

A Generalized Equilibrium Approach to Balance the Residual Abatements Resulting from COP-21 Agreement¹

Frédéric Babonneau, Alain Haurie and Marc Vielle

IAEE - Bergen June 19-22, 2016

¹Supported by the QNRF under Grant Agreement no 6-1035-5–126

Contents

- Context and Objectives
- 2 A Dynamic meta-game model for climate negotiations
- 3 INDCs evaluation
- 4 Fair agreements for additional efforts
- 5 Conclusion

1 Context and Objectives

2 A Dynamic meta-game model for climate negotiations

3 INDCs evaluation

4 Fair agreements for additional efforts

Adressed questions

- What do INDCs mean? And what might be the economic impacts of INDC implementation?
- 2 How an international carbon market might affect climate agreements?
- How to share additional efforts on 2015-2050 to reach the 2°C target in 2100? How to design a fair agreement among groups of countries?
- How each country will use its allocations on the horizon 2015-2050? What will be the associated costs for each country?

2 A Dynamic meta-game model for climate negotiations

3 INDCs evaluation

4 Fair agreements for additional efforts

The payoff (welfare loss) of player *j* at equilibrium satisfies :

$$\min_{\omega_j} \left\{ \sum_{t=0}^{T-1} \beta_j^t(\pi_j^t(\mathbf{e}_j^t(\Omega^t)) - \rho^t(\Omega^t)(\omega_j^t - \mathbf{e}_j^t(\Omega^t))) \right\},\$$

subject to actions chosen by the other players and under the budget sharing constraint

$$\sum_{t=0}^{T-1} \omega_j^t \leq \theta_j \text{Bud}$$

The payoff (welfare loss) of player *j* at equilibrium satisfies :

$$\min_{\omega_j} \left\{ \sum_{t=0}^{T-1} \beta_j^t(\pi_j^t(\mathbf{e}_j^t(\Omega^t)) - \rho^t(\Omega^t)(\omega_j^t - \mathbf{e}_j^t(\Omega^t))) \right\},\$$

US EU China Cooperative Non Cooperative International emissions trading scheme

subject to actions chosen by the other players and under the budget sharing constraint

 $\sum_{t=0}^{T-1} \omega_j^t \le \theta_j \text{Bud.}$

Applying standard Kuhn-Tucker multiplier method, with multipliers $\nu_j,$ we obtain the following first order necessary conditions for a Nash equilibrium:

$$\nu_j = \beta_j^t (\boldsymbol{\rho}^t(\boldsymbol{\Omega}^t) + {\boldsymbol{\rho}^t}'(\boldsymbol{\Omega}^t)(\omega_j^t - \mathbf{e}_j^t(\boldsymbol{\Omega}^t))) \quad \forall t \forall j$$

$$0 = \nu_j(\theta_j \text{Bud} - \sum_{t=0}^{T-1} \omega_j^t)$$
$$0 \le \theta_j \text{Bud} - \sum_{t=0}^{T-1} \omega_j^t$$

The payoff (welfare loss) of player *j* at equilibrium satisfies :

$$\min_{\omega_j} \left\{ \sum_{t=0}^{T-1} \beta_j^t(\pi_j^t(\mathbf{e}_j^t(\Omega^t)) - \rho^t(\Omega^t)(\omega_j^t - \mathbf{e}_j^t(\Omega^t))) \right\},\$$

subject to actions chosen by the other players and under the budget sharing constraint

 $\sum_{t=0}^{T-1} \omega_j^t \le \theta_j \text{Bud.}$

Applying standard Kuhn-Tucker multiplier method, with multipliers $\nu_j,$ we obtain the following first order necessary conditions for a Nash equilibrium:

$$\nu_j = \beta_j^t(\boldsymbol{p}^t(\boldsymbol{\Omega}^t) + {\boldsymbol{p}^t}'(\boldsymbol{\Omega}^t)(\omega_j^t - \mathbf{e}_j^t(\boldsymbol{\Omega}^t))) \quad \forall t \forall j$$

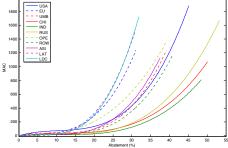
$$0 = \nu_j(\theta_j \text{Bud} - \sum_{t=0}^{T-1} \omega_j^t)$$

$$0 \leq \theta_j \text{Bud} - \sum_{t=0}^{T-1} \omega_j^t$$

Abatement cost functions π are estimated through statistical emulation on a large set of GEMINI-E3 simulations

A noncooperative meta-game approach

- Input Global budget Bud and allocations among countries (i.e., θ_i)
- Model Minimize the economic impacts for each country by deciding:


 - How to use the budget on the horizon
 - Permit sales and buyings on the trading market
- Output Emissions, Permit exchanges, Permit prices, Percentage of welfare losses, ...

 \Rightarrow By testing different allocations, one can find a fair burden sharing. For example if we adopt a Rawlsian approach to distributive justice, the optimal game design problem consists in finding the θ_i 's in such a way that one minimizes the largest welfare loss among the countries.

Estimation of the abatement cost functions

- We use the CGE model GEMINI-E3 as a the provider of data for the estimation of the abatement cost functions for each group of countries
- Estimations are based on statistical emulations of a sample of 200 GEMINI-E3 numerical simulations (4 periods ×11 = nb estimations)
- The abatement costs are polynomial functions of degree 4 in the country abatement level

$$AC_{j}(t) = \alpha_{1}^{j}(t) q_{j}(t) + \alpha_{2}^{j} q_{j}(t)^{2} + \alpha_{3}^{j}(t) q_{j}(t)^{3} + \alpha_{4}^{j}(t) q_{j}(t)^{4}.$$

1)

2 A Dynamic meta-game model for climate negotiations

3 INDCs evaluation

4 Fair agreements for additional efforts

INDC analysis and consolidation

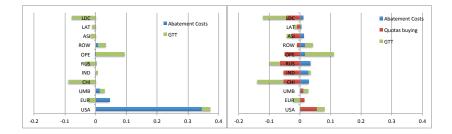
Difficulties to convert INDCs in consistent emissions abatements in 2030:

- Objectives are related to different reference emissions (Historical emissions, BAU emissions, Intensity target, etc)
- Conditional and unconditional targets
- Objective year: from 2025 to 2035
- Missing information and unsubmitted INDCs

 \Rightarrow We use conventional target related to GEMINI-E3 BAU scenario.

INDC targets in Mt CO2-eq in 2030

Unconditional		Conditional	Reduction compared to GEMINI-E3 BAU		
USA	4'045	3'796	-47%		
EUR	3'230	3'230	-25%		
UMB	2'510	2'499	-14%		
CHI	17'748	15'860	0%		
IND	6'681	6'482	0%		
RUS	2'649	2'473	-1%		
OPE	3'834	3'456	-2%		
ROW	3'688	3'465	-13%		
ASI	5'491	4'975	0%		
LAT	4'245	4'059	0%		
LDC	4'713	4'423	0%		
World	58'833	54'718			


INDCs impacts on welfare losses on [2015, 2030]

	Without International carbon market			With International carbon market			
	Welfare loss in % of disc. HC	CO ₂ prices in \$ /t 2020 2030		Welfare loss in % of disc. HC	CO ₂ prices in \$ /t 2020 2030		
USA	0.37	53	71	0.08	3.6	5	
EUR	0.02	27	36	-0.01	3.6	5	
UMB	0.03	7	10	0.03	3.6	5	
CHI	-0.09	-	-	-0.11	3.6	5	
IND	0.01	-	-	-0.02	3.6	5	
RUS	-0.03	-	-	-0.07	3.6	5	
OPE	0.10	-	-	0.06	3.6	5	
ROW	0.03	2	3	0.03	3.6	5	
ASI	-0.02	-	-	-0.03	3.6	5	
LAT	-0.01	-	-	-0.02	3.6	5	
LDC	-0.08	-	-	-0.11	3.6	5	
World	0.08			0.04			

- International carbon market has a positive impact on global and all individual costs.
- Low welfare losses clearly reflect a lack of ambition of INDCs.

_

Decomposition of welfare losses

Context and Objectives

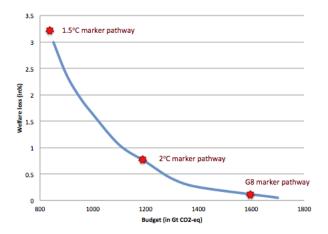
2 A Dynamic meta-game model for climate negotiations

3 INDCs evaluation

4 Fair agreements for additional efforts

Emissions budget on 2015-2050

SET STOCKHOLM ENVIRONMENT


DISCUSSION BRIEF

The Three Salient Global Mitigation Pathways Assessed in Light of the IPCC Carbon Budgets

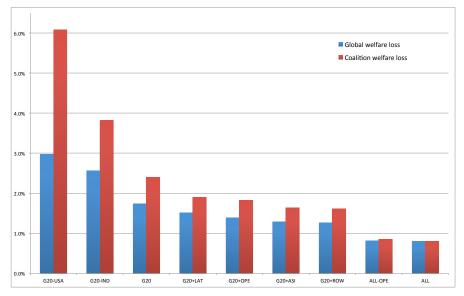
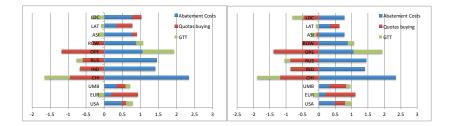

	1.5°C marker pathway	2.0°C marker pathway	G8 marker pathway
Peak year	2014	2014	2021
2020 emissions (Gt CO ₂ e)	38	44	58
Peak rate of decline (fossil CO ₂ / all gases)	-9.0% / -7.1%	-5.5% / -3.4%	-4.5% / -4.4%
Year of peak decline rate (fossil CO ₂ / all gases)	2029 / 2020	2075 / 2019	2040 / 2035
% reduction by 2050 vs. 1990 (all gases)	-80%	-49%	-42%
Budget 2000–2050 (Gt CO ₂ /Gt CO ₂ e)	995 / 1,430	1,390 / 1,850	1,635 / 2,215
Budget 2012–2050 (Gt CO ₂ /Gt CO ₂ e)	605 / 910	1,000 / 1,330	1,245 / 1,695
Budget 2000–2100 (Gt CO ₂ /Gt CO ₂ e)	1,020 / 1,720	1,660 / 2,380	1,995 / 2,860
Budget 2012–2100 (Gt CO ₂ /Gt CO ₂ e)	630 / 1,200	1,275 / 1,860	1,610 / 2,335

Table 1. Key data for the three marker pathways.

Global welfare loss on 2015-2050


Different coalitions agreements (2°C target)

Examples of fair agreement (2°C target) on [2015, 2050]

	Ec	qualized-WL agreer	nent	Adjusted-WL agreement			
Region	Emissio Mt CO ₂ -eq	ns budget in % of BAU emi.	Welfare loss in % of DHC	Emissions budget in Mt CO ₂ -eq % of BAU emi.		Welfare loss in % of DHC	
USA	166852	64	0.8	153046	59	0.9	
EUR	80240	52	0.8	69620	45	0.9	
UMB	63602	63	0.8	56640	56	0.9	
CHI	264910	52	0.8	273760	54	0.5	
IND	73986	55	0.8	76346	57	0.5	
RUS	57230	67	0.8	58882	69	0.5	
OPE	100890	76	0.8	103250	78	0.5	
ROW	101480	65	0.8	105020	67	0.5	
ASI	105020	65	0.8	109150	67	0.5	
LAT	86730	72	0.8	90270	74	0.5	
LDC	79060	79	0.8	84016	84	0.0	
World	1,180,000	62	0.8	1,180,000	62	0.8	

WL decomposition for Equalized-WL and Adjusted-WL agreements

- 2 A Dynamic meta-game model for climate negotiations
- 3 INDCs evaluation
- 4 Fair agreements for additional efforts

Conclusion and Perspectives

Conclusion

- INDCs commitments are weak.
- It is possible to design fair agreements (eg, equalizing welfare costs between coalitions)
- The implementation of a tradable permits market is crucial as it allows to equalize marginal abatement costs and to reduce welfare losses

Perspectives

- Extend the model to robust optimization to take into consideration statistical errors in the calibration of abatement cost functions
- Apply meta-game on alternative economic models