitioning to adapt to extreme skew, e.g.,

when 50% of the load is targeting a single sub-partition.

Initialize
naive scheme

Monitor the 
workload

Evaluate cost model

Repartition

Figure 4.9: Adaptivity mechanism in ATraPos.

Detecting changes. ATraPos uses the lightweight monitoring mechanism to be able to adapt

to any change in the workload. The workflow is illustrated in Figure 4.9. When the system

initializes, it has no information about the dynamic aspects of the workload so it sets up the

partitions using the naïve partitioning scheme described in Section 4.2. ATraPos continuously

monitors the workload using the array-based approach described above. It periodically aggre-

gates the trace information using the monitoring thread and decides the optimal partitioning

and placement scheme according to the cost model. Since changes in the workload may hap-

pen during different time intervals, ATraPos uses an adaptive approach where it tunes the time

interval length based on the frequency of the workload fluctuations. When the workload is

stable for a long time it increases the intervals, while upon having frequent workload changes

it shortens them.
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ATraPos starts from a 1 second interval and monitors the throughput. If the throughput

is within 10% of the average of the previous 5 measurements it doubles the monitoring

interval. After each monitoring interval, it checks if the throughput difference has exceeded

the threshold; if it has, it evaluates the model, otherwise it increases the monitoring interval. If

the result of the evaluation is the decision to repartition, ATraPos resets the monitoring interval

to 1 second. Since repartitioning in ATraPos is a lightweight operation, it makes a decision

to repartition whenever the optimal partitioning and placement scheme for the observed

traces differs from the current scheme. We prevent needless repartitionings for very dynamic

workloads by evaluating the cost model only if the workload patterns are stable.

Repartitioning. One of the design goals of ATraPos is to quickly adapt to any change. To that

end, when we decide on the new partitioning and placement scheme, we generate a set of

repartitioning actions and pause the execution of regular actions while we execute them. We

do not interleave the execution of repartitioning and regular actions because interleaving

different types of actions causes dependencies between actions that add unpredictable delays.

A repartitioning action can either be a split or a merge, and it modifies both the logical and

physical representation of the data. The split action divides an existing partition into two new

partitions at a specific key, while the merge action creates a new partition by merging two

existing partitions. These operations modify the physical multi-rooted B-trees, the logical

partition-local structures such as action queues and lock tables, and the global partition-

ing information. The multi-rooted B-tree structure makes the repartitioning actions very

lightweight as they require only one traversal of the tree structure and modification of a couple

of nodes on each level of the tree. After we complete all the repartitioning actions, we empty

the partition-local monitoring data structures and restart the monitoring operation.

The downside of this approach is the fact that the regular actions are completely stopped

during repartitioning which causes noticeable drop in the throughput. Also, since we only

modify the tree structure during repartitioning and do not access majority of the data in

the new partitions, the first few data accesses to the new partitions would incur additional

latency as data is moved to the caches local to the new partition. An alternative approach to

repartitioning that would incur less disruption to the normal processing involves performing

repartitioning actions interleaved with regular actions one at a time to minimize the negative

impact on normal processing. Exploring interleaved schedules of repartitioning and regular

actions is an interesting direction for future work.

4.5 Evaluation

In this section, we present the detailed experimental evaluation of the system using both

microbenchmarks and standard benchmarks such as TPC-C and TATP. We designed and

implemented ATraPos on top of Shore-MT [71]. We show that ATraPos exploits hardware

resources better than the state-of-the-art, providing a significant performance boost even

when the workload changes.
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4.5.1 Experimental Setup

Our experimental platform is the octo-socket server described in Table 3.1. We use memory

mapped disks for both data and log files. All experiments run on Red Hat Enterprise Linux 6.4

(kernel 2.6.32) and we compile using GCC 4.4.7 with maximum optimizations.

We use microbenchmarks and the standard OLTP benchmarks TATP [110] and TPC-C [154].

The TATP benchmark models a mobile phone provider. Its schema contains 4 tables that

are perfectly partitionable on the ����������	
 attribute. TATP uses a set of 7 transactions

of 3 different classes. It contains read-only transactions that access only a single table (e.g.,

������
�), read-only transactions that access multiple tables (e.g., ������
���), and up-

date transactions that access multiple tables (e.g., ����������). In all experiments with

TATP, we use a dataset with 800K subscribers (1.8GB). The more complex TPC-C benchmark

models a wholesale supplier. There, we have 9 tables and 5 different transactions. In contrast

to TATP, all TPC-C transactions require data from 3 or more tables. We use the TPC-C dataset

with scaling factor 80 (13GB) in all experiments.

4.5.2 Improving Throughput on Standard Benchmarks with ATraPos

In our first experiment we demonstrate the significant performance boost that ATraPos

achieves on the standard benchmarks TATP and TPC-C. The performance metric used is

throughput, i.e., how many transactions the system executes per second. We compare ATraPos

using partitioning and placement scheme against its version that only employs Islands-aware

data structures and the state-of-the-art, PLP, both of which assign one partition of each table

per processor core.
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Figure 4.10: Improving throughput on the standard TATP benchmark with ATraPos compared
to the state-of-the-art (y = ATr aPos/PLP ).

The graph in Figure 4.10 shows the behavior of ATraPos on the TATP benchmark. The y-axis

depicts the throughput of ATraPos normalized over the throughput of PLP. In this way, the
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y-axis represents the throughput improvement achieved by different components of ATraPos.

We show results both for individual transaction types and the standard TATP transaction

mix (denoted as ��������). As the �	
����
� transaction is perfectly partitionable and all

configurations place one partition of the ������	� table per core, ATraPos achieves 6.7x

improvement due to Island-aware data structures. Similarly, for the read-only �	
�	��	�


transaction, here we need to access data from two tables, Island-aware data structures achieve

improvement of 2.7x that rises to 3.2x when using the ATraPos partitioning and placement

scheme. For other transactions, ATraPos achieves most of the throughput improvements due

to a good partitioning and placement scheme. The improvement in performance for update

transactions comes in large part from the decreased contention on the log since the better

partitioning scheme of ATraPos creates fewer partitions, hence fewer threads are competing

for the access to the log manager.
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Figure 4.11: Improving throughput on the standard TPC-C benchmark with ATraPos compared
to the state-of-the-art.

Figure 4.11 depicts the throughput improvement on the TPC-C benchmark. We plot the

normalized performance of two configurations of ATraPos (over PLP) for the two read-only

transactions of TPC-C as well as for ��������. We observe a larger performance improvement

of 5.3x for the lightweight �	
�	���� transactions, compared to the 2.8x improvement for

the heavyweight ��������� transactions. This variation in performance improvement stems

from the fact that the �	
�	���� transactions benefits more from the Island-aware data

structures. On the other hand, ��������� benefits more from the better data partitioning

that improves locality of the join that requires many data accesses. Finally, the throughput of

�������� improves by 50%.

Summary. ATraPos brings a significant improvement compared to the state-of-the-art for

various types of workloads due to Island-aware data structures and its data partitioning and

placement scheme.
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Table 4.2: ATraPos monitoring brings negligible overhead.

Workload No monitoring Monitoring Overhead (%)
GetSubData 4461960.1 4313524.2 3.32
GetNewDest 326249.9 325890.6 0.11
UpdSubData 64650 63994.5 1.01

TATP-Mix 276601.3 274019 0.93
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Figure 4.12: Scalability of ATraPos repartitioning mechanism.

4.5.3 Monitoring and Repartitioning Cost

Next, we demonstrate that the ATraPos monitoring and repartitioning mechanisms pose a

negligible overhead.

First we quantify the monitoring overhead. To achieve this we test ATraPos in two modes: a)

with monitoring enabled and b) with monitoring disabled. Table 4.2 shows the performance

while running various transactions and the workload mix of the TATP benchmark as well as the

overhead in percentages. In all cases, the monitoring mechanism poses a minimal overhead

on throughput. The only transaction that is slightly affected is the ���������� transaction

where the throughput deteriorates by at most 3.32%. This occurs because ���������� is a

notably short transaction, hence the total number of actions that needs to be tracked per

second by the monitoring subsystem corresponds to the worst-case scenario.

To quantify the repartitioning overhead, we use the following experiment. On a table of 800K

rows and 10 integer attributes, we vary the number of repartitioning actions we trigger and

measure the time it takes to complete each individual action. Figure 4.12 shows the results.

For each case we show the average time of 10 repeated measurements with standard deviation.

The merge operation combines two trees into one, the split divides one tree into two, and

the rearrangement performs one split and one merge. As we see in Figure 4.12, the cost of all

repartitioning sequences increases linearly with the number of repartitioning actions needed.

The merge operation is always cheaper compared to the split operation. This is because the
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latter performs more updates to the metadata. A rearrangement consists of one split and one

merge. In this way, a sequence of rearrangements is hard to predict, because of the interference

of splits and merges. In Figure 4.12, we observe the trend of slowly increasing costs as we

increase the number of operations. However, even the costliest repartitioning scenario (i.e., 80

rearrangements in our 80-core system) completes in less than 200 milliseconds.

Summary. ATraPos monitoring mechanism poses negligible overhead on the system perfor-

mance. In addition, the repartitioning operations are lightweight and complete in a fraction

of a second to ensure that ATraPos can quickly adapt the partitioning scheme to workload

changes.
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Figure 4.13: Adapting to workload changes.

4.5.4 Adaptive Behavior of ATraPos

Here, we demonstrate that ATraPos can successfully adapt to a) changes in the workload

characteristics, b) skewed accesses to data, c) changes in the underlying hardware topology,

and d) different frequencies of workload changes. As we have already shown that ATraPos

outperforms the state-of-the-art approach, in this set of experiments we compare ATraPos to

its static version where monitoring and adaptation are disabled.

Workload Characteristics

First, we test the behavior of ATraPos when the workload changes. We use TATP and every

30 seconds we switch to a different transaction type. Specifically, for the first 30 seconds we

run only ��������	� transactions; then for the next 30 seconds we run only 
�	�����	

transactions; and for the last 30 seconds we run the standard ��������. Figure 4.13 depicts

the results.
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Every time the workload changes, ATraPos quickly adapts, i.e., within 5 seconds, boosting the

throughput of the system significantly. For example, when during the first workload change

throughput is 220 KTPS (thousands of transactions per second) for the first 5 seconds, ATraPos

increases the throughput to 360 KTPS by monitoring and quickly detecting the workload

change and subsequently reoptimizing data and thread placement.
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Figure 4.14: Adapting to sudden workload skew.

Data Skew

Figure 4.14 depicts the benefits of the adaptive ATraPos behavior when skew appears in the

workload. In this experiment, we use the ���������� transaction from the TATP benchmark.

This transaction initially chooses uniformly distributed values from the whole dataset. After

20 seconds, we introduce skew by specifying that 50% of the requests go to the 20% of the

data. The heavy skew causes the throughput to drop by ∼ 80%. ATraPos quickly detects the

change and optimizes for the new workload characteristics, It manages to achieve 3x better

performance than the static system.

Underlying Hardware Topology

The next experiment demonstrates the ability of ATraPos to gracefully adapt to hardware

changes. In this case, we test the behavior when a processor fails. We simulate the failure

of a processor P by excluding all cores of P and leaving them idle. We use the ����������

transaction from TATP since it is a very short transaction that is sensitive to the changes in

the environment. Figure 4.15 shows that at the time of the simulated processor failure (one

10-core processor fails at the 20th second), the static system fails to optimally use the rest of

the available hardware. It still uses a partitioning plan that assumes 80 processor cores are

available. Therefore, it implicitly overloads 1 full processor (with 10 cores) that now needs to

satisfy not only its own requests but also the requests that would normally go to the processor

that failed. This causes a 22% drop in throughput. On the other hand, ATraPos detects the
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Figure 4.15: Adapting to hardware failures.

change in the underlying hardware topology and repartitions the data to create one partition

for each of the 70 available cores. The optimized repartitioning removes the overloading

effects and improves throughput by 11%.
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Figure 4.16: Adapting to frequent changes.

In our last experiment, we demonstrate how ATraPos gracefully adapts to workload fluctu-

ations. We test a dynamic scenario that consists of workloads ���������� and �	�
���

from the TATP benchmark, denoted as A and B , respectively, in Figure 4.16. Workload A is

active for the first 60 secs. ATraPos continuously monitors the throughput and as long as it

remains stable, it relaxes its monitoring interval; during the first 60 secs the interval is 1 sec

and it gradually becomes 8 sec (this is the upper bound in our prototype). When the workload

shifts to workload B at the 60th sec, ATraPos manages to identify the throughput degradation

within 8 seconds. Then, it adjusts to the optimal partitioning scheme for workload B and

it sets its monitoring interval back to 1 sec so it can be more alert until it realizes that the

workload is stabilized; when this happens, it gradually increases the monitoring interval again.
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As Figure 4.16 depicts, when frequent workload fluctuations occur, ATraPos remains alert

(keeping the monitoring interval low) and it quickly adapts to the changes. For example, in the

last two workload shifts ATraPos adapts within about 2 seconds. Overall, ATraPos manages to

continuously adapt and autonomously reconfigure its monitoring setup to follow the workload

fluctuations.

Summary. By monitoring the workload and available resources in longer intervals, and by

graciously adapting its data and thread placement, ATraPos provides predictable performance

for a wide variety of dynamic workloads.

4.6 Summary and Discussion

In this chapter, we show that ignoring non-uniform hardware topology severely limits scalabil-

ity of transaction processing systems. We identify the main shortcoming of the state-of-the-art

shared-everything transaction processing systems on multisocket multicore servers as the

existence of centralized data structures in the critical path. We address this problem in ATraPos

by systematically making all data structures accessed in the critical path hardware-aware. This

allows us to achieve linear scalability for perfectly partitionable workloads.

To address the workloads that are not perfectly partitionable, ATraPos includes a dynamic

lightweight monitoring and repartitioning mechanism. Our partitioning mechanism takes

into account static and dynamic workload characteristics as well as the hardware topology to

choose a good partitioning and placement scheme for the current workload. When workload

or hardware characteristics change, it quickly adapts the current partitioning scheme to the

new environment. In this way, ATraPos offers robust performance on a variety of dynamic

transactional workloads on today’s and upcoming non-uniform hardware platforms. The pre-

sented adaptivity techniques can also be applied to other transaction processing architectures,

with the modifications we describe in the next two paragraphs.

Coarse-grained shared-nothing. We can apply the ATraPos cost model to the physically

partitioned shared-nothing architecture with a few modifications. Since data is physically par-

titioned, the primary cost in the model is the cost of distributed transactions, as in previously

proposed partitioning methods for the physically partitioned systems [32, 122]. Similarly,

the cost of repartitioning includes the cost of physical data movement from one instance

to another. This cost is generally much higher than the repartitioning cost in the logically

partitioned systems. The resource estimation part of the model can be used to determine

sizes of individual instances in the system if amended with the cost model for the contention

among different threads in larger instances. Given the larger repartitioning cost, interleaving

repartitioning and regular actions would be more beneficial [138].

Fine-grained shared-nothing. The ATraPos model can also be applied to fine-grained shared-

nothing systems that are aware of the hardware topology. Such systems could detect a situation

where all the participating instances of a distributed transaction are located on the same
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machine. Then they are able to switch to a more efficient communication channel, e.g., shared

memory. In that case, the cost model could include information about the relative cost of two

types of distributed transactions to choose the partitioning scheme that reduces the number

of more expensive distributed transactions.

78



5 Toward Rack-scale OLTP

In this chapter, we investigate similarities and differences between multisocket multicore and

rack-scale hardware system designs that represent current and future hardware platforms

for high performance transaction processing. We analyze different distributed deployments

using standard and synthetic benchmarks that include distributed transactions to quantify the

challenges and opportunities for OLTP designs on rack-scale platforms. Section 5.1 details the

experimental setup and methodology. Based on our analysis, we characterize the requirements

for rack-scale OLTP designs.

Since each node in a rack-scale system is a small scale multicore system and the complete

rack-scale system can be viewed as a large partially cache coherent multisocket system, one

would expect multicore optimized designs to perform well. The first question we answer is

how the current state-of-the-art multicore optimized scale-up designs behave when deployed

in a distributed configuration (Section 5.2). We also investigate whether it is better to deploy

one instance per node and scale out across the cluster or use the fine-grained deployments

with one instance for each processor core in the system.

In Chapter 3 we show that instances of different granularities are optimal for different types

of workloads in the multisocket multicore environment. However, communication latencies

within a multisocket are much smaller than among machines in a cluster. In Section 5.3 we

investigate whether multisocket topology matters in the cluster environment or the network

communication costs dominate.

One of the main differentiating properties of the rack-scale systems is the fast network be-

tween nodes. In Section 5.4, we use different systems and workloads as well as different

communication mechanisms to quantify the impact of network on performance on OLTP

deployments.

Finally, we discuss the findings in Section 5.5 and provide outlook toward transaction process-

ing designs that scale up and out to efficiently utilize rack-scale hardware platforms.
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5.1 Setup and Methodology

5.1.1 Distributed OLTP Deployments

In this study, we use two state-of-the-art open-source OLTP systems: Shore-MT and Silo. We

choose Shore-MT as the representative traditional storage manager and Silo as the main-

memory optimized one. Both of these systems use scale-up designs that we extend with a

thin distributed transaction layer (see Section 3.2.1 for more details). We implement different

communication mechanisms to execute distributed transactions using the standard two

phase commit (2PC) protocol. Distributed transactions in our deployment fit into predefined

transaction classes and are one shot [144] with local and remote transaction parts known

apriori which removes the need for more than one message in the first phase of 2PC. Local

transaction site acts as a coordinator in the 2PC protocol. Unless noted otherwise, we bind

threads to cores and allocate memory in local memory node when possible to improve locality.

5.1.2 Hardware Platforms

In order to better approximate rack-scale platforms, we use two different hardware platforms:

a cluster and a large multisocket server. Our cluster consists of 8 machines with 2 Intel Xeon

X5660 processors each, connected using 10Gbps Ethernet network. Each processor has 6 cores

with private L1 (32KB each for data and instructions) and L2 (256KB) caches, as well as 12MB

of shared L3 cache. Each machine has 48GB of RAM that we use for both data and log files

through memory mapped disks. All experiments are run using Ubuntu 12.04.4 LTS (kernel

version 3.2.0-34) and the software is compiled using GCC 4.6.3 with maximum optimizations.

The large multisocket server we use in this study is the octo-socket server described in Table

3.1. We run all experiments using Red Hat Enterprise version 6.7 (kernel version 2.6.32) and

compile the software using GCC 5.1.0 with maximum optimizations.

5.1.3 Workloads

In this study, we use a synthetic microbenchmark defined in Section 3.2.2 and an industry-

standard TPC-C benchmark [154]. The microbenchmark enables us to precisely quantify the

impact of different types of operations and the different percentages of multisite transactions.

To characterize the impact of more complex transactions, we use Payment and NewOrder

transactions from the TPC-C benchmark that comprise 88% of the benchmark mix. Both

of them are read-write transactions that access data either from the local or the remote

warehouse. The benchmark specifies that 15% of the Payment and 10% of the NewOrder

transactions access remote warehouses. We partition the data using the well known scheme

[144], where the data associated with a particular warehouse are placed in the same instance

and the ���� table is replicated in every instance. In contrast to microbenchmark experiments,
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TPC-C transactions involve at most two instances, always involve updates, and use the fixed

percentage of remote transactions.

5.2 Scaling Out Across Rack-scale Nodes

Each node in a rack-scale system is a multisocket multicore with a large main memory and

they are connected using low latency network. In this section we answer the question how

do distributed deployments of the scale-up main memory optimized design compare to the

scale-out deployments of the same system. We use Silo main memory OLTP system and

approximate the rack-scale system using the multisocket multicore server with each socket

representing a rack-scale node.

5.2.1 Distributed Main Memory System

Silo uses an optimistic concurrency control protocol that scales well on multicores as it avoids

any centralized synchronization points. In order to adapt Silo for distributed deployment, we

split its commit processing into two phases: 1) the validation phase that we perform at the

end of the first phase of 2PC and 2) the actual commit that we perform in the second phase.

Between these two phases, the updated rows are locked and any transactions attempting to

read them is aborted.

We deploy a distributed version of Silo using a shared memory communication channel. The

dataset size is 8 million rows and partitioned equally among all instances in the deployment.

We compare scale-out deployments with one instance per processor core and scale-up de-

ployment with one instance per processor socket and use 80 and 8 instances respectively. We

distinguish the behavior of the distributed deployment for the read-only and update workloads

and identify factors that cause differences between the two.

5.2.2 Read-only Transactions
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Figure 5.1: The impact of distributed transactions on the throughput of the scale-up main
memory system for read-only and update workloads.
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We start with the read-only microbenchmark for 2 and 20 rows for local only transactions and a

mix with 20% multisite transactions and plot the results in Figure 5.1 (left and center). In both

cases, the fine-grained scale-out deployment has higher throughput for local transactions due

to better locality of data accesses and absence of thread synchronization. However, in the

presence of multisite transactions, the number of rows accessed has noticeable impact on

the relative throughput. For the lightweight transactions, scale-out deployment has higher

throughput, while the situation reverses for heavier transactions. In that case, scale-up

deployment perform better due to fewer instances that participate in a single transaction

which leads to lower communication overheads.

5.2.3 Update Transactions

To quantify the impact of updates, we run a microbenchmark that updates 2 rows and compare

two settings: 1) only local transactions and 2) 1% multisite transactions. We plot the results in

Figure 5.1 (right). We use significantly smaller percentage of multisite transactions compared

to the previous experiment since distributed update transactions have much higher cost.

In contrast to the read-only distributed transactions, the update ones increase contention

due to the prolonged commit phase that leads to abort rates of 11.5% for 1% of multisite

transactions. The pessimistic choice to abort transactions that attempt to update the locked

row has a negligible effect when running only local transactions due to the short commit

phase. However, its impact is much higher in the presence of distributed transactions that

increase the length of the commit phase significantly.
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Figure 5.2: Increasing the duration of commit processing in distributed transactions signifi-
cantly increases abort rates.

5.2.4 Sensitivity Analysis

In order to characterize the difference between the read-only and update distributed trans-

actions on the throughput, we distinguish the impact of communication overheads and

increased contention. We use a modified microbenchmark on a deployment that has only
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2 instances, each using a single core. We vary the percentage of distributed transactions

from 0 to 100%. The dataset size is 200 000 rows evenly split between the instances. We

use two microbenchmarks: 1) the one that reads 2 rows and 2) the one that reads 1 rows

and updates 1 row. For the local transactions, both rows are chosen from the local instance.

For the distributed transactions, one row is chosen from the local and the other is chosen

from the remote instance. In the read-only case, distributed transactions will incur only the

communication overheads. In the read-write case, we choose the row that is updated from the

local instance and the row that is retrieved from the remote instance. In both cases, distributed

transaction have the same communication overheads since the remote fragment is read-only

and does not require any processing in the second phase. However, for the read-write case, the

update row is locked until the remote fragment is processed causing any concurrent requests

accessing that row to conflict.

We plot the normalized throughput of both microbenchmarks as well as the abort rates for the

read-write one in Figure 5.2. For small percentages of distributed transactions, the relative

throughputs of the read-only (solid line) and the read-write (dashed line) microbenchmarks

follow the same trend as long as abort rates (dotted line) are negligible. However, with 10% or

more of distributed transactions in the workload, the throughput of read-write microbench-

mark starts dropping faster. At the same time, abort rates steadily increase reaching 55% when

all transactions are distributed while throughput plummets to the 6% of the peak.

This experiment emphasizes the reliance of main-memory-optimized scale-up designs on the

short critical sections for achieving good performance. The delay introduced by a distributed

transaction that artificially lengthens a critical section leads to a large increase in contention

and high abort rates. Similar effect can be observed in the case of long running update

transactions and workloads that exhibit high contention [80].

5.2.5 Summary and Implications

Distributed transactions are more expensive that their local-only counterparts as they require

communication among multiple instances in the system and their relative cost depends

on the type of accesses within a transaction. For the read-only distributed transactions,

communication is the main overhead. Hence, distributed transactions affect the coarser

grained configurations less since they potentially involve fewer instances in the execution of a

transaction.

The impact of distributed transactions is much higher for the transactions that contain updates.

Main-memory optimized systems achieve high performance by accessing only a small number

of short critical sections in the critical path of transaction execution. Adding communication

step in the middle of the commit processing of the efficient OCC protocol increases abort rates

significantly and has detrimental effect on performance.
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5.3 Scaling Up on Rack-scale Nodes

In the previous section, we show that multicore optimized main memory designs that scale

well on multisockets face challenges when deployed in distributed setting. We identify the

trade-offs between different distributed deployment configurations on multisockets in Chapter

3. However, the network poses much higher communication overheads across the cluster

of machines compared to a single multisocket which potentially overshadows the impact of

multisocket topology in cluster deployments. In this section, we use a cluster of machines

and different workloads to quantify the impact of multisocket topology on the performance of

different deployments. As we require TCP/IP communication channel for cluster deployment,

we use the traditional OLTP system.

5.3.1 Distributed Deployment Configuration

In this set of experiments, we use a distributed transaction processing system built on top of

the Shore-MT [71] open-source storage manager. Shore-MT provides near linear scalability

on machines with a single multicore chip [71] and includes a number of the state-of-the-art

optimizations for local transactions, such as speculative lock inheritance [70] and Aether

holistic logging [72].

In all experiments, we choose a configuration for a machine and deploy it across all machines

in the cluster. We use scale-out (one per core), scale-up (one per machine), and hybrid (one per

socket) deployments with 12, 1, and 2 instances per machine, respectively. We scale dataset

sizes to 1 warehouse per core for experiments with TPC-C benchmark and 10 000 rows per

core for microbenchmarks. We use TPC-C to investigate whether the granularity of instances

and careful placement within a machine matter in a rack-scale setting. Then we quantify

the impact of the size of a transaction and the type of accesses on performance of cluster

deployments using microbenchmarks.
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Figure 5.3: Throughput of different deployments as the number of servers increases for
Payment and NewOrder transactions.
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5.3.2 Scaling TPC-C Across Machines

We start by analyzing scalability of TPC-C benchmark as we increase the number of machines

from 1 to 8. We plot the throughput in Figure 5.3 for both Payment (left) and NewOrder (right)

transactions. On a single server, the larger instances perform better for Payment transactions,

while the smaller ones perform better for NewOrder transactions. The difference stems from

the type of write operations done by a transaction. In the Payment case, larger instances profit

from constructive sharing of a single log whereas each scale-out instance needs to write its

own log and issue expensive system calls. On the other hand, the NewOrder transactions

perform many insertions to the ���������, �����, and ��	����� tables, which require a lot

of synchronization among threads in the same instance. Also, the scale-up deployment greatly

benefits from the fact that it does not need to execute any distributed transactions.

When we increase the number of servers, smaller instances scale better than the scale-up

deployment which requires executing distributed transactions when deployed over multiple

servers. Scale-out deployments scale better than the hybrid ones for NewOrder, while the

situation is reversed for Payment. Also, when deployed on 8 servers, both achieve on average

7.7x better throughput for NewOrder and only 6.2x for Payment. The difference in scalability

comes from the type of updates performed by each transaction. Namely, Payment transactions

update one row from the 
������� table, which limits the number of concurrent transactions

in the system to the number of warehouses. In contrast, NewOrder updates a row from

the �������� table, that has 10 rows for each warehouse, thus permitting 10 times more

concurrent transactions. Distributed transactions holding locks on the updated rows until

the end of the second phase of the 2PC protocol lead to lower concurrency in Payment, which

severely limits scalability.
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Figure 5.4: The impact of thread binding on throughput for different configurations and TPC-C
benchmark.
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5.3.3 Impact of Thread Binding

Careful thread binding is an important prerequisite for achieving predictable high perfor-

mance on multisockets as it maximizes locality and disallows thread migrations (see Section

2.2 for more details). In this set of experiments we investigate whether thread binding has any

impact on performance of cluster deployments. We use 2 servers and either bind the instances

to specific cores or sockets, or leave the placement to the operating system. We repeat the

experiments with both Payment and NewOrder transactions.

The left hand side of Figure 5.4 shows throughput for the Payment transaction with solid bars

representing threads placed by the operating system and striped bars representing manual

binding with each core-sized scale-out instance on a separate core and each scale-up socket-

sized instance on a separate socket. We run the experiment three times and show standard

deviation on the bars. Binding instances to sockets improves performance of the scale-up

deployment by 8%. This effect is more pronounced for the scale-out deployment, where

binding instances to cores improves performance by 60% and reduces variability from 11.7%

to 1.2%. The right hand side of the figure shows the result for the NewOrder transaction, which

is much more predictable with standard deviations of less than 1% in all cases. However, even

in this case, binding the instances and disabling migrations improve performance by 13.5%

and 12.9% respectively for scale-out and scale-up deployments.
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Figure 5.5: The cost of local and multisite transactions for different deployment configuration
as the number of retrieved rows increases. Multisite transactions in coarser-grained deploy-
ments have up to 2 times lower cost compared to the fine-grained scale-out one for the large
number of rows.

5.3.4 Sensitivity Analysis

In easily partitionable TPC-C benchmark, each distributed transaction involves at most two

instances, all transactions involve updates, and the percentage of distributed transactions is

fixed. To better quantify the costs of arbitrary distributed transactions we perform a sensitivity

analysis using microbenchmarks. The cost of a transaction is expressed as the time it takes

to execute a single transaction. We use a 4 machine cluster and measure the cost of local

86



5.3. Scaling Up on Rack-scale Nodes

0
5

10
15
20
25
30
35

0 10 20 30 40 50 60 70 80 90 100Ti
m

e 
pe

r t
ra

ns
ac

tio
n 

(μ
se

c)

Number of rows retrieved

Local

scale-up hybrid scale-out

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 100Ti
m

e 
pe

r t
ra

ns
ac

tio
n 

(μ
se

c)

Number of rows retrieved

Multisite

scale-up hybrid scale-out

Figure 5.6: The cost of local and multisite transactions for different deployment configuration
as the number of rows updated increases. Multisite transactions in coarser-grained deploy-
ments have 2-4x times lower cost compared to the fine-grained scale-out one for the large
number of rows.

and multisite transactions, in read and update versions, as we increase the number of rows

accessed from 2 to 100. With the higher number of rows per transactions, multisite transactions

require data from multiple instances and thus have to exchange more messages to complete a

single transaction.

Read-only case. Figure 5.5 (left) plots the time it takes to execute a local read-only transaction

for different deployments as the number of rows retrieved per transaction increases. The

scale-out deployment has the lowest cost since each instance runs single-threaded and, hence,

pays no thread synchronization overhead. Larger instances have higher costs due to these

overheads. The cost trend is reversed for the multisite case (Figure 5.5 right) where scale-out

instances have significantly higher costs compared to the larger ones. The increase in cost

is primarily due to the number of messages needed for a multisite transaction. Since these

transactions are read-only, we use the optimized version of the 2PC protocol that requires only

one roundtrip per participant. For every configuration, after the number of rows surpasses the

number of instances in the system, every multisite transaction typically involves all instances

in the system. This results in the flattening lines as the distributed transaction overheads

become constant.

Update case. Figure 5.6 shows the time required to execute one local (left) and one multisite

(right) transaction as the number of rows updated per transaction increases from 2 to 100. For

the local transactions, the increase in cost is linear with the number of rows per transaction

with larger instances having higher cost. The differences between configurations are more

pronounced due to the higher synchronization overhead involved in the operations that

modify data. In the multisite case, while the number of instances involved in a transaction

increases at the same rate as in the read-only case, the costs increase faster. This effect is due

to the higher communication costs (as update transactions require both rountrips in the 2PC

protocol) and increased contention since locks are held until the end of a transaction. Even

though scale-up and hybrid deployments, with multiple threads per instance, use optimized
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logging, their cost trends do not flatten out for higher number of rows due to increased

contention. The increase is higher for the scale-up deployment because of more threads in

the instance.

5.3.5 Summary and Implications

In this section, we show that the network overheads do not eliminate the requirement to

optimize deployment configuration at the level of a rack-scale node and that choosing the best

configuration requires considering the information about the whole cluster. For the workloads

that access many rows, overheads such as communication, as well as logging and additional

contention due to locks being held longer for the update case, make distributed transactions

2-4x more expensive for the fine-grained scale-out deployments compared to the coarser ones.

If the number of instances required in a distributed transactions is small, as it is the case

for the TPC-C workload, the impact of communication is less significant and the optimal

configuration depends on the trade-off between the overheads of thread synchronization

and the opportunities for constructive sharing between threads within an instance. Finally,

our experiments show that adjusting placement of the individual instances within a machine

can significantly improve performance, especially for scale-out deployments, by improving

locality.

5.4 The Impact of Network

Network communication represents significant component of the cost of distributed transac-

tions. Its performance is determined by two factors: the hardware channel and the software

stack. With rack-scale systems using high-speed low latency interconnects and enabling

RDMA-based messaging that bypasses the operating system, communication overheads sig-

nificantly diminish and can potentially make distributed transactions much cheaper and

particular system designs more appealing. In this section, we quantify the impact of network

on the throughput of different distributed deployments across various systems, workloads

and communication mechanisms.

5.4.1 Main Memory Optimized System

First, we quantify the impact of network on the main memory system by repeating the experi-

ment from Section 5.2.2 and Section 5.2.3 with UNIX domain sockets that have higher cost as

they require system calls (see Figure 3.4 for the comparison).

Read-only case. Figure 5.7 plots the results of the experiment with dark bars for the runs with

UNIX domain sockets and white ones for the shared memory communication. For the experi-

ment with the lightweight transactions, plotted on the left hand side of the figure, the choice

of communication channel can reverse the relative performance of different deployments.
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Figure 5.7: In a distributed deployment of the main memory system for read-only workload,
communication overheads directly impact relative throughput of different configurations with
higher costs favoring larger instances.

Namely, scale-out deployment has higher throughout due to locality of data accesses for the

local transactions in both cases as well as with shared memory communication and multisite

transactions. However, with higher overhead sockets, especially for the case of heavier trans-

actions in scale-out deployment, the relative performance reverses and scale-up deployment

performs better. For the heavier transactions, scale-up deployment has higher throughput

for multisite transactions in both cases due to fewer instances that participate in a single

transaction causing lower communication overheads.
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Figure 5.8: For update workloads running on a distributed deployment of the main memory
system, increased contention leading to high abort rates causes performance drops for all
communication mechanisms.

Update case. We plot the results of the update experiment in Figure 5.8. In this case, the

behavior of distributed deployments is completely different compared to the read-only case

with a narrow gap between throughput for different communication mechanisms. For all

combinations of deployment configuration and communication mechanisms, even small

percentage of distributed transactions significantly affects contention. The increased con-

tention leads to abort rates of 8% to 11.5% with slightly lower abort rates when using UNIX
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domain sockets. Faster communication mechanism allows more concurrent transactions

in the system due to lower overhead on the critical path, thus increasing the probability of

conflicts on individual data items, and leading to higher abort rates. Without changing the

distributed transaction coordination protocol to mitigate conflicts, faster communication will

not have any impact on throughput of distributed transactions that contain updates.
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Figure 5.9: The impact of communication channel on different deployments of traditional
system with TPC-C benchmark is pronounced for short Payment transactions on the scale-up
deployment, while other work completely mask it for other scenarios.

5.4.2 TPC-C Transactions

For the traditional system, we first use TPC-C benchmark to isolate the impact of different

components of the communication channel on the distributed transactions. We compare

three communication mechanisms: 1) TCP/IP over Ethernet network, 2) TCP/IP in a single

machine, and 3) shared memory communication in a single machine. The first case represents

today’s mainstream option. The second case is the scenario with the fastest possible way

of communication that still employs unmodified TCP/IP software stack. With the shared

memory communication mechanism, we emulate the best RDMA scenario where accessing

remote machine’s memory has the same latency as accessing local memory. We use a dataset

with 12 warehouses (1.8GB) and compare scale-out (one per core) and scale-up (one per

socket) deployments. For the first setting, we use two servers and deploy half of the instances

(6 scale-out and 1 scale-up) on each server, while for the other two settings we deploy all

instances on the same server.

The left hand side of Figure 5.9 shows throughput for the Payment transaction with gray bars

for TCP/IP over 2 machines, striped bars for TCP/IP on a local machine, and the white bars for

shared memory communication channel. Faster communication increases the performance

of Payment transactions for both configurations. The magnitude of the increase depends

on the size of the instance and the workload type. However, faster communication does not

change the relative performance: the scale-up configuration has higher throughput than

the scale-out one. The right hand side of Figure 5.9 shows experiment for the NewOrder

transactions. In this case, communication speed has a negligible impact on the performance
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since NewOrder does many more operations per transaction than Payment and the cost of

messaging is amortized.
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Figure 5.10: In the traditional system, communication costs directly impact the cost of read-
only distributed transactions and can reverse the relative performance of different configura-
tions.

5.4.3 Microbenchmarks

To better understand the impact of communication latency on the cost of distributed transac-

tion depending on the type of operations, we run a series of experiments with microbench-

marks using TCP/IP and shared memory communication mechanisms. In all graphs, the dark

bars show the case when we use TCP/IP for communication and the white bars represent

shared memory. We use a single server and a dataset with 12 sites (120 000 rows) and compare

scale-out (one per core) and scale-up (one per socket) deployments over 12 cores. We study

read-only and update cases separately and repeat the experiments with only local transactions

and with a mix containing 20% multisite transactions. Also, we repeat microbenchmarks for 2

and 20 rows to assess the impact of 1) the different percentage of multisite transactions that

are executed as distributed transactions and 2) the different number of instances involved in

the execution of a single distributed transaction.

Read-only case. Figure 5.10 plots the results of the experiment for the read-only transactions

with the 2 rows case on the left hand side and 20 rows on the right. In all cases, the deployments

that use shared memory communication have higher throughput than the ones using TCP/IP.

Since the read-only transactions are short, higher static communication overheads in the

TCP/IP case lead to noticeable difference in throughput for local only transactions. In order

to fully exploit fast network, we need to avoid expensive system calls required for TCP/IP

communication.

For both types of transactions, we observe that the communication channel has a signif-

icant impact on relative performance of two deployments, similarly to the main memory

system. Namely, in the presence of multisite transactions, scale-out deployment has higher

performance than the scale-up one for shared memory communication, while the situation is
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reversed for TCP/IP. The impact of communication is higher for heavier transactions since

every distributed transaction involves all instances which means scale-out configuration

needs to exchange messages with 11 instances, compared to only one instance in the scale-up

case. However, even in that case, fast network communication makes scale-out configurations

faster than the scale-up one for all scenarios.

0

50

100

150

200

250

scale-out scale-up scale-out scale-up

Local 20% multisite

Th
ro

ug
hp

ut
 (K

Tp
s)

Updating 2 rows

TCP/IP Shared memory

0

10

20

30

40

scale-out scale-up scale-out scale-up

Local 20% multisite

Th
ro

ug
hp

ut
 (K

Tp
s)

Updating 20 rows

TCP/IP Shared memory

Figure 5.11: Constructive sharing among threads in larger instances in the distributed deploy-
ments of the traditional system mitigates the communication overhead for heavier update
transaction and leads to higher performance compared to the smaller instances.

Update case. We plot the result of the update experiment in Figure 5.11 with lighter trans-

actions on the left and heavier ones on the right. The impact of communication is less

pronounced compared to the read-only case because distributed update transactions are

significantly more expensive than their read-only counterparts. The difference comes from

the ability to overlap logging and communication overheads. For example, transactions that

update 2 rows generate less log, hence, they cannot overlap static communication overheads

as effectively as the larger transactions. This effect is particularly evident in the presence of

distributed transactions where the choice of communication mechanism has almost no effect

on the throughput for the 20 row case.

5.4.4 Summary and Implications

The impact of network communication depends greatly on the type of operations performed

by a transaction. For read-only transactions, communication has direct impact proportional

to the number of instances involved in a transaction. For the traditional system, fast network

makes fine-grained scale-out deployments preferable to the scale-up ones that incur thread

synchronization overheads. With slower network, the choice of the best deployment con-

figuration depends on the trade-off between communication overheads among instances

and thread synchronization within an instance. When thread synchronization overheads are

smaller, as is the case in main memory optimized system, scale-up instances are preferable to

the scale-out ones.

On the other hand, the impact of network on the update workloads is much smaller due to

other factors that dominate in the cost of distributed update transactions. In the traditional
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system, the communication can be overlapped with logging or other processing. Furthermore,

constructive sharing among threads makes scale-up instances preferable for many update

workloads. For the main memory system, the increased contention in the presence of dis-

tributed transactions has a decisive impact on the performance. In this situation, instead of

improving performance, faster network merely increases abort rates.

5.5 A Step Toward Rack-scale OLTP

We expct emerging high-performance OLTP applications to be deployed on the rack-scale

hardware platforms that consist of low power multicore nodes with large main memories

connected using low-latency interconnect. This motivated us to investigate whether the

state-of-the-art main-memory optimized designs can be used as building blocks for rack-

scale OLTP designs, how different multisockets and rack-scale systems are with respect to

distributed transactions, and quantify the impact of communication channel performance.

In this section we summarize our findings, discuss implications, and provide outlook toward

future rack-scale OLTP designs.

Study implications. In order to fully utilize a rack-scale system, OLTP systems need to scale up

and out simultaneously by scaling up within a node and scaling out single node configurations

across the cluster. Scaling up within a node requires choosing the optimal instance granularity

and the thread placement that maximizes locality. To scale across the cluster, a system needs

to take into account the cluster topology and the workload properties. In general, for easily

partionable workloads that require no or very few distributed transactions, scale-out deploy-

ments are preferable as they achieve perfect locality. On the other hand, for workloads that are

not easily partitionable, larger instances are better as they limit communication overheads

and can potentially exploit constructive sharing among threads. For the read-only workloads,

the distributed transaction overheads are directly proportional to the communication costs,

while updates incur additional overheads that can significantly increase contention, especially

in main memory optimized systems.

The impact of communication mechanism depends on many factors. For the read-only work-

loads, the fast network directly reduces communication overheads and improves performance.

For the main memory optimized systems, the scale-up deployments are preferable to the

scale-out ones regardless of the speed of the network. For the traditional systems, however,

the fast network makes fine-grained scale-out deployments preferable to the scale-up ones

that incur thread synchronization overheads. On the other hand, the fast network has much

less impact on the distributed update transactions, as other overheads dominate the cost:

logging for the traditional system and increased contention for the main memory one.

Concurrency control. The current state-of-the-art main memory scale-up designs rely on

multiversioning and optimistic concurrency control mechanisms to achieve good perfor-

mance [80, 81, 93, 109, 157, 173]. As they do not employ partitioning, they achieve good

performance by minimizing the number and the duration of critical sections. The main issue
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preventing them from efficiently scaling across multiple machines is their reliance on the

assumption that transactions are very short: both in the terms of the number of items accessed

and in their duration. While distributed transaction execution does not increase the number

of data items accessed in a transaction, it has similar effects to long running reads in terms of

effectively blocking concurrent short updates by introducing delays in the validation phase.

Distributed coordination. On the other hand, modern transaction coordination protocols

have focused on datacenter deployments [12, 86, 149]. The drawback of these approaches is

that they assume long latencies between nodes in the distributed deployment, thus allowing

them to execute complex coordination protocols. We argue here that while such protocols

use asynchronous communication and require fewer messages, they are not lighter than the

classic 2PC in a rack scale environment. Techniques like deterministic transaction execution

are a promising direction. However, increased latency due to the execution of conflict-free

batches and the requirement that full read and write sets are known at the start of a transaction

limit their applicability [131, 149].

Challenges. Inadequacies of the state-of-the-art concurrency control and coordination pro-

tocols stem from scale-up and scale-out design requirements respectively. On the one hand,

concurrency control protocols for main-memory-optimized scale-up designs need to mini-

mize the duration of any critical section so as not to introduce any scalability bottlenecks. This

makes them sensitive to delays introduced in the critical path of transaction execution. On the

other hand, coordination protocols aim to minimize the number of messages between nodes

in the distributed system as communication latencies dominate all other delays in the system.

However, this allows them to add significant local processing overhead that is prohibitive for

lean main-memory-optimized systems.

Opportunities. In order to design protocols for rack-scale systems, concurrency control pro-

tocols need to become resilient against communication delays and the coordination protocols

need to become more lightweight to capture the best of both worlds. One approach for making

concurrency control protocols more amenable to distributed execution is using techniques

such as controlled lock violation to shorten commit processing by tracking dependencies [50].

This optimistic approach may lead to a chain of aborts. However, such behavior is restricted

to the situations where there are many read/write conflicts on the hot data. A complementary

set of techniques rely on application semantics to enable phase reconciliation and knowing

transaction write-set apriori to increase concurrency [44, 108]. Similar ideas that rely on

application semantics to relax coordination requirements in distributed deployments have

shown good results in datacenter deployments [13, 134]. We believe that the judicious use of

semantic information from the application enables design of resilient concurrency control and

lightweight coordination protocols required for efficient rack-scale OLTP designs. Two recent

proposals leverage RDMA and modern hardware, namely non-volatile RAM and hardware

transactional memory, to achieve good scalability for easily partitionable workloads, such
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as TPC-C, on clusters with fast networks [42, 163]. They present a good step toward design-

ing efficient systems for arbitrary transaction processing workloads on rack-scale hardware

platforms.
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6 The Big Picture

Modern hardware platforms are getting more complex with non-uniformity at various levels of

the system architecture without clear distinction among the levels. In order to efficiently utilize

such hierarchical systems for transaction processing, we need to fundamentally redesign our

software with focus on locality of communication and explicit awareness of the underlying

hardware. Transactions typically access a few data items, often creating hotspots, and different

transaction types can have very different data access patterns [152]. Therefore, the software

needs to be agile and continuously adapt its configuration to the workload and underlying

hardware topology to serve the workload with maximum efficiency [3].

This chapter summarizes the contributions of this thesis and discusses possible directions of

future work.

6.1 What We Did

Motivated by the emergence of Hardware Islands in muodern servers, we conducted a detailed

study across a range of deployment configurations of different transaction processing systems,

a number of multisocket servers, and a variety of workloads. We concluded that no single

optimal system deployment configuration exists: the best configuration depends on the

hardware topology and the workload. For example, the shared-nothing is twice as fast as

shared-everything deployment configuration for the perfectly partitionable workloads, while

situation is completely opposite for the non-partitionable workloads and workloads that

exhibit heavy skew. Island-sized shared-nothing configurations fall between the two extremes.

We proposed a straight-forward performance model based on the deployment configuration

and the percentage of multipartition transactions in the workload and validated it against both

traditional and main-memory optimized system designs. The fundamental takeaway is that

more partitionable workloads favor the finer-grained deployment configurations, while less

partitionable achieve better throughput on the coarser-grained configurations since the cost

of synchronization within an instance is lower than the cost of coordination across instances.
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To address the challenge of high reconfiguration cost in the presence of changing workload

characteristics that require different optimal deployment configurations, we proposed ATraPos.

ATraPos extends a scalable logically partitioned shared-everything system to Islands using

automatic partitioning of the system state and dynamically assigning worker threads to specific

partitions. In this way, it removes all intersocket accesses from the critical path of transaction

execution for perfectly partitionable workloads. For other workloads, we rely on finding a good

partitioning and placement scheme that balances the load across partitions and minimizes

the synchronization overheads across Islands. Finally, to ensure robust performance in the

presence of shifting workload patterns, we use a lightweight monitoring mechanism to detect

and quick repartitioning mechanism to adapt to any change.

Future high performance hardware platforms will have hundreds and thousands of processor

cores in a single system organized in a hierarchy of Islands. We generalized the characterization

of the impact on Islands by analyzing the trade-offs involved in the deployment of different

OLTP system configurations on commodity clusters. We show that different configurations

are optimal for different combinations of workload characteristics, multisocket topologies,

and network communication properties. This finding emphasizes that scaling out requires

both Island and inter-Island awareness to efficiently utilize emerging rack-scale hardware

platforms, even with faster interconnects and widespread use of RDMA blurring the lines

between different machines. In such environment, Island-awareness will remain relevant to

the synchronization within a coherence domain while inter-Island-awareness will be required

for coordination between these domains.

6.2 Impact

This thesis is a first step toward fully understanding the impact of non-uniform hardware

on the performance of software systems. By examining the behavior of different transaction

processing designs across a number of dimensions, we show that the hardware-awareness is

critical in order to achieve predictable high performance. We use the concept of Hardware

Islands to understand non-uniformity in the horizontal dimension and enable more structured

modeling of hardware-awareness. In practice, our deployment rules of thumb can be used

to optimize the deployment configurations of different OLTP systems for various workload

types and hardware platforms. The lightweight monitoring and repartitioning technique

we developed in ATraPos is applicable to any existing distributed transaction processing

architecture to enable adaptivity to changing workload characteristics. Finally, many recent

scale up transaction processing designs use Island-aware data structures that focus on the

locality of communication in addition to having as few critical sections as possible.

In the longer term, with clusters of many nodes containing few multicore chips with large

main memories replacing high-end many socket servers, the deployment rules of thumb we

identify in this thesis would significantly reduce synchronization and communication costs of

transaction execution. With workloads becoming more diverse and dynamic, yet running on
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partitioned infrastructure, lightweight monitoring and adaptive partitioning and placement

scheme we devise will be applicable in a wide range of scenarios where traditional offline

schemes are impractical.

6.3 Looking Ahead

ATraPos assumes that the transaction execution plans are static, however, different transaction

execution plans are likely to be optimal for different combinations of transaction types. One

interesting direction of future work would be to adapt the execution plans holistically with

the partitioning and placement scheme based on the data dependencies. In this way, one can

decrease contention on the hot data that would otherwise increase the length of the critical

path of transaction execution [170]. Moving hot data accesses to the end of a transaction has

been a common optimization in enterprise applications.

In this thesis we focus on the workloads comprising short transactions. However, many real

worlds applications combine short transaction with longer running ones, in real time business

analytics scenarios. Contention on the hot data items between the short update transactions

and long running scans is one of the main challenges. One way to address this issue is to

separate transactional and analytical processing by running analytics on the snapshots of the

database, as HyPer does [78]. Another way, commonly used by commercial data analytics

designs, is to apply updates to a delta store and periodically merge them with the primary data

storage. It would be interesting to apply data oriented execution to these types of workloads

and extend adaptive partitioning and placement mechanism with memory bandwidth as an

additional input parameter to the cost model.

Finally, transaction processing designs are suboptimal for the upcoming rack-scale hardware

platforms. Inadequacies of the state-of-the-art concurrency control and coordination proto-

cols stem from the scale-up and scale-out requirements respectively. On the one hand, con-

currency control protocols for main-memory-optimized scale-up designs need to minimize

the duration of any critical section in order to prevent any potential scalability bottlenecks.

This makes them sensitive to delays introduced in the critical path of transaction execution.

On the other hand, coordination protocols aim to minimize the number of messages among

the nodes in the distributed system as communication latencies dominate all other delays

in the system. This allows them, however, to add significant local processing overhead, that

is prohibitive for lean main-memory-optimized systems. To that end, concurrency control

protocols need to become resilient to the communication delays, while the coordination

protocols need to become lighter to capture the best of both worlds. Judicious use of semantic

information from the application with the focus on locality on every node is a promising way

toward efficient rack-scale OLTP designs.
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