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Abstract
In magnetic fusion devices, the radial transport of heat and particle largely exceeds, by
orders of magnitude, predictions based on collisional processes. This is widely understood
as a consequence of small-scale turbulence which results from the complex nonlinear
behaviour of so-called microinstabilities, driven unstable in a magnetically confined plasma
by the strong pressure gradients required to reach fusion. Understanding and possibly
mitigating these processes is of vital importance towards achieving controlled fusion.
The complexity of such nonlinear phenomena allows one to address microturbulence only
with a numerical description, carried out here within the gyrokinetic framework. This
reduced kinetic model describes the evolution of the particle distribution functions and
of the self-consistently generated electromagnetic fields by neglecting the fast time scale
associated to the particle gyration around magnetic field lines.
In this work we extensively applied the grid-based gyrokinetic code GENE, using both
its local and global versions, to model some of the experimental observations related to
turbulent transport made in the Tokamak à Configuration Variable (TCV) at the Swiss
Plasma Center.
Almost all simulations that will be discussed are performed considering realistic magnetic
geometries, in turn provided by the MHD equilibrium solver CHEASE. In order to verify
the interface of GENE with CHEASE, a series of benchmarks have been developed and
successfully carried out in the linear local limit, assuming fully gyrokinetic electrons and
ions. These tests have then been extended to the global version of the code, relaxing the
kinetic electron response assumption mainly to reduce the overall computational cost.
Linear and nonlinear simulations have been performed and compared to ORB5 results,
obtaining a good agreement.
A significant part of this work deals with the electron heat confinement improvement
observed when the shape of the confined plasma is modified by changing the sign of
the Last Closed Flux-Surface (LCFS) triangularity δLCFS from positive to negative.
In the latter case, half the heating power is required to maintain the same electron
temperature and density profiles compared to the former, which was experimentally
interpreted as a better energy confinement at all radial locations, even though δ has a
finite radial penetration depth, becoming vanishingly small as one moves from the LCFS
to the magnetic axis. A first series of local gyrokinetic simulations were carried out to
investigate the dependence of profile stiffness on shaping. Local results fail at reproducing
both the absolute level of heat transport as well as the observed transport ratio between

v



Abstract

positive and negative δ, while the main effect of negative δ according to the simulations
appears to be in form of higher critical gradients for the onset of microturbulence. Global
gradient-driven simulations have then been performed, showing a very high sensitivity
of the electron heat flux with respect to the density gradient. Global runs, carried out
neglecting carbon impurities in order to reduce the computational cost, are compatible
with the experiments when using parameters from a recent, experimentally well diagnosed,
discharge. In this case, strong global effects which lower the heat flux compared to local
runs are seen. Thanks to flux-tube simulations, rotation is found not to significantly
affect transport, while carbon impurities appear to further lower the heat transport level
in both the ion and electron channels, and are thus expected to further improve the
agreement between simulations and measurements if retained.
Local and global GENE runs have then been performed looking at axisymmetric dynamics
in the frequency range of the Geodesic Acoustic Mode (GAM) in TCV conditions.
Experimentally, the GAM is almost always observed as a radially coherent mode, i.e.
an oscillation at constant frequency over a main fraction of the minor radius of the
confined plasma. The only exception is for very large values of the edge safety factor
q, where the mode looses its coherence and a dispersive GAM, with a frequency that
follows the local sound speed, is measured. Among the many experimental parameter
scans, a density ramp-up was first studied with local simulations, for which the mode
was observed to disappear, covered by the broad-band turbulence. Flux-tube results
already agree reasonably well with measurements of the heat transport as well as the
GAM frequency and its amplitude.
The coherent GAM was then investigated thanks to global simulations. A series of runs,
with different physical models, have been performed in order to reproduce a discharge
already modeled with the gyrokinetic Particle In Cell (PIC) code ORB5. Simulation
results qualitatively agree with experiments and a good agreement is recovered with the
ORB5 code results when the same physical model is used. Finally, the hypothesis of
a coherent-dispersive GAM regime transition related to the safety factor profile, as it
was experimentally speculated was addressed. It is found that changing only q is not
sufficient to induce a regime transition, which thus appears to be related to other plasma
parameters, including finite machine size effects.

Key words: plasma, fusion, tokamak, turbulence, gyrokinetic simulations, plasma
shaping, Zonal Flows, Geodesic Acoustic Mode

vi



Sinossi
In plasmi confinati magneticamente, il trasporto in direzione radiale di calore e particelle
è sperimentalmente osservato essere svariati ordini di grandezza superiore rispetto a stime
basate su processi puramente collisionali. Questa discrepanza è universalmente intesa
come causata da uno stato turbolento che si origina quale risultato di complessi processi
non lineari che coinvolgono le cosiddette microinstabilità, instabilità che si sviluppano
su scale microscopiche. A loro volta, queste instabilità sono alimentate dall’estremo
gradiente di pressione necessario per raggiungere le condizioni richieste dalla fusione.
Studiare, comprendere e mitigare questi processi è di vitale importanza per il successo
della fusione nucleare controllata. L’estrema complessità di questi processi può essere
tuttavia affrontata solamente con un approccio numerico. A tal scopo, nel presente
lavoro viene utilizzato l’approccio girocinetico, un modello cinetico ridotto che descrive
l’evoluzione della funzione di distribuzione delle varie specie che compongono il plasma,
e dei campi elettromagnetici auto consistenti, trascurando la rapida scala temporale
associata al moto di girazione delle particelle lungo le linee di campo.
In questa tesi, il codice girocinetico GENE, che descrive il plasma mediante un approccio
Euleriano, è stato utilizzato nelle sue versioni locale e globale con l’obiettivo di riprodurre
e investigare alcune delle numerose osservazioni sperimentali legate alla microturbulenza
fatte sul Tokamak a Configurazione Variabile (TCV) presso lo Swiss Plasma Center.
Tutte le simulazioni sono state svolte considerando geometrie magnetiche realistiche,
ottenute utilizzando il risolutore MHD CHEASE. Svariati test sono stati sviluppati
e portati a termine con successo, permettendo di verificare l’interfaccia tra GENE e
CHEASE nel limite lineare locale e considerando ioni ed elettroni cinetici. Questi
stessi test sono poi stati estesi alla versione globale del codice, assumendo una risposta
elettronica adiabatica per ridurne l’onere computazionale. Un ottimo accordo con i
risultati lineari e non lineari forniti dal codice PIC ORB5 è stato ottenuto.
Una larga parte delle simulazioni svolte è dedicata allo studio del miglioramento del
confinamento elettronico osservato in TCV quando la forma del plasma confinato viene
modificata invertendo il segno della triangolarità δ del bordo del plasma, da positiva
a negativa. Nel secondo caso è sufficiente impiegare metà potenza di riscaldamento
rispetto al primo per mantenere gli stessi profili di densità e temperatura elettronica.
Questo risultato viene sperimentalmente interpretato come un miglioramento uniforme
del confinamento, sebbene la triangolarità abbia una lunghezza di penetrazione radiale
finita, diventando rapidamente trascurabile muovendosi dal bordo verso il centro del
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plasma. L’ipotesi di un diverso grado di resilienza dei profili elettronici in funzione della
geometria magnetica è stata studiata con una serie di simulazioni locali. Queste non sono
in grado di riprodurre né i flussi di calore misurati sperimentalmente né il rapporto tra le
due geometrie, ma indicano semplicemente un gradiente critico più elevato quando δ < 0.
Simulazioni globali a profili imposti mostrano un’elevata sensitività dei risultati rispetto
a variazioni del gradiente di densità, e predicono un trasporto elettronico compatibile
con i valori sperimentali solamente assumendo parametri di plasma derivati da una
scarica TCV in cui le misure sperimentali sono affette da piccole barre d’errore. In
questo caso appare evidente una forte stabilizzazione della turbolenza dovuta alla taglia
della macchina, con una forte riduzione del trasporto rispetto a quanto ottenuto con
simulazioni locali. Le simulazioni globali sono stati svolte trascurando la presenza di
impurità di carbonio, mentre simulazioni locali indicano un’ulteriore forte riduzione del
trasporto di calore, sia nel canale ionico che in quello elettronico, quando queste vengono
considerate. Ci si attende di conseguenza un miglioramento ulteriormente dell’accordo
tra simulazioni ed esperimenti qualora le simulazioni globali vengano ripetute includendo
il carbonio.
Una seconda importante parte della tesi è dedicata allo studio della dinamica di modi
assi-simmetrici nel range di frequenze tipiche del Modo Geodesico Acustico (GAM),
investigato con simulazioni locali e globali. Il GAM viene tipicamente osservato in TCV
come un modo radialmente coerente, caratterizzato cioè da una frequenza costante lungo
buona parte del raggio minore del plasma. L’unica eccezione è data da scariche in cui il
fattore di sicurezza al bordo q è particolarmente elevato. In questo caso il modo perde la
sua coerenza e un’oscillazione con una frequenza proporzionale alla velocità sonica locale
viene misurata.
Un rampa di densità per cui sperimentalmente, ad alta densità, il GAM viene osservato
sparire coperto dalla turbolenza a banda larga è stata investigata mediante simulazioni
locali. In questo particolare caso, l’approccio locale fornisce una buona stima sia del
trasporto che della frequenza e dell’ampiezza del GAM. Le proprietà del GAM coerente
sono state studiate mediante simulazioni globali dedicate, svolte assumendo diversi
modelli fisici, ottenendo un buon accordo con i dati sperimentali e con i risultati ottenuti
mediante ORB5 quando lo stesso modello viene utilizzato. Infine, la relazione tra la
transizione da modo coerente a dispersivo e il fattore di sicurezza è stata investigata,
mettendo in luce come una sola variazione di q non sia sufficiente a causare una transizione
di regime. Quest’ultima viene di conseguenza legata ad altri parametri di plasma, tra cui
la taglia della macchina.

Parole chiave: plasma, fusione, tokamak, turbulenza, simulazioni girocinetiche, forma
del plasma, flussi zonali, Modo Geodesico Acustico

viii



Contents
Abstract v

Sinossi vii

1 Introduction 1
1.1 The energy problem and nuclear fusion . . . . . . . . . . . . . . . . . . . . 1
1.2 Magnetic confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Transport in confined plasmas . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Scope and outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Theoretical background 13
2.1 Tokamak plasma equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Kinetic plasma modeling and Vlasov-Maxwell system . . . . . . . . . . . . 17
2.3 The gyrokinetic model: the basic idea and corresponding ordering . . . . 18
2.4 Modern derivation of the collisionless gyrokinetic equation . . . . . . . . . 20

2.4.1 The unperturbed guiding center equations . . . . . . . . . . . . . . 23
2.4.2 The gyrocenter equations . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 The gyrokinetic equation . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.4 The field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.5 Further simplifications . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.6 The local limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 The collision operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Microinstabilites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.1 Drift waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.2 ITG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6.3 ETG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.4 TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6.5 Other instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7 Zonal Flows and the Geodesic Acoustic Mode . . . . . . . . . . . . . . . . 48
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Numerical simulation model: the GENE code 53
3.1 Phase space coordinate system . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Numerical representations and boundary conditions of phase space directions 55

ix



Contents

3.3 Further numerical details . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 Time stepping scheme and eigenvalue solver . . . . . . . . . . . . . 58
3.3.2 Magnetic equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.3 Discretization of the nonlinearity . . . . . . . . . . . . . . . . . . . 59
3.3.4 Numerical hyperdiffusion and anti-aliasing . . . . . . . . . . . . . . 59
3.3.5 Gyroaveraging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Normalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Macroscopic observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Turbulent fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.2 Spatial averages and radial conservation laws . . . . . . . . . . . . 65

3.6 Other specific features of the global code . . . . . . . . . . . . . . . . . . . 66
3.6.1 Heat and particle sources . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.2 Radial buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Code verification 69
4.1 Local benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Magnetic geometries and profile details . . . . . . . . . . . . . . . 69
4.1.2 Linear kθ-spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.3 Ballooning angle scan . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.4 Rosenbluth - Hinton test . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Global benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.1 Linear runs with adiabatic electrons . . . . . . . . . . . . . . . . . 89
4.2.2 Nonlinear runs with adiabatic electrons . . . . . . . . . . . . . . . 91
4.2.3 Linear runs with kinetic electrons . . . . . . . . . . . . . . . . . . . 94

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Local investigation of the effect of triangularity on turbulent transport 99
5.1 Overview of TCV experimental observations . . . . . . . . . . . . . . . . . 99

5.1.1 Reversing LCFS triangularity in the TCV tokamak . . . . . . . . . 99
5.1.2 Profile stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3 Linear simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4 Non-linear simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 “Simple physics” model . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4.2 “Full physics” model . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 How to interpret local runs and look at stiffness? . . . . . . . . . . . . . . 113
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Global simulations of TCV discharges with positive and negative tri-
angularity 117
6.1 Gradient vs. flux driven global simulations . . . . . . . . . . . . . . . . . . 117
6.2 General remarks about setting up a global simulation . . . . . . . . . . . 118

x



Contents

6.3 Global simulations with TCV experimental profiles . . . . . . . . . . . . . 120
6.3.1 Preliminary runs relative to core conditions . . . . . . . . . . . . . 120
6.3.2 Full-radius simulations with realistic profiles . . . . . . . . . . . . . 122

6.4 Beyond the original parameter set . . . . . . . . . . . . . . . . . . . . . . 125
6.4.1 Local results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4.2 First global simulations . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4.3 Further remarks about the effects of carbon impurities and plasma

rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Study of GAM dynamics in TCV relevant conditions 141
7.1 Analysis of an experimental TCV density ramp-up . . . . . . . . . . . . . 142

7.1.1 TCV discharge #46068 . . . . . . . . . . . . . . . . . . . . . . . . 142
7.1.2 Local linear analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.1.3 Local nonlinear results . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.1.4 Local adiabatic electron results for ITG dominated regimes . . . . 164

7.2 Global simulations of TCV discharge #45353 with a radially coherent GAM170
7.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.2.2 Nonlinear simulations . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.2.3 GAM frequency characterization . . . . . . . . . . . . . . . . . . . 175
7.2.4 GAM fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2.5 Comparison with ORB5 results . . . . . . . . . . . . . . . . . . . . 180

7.3 Radially coherent vs. dispersive GAM regimes . . . . . . . . . . . . . . . 183
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8 Conclusions 189
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A The GKW code 195
A.1 GKW coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
A.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B The GS2 code 199
B.1 GS2 coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
B.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

C Development of synthetic diagnostics for T-PCI and C-ECE systems 202
C.1 A Matlab post-processing graphic tool . . . . . . . . . . . . . . . . . . . . 202
C.2 Synthetic diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

xi



Contents

D Local simulations for the TCV discharge #45353 206
D.1 GAM frequency from nonlinear simulations . . . . . . . . . . . . . . . . . 207
D.2 GAM density and magnetic component . . . . . . . . . . . . . . . . . . . 208
D.3 Rosenbluth-Hinton tests investigating shaping effects . . . . . . . . . . . . 209

Bibliography 222

Acknowledgements 223

Curriculum Vitae 225

xii



1 Introduction

1.1 The energy problem and nuclear fusion

The continuous growth of world population together with the improvements in the
quality of life are tightly bound to an increase of the energy demand and consumption.
Industrialization and technological progress themselves are not possible without large
availability of energy at low price. Today’s energy production is essentially based on
combustion of fossil fuels, such as oil, coal or gas. In this case, the processes involved for
the production of electric energy are particularly simple to initiate and control, and the
technology required is cheap and reliable. Reserves of these fuels are however depleting
and will be exhausted in few decades. Moreover, all combustion processes are inevitably
associated with the release of enormous amounts of CO2, increasing the green-house
effect and therefore ultimately leading to climate changes. Although there is nowadays
a general growing attention to these issues and many efforts are done in order to save
energy and reduce its consumption, it appears clear that a solution for mid and long term
is not yet available and research is ongoing in order to improve and develop alternative
energy sources.
Renewable green energies, such as wind or solar power, are often considered the ideal
solution to the energy problem. Being virtually unlimited and also free from carbon
emission, they appear as particularly appealing. However, sustaining the whole energy
request uniquely with such sources is very difficult, mainly because of their intrinsic
fluctuating nature, like the wind strength or the daily sunshine duration. The unbalance
between request and availability requires a massive and efficient storage capability which
is not yet available.
Exploiting nuclear reactions for energy production, appears as a particularly interesting
alternative essentially because of the enormous release of energy, associated to the mass
deficit between reactants and products, which is orders of magnitude larger than common
chemical reactions. Two kinds of reactions, fission and fusion, can be considered. The
fission process consists in breaking apart a heavy nucleus such that the products are
lighter involving more tightly bound nuclei. During the process, neutrons are released
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Chapter 1. Introduction

as well and can be used to self sustain a chain reaction. Fission reactors are a well
established and exploited technology but strongly debated, mainly because of the risk of
release of radioactivity in case of severe accidents and the production of highly radioactive
waste (with half-life time up to 103-104 years).
Nuclear fusion is the energy source of stars. In the process light nuclei interacting between
each other fuse together resulting into heavier ones. Ever since the discovery of fusion as
being the source of energy in the Sun in 1930s [1], scientists aim at harnessing nuclear
fusion in a controlled way on Earth. The proton-proton chain on which the energy
production in the Sun is based, involves the weak nuclear interaction in the decay of
protons into neutrons [2], and therefore is too slow to be exploited on Earth. Instead, the
deuterium-tritium reaction is the most promising choice for terrestrial application. The
process begins with the two isotopes deuterium and tritium of hydrogen, and produces a
nucleus of helium and a neutron:

2
1D +3

1 T →4
1 He + n + 17.6 MeV (1.1)

As a result of a single reaction, 17.6 MeV of energy are released and redistributed between
the products according to their mass ratio (∼ 14 MeV to the neutron and ∼ 1/5 to the
helium).
The main difficulty associated to achieving such a fusion reaction is due to Coulomb
repulsion: reacting nuclei have to overcome the corresponding potential barrier so as to
come close enough to allow the attractive strong nuclear force to induce fusion. Hence,
particles must collide between themselves at very high kinetic energy, in principle larger
than the height of the Coulomb barrier. The required energies are well beyond the
electron binding energy, therefore the matter is completely ionized and the state of
plasma reached. Obtaining a sufficiently hot and dense plasma for a sufficiently long
time, is therefore a condition necessary to be met in order to allow fusion reactions to
occur. A simple energy balance allows to identify the so-called Lawson criterion [3],
which states that the triple product of density n, temperature T and confinement time
τE of the plasma must exceed a threshold in order to have a net energy production:

nTτE ≥ 1021keVs/m3 together with T � 20keV. (1.2)

Two different strategies are currently being investigated in order to meet this constraint.
The first one is exploited in the inertial confinement research, where the ultimate goal is
to produce a very high density plasma, with a density of the order of 1030m−3, which then
needs to be confined only for a short time τE ∼ 10−9s. This is achieved by compressing
pellets of fuel with shock waves generated by high power lasers or ion beams.
The alternative approach, magnetic confinement fusion, aims at producing a low density
plasma, n ∼ 1019m−3, which however is confined for a much longer time in order to
satisfy the constraint imposed by (1.2), typically τE ∼ s. We present magnetic fusion in
some more detail in the next section.
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1.2. Magnetic confinement

1.2 Magnetic confinement

A promising approach to reach the required energies for fusion reaction is to heat a
mixture of deuterium and tritium gas to sufficiently high temperatures, of the order of
100-200 million K, corresponding to an average thermal energy of 10-20 keV. In these
conditions, a large fraction of the tails of the Maxwellian distribution characterizing each
plasma species is clearly at energies exceeding the Coulomb repulsion and fusion reactions
can occur. A mean to confine and isolate the hot plasma by avoiding any contact with
the surrounding walls must be found. Otherwise the rapid transfer of energy from the
plasma to the walls is likely to result in structural damages and in an instantaneous
cooling of the plasma thus preventing any fusion reaction to further occur.
Although globally neutral, each of the particles constituting a plasma can interact with
any electromagnetic field E and B, and the resulting motion is determined by the Lorentz
force:

m
dv
dt

= q (E + v × B) , (1.3)

where q, m, and v are respectively the charge, mass and velocity of the particle. Magnetic
confinement exploits this property of a plasma in order to confine it in a finite volume
with a specific shape.
In order to understand the basic principles behind the design of a magnetic fusion device

Guiding center trajectory

Particle trajectory
 (q>0)

Figure 1.1 : Cartoon sketching the gyromotion of a positively charged particle in a
uniform magnetic field B (left) and its projection on a plane perpendicular to the
magnetic field (right).

and its configuration, it is useful to discuss the most basic properties of the motion of a
single charged particle in electromagnetic fields [4]. In the presence of only a magnetic
field B, as a consequence of Eq. (1.3), a particle is free to move along one magnetic field
line but constrained to gyrate around it in the perpendicular direction. Therefore, if the
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Chapter 1. Introduction

magnetic field is homogeneous and constant, the resulting trajectory of the particle is an
helix wrapping around a field line, as sketched in Figure 1.1. The resulting gyromotion is
characterized by the gyrofrequency Ω and the so-called Larmor radius ρ, respectively
given by:

Ω =
qB

m
, ρ =

v⊥
Ω

. (1.4)

where v⊥ indicates the velocity of the particle in the direction perpendicular to the
magnetic field. On the other hand, when electric and magnetic fields are present at the
same time, particles are no longer bound to one field line, but instead move as well in a
direction perpendicular to both fields, undergoing the so called E × B drift. Its velocity
is given by

vE×B =
E × B
|B|2 , (1.5)

which is independent from mass and charge, and therefore goes in the same direction
for all plasma species without creating any net current. Other particle drifts arise from
curvature and inhomogeneities of the magnetic field, and are respectively given by:

vc =
mv2

‖
qB

(∇ × b)⊥ , v∇B =
mv2

⊥
2q

∇B × B
B3 . (1.6)

Here v‖ indicates the velocity parallel to the magnetic field B = Bb. Note that these
drifts are charge dependent.
Early designs of fusion devices were essentially linear machines employing inhomogeneities
in the magnetic field to create a mirror force to reflect particles at both ends. Such
devices however suffer from the so-called ”loss cone” problem, that is the loss of particles
at both end, making the confinement insufficient. Hence they have been abandoned in
favor of configurations where the magnetic field lines are closed.
The simplest geometry in which magnetic field lines can close on themselves is a torus.
However, because of curvature and gradient drifts the magnetic field lines cannot be
simple rings. The configuration will otherwise be intrinsically unstable. Being charge
dependent, vc and v∇B lead to drifts in opposite directions for ions and electrons. The
resulting vertical charge separation produces an electric field which in turn causes a
radial plasma expulsion because of E × B drifts. Magnetic field lines thus need to be
twisted into an helical shape around the torus. In this way, because the motion of a
particle along a magnetic field line is much faster than the one in the perpendicular
direction, curvature and gradient drifts cancel and the individual particle trajectories
can be effectively confined. Two different technical ways of obtaining twisted field lines
exist: by internal currents in tokamaks or by external coils in stellarators.

The tokamak (Russian acronym for toroidal chamber with magnetic field coils), is
schematically presented in Fig. 1.2. It is an axisymmetric device characterized by a
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1.2. Magnetic confinement

Figure 1.2 : Cartoons sketching the basic configuration on the left of Tokamak,
and on the right of a Stellarator. The different magnetic coil systems leading to a
different plasma shape are shown.

strong toroidal magnetic field generated by external coils and a smaller poloidal magnetic
field which is generated by a current flowing in the plasma. Such current is induced by a
a central transformer, the plasma itself being the secondary winding. The plasma current
constitutes also a natural heating system through Ohmic dissipation (which however is
limited by the fact that plasma resistivity decreases with increasing temperature and
therefore other complementary heating solutions must be adopted). One of several
problems facing the tokamak is the fact that a fusion reactor will need to operate as
a steady state device, a requirement which is incompatible with an ohmic transformer.
External current drive is required, which in turn involves costly and technologically
complex systems such as microwaves or neutral beams, whose efficiency is not very
high. To this end, in tokamaks there is a natural transport-driven current, the so-called
bootstrap current, which is generated by the Coulomb friction between trapped and
passing particles [5]. It can provide a significant fraction of the required current and is
considered as a critical element towards the realization of a fusion reactor. Finally, one
must also remember that plasma currents can drive dangerous instabilities (e.g. kink
modes) that set operational limits [3].

A stellarator instead adopts a complex set of coils to obtain the desired twisting of
magnetic field lines without the need of any plasma current (right side of Fig. 1.2). The
main advantage of such approach is the possibility of steady state operation, as there is
no need of an ohmic transformer. As a drawback, this configuration is inherently three
dimensional and the set of coils is extremely more complicated than the one required for
a tokamak.

Both approaches to magnetic confinement fusion are currently under active investigation.
The major next step for tokamak research is represented by the ITER project currently
under construction in Cadarache, in the south of France. ITER is a joint worldwide
collaboration with the aim of demonstrating the technological and scientific feasibility of
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Chapter 1. Introduction

fusion energy [6]. The machine is designed to produce a ten fold return on energy (Q=10),
that is produce 500 MW with an input power of 50 MW for discharges of ∼ 400s. In
addition, ITER is also meant to explore the steady state operation of a burning plasma,
a plasma where fusion reactions are self-sustained, as well as test solutions for integrating
into a future power plant the tritium breeding modules.

The most advanced stellarator experiment is currently ongoing in Greifswald, Germany,
where in December 2015 the first plasma was created in Weldenstein 7-X. This machine
is the first example of a quasi-isodynamic stellarator [7]. Its specific goal is to prove the
capability of this advanced configuration to effectively confine fast particles, such as the
fusion born α, and to operate at zero bootstrap current [8].

1.3 Transport in confined plasmas

Even when macroscopic MHD instabilities (e.g. disruptions, sawtooth activity, tearing
modes) are stabilized, one of the main problems of any confined plasma that still prevents
it reaching the limits imposed by the Lawson criterion is associated to radial transport of
particles and energy, which dramatically reduce the plasma confinement time. Phenomena
like conduction, convection and radiation can significantly degrade the performance of
any fusion device [9]. The main object of transport theory is thus to investigate, and
possibly control, such phenomena.
Transport processes are often considered of diffusive nature, therefore characterized by a
particle and heat diffusivities of the form

D, χ =
a2

τE
, (1.7)

such that, assuming a Fick’s type law, the particle and heat fluxes can be expressed as

Γ = −D∇n,

Q = −nχ∇T.
(1.8)

Here, the minor radius of the plasma a gives a measure of the distance that energy and
particles have to cross before actually leaving the system.
Transport is often classified by considering its origin. The most obvious, but also the
one that in fact contributes less to the experimentally measured fluxes, is collisional
diffusion, leading to the so-called classical transport. Particles undergo collisions between
each others and therefore diffuse across the magnetic field [10]. Collisions are equally
probable in every direction, but because of the density being higher in the core plasma,
one obtains a net outward flux. A simple random walk model can be used to describe
this process. The particle diffusivity e.g. can be expressed as

D =
Δx2

Δt
, (1.9)
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1.3. Transport in confined plasmas

where Δx represents the typical step size and Δt the time step. For a diffusion across
a straight magnetic field Δx ∼ ρ, ρ being the Larmor radius, and Δt ∼ 1/νc, with νc

the Coulomb collisional frequency. Under typical fusion relevant conditions (a magnetic
field B of few T, a temperature T ∼10 keV and a density n ∼ 1020 m−3) one finds
Dclass ∼ 10−3 m2/s, which is in fact negligible compared to experimentally measured
values of ∼ 1 m2/s. Note that the classical diffusion is equal for ion and electrons since
the smaller electron step size, by a factor

√
me/mi, is balanced by a collision frequency

higher by a factor mi/me. The energy diffusion can be computed in a similar way and
again one finds a discrepancy with the experimental values of several orders of magnitude.
The toroidal geometry of a tokamak causes, because of the particle drifts related to
curvature and ∇B, modified collisionless particle trajectories, with excursion transverse
to the magnetic field significantly larger than ρ and consequently larger associated
heat and particle diffusivity. Transport induced by the toroidal geometry is known as
neoclassical, and a comprehensive description can be found in e.g. Ref. [10]. One of
the most important effects of toroidicity on particle trajectories is that particles can be
trapped because of inhomogeneity of the magnetic field amplitude B. In the so-called
circular large aspect ratio limit, the magnetic field of a tokamak can be expressed as

B =
B0R0

R

(
eϕ +

r

R0qs
eθ

)
, (1.10)

where eϕ and eθ are the unit vectors in the toroidal and poloidal direction, see also
Figure 2.1, and qs ∼ rB0/R0Bθ (more details about the plasma equilibrium B0 are
provided in section 2.1). At zeroth order the poloidal field Bθ is small compared to
the toroidial one B ∼ 1/R, thus the magnetic field strength is weak on the outside
of the torus and strong on the inside. Because of conservation of the kinetic energy
E = mv2/2 and of the magnetic moment μ = mv2

⊥/2B, particles starting on the outside
of the torus with a small v‖/v⊥ are mirror reflected as their parallel motion brings them
towards the inside of the torus in the high field region. These particles are trapped on
the outside of the torus. Particles with a sufficiently high v‖/v⊥ are instead free to move,
they are the so-called passing particles. For a particle starting at the low field side, the
trapped-passing boundary can be written as

v2
‖

v2 < 1 − Bmin
Bmax

= 1 − R0 − r

R0 + r
∼ 2

r

R0
(1.11)

defining the so-called trapping-cone, shown in Figure 1.3. The angle θt is defined by
cos(θt) = v‖/v ∼

√
2r/R0 ∼

√
2ε, where ε = r/R0 is the ratio between the minor radius

r and major radius R0 of the machine. The fraction of trapped particles for a Maxwellian
distribution is given by

αt ∼
√

2ε. (1.12)

These particles bounce between their reflection points and the resulting motion projected
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Figure 1.3 : Velocity space showing the trapped-passing boundary and the resulting
trapping cone.

Figure 1.4 : Banana orbits of trapped particles. Different values of v‖/v⊥ lead
to different bounce angles corresponding to deeply trapped particles, moderately
trapped particles, and barely trapped particles. From Ref. [5].
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1.3. Transport in confined plasmas

on a poloidal plane resembles the shape of a banana, see Figure 1.4, hence the name
banana regime. The banana width rb can be estimated considering the radial excursion
due to drift velocities associated to magnetic field gradient and curvature:

rb ∼ Bϕ

Bθ

|Δv‖|
Ω

∼ qs

ε

|v‖|
ω

∼ qρ√
ε
, (1.13)

typically larger than the Larmor radius. The bounce frequency of trapped particles ωb

can then be estimated as

ωb ∼ vd

rb
∼ vth

qsR0
∼
√

ε/2vth/(qR0) (1.14)

where vd is the total drift velocity, which in a typical tokamak configuration satisfies
the ordering vd/vth ∼ ρ/R0 � 1. Hence, collisional detrapping leads to larger step size
than the classical one. Moreover, the effective collisional frequency is also enhanced
by 1/ε because the scattering angle required in velocity space to go from one trapped
trajectory to another is within the trapping cone Δθt. The diffusion in the so-called
banana regime, i.e. ωb � νc (one often defines this regime introducing an effective
collisionality ν∗ = (νc/ε)/ωb � 1), can thus be expressed as

Dneo = αt
νc

ε
w2

b . (1.15)

In practice Dneo can be up to two orders of magnitude larger than the corresponding
classical estimate, setting a lower limit of transport for any toroidal machine. We also
recall that when collisionality increases, collisional detrapping happens, on average,
before a banana orbit is completed, thus reducing the effective radial step. This is the so
called plateau regime, where transport does not depend on collisionality. At even higher
collisionality one finally enters the so-called Pfirsch-Schlüter regime [10] where diffusivity
is again proportional to νc.
Even though toroidal geometry can increase by two orders of magnitude the transport
estimated by classical collisional estimates, the experimentally measured diffusivities are
still usually larger by one or two orders of magnitude and one refers to this additional
plasma transport as being anomalous. Nowadays, it is widely accepted that anomalous
transport is due to plasma turbulence, in turn caused by instabilities that develop on
microscopic scale lengths, known as microinstabilites. An intuitive description of the
mechanism at place is as follows. In order to meet the conditions necessary to reach
fusion, the plasma is in a statistically steady state very far from a thermodynamic
equilibrium. In particular, an extreme pressure gradient, ∼ 1 atm in the core, vacuum
at the edge, is built radially across the plasma, providing a source of free energy which
in particular destabilizes small-scale plasma waves, i.e. with characteristic wavelengths
perpendicular to the magnetic field of the order of the ion and electron Larmor radius.
These instabilities involve density and temperature fluctuations, δn and δT respectively,
as well as electrostatic or electromagnetic fluctuations, δφ and δA. As a result of
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Chapter 1. Introduction

nonlinear coupling, these instabilities drive a low amplitude turbulent state, δn/n ∼
δT/T ∼ eφ/T ∼ 1%. The fluctuating electromagnetic fields lead to additional radial
drifts. When the fluctuations of e.g. density are in phase with these drifts, then a net
flux of particles Γturb can develop. In a similar way, pressure perturbations lead to a net
flux of energy Qturb across the plasma. Even though microturbulent fluctuations are very
small in amplitude, typically 10−3 in the core of large devices, the associated transport
fluxes can be sufficiently large to explain experimental measurements. Typically one
relates these fluxes to the gradients via turbulent diffusivities:

Qturb = −nχturb∇T Γturb = −Dturb∇n (1.16)

where a simple local relation has been assumed. More generally, it should be remembered
that turbulent fluxes can exhibit a non-local nature. Furthermore, when relating fluxes
to gradients, off-diagonal terms can play a significant role, e.g. density gradients driving
heat fluxes, as well as non-diffusive pinch terms.

1.4 Scope and outline of the thesis

The main goal of this thesis is to study turbulent transport in conditions relevant to
the Tokamak à Configuration Variable (TCV), which is located at the Swiss Plasma
Center. In the last two decades microinstabilities and the associated turbulence have been
actively studied with the help of numerical simulations, carried out in the framework of
the so-called gyrokinetic theory. This model allows to average the trajectory of particles
over their fast gyromotion around magnetic field lines, thus reducing the phase space
from six to five dimensions. A variety of codes have been developed to tackle this
subject, and different numerical methods have been used to carry out simulations [11].
In the Eulerian, or grid-based, description, the gyrokinetic equation is first discretized
on a fixed grid in phase space, obtaining a system of ordinary differential equations,
which are then numerically solved. The Particle In Cell (PIC) method instead uses
a Lagrangian description of the plasma. A statistical sampling of markers in phase
space is performed and particle trajectories are followed. A third approach, the so-called
semi-Lagrangian, can be seen as a combination of grid-based and PIC methods. At each
time step, the distribution function is discretized in phase space, however the update
of the distribution function is obtained integrating particle trajectories. Each of the
aforementioned methods have advantages and disadvantages. For instance, the Eulerian
method is usually computationally more demanding than the PIC method, however it
does not suffer from numerical noise arising from the statistical sampling.
In this work we shall make use of the Eulerian gyrokinetic code GENE [12], in both its
local and global versions. The local approach, based on a complete separation between
the spatial scales of turbulent and background equilibrium profiles, allows one to reduce
the simulated physical volume to a narrow tube aligned with the magnetic field. While
this approach leads to a strong reduction of the computational effort, it might not be
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adequate for small size machines like TCV, where the scale separation assumption is not
clearly satisfied. In this case a global approach, where the radial variation of equilibrium
quantities like temperature and density profiles, as well as of the magnetic geometry, are
retained, might be necessary.

TCV is a so-called medium-size tokamak, a device whose minor and major radius are
respectively 30 cm and 0.88 m, with a confining magnetic field of 1.4 T and plasma
current up to 1.2 MA. An essential feature of this machine is the high flexibility of the
magnetic coils system, which allows one to create plasmas with very different shapes.
In particular it has been experimentally shown [13] that negative triangularity δ of
the Last Closed Flux Surface (LCFS) has a strong beneficial effect on the electron
energy confinement in L-mode discharges, which, in spite of the finite radial penetration
depth of δ, is increased by approximately a factor of two at all radial locations when
changing the sign of δLCFS from positive to negative. The origin of this improvement
remains not completely understood, and numerical simulations are a suited tool for
such an investigation, the gyrokinetic theory providing the ideal framework for studying
microturbulence.
Other relevant observations made in TCV are related to the Geodesic Acoustic Mode,
which may play an important role in saturating turbulence, thus helping lowering
transport. This mode is experimentally observed as “eigenmode”, that is a global radially
coherent oscillation of e.g. plasma electron density over a significant fraction of the minor
radius, while analytic theory predicts a scaling of the mode frequency with the local
temperature. Only in specific conditions this latter condition of a “dispersive” mode is
experimentally observed.

This work is structured as follows. In chapter 2, the theoretical background is described.
The plasma magnetic equilibrium is presented, and the key elements of the derivation of
the gyrokinetic equations and associated electromagnetic fields are given. The so-called
local and global approaches are introduced, as well as further simplifications that can be
made under specific conditions to reduce the computational effort. A phenomenological
description of the microinstabilities mostly relevant in the case of interest for us is
provided.
The numerical implementation of the gyrokinetic equations in GENE is presented in
chapter 3, where specific local and global code features are discussed.
Chapter 4 is dedicated to a series of local and global benchmarks that have been carried
out in order to validate the interface of GENE with the MHD equilibrium solver CHEASE,
in view of carrying out simulations that consider the realistic magnetic geometry of TCV.
An investigation of profile stiffness, addressing its dependence on shaping which can
potentially explain the observed confinement improvement, is carried out with the local
version of the code in Chapter 5. It will be shown that, even if the most complete model
is used, local simulations appear inadequate to reproduce TCV transport level and global
effects should be retained.
Chapter 6 is thus devoted to global simulations of TCV. For the original parameter set,
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simulations are unable to reproduce the observed heat transport, a discrepancy that is
understood as a consequence of the too large error bars in the measured density and
temperature profiles. The analysis of another experimentally better diagnosed discharge,
still addressing the effect of negative triangularity, has been initiated and, in this case,
simulations indeed show a much better agreement with measurements.
In Chapter 7, GAM dynamics are studied in TCV relevant conditions with both local and
global simulations, aiming at reproducing the experimental trends, and partly addressing
the coherent-dispersive regime transition.
Finally, conclusions are drawn in chapter 8.
Appendices are present at the end of the thesis. Appendices A and B contain a brief
description of the GKW and GS2 codes, providing the necessary information for carrying
out the local benchmarks of chapter 4. Appendix C describes the implementation, in
form of a post processing tool of GENE simulations, of synthetic diagnostics for the
Phase Contrast Imaging and correlation-ECE currently installed on TCV, and, finally,
Appendix D provides more details about local simulations carried out in chapter 7.
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2 Theoretical background

The aim of this chapter is to provide a brief description of the theoretical framework and
of the basic equations used in order to describe microturbulence in a confined plasma.

2.1 Tokamak plasma equilibrium

The background magnetic field B0 that appears within the gyrokinetic description, is
the magnetic field which confines the plasma. A tokamak is in principle a perfectly
axisymmetric device. Deviations from this abstract model can arise because of non-ideal
coil systems, externally induced magnetic perturbations or internal perturbations (see
e.g. helical cores), which will however be both neglected throughout this work.
The equilibrium state of the plasma can be characterized using a fluid model. In particular,
it can be described by the time independent ideal MHD equations:

j × B0 = ∇p, (2.1)
∇ × B0 = μ0j, (2.2)
∇ · B0 = 0. (2.3)

Here j is the current density and p the total plasma pressure. Equation (2.1) simply
expresses the force balance between the magnetic and plasma pressure at equilibrium.
Background flows have been neglected.

Assuming a cylindrical coordinate system (R, Z, ϕ), as the one depicted in Figure 2.1, all
background quantities are independent from ϕ in case of a tokamak. The most general
form of a divergence-free magnetic field satisfying this condition can be written as

B0 = F (ψ)∇ϕ + ∇ϕ × ∇ψ. (2.4)

The magnetic field has been decomposed into the toroidal Bϕ = F (ψ)∇ϕ and poloidal

13



Chapter 2. Theoretical background

Figure 2.1 : Cylindrical coordinate system (R, Z, ϕ) as employed in GENE. Indi-
cated are also the location of the magnetic axis, the flux surfaces (ψ=const) and the
Last Closed Flux Surface (LCFS), separating the confined plasma from the Scrape
Off Layer.

Bθ = ∇ϕ × ∇ψ components, with ϕ the poloidal flux function defined as the poloidal
flux through a ribbon between the magnetic axis and a given radial location [14]:

ψ(R, Z) =
1

2π

∫
S

B0 · dS =
1

2π

∫
S

Bθ · dS. (2.5)

From Equation (2.4) one immediately sees that B · ∇ψ = 0, implying that magnetic field
lines lie on ψ =const surfaces. Furthermore, from (2.1) one has B · ∇p=0 and j · ∇p=0.
Hence, B and j are tangent to p=const surfaces. These surfaces can be uniquely labelled
by ψ and are the so-called flux-surfaces. The plasma pressure is thus a flux-surface
quantity, p = p(ψ). The magnetic axis is defined as the center of these nested flux
surfaces, i.e. where the magnetic surface reduces to a toroidal magnetic field line (ψ = 0).
The last of these nested surfaces is known as the Last Closed Flux surface (LCFS), setting
a boundary between the confined plasma and the so called Scrape-Off Layer.
Combining Eqs. (2.4) with the force balance, Equation (2.1) and Ampére’s law (2.2),
one obtains the following relation:

−R2∇
( 1

R2 ∇ψ

)
= μ0R2p′ + FF ′, (2.6)

with

p′ =
dp
dψ

, F ′ =
dF
dψ

. (2.7)
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2.1. Tokamak plasma equilibrium

Equation (2.6) is known as the Grad-Shafranov equation [15], describing the magnetic
equilibrium of a confined plasma provided a pressure gradient p′(ψ) and a current F (ψ)
profiles.
One of the essential features of a tokamak is the fact that magnetic lines must be twisted
around the torus in order to achieve stability [3]. This twisting, related to the strength
of the poloidal field compared to the toroidal one, is measured by the safety factor q:

q(ψ) =
1

2π

∮ 2π

0

dϕ

dθ

∣∣∣∣
along B0

dθ =
1

2π

∮ 2π

0

B0 · ∇ϕ

B0 · ∇θ
dθ. (2.8)

where θ is the geometrical poloidal angle. Physically, the safety factor is associated to the
number of toroidal turns required in order to cover one poloidal turn along a magnetic
field line lying on a given ψ=const flux surface.

Experimentally, the shape of the flux-surfaces can be varied and, besides being relevant
for plasma stability with respect to MHD modes, this is in fact one of the potential ways
to possibly reduce turbulent transport. Additional magnetic coils are normally installed
on a Tokamak so as to provide the freedom to vary the shape of the plasma. In practice,
one aims at a given shape of the LCFS and then adapts the external magnetic fields such
as to maintain the desired geometry.
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Figure 2.2 : Different MHD equilibria, labelled as Cases I to V, characterized by
different degrees of shaping complexity. Shown are constant contours of the poloidal
magnetic flux function ψ/ψ(LCFS). The contour of the flux surface at r/a = 0.5 is
depicted in black.

As an illustrative example, in Figure 2.2 we show five different plasma geometries
corresponding to different degrees of shaping complexity. They are labelled as Case I
to V, and will be used for the benchmarks presented in Chapter 4, where a detailed
description of these equilibria will also be provided. It suffices to note that Case I is in
fact very close to an actual experimental plasma (it is inspired by a real DIII-D discharge
[16]), while all the other equilibria have been obtained by artificially modifying the LCFS.
A typical approach for describing a given flux-surface is by taking its poloidal Fourier
decomposition. In this case one can write the (R, Z) contour of a given flux-surface
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(labelled by its minor radius r) as

R(θ) = R0 + r cos(θ) − Δ(r) +
∑
m=2

Sm(r) cos [(m − 1)θ] + P (r) cos(θ)

Z(θ) = r sin θ −
∑
m=2

Sm(r) sin [(m − 1)θ] − P (r) sin(θ),
(2.9)

where R0 indicates the location of the magnetic axis (assuming for simplicity that
its elevation is Z=0), while Δ indicates the so-called Shafranov shift, related to the
compression of magnetic surfaces at the outboard midplane induced by toroidicity. Finally,
P (r) is a higher order correction term. With this parametrization, one can express the
magnetic field amplitude as [17]

B = B0

{
F

R0B0
− ε cos(θ) + ε2

(
cos2(θ) +

1
2q2

)
+

Δ
R0

−
∑
m=2

Sm

R0
cos [(m − 1)θ]

}
,

(2.10)

with F = R0B0 + O(ε2) and ε = r/R0 the inverse aspect ratio. The coefficients Sm

provide a measure of the shaping of the actual flux-surface, see Figure 2.3.

In particular, S2 is associated to the elongation κ, S3 to the triangularity δ,

κ(r) =
r − S2
r + S2

and δ(r) =
4S3
r

,

and so on for higher order terms. Each of these coefficients can be evaluated by introducing
Eq. (2.9) in the Grad-Shafranov equation and decomposing into Fourier modes cos(mθ).
Neglecting higher order corrections, one gets (see Ref. [18] for details)

r2S′′
m + (3 − 2s(r))rS′

m + (1 − m2)Sm = 0 (2.11)

which, under the assumption of flat q profile can be solved as

Sm(r) = Sm(a)
(

r

a

)m−1
, (2.12)

leading for elongation and triangularity

κ(r) = κLCFS and δ(r) = δLCFS
r

a
,

already illustrating how different shaping parameters have a different penetration depths.
The penetration of the shaping into the core is also affected by the magnetic shear s(r),
whose increase decreases the penetration in the core and vice versa.

16



2.2. Kinetic plasma modeling and Vlasov-Maxwell system

0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

κ>1

R

Z

(a)

0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

δ>0

R

Z

(b)

0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

δ<0

R

Z

(c)

0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

ξ>0

R

Z

(d)

Figure 2.3 : Examples of shaped flux surfaces. The actual contours shown in red
are obtained from the parametrization (2.10) starting from a circular flux surface
(depicted in blue) and adding (a) elongation κ which is corresponding to S2, (b)
positive triangularity δ associated to S3, (c) negative δ and (d) finite squareness ξ
associated to S4.

2.2 Kinetic plasma modeling and Vlasov-Maxwell system

In a kinetic description, each plasma species j is characterized by a distribution function
fj(x, v, t) which depends on position x, velocity v and time t. Estimating fj(x, v, t)d3xd3v
provides the number of particle which are located in the infinitesimal six dimensional
phase space volume d3xd3v around the position (x, v) at time t. The time evolution of
fj is governed by the following equation:

d
dt

fj(x, v, t) =
[

∂

∂t
+ v

∂

∂x
+

qj

mj
(E(x, t) + v × B(x, t))

∂

∂v

]
fj(x, v, t) = C [fj(x, v, t)] ,

(2.13)

where qj and mj are respectively the charge and the mass of species j, E(x, t) and
B(x, t) the electromagnetic fields and C is an operator used to model the effect of binary
collisions. The operator d/dt appearing in (2.13) represents the total time derivative along
unperturbed trajectories in phase space. For high temperature plasmas, as is the case for
the core conditions of most fusion plasmas, the collision frequency is very small compared
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to the characteristics time scales of many phenomena of interest, e.g. microturbulence
in our case, and collisions can therefore be neglected in first approximation. In this
case Eq. 2.13 reduces to dfj/dt =0, and is normally referred to as the Vlasov equation.
It simply states that the distribution function is constant along particle trajectories in
phase space.
The electromagnetic fields E(x, t) and B(x, t) appearing in Eq. (2.13) obey Maxwell’s
equations:

∇ · E =
1
ε0

∑
j

ρj , ∇ × E = −∂B
∂t

∇ · B = 0, ∇ × B = μ0

⎛
⎝∑

j

jj + ε0
∂E
∂t

⎞
⎠ (2.14)

where the source terms, the charge density ρj and the current charge density jj , are
evaluated as respectively zeroth and first velocity moments of the distribution function
fj :

ρj = qj

∫
fjd3v, jj = qj

∫
fjvd3v. (2.15)

A self-consistent description of the plasma evolution requires therefore to solve Equations
(2.13) and (2.14), which form the so called Vlasov-Maxwell system. This system of
nonlinear integro-differential equations formulated in 6-dimensional phase space cannot
be solved analytically except in few simplified and idealized situations. For a typical
tokamak, the complete solution to this system of equations would in principle account
for plasma dynamics involving different spatial and temporal scales varying by several
orders of magnitude: from the machine size down to the electron Larmor radius and
Debye length (∼ 5 orders of magnitude) and from confinement time sales to the cyclotron
frequency of electrons (∼ 11 orders of magnitude). Even for today’s supercomputers
this problem remains out of practical reach and it is therefore necessary to introduce
a set of approximations so as to retain only the spatial and temporal scales relevant
for microturbulence and associated transport. Gyrokinetic theory provides the analytic
framework to systematically derive a set of approximate equations that allow one to
reach this goal. The main ideas and the steps required to obtained the gyrokinetic
Vlasov-Maxwell system, constituting the theoretical basis of this work, will be presented
in the next section.

2.3 The gyrokinetic model: the basic idea and correspond-
ing ordering

Several approximations are systematically carried out to derive the gyrokinetic Vlasov-
Maxwell system, based on the so-called gyrokinetic ordering. These approximations
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are not mere mathematical expansions, but reflect experimentally measured properties
of microturbulence in the core of magnetically confined plasmas [19–21]. In particular,
in the core of a Tokamak the microinstabilities are drift-wave type instabilities [22]
characterized by the following:

• Small amplitude
The relative amplitude of any fluctuating quantity e.g. density and temperature,
in the core of a confined plasma is very small compared to the background equi-
librium, typically only a few percent. This relative amplitude typically increases
moving towards the LCFS, up to several tens of percent in the SOL. Introducing a
dimensionless expansion parameter εδ, the aforementioned ordering can be formally
expressed as:

δf

f
∼ qδφ

Te
∼ q

v‖δA‖
Te

∼
δB‖
B

∼ εδ (2.16)

where all perturbation quantities have been indicated with a δ. Note that the
index j of species dependent quantities has been dropped to lighten notations.
Here φ(x, t) and A(x, t) are the scalar and vector potentials used to describe
the electromagnetic fields, E = −∇φ − ∂A/∂t and B = ∇ × A. Finally, from
hereon parallel and perpendicular directions are to be evaluated with respect to
the stationary background magnetic field B0(x, t).

• High anisotropy
The parallel wavelength is much larger than the one perpendicular to the magnetic
field. Typical correlations lengths are of the order of a few gyroradii in the
perpendicular direction, k⊥ρl ∼ 1 (k⊥ρi ∼ 1 characterizes fluctuations developing
on the ion scale, while k⊥ρe ∼ 1 fluctuations on the electron one). Much longer
distances, of the order of a connection length (∼ 2πR0q) which can be up to several
meters, characterize instead the parallel direction. This observation results from
the fact that the motion of particle is much faster along a magnetic field line than
across it, and can be expressed as

|k‖|
|k⊥| ∼ ε‖ and k⊥ρl ∼ 1. (2.17)

• Typical frequencies much smaller than the gyrofrequency
The frequency spectrum of microturbulence is typically broadband with a mean
frequency of the same order as the diamagnetic drift frequency ωD = k · vD

for a given wave vector k and drift velocity |vD| 	 (T/qB)|∇⊥ ln P |, P being
the pressure of a given species. The diamagnetic frequency of both ion and
electron scale fluctuations, respectively ωD ∼ vth,i/Lc and ωD ∼ vth,e/Lc with
1/Lc = d log n/dx, d log T/dx, is much smaller than the corresponding cyclotron
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frequencies Ωi,e:

|ω| � |Ω|. (2.18)

Furthermore, one assumes also that equilibrium quantities are stationary in time and
slowly varying in space:

ρi
∇f0
f0

∼ ρi
∇B0
B0

∼ εB. (2.19)

All the previously listed properties of microturbulence allow one to systematically carry
out a gyroaveraging procedure thanks to which the information about the fast gyration
is averaged out while keeping the slower timescales of turbulence dynamics. The original
Vlasov-Maxwell problem formulated in six-dimensional phase phase space is thus approx-
imated by a set of equations in a reduced five-dimensional phase space (three space and
two velocity dimensions). In this description only the information about the average
motion of the gyrocenter of each particle is retained. These trajectories result from the
gyro-averaged stationary and fluctuating electromagnetic fields, and as k⊥ρl ∼ 1, finite
Larmor radius effects are kept for the gyroaveraged fluctuating fields. This is equivalent
to replacing the full particle motion with the dynamics of charged rings along field lines
subjected to perpendicular drifts.

2.4 Modern derivation of the collisionless gyrokinetic equa-
tion

Even if it appears intuitive to consider the gyrokinetic description as basic equations of
motion for particles resulting from an averaging procedure over the gyroangle, in order
to correctly derive the corresponding equations, ensuring also conservation properties, a
sophisticated mathematical approach must be followed. The original derivation of the
non-linear gyrokinetic equation by Frieman and Chen [23] was obtained as an ordering
expansion in the small parameter ε (εδ ∼ εB ∼ ε‖ ∼ ε). Modern gyrokinetic theory
instead is based on variational methods, where Lie transforms are used to introduce
appropriate phase-space coordinate transformations such as to explicitly remove the
dependence on the gyroangle, which thus remains a cyclic variable. The first application
of Lie transforms to guiding center is due to Littlejohn [24]. The approach was then
extended to electrostatic and electromagnetic fluctuations, and to nonlinear gyrokinetic
equations. In the following, the main steps required to derive the collisionless gyrokinetic
equations will be presented. For a detailed and comprehensive description of modern
nonlinear gyrokinetic theory we refer the reader to the review by Brizard and Hahm [25].
How the effect of collisions is modeled in practice will be briefly discussed in section 2.5.
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2.4. Modern derivation of the collisionless gyrokinetic equation

For an Hamiltonian system, the equations of motion can be derived minimizing the action
given by the time integral of its Lagrangian L along particles trajectories, according to
the following variational principle:

δ

∫
Ldt = 0. (2.20)

The Lagrangian L(z, ż, t) is the so-called phase space Lagrangian, which is obtained from
the Lagrangian L(p, q, t) = p · q̇ − H(p, q, t), expressed in canonical coordinates (p, q),
H being the Hamiltonian of the system, with an arbitrary change of variables z = z(p, q).
The advantage of using the variational principle given by Eq. 2.20 is that it is valid for
any choice of phase space coordinates, including non-canonical variables.
It proves convenient to use a one-form formulation:

γ = γμdzμ = Ldt, (2.21)

with zμ = {zi, t}, where i = 1, 2, 3 spans the spatial and i = 4, 5, 6 the velocity directions.
Here the Einstein summation rule over repeated indexes is assumed.
A description of differential k-forms and their properties is clearly outside the scope of
this work and can be found elsewhere, see e.g., Ref. [25]. Here it suffices to remember
that k-forms are fundamental objects defined on an n-dimensional space with coordinates
z = {z1, . . . , zn} of the form

γk =
1
k!

γi1...ik
dzi1 ∧ · · · ∧ dzik . (2.22)

One defines in particular the external derivative d of a k-form, which is a (k + 1)-form,
as

dF ≡ ∂μFdzμ (2.23)

for zero-forms (scalars), and as

dγ ≡ dγμ ∧ dzν (2.24)

for one-forms. One introduces also an inner product between a vector v and a k−form,
which results in a (k − 1)-form. It is defined as

v · γ ≡ vμγμ (2.25)

for one-forms and as

v · γ ≡ vμγμνdzν . (2.26)

for two-forms.
Making use of the one-form formulation, the variational principle of Eq. (2.20) leads to
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the generalized Euler-Lagrange equations of motion [26]:

ωμν
dzν

dt
= 0 (2.27)

where

ωμν =
∂γν

∂zμ
− ∂γμ

∂zν
(2.28)

is the so-called Lagrange tensor. For the following, it is also useful to remember that a
one-form γ in z can be expressed as Γ in a new coordinate system Z according to:

γμdzμ = γμ
∂zμ

∂Zμ
dZμ = ΓμdZμ (2.29)

and that the equations of motion are invariant with respect to a phase space gauge
transformation of the one form γ → γ + dS, where dS is the exact differential of a scalar
function S(zμ), referred to as the phase space gauge function.
For the case of interest to us, one starts considering the motion of charged particles in
given electromagnetic fields. In this case the Lagrangian and Hamiltonian, expressed
using the non-canonical coordinates (x, v), assume the following well known expressions:

L(x, v) = (mv + qA(x)) · v − H(x, v), (2.30)

H(x, v) =
1
2

mv2 + qφ(x). (2.31)

The scalar and vector potential, φ and A respectively, are associated to the electric and
magnetic fields:

E = −∇φ − ∂A
∂t

and B = ∇ × A. (2.32)

The corresponding one-form therefore reads

γ = (mv + qA) · dx −
(1

2
mv2 + qφ

)
dt. (2.33)

The derivation of the gyrokinetic equation proceeds then in three steps. First a transfor-
mation is applied to Eq. 2.33 such as to derive the one-form for guiding center motion in
a stationary magnetic field B0 = ∇ × A0. Then, field perturbations characterized by δφ

and δA0 are allowed (as necessary in order to model turbulent fluctuations) obtaining
a new set of equations which describe the particle motion in these fluctuating fields
retaining the effect of the gyromotion but without explicitly depending on the gyroangle.
Finally, from the gyrocenter distribution one can evaluate the moments required for
estimating sources to Maxwell’s equation, thus allowing to consistently compute the
electromagnetic fields and obtain the gyrokinetic Vlasov-Maxwell system.
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2.4.1 The unperturbed guiding center equations

The guiding center transformation involves an expansion in the small parameters
εB ∼ ρ/LB in order to remove the fast gyroscale associated with the time-independent
background magnetic field B0 = ∇ × A0. For the sake of simplicity, we will neglect
in the following derivation any background electric field which is associated to plasma
rotation. In this case the single particle one-form reads:

γ0(x, v) = (mv + qA0) · dx − 1
2

mv2dt. (2.34)

One aims at rewriting Eq. (2.34) using a new set of coordinates (XGC, v‖,GC, μGC, αGC),
the so-called guiding center coordinates (GC), such that thanks to a proper choice of the
gauge function S one can then explicitly eliminate the dependency on the gyroangle α at
all orders from the resulting one form.
Here XGC is the position of the guiding center around which particles gyrate, v‖GC

the component of velocity parallel to the magnetic field and μGC = mv2
⊥GC/(2B0) the

magnetic moment. Having assumed that the background electromagnetic fields vary on a
much larger scale than the gyroradius, the gyromotion can be approximately considered
circular.
In order to describe particle motion it is thus convenient to use a local Cartesian
coordinate system (e1, e2, b) at each point x of coordinate space, where b = B0/B0
points in the direction of the magnetic field and (e1, e2) are two orthogonal unit vectors
in the perpendicular plane, see Figure 2.4.

Figure 2.4 : Local Cartesian coordinate system (e1, e2, b) used to described the
gyromotion of a positively charged particle at the position x. The position of the
guiding center XGC is indicated in green and the Larmor radius ρ in blue.

Defining the radial and tangential directions

a(αGC) = e1 cos(αGC) − e2 sin(αGC), (2.35)
c(αGC) = −e1 sin(αGC) − e2 cos(αGC), (2.36)
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the particle coordinates (x, v) can be expressed as function of the guiding center coordi-
nates according to

x = XGC + ρ(XGC, μGC)a(αGC), (2.37)
v = v‖GCb + v⊥GC(XGC, μGC)c(αGC). (2.38)

The original unperturbed one-form given in Eq. 2.34 can then be transformed in a
straightforward way according to the rule given by Eq. (2.29). Expanding the background
magnetic field in the small parameter εB,

A0(x) = A0(XGC) + ρa(αGC) · ∇A0(XGC) + O(ε2
B), (2.39)

one obtains at first order in εB:

ΓGC
0 =

(
mv‖GCb + mv⊥GCc(αGC) + qA0(XGC) + ρa(αGC) · ∇A0(XGC)

)
· (d [XGC + ρa(αGC)]) −

(1
2

mv2
‖GC + μGCB0

)
dt.

(2.40)

The gyrophase dependence in ΓGC
0 (i.e., all terms depending on αGC) can then be

systematically removed at any order by a proper phase space gauge transformation
involving a gauge function S. For instance, at order zero there is no dependence on the
gyroangle, while choosing dS = −qd (ρa) · A0 − qρa · (dXGC · ∇A0), allows to cancel all
terms depending on the gyroangle at order one, obtaining

ΓGC
0 =

(
mv‖GCb + qA0

)
· dXGC +

μGCB0
Ω

dαGC −
(1

2
mv2

‖GC + μGCB0

)
dt. (2.41)

We note that the same result can be obtained by explicitly applying a gyroaverage
operator defined as

〈· · · 〉 =
1

2π

∫
dαGC (2.42)

to the one-from in (2.40).

2.4.2 The gyrocenter equations

In order to describe turbulent phenomena, one must allow for perturbations of the elec-
tromagnetic fields and consequently extend the equations previously derived. According
to the gyrokinetic ordering, such perturbations are small compared to their background
counterpart, i.e., of order O(εδ). Hence, the electromagnetic potentials as well as the
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one-form, can be conveniently split into a background and a perturbation:

φ(x, t) = φ1(x, t), (2.43)
A(x, t) = A0(x) + A1(x, t), (2.44)
γ = γ0 + γ1, (2.45)

with

γ1 = qA1(x, t) · dx − qφ1(x, t)dt. (2.46)

If now one proceeds as detailed in the previous section and computes the perturbed
guiding center one-form Γ1, one obtains

ΓGC
1 =qA1(XGC + ρ, t) ·

[
dXGC +

1
qv⊥GC

a(αGC)dμGC +
mv⊥GC

qB0
c(αGC)dαGC

]

− qφ1(XGC + ρ, t)dt,

(2.47)

which is clearly function of the fast varying gyroangle because of the rapidly fluctuating
nature in space of the perturbed electromagnetic fields A1(x, t) and φ1(x, t). This gy-
roangle dependency cannot be removed by means of a simple gauge transformation alone.
Intuitively, one cannot replace the actual particle position x with the gyrocenter one
XGC in the fields as they are rapidly varying over the gyroradius scale. Instead, another
set of coordinates, the gyrocenter (GY) coordinates (X, v‖, μ, α), for which the associated
perturbed one-form ΓGY

1 is independent of the gyroangle, must be introduced.

The transformation to the new coordinate system (denoted here with an overbar) involves
continuous near-identity phase space coordinate transformations of the form:

Tε : Z → Z̄(Z, ε) ≡ TεZ with Z̄(Z, 0) = Z, (2.48)

and their inverse

T −1
ε : Z̄ → Z(Z̄, ε) ≡ T −1

ε Z̄ with Z(Z̄, 0) = Z̄, (2.49)

where ε denotes an ordering parameter.
Using the Lie transform technique, one can introduce the so-called generating vectors G
such as to express the coordinate transformation as

T ±1
ε ≡ exp

(
±
∑

n

εnGn · d
)

. (2.50)

The n-th generator Gn is used to remove the fast time scale of order εn from the perturbed
system. One can therefore explicitly rewrite to order ε2 the coordinate transformations
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given in (2.48) and (2.49) as

Z̄μ = Zμ + εGμ
1 + ε2

(
Gμ

2 +
1
2

Gν
1

∂Gμ
1

∂Zν

)
+ O(ε3), (2.51)

Zμ = Z̄μ − εGμ
1 − ε2

(
Gμ

2 − 1
2

Gν
1

∂Gμ
1

∂Z̄ν

)
+ O(ε3). (2.52)

The transformation defined by (2.50) induces pull-back Tε and push-forward T −1
ε operators

which are used to transform scalar fields F . The pull-back operator transforms a scalar
field F̄ defined in a phase-space with coordinates Z̄ into a scalar field F in a phase space
with coordinates Z. The push-forward instead operates the inverse transformation i.e.,
from a scalar field F (Z) to F̄ (Z̄). These operators can be formally expressed with the
help of the generating vectors G according to

T ±1
ε ≡ exp

(
±
∑

n

εnGnd
)

= exp
(

±
∑

n

εnLG

)
. (2.53)

Here we have introduced the Lie derivative LG, which is a differential operator acting on
a k-form γ along the vector G according to

LGγ ≡ G · dγ + d(G · γ). (2.54)

One immediately notes that the Lie derivative preserves the tensorial nature of the object
on which it is applied, i.e. the Lie derivative of a scalar is a scalar and the derivative of a
one-form is a one-form. Making use of eqs. (2.23) to (2.26), one can easily show that the
Lie derivative of a one-form can be expressed as:

(LGγ)μ = Gν
(

∂γμ

∂Zν
− ∂γν

∂Zμ

)
. (2.55)

In order eliminate the dependence on the gyroangle from the guiding center one-form
ΓGC and obtain the corresponding gyrocenter one form, ΓGY, one makes use of the
transformation given in 2.55 properly choosing the generating vectors and the Gauge.
Different choices are available in order to accomplish this goal, see e.g., Refs. [27–29].
Here we follow [30], employing the so-called parallel-symplectic approach [25] which
allows the simplectic part of the gyrocenter one-form to retain gyroangle-independent
perturbed fields. The advantage is that the parallel momentum coordinate will not
depend on perturbed magnetic fields. Up to first order in ε one can write

ΓGY = (1 − εLG) ΓGC + dS (2.56)
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or, introducing a separation between equilibrium and perturbed contributions,

ΓGY
0 = ΓGC

0 + dS0 (2.57)
ΓGY

1 = ΓGC
1 − LGΓGC

0 + dS1 (2.58)

Here, ΓGC
0 is the unperturbed guiding center one-form derived in the previous section

and given by (2.41). Therefore, one has dS0 = 0. At first order the generating vectors
G1 and the gauge dS1 are chosen such as to obtain

ΓGY,X
1 = q〈A1‖〉b. (2.59)

One assumes ΓGY,μ
1 = 0 in order to establish the gyrocenter magnetic moment as an

adiabatic invariant. For the same reason, also ΓGY,α
1 = 0 is imposed. In the perturbed

guiding center ΓGY,v‖GC
0 = 0, which is maintained in the gyrocenter counterpart. The

following generators are therefore chosen [30]:

GX
1 =

1
B∗

0‖

[
b ×

(
A1 +

1
q

∇S1

)
+

B∗
0

m

∂S1
∂v‖

]
, (2.60)

G
v‖
1 =

Ω
B

B∗
0

B∗
0‖

(
A1 − b〈A1‖〉 +

1
q

∇S1

)
, (2.61)

Gμ
1 =

Ω
B

(
m

B
A1 · v⊥ +

∂S1
∂α

)
, (2.62)

Gα
1 = − Ω

B

( 1
v⊥

A1 · a +
∂S1
∂μ

)
, (2.63)

where

S1 =
1
Ω

∫
α

(
qφ̃1 +

1
B∗

0‖

(
b × Ã1

)
· μ∇B0 − qv‖

B∗
0

B∗
0‖

· Ã1 − qv⊥Ã · c
)

dα′, (2.64)

and

A∗
0 = A +

m

q
v‖b, B∗

0 = ∇ × A∗
0. (2.65)

In equation (2.64) we have introduced the notation F̃ to indicate the difference between
a given quantity F and its gyroaverge:

F̃ = F − 〈F〉. (2.66)

2.4.3 The gyrokinetic equation

In order to derive the gyrokinetic Vlasov equation, one can invoke the invariance of the
distribution function along its characteristics. From the previously derived gyrocenter
one-form, one can compute the equations of motion of each single gyrocenter thanks to

27



Chapter 2. Theoretical background

the Euler-Lagrange equations:

Ẋ =
b

qB∗
0‖

× ∇H + mv‖
B∗

mB∗
0‖

, (2.67)

v̇‖ = − B∗

mB∗
0‖

·
(
∇H + qb ˙̄A1‖

)
, (2.68)

where, in order to simplify the notation, we have explicitly introduced the perturbed
gyrocenter Hamiltonian H:

H =
1
2

mv2
‖ + μB0 + qφ̄1 + μB̄1,‖. (2.69)

From here on we denote the gyroaveraged quantities appearing in the equation of motion
with an overbar, while the notation 〈. . .〉 will be kept for field equations. This is done in
order to explicitly distinguish between gyroaverages taken about the gyrocenter position
X, as they appear in the equations of motion, from the ones about the particle position
x (in the fields).
The effective magnetic field B∗ appearing in the equation of motion,

B∗ = B0 +
B0
Ω

v‖∇ × b + ∇ ×
(
bĀ1‖

)
, (2.70)

can be recast into the more convenient form

B∗ = B∗
0‖b +

B

v‖
vc +

B

v‖
vA1‖ (2.71)

where a term of order O(εB) has been neglected. In writing Equation (2.71) we have also
introduced the curvature drift velocity

vc =
v2

‖
Ω

(∇ × b)⊥ , (2.72)

and the magnetic flutter

vA1‖ = − 1
mΩ

b ×
(
qv‖∇Ā1‖

)
. (2.73)

Combining Eqs. (2.67) and (2.71), defining the modified gyroaveraged potential ξ̄1 as

ξ̄1 = φ̄1 − v‖Ā1‖ +
μ

q
B̄1‖, (2.74)

introducing the grad-B drift velocity

v∇B =
μ

mΩ
b × ∇B (2.75)
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and the generalized E × B velocity, which contains also the magnetic flutter contribution,

vξ =
1

B0
b × ∇ξ̄1 (2.76)

the equations of motions can finally be rewritten as

Ẋ = v‖b +
B0
B∗

0‖
(vξ + vc + v∇B) (2.77)

v̇‖ = −
(

1
m

b +
1

mv‖
B0
B∗

0‖
(vξ + vc + v∇B)

)
·
(
μ∇B0 + q∇φ̄1 + μ∇B̄1‖

)
− q

m
˙̄A1‖.

(2.78)

These equations can be substituted into the Vlasov equation invoking, as already men-
tioned, the invariance of the distribution function along characteristics in phase space:

DF̄

Dt
=

∂F̄

∂t
+ Ẋ · ∂F̄

∂X
+ v̇‖

∂F̄

∂v‖
= 0. (2.79)

By construction the Vlasov operator does not contain derivatives with respect to μ as
μ̇ = 0, while the term ∂αF̄ drops because F̄ is independent of the gyroangle1. Again
the species index has been dropped to lighten notations. This is the so-called full-f
gyrokinetic equation, which describes the dynamics of the gyrocenter distribution F̄ .
A common procedure used to further simplify Eq. (2.79) is the so-called delta-f splitting,
in which one writes F̄ = F̄0 + F̄1 i.e. the distribution function is split into a time
independent background F̄0 and a fluctuating part F̄1. Employing the gyrokinetic
ordering and assuming that all ordering parameters are of the same magnitude, one can
separate Eq. (2.79) into terms of zeroth, first and second order.
At order zero, one obtains:

v‖b ·
(

∇F̄0 − 1
mv‖

μ∇B0
∂F̄0
∂v‖

)
= 0, (2.80)

which imposes a constraint on the background distribution, which is not explicitly evolved
in time.

1For clarity of notations, the distribution function is indicated as F̄ when expressed in gyrocenter
variables, as F in guiding center variables and as f in particle phase space variables.
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At order one Eq. (2.79) reads:

∂F̄1
∂t

+
{

b
qB∗

0‖
× ∇(μB0 + qξ̄1) +

B0
B∗

0‖
vc

}

·
[
∇(F̄0 + F̄1) − 1

mv‖
(μ∇B0 + q∇φ̄1 + μB̄1‖)

∂F̄0
∂v‖

]

+ v‖b ·
[
∇F̄1 − 1

mv‖
(q∇φ̄1 + μB̄1‖)

∂F̄0
∂v‖

− 1
mv‖

μ∇B0
∂F̄1
∂v‖

]

− q

m
˙̄A1‖

∂F̄0
∂v‖

= 0.

(2.81)

Second and higher order terms in Eq. (2.79) give rise to the so-called parallel nonlinearity,
which are neglected in the current version of the GENE code.
Throughout this work the background distribution will be assumed as a local2 Maxwellian
i.e.

F0(x, v‖, μ) =
n(x)

π3/2v3
th(x)

exp
[ 1

2mv2
‖ + μB

T (x)

]
(2.82)

where T (x) = mv2
th(x). With this choice, neglecting curvature and grad-B drifts, the

zeroth order gyrokinetic equation is automatically satisfied, as can be seen by a direct
substitution in Eq. (2.80). A true solution accounting for the finite orbit widths resulting
from aforementioned drifts is given by the so-called Canonical Maxwellian, i.e. function of
the constant of motion of the unperturbed axisiymmetric system: kinetic energy, magnetic
moment and canonical angular momentum. The reader is referred to Ref. [31] for a
detailed study of the consequences of taking a local distribution instead of a canonical
Maxwellian. The first order (2.81) can be greatly simplified by explicitly evaluating the
derivatives of the F0:

∇F0 =
[

∇n0
n0

+
∇T0
T0

(
mv2

‖/2 + μB0

T0
− 3

2

)
− μ

μ∇B0
T0

]
F0, (2.83)

∂F0
∂v‖

= −
mjv‖
T0j

F0, (2.84)

∂F0
∂μ

= −B0
T0

F0. (2.85)

2Local here indicates that the radial dependency of temperature and density is kept.
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Substituting these expressions into (2.81), one obtains

∂F̄1
∂t

+
B0
B∗

0‖
(vξ + v∇B + vc) ·

[
∇F0 − μ∇B0

F0
T0

]

+
B0
B∗

0‖
(vξ + v∇B + vc) ·

[
∇F̄1 − (q∇φ̄1 + μB̄1‖)

F0
T0

]

+ v‖b ·
[
(q∇φ̄1 + μB̄1‖)

F0
T0

+ ∇F̄1 − 1
mv‖

μ∇B0
∂F̄1
∂v‖

]

− qv‖
˙̄A1‖

F0
T0

= 0,

(2.86)

where we have also introduced the drift velocities defined in Eqs. (2.76), (2.75) and
(2.72). Finally, for numerical implementation it runs out convenient to combine the time
derivative of the distribution function with the one acting on the perturbed magnetic
potential Ā1‖. Therefore, introducing the modified distribution function

g1 = F̄1 + qv‖
˙̄A1‖

F0
T0

, (2.87)

Equation (2.86) becomes

∂g1
∂t

= − B0
B∗

0‖
(vξ + v∇B + vc) ·

[
∇F0 − μ∇B0

F0
T0

]

− B0
B∗

0‖
(vξ + v∇B + vc) ·

[
∇F̄1 − (q∇φ̄1 + μB̄1‖)

F0
T0

]

+ v‖b ·
[
(q∇φ̄1 + μB̄1‖)

F0
T0

+ ∇F̄1 − 1
mv‖

μ∇B0
∂F̄1
∂v‖

]
.

(2.88)

The GENE code implements and solves this equation, with specific numerical techniques
and further simplifications that will be detailed in the next chapter. We remark that the
only remaining nonlinearity in (2.88) stems from the term proportional to vξ · ∇F̄1 =
(b/B∗

0‖ × ∇ξ̄1) · ∇F̄1.

2.4.4 The field equations

In order to solve the gyrokinetic equations of motion, the self-consistent electromagnetic
fields must be evaluated from the following reduced form of the Maxwell’s equations
(considering Coulomb gauge):

− ∇2φ =
1
ε0

∑
j

qj

∫
f1j(x, v, t)d3v =

1
ε0

∑
j

qjn1j(x), (2.89)

− ∇2A = μ0
∑

j

qj

∫
f1j(x, v, t)vd3v = μ0

∑
j

njjj(x), (2.90)
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where the displacement current contribution has already been neglected in Ampére’s
law (2.90). Here we consider only the fluctuating parts of φ and A originated from
the perturbed particle distribution. The plasma current density j0 which produces the
confining magnetic field is neglected, as well as the vector potential generated by the
external coils. Given that the moment of the particle distribution function appearing
at the right-hand-side of Maxwell’s equations (2.89) and (2.90) are expressed in terms
of the particle distribution function variables, while the distribution provided by the
gyrokinetic equation is expressed in gyrocenter variables, one needs to properly evaluate
these moments with the help of the pullback operator defined in Eq. (2.53), such as to
transform the distribution in gyro-center variables in the one in particle variables.

Poisson equation

With the choice of generators and gauge detailed in the previous section, the pullback
operator Tε acting on the gyrocenter distribution F̄1 at first order in εδ reads:

F = TεF̄1

= F1 +
b × A1

B∗
‖

· ∇F0 +
Ω
B

B∗

B∗
‖

·
(
A1 − bĀ1‖

) ∂F0
∂v‖

+
Ω
B

(
m

B
A1 · v⊥ +

∂S1
∂α

)
∂F0
∂μ

,

(2.91)

with S1 given by Eq. (2.64). Considering the local Maxwellian background, (2.91) leads
to the following simplified form:

TεF̄1 = F1 −
(
qφ̃ − μB̄1‖

) F0
T0

. (2.92)

Given the distribution in gyrocenter variables, the pullback operator enables to obtain the
distribution in guiding center variables. The change of coordinates from guiding center
to particle variables can be then obtained with the help of a delta function δ(X + ρ − x),
such that the generic moment of the j−th species distribution function of order m and n

in v‖ and v⊥ respectively can be expressed as

Mj,mn(x) =
1

mj

∫
δ(X + ρ − x)

[
F1,j − qj

(
φ̃1 − μB̄1‖

) F0j

T0j

]
B∗

0‖vm
‖jvn

⊥jdXdv‖jdμjdα.

(2.93)

Here, one has made use of the guiding center phase-space Jacobian [32]:

JGC =
∣∣∣∣∣ ∂(x, v)
∂(XGC, v‖,GC, μGC, αGC)

∣∣∣∣∣ =
B∗

0‖
mj

. (2.94)
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The zeroth order moment i.e., the particle density n1j(x), is required in order to solve
Poisson’s Equation (2.89). By noting that

B∗
0‖ = B0 +

mj

qj
v‖b · (∇ × b) , (2.95)

it is possible to write

n1j(x) = Mj,00(x) =
1

mj

∫ {
δ(X + ρ − x)

[
F1,j − qj

(
φ̃1 − μB̄1‖

) F0j

T0j

]
(

B0 +
mj

qj
v‖jb · (∇ × b)

)}
dXdv‖jdμjdα.

(2.96)

Dropping the term proportional to b · (∇ × b) which is of order O(εB), expressing φ̃ as
the difference between the potential and its gyroaverage, Eq. (2.66), and integrating over
X, one obtains

∇2φ1 = − 1
ε0

∑
j

2π
qj

mj

∫ [〈
{B0F1,j}|X=x−ρ

〉
− qjφ1B0

F0j

T0,j

+
〈{[

qjφ̄1j + μB̄1‖j

]
B0

F0,j

T0,j

}∣∣∣∣∣
X=x−ρ

〉⎤⎦dv‖dμ,

(2.97)

where the integral over dα has been explicitly replaced with a gyroaverage operation. We
note that consecutive gyroaverages of both the electrostatic potential and the parallel
magnetic fluctuation have to be computed when solving the previous equation. The
notation {· · · }|X=x−ρ indicates that the bracketed expression is to be evaluated at the
position x − ρj .
Thanks to the parallel wavenumber ordering, the Laplacian can be approximated with
its perpendicular component. Rearranging the terms, the gyrokinetic Poisson’s equation
finally reads:

∇2
⊥φ1 − 1

ε0

∑
j

2π
q2

j

mj

∫ ⎡
⎣φ1B0

F0j

T0,j
−
〈{

B0φ̄1j
F0,j

T0,j

}∣∣∣∣∣
X=x−ρ

〉⎤⎦dv‖dμ =

− 1
ε0

∑
j

2π
qj

mj

∫ ⎡
⎣〈{B0g1,j}|X=x−ρ

〉
+
〈{

μB0B̄1‖j
F0,j

T0,j

}∣∣∣∣∣
X=x−ρ

〉⎤⎦dv‖dμ.

(2.98)

In the final step, we have also replaced F1,j with the corresponding modified distribution
function g1,j thanks to the symmetry of the equilibrium distribution F0 with respect to
v‖ (F0 is even with respect to v‖).
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Ampére’s Law

The parallel component of Ampére’s law can be evaluated following an equivalent
procedure. Thanks to the pullback operator, one can write it as a function of the
perturbed gyrocenter distribution as

∇2
⊥A1‖ = −μ0

∑
j

2π
qj

mj

∫
v‖〈{B0f1,j}|X=x−ρ〉dv‖dμ. (2.99)

In this case the substitution f1,g → g1,j introduces an additional term:

∇2
⊥A1‖ = −μ0

∑
J

2π
qj

mj

∫
v‖

〈{
B0g1,j − qjv‖B0Ā1‖,j

F0,j

T0,j

}∣∣∣∣∣
X=x−ρ

〉
dv‖dμ. (2.100)

Rearranging once again the terms such that all contributions involving A1‖ appear on
the left hand side, the final form of Ampére’s law can be expressed as:

∇2
⊥A1‖ − μ0

∑
J

2π
q2

j

mj

∫
v2

‖

〈{
BĀ1‖,j

F0,j

T0,j

}∣∣∣∣∣
X=x−ρ

〉
dv‖dμ =

− μ0
∑

J

2π
qj

mj

∫
v‖〈{Bg1,j}|X=x−ρ〉dv‖dμ.

(2.101)

One is thus left with finding an equation for B1‖ which appears in (2.98) whenever
compressional electromagnetic fluctuations are considered. This relation can be obtained
from the perpendicular component of Ampére’s law:

(∇ × B1)⊥ = μ0j⊥ (2.102)

The perpendicular current j⊥ can be as well expressed as a function of the perturbed
gyrocenter distribution. After some algebra, one gets:

(∇ × B1)⊥

= μ0
∑

j

2πqj

(
2

mj

)3/2 ∫ 〈{
cB3/2

[
f1j − (qjφ̃1 − μB̄1‖,j)

F0,j

T0,j

]}∣∣∣∣∣
X=x−ρ

〉
√

μdv‖dμ,

(2.103)

where c is the unit vector defined in (2.36). Equation (2.103) can then be rearranged
and solved together with (2.98) for φ1 and B1‖ [33].

2.4.5 Further simplifications

Depending of the particular case study, further simplifications can be applied to the field
equations resulting potentially also in a relevant reduction of the computational cost of a
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2.4. Modern derivation of the collisionless gyrokinetic equation

simulation.

Quasi-neutrality

For typical Tokamak parameters, the Debye length λD is much smaller than the wave
length of microinstabilities. One can thus neglect the Laplacian appearing in Eq. (2.98),
obtaining the so-called quasi-neutrality equation:

∑
j

qjn1j(x) = 0. (2.104)

Expressing the perturbed densities with the help of the moments of the distribution
function, one finally gets

∑
j

qj

mj

∫ [
〈{B0g1,j} |X=x−ρ〉 − qjφ1B0

F0j

T0,j
+ qj

〈{
B0φ̄1j

F0,j

T0,j

}
|X=x−ρ

〉

+
〈{

μB̄1‖jB0
F0,j

T0,j

}∣∣∣∣∣
X=x−ρ

〉⎤⎦dv‖dμ = 0.

(2.105)

The first term in Eq.(2.105) is the so called gyrodensity, while the following two are
referred to as the polarization density, which reflect the difference between guiding-center
and gyrocenter coordinates. The last one is associated to the compressional magnetic
fluctuations. We remark that GENE can handle a finite Debye length, which will however
be neglected in this work and the limit k⊥λD → 0 assumed.

Adiabatic electron model

For studying some types of modes, like e.g. ITG (see sec. 2.6.2), given their much lighter
mass in comparison to the one of ions, proton/electron masses ∼ 1836, electrons can
be assumed mass-less and therefore able to respond infinitely fast to an electrostatic
perturbation along the magnetic field. This constitutes the so-called adiabatic electron
limit. In this approximation, in a fluid-like description, a perfect balance is established
at all times between the parallel pressure gradient and the parallel electric field deriving
from the electrostatic potential φ. In this case the electron density is represented by a
Boltzmann distribution

ne(x) = N(x) exp
(

eφ1(x)
T0e(x)

)
= N(x)

(
1 +

eφ1(x)
T0e(x)

)
+ O(ε2) (2.106)

where in the last step we have assumed small amplitude fluctuations in order to linearize
the electron response. N(x) is evaluated assuming that the perturbed electron density
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cancels over a flux surface:

〈ne(x)〉fs = 〈n0,e(x) + n1,e(x)〉fs = n0,e(x) (2.107)

Here 〈· · ·〉fs indicates the flux surface average of a quantity A and is defined by

〈A〉fs = lim
Δψ→0

1
ΔV

∫
ΔV

A d3x, (2.108)

where ΔV (ψ) is the volume between the flux surface ψ=const and ψ + Δψ = const.
Combining equations (2.106) and (2.107) one arrives at

n1,e(x) =
n0,e(x)
T0,e(x)

e (φ1 − 〈φ1〉fs) , (2.109)

In this case the electron distribution does not need to be advanced in time. Equation
(2.109) can then be directly inserted in Eq. (2.105), which becomes

∑
j �=e

2π
qj

mj

∫ [〈
{B0g1,j}|X=x−ρ

〉
− qjφ1B0

F0j

T0,j

+qj

〈{
B0φ̄1j

F0,j

T0,j

}∣∣∣∣∣
X=x−ρ

〉⎤⎦ dv‖dμ = e2 n0e

T0e
(φ1 − 〈φ1〉fs) .

(2.110)

The Ampére equation is not solved in the adiabatic electron limit, since in this case a
Maxwellian dependency is assumed for the electron distribution in velocity space, thus
excluding any current.

Hybrid electron model

The assumption of a fully adiabatic response of electrons can be partly relaxed in the
so-called hybrid electron model, where passing particles are still assumed to respond
adiabatically, while the trapped electrons are handled with a fully gyrokinetic approach.
The gyrokinetic description is also used for treating the ion dynamics.
The trapped-passing boundary can be identified based on the conservation of kinetic
energy and magnetic moment; the trapped region, see Fig. 1.3, is thus defined in velocity
space at a given point (ψ, χ) n the poloidal plane by the relation

v‖(μ) <

{ 2
me

[B0,max(ψ) − B0(ψ, χ)] μ

}1/2
, (2.111)
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where B0,max indicates the maximum value of the magnetic field on the flux surface
ψ = const. One can then estimate the fraction of trapped particles αt as

αt =
√

1 − B0(ψ, χ)
B0,max(ψ)

. (2.112)

In the hybrid model, the distribution function of trapped electrons is clearly required
in order to evaluate the associated density fluctuations required for solving the field
equation. The passing electron contribution is instead enforced to be adiabatic. The
full electron distribution function must nevertheless be evolved in time according to the
gyrokinetic model because turbulent fields can cause passing particles to get trapped
and vice versa. The evolution of passing particles is however passive, as the passing
electron distribution function does not appear explicitly in the field equations, where it
is replaced by the adiabatic response weighted by αt.
Equation (2.105) reads in this case

(1 − αt)
1

2π
e2 n0,e

T0,e
(φ1 − 〈φ1〉fs) +

e

me

∫
trap

〈
{B0g1,e}|X=x−ρ

〉
dv‖dμ

+
e2

me

∫
trap

⎡
⎣φ1B0

F0e

T0,e
−
〈{

B0φ̄1e
F0,e

T0,e

}∣∣∣∣∣
X=x−ρ

〉⎤⎦dv‖dμ

=
∑
j �=e

qj

mj

∫ 〈
{B0g1,j}|X=x−ρ

〉
dv‖dμ

−
∑
j �=e

q2
j

mj

∫ ⎡
⎣φ1B0

F0j

T0,j
−
〈{

B0φ̄1j
F0,j

T0,j

}∣∣∣∣∣
X=x−ρ

〉⎤⎦dv‖dμ,

(2.113)

having neglected terms proportional to B1‖ as the hybrid model is inadequate to address
electromagnetic fluctuations. The velocity space integral appearing on the left hand side
(and indicated as

∫
trap) is only carried out over the trapped region defined in Eq. (2.111).

Adiabatic ion model

In the limit of short perpendicular wavelengths compared to the ion Larmor radius, the
effective response on ions become adiabatic. In this case the response n1,j of ions to an
electrostatic perturbation φ1 thus reads:

n1,j

n0,j
= − qj

T0,j
φ1 (2.114)
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At such short wavelengths, finite k⊥λD can become important and one must consider
the full Poisson equation instead of the reduced quasi-neutrality relation:

∇2
⊥φ1 − 1

ε0

∑
j

q2
j

n0,j

T0,j
φ1 +

1
ε0

2π

me
e2
∫ 〈{

B0φ̄1j
F0,e

T0,e

}∣∣∣∣∣
X=x−ρ

〉
dv‖dμ =

1
ε0

2π

me
e

∫ ⎡
⎣〈{B0g1,e}|X=x−ρ

〉
+
〈{

μB0B̄1‖e
F0,e

T0,e

}∣∣∣∣∣
X=x−ρ

〉⎤⎦ dv‖dμ,

(2.115)

In the adiabatic ion limit, parallel and perpendicular Ampére’s law are given by Eqs.
(2.101) and (2.103) respectively, where the sums are limited to the electron species.

2.4.6 The local limit

Besides simplifications in the field equations valid when studying particular turbulent
regimes, an important simplification can be made considering the turbulent transport
as being essentially a local process. In this case one assumes the limit ρ∗ → 0, where
ρ∗ = ρi/a, and neglects the variation of all equilibrium quantities over typical turbulence
correlation lengths, which are assumed to scale proportionally to the Larmor radius. This
is the so-called “local”, or flux-tube, approach [34] in contrast to the “global”, where this
approximation is not made. Under this limit, the simulation domain can be reduced to a
narrow tube elongated along a magnetic field line but covering only a small fraction of
the perpendicular cross-section.
The local gyrokinetic equations can be derived by removing the radial dependence of
equilibrium quantities in Eq. (2.88) and in the corresponding field equations (2.98),
(2.101) and (2.103). Their gradient is however retained and assumed constant across the
computational domain. As a result, all the equilibrium quantities exit from gyroaverages,
which can then be evaluated simply by multiplying with the Bessel function J0(k⊥ρj)
as shown in e.g. Ref. [33]. Temperature and density are considered constant across the
simulation domain, while their gradient is retained as the main turbulence driving term.
It should be noted that even if the flux-tube domain is representative of a very thin
radial fraction of the minor radius of the confined plasma, the numerical representation,
which employs radial periodic boundary conditions (see also section 3.2), must be carried
out assuming a sufficiently large radial computational domain in comparison to turbulent
radial correlation lengths. This, for the core conditions of machines of the size of TCV
(ρ∗ ∼ 1/80), can result in a simulation domain even larger than the actual plasma minor
radius.

2.5 The collision operator

The gyrokinetic model derived so far describes a collisionless plasma, that is a plasma
in which particles collectively interact between each other only via the self-consistent
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electromagnetic wavefields. This is a typical approximation valid for high temperature
fusion plasmas, where the collision frequency is much smaller than the typical frequencies
of microinstabilities. Binary interactions between particles can nevertheless play an
important role in determining the actual dynamics of microturbulent fields. As will
be discussed in the following chapters, for TCV relevant conditions, collisionality can
lead to a significant stabilization of microturbulence, and therefore to a reduction of the
associated heat and particle fluxes. In this work the effect of collisions is modeled via a
linearized Landau-Boltzmann operator C which is added as a correction to the right-hand-
side of the Vlasov equation, Eq. (2.13), leading to the so-called Fokker-Plank equation.
A detailed description of the collision operator and of its current implementation in the
GENE code can be found in Ref. [35]. Here we will summarize its essential properties.
In particle space, the collision operator for the j-th species assumes the form

C [fj ] =
∑
j′

Cjj′
[
fj , fj′

]
(2.116)

where Cjj′ represents collision of species j on another species j′, including self collisions
(j = j′). Thanks to the gyrokinetic ordering, assuming |δf/f0| � 1. the collision operator
can be linearized as follows:

Cjj′
[
fj , fj′

]
	 Cjj′

[
f1j , f0j′

]
+ Cjj′

[
f0j , f1j′

]
, (2.117)

having neglected both the collision contribution from the background species Cjj′
[
f0j , f0j′

]
,

as it describes a thermalization process happening on much longer timescales than
microturbulence, as well as the higher order nonlinear correction from Cjj′

[
f1j , f1j′

]
. One

often writes Eq. (2.117) as

C
[
fj , fj′

]
=
∑
j′

∂

∂v
·
(

¯̄Djj′ · ∂

∂v
− Rjj′

)
fj (2.118)

where ¯̄Djj′ is a diffusion tensor while the vector R represents drag, explicitly showing that
the Landau-Boltzmann equation is an advection-diffusion operator in particle velocity
space. It can also be shown that the operator of Eq. (2.118) ensures local conservation of
particles, energy and momentum, as well as the H-theorem for entropy production [36].
In order to derive a consistent collisional gyrokinetic model, one needs to transform the
operator given in Eq. (2.118) first to guiding center and then to gyrocenter coordinates to
be able to integrate it into Eq. (2.88). As a result, one obtains a collision operator which
is a mixed operator in configuration and velocity gyrocenter variables. This complication
is avoided in the GENE code by ignoring the difference between F and F̄ when evaluating
collisions in the gyrocenter equations. Furthermore, the guiding center collision operator
still has a gyroangle dependency, as the guiding center transformation is designed to
remove the gyrophase only from the collisionless Vlasov equation only. This dependence
is also neglected accounting only for the gyroangle-independent part.
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2.6 Microinstabilites

A proper description of microinstabilities with the purpose of understanding and esti-
mating the related transport, requires to solve the nonlinear gyrokinetic Vlasov-Maxwell
system of equations previously derived. This task is extremely challenging and can lead
to a large variety of instabilities depending on the particular considered plasma param-
eters. These modes are characterized by a wide range of frequencies and wavelengths.
Nevertheless, some classification among them can be made. One usually distinguishes
between electrostatic and electromagnetic instabilities, depending on the nature of the
dominant fluctuating field. Other typical distinctions are made considering the type of
wave dynamics e.g. drift waves, sound waves or Alfvénic modes. One can also separate
between instabilities driven by trapped or passing particles. As a result, a large number
of microinstabilities have been identified in literature, for which dispersion relations are
derived under specific limits. It must however be emphasized that all these distinctions are
usually made possible thanks to model simplifications (in particular linearization), as well
as the choice of a specific subset of plasma parameters. Under realistic conditions, many
of these instabilities coexist: they are unstable at the same time and interact linearly and
nonlinearly with each other. Therefore, for most practical purposes a numerical approach
must be considered and it might not always be obvious how to classify a specific result.
In the following, the most relevant microinstabilities for this work are briefly discussed
focusing mainly on physical interpretation rather than on mathematical derivations. A
more detailed description can be fond elsewhere, see e.g. Ref. [22].
Besides the single particle drifts, collective diamagnetic drifts can result from the plasma
pressure gradient. Considering a Maxwellian distribution and expanding to first order in
ρ/Lc, one can evaluate a fluid-like average velocity as

vdia =
∫

vf0dv = −∇p × B
nqB2 . (2.119)

The diamagnetic drift can thus be expressed as F × b/qB, where the force F = −∇p/n

is the macroscopic force related to temperature and density gradients. The inhomoge-
neous magnetic field can thus lead to the so-called drift waves and microinstabilities
which propagate perpendicularly to B at a velocity ∼ vdia. One therefore defines the
corresponding diamagnetic drift frequency ω∗ = k · vdia, where k is the mode wavevector.
The drift frequency can be further decomposed into a density and a temperature drift
frequency, ω∗ = ωn + ωT , where ωn = kθT∇n/nqB and ωT = kθ∇T/qB, kθ being the
poloidal wavenumber.

In a toroidal system, any perturbed quantity A(ψ, χ, ϕ) can be represented as a superpo-
sition of poloidal and toroidal Fourier modes m and n respectively as:

A(ψ, χ, ϕ) =
∑
m,n

Â(ψ)ei(mχ+nϕ), (2.120)
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where χ is the so-called straight-field-line poloidal angle, a modified poloidal angle such
that the magnetic pitch dϕd/χ = q(ψ) is constant and equal to the safety factor q(ψ) on
a given flux-surface labelled by ψ (see also Equation (3.1) for the actual definition of χ).
The relation ∇A ∼ ikA provides the wavevector associated to a given (m, n) Fourier
mode: k = m∇χ + n∇ϕ. The projection along the magnetic field gives the parallel
wavenumber k‖:

k‖ =
k · B0

B0
=

1
B0Jψ,χ,ϕ

(nq(ψ) − m) 	 1
R0q(ψ)

(nq(ψ) − m), (2.121)

with Jψ,χ,ϕ is the Jacobian of the (ψ, χ, ϕ) coordinate system:

Jψ,χ,ϕ =
1

|(∇ψ × ∇χ) · ∇ϕ| =
Rq(ψ)

Bϕ
. (2.122)

In the last expression we have made use of the safety factor q(ψ) defined in Eq. (2.8).
For field-aligned modes k‖ ∼ 0, therefore m ∼ nq. Fluctuations thus acquire a phase
dependence ∼ exp[i(n(ϕ − qχ)] and are associated to the wavevector

k = n

[ dq

dψ
χ∇ψ + q∇χ + ∇ϕ

]
. (2.123)

Finally, the time dependence of microinstabilities is typically expressed as ∼ exp(−iωrt +
γt), where ωr provides the real frequency and γ the damping of the mode.

2.6.1 Drift waves

In slab geometry, where the magnetic field has no curvature, drift waves are together
with the slab-ITG and -ETG (which will be discussed in the following) the dominant
instability. They are electrostatic fluctuations, driven unstable by a plasma density
gradient. Since their wavelength and frequency are in agreement with experimental
observation of turbulent transport, drift waves are often considered as the paradigm of
microturbulence in a magnetized plasma.
The basic principle of a drift wave is represented in Figure 2.5. Consider a homogeneous

magnetic field B and a plasma characterized by a background density gradient ∇n in the
direction perpendicular to B. We are interested in the evolution of a density potential
perturbation δn possessing a finite parallel wave vector k‖. Its dynamics is entirely
determined by the behaviour of the electrons. If one assumes that the response of the
electrons is adiabatic, then any density perturbation is in phase with an electrostatic
potential perturbation δφ, see Eq. (2.106). As a result, the potential will increase inside
the regions of positive density fluctuation and vice-versa, resulting in a net electric
field leading in turn to an E × B drift. As a consequence of the background density
gradient, the particle flux associated to the E × B velocity results in an increase of the
initial perturbation in the region where vE×B and ∇n are anti-parallel and in a decrease
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Figure 2.5 : Cartoon of a drift wave in a plasma with a background density gradient.
On the left, the density and potential perturbations (respectively δn and δφ) are
in phase, hence the advection due to E × B velocity cause the perturbations to
propagate in the electron diamagnetic direction vd,e. On the right, the perturbations
are out of phase. In this case the density perturbation is sustained by the E × B
flow, thus resulting in an instability. Picture inspired by [22].

where they are parallel. This causes the initial perturbation to propagate in the electron
diamagnetic direction, given by vd,e = ∇pe/(n0,eeB2) × B.
The drift wave can become unstable if the assumption of adiabatic electrons is relaxed.
In particular accounting for the resonant wave-particle interactions. In this case, δn and
δφ are characterized by a non-zero cross phase and if the density perturbation is out of
phase with the potential perturbation, then the E × B flow leads to an amplification of
δn and to a net outwards transport.
When extending the drift wave picture to a tokamak one has to realize that, as a result
of a more complex magnetic geometry, particles are now subject to drifts associated to
curvature and gradients of the magnetic field. Furthermore, the inhomogeneity of the
magnetic field leads to a separation of particles into trapped and passing. Both the
aforementioned effects are at the origin of the destabilization of two of the experimentally
most relevant microinstabilities, namely Ion Temperature Gradient modes and Trapped
Electron Modes.

2.6.2 ITG

Ion Temperature Gradient (ITG) instabilities are drift-wave type modes driven by the
temperature gradient of ions. Contrary to pure density gradient driven drift waves,
ITGs are non-resonant waves. They have first been identified by Horton, Choi and Tang
[37], and are believed to be one of the main microinstabilities responsible for the ion
temperature and density fluctuations measured in the core of today’s tokamaks.
The so-called slab-ITG is an ion acoustic wave that may become unstable in a plasma
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2.6. Microinstabilites

with a uniform magnetic field may because of the ion temperature gradient. The toroidal
geometry of a tokamak modifies the slab-ITG into an interchange-like instability, the
so-called toroidal-ITG, whose nature is similar to the Rayleigh-Taylor instability that
develops when a denser fluid is above a lighter one.
Toroidal-ITG modes can become unstable when the ion temperature gradient∇Ti is
parallel to the gradient of the magnetic field amplitude ∇B while it is stable if ∇Ti and
∇B are anti-parallel. Therefore, when looking at the toroidal geometry of a tokamak
one refers to a region of good curvature, the inner part of the machine corresponding
to the high B field side, where pressure and magnetic field gradients point in opposite
directions, and a bad curvature region, corresponding to the low B field side, where they
are parallel. A simple picture of the instability is as follows. Assuming an initial pressure

Figure 2.6 : Schematic representation of an ITG instability at the low field side of a
tokamak. Assuming an initial pressure perturbation δp, the vertical drifts associated
to ∇B and curvature cause a charge separation which produces a perturbed electric
field E. As a result of the E × B flow, the perturbation grows. At the high field side,
∇T and ∇B point in opposite directions, therefore the E × B advection cancels the
initial perturbation. Adapted from [38].

perturbation δp, because of the vertical ∇B and curvature drifts (see Eqs. (2.75) and
(2.72) respectively), a charge separation is generated, which in turn induces a charge
independent E × B drift. At the high field side, this drift acts against the perturbation
therefore stabilizing it, but at the low field side it amplifies it, as depicted in Figure 2.6.
The temperature and density perturbations grow and become unstable (this mechanism
is equivalent to the one described in Section 2.6.1).
In order to derive a dispersion relation for toroidal ITG modes, we follow Ref. [39]. Being
an ion instability, one needs a kinetic model only for describing the ion dynamics while
an adiabatic electron response can be assumed. From the quasineutrality condition one
obtains:

ε(k, ω) =
1

k2λ2
De

+
1

k2λ2
Di

[
1 + (ω − ω′

T i)
∫

d3v
f0i

n0i

J2
0 (kθv⊥

Ω )
k‖v‖ + ωdi − ω

]
= 0, (2.124)
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where ε(k, ω) is the plasma dielectric function, λDi,e the Debye length of ions and
electrons, and J0 the Bessel function of the first kind describing Finite Larmor Radius
(FLR) effects. Moreover, ω′

T is an operator providing the temperature drift frequency,
ω′

T i = (kθTi∇Ti/qB)∂/∂Ti, while ωdi is the drift frequency ωdi = k · (v∇B + vc) related
to ∇B and curvature drifts. Note that the density gradient has intentionally been
neglected to point out how the ion temperature gradient is sufficient to generate the
plasma instability.
Taking a fluid-like limit |ω/(k‖vth,i)| � 1, assuming |ω/ωdi| � 1 and neglecting all FLR
corrections, J0 ∼ 1, Eq. (2.124) reduces to

1 −
(

1 − ωT

ω

)[(
k‖cs

ω
+

Te

Ti

〈ωdi〉
ω

)]
= 0 (2.125)

where 〈ωdi〉 = 2Tikθ|∇⊥ log B|/eB, and the temperature derivative contained in ω′
T has

been explicitly carried out.
Equation (2.125) provides an instability even in the limit k‖ → 0, as assuming |ω| � |ωT |
it reduces to

1 +
Te

Ti

〈ωdi〉
ω2 = 0, (2.126)

which admits the solutions

ω = ±
√

−2
Te

Ti
(kθρi)2∇ log T · ∇ log B. (2.127)

The toroidal-ITG is thus unstable if ∇Ti · ∇B > 0, which, as already mentioned, is the
case at the low field side of a tokamak.

2.6.3 ETG

At sufficiently short perpendicular wavelengths, the perpendicular perturbation felt
by the ions is averaged out by their gyromotion. As a result, their response becomes
essentially adiabatic. At the same time, electrons do not respond adiabatically anymore,
and a kinetic model must be used to describe their dynamics. Under these conditions,
a sufficiently large gradient in the electron temperature can develop an instability, the
Electron Temperature Gradient (ETG) mode. In the linear, electrostatic, adiabatic
limit, ETGs are basically isomorphic to ITGs i.e. they can be considered equivalent
switching the role of ions with the one of electrons. Even though the associated turbulence
develops on hyperfine scale in comparison with ITG, it has been shown that it can lead
to significant electron heat fluxes [40]. Moreover, modes developing at ion scales can
interact non-linearly with modes at the electron scales making numerical modeling of
such conditions particularly challenging.
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2.6. Microinstabilites

2.6.4 TEM

Trapped Electron Modes (TEM) are waves that can become unstable in a magnetically
confined plasma as a result of a resonant interaction between an electrostatic perturbation
and the toroidal precessional drift of trapped electrons. First described by Kadomtsev
and Pogutse in Ref. [41], they are nowadays the main candidate invoked to explain the
anomalous heat and particle transport through the electron channel.
A simple physical picture of the instability is as follows. Because of the inhomogeneity of
the magnetic field, one can distinguish between trapped and passing particles. We focus
here on instabilities associated to trapped electrons; one can develop a similar model for
the Trapped Ion Mode (referred to in literature as TIM). The former class of particles,
thanks to their high parallel velocity, are free to move along a magnetic field line and
ensure an adiabatic response to slow waves (|ω/k‖vth| � 1). Trapped particles instead
are forced to bounce back and forth in the outer low field side of the tokamak because
of the mirroring effect induced by the confining magnetic field. As already mentioned,
they describe a trajectory whose projection on a poloidal plane assumes the shape of
a banana. Because of the combination of parallel motion and vertical drifts, once an
average over many bounces is evaluated, it turns out that trapped particles drift in the
toroidal direction with a velocity 〈ϕ̇〉b. Thus, in the presence of a perturbation they do
not average out the effect of the associated field but instead may interact resonantly with
it, giving rise to an instability.
In order to derive a dispersion relation valid for TEM, which can then be used to
intuitively illustrate how the plasma shaping can play a key role in controlling such
instability, we shall follow Ref. [42].
Electron dynamics can be modeled using the drift kinetic equation i.e. particle positions
are assumed to be equivalent to their guiding centers. Furthermore, typical perturbation
frequencies are usually much smaller than the bounce frequency ωbe.
It is therefore possible to replace the drift kinetic equation for electrons with its bounce
averaged equivalent:

(
∂

∂t
+ 〈ϕ̇〉b

∂

∂ϕ

)
g̃e = −

(
ef0e

Te

∂

∂t
− 1

Bp

∂f0e

∂x

∂

∂ϕ

)
〈φ〉b, (2.128)

which is obtained by averaging the original equation over a bounce period [42]. Here
〈ϕ̇〉b is the toroidal precessional drift frequency, while 〈· · · 〉b indicates a bounce-averaging
procedure, defined as:

〈· · · 〉b =
ωb

2π

∫
orbit

dl

v‖
. (2.129)
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The background electrons distribution f0e is assumed Maxwellian, while g̃e indicates the
fluctuating non-adiabatic part of the electron distribution:

g̃e = f̃e − eφ

Te
f0e (2.130)

Considering now a perturbation of the form exp [i(ωt − nϕ)], one can solve Eq. (2.128)
(see Ref. [42] for details) obtaining for the non-adiabatic perturbed distribution function:

g̃e = −ef0e

Te

ω − ω∗
e

ω − n〈ϕ̇〉b
〈φ〉b (2.131)

where

ω∗
e = ωne + ω′

T e =
kθTe

eB

(d log ne

dx
+ ∇Te

∂

∂Te

)
. (2.132)

The quasineutrality condition allows one to derive the relevant dispersion relation.
Assuming for simplicity 〈φ〉b 	 φ and carrying out the necessary velocity space integrals,
one finally obtains

Ti

Te
+

Ti

Te

2αt

ωϕ,e

[(
ω − ωne

(
1 − 3

2
ηe

))
W (zb,e) − ωn,eηe

(
ω

ωϕ,e
W (zb,e) +

1
2

)]
+

+ 1 −
∫

dv
f0i

n0i

ω − ω∗
i

ω − k‖v‖ − ωdi
= 0.

(2.133)

where αt is the fraction of trapped particles and ηe = d log Te/d log ne. W (z) is the
plasma dispersion function while zb = sign(ωϕ)

√
2ω/ωϕ, with ωϕ = n〈ϕ̇〉b.

The previous relation in fact describes not only TEM modes but also ITG, showing
how those modes can be strongly coupled depending on their relative drives. Indeed
neglecting trapped particles (αt = 0) one recovers in the proper limit the dispersion
relation provided by (2.124), in this case retaining in ω∗

i also the effect of a ion density
gradient, which previously was neglected.
A dispersion relation for a pure TEM mode can be obtained from Eq. (2.133) by dropping
the parallel and perpendicular ion drives (k‖, ωgi = 0). In this case Eq. (2.133) becomes

Ti

Te
+

Ti

Te

2αt

ωϕ,e

[(
ω − ωne

(
1 − 3

2
ηe

))
W (zb,e) − ωn,eηe

(
ω

ωϕ,e
W (zb,e) +

1
2

)]
+

ωni

ω
= 0.

(2.134)

Assuming also |ωϕ,e/ω| � 1, considering isothermal ions and electrons, one can estimate
a typical growth rate and frequency as:

ωr 	 ωn,e γ 	
√

3
2

αtωϕ,eωn,e

(
1 +

d log Te

d log ne

)
. (2.135)
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Equations (2.133) and (2.135) clearly show how the toroidal precessional drift is the
crucial element in determining the instability of TEM modes and their growth rate. It is
therefore also a way of controlling this kind of modes, as by modifying 〈ϕ̇〉b one can in
turn strongly affect the growth rate of the mode.
One first notes that the resonant process behind the instability takes place only if the
toroidal drift is in the same direction as the propagation direction of the perturbation.
Hence, changing the drift direction will naturally lead to a TEM suppression. As shown
in Ref. [42], in the limit of large aspect ratio, circular concentric flux surfaces (zero
Shafranov shift), the precessional drift can be expressed in terms of elliptic integrals,
related to particle energy, and it is a function of the magnetic shear ŝ. In particular,
one finds that barely passing and deeply trapped particles drift in opposite directions
regardless of the values of ŝ. More generally, trapped particles can drift in different
directions depending on the magnetic shear and their pitch angle, thus resonating or not
with a given perturbation.
Plasma shaping is another way of actively changing 〈ϕ̇〉b, as single particle motion,
and therefore also its precessional drift, is ultimately related to the magnetic geometry.
The effect of each single shaping parameter on the actual drift frequency is in general
dependent on all the other shaping coefficients, and furthermore dependent on whether
one is considering deeply or barely passing particles. For a detailed discussion, we refer
the reader to Refs. [17] and [43]. Some general trends can nonetheless be identified:
elongation κ acts reducing the drift of deeply trapped particles while it increases the one
of barely passing. An increase of triangularity δ increases the drift frequency of deeply
trapped particles, while lowers the toroidal drift of barely trapped. As an illustrative
example we plot the toroidal drift frequency as a function of the bouncing angle in Figure
2.7 for a triangularity scan. These simulations have been performed with the VENUS
[44] code, which solves for the particle orbits in a confining magnetic field. Starting from
the plasma shape of a TCV discharge with δ|rmLCF S = 0.4 (see also 5), the magnetic
geometry is modified by varying the LCFS while keeping the q profile fixed. According to
the parametrization of Eq. (2.9), only elongation and triangularity are kept as shaping
coefficients.

One has also to remember that when changing triangularity, one is also changing the
penetration of κ towards the core, which is favoured by lower δ, and, at the same time,
increasing the Shafranov shift, resulting in a larger flux compression at the low field
side. In this respect, evaluating the effect of shaping on trapped particle instabilities is a
complicated exercise, and a numerical approach must be used.
In addition to the effect on drifts, plasma shaping changes also the turbulent drives,
as for given density and temperature profiles n(x), T (x), the true gradients leading to
instabilities are 〈|∇(n, T )|〉fs = |d(n, T )/dx|〈|∇x|〉fs, with 〈|∇x|〉fs modified by the actual
magnetic geometry. Moreover, one has to consider the whole range of particle energies
and in particular examine the behaviour of the particles which contribute dominantly to
the nonlinear fluxes.
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Figure 2.7 : Toroidal precessional drift frequency 〈ϕ̇〉 as a function of the bounce
angle θb. The shape of the LCFS is varied starting from a TCV experimental
discharge with κLCFS = 1.2 and δLCFS = 0.4 by the triangularity of the plasma
boundary. The drift are then simulated following thermal electrons (E =568 eV as
measured in TCV) from their initial radial location ρtor = 0.75. Arrows indicate
increase in δ. Results obtained with the VENUS code.

2.6.5 Other instabilities

Many other important microinstabilities have been studied in recent years, thanks also
to numerical simulations. Among them, an important class that one needs to point out
is the electromagnetic one, for which, as the name suggests, fluctuations are dominantly
magnetic. Examples of this kind of modes are Micro-Tearing Modes (MTM), the
equivalent on a microscopic scale of the MHD tearing mode and which have been recently
suggested as another possible candidate to explain transport through the electron channel
[45], or Kinetic Ballooning Modes (KBM) [46]. Other physically relevant instabilities are
Resistive Ballooning Modes (RBM), recently suggested as a possible candidate to describe
turbulence in the edge region of tokamak plasmas [47], or Parallel Velocity Gradient
(PVG) modes [48], instabilities whose drive is the gradient of the parallel velocity.

2.7 Zonal Flows and the Geodesic Acoustic Mode

Zonal flows are collective plasma flows of particular interest because in certain regimes
they are able to self-regulate turbulence. Similar flows have been observed in meteo-
rology in form of large scale flows along latitudinal lines. In the context of magnetic
confinement, zonal flows indicate a plasma flow resulting from a difference between the
electrostatic potential on neighbouring flux surfaces. The corresponding radial electric
field Er consequently leads to an E × B rotation of the plasma in the poloidal direction.
If this flow is stationary, then it is normally referred to as Zonal Flow (ZF).
What makes zonal flows of particular interest for fusion research is their capability to
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Figure 2.8 : Schematic representation of the zonal flows shearing turbulent eddies.
(a) A vortex moves across a region of strong sheared flows, (b) it gets sheared, and
(c) eventually is torn apart into smaller scale vortices.

reduce the turbulent diffusion via turbulent eddy-shearing. The mechanism leading to
this suppression is sketched in Figure 2.8. A detailed description can be found in e.g.
Refs. [49, 50]. Let us consider a series of radial layers with alternating poloidal vE×B flow
directions. When turbulent eddy move radially across them, they get distorted as a result
of the different flow speed, leading to the so-called shearing rate ωE×B = dvE×B/dr.
Provided that the shearing rate is sufficiently high, vortices will eventually break into
smaller scale ones. This dynamics is clearly reducing the radial correlation length over
which turbulence can develop.
Zonal flows can be excited nonlinearly by the turbulence itself, thus providing a self-
regulating mechanism for the associated transport. The stabilizing effect is proportional
to the shearing rate, however there is a level above which ZFs themselves become unstable.
The maximum amplitude level is associated to a Kelvin-Helmholtz-type instability, which
transfers energy back from the zonal flows to the turbulent fields. A balance between
microinstabilities driving the turbulence and flows leading to its suppression therefore
develops, and can be described via a predator-prey model [49].
In general, the interaction of zonal flows with turbulence and their efficiency in tearing
apart turbulent structures, thus reducing transport, is strongly related to the type of
modes at play. While for ITG-driven turbulence it is well established that zonal flows are
indeed the main saturation mechanism [51], for TEM dominated plasmas the picture it is
not yet fully understood. Depending on plasma parameters, one can distinguish regimes
where ZFs are more or less relevant in setting their saturated transport level [52], and
other mechanisms might be required in order to explain the nonlinear saturation [53].

The Geodesic Acoustic Mode (GAM) is a finite frequency Zonal Flow, characterized by
a dominant n = 0, m = 1 density fluctuation component. As its name suggests, it is
associated to the geodesic curvature of a given flux surface, that is the component of
the curvature vector tangent to the magnetic surface, enabling it to couple to sound
waves. From the definition of the curvature vector κ, making use of the MHD radial
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Figure 2.9 : Schematic representation of E × B zonal flows. On the left, the
electrostatic potential, characterized by n = m = 0 toroidal and poloidal components
is shown, together with the resulting E × B flows. On the right it is depicted the
resulting density fluctuation in case of finite frequency ZFs, which in case of circular
flux surfaces is dominated by the m = 1 harmonic.

force balance given in Eq. (2.1) and of Ampére’s law, one can write

κ ≡ (b · ∇)b =
1

B2 ∇⊥

(
B2

2
+ μ0p

)
. (2.136)

It thus clearly appears that κ is always perpendicular to the magnetic field, and any
contribution to the geodesic curvature must come from the gradient in the magnetic
field strength B (∇⊥p = ∇p = dp/dψ∇ψ). Therefore any component of the geodesic
curvature is either parallel or anti-parallel to the E × B direction. The origin of the
oscillating nature of the flow associated to the GAM can then be intuitively understood
with the help of ideal MHD. Because of magnetic flux conservation [3], any flux tube
gets compressed when they moving into region of high magnetic field and vice versa. A
parallel flow naturally allows to compensate this compression. Therefore, zonal flows are
associated to the divergence of the corresponding density flows. If the parallel flow is
sufficient to cancel the density flow divergence, then a stationary zonal flow develops.
Otherwise a pressure perturbation builds up eventually leading to the inversion of the
flow which then becomes oscillatory. In the limit of circular flux-surfaces, the curvature
is essentially along the negative major radius direction, thus the divergence of the density
flux is maximum (resp. minimum) at the top (resp. bottom) of the plasma resulting in
an m = 1 poloidal dependency, as schematically depicted in Figure 2.9.
The GAM has been first predicted by Winsor et al. [54] when studying the MHD model
in a toroidal geometry. The mode frequency ωGAM was identified as

ωGAM =

√
2(Te + γiTi)

mi

1
R0

√
2 + q−2, (2.137)

with γi the adiabatic index of ions. Since then, many investigations, both theoretical and
experimental, have been carried out, in particular motivated by the experimental GAM
measurements in the edge of various tokamaks (see Ref. [55] and references therein for a
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review).
From a theoretical point of view, one has to remember that zonal flows are primarily
poloidal flows, therefore they are, at least linearly, not affected by the radial pressure
gradient and cannot cause any radial transport. In other words, they are linearly stable.
As already mentioned, turbulence can however nonlinearly excite these modes affecting
also their frequency. The original linear frequency estimate proposed by Winsor (2.137)
has been generalized adopting a kinetic model (see e.g. Ref. [56]) and also to non-circular
plasma equilibria [57].
Equation (2.137), and the more accurate estimates mentioned, provide a frequency which
in the presence of magnetic shear or temperature gradients is function of the radial
location. Therefore, the GAM appears as a radially localized oscillating plasma flow.
Regimes in which discrete eigenmodes exist, i.e. the GAM frequency is predicted to be
constant over a finite radial extent, have been identified, and related to both finite ion
Larmor radius effects [58] and electromagnetic fluctuations [59, 60]. In general, predicting
the nonlinear frequency and location of the GAM is a very challenging exercise because
it requires the knowledge of the turbulent drives [61].
Finally, motivated also by experimental evidence [62], the magnetic perturbation associ-
ated to the GAM has been investigated as well, identifying a dominant m=2 poloidal
[63] component, with higher poloidal harmonics possibly excited in shaped plasmas [60].

2.8 Summary

In this chapter, the gyrokinetic system of equations has been derived. It constitutes the
basis for all the numerical simulations that will be discussed in this work. The equations
are correct up to order ε and can be used to describe electrostatic and electromagnetic
fluctuations in a confined plasma, taking into account radial variations of background
density and temperature profiles. Simplifications, leading to the so-called local (flux-tube)
limit have been discussed together particular with limits of the gyrokinetic model for
which field equations can be greatly simplified. The following chapter will present the
numerical implementation of the gyrokinetic equations in the GENE code.
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3 Numerical simulation model: the
GENE code

The GENE (Gyrokinetic Electromagnetic Numerical Experiment) code is the numerical
tool used for carrying out all the microturbulence simulations that will be presented in
the following chapters. It is an Eulerian gyrokinetic code which solves the time evolution
of the distribution function of each plasma species on a fixed grid in phase space.
Initiated by F. Jenko [12] and further developed by T. Dannert [29], the code was
originally solving the time evolution of both electrostatic and electromagnetic fluctu-
ations on a flux-tube following a field line around the tokamak. This constitutes the
so-called local approach introduced in section 2.4.6. The first implementation of the
collision operator, as well as the possibility of running the code in its spectral version
thus determining the eigenvalues of the system, is due to F. Merz [33]. The code has
then been furthermore generalized so as to be able to account for radial variations of
background profiles (geometrical coefficients as well as temperature and density profiles)
in the so-called global approach by T. Görler [64, 65] and X. Lapillonne [32], together
with a first implementation of the required heat sources. Improvements of the collision
operator, in particular ensuring conservation properties, as well as the implementation
of a neoclassical solver for solving only the axisymmetric modes, are due to H. Doerk
[35]. Additional developments, including among others the possibility of simulating
background flows in the local limit, as well as particle sources required for carrying out
global simulations with gyrokinetic electrons, have been introduced by D. Told [30].
In this work GENE has been exploited in order to model plasmas under TCV relevant
conditions, and only minor modifications to the code have been made. The aim of this
chapter is thus to provide a brief description of the essential features of the code and the
fundamental numerical techniques employed. A more detailed description can be found
in the specific GENE documentation [66], and in all aforementioned references.
All simulations presented here are carried out considering axisymmetric geometries. We
remark that GENE can currently handle also non-axysimmetric (i.e. stellarator-like)
systems in its so-called y-global version [67], a capability that will not be addressed here.
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3.1 Phase space coordinate system

Configuration space

As already discussed, turbulence is characterized by a strong anisotropy, with much longer
wavelengths in the parallel than in the perpendicular direction (k‖ � k⊥). It is therefore
very convenient for any numerical representation to use a coordinate system which reflects
this property, so as to reduce the computational cost otherwise required to properly
resolve turbulent structures. This can be obtained adopting the so-called field-aligned
coordinates. A description of how such a coordinate system can be introduced for any
magnetic configuration can be found in e.g. Ref. [14].
For an axisymmetric system, one first introduces a straight-field-line coordinate system
(ψ, χ, ϕ) where ψ is the poloidal flux function given in Eq. (2.5), χ is the straight-field-line
poloidal angle, defined in terms of the geometrical poloidal angle θ as

χ = 2π

∫ θ

0

B · ∇ϕ

B · ∇θ′ dθ′
/∮ B · ∇ϕ

B · ∇θ′ dθ′

= 2π

∫ θ

0

1
R2

1
B · ∇θ′ dθ′

/∮ 1
R2

1
B · ∇θ′ dθ′

=
F (ψ)
q(ψ)

∫ θ

0

1
R2

1
B · ∇θ′ dθ′,

(3.1)

and ϕ is the toroidal angle. The field-aligned coordinate system (x, y, z) adopted in
GENE is then defined as⎧⎪⎪⎨

⎪⎪⎩
x − x0 = Cx(ψ),
y = Cy [q(ψ)χ − ϕ] ,

z = χ,

(3.2)

where the x coordinate defines the radial direction, while y is called the binormal one.
Finally, z parametrizes the position along a field line and therefore is referred to as the
“parallel” direction. It is to be noted that in practice the choice of the radial coordinate x

is dependent on the specific magnetic equilibrium used. Cy is a normalization constant,
chosen as Cy = x0/qs, in order to establish y as a length rather than an angle-like
quantity. qs = q(x0) indicates the local safety factor evaluated at x = x0, a reference
radial position usually assumed as the center of the simulation domain. Note that both
(ψ, χ, ϕ) and (x, y, z) are non-orthogonal coordinate systems.
The magnetic field B can be written with respect to either (ψ, χ, ϕ) or (x, y, z) as follows

B = F∇ϕ +
1

2π
∇ϕ × ∇ψ = C(∇x × ∇y), (3.3)
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where F (ψ) = RBϕ, with Bϕ the toroidal component of the magnetic field, and

C =
1

[2π(dCx/dψ)Cy]
. (3.4)

It is clear from Eq. 3.3 that B · ∇x = B · ∇y = 0, so that (x = const, y = const) define
a magnetic field line, and (x, y, z) indeed defines a field-aligned coordinate system.

Velocity space

The parallel velocity v‖ and magnetic moment μ = mv2
⊥/2B are the variables used in

GENE to discretize the velocity space of each species distribution function.

Details about how these directions are represented and discretized, together with the
relative boundary conditions, will be presented in the next section.

3.2 Numerical representations and boundary conditions of
phase space directions

Radial direction

When simulations are carried out in the local approach, radially periodic boundary
conditions are assumed, therefore a spectral representation of the x direction is used.
For a given fluctuation quantity A, the Fourier back and forth transforms are defined
according to

Âkx(y, z) =
1

Lx

∫ Lx

0
dxe−ikxxA(x, y, z) A(x, y, z) =

∑
kx

eikxxÂkx(y, z). (3.5)

Derivatives are computed in Fourier space, ensuring accuracy up to machine precision.
In the global approach instead one retains the radial variation of background profiles and
Dirichlet or Neumann boundary conditions are applied. The former consists in assuming
the perturbed distribution function to be zero outside the radial domain. The latter
corresponds to the same assumption with the exception that a zero derivative condition
is applied to the flux-surface-averaged perturbation. This allows the background profiles
to evolve in time under the action of specific heat and particle sources. Further details
will be discussed in sections 3.6 and 6.1. Having relaxed the assumption of periodic
boundary conditions, a direct space representation is required for the radial direction
in the global version of the code. In this case derivatives are computed according to a
centered fourth order finite difference scheme, see Ref. [33].
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Binormal direction

In (x, y, z) coordinates, axisymmetry translates to invariance with respect to y so that
linear eigenmodes have an exact wave-number ky with respect to y because the linearized
equations for the ky Fourier modes are decoupled. Periodicity with respect to the toroidal
direction

A(ψ, χ, ϕ + 2π) = A(ψ, χ, ϕ) (3.6)

indeed translates in (x, y, z) coordinates to periodicity in the y direction:

A(x, y, z) = A(x, y + 2πCy, z). (3.7)

The binormal direction and the required derivatives are thus represented in Fourier space
in both local and global versions of the code. The standard size of the simulation domain
in the y direction is therefore Ly = 2πCy. It should be noted that in many cases turbulent
correlation lengths in the binormal direction ∇y are smaller than a full binormal turn.
Therefore, simulation volumes do not necessarily account for the full toroidal angle, so
that the simulation box length Ly does not necessarily coincides with 2πCy. On the other
hand, z = χ is the coordinate along a magnetic field line and since parallel correlation
lengths are very large, one cannot truncate the z coordinate (see also the next section
where parallel boundary conditions are discussed). One nonetheless imposes periodicity
in y, which therefore in general reads A(x, y, z) = A(x, y + Ly, z).
The corresponding Fourier representation of a given mode therefore reads

A(x, y, z) = eikyyÂky (x, z) ∼ e−inϕ (3.8)

yielding together with Eq. (3.2) the relation between ky and the toroidal mode number
n:

n = kyCy ky =
n

Cy
=

nqs

x0
∼ kθ, (3.9)

where kθ is an estimate of the effective poloidal wave number for field-aligned fluctuations.

Parallel direction

Periodicity in the poloidal direction

A(ψ, χ + 2π, ϕ) = A(ψ, χ, ϕ) (3.10)

implies the following pseudo periodic relation in the z direction:

A(x, y, z + 2π) = A(x, y − 2πqCy, z). (3.11)

56



3.2. Numerical representations and boundary conditions of phase space
directions

Introducing the Fourier representation of the y coordinate Eq. (3.11) is equivalent to

Âky (x, z + 2π) = Âky (x, z)e−i2πnq(x), (3.12)

which can be already enforced as a boundary condition in the global code. In the flux-tube
version, Eq. (3.11) has to be recast in a form that is compatible with radially periodic
boundary conditions. After linearizing the safety factor profile, q(x) = qs(1 + ŝx/x0) =
qsŝ/x0 (x + x0/ŝ) around the reference position x0, one can show that for a given δkx

and ky, the set of radial Fourier components

kx = pΔkx + δkx, p ∈ Z, (3.13)

are coupled together, with Δkx = 2πŝky, such that any linear fluctuation mode in the
flux-tube limit reads:

A(x, y, z) = eikyyeiδkxx ∑
p Âδkx+pΔkx(z)eipΔkxx,

with Âδkx+pΔkx(z + 2π) = Âδkx+(p+1)Δkx
(z).

(3.14)

In deriving Eq. (3.14), it has been assumed that the phase factor ei2πnqs(x0) is unity,
which in fact corresponds to centering the simulation domain around the mode rational
surface nearest to x0 for the considered ky = n/Cy (the distance between two neighboring
rational surfaces, ΔMRS, being 1/ky ŝ).

Velocity space

A uniform grid in the parallel velocity interval −Lv‖,max ≤ v‖ ≤ Lv‖,max is used to
discretize the parallel velocity direction, and integration is carried out considering a
modified Simpson scheme. In the δf method, one assumes that the perturbed distribution
function retains a near Maxwellian behaviour, i.e. with exponentially decaying tails
in velocity space. Sufficiently large maximum velocities must therefore be assumed
when defining simulation grids, such that all relevant contributions to the perturbed
distribution function are retained. A typical choice, based on experience, consists in
assuming Lv‖,max = 3vth for a flux-tube simulation, while for global runs one has to adapt
the grids according to the specific temperature profiles (an illustrative example will be
given in section 6.1). Under this assumption it is reasonable to assume the perturbation
to be zero outside the domain when evaluating derivatives with respect to v‖. Two
options are available for the discretization of the derivatives along z and v‖. One can use
a fourth order centered scheme, similar to the one adopted for the radial direction in the
global code. Alternatively, the terms involving these derivatives can be combined and
cast into a Poisson bracket which is in turn discretized according to an Arakawa scheme
[68]. This second option, which preserves analytic conservation properties, is preferable
when looking at turbulent energetics, e.g. free energy conservation. Further details can
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be found in Ref. [30].
Along the magnetic moment direction one needs to evaluate derivatives only for the
implementation of the collision operator. In this case derivatives are computed assuming
a finite volume scheme with vanishing fluxes across the outer domain, see Ref. [35]. Again,
one has to assume a sufficiently large maximum value for Lμ, usually 9Tj/B0 for local
runs. Different choices for the distribution of the μ integration points are available, with
the default set-up consisting in a Gauss-Laguerre quadrature rule.

3.3 Further numerical details

3.3.1 Time stepping scheme and eigenvalue solver

The gyrokinetic equation can be formally written as

∂g

∂t
= L[g] + N [g], (3.15)

where L indicates a linear operator, including collisions, while the nonlinearity has been
included in the nonlinear operator N .
Discretizing the right hand side of Eq. (3.15) on the previously described phase space grid,
the original partial differential equation is recast into a system of ordinary differential
equations that can be solved as an initial problem. GENE evolves the distribution
function in time using an explicit fourth order Runge-Kutta scheme, starting from an
initial condition g0.
This initial value solver can be used for linear and nonlinear computations. The time
step limit is determined by the stability analysis of the time stepping scheme, see Ref.
[33] for further details. For linear computations the maximum stable time step can be
evaluated from the spectral radius of the operator L, while in case of nonlinear runs one
has to take into account the extra limit imposed by the Courant-Friedrichs-Levy (CFL)
condition arising from the nonlinear advection term.
Switching off the nonlinear term N , Eq. (3.15) becomes an eigenmode equation. In this
case, assuming modes with a time dependency of the form exp[iωt + γt], an initial value
computation allows to determine only the most unstable eigenvalue, which will eventually
dominate. Alternatively, one can solve the linear gyrokinetic equation as an eigenvalue
problem. This approach allows one to solve for a subset of eigenmodes and corresponding
eigenfunctions. GENE implements an interface to the SLEPc library [69], which makes
use of iterative solvers to identify specific subsets of the complete eigenmode spectrum. A
direct solver, based on ScaLAPACK is also available for computing the entire spectrum.
This latter option is, however, practically feasible only for very small problem sizes.
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3.3.2 Magnetic equilibrium

GENE currently supports a wide class of magnetic equilibria. Two analytic models are
frequently used in the literature for carrying out gyrokinetic simulations, the so-called
s − α model and the ad-hoc geometry. Both implement circular flux-surfaces, however an
inconsistent implementation in the gyrokinetic context makes the first one incorrect for
all tokamaks having a small but finite aspect ratio [70].
Whenever dealing with experimental conditions, the equilibrium is usually reconstructed
with the help of magnetic measurements. In this case an ideal MHD equilibrium solver
is required in order to solve the Grad-Shafranov equation and provide GENE with the
background magnetic geometry. Currently, interfaces to the ideal MHD equilibrium codes
CHEASE [71], g-eqdsk provided by Efit [72], GIST [73] and TRACER [67] are available.
Finally, an interface to Miller’s equilibrium [74], allowing the user to freely specify the
shape of a given flux surface via its values of elongation, triangularity and squareness,
is implemented for the local version of the code. It will be used and presented in more
detail in chapter 4.

3.3.3 Discretization of the nonlinearity

When computing the nonlinear term, derivatives are, whenever possible, evaluated in
Fourier space. Multiplications are instead carried out after going back to x − y real space.
This avoids the expensive computation of convolutions as would otherwise be required.
The conservation properties of the nonlinear term are preserved at machine precision in
the local code thanks to the Fourier kx − ky representation. In the global version, this is
achieved through a mixed Fourier-real space version of the Arakawa scheme, similar to
the one used to represent parallel derivatives. More details can be found in Ref. [30].

3.3.4 Numerical hyperdiffusion and anti-aliasing

Finite difference centered schemes, as the one employed in GENE for computing deriva-
tives, are non-dissipative. They also tend to decouple neighbouring points, potentially
leading to spurious effects. In order to limit this effect, numerical hyperdiffusion terms
are added to the right hand side of the Vlasov equation. They are typically fourth
order derivatives terms with an amplitude that can be adjusted by the user. Hyper
diffusive terms can be added in the radial and binormal directions, as well as in z and v‖
Details regarding the actual implementation and the influence on results can be found in
Refs. [46, 75].
Hyperdiffusion terms provide also the necessary damping of sub-grid fluctuations (dealias-
ing), that can otherwise appear and potentially lead to numerical instabilities. When
a Fourier representation is employed, dealiasing is obtained applying the so-called 3/2
rule, which introduces 50% more Fourier modes with vanishing amplitude before back-
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transforming to real space in order to evaluate the nonlinearity. Afterwards these modes
are again removed.

3.3.5 Gyroaveraging

As we have seen in the derivation of the gyrokinetic model, two kinds of gyroaveraging
operations are required:

φ̄1j(X) =
1

2π

∫
φ1(X + ρj)dα (3.16)

and, for the field equations,

〈φ1j(x)〉 =
1

2π

∫
δ(X + ρj − x)φ1(X + ρj)dXdα (3.17)

In the global version of the code, the gyroaveraging is carried out using a finite element
interpolation involving neighbouring grid points. All quantities are expanded on a set of
basis functions

φ1 =
∑

φ1iΛi(x), (3.18)

such that the gyroaveraging can be evaluated thanks to the gyromatrix Gj acting on the
grid values of e.g. φ1. Formally one can thus rewrite Eq. (3.16) as

φ̄1j(X) = Gj · φ1(x), (3.19)

with Gj representing a gyroaverage operator for species j . Details regarding the choice
of the basis functions Λi and the actual implementation in the code can be found in
Ref. [64]. It can be shown, see Ref. [30] that the second kind of gyroaveraging given in
Eq. (3.17) can be expressed as 〈φ1j(X)〉 = G†

j · φ1(X), with G†
j the hermitian conjugate

of Gj .
In order to preserve the analytic symmetry properties of the gyro-operator, and avoid
potential numerical instabilities (see Ref. [30] for details), when evaluating the double
gyroaverages appearing in the field equation one has to evaluate them as

〈φ̄1jP 〉(x) = G†
j · {PjGj · φ1(x)}. (3.20)

Here Pj indicates a factor containing equilibrium terms, which can be taken out from the
gyroaverage in the local limit. In this latter case the gyromatrix is diagonal and can be
represented in terms of Bessel functions. Moreover, in this limit the two gyro-operations
in Eqs. (3.16) and (3.17) are equivalent, see e.g. Ref. [33], and can be evaluated as:

φ̄1j = 〈φ1j〉 = J0(k⊥ρj)φ1. (3.21)
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3.4 Normalizations

The normalizations in GENE are chosen such that all dimensionless quantities are of
order unity. Therefore, in configuration space, the independent variables x and y used
for representing fluctuating fields are normalized to a reference gyroradius ρref , while
the already dimensionless field connection length along z is kept to be 2π ∼ O(1).
A macroscopic length Lref is used to normalize gradients of equilibrium quantities. In
velocity space, in order to account for potentially differing temperatures, the normalization
has to be species dependent. Furthermore, magnetic fields, temperatures, densities and
masses are normalized with respect to the reference values Bref , Tref , nref and mref . The
user is free to specify these reference values. Derived reference quantities such as the
sound velocity cref , the Larmor frequency Ωref and radius ρref are defined as

cref =

√
Tref
mref

, Ωref =
eBref
mref

, ρref =
cref
Ωref

.

Indicating the normalized quantities with a hat, one has for the j-th species

x = x̂ρref , y = ŷρref , z = ẑ,

v‖,j = v̂‖v̂th,jcref , μj = μ̂ T̂j
Tref
Bref

, t = t̂
Lref
cref

,

where the thermal velocity v̂th,j of the j−species is defined as

v̂th,j =
√

2Tj/mj . (3.22)

Typical choices are Tref = Te, nref = ne and mref = mi, such that cref = cs, while Bref is
typically the magnetic field on axis, Bref = Bmag. One also has βref = 2μ0nrefTref/B2

ref .
The macroscopic distance Lref is usually taken to be either the major radius R0 or the
minor radius a of the Tokamak.
Field fluctuations are normalized according to:

φ = φ̂
Tref
e

ρref
Lref

, A‖ = Â‖ρrefBref
ρref
Lref

, B‖ = B̂‖Bref
ρref
Lref

,

where the factor ρref/Lref is introduced in order to account for the small nature of such
fluctuations. Background temperature and density profiles are normalized with respect
to the respective reference values at the position x0, and can therefore be written as

T0,j = T̂pj(x)T̂0j(x0)Tref n0j = n̂pj(x)n̂0j(x0)nref

where T̂0j(x0) accounts for the species dependence i.e. T̂0j(x0) = 1 for the reference
species, and T̂pj(x) the radial dependence. Normalized background gradients are indicated
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with the following notations:

ω̂nj = −Lref
n0j

dn0j

dx
and ω̂T j = −Lref

T0j

dT0j

dx
.

Finally, one normalizes the distribution function as

F0,j = F̂0,j
nref
c3

ref

n̂0,j

v̂3
Tj

∣∣∣∣∣
x0

f0,j = f̂0,j
nref
c3

ref

n̂0,j

v̂3
Tj

∣∣∣∣∣
x0

ρref
Lref

.

The application of these normalizations rules leads to the normalized version of the
gyrokinetic equation previously derived, as well as to the normalized electromagnetic
field equations. They can be found in e.g. Ref. [64].

3.5 Macroscopic observables

3.5.1 Turbulent fluxes

The amount of information contained in the time evolution of the perturbed distribution
function is huge. It can be regularly reduced by taking appropriate moments over the
phase space, such as to provide quantities useful for a comparison with experiments. As
detailed in Ref. [32], one can start from the gyrokinetic equation and introduce e.g. a
gyrocenter particle flux and derive the corresponding radial conservation law. Strictly
speaking, one is however interested in the fluxes evaluated at the particle positions x:

Γj(x) =
∫

vfj(x, v, t)dv

Qj(x) =
∫ 1

2
mv2vfj(x, v, t)dv (3.23)

Π‖j(x) =
∫

mv‖vfj(x, v, t)dv

where Γj , Qj and Π‖,j are the particle, heat and parallel momentum fluxes of the j−th
species, which are in general different from the gyrocenter ones because of diamagnetic
and polarization terms. We also note that the parallel momentum can be assumed as an
approximation of the toroidal momentum flux in the case if Bϕ � Bθ. Otherwise, the
toroidal projection can be obtained by multiplying with qRC/JB.
In GENE, the turbulent fluxes given by the relations in Eq. (3.23) are approximated
by taking the moments of the distribution function with the generalized drift velocity,
vD = vξ + v∇B + vc in lieu of v, where vξ, v∇B and vc are respectively the generalized
E × B velocity, the ∇B and the curvature drift velocities defined in Equations (2.76),
(2.75) and (2.72). For all the geometries possessing a weak up-down asymmetry, as the
ones considered here, vξ is the dominant contribution to vD and therefore the other
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terms can be neglected1. Moreover, one makes use of the parallel gyrokinetic ordering
such as to approximate

vξ · ∇x 	 − 1
C

∂ξ

∂y
. (3.24)

Noting that all equilibrium quantities are independent of y, and therefore, as will be
explained in the next section, do not contribute to turbulent transport, one can finally
express the fluxes given in Eq. (3.23) as moments Mj,mn of the perturbed distribution
function, already introduced in Equation (2.93). When evaluating fluxes associated to
the compressional magnetic perturbation B1‖, a functionality currently implemented only
in the local code, additional moments Nj,mn(x) are required. They are defined according
to

Nj,mn(x) = π

(
2B0
mj

)n/2+1 ∫ [
F1 + qj

(
φ̄1 + μjB̄1‖

) F0j

T0j

]
μI1jvn

‖jμ
m/2
j dv‖jdμj , (3.25)

where the external gyroaverage leads to a multiplication with μjI1j , with

I1j(k⊥ρj) = 2
J1(k⊥ρj)

k⊥ρj
. (3.26)

The normalized version of both Mj,mn and Nj,mn can be found in e.g., Ref. [64]. We
report them here for completeness:

M̂j,mn(x) =
Mj,mn(x)

nref n̂0j(x0)cm+n
ref vm+n

th,j (x0) ρref
Lref

=πB̂
n
2
0

∫
B̂∗

0‖〈F̂1j(x − ρ)〉v̂m
‖ μ̂n/2dv̂‖dμ̂

−
n̂pjT̂

m+n
2

pj

T̂0j

[
I(m) + βref

T̂0j

B̂2
0 q̂j v̂th,j

ĵ0‖I(m + 1)
] [

(n/2)!q̂jφ̂1(x)

−
(

B̂0

T̂pj

)n
2 +1 ∫ (

q̂j〈 ˆ̄φ1(x − ρ〉 + T̂0j(x0)μ̂〈 ˆ̄B1‖(x − ρ)〉
)

e
−μ̂B̂0

T̂pj μ̂n/2dμ̂

⎤
⎦ ,

(3.27)

1This is in general not the case for neoclassical computations, where the ∇B and curvature terms
must be retained. Moreover, the parallel ordering cannot be used, as clearly discussed in Ref. [35] where
the expression of neoclassical GENE fluxes are provided.
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and

N̂j,mn(x) =
Nj,mn(x)

prefp0j(x0)cm+n
ref vm+n

th,j (x0) ρref
Lref

= πB̂
n/2+2
0

∫
v̂m

‖jμ̂
n/2
j μ̂jI1j

[
F̂1j

+
(
q̂jJ0jφ̂1 + T̂0j(x0)μ̂jI1jB̂1‖

) F̂0j

T̂0j

]
v̂m

‖jμ̂
n/2
j dv̂‖jdμ̂j ,

(3.28)

where, to lighten the notation, we have dropped the species index j in the velocity
space variables, indicated that double gyroaveraged fields in the global version are to be
evaluated at the position x − ρ by showing their spatial dependency, and carried out the
v‖-integrals involving the Maxwellian background. Finally, I(m) indicates

I(m) =

⎧⎨
⎩0, m odd

1·3···(m−1)
2m/2 , m even

(3.29)

By separating vξ into its field components, one furthermore distinguishes between
electrostatic and magnetic contributions to transport (the latter being the sum of
longitudinal and compressional magnetic fluctuations), each involving moments of different
order.
Applying GENE normalization rules, one finally writes for each species

Γ̂j =
Γj · ∇x

ΓGB
= − n̂0j

Ĉ

(
∂φ̂

∂ŷ
M̂00 − v̂T,j

∂Â1‖
∂ŷ

M̂20 +
T̂0j

q̂j

∂B̂1‖
∂ŷ

N̂10

)
(3.30)

Q̂j =
Qj · ∇x

QGB
= − n̂0j T̂0j

Ĉ

(
∂φ̂

∂ŷ
(M̂20 − M̂02) − v̂thj

∂Â1‖
∂ŷ

(M̂30 + M̂12)

+
T̂0j

q̂j

∂B̂1‖
∂ŷ

(N̂20 + N̂02)
)

(3.31)

Π̂‖,j =
Π‖,j · ∇x

ΠGB
= −m̂0jn̂0j v̂thj

Ĉ

(
∂φ̂

∂ŷ
M̂10 − v̂T,j

∂Â1‖
∂ŷ

M̂10 +
T̂0j

q̂j

∂B̂1‖
∂ŷ

N̂10

)
(3.32)

where the so-called GyroBohm units, respectively reading ΓGB = nrefcrefρ
2
ref/L2

ref , QGB =
prefcrefρ

2
ref/L2

ref and ΠGB = nrefmrefc
2
refρ

2
ref/L2

ref , have been introduced.
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3.5.2 Spatial averages and radial conservation laws

The previously derived fluxes are still function of the position x, therefore an appropriate
spatial average must be taken in order to provide a measure of radial fluxes, which
ultimately have to be compared to experimental values. Considering e.g. the three-
dimensional continuity equation involving particle density, in absence of sources, one can
write it as :

∂

∂t
n(x, t) +

∂

∂x
Γ(x, t) = 0. (3.33)

Integrating Eq. (3.33) over the volume V (x) within a given flux-surface defined by
x = const, and taking the radial derivative with respect to x, one obtains the relevant
radial conservation law:

∂

∂t
nx(x, t) +

∂

∂x

[
S

〈Γ · ∇x

|∇x|

〉
S

]
= 0. (3.34)

Here we have indicated with nx the radial particle density

nx(x, t) =
∂

∂x

∫
V (x)

dxn(x, t) (3.35)

and with 〈· · · 〉S the average over the surface at x = const:

〈· · · 〉S =
1
S

∫
∂V (x)

· · · dσ and S =
∫

∂V (x)

· · · dσ. (3.36)

The total radial particle flux is therefore defined by

Γ(x, t) =
〈Γ · ∇x

|∇x|

〉
S

. (3.37)

Similar expressions can be obtained for the heat and parallel momentum fluxes.
Assuming a Fick type relation between fluxes and gradients and considering turbulent
diffusivities to be constant on a given flux surface, one can finally derive:

Dj = −
(dn

dx

)−1
〈

Γ·∇x
|∇x|

〉
S

〈|∇x|〉S

(3.38)

and

χj = − 1
n0

(dT

dx

)−1
〈

Q·∇x
|∇x|

〉
S

〈|∇x|〉S

. (3.39)
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Applying the rules of section 3.4, the normalized counterparts read

D̂j =
Dj

DGB
=

1
n̂0jω̂nj 〈|∇x̂|〉S

〈
Γ̂j

|∇x̂|

〉
S

χ̂j =
χj

χGB
=

1
n̂0j T̂0jω̂T j 〈|∇x̂|〉S

〈
Q̂j

|∇x̂|

〉
S

(3.40)

with DGB = χGB = crefρ
2
refLref .

3.6 Other specific features of the global code

3.6.1 Heat and particle sources

Global simulations allow turbulent heat and particle fluxes to relax the background
temperature and density plasma profiles until sub-critical values of the gradients are
reached. Sources and sinks are therefore required in order to reach a turbulent stationary
state. With this aim, two different approaches, both implemented in GENE, can in
general be adopted.
The first one, normally referred to gradient-driven, consists in imposing background
profiles which are then maintained during the time evolution thanks to Krook-type
sources. This kind of heat sources have been introduced in the PIC code ORB5 as
described in Ref. [76]. Due to the specific choice of velocity space variables, GENE
sources are expressed as function of a symmetrized distribution function

F1,j(X, |v‖|, μ) =
F1,j(X, v‖, μ) + F1,j(X, −v‖, μ)

2
, (3.41)

such as to ensure no parallel momentum injection.
An heat source of the form

SH,j = − γH

(〈
F1,j(X, |v‖|, μ)

〉
fs

−
〈
F0,j(X, |v‖|, μ)

〉
fs

〈∫ 〈
f1,j(X, |v‖|, μ)

〉
fs

dv
〉

fs〈∫
F0,j(X, |v‖|, μ)dv

〉
fs

⎞
⎟⎠ (3.42)

is added to the right hand side of the Vlasov equation for the j−th species. Here 〈· · · 〉fs
indicates a flux-surface average, defined in Eq. (2.108). The second term in Eq. (3.42)
ensures that no density perturbation is introduced in the system, while the coefficient
γH is a user-defined input value that can be interpreted as a relaxation rate towards the
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prescribed background distribution. Similarly, the particle source is given by

SP,j = − γP

(〈
f1,j(X, |v‖|, μ)

〉
fs

−
〈
F0,j(X, |v‖|, μ)

〉
fs

∑ns
i=1 qi

〈∫ 〈
f1,i(X, |v‖|, μ)

〉
fs

dv
〉

fs

qjns
〈∫

F0,j(X, |v‖|, μ)dv
〉

fs

⎞
⎟⎠ ,

(3.43)

where the correction given from the second term is added in order to fulfill the quasineu-
trality equation

ns∑
j=1

qj

〈∫
SP,jdv

〉
fs

= 0, (3.44)

and avoid introducing artificial electrostatic potentials. Once again, γP is a user defined
prefactor providing a relaxation rate. The heat input due to SP is compensated by
GENE, as detailed in Ref. [30], such that the overall input heat can be evaluated as the
second velocity moment of the heat source:

QH,j =
〈∫ 1

2
mjv2SH,jdv

〉
fs

. (3.45)

Alternative to gradient-driven runs, one can perform flux-driven simulations, where given
sources and sinks are prescribed and the system is evolving till a steady state is reached.
In this case, profiles might during their evolution significantly deviate from the prescribed
background, thus violating the assumption |δf/f0| � 1. An automatic adaptation of the
background F0 to the full f is therefore implemented in GENE, see Ref. [77]. Localized
heat sources SL are modeled according to

SL = S0SxSE , (3.46)

where

SE,j =
2
3

1
p0,j(x)

(
E

T (x)
− 3

2

)
F0,j (3.47)

with E = v2
‖ + μB, such that no particles and no parallel momentum are introduced

in the system. Sx allows the user to specify a radial profile of the source. Currently a
Gaussian and a broader peak profile, similar to the one described in Ref. [78] are available.
Finally, S0 specifies the amplitude of the source. When reproducing an experimental
scenario where the externally applied heating is known, S0 can be set by noting that the
total power injected by the source in (3.46) is

Qext = S0

∫
d3x

∫
d3vESeSx. (3.48)
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3.6.2 Radial buffers

When performing gradient-driven runs, Dirichlet boundary conditions are employed in
the radial direction, therefore the temperature and density at both ends of the simulation
are constrained to their initial value. This can lead to large unphysical profile variation
very close to the boundaries, in turn generating a strong turbulence in the edge regions.
In order to avoid such behaviour, and ensure numerical stability, radial buffers regions
are used where an artificial Krook damping operator is applied. This operator has the
form

ĥ = −νĝ, (3.49)

where the amplitude ν is set to zero outside the buffer regions and is a polynomial ramp
inside. When instead one carries out a flux-driven simulation, as already mentioned a
zero derivative boundary condition is applied to the flux-surface-averaged fluctuation.
The outer buffer can in this case be used as a sink by damping the ky = 0 mode.

3.7 Summary

In this chapter, a description of the GENE code and the numerical techniques that
are employed has been given. The coordinate system, together with their numerical
representation and the boundary conditions along each phase space direction have
been presented. Code specific normalizations have been discussed as well as how to
extract macroscopic turbulent fluxes from a simulation to be compared with experimental
measurements. Finally, the specific features of the global version of the code have been
presented.
In the next chapter a benchmarking effort, involving both the local and the global versions
of the code, will be discussed.
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4 Code verification

Verification is the fundamental step that any turbulence simulation code has to be
submitted to in order to assess the proper implementation of the underlying equations,
regardless of the specific numerical algorithm adopted to solve them. The work by Dimits
et al. [16] can be considered among the first systematic benchmark effort of gyrokinetic
codes based on a standard test case, the so-called Cyclone Base Case (CBC). Since
then, various efforts have already been successfully carried out involving different codes,
both in the local limit as well as considering a global representation [79–86]. With some
exceptions, e.g. Refs. [82–84], these comparisons often use an approximate analytical
circular model to describe the plasma equilibrium and ad-hoc temperature and density
profiles. Moreover a simplified adiabatic model for describing the electron dynamics
has usually been considered, with the main purpose of reducing the overall required
computational cost.
Given that whenever aiming at reproducing experimental observations with gyrokinetic
simulations one is normally dealing also with experimental geometries, a series of bench-
marks, of both the local and global version of GENE, have been carried out with the
specific aim of verifying the implementation of the interface to the MHD equilibrium
solver CHEASE [71]. These tests will be presented and discussed in this chapter.
The results of local benchmarks have been published in [87]. Verification of the global
code is still ongoing and some first results have been reported in [88].

4.1 Local benchmarks

4.1.1 Magnetic geometries and profile details

For all the benchmarks we consider five different numerical plasma equilibria obtained
using the ideal MHD solver CHEASE [71], which provides the axisymmetric equilibrium
magnetic field B with a pressure profile obtained from given density and temperature
profiles for the different plasma species. A detailed description of the cases can already
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be found in Ref. [89]. For the sake of clarity we briefly present them again here. These
equilibria are inspired by the DIII-D shot underlying the Cyclone Base Case [16] which
was a fully shaped plasma corresponding to a Single Null Diverted (SND) configuration.
The CBC benchmark, however, just considers circular concentric flux surfaces with
only plasma and safety factor profiles taken from the experiment. Among the shapes
we consider here, Case I has the most complex geometry and is derived directly from
the DIII-D experimental equilibrium i.e. a plasma with up-down asymmetry, positive
triangularity δ, elongation κ greater than unity and realistic Shafranov shift Δ. The
shape complexity is then progressively reduced by removing one shaping effect in each
subsequent equilibrium. This is achieved by modifying the Last Closed Flux Surface
(LCFS) shape. Therefore Case II is an up-down symmetric triangular plasma, Case III
corresponds to an elongated geometry (triangularity δLCFS=0), Case IV is a circular
plasma (elongation κLCFS = 1), and finally Case V is a zero β plasma with almost
concentric flux surfaces (Shafranov shift ΔLCFS 	 0). The flux surface contours for the
five equilibria are the ones depicted in Figure 2.2, while the geometrical parameters
describing the LCFS are reported in Table 4.1.
Regarding the triangularity of the up-down asymmetric Case I, this shaping parameter
has been estimated separately for the upper and lower halves of the corresponding
magnetic geometry. This was carried out by considering two separate up-down symmetric
equilibria, respectively based on the upper and lower half of the LCFS of Case I, and
providing δLCFS(upper) = 0.15 and δLCFS(lower) = 0.35 (see also Table 4.1 ). Note that
the triangularity of Case II is set to δLCFS = 0.15, i.e. the upper value of Case I.

Case q95 κLCFS δLCFS ΔLCFS
I 3.92 1.68 0.15(u)/0.35(l) -0.0443
II 3.87 1.68 0.15 -0.0531
III 3.70 1.68 -0.002 -0.0534
IV 3.66 1.00 0.015 -0.0752
V 3.72 1.00 0.0 -0.0262

Table 4.1 : Parameters characterizing the Last Closed Flux Surface of the five
equilibrium cases. For the up-down asymmetric geometry of Case I, the values of
upper (u) and lower (l) triangularity are provided.

In order to completely describe the plasma equilibrium it is necessary to specify, in addition
to the shape of the LCFS, the safety factor profile as well as the total pressure profile.
This is done by choosing similar profiles with respect to the minor radius r for the different
equilibria and built such that at the radial position r/a=0.5, the one used to carry out
flux-tube benchmarks, the local values of safety factor qs, magnetic shear ŝ = (r/q)(dq/dr)
and of temperature and density gradients are as close as possible to the CBC ones (qs=1.4
and ŝ=0.8, R0/Ln=2.22 and R0/LT =6.91 respectively). Here, r indicates the geometric
local minor radius of a given flux surface, defined as r = [Rmax − Rmin] /2, Rmax and
Rmin being respectively the maximum and minimum major radius of the flux surface
evaluated at the elevation of the magnetic axis. One in particular also defines the minor
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radius a of the LCFS as a = r(LCFS). The geometric center of a given flux surface in
turn is defined as Rgeom = [Rmax + Rmin] /2, such that the major radius of the machine
is given by R0 = Rgeom(LCFS) while the position of the magnetic axis corresponds to
Raxis = Rgeom(0). The local aspect ratio is therefore defined as ε(r) = r/R0. For all
the cases, a = 0.6 m and R0 = 1.68 m have been taken, corresponding to an inverse
aspect ratio a/R0 = 0.36, and the flux tube considered in the gyrokinetic simulations has
been centered at r/a=0.5, such that ε=0.18. For all the simulations, a deuterium plasma
is considered (assuming real mass ratio mD/me=3670, mD and me being respectively
deuterium and electron masses), and as the benchmark is carried out in the flux tube
limit, only the values of normalized inverse temperature and density gradient lengths
R0/LT,n = R0d log(T, n)/dr at the position of interest are required. As already mentioned,
these values are set to R0/LT =6.91 and R0/Ln=2.22 for all the five cases. The same
temperature is assumed for ions and electrons (τ = Te/Ti = 1). Collisions are neglected
and no background flows are considered. Note that the inverse gradient lengths R0/LT,n

are evaluated as derivatives of the profiles with respect to the geometric minor radius
r. The true normalized gradients driving the instabilities at a given position on a
magnetic surface are however given by R0|∇ log(T, n)| = R0d log(T, n)/dr|∇r|, where
the geometrical factor |∇r| is in general different from unity and not constant on a
magnetic surface in a shaped plasma. One may thus estimate on a given flux surface
an effective flux-surface-averaged gradient given by 〈R0|∇ log(T, n)|〉 = R0/LT,n〈|∇r|〉fs.
The corresponding values of 〈|∇r|〉f s evaluated at r/a=0.5 are listed in Table 4.2 and
shown as a function of elongation in Figure 4.1. Note that in all the graphs comparing
results pertaining to different geometries, the same color coding has been used: red for
Case I, blue for Case II, black for Case III, green for Case IV and magenta for Case V. The
nice alignment of the data in this plot already hints towards elongation being the most
important shaping parameter considered here. Note that for all the Cases with elongation,
the mid-radius values differ while the edge elongations are kept constant κLCF S = 1.68
(see Tables 4.1 and 4.3). We also remark that the higher triangularity that characterizes
Case I is due to an effectively higher δLCFS = [δLCFS(upper) + δLCFS(lower)]/2 = 0.25
of the fully shaped plasma compared to Case II. Elongation penetrates differently with
different edge triangularities, as noted in Ref. [90], and a lower δ leads to a larger κ in
the core (Case III). Of particular interest in this benchmark is the possibility to study

Case I II III IV V
〈|∇r|〉 0.907 0.871 0.864 1.040 1.003

〈R0|∇ log n|〉 2.014 1.933 1.918 2.308 2.226
〈R0|∇ log T |〉 6.269 6.017 5.969 7.184 6.929

Table 4.2 : Values of flux surface averaged 〈|∇r|〉 and the corresponding values of
effective flux-surface averaged temperature and density gradient lengths for the five
Cases (R0〈|∇ log(T, n)|〉=R0/Ln,T 〈|∇r|〉).

the effect of the usual shaping parameters on plasma behaviour by simply comparing the
five Cases. We note that when moving from one case to another, although one specific
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Figure 4.1 : Flux surface averaged 〈|∇r|〉 evaluated at r = 0.5 versus elongation κ.
Numbers identify the corresponding case.

edge shaping parameter is sensibly varied intentionally, all the other parameters change
to some degree as well.
In order to facilitate the understanding of the effect of the various shaping parameters,
an interface with Miller’s equilibrium [74] will be exploited in few cases (results shown
in Figs. 4.5 and 4.14) using the GENE code. The Miller parametrization considered
in GENE parametrizes in a poloidal plane ϕ = const the contour of a given magnetic
surface with geometric minor radius r = const by a poloidal angle θ (in general different
from the geometric angle) and is given in cylindrical coordinates (R, Z, ϕ) by [91]

R(r, θ) = Rgeom(r) + r cos {θ + arcsin [δ(r) sin θ]} , (4.1)
Z(r, θ) = Zaxis(r) + κ(r)r sin [θ + ζ(r) sin(2θ)] , (4.2)

where the elongation κ, triangularity δ and squareness ζ have been introduced. Zaxis indi-

Case qs s κ δ ζ Δ αMHD
I 1.382 0.804 1.3015 0.0812 9.01 10−4 -0.0127 0.515
II 1.382 0.778 1.4287 0.0260 5.22 10−4 -0.0132 0.5338
III 1.389 0.751 1.4723 -0.0070 2.83 10−3 -0.0139 0.5425
IV 1.450 0.764 1.0443 0.0065 5.13 10−4 -0.0206 0.5552
V 1.427 0.847 1.0124 0.0014 1.04 10−4 -0.0045 0.0

Table 4.3 : Parameters characterizing the five flux surfaces of interest computed
according to Eqs.(4.1) and (4.2).

cates the elevation of the magnetic axis with respect to the equatorial mid-plane. In order
to evaluate these parameters, the global CHEASE equilibrium is fitted according to Eqs.
(4.1) and (4.2) and the radial derivatives of the shaping parameters [κ′(r), δ′(r), ζ ′(r)],
also required for implementing the Miller equilibrium in the gyrokinetic equations, are
evaluated in the neighborhood of the flux surface of interest. The parametrization given
by Eqs. (4.1) and (4.2) does not require to specify the value of the Shafranov shift, instead
it requires the value of dRgeom/dr to build all the geometrical quantities required to solve
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Figure 4.2 : Values of the usual shaping parameters: (a) Shafranov shift Δ, (b)
elongation κ and (c) triangularity δ evaluated at the position r/a = 0.5 for the
five test cases. The values at the LCFS are shown with empty symbols with the
exception of Case I where the Miller parametrization given in Eqs.(4.1) and (4.2) is
not suited for the LCFS.

the gyrokinetic equations. The actual parameters characterizing the flux surface r/a = 0.5
are listed in Table 4.3 for the five equilibria considered. For completeness the values of
the Shafranov Shift Δ, defined as [Rgeom(r) − Raxis] /Raxis, and αMHD = −q2

sR0(dβ/dr)
where β = 2μ0p/B2

mag, p and B2
mag/2μ0 being respectively the local thermal pressure

provided by the MHD equilibrium and the magnetic pressure estimated with the magnetic
field Bmag on axis, are tabulated as well. As depicted in Figure 4.2 and quantified in
Table 4.3, the different shaping parameters have different radial penetration depths. In
particular it is to be noted for Case II, with finite triangularity δLCFS = 0.15 at the LCFS,
that the remaining triangularity at r/a=0.5 is reduced by more than 80% to δ = 0.026,
illustrating the weak penetration depth of this shaping parameter. Elongation however,
which remains finite down to the magnetic axis and as noted above is favored by small δ,
is for example reduced only by ≈ 10% in Case III , going from κLCF S=1.68 to κ=1.47 at
r/a = 0.5.

4.1.2 Linear kθ-spectra

First, a linear electrostatic benchmark is performed, considering instability spectra with
wave-numbers up to the electron Larmor radius scales. All the five cases are characterized
by a mixed Ion Temperature Gradient (ITG) - Trapped Electron Modes (TEM) regime
at the ion Larmor radius scale, as already shown in Ref. [89], while Electron Temperature
Gradient (ETG) driven modes dominate the spectra at electron Larmor radius scales.
Even though only purely electrostatic fluctuations are considered, the finite pressure
gradient contribution is kept in computing the curvature drift vc. The value of β is
computed consistently with the CHEASE equilibrium. The effect of the pressure gradient
is small but not negligible, especially at the ITG to TEM transition, which is shifted to
lower wave-numbers when this pressure term is accounted for.
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At ion scales, the GENE code has been run in its eigenvalue (spectral) version [92–94] in
order to recover not only the most unstable mode but the subdominant branches of the
dispersion relation as well. At ETG scales, because of the absence of strong subdominant
modes, the initial value (time evolution) approach was used for being significantly more
effective than the eigenvalue procedure in determining the growth rates of the most
unstable modes. All the simulations have been carried out considering nkx = 32 radial
modes connected because of the parallel boundary condition, while nz = 64 points have
been used to discretize the “parallel” direction z. For the velocity space, unless specified
differently, a uniform grid composed of nv‖=128 points between 0 < v‖ < 4.24vj was
used to discretize v‖ direction, while nμ=32 Gauss-Laguerre integration points between
0 < μ < 9Tj/B0 were used for the μ direction. Here vj =

√
Tj/mj stands for the thermal

velocity of species j.

The GKW code also considers a field-aligned coordinate system noted (r, ζ, s) built from
the Hamada coordinates. Here r is the radial direction, ζ the binormal and s (one of
the Hamada coordinates) is referred to as the “parallel” direction; as for the GENE
code, parallel velocity v‖ and magnetic moment μ are used for discretizing the velocity
space. The GKW coordinate system is briefly presented in Appendix A, while a detailed
description of the code is given in Ref. [95]. Similarly to GENE, a Fourier decomposition
is used for the flux-tube representation in both r and ζ directions. The simulations have
been carried out considering nkr =25 radial modes kr connected via the parallel boundary
condition, while ns=35 points were used to discretize the s direction. Uniform grids in
both v‖ and μ, with the same upper limits as considered for GENE, have been adopted
for the velocity space and discretized using nv‖ × nμ = 128 × 8 points respectively.

Finally, the GS2 coordinate system (X, Y, θ) and its Fourier representation are directly
related to the ballooning representation of a fluctuating field (see Appendix B and
Ref. [96] for the details). All the simulations shown here have been performed considering
nkX

=15 connected radial modes, while a parallel resolution of nθ = 32 has been used
to discretize a magnetic field line along one poloidal turn. Differently from GENE and
GKW, in the GS2 code energy E and pitch angle λ = v2

⊥/(v2B0) are used as velocity
space variables to represent the distribution function, while the integration is carried
out according to a Gauss-Legendre distribution of points. For these simulations nλ = 24
points are used to discretize the λ direction while nE = 18 for E . The maximum value of
the E-grid is set to 11.3 mjv2

j /2.

We point out that the simulations performed with the GENE code have been carried out
with an higher resolution in both the radial and “parallel” directions with respect to GKW
and GS2 with the aim of providing reference results well converged in all directions. We
nevertheless remark that using a lower resolution e.g. nkx ×nz×nv‖ ×nμ = 32×32×64×16
in GENE is sufficient to provide growth rates and frequencies converged within 5% for
all the microturbulence regimes and plasma shapes being considered here. We also note
that the efficient parallelization scheme adopted in GENE allows to carry out the most
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resolved runs without a significant increase of the computational cost. A similar approach
was used for the discretization of the velocity space, which as will be shown turns out
to be crucial, especially as one needs to correctly resolve the trapped-passing particle
boundary. The choice of (v‖, μ) naturally requires a higher number of points to resolve
this boundary compared to a discretization along (E , λ), which explains the difference
between the GENE and GKW setups with respect to GS2. The trapped-passing boundary
is indeed aligned to a Cartesian (E , λ) grid while it is diagonal to a (v‖, μ) grid.

One of the main difficulties arising when comparing different codes is the dependence
of the corresponding results on code-specific coordinate systems. This is particularly
critical when considering plasmas with non-circular shapes, as differences between various
coordinate systems become significant. We recall that for linear modes in an axisymmetric
systems, n is an exact mode number, while this is not the case for poloidal mode numbers
m. Nonetheless, as the fluctuations are field aligned, poloidal wave numbers can be
estimated as kθ ∼ m/r with m ∼ nqs. Therefore we plot the real frequencies ωr and the
growth rates γ of the modes (in units of vi/R0) with respect to the effective poloidal
mode number estimate kθ = nqs/r0 normalized to the ion Larmor radius ρi = vi/Ωi.
This quantity can be evaluated from each code’s specific representation (see Eq. (3.9) for
GENE and Appendixes A and B for details respectively to GKW and GS2 codes):

n = kyCy for GENE (4.3)

n =
kζ

2π
for GKW (4.4)

n = kY
1

Ba

dψ

dr
for GS2 (4.5)

When plotting the results, we conform to GENE conventions on the sign of the real
frequency of the mode: a positive value indicates a propagation in ion diamagnetic drift
direction while a negative value corresponds to propagation in the electron diamagnetic
direction.

The results obtained for the kθ-spectra using the three codes are shown in Figure 4.3
at the ion scales (kθρi ∼ 1), while in Figure 4.4 the linear spectra at the electron scales
(kθρe ∼ 1) are compared for Case I. All results shown here consider zero ballooning angle
χ0 = 0, where χ is the straight field-line poloidal angle defined in Eq. (3.1). With the
previously specified setup, GENE, GKW and GS2 agree between each other within 3%
on both real frequency ωr and growth rate γ of the most unstable modes, at all scales
and independently from shaping. Separate convergence studies have been performed at
the different scales and the difference between the codes was further reduced to 1% when
higher resolutions, similar to the GENE ones, were considered by the different codes. We
note that the transition from ITG to TEM cannot be taken as a practical benchmark
point as its position is very sensitive to the resolution used and a convergence study is
particularly expensive.
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Figure 4.3 : Real frequency ωr and growth rates γ normalized to R0/vi as a
function of the effective poloidal mode number kθρi = nqsρi/r0 for the five CHEASE
equilibrium test cases. Shown are the results obtained with the GENE (red stars),
GKW (blue diamonds) and GS2 (green circles) codes. Sub-dominant modes are only
provided for GENE results.
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Figure 4.4 : Benchmark at electron scales for Case I. Results from GENE (red
stars), GKW (blue diamonds) and GS2 (green circles).
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Figure 4.5 : Variation of growth rate γ and real frequency ωr for fixed kyρi = 0.3
(according to GENE convention) continuously increasing shaping complexity from
Case V (circular, β = 0) to I (SND, β �= 0) making use of the Miller equilibrium
representation. Labels indicate the parameter being changed at each step. Results
obtained for the five cases with the MHD equilibrium are shown for comparison
and labeled “CHEASE” (green diamonds). All results have been obtained with the
GENE code.

As already discussed in Sec. 4.1.1, when going from one equilibrium case to the other, all
the parameters characterizing the actual local flux surface geometry are changed. The
interface to the Miller equilibrium given in Eqs. (4.1) and (4.2) has therefore been used
to study the effect of each parameter separately. Starting from the representation of the
flux surface of Case V, one geometrical parameter is changed at the time, until reaching
the values characteristic of Case I. The results, obtained with GENE for kyρi = 0.3,
are presented in Figure 4.5, where the labels indicate the particular parameter being
changed (either qs, ŝ, ε, κ, δ or dR/dr). Dashed lines are used for illustrating the
combined variation related to parameters inducing only smaller effects. We note that
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having performed this scan at fixed kyρi, the equivalent kθρi as defined in Eqs. (4.3-4.5)
is not constant because of the variation in both n and qs (kθρi varies between 0.296 and
0.451).
From Figure 4.5 it appears, as expected, that any variation of the parameters used to
describe the plasma equilibrium contributes to a change in the linear spectra. For each
change of equilibrium between Cases V and III it is possible to identify one parameter
which leads to the most significant variation: αMHD going from Case V to IV (responsible
for the Shafranov shift), elongation κ going from Case IV to III. Note that going from
Case III to II, very little variation arises from the change in triangularity, while the effect
of the variation of κ is comparable to the results of changing all the other parameters.
Going from Case II to I, where despite the up-down asymmetry the Miller parametrization
still is a good approximation, elongation appears once again as the main reason for
change in growth rate and frequency of the mode. Triangularity δ, despite the significant
relative variation at the considered reference surface (see table 4.3), has only a little
effect.
Considering the relative variation of the growth rate for a given relative variation of the
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Figure 4.6 : Maximum linear growth rate in ITG regime for all five Cases versus
the flux surface averaged temperature gradient length. Values in units of R0/vi.
Numbers identify the corresponding case. Results from the GENE code.

various shaping parameters considered here, elongation appears the most important, and
the change in linear stability from Case IV to I can be explained mainly by a variation in
κ. As an example, in Figure 4.6 we plot γ of the most unstable mode in the ITG regime
for the five test Cases versus the corresponding effective temperature gradient (which is
determined mainly by elongation, as shown in Fig. 4.1). A trend is clearly recovered; we
plot also the result obtained for Case V which appears not as much aligned as the other
points. This happens because of the strong effect exerted by αMHD = 0 and dRgeom/dr

in going from Case IV to V.
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4.1.3 Ballooning angle scan

The ballooning representation [97] of a given fluctuating field A(x, χ, ϕ) in straight field
line coordinate system reads

A(x, χ, ϕ) = Â(χ)e−in{ϕ−q(x)[χ−χ0]}. (4.6)

The exponential term in (4.6) represents the fast phase factor for field-aligned fluctuations,
while χ0 corresponds to the so-called ballooning angle, angle at which the fast phase does
not vary radially through q(x). Â(χ) is the so-called ballooning envelope and accounts for
the slow variation of the fluctuation along the magnetic field line. Any radial modulation
of the envelope has already been neglected. Equation (4.6) does not ensure periodicity
with respect to χ which is therefore enforced by expressing the actual field A(x, χ, ϕ) in
terms of A(x, χ, ϕ) as follows:

A(x, χ, ϕ) =
+∞∑

p=−∞
A(x, χ + p2π, ϕ)

= e−in[ϕ−q(x)χ]
+∞∑

p=−∞
Â(χ + p2π)einq(x)[p2π−χ0] (4.7)

Identifying kyy = −n [ϕ − q(x)χ] according to Eqs. (3.2) and (3.9), and after again
linearizing the safety factor profile, one obtains

A(x, χ, ϕ) = eikyy
+∞∑

p=−∞
Â(χ + p2π)eiky ŝx(p2π−χ0),

= eikyye−iky ŝχ0x
+∞∑

p=−∞
Â(χ + p2π)eip2πΔkx x.

(4.8)

In deriving equation (4.8) the radial coordinate has been radially shifted i.e., x + x0/ŝ → x.
Comparing equation (3.14) to (4.8), one thus identifies

⎧⎪⎨
⎪⎩

χ0 = −δkx

ky ŝ
,

Â(χ + p2π) = Âδkx+pΔkx(z).
(4.9)

The effect of a finite ballooning angle χ0 is usually neglected in linear studies and
benchmarks, which are normally carried out under the assumption of zero χ0. However,
linearly [98–100] and non linearly correctly taking into account ballooning angle is crucial
to accurately predict the transport level, thus the reason for benchmarking this effect.
We recall also that the ballooning angle is the angle at which turbulent eddies point
radially.
A finite ballooning angle can be introduced in the Fourier representation of all the codes
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used. As already discussed, for a given ky (resp. kζ , kY ) linear mode, GENE (resp. GKW,
GS2) code couples the radial Fourier modes kx = δkx + pΔkx (resp. kr = δkr + pΔkr,
kX = δkX + pΔkX), p ∈ Z, where δkx, δkr andδkX are related to the straight field
poloidal ballooning angle χ0 by the relations (see also Appendixes A and B for further
details about resp. GKW and GS2):

χ0 = −δkx

ky ŝ
for GENE (4.10)

χ0 = −2π
δkr

kζdq/dr
for GKW (4.11)

χ0 = −δkX

kY ŝ
for GS2 (4.12)

For each of the five test cases, a scan of χ0 has been carried out at given toroidal
mode number, kθ|GKW ρi = 0.2 according to GKW definitions, the corresponding values
of nqsρi/r0 are listed in Tab. 4.4. For the sake of completeness the input values of
kyρi|GENE and kY ρi|GS2 used for the equivalent GENE and GS2 runs are reported as
well. The resolution nkx × nz × nv‖ × nμ = 32 × 64 × 128 × 32 has been used for the
simulations performed with the GENE code, while GKW runs have been carried out
considering nkr × ns × nv‖ × nμ = 27 × 35 × 128 × 32. GS2 runs have been performed
using nkX

× nθ × nλ × nE = 63 × 48 × 24 × 18 grid points. The results obtained are shown
in Figure 4.7, where growth rates and frequencies are plotted as a function of χ0 for the
five geometries.
We note that increasing the ballooning angle the ITG mode, which is the most unstable

Case I II III IV V
nqsρi/r0 0.180 0.222 0.308 0.312 0.276

kyρi|GENE 0.231 0.246 0.251 0.227 0.179
kθρi|GKW 0.2 0.2 0.2 0.2 0.2
kY ρi|GS2 0.197 0.196 0.201 0.223 0.183

Table 4.4 : Equivalent poloidal mode number nqsρi/a used for the finite ballooning
angle scan in the five test Cases. The corresponding GENE, GKW and GS2 input
binormal wave vectors kyρi|GENE, kθρi|GKW and kY ρi|GS2, are tabulated as well.

one associated to χ0 = 0, is first stabilized. Then at larger values of χ0 (χ0 ∼ ±0.3)
a transition to TEM is found for all Cases except Case IV, where the mode is stable.
With the GENE code, used in its initial value mode of operation, we resolved the
mode transition systematically for all geometries. As can be seen from Fig. 4.7 a good
agreement is again recovered between the codes, within 3% on both frequency and growth
rate. As for the kθ-spectra, the transition point is strongly dependent on the resolution
adopted and cannot be taken as an exact benchmark point (a convergence study being
too costly).
We also remark that for this particular value of nqsρi/r0 in spite of the up-down edge

asymmetry, the most unstable modes for Case I are indeed associated to zero ballooning
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Figure 4.7 : Ballooning angle scan for the five test cases. From Case I to V growth
rates and frequency in units of vi/R0 are shown for the GENE code (red) code,
GKW (blue) and GS2 (green).
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angle (the difference between growth rates at positive and negative χ0 is of the order of
	 2%, with more unstable modes at positive angles). This is because the flux surface
of interest is relatively inside the plasma cross section, such that the effective up-down
asymmetry is very weak.

Finally, we benchmark the mode structure of the electrostatic potential φ associated
to some of the modes for which frequency and growth rate have been computed in
the previous Section. In order to compare the results from different codes, amplitudes
and phases of the fields must be appropriately renormalized; we therefore plot φ(χ)
renormalized such that �{φ(χ = 0)} = 1 and �{φ(χ = 0)} = 0.
Benchmarking the ballooning structure turns out to be very challenging, more than the
growth rate and frequency of the mode. In particular, we note that when growth rate and
frequency of the mode are converged within few percents (∼ 5%), then the most ballooned
part of the mode, i.e., −π ≤ χ ≤ π is also converged and a good agreement between
the codes is recovered. An example is given in Figure 4.8, where the eigenfunction of
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Figure 4.8 : Ballooning representation of the electrostatic potential φ computed
with GENE (red), GKW (blue) and GS2 (green) for the mode nqsρi/r0 = 0.276 and
χ0 = 0. Magnetic geometry of Case V.

the mode nqsρi/r0 = 0.276, computed considering the magnetic geometry of Case V
and χ0 = 0, is compared. The results of Fig. 4.8 have been obtained using the same
resolutions as adopted for computing real frequency and growth rate of the mode, and
one observes differences in the tails of the eigenfunction, for χ > 2π. We nevertheless
remark that even if the local differences can be up to 30%, they remain small compared
to the maximum amplitude of the mode.
In order to converge the mode structure and have the same good match between codes
over a wider range of χ values, the resolution has to be significantly increased. Besides a
sufficiently large number of connections along the field line, corresponding e.g., to the
number of kx modes in GENE, the velocity space resolution turns out to be crucial for
recovering a good agreement over the complete ballooning structure. This is especially
true for the TEM modes, for the same reasons as described in Sec. 4.1.2. This turns out
to be a challenging and computationally significant effort, therefore it has been limited
to GENE and GKW codes only. No particular reason prevents from doing the same also
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with GS2. Also, this benchmark is carried out considering only Case V and I, viz. the
circular and the fully shaped geometry, while values of χ0 have been selected such that
both ITG and TEM regime are studied.
The results obtained are shown in Figure 4.9 for Case V and Figure 4.10 for Case I.
All these simulations have been performed considering 64 nkx modes in GENE and 64
nkr in GKW, while 70 points have been used to discretize along the magnetic field line.
The runs associated to ITG modes have been carried out discretizing the phase space
with nv‖ × nμ=128 × 32 points in both codes, while for TEM modes the velocity space
resolution has been further increased to 192 × 48 in GENE and 256 × 64 in GKW. With
these grids the frequency obtained from the two codes agree within less than 1%. The
different number of grid points required for velocity space is explained by their different
distribution. We note that the two codes adopt different boundary conditions at the
beginning and end of a magnetic field line: in GENE, the default setting is assuming
zero perturbation at the domain boundaries (other options are available). In GKW a
zero derivative condition is applied (see Refs. [33, 95] for more details on the actual
implementation). We have verified by further increasing the number of connected radial
modes that the boundary condition is not affecting the results. We also note that reducing
parallel dissipation in GKW appears to further improve the agreement. However, this
requires to set a smaller time step increasing the cost of the runs, so we have carried out
all the simulations setting the dissipation to 0.02 without further pushing the convergence.
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Figure 4.9 : Ballooning representation of the electrostatic potential φ computed
with GENE (red) and GKW (blue) for three different values of ballooning angle χ0.
Shown are the results obtained for (a) zero ballooning angle, (b) finite χ0 in the ITG
regime and (c) finite χ0 for TEM. The value of χ0 is reported in each plot.

4.1.4 Rosenbluth - Hinton test

Correctly describing Zonal Flows is essential for any turbulence simulation as they are
one of the main mechanisms of saturation in non-linear regime, at least in ITG dominated
plasmas. The Rosenbluth-Hinton test [101] allows to study linear dynamics of ZFs by
computing the residual level of e.g. the potential and at the same time characterize the
properties (real frequency ωGAM and damping γGAM) of the Geodesic Acoustic Mode
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Figure 4.10 : Same as Figure 4.9, but for Case I.

(GAM) [54]. Several theoretical works are available providing estimates for both the
residual level and the GAM properties under various limits. Thus in addition to code
benchmarking it is also possible to validate simulation results against such estimates, in
their proper limit.
In order to avoid the numerical problem of small recurrence time due to light electrons,
this particular test has been carried out considering the adiabatic response of the electrons.
Fully kinetic simulations show the same level of residual potential, confirming the validity
of the approach.

GENE simulations have been performed evolving an ion density perturbation associated
to the mode kxρi = 0.05, ky = 0 and solved on grids involving up to nz × nv × nμ

= 64 × 400 × 32 points. No hyperdiffusion has been used in order to avoid any effect
on the frequency of the GAM [102]. Density and temperature gradients have been set
to zero. The same set up was used for carrying out GKW simulations, which have
been performed using ns × nv‖ × nμ = 140 × 256 × 27 grid points. Hyperdiffusion
has been switched off as well. GS2 adopts a different initial condition for Zonal Flow
investigations, consisting in evolving in time an initial zonal electrostatic field without
initiating any density perturbation. These different initial conditions are found to lead to
the same final results. The runs performed with GS2 have been carried out considering
nθ × nλ × nE = 64 × 32 × 48 grid points.

We benchmark the value of the residual potential 〈φ(∞)〉/〈φ(0)〉, defined as the flux
surface averaged electrostatic potential 〈φ〉 normalized to its initial value 〈φ(0)〉. This
quantity is computed after the GAM oscillation is completely damped. Simulations are
run well beyond this limit, typically up to 150R0/vi, to ensure a true stationary state
and check that the recurrence problem is not affecting the results. The obtained residual
levels computed with GENE, GKW and GS2, are shown in Figure 4.11, and compared
with several theoretical estimates available in the literature. These are all of the form

〈φ(∞)〉
〈φ(0)〉 =

1
1 + Sq2

s/
√

ε
(4.13)

where S is a shaping function dependent on the model used for describing the magnetic
geometry. For circular concentric magnetic surfaces in large aspect ratio Tokamaks,
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Eq. (4.13) reduces to the well known expression by Rosenbluth and Hinton 1/(1+1.6q2
s/

√
ε)

valid to first order in ε. For shaped Tokamaks, Xiao and Catto [103] derived a shaping
function valid up to second order in ε in which all shaping parameters explicitly appear

SXC =
1

1 + κ2

(
3.27 +

√
ε + 0.722 ε − 1.44 δ − 2.945

Δ
ε

+
0.692k2 − 0.722

q2
s

ε

) (4.14)

while Zhou and Yu [104] adopted a Miller equilibrium to obtain

SZY =
1

κ2 (1 + 3δε/8)2 I0

{
25
16

− 53
256

δ +
√

ε

2
− ε

×
[

3
64

− 93
256

δ +
9κ2

8q2
s

(3I0
4

+ I1

)]} (4.15)

I0 and I1 are two geometrical quantities defined in Ref. [104], qs,ε, κ, δ and Δ are the
local values at q = qs. We note that the definition of ε, elongation κ triangularity δ and
Shafranov shift Δ appearing in equations (4.14) and (4.15), depend on the particular
parametrization used for describing the flux surface. Therefore their value is computed by
fitting the CHEASE equilibrium accordingly to each specific magnetic geometry model.
The agreement obtained between the codes is very good, within 1% and independent
from shaping. A systematic deviation from analytic estimates is found in all shaped cases
(Case I to IV), among which the one by Zhou and Yu (Eq. (4.15)) is found to give the
estimate closest to our numerical simulation (≈ 10% lower).
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Figure 4.11 : Residual potential computed with GENE (red stars), GKW (blue
diamonds) and GS2 (green circles) normalized to its initial value for each equilibrium
Case, I to V. For comparison, the theoretical estimates given by Rosenbluth-Hinton
[101] (R-H), Xiao-Catto [103] (X-C) and Zhou-Yu [104] (Z-Y) are shown as well with
cyan squares, black triangles and magenta pentagrams respectively.

When performing the Rosenbluth-Hinton test, the GAM is excited and its real frequency
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and damping can be extracted from the time trace of the simulated potential. The
damping γGAM is obtained upon fitting the maxima and minima of the residual to
an exponential envelope. The frequency is subsequently extracted via inverse Hilbert
transform. An example is shown in Figure 4.12. When comparing different codes the
same time window is used. This is necessary especially when evaluating the damping
which is strong in the cases considered here and therefore only few GAM oscillations
are contained in the simulated time trace. The three codes agree between each other
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Figure 4.12 : Time trace of electrostatic potential normalized to its initial value
for Case V (values obtained with the GENE code). The points used to estimate
GAM real frequency and damping are shown with green circles together with the
corresponding estimated exponentially decaying envelope.

on ωGAM within 1%. The numerical results, together with the numerical solution to
the dispersions relations proposed in Refs. [56] and [57] are shown in Figure 4.13. The
first analytical estimate, valid only for circular plasmas, agrees with the simulation only
for Case V, while the latter which retains shaping effects, matches the simulation in
all Cases with less than 5% difference. The strong GAM damping found in all shaped
plasmas (Cases I to IV) makes its estimation from the simulation difficult. Nevertheless
the codes agree between each other, while a sensible difference is found when comparing
to analytical estimates.

The same analysis as described in Section 4.1.2 of interfacing the flux surfaces with the
Miller equilibrium for studying the effect of all parameters, has been repeated for the
Rosenbluth-Hinton test. Figure 4.14, showing the residual potential level and the GAM
properties, confirms that when going from one case to the other all the parameters play
a role but whenever κ is varied, it is responsible for the major part of the change. This
is true in particular for Case II where, despite considering a triangular plasma, most of
the difference is originated by a variation of elongation from Case II, and also for Case I.
Note that in Fig. 4.14 the values have been normalized to Rgeom(r)/vi for simplicity. We
can therefore plot the results of this test with respect to elongation, as shown in Figure
4.15. The results are nicely aligned and show how an increase of κ leads to an increase
of the residual level while at the same time the GAM frequency is reduced and the mode
is more strongly damped.
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Figure 4.13 : GAM real frequency ωGAM and damping rate γGAM for the five test
Cases. Shown are GENE results (red stars), GKW ones (blue diamonds) and GS2
(green circles). The analytic predictions by Sugama [56] (cyan triangles) and the
one from Gao [57] (magenta pentagrams) are shown as well.
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Figure 4.14 : Effect of the shaping parameters on (a) ZF residual, (b) GAM
frequency ωGAM and (c) GAM damping γGAM. Results obtained with the GENE
code performing the RH test after fitting the equilibria according the parametrization
given by Eqs. (4.1) and (4.2). One parameter is varied at each time as indicated by
labels, the values are listed in Table 4.3. For comparison, the values obtained when
using the CHEASE equilibrium are reported as well (green).

4.2 Global benchmarks

The same five geometries are currently being employed for benchmarking the CHEASE
interface for the global version of GENE. This benchmark is carried out within the
framework of an international validation effort, the EUROFusion Enabling Research
project “Verification and validation of global gyrokinetic codes”. This effort currently
involves the GENE and ORB5 codes.
Carrying out a similar exercise as the one described in the previous sections, but employing
global gyrokinetic codes, appears of great interest, among others because it has not been
carried out systematically before. The need of having at least an heat source for carrying
out a global turbulence simulation, naturally makes extremely valuable carrying out not
only linear but also nonlinear simulations.
Assuming a given resolution, global runs are significantly more expensive than flux-tube
ones. Hence, in order to define a series of benchmarks that are meaningful for verification
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Figure 4.15 : Results of the Rosenbluth-Hinton represented versus elongation κ of
each test Case. Shown are (a) the residual level, (b) the GAM real frequency ωGAM

and (c) the damping γGAM . Numbers indicate the corresponding test case.

purposes, in particular of the magnetic geometry, but with a limited (and affordable)
computational cost, only a subset of the five cases will be used and in most cases an
adiabatic electron response assumed. This greatly reduces the overall cost of the runs.
Analytic temperature and density profiles are chosen instead of realistic ones. On the
one hand, this allows to avoid simulating the edge region where gradients are typically
very large and therefore the simulation very demanding. On the other hand it makes the
definition of the profiles unique and reproducible by any code. We choose to use profiles
of the form [64]:

T̂i,e(ρ) =

⎡
⎣cosh

(
ρ−ρ̄+δT

ΔT

)
cosh

(
ρ−ρ̄−δT

ΔT

)
⎤
⎦

−κT εΔT/2

, n̂i,e(ρ) =

⎡
⎣cosh

(
ρ−ρ̄+δn

Δn

)
cosh

(
ρ−ρ̄−δn

Δn

)
⎤
⎦

−κnεΔn/2

. (4.16)

Here δT and ΔT (and δn, Δn respectively) are characteristic profiles widths shown in
in Figure 4.16, while κT and κn are the maximum value of temperature and density
gradient. Finally, ε is the inverse aspect ratio of the machine ε = a/R0. The radial
coordinate is based on the normalized plasma volume enclosed inside a given flux surface,
ρ = ρvol =

√
V (r)/VLCFS, and ρ̄ indicates the radial location at which the profiles are

centered, in all cases 0.5.

While the maximum gradients are chosen to be CBC like (κT = 6.91 and κn = 2.22),
different profiles widths are taken for linear and nonlinear benchmarks, with once again
the aim of reducing the cost of the runs. In particular, in order to avoid beating between
modes linearly unstable at different radial locations, a more localized gradient is assumed
in linear runs compared to nonlinear ones.
One final aspect that has to be carefully taken into account, is the orientation of the
equilibrium toroidal magnetic field and plasma current. The only equilibrium which is
explicitly built such as to possess an up-down asymmetry is Case I, one might be tempted
to assume that a transformation Z → −Z, which is equivalent to flipping the sign of the
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Figure 4.16 : Example of a normalized temperature profile T̂ (dashed line) and
associated normalized logarithmic gradient length R/LT (solid line) computed ac-
cording to Eq. (4.16). The characteristic profile widths (δT and ΔT ), as well as the
center position ρ̄ have been indicated with arrows.

torodal field Bϕ or of the plasma current Ip in a perfectly up-down symmetric geometry,
will not affect the results. It turns out that in all cases the effect of such transformation is
not negligible and one must use the same orientation of the two aforementioned quantities
in order to recover the desired agreement between the different codes. In practice, this
can be achieved thanks to the CHEASE code itself, which allows to freely change the
orientation of both Bϕ and Ip. We note that all equilibria considered assume a negative
magnetic field orientation and a positive plasma current, thus resulting in a negative q

profile according to GENE conventions and a positive one in ORB5 coordinates. Unless
this condition is not met, a small difference (∼ 10%) on the frequency and growth rate is
found even in the Cases II to V.

4.2.1 Linear runs with adiabatic electrons

As a first step, the linear growth rares and frequencies of the most unstable mode for a
toroidal mode number scan are compared. For these tests, δT = 0.075 and ΔT = 0.02
(the same values are chosen for the density profile as well) have been assumed.
GENE simulations are carried out considering an annulus centered at ρvol = 0.5 and
covering half minor radius of the plasma. A single machine size, with ρ∗ = ρi/a = 1/180
where ρi is the ion Larmor radius measured at the center of the simulation domain, is
considered. Separate convergence studies have been carried out for different values of
n0 in order to ensure the convergence of the results within 3%. A typical GENE grid
reads nx × nz × nv × nμ = 256 × 48 × 96 × 32. Finer grids grids are required for higher
n0 modes. ORB5 simulations have been performed considering the same radial domain,
discretized with nr × nχ × nϕ = 200 × 1024 × 512 points along respectively the radial,
poloidal and toroidal directions.
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Figure 4.17 : Growth rate γ and real frequency ωr, in units of R0/vi, of the most
unstable mode for a scan over toroidal mode number n0. Shown are the results
obtained with GENE (blue circles) and ORB5 (red stars) for Case V (a), Case III
(b) and Case I (c).

The results for Case V (circular with β ∼ 0), Case III (elongated) and Case I (fully
shaped) obtained with GENE and ORB5 are compared in Figure 4.17. A good agreement
is recovered, for all shapes and values of n0 on both growth rate and frequency. A small
difference ∼ 5% is observed on the value of the growth rate, which is however within
the error bars associated to the determination of this quantity. In order to make the
comparison more robust and detailed, the eigenfunction of the most unstable mode has
been compared as well. An example, obtained considering the magnetic geometry of Case
I (which because of the up-down asymmetry is the most challenging shape), is depicted in
Figure 4.18 where the electrostatic potential φ is shown on a poloidal plane. To further
quantify any difference between the two codes, we looked at the field amplitude as a
function of the the parallel and radial coordinates. This is accomplished by comparing φ

as function of the straight field line angle χ on the flux surface at ρvol = 0.5, as well as
comparing it as a function of ρ at few specific poloidal location (χ = 0, π and ±π), as
show in Figure 4.19. The fields are obtained at the end of a linear simulation i.e. when
the growth rate is converged. As a consequence, the amplitude and the phase of the
fields are not relevant and in general different. In order to effectively carry out such
comparison, the fields have thus to be properly renormalized. This is achieved writing
the field as

φ(ρvol = 0.5, χ) =
1
2

M/2∑
m=−M/2

(
φm + φ∗

−m

)
eimχ. (4.17)

such as to isolate the dominant poloidal mode at the location of interest. Upon having
verified that the two codes indeed agree about the dominant mode m, one can then
match the relative phases and conveniently normalize the maximum amplitude. For the
n0=40 and the magnetic geometry of Case I, the results are depicted in Figure 4.19. The
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Figure 4.18 : Projection on a poloidal plane of the electrostatic potential associated
most unstable mode for n0=40. On the left, the mode structure obtained with
the GENE is shown, while on the right the one provided by ORB5. The magnetic
geometry used is Case I (fully shaped plasma). The flux surfaces corresponding to
ρvol=0.3, 0.5 and 0.7 are indicated with dashed lines.

agreement is astonishingly good, with a difference on field amplitude below 10%.
Linear GENE simulations have been carried out for all the five geometries. The obtained

growth rates are shown in Figure 4.20. One sees that, in agreement with the local results,
Case IV is the shape characterized by the highest growth rates. Compared to Case V,
one observes that the inclusion of a finite Shafranov shift leads also to a destabilization
of higher n0 modes and to a strong reduction of the real frequency for a given n0. The
short scale destabilization is further enhanced by elongation, which at the same time
is found to reduce the maximum growth rate by 15%. Among the elongated magnetic
geometries, Cases I to III, no significant effect is observed because of finite triangularity,
while up-down asymmetry appears to slightly increase γ.

4.2.2 Nonlinear runs with adiabatic electrons

Nonlinear simulations have been performed considering a wider profile (δT = δn = 0.04,
Δn = ΔT = 0.3). The same radial and parallel resolutions as the one used for linear
runs have been assumed, while 48 modes have been used to discretize the binormal
direction, representing half torus. The minimum kyρi retained is thus 0.030. The velocity
grids have been extended from the linear runs ones in order to accommodate the new
temperature profile in use to L̂v‖ × L̂μ = 4.24 × 18 and discretized with 96 × 32 points.
ORB5 runs have instead been carried out considering nr × nχ × nϕ = 280 × 512 × 256
points and retaining 32 toroidal modes. Once again, as done for the local benchmarks,
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Figure 4.19 : Comparison of the amplitude of φ as obtained from GENE (blue
curve) and ORB5 (red diamonds) at different radial and poloidal locations. On the
left, the amplitude of the electrostatic potential is shown as a function of the straight
field line angle χ on the flux-surface ρvol = 0.5. On the right, the radial dependence
of φ is compared at difference poloidal angles χ.
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Figure 4.20 : Comparison between the linear spectra obtained for the five magnetic
geometries. Shown are (a) growth rates γr and (b) real frequencies ωr as a function
of the toroidal mode number n0.

particularly fine grids have been used for the GENE runs, especially in the binormal
direction, with the aim of providing reference results. We remark that using nky = 32
modes and simulating only a third of the torus is sufficient to converge nonlinear fluxes
within 10%.
Following the same logic as what done in Ref. [32], the heat diffusivity, averaged over
the radial domain 0.45 < ρvol < 0.55, are compared as a function of time in Figure 4.21,
together with the time averaged temperature gradient profiles. One observes a good
agreement between the two codes, with time averaged values differing for ∼ 10%. This
is further exemplified in Figure 4.22, where the time evolution of the ion heat flux is
shown as a function of time and radius. Both codes reproduce a turbulent behaviour
dominated by inward propagating avalanche like structures. Looking at the temperature
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Figure 4.21 : On the left, heat diffusivities in GyroBohm units averaged over
0.45 < ρvol < 0.55, on the right time averaged temperature gradient profiles.

Figure 4.22 : Heat flux profiles (in units of QGB) obtained, on the left, from GENE
and, on the right, from ORB5.

gradient profiles, one observes a much stronger relaxation in the GENE results around
x/a=0.37. The effect of the strength of the heat source (an approximately 15% lower
value of γk was used in GENE runs) is currently under investigation.
Finally, in Figure 4.23 we plot the time evolution of the E × B shearing rate profiles,
defined as [105]:

ωE×B =
1
2q

(
d2φ0
dψ2 − 1

s

dφ0
dψ

)
(4.18)

where ψ is the poloidal flux.
Both codes qualitatively agree in reproducing different behaviour in different radial

zones. A strong modulation of the shearing rate is found in both cases around x/a=0.2
and 0.35, while a large region of inwards propagating avalanches characterizes region
0.5 < x/a > 0.8. Finally, both codes predict an outwards propagation close to the plasma
edge. However, the discrepancy observed in the gradient profiles is reflected also in the
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Figure 4.23 : Space-time evolution of the E × B shearing rate profiles, on the left
obtained from GENE results, on the right from ORB5. Different color scales have
bee used to highlight the avalanche like behaviour.

much strong modulation found in GENE around x/a=0.37.

4.2.3 Linear runs with kinetic electrons

Few linear simulations, still with verification purposes, have been performed assuming
a kinetic response of the electrons. Those simulations have been carried out in strict
collaboration with ORB5 developers, in particular J. Dominski. Specific aim of these
runs was to compare GENE results with the ones obtained with the new ORB5 field
solver [88], which, thanks to an integral representation of the quasineutrality equation, is
valid to all orders in the Larmor radius. GENE solver already accounts for this.
Even without considering instabilities developing at the electron scales (k⊥ρe ∼ 1),
correctly accounting for the electron dynamics at all radial scales plays a crucial role also
for modes with k⊥ρi ∼ 1 − 10. When the non-adiabatic response of electrons is included,
TEM modes can become unstable. Moreover, ITG growth rates are typically modified as
well. From a purely computational point of view, the major drawback associated to a
(fully) kinetic electron model, is the significant increase of the resolution requirements,
and therefore of the cost, of each run. Let us first recall why.
One of the most important consequences of retaining a kinetic dynamics of electrons, is
that they do not respond adiabatically around mode rational surfaces. As a consequence,
small radial structures develop around specific MRSs [32, 106] and one needs to properly
resolve them. Adopting too coarse grids typically results in overestimated linear growth
rates and the corresponding real frequency is poorly converged. The relevance of these
structures on nonlinear transport level is still debated, as they are typically broader and
therefore more easily resolved. However, they can also cause numerical instabilities to
appear if not properly treated.
Considering a mode with frequency ω and parallel wave vector k‖, electrons respond
adiabatically in the limit ω/k‖ 	 0. The mode wave vector can be related to the poloidal
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and toroidal Fourier components according to

k‖ = (n∇χ + m∇φ) · b ∼ 1
Rq

(nq − m), (4.19)

which clearly shows how the adiabatic response breaks down around mode rational
surfaces where q = m/n. One can estimate the width of the region where electrons
are non-adiabatic, as well as the resolution requirements [32]. Typically one needs up
to Δx/ρs ∼ 10−2 − 10−3 for properly resolving short scale modes, which makes the
simulation cost particularly high.
Both GENE and ORB5 have currently implemented both an hybrid and a fully kinetic
electrons model, which have both been benchmarked. The geometry of Case V has been
considered, assuming the same temperature and density profiles as the one presented in
Section 4.2.1. Artificially heavy electrons (me/mi=400) have been assumed in order to
allow for a larger time step.
The obtained mode frequency and growth rate are compared in Figure 4.24, showing
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Figure 4.24 : Comparison of GENE and ORB5 linear growth rates γ and frequencies
ωr. Results have been obtained considering the magnetic of geometry of Case V and
assuming (a) an hybrid and (b) fully kinetic electron model. note that in this case
ITG (resp. TEM) are characterized by negative (resp. positive) frequencies as the
magnetic field is negative in the GENE coordinate system.

on the left panel results valid for the hybrid electron model and on right side for fully
kinetic. A remarkably good agreement is obtained, in both the ITG and TEM regimes.
Note that in this case ITG are the negative real frequency branches as the magnetic
geometry assumes a negative magnetic field. As already remarked when discussing local
benchmarks, the position at which the turbulence regime transition happens cannot be
considered a good reference point because it is too sensitive to the adopted resolution.
The small differences appearing in the obtained real frequency for high ky modes are
within the error bars of the results. GENE simulations (and similarly the ORB5 ones, see
Ref. [88] for more details) have been carried out considering up to 1400 radial gridpoints
for the ITG modes ensuring results converged within 1%. Even higher resolutions have
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been used for the TEM modes where however the radial annulus retained in the simulation
has been narrowed to a third of the minor radius in order to reduce the simulation cost.
An example of the fine radial structures associated to non-adiabatic electrons are shown
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Figure 4.25 : Eigenfunction of the electrostatic potential φ associated to the n0=24
mode for Case V. Shown on the left side is the poloidal projection of φ (in arbitrary
units) together with zooms a) on the high field side and b) at the low field side
to illustrate the fine radial structures appearing around MRS because of the non-
adiabatic electron response. Results have been obtained with GENE code. On the
right side, the mode structures provided by GENE and ORB5, averaged over the
parallel direction, are compared.

in Figure 4.25, where the eigenfucntion of the n0 = 24 (ITG) mode is depicted on a
poloidal plane. The width and the location of this structure, being uniquely related to
the safety factory profile, is can be used for benchmarking, as shown on the right side of
Fig. 4.25 illustrating the excellent agreement obtained between the codes.

4.3 Conclusions

We have developed a series of benchmarks with the aim of testing the interface of
gyrokinetic codes with kinetic ions and electrons and realistic shaped MHD equilibria,
the latter being provided by the MHD equilibrium code CHEASE.

These tests have been used to successfully benchmark against each other the three
gyrokinetic codes GENE [12, 65, 66], GKW [95] and GS2 [96] in the linear flux-tube limit.
A fully kinetic model for describing the electron dynamics was considered, while collisions
and electromagnetic effects have been neglected. This exercise, which at first glance
might appear trivial, requires in fact to pay attention to several subtleties that normally
do not need to be faced when carrying out similar benchmarks but adopting circular
analytic geometry. In particular, one has to be very careful regarding the particular
choice of coordinates used within each code, not only to correctly define the location of
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the flux tube volume, but also because it determines how to correctly recast the results
in a common representation for comparison. We have put a specific effort in identifying
all the details that have to be taken into account such as any other code can undergo the
same benchmarks without uncertainties. The results have been published in [87], while
all codes inputs and outputs, together with all useful information, are also made public
available in Ref. [107] for any other code interested in carrying out the same series of
tests.
Several benchmarks have successfully been carried out looking at linear kθ spectra, at
the effect of a finite ballooning angle and studying the linear dynamics of ZFs and GAMs
via the standard Rosenbluth-Hinton test. In all the tests that we have performed, the
codes agree within 3%, a difference that can be further reduced by properly increasing
the resolution.
This benchmark cannot be considered an exhaustive study of plasma shaping effects, but
nevertheless it has demonstrated that among the parameters that we have considered,
elongation plays the strongest stabilizing role and at the same time it increases the ZF
residual level and reduces GAM frequency.

The natural extension of this benchmark exercise is towards global simulations. The
equilibria that we have considered were designed for carrying out this kind of simulations
and are explicitly built such that local and global results can be compared. A gloabl
benchmarking exercise has thus been initiated as well.
Carrying out the same exercise as the one done with the flux-tube code for the global
one is a long and computationally expensive effort, also because non linear simulations
are desirable. Hence, in order to limit the overall cost of the foreseen benchmarks, still
keeping them relevant for verification purposes, global runs are carried out considering the
adiabatic electrons limit. This verification effort is currently ongoing, involving GENE
and ORB5. Linear simulations have been performed and the two codes agree between
each together within less than 10% for all shapes. Nonlinear comparisons have been
started as well and already a very good agreement has been recovered for the simplest
geometry.
Finally, a limited number of linear simulations adopting a gyrokinetic response of the
electrons (both hybrid and fully kinetic) have been performed with the aim of comparing
GENE results whit the ones obtained with the new ORB5 field solver [88].
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5 Local investigation of the effect
of triangularity on turbulent
transport
In this chapter we will present and discuss results obtained using the local version of
GENE in order to investigate the origin of the confinement improvement experimentally
observed in TCV when flipping the sign of triangularity of the plasma. These results have
been reported in Refs. [108] and [109]. We shall start first reviewing the experimental
observation that motivated such an investigation.

5.1 Overview of TCV experimental observations

5.1.1 Reversing LCFS triangularity in the TCV tokamak

The TCV tokamak [110] (major radius R=0.88 m, minor radius at midplane a=0.25
m, magnetic field on axis B0=1.44 T and plasma current Ip up to 1.0 MA) offers a
unique plasma shaping capability. Indeed, discharges with an edge elongation κ up to
2.8 and triangularity −0.7 ≤ δLCFS ≤ 1 have been obtained. The effect of negative δ

in limited L-mode discharges has been investigated with a dedicated triangularity scan
in EC-heated plasmas with δLCFS ranging from -0.4 to 0.4. The interested readers are
referred to [13, 111] for a detailed description of the experimental set-up. Let us recall
here that in those discharges a specific effort was made in order to keep all other plasma
parameters, and especially elongation [112], constant in order to highlight the effect of
triangularity. The electron heat transport was experimentally determined by a power
balance analysis. We note that the experimental error bars lead to an uncertainty of
∼ 20% in the determination of the electron temperature and density gradients. This
uncertainty is particularly important towards the plasma edge where the error bars in
the extrapolation of the ion temperature profiles can reach up to 80-100%. Furthermore,
at these radial locations the radiated power can represent a non-negligible fraction of
the total electron heat flux (20-30%). The main result was that the same electron
temperature and density profiles were achieved in plasmas with δLCFS = +0.4 and −0.4
but injecting in the latter case half as much heating power compared to the former. This
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was interpreted as a better energy confinement at all plasma radii, by a factor of two,
when flipping the sign of δLCFS.

We will focus our attention on the discharges #28014 (δLCFS = 0.4) and #28008
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Figure 5.1 : TCV discharges #28014 and #28008 with resp. positive (δLCFS = +0.4)
and negative (δLCFS = −0.4) triangularity of the LCFS. Corresponding flux surface
contours of constant normalized poloidal flux Ψ/ΨLCFS are shown in (a) and (b)
(blue curves indicate the the radial positions ρtor = 0.5, 0.7 and 0.95 where flux-tube
simulations have been performed). Shown as a function of ρtor are the experimentally
measured profiles of (c) electron temperature Te and (d) electron density ne as well as
(e) the ion temperature Ti profile used for the simulations and (f) the triangularity
δ as obtained from MHD equilibrium reconstructed with CHEASE.

(δLCFS = −0.4), for which the same profiles have been obtained with the injection of
respectively 1.3 MW and 0.65 MW. The radial profiles of electron temperature Te, electron
density ne and ion temperature Ti, together with the radial profile of triangularity, are
shown in figure 5.1. Figure 5.1.f clearly shows the rapid decrease of triangularity from
the LCFS towards the magnetic axis: from the edge value, a ∼ 70% reduction is found
already at mid radius, independently from the sign of δ. As already noted, this is different
from other shaping parameters like e.g. elongation which remains essentially constant
up to the magnetic axis. We note that the experimentally measured ion temperature
profiles are available only in the core plasma region and between the two discharges they
are up to ∼ 40% different, Ti being higher in the negative δ plasma. All the simulations
presented here have been carried out considering an intermediate profile, depicted in black
in figure 5.1.e, as already done in Ref. [90]. We have verified with linear simulations that
this choice is not affecting the results, as only a maximum ∼ 3% variation of the linear
growth rates is found when changing the Ti profile between the experimental values.
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5.1. Overview of TCV experimental observations

5.1.2 Profile stiffness

A more recent observation, based on a large database of TCV discharges, showed that
temperature and density profiles appear to be characterized over a wide range of plasma
parameters (e.g. LCFS shape, plasma current, q profile and heating power) by con-
stant logarithmic gradients R|∇ log(T, n)| in the core plasma, while constant gradients
|∇(T, n)|, whose values vary with plasma parameters, characterize the edge [108]. Here
the core plasma is identified as the region between the sawtooth inversion radius and a
radial location ρvol of about 0.8. The edge region, on the other hand, is the outermost
part of the plasma but still inside the LCFS, namely 0.8 � ρvol < 1. This observation
is directly related to profile stiffness, i.e. the local slope of the flux versus normalized
gradient curves, which thus appears to be strong and plasma parameters independent in
the core and weaker and parameter dependent in the edge.
One can thus speculate that this radially varying stiffness, possibly together with varying
values of the non-linear critical gradients R/LTe,crit for instability, can be related to the
beneficial effect of negative δ. Two limiting cases of such a relation are depicted in the
two cartoons of figure 5.2. A first possibility, shown in cartoon (a), is that the level of
edge stiffness is triangularity-dependent and is reduced going from positive to negative
δLCFS < 0, while R/LTe,crit does not depend on triangularity. The second limiting case
is that the degree of edge non-stiffness is not related to δ, however the critical gradient
R/LTe,crit depends on shape and is larger for plasmas with negative triangularity. This
second case is depicted in cartoon (b) of Figure 5.2. In both these limiting cases, or any
combination in between, the confinement improvement would rely entirely on the edge
region where the triangularity is indeed strong. In both cases, a stiff core profile leading
to the same logarithmic gradient even when the heat flux varies by a factor of 2, explains
the transport behaviour in this inner region.
The goal of this investigation is therefore to study profile stiffness in conditions relevant

Figure 5.2 : Cartoons describing two limiting ways of relating the confinement
improvement associated with negative triangularity to profile stiffness. (a) via
enhanced edge non-stiffness when δLCFS < 0 but same critical gradients, and (b)
higher R/LTe,crit at the same edge non-stiffness.
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to the TCV tokamak, with the final objective of verifying the hypotheses of a radially
varying and triangularity-dependent stiffness. At the same time, the dependence of
critical gradients R/LT,n,crit on δ can be addressed. Flux tube simulations are the natural
tool to be used for such a study, as they allow to easily vary the local electron temperature
and density gradients R/LTe,ne and compute the associated turbulent heat fluxes. Global
simulations are computationally more expensive, and the interpretation of the results in
terms of local stiffness might not be obvious. A first attempt to study profile stiffness
with global simulations is presented in Ref. [113], where for a given TCV plasma shape
the relation between increased heating and profiles evolution was studied in the ITG
regime, obtaining a qualitative agreement with the experimental findings present in
Ref. [108].
This study is thus complementary to what was already published in Ref. [90], where the
issue of profile stiffness was not addressed and it is also a further step towards aiming at
quantitatively reproducing experimental measurements with gyrokinetic modeling.

5.2 Simulation details

In order to model conditions relevant for studying stiffness and the confinement improve-
ment associated to negative δ plasma, the two TCV discharges #28014 and #28008
described in section 5.1.1 are considered. Three different radial positions ρtor = 0.5,
0.7 and 0.95 have been considered for both discharges. They are representative of core,
intermediate and edge conditions. Here ρtor is the radial coordinate based on the toroidal
flux Φ, ρtor =

√
Φ/ΦLCFS. The magnetic equilibrium reconstructed with CHEASE has

been used. The physical parameters describing the two discharges at the three considered
radii, and used for the simulations, are listed in table 5.1. Temperature and density
gradient lengths are defined according to the following relation:

R/LT,n = −R/αd log(T, n)/dρtor. (5.1)

with α =
√

ΦLCFS/πB0. The plasmas are Deuterium discharges. The effective charge,
defined as Zeff =

∑
i niZ

2
i /ne where the sums are over all ion species, takes on the

value Zeff ≈ 3.6, with carbon (ZC = 6) the dominant impurity. Three fully kinetic
species have thus been considered in the GENE simulations: Deuterium ions, electrons
and carbon ions. Deuterium and carbon concentrations are estimated so as to respect
quasineutrality, i.e. nD + ZCnC = ne and in agreement with the experimentally measured
value of Zeff . As Zeff is assumed to be radially constant, one has R/Ln = R/Lne =
R/LnD = R/LnC . When considering electromagnetic effects, the experimental value
of βe = 2μ0pe/B2

0 is used; pe is the local electron pressure. For the simulations in
which finite collisionality is accounted for, it is evaluated based on the experimental
values. Inter- and intra-species collisions are retained and all collision frequencies are
consistently derived from the value of νei and local values of temperature and density.
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5.3. Linear simulations

In particular, νei =
∑

i 3
√

π/4τe,i, where τe,i is the electron collision time of the i-th
ion species, τe,i = 3(2π)3/2ε2

0T
3/2
e m

1/2
e /niZ

2
i e2 log Λ, me is the electron mass and log Λ

is the Coulomb logarithm. In order to conform to the experimental observation that
within error bars the electron temperature and density profiles are the same, we used
in all simulations, for both positive and negative δ, the measurements associated to the
positive δ discharge, but keeping the relevant equilibrium depending on δLCFS.

ρtor=0.5 ρtor=0.7 ρtor=0.95
q 1.18(1.26) 1.81(1.92) 3.58(3.66)
ŝ 0.82(0.78) 1.73(1.67) 3.31(2.53)
δ 0.09(-0.09) 0.15(-0.15) 0.33(-0.31)

Ti/Te 0.252(0.289) 0.43(0.47) 1.13(1.11)
R/Ln 3.75(2.99) 3.61(4.39) 10.4(19.2)
R/LTe 8.99(8.89) 10.52(12.56) 17.2(18.8)
R/LTi 2.59 2.49 1.8

νei[cs/R] 0.32(0.30) 1.12(1.02) 5.18(4.07)
βe 0.41(0.44) ×10−2 0.16(0.16) ×10−2 0.26(0.21) ×10−3

Table 5.1 : Experimental parameters describing the three radial positions considered
for flux-tube simulations. q = safety factor, ŝ shear and other parameters defined in
main text. Listed are the values referring to the TCV discharge #28014, positive
δ, while the corresponding values for negative δ are provided in parenthesis. The
values related to temperature and density profiles used for both δ > 0 and δ < 0
simulations are highlighted in bold.

5.3 Linear simulations

GENE has first been used in its linear version in order to identify for both considered
triangularities the most unstable eigenmodes for the three radial positions ρtor=0.5, 0.7
and 0.95. Wavenumbers kyρs up to the electron scale have been considered. The growth
rate γ and the real frequency ωr, normalized to R/cs, are shown as a function of kyρs in
Figure 5.3. The results are shown in Figures 5.3 a), c) and e) in log-log plots over both
ions and electron scales. To emphasize the difference between the results at the ion scale
obtained with the two triangularities, the corresponding growth rates are also shown
in lin-lin plots in Figs. 5.3 b), d) and f). Here cs =

√
Te/mi is the ion sound speed

and ρs the ion sound Larmor radius ρs = cs/Ωi where Ωi = eB0/mi is the ion cyclotron
frequency. Note that the normalization factors are all based on the local value of the
sound speed. The mode real frequency is depicted with a dashed line, and for all the
wavenumbers considered it has a negative sign, indicating, in agreement with to GENE
conventions, that the mode propagates in the electron diamagnetic direction. According
to the GENE definition of the y variable, each ky can be associated to a given toroidal
mode number n = kyρtor/q, where ρtor is the radial position at which the flux tube is
centered. The ky associated to the n = 1 mode can be thus considered as the smallest
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Figure 5.3 : Linear growth rates (continuous lines) and real frequency (dashed
lines) in units of cs/R as a function of the wavenumber kyρs for (a, b) ρtor=0.5,
(c, d) ρtor=0.7 and (e, f) ρtor=0.95. (a), (c) and (e) plots in log-log scale, (b) and
(d) and f) in lin-lin scale limited to the ion scale. Frequency ωr are shown only
in log-log plots. Shown are the results obtained for TCV discharges #28014 (red,
empty symbols) and #28008 (blue, solid simbols). All modes propagate in the
electron diamagnetic direction; MTM instabilities are marked with a square while
TEM/ETG with circles. Vertical dashed lines indicate the approximate wavenumber
corresponding to the n=1 toroidal mode number.
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5.3. Linear simulations

physical wavenumber. A typical grid size for these simulations is nkx × nz × nv‖ × nμ=
64 × 64 × 64 × 16. Convergence studies have been performed at the various radial
locations and for the different turbulent regimes by increasing the resolution in turn
for each dimension in phase space. The aforementioned grid is enough to ensure the
convergence of all the growth rates, and in particular the ones at ρtor = 0.95, within
10%. Electromagnetic fluctuations (without B‖ contribution), finite collisionality and
the experimentally measured Carbon content have all been retained. These physical
effects correspond to the “full physics” model set-up used for non-linear simulations and
presented in section 5.4.
At all the considered positions, for both positive and negative δ, trapped electron modes
(TEMs) are the most unstable instability at the ion scale. The negative triangularity
discharge is found to have lower growth rates than the one with positive δLCFS at all kyρs

scales, with the exception of the ρtor = 0.95 position where for ky � 0.2 the behaviour is
inverted. For essentially all kyρs, the difference between the growth rates for the two
triangularity cases increases as one moves towards the plasma edge, i.e. when the absolute
magnitude of triangularity gets larger. This result is in agreement with the similar study
reported in Ref. [90], where different radial locations were also considered.
At large scales (kyρs < 0.1), for the two innermost positions ρtor = 0.5 and ρtor = 0.7
microtearing modes (MTMs) [45] are the most unstable. The nature of these modes is
determined by inspecting the parity of the φ and A‖ fields with respect to the radial
position of the mode rational surfaces. The growth rate is nevertheless small compared to
TEM ones and it turns out that their contribution to the non-linear turbulent heat flux,
which is essentially electrostatic, is negligible. At ρtor=0.95, MTMs are still unstable,
but with a smaller growth rate compared to TEMs. Varying the electron temperature
gradient at this location, one finds a transition from TEMs to MTMs for a gradient
smaller than the experimental one, as can be seen in Figure 5.4c).
We also studied instabilities at the electron scale. Electron temperature gradient (ETG)
modes are destabilized only at ρtor = 0.95 by the strong gradients characteristic of this
location [40]. For the other considered radii, the low Ti and large Zeff are stabilizing to
ETG modes. Despite the fact that for both positive and negative δ the TEM branch
continuously evolves to the ETG one when going from ion (kyρs � 1) to electron scales
(kyρs � 1), a stronger hump at the ion scale is found in the δ < 0 case, reflecting a
different interplay between the two scales according to the plasma shape considered.
Determining a linear critical gradient is a difficult exercise for the two discharges being

considered here. For all cases, we have performed a scan of both electron temperature
and density gradient for kyρs = 0.3 (the mode at which we expect the largest contribution
to non-linear fluxes, ρs being the local value of the Larmor radius). The results are
shown in Figure 5.4, where the same aspect scale has been used when plotting the results
relative to a given position (Figures 5.4 (a − d), (b − e) and (c − f)) in order to allow the
comparison of the sensitivity of the linear growth rates to a variation of temperature and
density gradient. Almost no difference between the two shapes is found for the innermost
core position where there is no critical temperature gradient, the TEMs being driven
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Figure 5.4 : Linear growth rates γ (continuous lines) and real frequency ωr (dashed
lines) of the kyρs = 0.3 mode in units of cs/R as a function of (a, b, c) electron
temperature gradient R/LTe and (d, e, f) density gradient R/Lne . Shown are the
results for positive (red, empty symbols) and negative triangularity (blue, solid
symbols) evaluated at (a, d) ρtor=0.5, (b, e) ρtor=0.7, and (c, f) ρtor=0.95. Vertical
lines indicate the experimentally measured gradient.

by both density and temperature gradients, while we find essentially the same critical
density gradient length for the TEM (R/Ln 	 1). At ρtor = 0.7, no critical gradient
is found for TEM when scanning the electron temperature gradient (for both shapes
different TEMs branches exist at different value of kyρs as shown in Fig. 5.4.b), while
scanning the density gradient one finds a linear critical gradient for TEMs at R/Ln 	 1
(resp. R/Ln 	 2) for positive (resp. negative) triangularity. Finally, at ρtor = 0.95 the
difference between the two plasma shapes is most evident. For both positive and negative
triangularity, no critical density gradient is found and at all R/Ln the growth rate of the
most unstable mode for the negative triangularity shape turns out to be for the considered
kyρs bigger than the corresponding one for positive triangularity. When scanning R/LTe

we find that for the experimental value of the gradients, the positive δLCFS discharge
is more stable than the negative one, but as one further reduces R/LTe the δLCFS < 0
one returns to be more stable. We note that these orderings of the growth rates for the
two triangularities are specific to the particular kyρs that we considered. If one repeats
the same exercise of varying the gradients but at different ky (e.g. the one at which the
linear growth rate is maximum), the results will look different. Especially, increasing ky,
we find that growth rates of TEMs become relatively larger and the negative δ discharge
has lower growth rates at all positions and all temperature and density gradients. The
results obtained scanning both temperature and gradient lengths are summarized for
all the considered radial locations in Figure 5.5, from which it appears clear how the
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Figure 5.5 : Linear growth rates γ of the kyρs = 0.3 mode in units of cs/R as a
function of temperature and density gradient lengths. Shown are the results obtained
for (a, b, c) positive δ plasma at respectively ρtor=0.5, 0.7 and 0.95, and (e, d, f)
negative δ at the same radial location. The experimentally measured gradients are
reported for each position with a black cross.

maximum linear growth rate is more sensitive to a variation of the density gradient with
respect to a variation of the temperature one. This difference is reduced moving from the
core (ρtor=0.5) to the edge (ρtor=0.95), where independently from plasma triangularity
a given variation of temperature or density gradient appears to induce the same change
of the growth rate.

5.4 Non-linear simulations

Non-linear simulations have been performed for the two TCV discharges at the three
aforementioned radial locations. Two different simulation models have been considered.
The first one, referred to in the following as “simple physics” model, considers only deu-
terium and electrons, the latter with an reduced ion-to-electron mass ratio (mD/me=400).
Furthermore, impurities, finite collisionality and electromagnetic effects have all been
neglected. These approximations are made in order to reduce the cost of the runs,
allowing more extensive parameter scans. As will be shown, this simple model has its
limitations and all of above mentioned neglected effects have therefore been retained
in a second series of simulations. These runs, referred to as “full physics” model, are
fully-kinetic, electromagnetic, collisional runs, with the realistic electron mass and the
experimental content of Carbon accounted for. All the simulations have been limited
to the ion gyroradius scale; numerical hyperdiffusion is used to avoid spectral pile-ups
due to medium ky ETGs. The grid resolution used for these runs are reported in table
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Lx/ρs, δ > 0 Lx/ρs, δ < 0 Ly/ρs kx,maxρs, δ > 0 kx,maxρs, δ < 0
ρtor=0.5 145(145) 153(153) 126(126) 2.76(5.52) 2.62(5.25)
ρtor=0.7 139(151) 143(155) 126(126) 4.33(5.33) 4.20(5.18)
ρtor=0.95 115(115) 120(120) 126(126) 10.52(10.52) 10.17(10.17)

Table 5.2 : Flux-tube dimensions adopted for non-linear simulations. Listed are
the values for the “simple physics” runs, while in parenthesis for the “full physics”.
Lengths are normalized to the local sound larmor radius ρs. kx,maxρs indicates the
maximum radial wave vector retained in the simulation.

nkx nky nz nv‖ nμ

ρtor=0.5 128(256) 64(64) 32(32) 48(64) 8(16)
ρtor=0.7 192(256) 64(64) 32(32) 48(64) 8(16)
ρtor=0.95 384(384) 64(64) 32(32) 48(64) 8(16)

Table 5.3 : Resolutions adopted for non-linear simulations. Listed are the values
for the “simple physics” runs, while in parenthesis for the “full physics”.

5.3. Higher radial resolutions are required for flux-tube simulations with radial position
towards the plasma edge in conjunction with the increase of magnetic shear ŝ, see table
4.3 leading to a coupling of kx modes that are further apart in k-space than at low shear
[64]. At the same time, to limit the cost of these runs, the radial extent Lx of the box
has been reduced in comparison with the more inner radial positions, but still ensuring
a domain large enough compared to the turbulent eddy size, as shown in Figure 5.6.
Finally, retaining collisions requires a higher resolution in velocity space, explaining the

Figure 5.6 : Snapshots of the electrostatic potential (in units of Te
e

ρs

R ) taken at
the end of the simulation. Shown are the contours obtained with the “full physics”
model at ρtor = 0.95, for (a) positive and (b) negative δLCFS and evaluated at the
outboard midplane (z = 0).

different set-up of “full physics” runs.
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5.4. Non-linear simulations

5.4.1 “Simple physics” model

The time traces of the simulated electron heat power 〈Qe〉 · S in MegaWatts are shown
in figure 5.7. The heat flux density 〈Qe〉 is defined as the average over the flux-tube

volume, 〈Qe〉 =
∫

Q · ∇x Jxyz dxdydz

/
LxLy

∫
|∇x| Jxyz dz, Jxyz being the Jacobian of

the (x, y, z) coordinate system, while S is the area of the flux surface of interest. The ion
heat flux is negligible, and therefore not shown, in agreement with the fact that TEMs
are the dominant instabilities. Note that each simulation time is normalized using the
local values of the sound speed cs,loc. Given the fact that the simulations at ρtor = 0.95
are significantly more expensive than the ones at the other positions, somewhat less
statistics have been acquired for these outer radial runs. The corresponding turbulent
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Figure 5.7 : Time traces of the simulated electron heat power 〈Qe〉 ·S in MW for (a)
positive δLCFS and (b) negative δLCFS discharges. Shown are the results obtained for
the radial positions ρtor = 0.5 (red), 0.7 (blue) and 0.95 (black). These simulations
have been performed with the “simple physics” model. Dashed lines indicate the
running averages.
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Figure 5.8 : Electron heat flux spectra evaluated at (a) ρtor = 0.5, (b) ρtor = 0.7
and (c) ρtor = 0.95. The heat fluxes are normalized to the local value of QGB =
csTene(ρs/R)2. Experimental temperature gradients are considered.

ky−spectra are shown in Figure 5.8, where for each radial position the results from the
two shapes are compared. A reduction of the integrated fluxes is found when flipping
δ sign for larger ρtor (Fig. 5.7 and in agreement with [90]). However there is not a
systematic reduction of the contribution to the fluxes from a given ky, as seen in Fig. 5.8.
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We also note that the value of ky which contributes most to the transport is reduced
as one moves towards the LCFS, independently from triangularity. At ρtor = 0.95 the
difference between the two discharges appears strongest.
For each position, the electron temperature gradient was both reduced and increased
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Figure 5.9 : (Color online) Electron heat power in MW versus the flux surface-
averaged logarithmic temperature gradient 〈R/LTe〉 obtained with “simple physics”
model. Shown are the results obtained for positive (red) and negative δ (blue)
at ρtor = 0.5 (circles), ρtor = 0.7 (stars) and ρtor = 0.95 (squares). Full markers
correspond to the experimental value of the gradient (further pointed out also
with vertical lines), while horizontal lines indicate the input heating power for both
positive and negative δ (1.3 MW and 0.65 MW respectively). For the sake of clearness,
the same results are shown separately for each radial position, (a) ρtor = 0.5, (b)
ρtor = 0.7 and (c) ρtor = 0.95. Linearly extrapolated critical gradients have been
highlighted with dashed lines and green dots.

from the experimental value in order to address stiffness. The results are shown in Figure
5.9. In this plot, and in all the following Figures, the same color coding is used to help
the reader. Red curves (color online) refer to the shape with positive triangularity, blue
ones to the negative. Circles are used to mark ρtor = 0.5 position, stars ρtor = 0.7 and
squares ρtor = 0.95. Finally, full-colored markers indicate the experimental value of the
temperature gradient. The heat flux is plotted against the effective flux surface-averaged
temperature gradient 〈R/LTe〉 = −R d log(T, n)/dρtor〈|∇ρtor|〉 which can be considered
the effective normalized gradient driving the instabilities [112]. The different plasma
shapes lead to a different value of 〈|∇ρtor|〉, which is larger when δ > 0.
One immediately notes that the simulated powers for the experimental gradients are
not radially constant, as would be expected under the assumption that all the input
EC power is radially transported outwards across all flux surfaces between the radial
location of power deposition (ρtor = 0.4 in this case) and the plasma edge. Also,
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5.4. Non-linear simulations

and more importantly, the simulated transport levels are strongly overestimating the
experimentally measured ones. This overestimation is particularly important in the core
region (by a factor ∼ 20 and ∼ 40 for positive and negative δ respectively) and clearly
not compatible with possible uncertainties in the input profiles. In agreement with [90], a
radially dependent reduction of the heat transport when moving from positive to negative
triangularity is found, however the results from the “simple physics” flux-tube model are
obviously inadequate for modeling TCV discharges and a more accurate description is
required.

5.4.2 “Full physics” model

The same series of runs as described in section 5.4.1 were repeated with the more compre-
hensive “full physics” model. In Figure 5.10, the turbulent spectra for the experimental
gradient cases are presented, showing the same radial dependence of different ky modes
contribution depending on δ as the ones described for the “simple physics” model. How-
ever we clearly see the reduction at negative δ for large ρtor values and not for ρtor = 0.5.
The results obtained from the R/LTe scan are summarized in Figure 5.11. With respect to
the results obtained considering the “simple physics” model, there is a strong reduction of
the electron heat flux 〈Qe〉 when carrying out the more realistic simulations. We studied
the relative importance of every physical effect introduced with this more accurate model
by switching on each term one after the other and monitoring the resulting variation of
the heat flux. This exercise has been performed for the experimental conditions of the
positive triangularity discharge at ρtor = 0.5 and ρtor = 0.7. For those two positions we
also studied the effect of finite collisionality depending on δ.
Among the different effects that have been retained in this new series of runs, finite
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Figure 5.10 : Same as figure 5.8 but for the “full physics” model results.

collisionality, because of its stabilizing role on TEMs [38], is the most important one. It
contributes up to ∼ 60% of the “simple” to “full physics” model reduction. As already
shown in Ref. [90], its effect is strongest in the cases with δLCFS < 0 and is relatively
more important as one moves from the core to the edge. Similar trends have been
also experimentally observed, where a strong reduction of electron heat transport with
increasing collisionality and decreasing triangularity is found, see e.g. Fig. 6 in Ref. [13].
Real electron to ion mass ratio and impurities, both contribute to further reducing heat
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Figure 5.11 : Same as figure 5.9 but for the “full physics” model results.

transport. In particular, approximately 40% of the transport reduction is related to
realistic mD/me and another 10% to the impurities (this latter estimate is an average
between the results at ρtor = 0.5 and 0.7). A minor effect is played by finite β effects,
which in fact induce an increase in the heat flux by ∼ 10%. The actual electromagnetic
contribution to transport related to magnetic field fluctuations is however negligible (less
than a few percents of the total heat flux). Similarly low levels are found for the ion heat
transport.
Despite the significant reduction of the electron heat transport going from “simple” to
“full physics”, a large overestimation of the simulated fluxes compared to the experimental
ones, by at least a factor 6 (resp. 12), still remains for the core position (ρtor=0.5) of
TCV plasma with positive (resp. negative) δ. Part of it might be explained by the
high sensitivity of the heat transport to R/Ln as discussed below. On the other hand,
at ρtor = 0.95 the simulated heat transport is in fact smaller than the measured one,
an observation that we explain as a consequence of having artificially suppressed the
contribution of ETG turbulence there. Preliminary simulations limited to the electron
gyroradius scales (not shown here) have been performed, showing that a non-negligible
contribution to the transport is provided by ETG modes. These same simulations however
also point out that the scale separation is probably not fully justified and a multi-scale
approach is necessary towards the plasma edge.
In order to complete the stiffness study, we scanned also the density gradient, upward

and downward from the experimental value of temperature gradient. The results are
shown in Figure 5.12. At ρtor = 0.95 a ±20% variation of R/Lne does not change the heat
transport level significantly as reflected in Figure 5.12.d by curves which are non-stiff.
At ρtor =0.5 and 0.7 instead, the sensitivity of the heat flux to a relative variation of the
density gradient is stronger than the one to a variation of the temperature gradient as
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Figure 5.12 : Same as figure 5.9 but using the “full physics” model set-up and
scanning 〈R/Lne〉.

reflected by relatively stiff curves in Figs. 5.12.b) and 5.12.c). Note that the aspect ratio
of the axis of the subplots 5.11.(b) and 5.12.(b), as well as of subplots 5.11.(c) and 5.12.(c)
and 5.11.(d) and 5.12.(d), has been kept, in order to allow the comparison between local
stiffness with respect to a variation of R/LTe to stiffness with respect to a variation of
R/Ln.

5.5 How to interpret local runs and look at stiffness?

As seen in the previous sections, the most accurate physical modeling, is necessary in
order to reproduce the TCV transport level. Nonetheless, a non-negligible discrepancy
between simulations and experiments persists. A significant overestimation of the heat
transport level, by at least a factor 5, remains when simulating TCV core conditions,
and it cannot be explained by uncertainties in the input values of the gradients, which
are at most of the order of ∼ 20%. A better agreement is found for the edge simulations.
For the outermost position considered (ρtor = 0.95), the simulations carried out at the
ion scale, i.e. neglecting ETG contribution, are in fact underestimating the experimental
electron heat flux. Our analysis however points out that a multiscale approach, resolving
at the same time ion and electron scales, is required. Regarding the effect of negative
triangularity, we do find a reduction by a factor ∼2 in the heat transport only for
ρtor � 0.7, in agreement with [90].
All these results show the intrinsic limit of flux-tube simulations applied to machines
of similar size as TCV, where finite ρ∗ effects are expected to be strong and need to
be accounted for in the simulations in order to match experiments. It is already well
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established that the smaller 1/ρ∗ the bigger the overestimation from flux-tube compared
to global simulations [114–116]. If one considers just the radial profile of ρs, because of
the decrease of temperature moving towards the LCFS, one can speculate that finite
machine size stabilization is expected to be stronger in the plasma core with respect
to the edge, i.e in agreement with our results. It is also known that for idealized cases
one should in fact consider an effective ρ∗

eff = ρs/Δr, accounting for gradient profile
shapes [116] (Δr is the width of the gradient profile). How to correctly estimate Δr

when dealing with experimental profiles (as well the dependence of finite ρ∗ effects on
all other plasma parameters) is still an open question that requires further dedicated
investigations. Moreover, when transport is dominated by nonlocal effects, the concept
of local profile stiffness as the local slope of the flux vs. normalized gradient curves is
not anymore well defined.
The only way to correctly account for finite ρ∗ = ρs/a effects is therefore performing
global simulations, which will be discussed in the following chapter. The flux-tube simu-
lations presented here may nonetheless already provide qualitative or semi-quantitative
information regarding the stiffness properties of the profiles, although one has to be very
careful given the discrepancy between simulations and experimental e− flux levels. To
this end, one may attempt to correct in an ad-hoc way the e− heat fluxes from the local
simulations, adjusting them match match the experimental ones, this correction being
assigned to neglected finite ρ∗ effects. In doing such an exercise, one must be fully aware
of its difficulties and limits. The most simple-minded way of accounting for global effects
in our results would be to rescale them. We remember that such an approach was used
to present the results obtained with the “simple physics” model in Ref. [108]. There, the
simulated heat fluxes were all normalized such that for the experimental values of R/LTe

the simulated heat fluxes were all of order unity and local slopes could be compared (see
Figure 14 in Ref. [108]). Such choice was based on the assumption that finite ρ∗ are
independent from shape and local value of gradients. We stress the fact that such an
approach, and the results it leads to, has to be taken with extreme caution because any
rescaling will also inevitably change stiffness. This is particularly relevant at ρtor = 0.5
where there is almost no difference between positive and negative δLCFS flux-tube results.
Thus, assuming a single scaling factor for each radial location, stiffness would appear
for each δLCFS decreasing from core to edge. Moreover, depending on what reference is
used to compute the scaling factor, this decrease of stiffness from core to edge will be
more or less enhanced. On the other hand, if one rescales each curve independently such
as to match simulated and measured fluxes for the experimental gradients (accounting
therefore for the factor 2 reduction associated to negative δ at all radial locations), then
for negative triangularity the core position (ρtor = 0.5) would appear less stiff than
ρtor = 0.7 and almost as stiff as ρtor = 0.95. Some examples of such rescalings of the
“full physics” simulations are depicted in Figure 5.13, illustrating the different possible
results they can lead to and thus how careful one has to be in interpreting them. In
particular, in Figure 5.13.a the scaling factors have been computed such has to match
simulation results-experimental measurements for the positive δ discharge, therefore
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they are evaluated at each radial location as 1.3/〈Qe · S〉exp,δ>0 (1.3 MW is the input
heating power of that discharge while 〈Qe · S〉exp,δ>0 indicates the simulated heat power
associated of the experimental value of the gradients). In Figure 5.13.b the factors have
been computed in order to match the negative δ discharge results, while finally in Figure
5.13.c distinct scaling factors for the two discharges have been used.
Therefore the question about profile stiffness still remains open and we cannot draw a
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Figure 5.13 : Examples of possible rescalings of the flux-tube results such as to
account for finite ρ∗ effects in our local simulations. Shown are (a) rescaling assuming
a scaling factor depending only on ρtor and computed as 1.3/〈Qe ·S〉exp,δ>0, (b) again
a simply radially varying scaling factor but this time evaluated as 0.65/〈Qe ·S〉exp,δ<0
and (c) scaling factor depending on both ρtor and δ. Here 〈Qe · S〉exp indicates the
simulated power for the experimental value of the gradients; 1.3 MW (resp. 0.65
MW) is the experimental heating power for the positive (resp. negative) δ discharge.
Simulation results from “full physics” model.

clear and definitive conclusion about it. Nevertheless, keeping in mind our two initial
hypotheses about the relation between profile stiffness, critical gradients and triangular-
ity, if one looks at Figure 5.11 it appears that the strongest effect exerted by negative
triangularity is an increase of the critical gradient. This feature is in fact already visible
with the “simple physics” model results (Figure 5.9), however is less pronounced and
one would also find negative critical gradients for the ρtor = 0.95 case. Considering the
“full physics” results and linearly extrapolating (dot-dashed lines in Figure 5.11), one
finds that the critical temperature gradient is increased by a factor 2 (resp. 3) ρtor = 0.7
(resp. 0.95) going from δLCFS > 0 to δLCFS < 0. For the ρtor = 0.5 position there
is still an upshift when going from positive to negative triangularity, but the relative
difference is much smaller (∼ 50%) and the overestimation of fluxes too large to be
definitive. Nevertheless these results hint towards an upshift of R/LTe,crit depending on
δ. No significant effect of triangularity on local profile stiffness is found. However for
both triangularities stiffness appears to be reduced as one moves towards the plasma
edge. This is particularly evident when considering the dependence of the heat fluxes on
the density gradient. Figure 5.12 shows that the heat fluxes are very sensitive to small
variations of R/Ln at ρtor = 0.5 and 0.7, much less at ρtor = 0.95, where the profiles
appear to be non-stiff, in agreement with the linear results shown in Figures 5.4 and 5.5.
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5.6 Conclusions

Linear and non-linear flux-tube simulations have been performed in order to study
(linear and non-linear) critical gradients and profile stiffness in the TCV tokamak and
in particular their dependence on radius and triangularity. Experimental temperature
and density profiles as well as magnetic geometry have been used, and for the considered
discharges TEM and ETG modes have been identified as the dominant instabilities.
These modes not only have the largest growth rates at the ion and electron scales
respectively but also provide the largest contribution to non-linear fluxes. ETG only
provides a non-negligible contribution (∼ 10% of the measured heat flux) at the plasma
edge (ρtor = 0.95).
Two types of non-linear simulations, corresponding to different levels of realism, have
been carried out aiming at reproducing the experimental electron heat flux measurements
and dependencies. Considering realistic mD/me mass ratio, retaining finite collisionality,
impurities and EM effects (without necessarily B‖ fluctuations), was shown to be essential
when simulating TCV conditions. Neglecting these effects and assuming mD/me = 400,
the simulated heat transport level is unrealistically high, overestimating the measurements
by a factor ∼ 20 in the core region and ∼ 8 at the edge. A strong reduction is obtained
with the “full physics” model. Finite collisionality is found to be responsible for most of
the transport reduction, by a factor 2 at the core position. Realistic mD/me leads to
another ∼ 40% reduction. The effects of impurities and finite β are of the same order
and in opposite directions (C content reduces by ∼ 10%, while finite β increases the
electrostatic heat flux, the contribution to the flux from electromagnetic fluctuations still
being negligibly small).
Based on our local simulations, it appears that the strongest effect exerted by negative
triangularity is an increase of the critical gradient while no significant effect of triangularity
on local profile stiffness is found. A strong overestimation of the heat flux however remains,
and in particular for the core simulations. Global simulations are expected to recover at
least part of this discrepancy thanks to finite machine size stabilization. They will be
the subject of the next chapter.
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6 Global simulations of TCV dis-
charges with positive and nega-
tive triangularity
As we have seen in the previous chapter, local simulations are unable to fully reproduce the
experimental observations made in TCV, and a possible candidate that can be invoked to
explain the observed discrepancies between measurements and flux-tube results are finite
ρ∗ effects. Such effects are known to potentially lead to a strong turbulence suppression
in machines of the size of TCV [114–116].
Before moving to actual TCV simulation results, it is useful to recall certain practical
details about global runs, how they are performed and how their results are interpreted.
Hence, the first part of this chapter will present some basic considerations regarding
global runs. Simulation results addressing the effect of triangularity will be discussed in
the second one.

6.1 Gradient vs. flux driven global simulations

One of the main differences between local and global simulations, besides the obvious
fact that the latter retain the radial variations of equilibrium profiles which are neglected
by the former, is associated to sources and sinks. While flux-tube runs do not require any
source term in order to maintain the background temperature and density profiles, which
are fixed during the evolution of the system, this is not the case when global simulations
are performed. In this case profiles will evolve in time and the corresponding gradients
will ultimately relax below their critical values if a proper source is not applied to the
system.
As already mentioned in section 3.6, two different options, corresponding to two different
ways of handling this issue, are available. The first one, adopted in gradient-driven runs,
consists in assuming given temperature and density profiles, and adding time-varying
sources/sinks, possibly non-zero at any point in the plasma, such as to maintain these
profiles (in a time averaged sense) during the evolution of the system. The second,
so-called flux-driven approach, considers instead a constant imposed localized source and
sink and the profiles are left to freely evolve in time under the action of this source/sink
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until a quasi-stationary state is reached. From this point of view, flux-tube simulations
are intrinsically gradient driven. Whenever one is aiming at reproducing experimental
observations of turbulent transport with global simulations, flux-driven runs are a priori
the preferable choice because the experimental source term is usually well known, both in
its intensity and in its spatial location (e.g. the ECH heating), whereas the experimental
profiles, and especially their gradients, are normally characterized by larger error bars.
The major drawback however of this kind of simulations is their computational cost,
which is particularly significant because the system has to evolve till the profiles settle,
and this requires to simulate for a time of the order of the confinement time, scaling as
a2/D where D is the diffusion coefficient and a the minor radius of the device.
Conversely, gradient-driven simulations are normally cheaper than flux-driven, because
profiles don’t need to evolve significantly. One is actually aiming at maintaining them in
a time-average sense, thus one “only” needs to wait for non-linear saturation to occur
and then collect enough time statistics. This happens on a much shorter time scale. For
this practical reason, gradient driven runs are usually preferred to flux driven ones, even
though they are less close to the real physical evolution of a plasma.

The problem with gradient-driven approach is that, because of profile stiffness, a localized
variation of input profiles might lead to a large variation of the local turbulence level
and associated fluxes, which in turns can impact the entire system. Moreover, by setting
the background profiles the source terms become an output of the simulation. Therefore,
one must not only verify that the transport level resulting from a given simulation is
consistent with what is measured, but also that the sources required to maintain the
profiles are meaningful in comparison with the experimental ones. This comparison can
be done only a posteriori, and should be made looking at both the intensity and the
spatial distribution of all source terms.

6.2 General remarks about setting up a global simulation

Resolution requirements

A first important aspect requiring particular care when setting up a global simulation is
defining the simulation grids. The discretization along all phase space directions must be
carefully chosen, first of all because it significantly impacts the cost of the run and one
therefore wants to make best use of the available computing resources and very often a
compromise between the ideal set-up and a feasible one must be made. In particular,
convergence studies are particularly expensive, and one normally cannot afford carrying
them out as extensively as for local runs.
The most critical choice is in defining the velocity space grids. Currently GENE adopts
radially independent velocity grids which are normalized with respect to constant values
relative to a given radial reference position x0. This means that the radial variation
of the temperature profile must be accounted for when defining the extent and the
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resolution of the velocity grids. Based on convergence studies, in a flux-tube simulation
usually one sets L̂v‖ × L̂μ = 3.0 × 9.0, adopting nv‖ × nμ=48 × 8 for ITG dominated
regimes and 64 × 16 for TEM cases. In a global run however this would be appropriate
only for the radial reference position x0. The innermost part of the plasma will be
characterized by higher temperatures, therefore requiring larger velocities to be properly
described, while the outermost part of the plasma, where the temperature is lower, will
require more gridpoints to correctly resolve plasma dynamics. Ideally the grid extension
should be based on the ratio (Tmax/T (x0))1/2, where Tmax is the maximum temperature
to be simulated, and the number of grid points in nv‖ and nμ on (T (x0)/Tmin)1/2 and
T (x0)/Tmin respectively, assuming that structures in velocity space at the lower end of
the temperature profile scale at least linearly with the thermal velocity. This would
allow to have at all radial position a same velocity grid as in an equivalent flux-tube
simulation. In practice, TCV experimental profiles are often characterized by a ratio
Tmax/Tmin 	 10 or more, translating typically into L̂v‖ × L̂μ = 4.3 × 18.0 and requiring
up to nv‖ × nμ = 140 × 80 for a collisional TEM dominated case. Compared to a
local simulations where 64 × 16 gridpoints are sufficient to properly resolve the plasma
dynamics, this translates into global simulations being at least 10 times more expensive
than flux-tube ones, even without accounting for further restrictions to the time step
due to the reduced CFL limit.

Heat and particle sources

As already mentioned, Krook type sources are the standard choice for carrying out global
gradient-driven runs. The typical way one proceeds in defining the relaxation rates is
by first carrying out global linear runs and determining the linear spectra. Then, the
relaxation rates are chosen as typically a tenth of the maximum linear growth rate, such
as to allow some profile relaxation without impacting too much the instability drive [76].
In principle, one should carry out a convergence study to investigate the impact on the
resulting transport of a particular choice of relaxation rates, however such studies are
normally too expensive to be carried out systematically in practice. The rule of thumb
previously presented has proven to be a reasonable choice in most of the cases presented
here.
Whenever simulations with fully kinetic electrons are carried out, a particle source might
be necessary together with a heat source. Given that experimentally there is no particle
source in TCV discharges, corresponding experimental core conditions are assumed to be
effectively characterized by a vanishing particle flux. In the simulation this is often not
ensured and a particle source is normally required to maintain density profiles, typically
with a relaxation rate smaller by a factor of two compared to the one adopted for the
heat source. The observed particle source turns out to be larger as one approaches the
LCFS (ρ � 0.8), where also experimentally the interaction of the plasma with the wall
can provide a non negligible source term.
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Radial buffers and treatment of the magnetic equilibrium for investigat-
ing the effect of triangularity

Radial buffer regions are employed in order to smoothly damp the fluctuations as one
approaches the boundaries of the simulations domain. In these regions one often also
smoothly decreases the gradient profiles to zero, so as to reduce at the same time the
turbulent drive.
When setting the extent of these buffer regions, a compromise must be made. Too
narrow buffer regions can lead to numerical instabilities, while unnecessarily large ones
will significantly impact the computational cost of the run. A typical choice consists in
dedicating 10% of the simulation domain to these two boundary regions, but a larger
extent might be necessary if the fluctuation level is particularly large.

Correctly handling buffer regions is particularly important when simulating the edge
region, as is the case for the simulations investigating the role of triangularity that will
be presented in the following. Because δ is largest in magnitude towards the LCFS,
one is naturally led to assume that simulating the whole minor radius of the plasma is
necessary when aiming at reproducing the stabilizing effect associated to δ < 0. This
requires to place the outer buffer region beyond the actual LCFS.
The simplest solution that we have found to this problem is to extrapolate the experimental
magnetic geometry outside the plasma boundary, and an effective way to do so consists
in assuming constant geometric coefficients beyond ρ = 1, taken equal to the ones
of the LCFS. This turns out to be necessary when handling shaped plasmas because
otherwise even a linear extrapolation can lead to a non physical metric (e.g. k2

⊥ =
gxxk2

x+gyyk2
y+2gxykxkx < 0+. Clearly this procedure leads to an inconsistent equilibrium.

Before applying this strategy to model actual TCV discharges with fully kinetic electrons,
we have performed linear and nonlinear tests in order to validate such an approach in a
simplified scenario, considering adiabatic electrons and simulating only the outermost
fraction of the plasma minor radius. In all the tests we have carried out we have not found
any obvious artifact caused by our way of proceeding. In fact, an equilibrium constructed
as previously described is an equilibrium where the buffer region is characterized by a
metric equivalent to what one would use in order to carry out a flux-tube simulation
centered on the LCFS. Therefore, in order to mimic as much as possible a local set-up, a
linearized q profile, with magnetic shear equal to s(LCFS) is also assumed.

6.3 Global simulations with TCV experimental profiles

6.3.1 Preliminary runs relative to core conditions

A first attempt to reproduce actual TCV conditions with global simulations has been
initially carried out considering only the core plasma. This choice was mainly motivated
by the very strong overestimation of the heat fluxes obtained in this region with flux-tube
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simulations. To develop an understanding of the importance of finite machine size effects,
the radial annulus 0.3 � ρtor � 0.7 has thus been simulated. The grids used for carrying
out such simulations are listed in Table 6.1. As already explained, these runs are sensibly
more expensive than local simulations, with each simulation requiring approximately 1M
CPU-hrs. Therefore, in order to reduce the overall cost, collisions have been neglected.
Simulations are run up to ∼100 R0/cs in order to collect enough statistics in the saturated
state, while time averages are taken over the second half of the run.

nx nky nz nv‖ nμ ky,min Lx Lv‖ Lμ

positive δ 400 48 32 128 64 0.046 (n =2) 55 4.3 18.0
negative δ 400 48 32 108 46 0.031 (n =1) 50 3.9 15.3

Table 6.1 : Numerical parameters used for carrying out global simulations repro-
ducing the core conditions of TCV (0.3 � ρtor � 0.7).

We note that using ρtor as a radial coordinate causes the temperature profiles to be not
exactly the same between the δ > 0 and δ < 0 cases, while they are as a function of
ρvol. Moreover, the minor radius of the plasma a also varies between the discharges,
therefore ρ∗ turns out to be not the same at a given radial position for the two plasmas.
Furthermore, q profiles are not exactly equal, so the radial annulus extent has been varied
so as to cover in both plasmas the region 1 < q < 2.1. The lower limit is fixed so as to
avoid the q = 1 rational surface, where sawtooth activity might lead to large errors in
the determination of the experimental profiles. The upper one is arbitrarily chosen to
exclude the edge region. An extra 10% extent of the domain is dedicated to radial buffers
at both ends. This is in practice obtained by centering the simulation domain at two
different radial locations (ρtor=0.55 for δ < 0 and ρtor=0.6 for δ > 0), and using different
radial domain widths as detailed in Table 6.1. This implies also different minimal toroidal
mode numbers to be retained, smaller in the case of negative triangularity. Similar radial
resolutions are used in the two runs, adopting the same number of points to ease the
parallelization and setting radial hyper diffusion to hyp_x=2. Having a narrower annulus
when δ < 0 allows one to use velocity space grids with a smaller extent, while similar
resolution has been used in both simulations. Krook relaxation rates have been set to
γH = 0.2 cs/R0 and γP = 0.1 cs/R0 for heat and particles respectively .

The results of these first global simulations are illustrated in Figure 6.1, where the radial
profile of the electron heat power is shown for both positive and negative triangularity
cases. Ion and carbon fluxes are not shown as they are negligible. Compared to the
flux- tube results in Figure 5.11, one already observes a significant reduction of the heat
transport towards the experimentally measured values, and, contrary to local results, a
clear difference between the two triangularities now remains even at the radial positions
ρtor ∼ 0.5. A discrepancy by approximately a factor of 4-5 for the total power nevertheless
remains between simulations and experiments for both shapes.
From the flux-tube runs it is known that finite collisionality can reduce the fluxes by up to
a factor of two. Thus these first results appear as a promising first step towards matching
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Figure 6.1 : Radial profiles of electron heat power Q · S in MW crossing a given
flux surface. Shown in red are the results for positive triangularity while in blue
for negative. Simulations are performed retaining carbon impurities but neglecting
collisions.

the experimental heat flux levels. As will be shown in the next section, collisions alone
are however not sufficient to match simulations and experiments.

6.3.2 Full-radius simulations with realistic profiles

Further global simulations have been carried out covering the plasma minor radius up
to the LCFS and placing the buffer outside the actual plasma boundary as described
in the introduction. These simulations will be referred in the following as “full-radius”
to distinguish them from the “core” ones presented before. Various runs, with different
numerical settings, have been carried out without being able to achieve better agreement
with experiments as for simulations presented in the previous section.

The same fine resolutions adopted for carrying out the “core” runs described in the
previous sections cannot be adopted for carrying out a full-radius simulation because
of the resulting computational cost. A simple scaling of the radial and velocity space
grids considering the ideally desired extent of a full-radius run is also likely to lead to
practical computation limitations because of the total number of grid points involved
(this is in fact related to a hardware memory limit that can be avoided by increasing
the number of processors used per single simulation, in turn increasing the cost of the
run). Furthermore, based on experience, the inclusion of collisions roughly doubles the
computational time required per each time step.
A compromise must therefore be made, and we decided to lower as much as possible the
resolution in all directions but keeping the highest possible one in the radial direction.
This choice is based on previous experience in simulating TCV internal transport barriers
[30], where the transport level was found to be reduced when increasing nx because of
better resolved fine structures around MRS.
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6.3. Global simulations with TCV experimental profiles

Given the limited resources available, a first attempt was made considering only two
species and retaining collisions. Similar values of hyper diffusion and of Krook relaxation
rates have been used as the ones adopted for the core runs. The simulation grids are
reported in Table 6.2. The affordable radial resolution is sensibly lower than the one
used for the runs described in the previous section, mainly because of the larger radial
domain resulting from having placed the radial buffer outside the LCFS. Smaller velocity
grids are used but with a higher resolution such as to at least partly resolve the low
T tail of the temperature profile. The number of velocity grid points is based on the
temperature at ρtor = 0.9, resolving up to the LCFS would require to further increase by
at least 30% the number of points. We have verified that such radial resolution is not
affecting too much the linear growth rate γ of the global ky < 0.8 modes, which are the
ones dominating nonlinear fluxes: with 50% more radial grid points γ is varying by less
than 10%.
Few nonlinear runs, with higher resolution but shorter time and thus unfortunately
limited statistics (∼30 R0/cs), have been carried out in selected cases in order to verify
that the numerical setting was not the main cause for the observed discrepancies in the
simulated electron heat flux compared to the experimental one.

nx nky nz nv‖ nμ ky,min Lx Lv‖ Lμ

positive δ 416 48 32 140 80 0.041 (n =2) 98 4 16
negative δ 384 48 32 140 80 0.048 (n =2) 91 4 16

Table 6.2 : Numerical parameters used for carrying out 2 species collisional full-
radius global simulations.
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Figure 6.2 : Radial profiles of electron heat power Q · S in MW crossing a given
flux surface. Shown in red are the results for positive triangularity while in blue for
negative. Compared to Figure 6.1, runs are in this case performed without carbon
impurities but retaining collisionality. A vertical line indicates the location of the
LCFS.
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The resulting electron powers are shown in Figure 6.2 for both plasma shapes. One
observes that the exclusion of carbon is not compensated by collisions and the final heat
fluxes is actually higher than the ones obtained in the simulations showed in Fig. 6.1.
Considering e.g. the position ρtor=0.6 the heat transport level is higher by approximately
50% than what was obtained when simulating only the core.
Furthermore, the time averaged profile of the heat power shows a very unrealistic radial
profile, strongly peaked at ρtor = 0.6 and then rapidly decaying as one moves towards
the LCFS. This behaviour is reflected also in the time averaged heat sources (not shown
here). A strong injection of heat is required in the core in order to maintain the local
background profiles whereas immediately outside ρtor = 0.7 a strong sink is necessary. As
a result, at locations ρtor � 0.9 the turbulent flux is practically zero, as nearly nothing
is radially transported while locally the unstable modes are not retained in the current
set-up (one would need to at least double the number of ky modes so as to have the
relevant unstable ones included).
Comparing the two magnetic geometries, a 10-15% difference between the heat transport
level is observed in the core (ρtor < 0.6), Qe being lower when δ < 0. This difference
further increases up to a factor 1.5-2 at ρtor > 0.7. Even though these ratios are similar
to the ones that were obtained for results in Fig. 6.1, on the one hand they remain smaller
than the experimental ones in the innermost position and, on the other hand, the still
very high overestimation of heat transport does not allow us to claim anything about the
electron heat confinement dependence on δ.

The run relative to negative triangularity, which is the one where the overestimation is
largest, has been repeated using the experimental value of Zeff in the collision operator
only, while still assuming a single ion species, without obtaining a significant difference.
Time averaged fluxes are indeed only lowered by ∼ 10%, which is within the uncertainty
associated to the time average procedure.

The cost of carrying out the same simulations including three active gyrokinetic species
is foreseen to be at least 10 MCPU-hrs per magnetic geometry, a computation that can
be done only once. Before carrying out such simulations it is thus necessary to assess
the impact of experimental uncertainties in the input profiles. We already know from
flux-tube simulations that heat fluxes are particularly sensitive to the density gradient, an
observation that is further confirmed by carrying out linear global simulations considering
a density profile flattened as much as possible to still agree with the experimental data
points and associated error bars.

We have carried out a few preliminary nonlinear simulations assuming heavy electrons
(me/mi=400). This approximation has been avoided in all other runs previously discussed
because the mass ratio is significantly affecting the transport level, with a reduction by
at least a factor of two when going from heavy electrons to realistic deuterium/electron
mass ratio. Moreover, part of the difference between positive and negative δ is removed
if the real mass ratio is not assumed. Heavy electron runs can nevertheless be used
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to “quickly” determine whether a variation of the density profile leads to a significant
flattening of the simulated heat flux profiles. In our case, we find that lowering R/Ln

within the limits of experimental error bars only in the core region (at ρtor < 0.6) shifts
the peak of the simulated fluxes towards the LCFS without significantly changing the
maximum value. A possible solution is to carry out a simulation allowing the density
profiles to relax by not imposing a particle source. In this case the relaxation of the
density profile turns out to be large and beyond the experimental uncertainties.

From all our runs, both local and global, the density gradient appears as the most
sensitive parameter in determining the actual transport level. Because of profile stiffness,
a small localized change of ne can lead to very different heat fluxes. Reconstructing
the actual profile with the help of flux-tube simulations, following e.g. a flux-matching
procedure where local gradients are adapted until predictions by local simulations match
the experiments, is an option. However, besides being a computationally very expensive
exercise, such an approach is likely to lead to an underestimation of the correct gradient
profiles because local simulations do not account for finite ρ∗ effects. Furthermore,
carbon and collisionality appear as necessary ingredients to be retained together in the
simulations.
The uncertainty in the original input profiles are particularly large, and it thus appears
not justified to invest a large amount of resources modifying by hand the input profiles
so as to obtain a better agreement. It is thus desirable to repeat the simulations
using experimental input profiles characterized by smaller error bars, which has become
available thanks to the upgraded TCV diagnostic systems.
We also note that besides invoking experimental error bars as an explanation for the
discrepancy between GENE results and actual flux levels, one can also speculate about
the importance of other effects, like plasma rotation, that have been neglected in all
simulations discussed so far. The original measured data for TCV shots #28008 and
#28014 unfortunately do not allow us to estimate a value of the experimental shearing
rate associated to the plasma rotation nor to clearly identify any qualitative plasma
rotation dependence on δ.

A repetition of the original discharges, such as to better diagnose profiles, is foreseen
during the experimental TCV campaign in the second half of 2016. Quite extensive
experimental scans (of e.g. shape, current, power, density) have nonetheless already been
carried out in previous experimental sessions. We have thus decided to consider a new set
of input parameters corresponding to a different discharge, discussed in the next session.

6.4 Beyond the original parameter set

Not having recent experimental data of discharges with same temperature and density
profiles as shots # 28008 and 28014, we focus here on a triangularity scan, where the shape
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of the LCFS was modified during the discharge, going from negative to positive δLCFS,
while attempting to maintaining all other parameters unchanged. The plasma magnetic
geometries, together with the profiles of safety factor, elongation and triangularity are
shown in Figure 6.4.

To help the reader and avoid confusion, we will refer in the following to this new discharge
as the “new” parameter set, to distinguish it from the “original” one considered up to
now.

This discharge was carried out at constant power, therefore temperature and density
profiles are different between the two shapes, as shown in Figure 6.5. One obtains a
better confinement when δ < 0, in form of a higher core pressure. In Figure 6.3 we plot
the experimental power balance, and as for the “original” discharges one indeed observes
a better electron energy confinement at all radial locations from ρtor = 0.5 to the LCFS.
We nevertheless remark that the relative improvement in confinement (dot-dashed line)
seems to increase with ρtor, at least in the innermost part of the plasma minor radius.
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Figure 6.3 : Electron heat diffusivities χe in m2/s computed from the experimental
power balance. In red the diffusivity obtained in the TCV discharge #49541 when
δ > 0 and in blue when δ < 0. The ratio positive/negative is indicated with a black
dot-dashed line.

We note that there is a significant difference in the density profiles, with higher edge
density nLCFS when δ < 0, whereas the density gradient ∇ne is ∼ 30% smaller for
0.85<ρtor < 1 and comparable for 0.5 < ρtor < 0.8 (see Fig. 6.5(f)). Similar electron
temperatures are measured at the LCFS, with a larger gradient for the δ < 0 case.
Finally, for positive triangularity the ion profiles are characterized by a larger value of Ti

and of the associated gradient (by at least a factor of two) at all radial locations where it
has been measured. As a result, when looking at normalized logarithmic gradients, one
finds that R/LTe and R/LTi are larger for the negative triangularity shape at ρtor � 0.7.
For ρtor � 0.7, the electron temperature gradient inverts its behaviour (smaller for δ < 0),
while the ion ones are the same for the two shapes. Finally R/Ln is larger at all radial
locations larger for the δ > 0 case.
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Figure 6.4 : Radial profiles, as a function of ρtor of (a) safety factor q, (b) elongation
κ and (c) triangularity δ for TCV discharge #49541 at t=0.68 s (blue curves),
corresponding to negative δLCFS, and t=1.5 s (red curves) for positive δLCFS. The
two plasma equilibria are shown in the first row.

6.4.1 Local results

Before embarking into global simulations, a preliminary analysis has been carried out
with flux-tube simulations. All the runs described in the following, unless differently
specified, are carried out considering only one ion species and electrons. Collisions, as
well as electromagnetic effects, are retained.

We first carried out a series of linear local simulations at different radial locations.
ETG modes are expected to be unstable, however they will not be resolved in the
corresponding non linear runs. Thus linear spectra have been resolved only at the ion
scales, i.e. considering modes up to kyρs ∼ 2. For this analysis we selected four locations,
ρtor =0.5, 0.6, 0.75 and 0.85. The corresponding plasma parameters are listed in Table
6.3, where one notes, as expected, that negligible differences are found between values
of safety factor and magnetic shear, while, as already discussed, different gradients
characterize each shape.

The obtained growth rates and real frequencies are plotted in Figure 6.6, in blue for
negative triangularity and in red for positive. We also considered a mixed situation, that
is the negative δ magnetic equilibrium with temperature and density gradients measured
with the positive δ (between the discharges the profiles are assumed to be equivalent as a
function of ρvol, as shown in [13]). They are represented with green stars in Figure 6.6.

127



Chapter 6. Global simulations of TCV discharges with positive and
negative triangularity

0 0.5 1
0

500

1000

1500
(a)

ρ
tor

T
e

[e
V

]

δ<0

δ>0

0 0.5 1
100

200

300

400

500

600

700

800

(b)

ρ
tor

T
i
[e

V
]

δ<0

δ>0

0 0.5 1
0.5

1

1.5

2

2.5

3

(c)

ρ
tor

n
e

[1
0

1
9
m

−
3
]

δ<0

δ>0

0 0.5 1
−12

−10

−8

−6

−4

−2

0

2

ρ
tor

∇
T

e
[k

e
V

/m
]

(d)
δ

δ

<0

>0

0 0.5 1
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

ρ
tor

∇
T

i
[k

e
V

/m
]

(e)

δ

>0δ

<0

0 0.5 1

−15

−10

−5

0

ρ
tor

∇
n

e
[1

9
1
9

m
−

3
/m

]

(f)

δ

>0δ

<0

0 0.5 1
−10

0

10

20

30

40

50

60

ρ
tor

R
/L

T
e

(g)
δ<0

δ>0

0 0.5 1
3

4

5

6

7

8

9

10

ρ
tor

R
/L

T
i

(h)

 

δ<0

δ>0

0 0.5 1
−2

0

2

4

6

8

10

12

14

ρ
tor

R
/L

n

(i)
δ<0

δ>0

Figure 6.5 : Radial profiles of (a) electron temperature Te, (b) ion temperature
Ti and (c) electron density ne. Note that in (b) a constant Ti is assumed where no
CXS measurements are available. This region will not be considered for simulations.
The corresponding gradients are shown in subplots (d − f), whereas the normalized
logarithmic gradients R/LT,n in (g − i). Blue curves correspond to profiles measured
with negative δLCFS, red curves with positive.

A coexistence of ITGs and TEMs modes is found at ρtor=0.5 and 0.65, regardless of
the sign of triangularity and plasma profiles. Further out, TEM are instead dominating
over ITG for all the modes we have inspected. For the two innermost positions we also
observe that when assuming the experimental temperature and density gradients, the
lowest ky modes, kyρs = 0.2 and 0.4, are characterized by higher growth rates when δ < 0
(γ is twice as large for kyρs=0.2) while the maximum growth rate is always smaller when
δ < 0. At ρtor=0.75 and 0.85 growth rates for kyρs < 1 are instead very similar between
the two shapes. Finally, for all positions we note a different behaviour of the high ky

modes, which are characterized by much larger growth rates when δ < 0. When the same
profiles are assumed, the growth rates of the δ < 0 shape are reduced, becoming smaller
than the corresponding δ > 0 counterpart.
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ρtor=0.5 ρtor=0.6 ρtor=0.75 ρtor=0.85
q 1.08 (1.07) 1.34 (1.32) 1.93 (1.90) 2.52 (2.52)
ŝ 1.01 (0.97) 1.38 (1.34) 1.94 (1.98) 2.31 (2.52)

Ti/Te 0.58 (0.43) 0.66 (0.56) 0.85 (0.63) 1.10 (0.77)
R/Ln 2.10 (2.84) 3.97(4.24) 6.20 (7.26) 6.78 (10.12)
R/LTe 8.29 (9.58) 10.60 (9.51) 13.37 (10.82) 17.15 (14.13)
R/LTi 4.83 (4.73) 6.11 (6.25) 7.13 (6.42) 7.02 (5.25)

νei[cs/R] 0.18 (0.30) 0.30 (0.50) 0.73 (0.99) 1.53(1.65)
βe 5.73(3.54)×10−3 3.81(2.29)×10−3 1.64(1.04)×10−3 0.81(0.35)×10−3

Table 6.3 : Parameters characterizing the TCV discharge #49541 at the different
radial locations assumed for carrying out gyrokinetic simulations. In plain text are
listed the values associated to negative triangularity while in parenthesis and in bold
the ones associated to positive δ

Nonlinear results

A series of flux-tube nonlinear simulations have been carried assuming plasma pa-
rameters at the positions ρtor=0.6 and 0.75. For all these runs a grid composed of
nkx × nky × nz × nv‖ × nμ=256 × 64 × 32 × 64 × 16 grid points has been used. The
minimum ky has in all cases been adapted so as to correspond to the toroidal mode
number n = 2, while the radial domain has been chosen to have Lx ∼ 140ρs.

The time traces of the simulated heat fluxes, in normalized units, are shown in Figure 6.7,
separately for ions and electrons. Values are averaged over the simulation volume. One
observes that at ρtor=0.6 the heat flux is equally carried by ions and electrons, which is
compatible with the mixed ITG/TEM nature found in linear runs. At ρtor = 0.75 the
heat transport is dominated by the electron channel, consistently with the dominant
TEM instability found in linear simulations. Comparing the results obtained when
assuming experimental gradients, i.e. red to blue curves in Fig. 6.7, one observes that
while at ρtor = 0.75 the normalized transport level is similar between the two magnetic
geometries in both its absolute value and in the ion to electron ratio, at ρtor = 0.6 a clearly
higher flux is carried by both electrons and ions in the negative triangularity case. One
should also remember that the values of the reference temperature and density used for
normalization are different between the two discharges, therefore the differences between
positive and negative δ fluxes are further amplified when comparing the corresponding
quantities in physical units, e.g. MW (see Fig.6.8).
In agreement with what was described in the previous chapter, we observe that when one
assumes for the δ < 0 case the same profiles as for positive δ (green to red curves), then
a lower heat transport is found for the negative triangularity shape, with a difference
with the positive counterpart that increases when going towards the LCFS, i.e. when δ

gets larger.
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Figure 6.6 : Linear growth rates γ and real frequencies ωr in units of cs/R0,
as a function of the binormal wave vector kyρs. Shown are the results obtained,
at different radial locations, considering negative δ experimental conditions (blue
curves), positive δ ones (red curves) and a mixed set-up where the magnetic geometry
of the negative triangularity is used with the positive δ profiles (green curves). Note
also that each curve is normalized using the local value of the sound speed and
Larmor radius, different for each radial position and for each of the three scenarios.

The time averaged heat fluxes are compared to the experimental power balance in Figure
6.8. The latter is computed based on experimental measurements and accounts for
both the ECH heating (∼ 0.46 MW for this particular discharge) and the Ohmic power
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Figure 6.7 : Time traces of the simulated heat ion and electron fluxes in Gyro-
Bohm units, QGB = neTecs(ρs/R0)2 as a function of position (ρtor=0.6 on the left
and ρtor =0.75 on the right) and plasma parameters. Blue curves indicate results
obtained assuming TCV parameters corresponding to negative triangularity while
red to positive δ. Green curves indicate runs carried out with the magnetic geometry
of negative triangularity and profiles of positive δ.

(varying with shape from ∼ 220 kW for the δ < 0 case to ∼ 180 kW when δ > 0).
Equipartition power and variation of plasma energy are accounted for, even though they
are negligible in magnitude compared to the previous two terms.

Considering first the electron heat flux Qe, one observes that the simulations carried
out for the δ < 0 case are significantly overestimating the experimental transport levels
compared to the ones associated to δ > 0. When considering the positive triangularity
conditions, we obtain that at ρtor=0.6 the predicted electron heat flux is approximately
10% lower than what measured, while 15% higher at ρtor=0.75. Such differences are
compatible with the uncertainty in the input profiles and in the time averages of our
results. Furthermore, we have neglected carbon impurities, whose inclusion further lowers
the transport level.
From the simulations carried out assuming plasma parameters associated to the negative
triangularity conditions, one observes instead a clear overestimation of the heat flux
through the electron channel, which is larger by a factor of 5 (resp. 4) at ρtor = 0.6 (resp.
ρtor = 0.75).
An overall overestimation of fluxes is evident when inspecting the simulated ion heat
fluxes Qi, which are found in all cases to largely exceed the experimental ones, by at
least a factor of ten. As already pointed out before, when considering δ < 0 at ρtor = 0.6,
Qi is actually larger than Qe (the ion heat flux is in this case more than 60 times larger
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Figure 6.8 : Time averaged heat power, carried by electrons Qe (left), and by
ions, Qi, (right) graph, expressed in MW. The results obtained when assuming the
negative δ experimental TCV conditions are shown with blue diamonds, while with
red the positive δ. Green stars indicate mixed parameters. The experimental power
balance is shown with dashed lines, following the same color coding.

than the experimental one), leading to a non-physically large transport level.

6.4.2 First global simulations

Global nonlinear simulations have been carried out considering the new profiles and
geometries. The same numerical set-up as local simulations has been used in order to
carry out also global simulations, which are therefore fully electromagnetic collisional
runs without impurities. The real electron to ion mass ratio is assumed. In order to
reduce the cost of the runs, the extrapolation of the equilibrium outside the LCFS is
avoided, and simulations cover the radial extent 0.45 < ρtor < 1, the the last 10% devoted
to buffer regions. In these regions we also smoothly reduce the experimental gradients
down to zero.

nx nky nz nv‖ nμ ky,min Lx/ρs Lv‖ Lμ

negative δ 512 64 32 110 60 0.019 (n =1) 71 4.14 18
positive δ 512 48 32 110 60 0.032 (n =2) 81 4.14 18

Table 6.4 : Numerical parameters used for carrying out 2 species collisional full-
radius global simulations with the “new” parameter set.

The grids adopted for carrying out such runs are reported in Table 6.4. The negative δ

case has been carried out considering the maximum currently affordable resolutions, that
is assuming the full toroidal domain in the binormal direction and a radial resolution
Δx corresponding to ∼ 1/7ρs. These settings have been relaxed in the run simulating
the δ > 0 case, which has been performed retaining only half toroidal domain in the
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binormal direction and with lower the radial resolution to save CPU resources.
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Figure 6.9 : Electron (on the left) and ion (on the right) power crossing a flux
surface as a function of the radial position. Shown in red the results obtained
assuming the experimental conditions of δ > 0 and in blue for δ < 0. Vertical lines
indicate the position of the buffers.

At the time of writing, limited statistics have been acquired for the runs (∼ 50 R0/cs).
Longer simulations should be performed, but given that non-linear saturation has already
occurred, we plot in Fig 6.9 the resulting heat power profiles. Global effects appear in
this case particularly strong, especially for the negative δ case, where a reduction of Qe

by a factor of five is found at both ρtor = 0.6 and 0.75 as compared to the flux-tube
results. As a result, electron heat flux profiles obtained appear to be already in very
good agreement with the experimental one, both in its absolute vale and in the radial
dependence. The positive triangularity case instead appears to be less affected by finite
ρ∗ stabilization, with global results essentially reproducing the same electron heat flux as
the local one. A weaker reduction of the transport is found also in the ion channel. How
much of this difference between the two shapes is due to the different value of ky.min is
currently under investigation.
We once again remark that only limited statistics have been acquired so far and impurities,
which with in flux-tube simulations are found to be strongly stabilizing both channels
of transport (see next section), have been neglected, so one cannot exclude this partial
result as partly coincidental. We also point out that the total heat transport Qi + Qe

remains higher than the experimental one by at least a factor of two for the negative δ

and three for the positive δ case.

6.4.3 Further remarks about the effects of carbon impurities and plasma
rotation

All the simulations described in the previous section have been carried out neglecting
impurities mainly for having the same set-up between local and global simulations. We
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however have already pointed out, based on both simulations and experimental evidence,
that carbon plays a significant role in stabilizing turbulence.
As was already noted in Ref. [43], negative triangularity plasmas are normally character-
ized by a larger value of Zeff compared to positive δ discharges, because of the different
interaction with the wall. Furthermore, the effect of increasing Zeff is found to be stronger
when δ < 0 [13]. A shape dependent carbon concentration can thus help in furthermore
reducing the transport level predicted by simulations towards experimentally measured
values.
In the following we will further discuss the strong effect played by carbon, with the help of
numerical simulations carried out considering TCV parameters of the “new”triangularity
scan. One could have used different plasma parameters (temperature and density gra-
dients as well as magnetic geometries), like e.g. the “original” one used for the local
stiffness study presented in Chapter 5. However, being the “new” set derived from an
experimentally better diagnosed discharge, we prefer this latest choice. At the same time,
rotation measurements are available in this case, so they will be discussed as well.

We recall that two different experimental ways of measuring the C content, and con-
sequently Zeff , are available. One can determine the carbon concentration directly
from Charge eXchange Recombination Spectroscopy (CXRS), and, neglecting all other
impurities, compute main ion and impurity content as a function of radius based on
quasi-neutrality. Alternatively, one can evaluate a radially constant Zeff such as to obtain
a plasma resistivity that matches the experimental one. Typically the second method
leads to an higher value of Zeff because other elements, not diagnosed by the CXRS
system, are present in the plasma. Using the measurement based on resistivity one might
thus be overestimating the carbon content of the discharge. We furthermore remark that
assuming CXRS values allows to use different values of density gradients for each plasma
species, while a radially constant Zeff constrains R/Ln to be the same for all species.
For the case we are looking at in this section, the value of Zeff measured with CXRS is
∼1.85 for the positive δ and 2.35 for the negative δ case (these values are based on an
radial averages over 0.4 < ρtor < 1), while the estimate based on plasma resistivity leads
to Zeff respectively 3.46 and 3.53. The origin of such a big experimental discrepancy
remains unclear.
Lacking a clear experimental measurement, the “correct” value of carbon concentration
to be retained in numerical simulation can be assessed only through dedicated runs. As
was done in e.g. Ref. [32], one can investigate the zero particle flux point, which can
provide a further physical constraint to the possible values assumed by the different
plasma parameters. This is a somewhat long and tedious exercise, which we leave for
future investigations. We have assessed the impact of carbon by assuming the most
favourable condition in lowering the heat flux, that is the highest Zeff , i.e. 3.46 (resp.
3.53) for positive (resp. negative) δ. This latter consideration is based on linear local
growth rates, reduced when increasing the carbon content.

We have thus repeated all nonlinear runs retaining carbon as a third gyrokinetic species,
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Figure 6.10 : Heat power as a function of the radial location for different plasma
edge triangularities obtained from local simulations carried out with and without
carbon impurities. Shown are (a) the electron heat flux Qe, (b) the ion Qi and (c)
the total Q. With diamonds shown are the results obtained neglecting carbon while
with squares retaining a C concentration matching the value of Zeff measured based
on plasma resistivity, i.e. 3.46 (resp. 3.53) for positive (resp. negative) δ. Blue
points refer to negative triangularity of the LCFS while red positive δ. For clarity
the simulated data points are labelled only in subplot (a), the same coding is used
in all subplots.

obtaining a very large reduction of the total heat flux, and in particular of the ion one,
as can be seen from Figure 6.10. This stabilization is particularly strong at ρtor=0.6,
where in fact the profiles become less unstable and the simulated total flux is below the
experimental transport level (see Fig. 6.10(c)). This latter observation is consistent with
Phase Contrast Imaging measurements that detect only a very weak turbulence level at
such radial location.
The total simulated heat power is now found to be lower than the experimental one for
all conditions with the exception of δ < 0 at ρtor = 0.75, where an overestimation, by
approximately a factor of two, remains.
The strong stabilization induced by C is consistent with the behaviour of linear growth
rates, as shown in Figure 6.11 for the position ρtor = 0.6. Including carbon, low ky ITG
modes that strongly contribute to nonlinear fluxes, are stabilized and TEMs, with a
smaller growth rate, become the most unstable ones for both shapes. The ITG branch
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found in the positive δ case at kyρs ∼ 1 is also stabilized. Finally, for both triangularities
we find a stabilization of the high ky ETG modes which are replaced by a short-wave
ITG branch when impurities are included. Such modes however do not contribute much
to nonlinear fluxes.
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Figure 6.11 : Growth rates γ and real frequencies ωr in units of R0/cs for the
most unstable mode as a function of the binormal wave vector kyρs. Shown with
diamonds and solid lines the results obtained without including carbon, while with
squares and dashed lines the values obtained when impurities are included. Results
valid for simulations at ρtor = 0.6 considering (a) positive and (b) negative δ.

Compared to the local simulations described in chapter 5, besides a 10% higher value of
ŝ, the main difference between plasma parameters is in fact collisionality. Because of the
lower electron temperature and at the same time higher density, νei turns out to be the
same value (in normalized units) as the one used for the stiffness study when carbon is
neglected (compare Tables 4.3 and 6.3). Including impurities is thus sensibly increasing
νei, lowering the fluxes and allowing to match with the experimental ones much more
closely than what obtained before.
Investigating the sensitivity of these local results with respect to carbon content and
collisionality is naturally the next step to be undertaken, given both the extremely high
sensitivity of the simulated turbulent fluxes with respect to the impurity content and the
large experimental uncertainty.
Nonetheless, regarding the importance of global effects, we note that the value of
ρ∗ = ρs/a is quite similar between the conditions assumed for the “original” runs, and
the “new” discharge, and therefore similar global effects are expected. At ρtor = 0.6
we find ρ∗ ∼ 1/95 (resp. ρ∗ ∼ 1/110) for the “original” (resp. “new”) scenario. At
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ρtor = 0.75 instead we have ρ∗ ∼ 1/130 vs. ρ∗ ∼ 1/135. Those value represent an average
between positive and negative triangularity shapes, as with the “new” profiles, because
of the lower electron temperature, ρ∗ is lower for the δ > 0 case, while in the “original”
discharge minor differences were due only to geometric effects. Based on the results
discussed in this section it thus appears that one need to invoke less strong finite machine
size effects in order to reproduce TCV transport level for the “new” discharge. In thus
appears that the overestimation obtained when assuming the “original” parameter set is
at least to be partly attributed to large uncertainty in the input profiles, as also local
simulations too strongly overestimate the transport even if carbon is included with a
large concentration.
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Figure 6.12 : Radial profiles of the toroidal angular velocity shearing rate ωtor, see
Eq. (6.1), measured with CXRS for (red) positive and (blue) negative triangularity.

Finally, using this new parameter set we were also able to measure the effect of rotation
on turbulence, an analysis that was not possible using the “original” parameters because
of lack of experimental data. In the local approximation, GENE implements background
flows by shifting in time the Fourier kx modes, see Ref. [30] for more details. Using the
experimentally measured value of toroidal angular velocity Ωtor as well as it shearing
rate

ωtor = −ρtor

q

dΩtor
dρtor

R0
cs

, (6.1)

which is depicted in Figure 6.12, we do observe only minor variations of the heat flux,
slightly larger at ρtor = 0.6 where including rotation lowers the fluxes by ∼ 10% compared
to ρtor = 0.7 where it has an almost negligible effect. In all cases the variation is much
weaker than the one observed when carbon is included.
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6.5 Conclusions

In this chapter we have discussed global simulations carried out with the aim of repro-
ducing the experimental confinement improvement associated with negative triangularity.
Because of the limited computational resources available it has not been possible to
perform simulations that retain at the same time carbon and finite collisionality, which
are both expected to be crucial in order to match the experimental transport level.

For the plasma conditions used in the previous chapter to model profile stiffness, global
effects are found in terms of a reduction of the heat transport in the innermost locations,
and a more radially uniform difference between the heat fluxes for the two plasma shapes.
A large overestimation, up to a factor of at least six remains in the core. Moreover, the
simulated profile of transport appears to be unrealistic, strongly peaked in the core and
rapidly decreasing towards the LCFS, while one would expect it to be roughly constant
as a function of radius, as it is experimentally observed.
While one can still speculate that a run carried out with carbon and collisionality could
significantly lower the simulated transport level to values more closely matching the
experimental ones, such a computationally expensive simulation should be performed
only when the uncertainties in the input profiles are minimized and cannot explain the
discrepancy in the local results.
The experimental error bars in the measured profiles are large for the case we have
examined, and a reduction of the density gradient in the core region is found to help
reducing the transport (a density gradient driven TEM is the most unstable mode
associated in our case). At the same time the original data are affected also by large
uncertainty in the carbon content measurements, which can similarly strongly reduce the
heat fluxes.

In order to understand whether a more recent and better diagnosed experimental dis-
charge can more easily allow to match simulations and measurements, we have initiated
investigating an experimental δ scan carried out at constant power. The parameters, e.g.
ne and Te, are sensibly different and as a result one is, at least in the plasma core, in
a mixed ITG-TEM regime. In this case a much better agreement is obtained already
by flux-tube simulations, which are found to reproduce the experimental transport level
within a factor of two when impurities are retained. The local values of ρ∗ are not
significantly different from the ones that characterize the first set of runs, therefore one
would expect similar global effects.
Global simulations have been initiated (neglecting C to reduce their cost) and with this
new parameter set strong global effects are observed, in the form of a very large reduction
of transport, especially in the negative δ case. For this geometry, the simulated electron
heat flux is already in good agreement with the experimental one. The total heat flux
remains however higher in comparison with the experiments, mainly because of a large
overestimation of the transport through the ion channel. Based on local results, this
contribution is expected to be strongly suppressed if impurities are retained.
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It thus appears that most of the discrepancy between simulations, both local and global,
carried out with the original parameter set and the corresponding and experimental
measurements is due to the uncertainty in the input profiles. In particular in our case a too
large density gradient. Local simulations are able to reproduce TCV conditions already
with a good agreement, and one must thus be very careful in not overestimating the
importance of finite machine size stabilization attributing to ρ∗ effects that are in fact due
to incorrect profile inputs. Global effects are nonetheless present, and should be retained
and measured. A meaningful next step is thus to carry out global simulations with three
species (deuterium, carbon, electrons) including collisions for the “new” triangularity
experimental scan which is better diagnosed than the “original” discharges.

We find the dynamics of low ky modes, the ones contributing more strongly to transport,
to be very sensitive to carbon concentration. Different turbulent regimes, and associated
fluxes mainly through the ion channel, are observed when C is not included in the runs.
This is thus another very important element to be addressed, also because the carbon
concentration can experimentally be δ dependent, and with an effect that depends on
shape. We remind that in the “original” simulations set up, Zeff was taken as 3.2 for
both shapes, which is the highest possible value (taken from resistivity estimates, as the
CXS system was at the time not sufficiently accurate). Thus, one must also verify that
this concentration is not too high and that an even larger modification of input profiles
of the “original” parameters is necessary.

We finally remark that all these observations are also related to the fact that we have
carried out gradient-driven simulations, which constrain the temperature profile to a
prescribed background. Ideally, one would want to carry out more realistic flux-driven
runs, which are however out of practical reach for the currently available computational
resources.
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7 Study of GAM dynamics in TCV
relevant conditions

Observations of axisymmetric oscillations in the frequency range of the Geodesic Acoustic
Mode have been reported by various authors in different machines, see [55] and references
therein. While it is not certain that all these observations are true GAMs, in the following
we shall refer them as “GAMs” for the sake of simplicity. Thanks to both the very flexible
set-up of the diagnostic system and the versatility of the machine in obtaining plasmas
with different shapes, which is one of the known parameters affecting the mode frequency
[57], the GAM has also been extensively investigated in TCV [55, 62, 117, 118].
In particular, the density fluctuation component of the GAM has been measured thanks
to the Tangential Phase Contrast Imaging (T-PCI) system [43, 55], studying both
the frequency, wavelength and the spatial localization of the mode. For typical TCV
conditions the GAM appears as a radially coherent, i.e. an oscillation at a constant
frequency fGAM over a large fraction of the plasma minor radius [62], contrary to the
predicted dependency of fGAM on the local sound speed provided by the local linear
description of zonal flows (see section 2.7). This latter condition, referred to in the
following as dispersive mode, has been observed only during an edge safety factor ramp-up
[117]. Note that analytic theory predicts the existence of GAM eigenmodes at frequency
fglobal

GAM and with a finite radial extent, when the temperature is inhomogeneous [119, 120].
In this case, the mode is predicted to propagate in the low temperature region i.e. in the
region where fglobal

GAM > f local
GAM. We prefer not to use this nomenclature here because for

the TCV cases studied here, the observed global GAM is found, in both experiments
and simulations, to propagate at frequency much lower than the local one. Moreover, as
it will be discussed in the following, in our simulations oscillations at the same frequency
can be found also in the profiles of heat and particle fluxes, suggesting a coupling between
GAM oscillations and avalanches [121], and making non trivial the distinction between
them.
In all experimental cases, the amplitude of the GAM oscillation is observed to increase
towards the LCFS, in agreement with the linear mode damping being proportional to
exp(−q2). Plasma shaping is experimentally found to affect the GAM. As predicted by
analytic theory and simulations [57, 122], the elongation κ reduces the frequency of the
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mode and lowers the amplitude of the density fluctuation component. A similar role is
observed to be played by negative δ. Furthermore, the magnetic fluctuation associated
to the GAM has been characterized [62], and a dominant m = 2 poloidal component
observed.

Numerical simulations, both local and global, have been performed in order to model
some of the experimental TCV conditions where the GAM has been observed. The
obtained results will be discussed in this chapter, which is organized as follows. First, we
will present the simulations relative to the TCV discharge #46068, a density ramp-up
where the GAM was observed disappearing in the PCI spectra at increasing density and
experimentally interpreted as a result of the increased broadband turbulence. Local GENE
simulations qualitatively agree with the observed behaviour and predict similar trends of
fGAM with respect to the background density. The nonlinear simulated frequency, which
similarly to the experiments is found significantly lower than predictions based on linear
GAM dynamics, is however higher than measured. The dependency of this frequency
with plasma parameters has been investigated and possible explanations of this observed
discrepancy will be discussed.
Note that the local approximation does not allow to address either the global nature
of the mode or any possible privileged direction of propagation. These aspects have
therefore been addressed with dedicated global runs, presented in the last part of the
chapter. The observation of the safety factor q dependency will also be partly addressed.

7.1 Analysis of an experimental TCV density ramp-up

7.1.1 TCV discharge #46068

The TCV plasma #46068 is a density ramp-up carried out during an Ohmic discharge,
with the aim of investigating, among others, the effect of increasing collisionality on
GAMs and, generally, on broadband turbulence. Density fluctuations have thus been
experimentally measured using the PCI system. An effort was made to keep the shape of
the LCFS fixed, while the density increased by a factor of ∼ 6 before the plasma disrupted.
During the discharge evolution the diagnostic beam was maintained tangential to the
magnetic surface at the location ρψ = 0.8. Here ρψ indicates a radial coordinate based
on the normalized poloidal flux, ρψ =

√
ψ/ψLCFS, which approximately corresponds to

ρtor = 0.66. The time trace of the line-integrated electron density (measured with a Far
InfraRed interferometer) is shown in Figure 7.1, together with an example of the plasma
magnetic geometry (evaluated at t=0.3 s).
The GAM was detected during the first part of the discharge, when the plasma was
kept at low density, at a frequency of approximately ∼ 27 kHz. Then, starting from
t=0.7 s the GAM peak disappeared in the broadband turbulence background, see Figure
7.14 and Ref. [117]. Bicoherence analysis hinted to the GAM drive not being simply
proportional to the turbulence intensity. We also note that during this discharge a quasi-

142



7.1. Analysis of an experimental TCV density ramp-up

R [m]

Z
 [m

]

TCV #46068 − t=0.3s

0.7 0.8 0.9 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.5 1 1.5

2

4

6

8

 

TCV t [s]

n
fi
r
[1

0
1
9
]

Figure 7.1 : On the left, flux-surface contours showing the magnetic geometry of
the TCV discharge being analyzed. On the right, line-integrated electron density
(measured with the TCV Far InfraRed interferometer diagnostic system) as a function
of the discharge time. Vertical lines indicate the instants considered for carrying out
simulations (t=0.3 s, t=0.6 s, t=0.85 s and t=1.2 s.

coherent mode (a mode localized in k space but broad in frequency) was observed at
intermediate densities, which however will not be addressed here. In order to investigate,
and potentially partly reproduce, the experimental observations, we have carried out a
series of flux-tube simulations at fixed radial position (corresponding to the experimental
location of the T-PCI diagnostic laser beam, ρψ = 0.8) considering plasma parameters
representative of TCV conditions at different times. Note that the radial coordinate
used to carry out the simulations is ρtor, which varies in time as reported in Table 7.1.
We choose in particular the following four time instants: t=0.3 s, t=0.6 s, t=0.85 s and
t=1.2 s. The first one is representative of a low density plasma where, as will be shown,
TEM modes constitute the dominant instability at the ion scale. For all times later
than t=0.7 s, ITG modes are found to be dominant. The parameters at t=0.6 s are
therefore representative of an intermediate transition condition, while the ones at t=0.85
s represent an ITG dominated situation. The last time chosen, t=1.2 s, is close to the
experimental plasma disruption, so the parameters (in particular gradients and magnetic
geometry) are affected by a significant error bar. Nonetheless, given the striking complete
disappearance of the GAM peak from the PCI spectra at this late time of the discharge,
it appears as an interesting situation to be investigated.

Naturally, temperature and density profiles of all species evolve in time, as depicted in
Figure 7.2. In particular, electron temperature is decreasing in time while the ion one,
as well as R/LTi , is increasing.
In order to be as close as possible to realistic TCV conditions, we decided to vary all
parameters from one simulation to another according to the actual measurements, at the
price of not being able to easily isolate the effect of individual terms. The actual plasma
parameters adopted for carrying out the runs are detailed in Table 7.1 we have reported
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Figure 7.2 : Radial profiles, as a function of ρψ of (a) electron density ne, (b)
electron temperature and (c) ion temperature Ti relative to the TCV discharge 46068.
Shown in green are the values measured at t=0.3 s, in blue at t=0.6, in magenta at
t=0.85 s and in red at t=1.2 s. The same color coding will be used in all plots to
distinguish the different time instants during the discharge.

the value of the effective collisionality [123]

ν∗ =
4√
3π

q

ε3/2
ni

ne
νei

R0
vth,e

(7.1)

instead of νei, to provide a value independent of Te, which varies in time.

7.1.2 Local linear analysis

Mode frequency and growth rate

In order to investigate the type of underlying microinstabilites at play at the four
selected time instants, a series of linear simulations has been carried out considering ky

modes up to the electron scale. These simulations have been performed considering the
experimental magnetic geometries reconstructed with CHEASE. All runs consider three
fully gyrokinetic species: the main deuterium ion species, electrons and carbon as minority
impurity with a concentration matching the measured Zeff . Electromagnetic fluctuations,
even though they turn out not to be the dominant for the cases considered here, have
been accounted for assuming the experimental value of β. Finally, the experimental
value of collisionality ν∗ has been assumed. All the simulations performed at the ion
scale (kyρs ≤ 10) have been carried out considering a grid with nkx × nz × nv‖ × nμ =
48 × 32 × 64 × 16, with L̂‖ × L̂μ = 3 × 9. The stability of modes at the electron scale
(kyρs ≥ 10), given that they are typically more ballooned, has been investigated using
the same numerical grids except in the radial direction, for which only nkx = 32 modes
were sufficient.
The results obtained are summarized in Figure 7.3, where real frequencies and growth
rates are shown as a function of the wave number ky. One indeed observes at the ion
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t=0.3s t=0.6s t=0.85s t=1.2s
ρtor 0.68 0.66 0.66 0.63
q 1.98 1.85 1.84 1.53
ŝ 1.25 1.36 1.36 1.52

Ti/Te 0.53 0.87 0.90 0.84
R/Ln 3.91 5.05 4.17 4.85
R/LTe 10.70 11.70 11.40 13.09
R/LTi 5.61 7.21 7.89 7.90

ne [10191/m3] 1.23 2.38 3.98 5.63
Te[eV ] 370 288 238 204

ν∗ 0.32 0.64 1.33 1.35
βe 0.89 ×10−3 0.13 ×10−2 0.18×10−2 0.22×10−2

Zeff 2.59 1.48 1.33 1.38

Table 7.1 : Parameters characterizing the TCV discharge #46068 at the various
times considered for carrying out gyrokinetic simulations. All values are referred to
the radial location ρψ = 0.8; the corresponding values of ρtor are listed as well.

scale a transition from TEM (modes possessing a negative real frequency in Fig. 7.3 (a))
to a ITG (positive frequency) dominated regime when the density is increased. More in
detail, at the beginning of the discharge (t=0.3 s) TEMs are the dominant instability
for all kyρs ∼ 1 modes analyzed, while at later times (t≥ 0.85 s) all dominant ion scale
modes are ITGs. Considering the parameters of the intermediate time t∼ 0.6 s, TEM
and ITG coexist, with the latter being the most unstable at kyρs > 0.5. We also note
that there is a continuous transition from TEM to ITG without any frequency jump,
with the former branch continuously connected to the latter.
We remark that at the electron scale ETG modes are unstable in all cases considered for
kyρs ∼ 10, with a maximum growth rate that increases despite the increasing collisionality.
This latter result is in agreement with the increasing electron temperature gradient in
time.

In order to address the sensitivity of these findings with respect to the radial location
assumed as the center of the flux-tube, we performed a radial scan centering the simulation
domain (and therefore considering also the actual local experimental plasma parameters)
at seven equally spaced radial positions 0.5 ≤ ρtor ≤ 0.8. Given that ETG modes will
not be taken into account in the following nonlinear simulations, only wave numbers at
the ion scale were considered. The results are depicted in Figure 7.4. The same analysis
has been repeated also assuming zero collisionality (ν∗ = 0), as shown in Fig. 7.5.
From Figure 7.4 one sees that, at the beginning of the discharge, ITG modes are already
unstable, but only in the core (ρtor ≤ 0.55) and over a narrow range of ky modes. Then,
for all the other simulated instants they gradually become the dominant instability at
kyρs ≤ 1. Only at t=0.6 s (Figure 7.4 (b) one observes a true coexistence of ITG with
TEM modes, with the latter being the most unstable at the lower end of the ky spectrum
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�

�

�

�

Figure 7.3 : Growth rate γ and real frequencies ωr in units of R0/cs of the most
unstable mode as a function of the wave number kyρs. Results have been obtained
considering the TCV discharge #46068, using the magnetic equilibrium and plasma
parameters measured at respectively t=0.3 s (green diamonds), t=0.6 s (blue circles),
t=0.85 s (magenta stars) and t=1.2 s (red squares). In order to illustrate the
continuous TEM-ITG transition found at kyρs < 0.5 for the parameters at t=0.6
s, a zoom on the low ky part of the spectra is shown. The results obtained at the
ion scale (kyρs ∼ 1) are shown in lin-lin scale in (a), whereas growth rates are also
plotted log-log scale in (b) such as to illustrate the ETG contribution (kyρs ∼ 10).
All simulations are performed centering the flux-tube at ρψ=0.8.

and for ρtor � 0.7. Finally, one observes that edge modes at high ky become more and
more unstable at later instants of the discharge.
A comparison with the results of the same analysis carried out neglecting collisionality,
see Fig. 7.5, reveals that ITG modes are the dominant instability in a major fraction
of the plasma only at t=0.85 s. A small ITG dominated region is found also in the
simulations carried out with the parameters associated to t=1.2 s. However it is much
more narrow in both radial and ky extent. Based on these results, for each of the times
that we are considering, even if radial variations exist, the type of turbulence appears
not to be particularly sensitive to the radial location, therefore validating the specific
radial location used for flux-tube simulations.

Between the four instants considered, collisionality is significantly changing, by at least
a factor of eight (see Table 7.1), and experimentally it is assumed as the most relevant
varying factor. Gradients, however, do change as well, potentially inducing a turbulent
regime transition. In order to assess the influence of ν∗ on the obtained results, for each
time instant we have artificially varied the collisionality while keeping fixed all the other
parameters. For each time, linear runs have thus been performed for the four values of
ν∗ tabulated in Table 7.1. The corresponding results are summarized in Figure 7.6.
The only case in which an increase of collisionality appears to be able to induce a regime
transition is when assuming the plasma equilibrium and gradients of t=0.3 s (first graph
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Figure 7.5 : Same as Figure 7.4 but showing results obtained neglecting collisions.
Note that the same color coding has been used with respect to Fig. 7.4 such as to
illustrate the stabilizing effect of collisions, especially on TEMs.
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Figure 7.6 : Collisionality scan. Growth rates γ and real frequencies ωr in units
of R0/cs of the most unstable mode as a function of the wave number kyρs and for
different values of collisionality ν∗. Magnetic geometry, as well as temperature and
density gradients, have been kept fixed and correspond to the experimental values
at (a) t=0.3 s, (b) t=0.6 s, (c) t=0.85 s and (d) and t=1.2 s and ρψ = 0.8. Only the
collisionality ν∗ instead has been varied among the experimental values at the four
time instants.

in Figure 7.6). In this case the most unstable mode at kyρs < 1 remains a TEM except
when considering the two highest values of ν∗, where a transition to ITG is observed. The
associated increase of density and reduction of temperature correspond to respectively
a five and eight fold increase in the ion to electron collisionality in comparison to the
experimental one, therefore beyond the experimental uncertainty on the value of νc. For
all the other cases an increase of collisionality alone is not sufficient to induce a change
in the turbulent regime. Comparing also with Figures 7.4 and 7.5, one can therefore
conclude that collisionality induces a significant stabilization of the linear growth rates
in all cases, but is not the main cause for regime transitions. In particular, when going
from the plasma parameters of t=0.3 s to the ones associated to t=0.6 s, the increase
in collisionality is not necessary to induce a transition from TEM to mixed TEM/ITG
regime, which is in fact associated to a variation of the different turbulent drives, R/LT ,
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7.1. Analysis of an experimental TCV density ramp-up

R/Ln and Te/Ti. We nevertheless remark that collisionality is playing a strong stabilizing
role on all modes, reducing the growth rates up to ∼ 50%, and therefore it is expected to
be an essential effect to be retained in nonlinear simulations in order to aim at matching
the experimental transport level.
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Figure 7.7 : Variation of growth rate γ and real frequency ωr for fixed kyρs = 0.5
continuously changing all plasma parameters from the experimental values measured
at t=0.3 s to the ones of t=1.2 s. The legend indicates the parameter being changed
at each step: red squares collisionality ν∗, green diamonds temperature ratio τ ,
blue circles density gradient R/Ln, green stars ion temperature gradient R/LTi ,
magenta crosses electron temperature gradient R/LTe and gold triangles carbon
content. Finally, dashed lines indicate a variation of the magnetic geometry. The
actual experimental points are indicated with arrows.

At last, given that all plasma parameters change among the different instants of the
discharge, identifying which one is the most relevant is not an obvious exercise. In
order to investigate this aspect, we have continuously changed in turn all the plasma
parameters between the four different experimental sets, from the first at t=0.3 s to
the last one at t=1.2 s. Hence collisionality, density and ion and electron temperature
gradients, ion to electron temperature ratio, carbon content and magnetic geometry have
been varied following the experimental variations. Naturally there is no privileged order
to follow when performing this kind of analysis, and different choices can actually lead to
different results (i.e. different paths between two experimental points in Figure 7.7). We
have therefore varied the plasma parameters in order of their relative variation, starting
from the most important one. Furthermore, the magnetic equilibrium has been changed
at once and always after having modified all other quantities. The results obtained for
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Chapter 7. Study of GAM dynamics in TCV relevant conditions

kyρs = 0.5 mode, i.e. the most unstable linearly and non-linearly, are shown in Figure
7.7. Going from the parameters of t=0.3 s to the ones of t=0.6 s, a strong stabilization,
by 	 50% is observed as a result of the increased collisionality. Similarly, the growth rate
is decreased by another factor of two because of the increased ion temperature. Then, the
increase of both density and electron temperature gradient further destabilize the TEM
mode while the increase of the ion temperature gradient is reducing the growth rate and
strongly increasing the mode frequency towards positive values. The most unstable mode
associated to kyρs=0.5 becomes an ITG only when all parameters of t=0.6 s are assumed
together with the collisionality of t=0.85 s, which is larger by a factor of two with respect
to the experimental one. Then, all changes towards the actual plasma parameters of
t=0.85 s further destabilize the ITG. Conversely, moving towards the ones of t=1.2 s
all variation contribute to a stabilization of the ITG, with the exception of the increase
of carbon content. We remark that these observations are valid only for the particular
mode number that we have chosen. Other values of kyρs might produce different trends.

GAM frequency estimate via Rosenbluth-Hinton test

In order to estimate the frequency of the GAM, the Rosenbluth-Hinton (RH) test has
been performed considering the magnetic equilibria associated to the four time instants
under investigation. This exercise provides a reference linear frequency to be compared
with analytic estimates ans then with nonlinear results.
The RH test is carried out in the adiabatic electron regime, considering the experimental
content of carbon. All simulations have been performed evolving in time an initial
zonal perturbation associated to the kxρs = 0.02 mode. A numerical grid composed of
nz × nv‖ × nμ=64 × 512 × 64 points covering a domain in velocity space L̂v‖ × L̂μ = 4 × 16
has been used. No numerical hyperdiffusion has been used, which is the reason for the
increased resolution also in the parallel direction and in velocity space compared with all
other linear runs previously discussed. The time traces of the normalized flux-surface-
average electrostatic potential are shown in Figure 7.8, together with the obtained values
of GAM frequency, damping and residual potential amplitude 〈φ(∞)〉/〈φ(0)〉.
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Figure 7.8 : From left to right, results of the Rosenbluth-Hinton test performed
to measure the GAM frequency ωGAM. The value obtained for each time is shown
for each subplot in units of cs/R0 together with the simulated GAM damping γGAM
and the residual potential.

The GAM frequency, in normalized units, appears to increase by ∼ 20% from the lowest
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density case to the highest one, essentially because of the variation of q. The damping
instead remains approximately constant. It is to be noted that all frequencies have
been normalized to the actual value of the sound speed, which is changing between the
different runs because of the variation of the electron temperature (reduced by ∼ 45%
when going from t=0.3 s to t=1.2 s, see Table 7.1). The corresponding values of GAM
frequency fGAM = ω/2π in physical units are reported in Table 7.2, together with the
analytic estimates provided in Refs. [56, 57].

fGENE [kHz] fSugama[kHz] fGao [kHz]
t=0.3 s 45.37 48.95 40.59
t=0.6 s 45.06 51.93 48.54
t=0.85 s 43.28 49.67 47.99
t=1.2 s 40.83 44.65 42.77

Table 7.2 : Simulated frequency FGAM = ωGao/2π of the GAM expressed in
kHz. For comparison the analytic estimates fSugama and fGao given respectively in
Refs. [56] and [57] are tabulated as well.

Given that the reduction of the sound speed is stronger than the increase of the normalized
GAM frequency, the GAM frequency decreases with increasing density. We also note
that simulation results do agree reasonably well already with the analytic prediction from
Sugama et al. [56], which is valid for circular plasmas only. The simulated frequency
turns out to be always 10-15% lower than theoretical estimate, a difference that is reduced
when the effect of elongation is accounted for, as e.g. by Gao et al. in Ref. [57].
A the same time, one observes that the residual level increases with increasing density,
mainly because of the decrease of the safety factor.

7.1.3 Local nonlinear results

Transport level

Nonlinear simulations have been performed with the aim of reproducing the experimen-
tally measured transport as well as the density and temperature fluctuation level and the
GAM physics. All simulations have been carried considering a simulation grid composed
of nkx × nky × nz × nv‖ × nμ=512 × 64 × 32 × 64 × 16 points. While the grids in velocity
space have the same extent as the ones used for the linear simulations, L̂v‖ × L̂μ = 4 × 16,
the perpendicular size of the simulation domain in configuration space varies between
the different runs, as detailed in Table 7.3. This reflects a different value of the minimum
wave number ky,min retained in each run, which has been adapted such as to have it
corresponding to a given toroidal mode number nmin according to the relation (4.3). The
different value of the electron temperature, and consequently the corresponding Larmor
radius, causes ky,min to be different for each run. This choice is not expected to affect
simulation results, but simply ease the post-processing of the data.
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ky,minρs nmin ky,maxρs Ly/ρs Lx/ρs

t=0.3 s 0.060 3 3.80 104 119
t=0.6 s 0.050 3 3.10 126 132
t=0.85 s 0.045 3 2.85 139 114
t=1.2 s 0.059 5 3.71 107 134

Table 7.3 : Input parameters defining the size of the simulation box in configuration
space used for nonlinear runs.

All simulations have been carried out with the same physical model as the one used for
carrying out linear runs, i.e. fully electromagnetic, collisional runs including carbon impu-
rities. All runs are limited to the ion scale. Therefore, in order to avoid any nonphysical
pile-up in the turbulent spectra due to unresolved short scale modes, hyperdiffusion in
both x and y directions has been used, setting hypx = hypy = 0.2. A particularly high
resolution was used in the radial direction where, because of the kinetic response of the
electrons, one is expecting fine radial structures to appear around low order mode rational
surfaces. Such structures, as already discussed, if not properly resolved can lead to a
significant overestimation of the transport level [106]. We have verified the convergence
of our simulations with respect to the number of radial grid points by comparing the
results obtained with nkx = 256 to the ones obtained with nkx = 512. No significant
difference was observed between the transport level (any variation found was within the
error bars associated to time averaging, estimated at 10-15%), justifying our current
set-up.
For a given resolution, increasing the collisionality increases the cost of a run because
of the smaller time step required for numerical stability. All simulations have been run
typically up to t∼ 150R0/cs in order to ensure enough time statistics. Given the sensibly
higher cost, less statistics (up to t ∼ 90R0/cs) have been acquired for the at highest
density case at t=1.2 s. The corresponding time traces of the electrostatic turbulent heat
fluxes are shown in Figure 7.9 (the electromagnetic contribution to the heat fluxes is
smaller by approximately two orders of magnitude).
One observes, as expected, that the regime transition is reflected by a significant change
in the transport level, mainly in the ion channel. Comparing the results relative to
the instant t=0.3 s to the ones of 0.6 s, the TEM to ITG transition, one finds a slight
reduction (∼ −10%) of the transport in the electron channel but a strong increase, by
a factor of six, in the ion one (blue to green curves in Figure 7.9 (a) and (b)). Then,
when considering the parameters relative to t=0.85 s (magenta curves, pure ITG regime)
both ion and electron fluxes further increase, actually becoming comparable. Finally,
for the highest density at t=1.2 s, a strong suppression of turbulence is observed and
consequently fluxes reduce as well.
For the sake of completeness, the time traces of the heat flux carried by carbon are shown
as well, even though these fluxes are clearly negligible in magnitude in comparison with
the ion and electron ones.
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Figure 7.9 : Time traces of the electrostatic heat flux Qes in GyroBhom units as a
function of time, obtained from nonlinear simulations corresponding to different time
instants in the TCV discharge #46068. All normalizations are with respect to the
actual sound speed, different in each simulation due to changes in plasma parameters.
Shown are the electrostatic heat fluxes of (a) electrons, (b) main deuterium ions and
(c) carbon. Dashed lines indicate running averaged values started at t=20 R0/cs.
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Figure 7.10 : ky-spectra of the (a) electron and (b) ion heat fluxes. Shown are the
time averaged values over the same time window as indicated in Fig. 7.9.

The ky spectra of electron and ion heat fluxes are depicted in Figure 7.10. Looking at
the electron ones, Fig. 7.10 (a), one sees that the flux increase when going from t=0.6 s
to t=0.85 s is associated to a larger contribution coming from the low ky part of the
spectra (ky � 0.4). These are also the modes that are then mostly stabilized when
further increasing the density. As for the ion spectra, the variation from t=0.3 s to
0.6 s is accompanied by a uniform increase by approximately the same factor at all ky.
Then, similarly to the electron channel, further changes are essentially due to a strong
destabilization of low ky modes.
In order to compare the simulated transport level with the experimental one, a power
balance analysis of the discharge has been carried out so as to identify the electron and
ion experimental fluxes. They are estimated according to the following relations:

Qe(ρtor) = POhm + Pequi − dWe
dt

,
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Chapter 7. Study of GAM dynamics in TCV relevant conditions

Qi(ρtor) = −Pequi − dWi
dt

.

Here, Qe (resp. Qi) indicate the total electron (resp. ion) power crossing a given flux
surface, while POhm is the Ohmic power generated within the volume enclosed by the
flux surface ρ = ρtor. Pequi is the equipartition power and, finally, dWe,i/dt indicates
the variation of electron and ion species energy. Given that the plasma density is
increasing in time, dWe,i/dt is in general not negligible, even though the power balance
remains dominated by the Ohmic heating contribution. All the required fluxes are
estimated based on experimental measurements. The results obtained are listed in Table
7.4, together with GENE predictions. One observes an astonishingly good agreement

t=0.3 s t=0.6 s t=0.85 s t=1.2 s
Qe Qi Qtot Qe Qi Qtot Qe Qi Qtot Qe Qi Qtot

Exp. [kW] 223 20 243 135 60 195 156 83 239 40 280 320
GENE [kW] 189 18 196 152 90 240 290 304 594 117 116 233

Table 7.4 : Comparison between the heat fluxes obtained from the experimental
power balance and GENE simulations. Qtot indicates the total heat flux, summed
over all species.

between simulations and experimental transport level, somewhat surprising especially in
comparison with the results obtained for the triangularity scan presented in the previous
chapters. For t=0.3 s and t=0.6 s, the difference is within the error bars, while at
t=0.85 s and t=1.2 s, a significant discrepancy is found, with GENE over-predicting
both fluxes in the first case and under predicting the total transport in the second one.
For the highest density case, bearing in mind also the larger uncertainty of the input
parameters, the total transport appears compatible with the GENE predictions, which
however shows a different distribution of fluxes between ion and electron channels. When
instead considering the parameters of t=0.85 s, the transport level is higher by at least a
factor of two for the electrons and by nearly a factor of four for the ions in comparison
with that predicted by the experimental power balance estimates. We note that the
main difference in the input parameters for this specific simulation in comparison to the
other flux-tube runs is a lower density gradient, see Tab 7.1. One can speculate that an
increase of R/Ln, as suggested also by the experimental time trend of this parameter,
lowers the ion flux by reducing the ITG drive, bringing simulation results even closer to
experimental values. Preliminary simulations with a 10% increase of R/Ln show indeed
a 30% reduction of the heat fluxes, in both ion and electron channels.

This set of simulations seems to indicate that flux-tube simulations are in fact suited to
reproduce quite closely the transport levels in TCV for these specific conditions, without
needing to invoke finite machine size effects and global simulations. We remember
however that in all these simulations we have neglected ETG contributions which appear
to be strongly unstable and whose contribution should be quantified with at least electron
scale simulations, and perhaps multi-scale simulations. Furthermore, the biggest ρ∗ value
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7.1. Analysis of an experimental TCV density ramp-up

corresponding to the parameters in our simulation is ρ∗ ∼ 1/145, somewhat smaller than
the typical TCV core conditions (ρ∗ ∼ 1/80), but still not negligible [116]. Global effects
can nonetheless be significant once again, and once more their true relevance can be
quantified only with actual global simulations.

E × B velocity and non-linear GAM estimates

In order to characterize the GAM activity in the nonlinear simulations, and also compare
simulations with experimental observations, we studied the radial and time dependence
of the flux-surface-averaged E × B velocity. In Figure 7.11, the vE×B profiles obtained
from nonlinear runs corresponding to the different TCV conditions along the density scan
are plotted and analyzed. We limit the analysis of each run to its nonlinear, saturated
phase.
We first note that for all the TCV conditions being modeled here, a criss-crossing
pattern of both inwards and outwards propagating oscillations of vE×B is observed. One
can already speculate the absence of a preferred radial direction of propagation as a
consequence of the periodic boundary conditions applied in local runs.
The radial wave vector and the frequency of these oscillations have been identified
evaluating respectively the frequency-wavenumber spectrum

f(ω, k) =
∣∣∣∣
∫

f(x, t)eiωteikxxdtdx

∣∣∣∣ , (7.2)

and the (temporal) power spectral density

S(ω, x) =
∣∣∣∣
∫

f(x, t)eiωtdt

∣∣∣∣2 . (7.3)

While the former quantity has been computed over the entire simulation time trace and
over the full radial domain, the latter, which is used to measure any nonlinear frequency
ωNL in the simulations, has been evaluated using Welch’s estimate. The simulated signal
is thus divided into sections of length 10 tGAM, where tGAM is the GAM period estimated
from the linear RH results, and to each of them an Hamming window is applied. The
Fourier transform is then carried out followed by an average between the results obtained
in the different intervals. We prefer this method because even if at first glance one can
identify by eye a dominant frequency, the Fourier spectra typically show many harmonics
contributing and therefore some averaging, also to compensate the limited statistics,
must be made in order to identify any dominant frequency.
The spectrum defined in (7.2) is used to determine the kx of these GAM oscillations.
Once the frequency ωNL is identified, the value of kx is then taken as the wave vector
associated to the maximum Fourier amplitude at ω = ωNL.
The specific values obtained for each simulation are reported in the respective plots of
Fig. 7.11, where in the last column we also show the space-time autocorrelation function.
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This quantity exhibits patterns typical of a standing wave, a feature that is mostly
evident in the results obtained for the parameters of t=0.3 s, see Fig. 7.11(a), compared
to results relative to later instants. For each run we have evaluated, fitting by hand on
these auto-correlation plots, the corresponding group velocity, which is reported in each
corresponding Figure.

Regarding the frequency of E × B oscillations, one observes that ωNL is always lower, by
at least ∼ 30%, than the linear estimates provided by the RH test. At the same time,
the dominant kx mode appears to be little affected by variation of plasma parameters,
and remains ∼ ±0.3ρ−1

s for all the cases considered here. A significant difference is
however noted in the dispersion relation. From the simulation results relative to the
low density experimental conditions to the ones representative of high density, one
clearly observes an increased contribution from low ω - low kx components. While at
t=0.3 s, a single clear peak in both frequency and wave vector can be seen in the Fourier
decomposition (which we note is very similar to the one discussed in [124]), this is not
anymore the case for the conditions of t=0.85 s, where all modes up to kxρs ∼ 2 are
strongly excited. For the highest density case (bottom line of Fig. 7.11) it appears
that the major contribution is originated from near zero frequency modes. A dispersion
relation of the form ω = vgkx provides the best fit of our results. The group velocity
vg is evaluated from the autocorrelation functions, and in agreement with Ref. [125], it
increases with the frequency.
We also note that the fine scale radial modulation associated to lowest order mode
rational surfaces can be observed in the autocorrelation plots. The amplitude of this
modulation is increasing with increasing experimental background density, making it
mostly evident in the lower right plot of Fig. 7.11. This radial modulation should not be
confused with the one associated to the GAM radial wave vector kx previously discussed
which one observes in e.g. the power spectra plots.
When looking at the time-averaged profiles of e.g. vE×B one observes, as expected,
that there is modulation around lowest rational surfaces, which is related to periodic
boundary conditions. We recall that for a given ky mode, the radial modes 2πŝkx are
coupled by the parallel boundary condition, in turn defining the radial width of the
simulation domain Lx = nexc/ŝky = nexc2π/kx,min, with nexc an integer, see also section
3.2. Another modulation, at a somewhat smaller radial wave vector, the GAM kx, is
observed. This is responsible for the structures that one observes at finite frequency in
the power spectra plots. To further clarify this point, we plot in Figure 7.12 the E × B
velocity and its shearing rate ωE×B, together with their time averaged values. We show
the results obtained for the TCV parameters at t=0.3 s, as the GAM pattern is most
regular in this case. Lowest order rational surfaces can be identified by the characteristic
radial modulation and further pointed out with red dashed lines. As the shearing rate is
an higher order radial derivative, these structures are further highlighted when looking
at ωE×B in comparison to vE×B.

In figure 7.13 we furthermore analyze the E × B velocity by computing its radial Fourier
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Figure 7.11 : For each row, from left to right shown are the radial and time
evolution of vE×B, the corresponding Power Spectral Density (PSD) defined in (7.3),
the frequency-wavenumber spectrum (see Eq. (7.2)) and the space-time autocorre-
lation. The white dashed lines in both PSD and spectra plots indicate the GAM
frequency ωRH estimated via the Rosenbluth-Hinton test, while the black circles
in the Fourier spectra identifies the dominant(ω|rmNL, k) associated to the GAM
Simulation parameters are taken from TCV data at (a) t=0.3 s, (b) t=0.6 s, (c)
t=0.85 s and (d) t=1.2s.
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Chapter 7. Study of GAM dynamics in TCV relevant conditions

Figure 7.12 : Radial and temporal profiles of (a) E × B velocity and (b) the
corresponding shearing rate ωE×B. Time averaged values are depicted in blue while
the location of lowest order mode rational surfaces is indicated with red dashed lines.
Simulations obtained using the conditions of t=0.3 s.

decomposition

vE×B(x, t) =
∑
kx

v̂E×B(kx, t)eikxx. (7.4)

The top panel shows the time-averaged vE×B as a function of the entire radial flux-tube
domain to better show the low kx modulation, while the lower one depicts in the amplitude
of the Fourier radial harmonics |v̂E×B|. In blue the results obtained decomposing the time
average velocity, while in magenta the GAM oscillation. The latter has been obtained
using a narrow band-pass filter centered around ωNL. The multiples of kx,min = ŝky,min

are reported with black lines. One notes that, for both the time-averaged and the GAM
component, the maximum amplitude is associated to the GAM radial wave vector, which
is smaller than kx,min. Harmonics multiple of kx,min are contributing only to the time
averaged velocity (with further higher kx,min harmonics not shown here and responsible
of the fine scale radial modulation observed in the the top plot of Fig. 7.13). We also
note that the maximum contribution to the time averaged vE×B is due to a wave vector
larger than the GAM one, as was also visible in the Fourier spectra of Figure 7.11.

The numerically simulated E × B velocity can be compared to experimental PCI mea-
surements looking at the frequency and the intensity of the GAM peak. Some care
however must be taken, given that one is not comparing exactly the same quantity and
some features in the corresponding spectra can be different. In particular, a mixture of
radial and poloidal modes contribute to the PCI spectra [126] while only the n = 0 is
selected in evaluating vE×B in the simulations. The power spectral densities are depicted
in Figure 7.14. In both experiments and simulations one observes that the GAM peak
becomes less evident when experimentally the density is increased, while its frequency is
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Figure 7.13 : Radial profile of vE×B. The top graph shows the velocity time
averaged over the nonlinear phase of the simulation. The location of lowest order
mode rational surfaces is indicated with red dashed lines (in this case nexc = 9 was
used, translating into a nine fold repetition of Lx,min in defining the flux-tube radial
domain extent). The lower plot shows the amplitudes, in arbitrary units, of the
radial Fourier harmonics computed according to Eq. 7.4. The blue curve is the time
averaged vE×B while the magenta curve refers to the GAM component, obtained
with a narrow band-pass filter around ωNL. Vertical black dashed lines point out
the multiples of kx,min = ŝky,min.

little affected. However, while in the simulations the peak amplitude seems to diminish,
in the experiments it appears that the GAM contribution is covered by the broadband
turbulence. A detailed comparison of the dominant frequency fGAM is presented in Fig.
7.15 and discussed later on. Here we simply note that for the highest experimental
density no peak is detected measured with the PCI, while in the simulation the intensity
is indeed weak but one can still distinguish a corresponding frequency peak in the spectra.
Moreover, in the experiment a strong contribution is observed at the f ∼ 70 kHz (the
quasi coherent mode) for the intermediate times (t=0.6 s and t=0.85 s), which is not
found in the corresponding simulated E × B. We remark also that in the simulations
one can identify broader GAM peaks than in the corresponding measurements. This is
however related to the choice of evaluating the spectra looking at vE×B; repeating the
same analysis on the shearing rate ωE×B = dvE×B/dx leads to narrower peaks. One can
also analyze the flux-surface-averaged electron density fluctuation, as this fluctuation
is very close to what experimentally measured with the T-PCI. In this case a similar
picture to the one obtained when looking at vE×B is found.

GENE simulated frequencies are compared to experimental measurements in Figure
7.15. The values are also listed in Table 7.5, with the exception of t=1.2 s where
experimentally one does not observe any GAM peak in the PCI spectra. In order to
account for the experimental errors associated to profiles determination, we add to the
numerical prediction an error bar based on the uncertainty of the Te measurement (due
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Figure 7.14 : On the left, simulated power spectra densities of vE×B radially
averaged over the simulation domain. On the right, the power spectra of the density
fluctuations experimentally measured with PCI technique.

Figure 7.15 : Frequency of E × B oscillations in kHz (blue circles)compared to
experimentally measured GAM (red stars). A shaded area has been added to the
simulation results in order to account for the error bars of Te measurement. The
estimates obtained from linear RH tests are shown for reference in black. The actual
results are also listed in table 7.5.

to the fitting of Thomson scattering data) when converting from GENE normalized
quantities to physical units. GENE runs provide a frequency which is always higher than
the one experimentally measured, by 15% to 20% (∼ 5 − 8 kHz). This difference lies
however within the just mentioned error bars. Naturally, simulations should be repeated
accounting for this uncertainty which would affect the results by further increasing the
plasma collisionality for lower temperatures, i.e. lower end of error bars, as well as the
uncertainty on all other input parameters, as they might sensibly affect the turbulence
level. Based on theoretical predictions [61], one can also speculate about a relation
between ωNL and the turbulent level. Given that one expects further transport reduction
from finite machine size stabilization, this effect may as well further contribute to a better
agreement between simulations and measurements. Finally, we remark that these GAM
oscillations are in fact characteristic not only of the E × B velocity, but they appear as
a common feature of all fluxes and fluctuations. As an illustrative example, we plot in
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0.3 s 0.6 s 0.85 s 1.2 s
ωNL [cs/R0] 1.36 1.65 1.71 1.43
fGENE [kHz] 31.1 33.0 31.7 26.5
fexp [kHz] 27.3 27.5 27.1 -

Table 7.5 : Simulated GAM frequencies ωNL in units of cs/R0, as well as fGENE =
ωNL/2π in kHz. Experimentally measured values are also listed.

Figure 7.16 : From left to right, ion particle Γes, heat Qes and momentum Πes

fluxes, in Gyro-Bohm units (simulation parameters are relative to t=0.3 s). Top
line shows the fluxes as a function of space and time, while in the bottom line
are depicted (in log. color scale) the corresponding Fourier amplitudes (estimated
over time interval [50-150] cs/R0. The black circle indicates the point at (kx, ωNL)
estimated from vE×B analysis.

the first column of Figure 7.16 the ion particle flux Γes,i together with its power spectral
density, evaluated from the simulation relative to t=0.3 s. A crisscrossing pattern is once
again observed, with frequency and radial wave vectors very similar to the ones observed
in the corresponding E × B flow. Similar avalanche-like structures are found in heat and
momentum fluxes as well, also shown for completeness in Figure 7.16. The particle flux
is characterized by the most regular pattern. Less regular structures corresponding to
broader spectra, with contribution from a larger subset of frequencies and wave vectors,
characterizes both Qes,i and Πes,i.
We have shown the results relative to t=0.3 s because this is the case where, in analogy
to the E × B flow behaviour, structures appear mostly regular. Similar observations
can nevertheless be made analyzing all the other simulations, which do show equivalent
features. Moreover, ions are the species where one can more easily isolate regular patterns,
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but they are also found in electron and carbon fluxes.

Temperature and density fluctuations

Temperature and density fluctuations, the former separating between the parallel and
perpendicular components to the magnetic field, have been analyzed looking at the
time evolution of their volume averaged counterpart δA, where A stands for any of the
aforementioned quantities, defined as

δA =
√

〈|δA|2〉v, (7.5)

with V indicating the flux-tube volume. Considering first density fluctuation δn, as a
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Figure 7.17 : Time traces of the relative fluctuation amplitude of (a) electron density
δne/ne, (b) electron parallel temperature δT‖,e/Te and (c) electron perpendicular
temperature δT⊥,e/Te.

result of quasi-neutrality and carbon being present with a minor concentration, the elec-
tron and ion fluctuations are very similar, both in amplitude and in the trends observed
when changing parameters. Therefore, simulated fluctuations relative to electrons are
shown in Figure 7.17. The amplitude first increases with increasing background density,
by roughly a factor of two from the simulation relative to t=0.3 s to the one of t=0.85 s.
Then a significant drop, by 70% is found at the highest density. The carbon density
fluctuation (not shown here) is instead less affected by the variation of the background
parameter. With the exception of the results relative to t=0.3 s where δnc/nc ∼ 3%, it
remains in all other cases ∼ 6%, that is larger by at least a factor of two in comparison
to both main plasma species.
Temperature fluctuations exhibit different trends and amplitudes between the different
species. For main ions and carbon, δT‖/T and δT⊥/T are increasing with increasing
density and then drop for the parameters of t=1.2 s. The same is observed for δT‖,e/Te,
as shown in Figure 7.17 (b). For electrons however, δT⊥/T is, with the exception of the
results obtained for t=0.85 s, decreasing with increasing density. This is consistent with
a transition from a TEM to an ITG regime. Unfortunately, there are no available ECE
measurements to compare these observations with experimental data.
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Figure 7.18 : Analysis of the n = 0 zonal component of the ion density fluctuation
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the simulation as a function of the radial position x and the poloidal angle χ, and
the amplitude of the time-poloidal Fourier transform (evaluated at x=0). The right
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dominant (kx, ωNL) obtained from the analysis of vE×B. Results from the simulation
relative to t=0.3 s.
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Figure 7.19 : Same as Figure 7.18 but showing the results obtained when simulating
TCV conditions at t=0.85 s.

In order to investigate the poloidal structure of the density fluctuation associated to
the toroidal mode n = 0, we look at the space and time dependence of δni. We will
show and discuss only the results obtained from the simulation with TCV parameters of
t=0.3 s and t=0.85 s. The density fluctuations strongly reflect the patterns observed
in the E × B profiles. Therefore, the simulation relative to the first instant is the one
where the standing wave character is most evident and, as will be shown, one can clearly
identify a dominant m = 1 contribution at the frequency ω = ωNL. Similarly, from the
simulation at t=0.85 s one still identifies a dominant component at m = 1, but broader
in frequency. The run representative of t=0.6 s shows an intermediate behaviour, while
too limited statistics have been acquired for correctly analyzing the t=1.2 s case.
The results of the analysis are shown in Figure 7.18 for the run relative to t=0.3 s and in
Fig. 7.19 for t=0.85 s. In both cases, we first compute the Root Mean Square (RMS)
average of δni(ky = 0) over the steady state of the simulation. While in the case relative
to t=0.3 s one can already guess a dominant m = 1 structure, the simulation relative
to t=0.85 s appears to be characterized by a more complex dependency on m. This is
further confirmed when looking at the amplitude of the Fourier decomposition in time
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and poloidal angle χ (the second plot in the first panel of Figs. 7.18 and 7.19). We
consider in this case only the position x/ρs=0. We remark that this is not a special
position and one can carry out the same analysis at other radial locations obtaining
similar results. The dominant n = 0, m = 1 GAM density component is then plotted as
a function of time and radial position, and the amplitude of the corresponding kx − ω

Fourier modes are shown in the rightmost plots of Figures 7.18 and 7.19. As already
anticipated, the dispersion relation of density fluctuations closely resembles the vE×B
one, and becomes broader in frequency when the experimental density is increased. This
is reflected by the radial profile of δn, which shows a much more complex pattern at
t=0.85s compared to the one relative to t=0.3s, which shows strong standing wave like
features.
The same analysis can be repeated considering the temperature fluctuation, obtaining
similar spatial and temporal dependencies.

7.1.4 Local adiabatic electron results for ITG dominated regimes

Transport level

Given that for the plasmas at t=0.6 s, 0.85 s and 1.2 s linear and nonlinear spectra are
dominated by ITG modes, it makes sense to compare the previously obtained results
with numerical predictions based on pure ion temperature gradient (adiabatic electrons)
simulations. This kind of runs are expected not to be sufficiently accurate for reproducing
the transport level measured in TCV, given that they do not capture the dynamics of
electrons that can influence the ITG branch both via coupling with the sub-dominant
TEM and the smaller scale ETG modes. Nevertheless, the computational requirement of
these runs is reduced by a significant factor in comparison to the simulations presented
in section 7.1.3, therefore allowing to more easily scan plasma parameters and investigate
any trend or dependence of ωNL.
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Figure 7.20 : Adiabatic electron runs (blue curves). Growth rate and frequency of
the most unstable mode for a ky scan. Plasma parameters assumed from (a) t=0.6 s,
(b) t=0.85 s and (c) t=1.2 s. For comparison the results with fully gyrokinetic ions
and electrons are reported as well with black dashed lines.
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7.1. Analysis of an experimental TCV density ramp-up

Linear ky-spectra are shown in Figure 7.20, where they are compared with the ITG
branch obtained from simulations performed with three gyrokinetic species. Assuming
adiabatic electrons leads to a ∼ 20% reduction of the growth rates for all cases with the
exception of t=1.2 s, where the adiabatic electrons results are essentially the same as the
fully gyrokinetic ones. Similarly to the results discussed in the previous paragraphs, the
parameters at t=0.85 s are the ones that lead to the highest growth rates.

Nonlinear simulations have been performed considering the same value of ky,min as
reported in Table 7.3 and adopting grids composed by nkx × nky × nz × nv‖ × nμ =
256 × 32 × 32 × 48 × 8 points. Given that carbon was found to weakly affect the linear
growth rates, it has been neglected, further reducing the cost of the runs. For the sake
of completeness, a nonlinear simulation has also been carried out for the parameters of
t=0.3 s, even though experimentally this is a TEM dominated case. The time traces of
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Figure 7.21 : Adiabatic electron simulations results: (a) time traces of the ion heat
flux and (b) corresponding ky spectra. Shown are the results for t=0.3 s (green),
t=0.6 s (blue), 0.85 s (magenta) and t=1.2 s (red).

the ion heat flux and the corresponding spectra are shown in Figure 7.21. When varying
the plasma parameters reproducing the different TCV conditions, one observes trends
very similar to ones obtained when carrying out runs with fully gyrokinetic electrons
and carbon: the heat flux first increases (from the parameters of t=0.3 s to 0.85 s) and
then decreases (from 0.85 s to 1.2 s). Again this difference is mainly due to a different
contribution from the low ky modes. In all cases adiabatic electron runs provide a lower
ion heat flux, by approximately a factor of two, than the one obtained when carrying out
simulations with fully gyrokinetic electrons.

E × B velocity

The very same analysis of the E × B velocity has been repeated for this new set of
runs. Compared to the kinetic electrons results, we observe in all simulations a different
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behavior in the initial (linear) phase of the simulations. Non-propagating oscillations with
a damped amplitude develop from the initial perturbation. Then, when the system enters
in the nonlinear quasi-stationary saturated regime, the typical crisscrossing pattern of
inward and outward propagating perturbations is recovered. The oscillations of the linear
phase of the simulations are characterized by a frequency and a damping which, within
less than 5%, are the same as the ones estimated by the linear RH test, a difference that
can be explained by the reduced statistics available from the linear phase of nonlinear
simulations. Then, in the saturated state the frequency of E × B oscillations diminishes,
by approximately ∼ 35%. The detailed analysis of both the linear and nonlinear phases of
all runs is reported in Figs. 7.22 and 7.23. Once again very regular patterns are recovered,
with a frequency ωNL and a group velocity vg that increase when the parameters are varied
from t=0.3 to 1.2 s. In order to further illustrate the frequency downshift between the
linear and nonlinear phases of the simulation, we have computed a wavelet decomposition
(using Morlet continuous wavelet transform [127]) of the E × B flow profiles obtained for
the simulation at t=0.6 s and 0.85 s. The x-averaged results are shown in Figure 7.24.

The frequency of the E × B oscillations are summarized in Fig. 7.25, where the results of
linear RH tests, as well as nonlinear adiabatic and fully kinetic runs are compared. One
observes an astonishing regular downshift, by approximately ∼ 40% between linear and
nonlinear adiabatic runs, for all plasma parameters considered. Fully kinetic electron
runs provide a sightly higher frequency, which also seems to follow the trend predicted
by the linear simulations even though the downshift factor is in this case somewhat more
dependent on the simulation parameters. The fully kinetic simulation relative to t=1.2 s
appears as an exception, as the frequency measured in the nonlinear runs is the same
regardless from the simulation model. The limited statistics acquired doesn’t allow to
clearly exclude this as being a coincidence.
Nevertheless, we note that the difference between kinetic and adiabatic simulations
results appears to be related to the linear growth rates: kinetic runs are always more
unstable(and thus provide a higher frequency) than adiabatic, with the exception of
t=1.2 s, see Fig. 7.20.

Based on the previously discussed flux-tube results, few questions remain open and need
further investigation to be clarified. First, the regular oscillations that are found in the
E × B velocity profiles are observed also in the heat and particle flux profiles. GAM
oscillations at a frequency ωNL are associated to the n = 0 mode and consequently do
not contribute to radial fluxes. The structures observed in the flux profiles are instead
interpreted as large-scale bursts or avalanches (see e.g. Ref. [121]). There therefore seems
to be a coupling between the GAM and these avalanche events, and simulation results
can be interpreted as transport bursts possessing GAM-like features.
A second question is associated to the frequency of these avalanche-like events. The
observed trends seem to indicate a dependence on the turbulence level, with a downshift
of ωNL in comparison to the linear GAM frequency, observed in both fully kinetic and
adiabatic runs, which is reduced at increasing turbulence (both in term of flux and
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Figure 7.22 : From left to right, shown are the x − t evolution of vE×B over the
linear phase of each run, its 2D autocorrelation and the time trace at x = 40ρs. The
red dashed lines in the rightmost plots indicate a damped oscillation of the form
cos(ωRHt) exp(−γRHt) where ωRH and γRH are the values obtained from RH test.
Simulation parameters are assumed from TCV data at (a) t=0.3 s, (b) t=0.6 s, (c)
t=0.85 s and (d) t=1.2s. 167



Chapter 7. Study of GAM dynamics in TCV relevant conditions

ω R
0
/c

s

k xρ
s

v
ExB

 − 2D FFT [a.u.]

k
x
ρ

s
=±0.53 

0 2 4
−1

−0.5

0

0.5

1

ω
RH

(a)

ω R
0
/c

s

k xρ
s

v
ExB

 − 2D FFT [a.u.]

k
x
ρ

s
=±0.42 

0 2 4
−1

−0.5

0

0.5

1

ω
RH

(b)

ω R
0
/c

s

k xρ
s

v
ExB

 − 2D FFT [a.u.]

k
x
ρ

s
=±0.42 

0 2 4
−1

−0.5

0

0.5

1

ω
RH

(c)

ω R
0
/c

s

k xρ
s

v
ExB

 − 2D FFT [a.u.]

k
x
ρ

s
=±0.42 

0 2 4
−1

−0.5

0

0.5

1

ω
RH

(d)

Figure 7.23 : Same as Fig. 7.11 but showing the results obtained with adiabatic
electrons simulations.
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7.1. Analysis of an experimental TCV density ramp-up

Figure 7.24 : Wavelet decomposition (using Morlet continuous wavelet transform)
of the E × B velocity profiles. From left to right, results relative to t=0.6 s and
t=0.85 s. For each simulation the x-averaged amplitude is shown as a function of
frequency and time, with a zoom on the initial (linear) phase. Time averaged values
are shown in red (resp. blue) for the linear (resp. nonlinear) phase. The nonlinear
frequency ωNL is indicated with a dashed black line.
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Figure 7.25 : Comparison between frequency of the E × B obtained from GENE
simulations. Shown are in blue the predicted values based on linear Rosenbluth-
Hinton test, in red the ones obtained in the nonlinear phase of simulations with fully
kinetic electrons and in black with adiabatic electron model.

fluctuation levels). However, what sets the magnitude of the observed downshift, or,
in other words, what is the minimum frequency that one can observe, remains unclear.
Similarly, whether, provided a sufficiently strong turbulence, it is possible to recover
oscillations at the linear or at even higher values of ω.
Finally, neither any preferred direction of propagation nor any finite radial extent of the
GAM can be addressed within the local limit, as radially periodic boundary conditions
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Chapter 7. Study of GAM dynamics in TCV relevant conditions

are applied. The existence of a preferred direction of propagation even in flux-tube
simulations is suggested in Ref. [128], provided that the flux-surface of interest is up-down
asymmetric. In our case the plasma is slightly tilted, see Fig. 7.1, nevertheless the effective
asymmetry at the radial location considered is weak and not sufficient to introduce a
preferential direction of propagation.
This last points can be addressed with global simulations, which will be discussed in the
following.

7.2 Global simulations of TCV discharge #45353 with a
radially coherent GAM

7.2.1 Motivation

TCV discharge #45353 is a limited plasma where the GAM was observed as a global
mode at constant frequency throughout a significant fraction of the minor radius (see
Fig. 7.26). For a detailed description of the experimental set-up we refer to Refs. [55]
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Figure 7.26 : Experimental characterization of the GAM in TCV discharge #45353.
Shown are (a) the auto power spectrum of the electron density fluctuation measured
with the Phase Contrast Imaging and (b) the RMS amplitude. Adapted from
Ref. [62].

and [62]. A first attempt of modeling this discharge with gyrokinetic simulations was
already carried out using ORB5 in Ref. [38], where a relatively good agreement between
the frequency and spatial localization of the mode was recovered. Reproducing the same
discharge with the GENE code therefore appears as a very valuable exercise, not only to
investigate the GAM properties in TCV relevant conditions, but also to compare with
the results obtained with ORB5.
The original ORB5 simulation considered the experimental magnetic geometry and the
measured electron density and temperature profiles. No ion temperature measurements
are available for this plasma, therefore a fixed ratio Te/Ti = 3.75 was assumed at all
radial locations. Similarly, impurities were neglected as there is no measurement allowing
to determine their concentration. This simulation set-up was also kept for performing
the GENE runs. The simulation in Ref. [38] was carried out assuming a hybrid model
for describing electron dynamics and neglecting collisions. These approximations will
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GAM

be relaxed and their effect investigated by comparing hybrid results with a fully gy-
rokinetic description.1 We will also show that collisionality plays an important role on
the transport level, and appears also to affect GAM dynamics. In particular, even if
the dominant radially global nature of the mode and its frequency appear not to be
modified by including collisions, other continuum-like frequencies, i.e. following the linear
local GAM dispersion relation, appear to get more excited when collisions are included.
Finally, we remark that the original ORB5 run was carried out with artificially heavy
electrons, mi/me = 200. Here, unless differently specified, we will use the true mass ratio
mi/me = 3670. All the simulations presented are gradient-driven.
The magnetic geometry and the plasma radial profiles are depicted in Figures 7.27 and
7.28, where the radial extent of the annulus 0.25 < ρvol < 0.85 considered for carrying
out GENE simulations is indicated with vertical black lines. Going furthermore inside
towards the magnetic axis is not of interest as the GAM is measured only in the outer
part of the plasma. Conversely, extending the domain of the simulation towards the
LCFS is naturally of high interest because the GAM amplitude is experimentally observed
to be stronger at the plasma edge (see Fig. 7.26). Nonetheless, in order to limit the
computational cost of the run, at least initially, we limit the outer boundary of the
simulation domain to ρvol = 0.85. This last choice will be relaxed in section 7.2.5, where
GENE and ORB5 results are finally compared.
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Figure 7.27 : Constant con-
tours of the poloidal magnetic
flux function ψ/ψ(LCFS) for the
TCV discharge #45353.
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The nature of the underlying micro-instabilities has first been investigated with global
linear simulations, carried out with both hybrid and fully kinetic electron models. The

1For simplicity, in the following we will refer to the results obtained with the full gyrokinetic response
of electrons simply as fully kinetic.

171



Chapter 7. Study of GAM dynamics in TCV relevant conditions

results are shown in Figure 7.29, where growth rates and frequencies are plotted against
wave numbers kyρs. Both models agree on a mixed ITG-TEM regime, with TEM modes
being the most unstable at kyρs < 2, while ITGs are found dominant at medium wave
numbers (2 < kyρs < 3). At even higher ky, a different behaviour is observed between
hybrid and fully kinetic electrons results. Using hybrid electrons one finds a contribution
from ITG modes up to at least kyρs ∼ 4.5, while a fully kinetic description shows
that ITG modes are rapidly overcome by ETGs. These latter modes have not been
resolved since they require a particularly high radial resolution. Furthermore, they are
not retained in nonlinear simulations, which will be limited to the ion scales. For the
sake of completeness, we have carried out a scan at all scales with the local version of
GENE employing a fully kinetic description. The results are shown in the plot on the
right of Figure 7.29, where in agreement with the global code results, a transition to
ETG is observed at short wavelength.
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Figure 7.29 : Growth rates γ and real frequencies ωr (in units of cs/R0) as a
function of kyρs. Shown on the left are results obtained with global simulations
using for the electron dynamics a fully gyrokinetic (red) and a hybrid electron model
(blue). On the right, the growth rates obtained with the local version of GENE
varying the position of the flux tube. In this latter case cs is evaluated at ρvol=0.65,
in order to have the same normalization as the the global code results. Furthermore,
white lines indicate the transition from positive (ITG modes) to negative frequency
(TEM/ETG modes).

7.2.2 Nonlinear simulations

As already mentioned, nonlinear simulations have been performed considering both a
hybrid and a fully kinetic model in order to describe electron dynamics.
The two models require different radial resolutions to converge the heat transport. In
both cases we have carried out a “low resolution” and a “high resolution” run, the
former considering 128 radial grid points and the latter 416, for a simulation domain
Lx = 65ρs. While for the hybrid model one can use the lower resolution, providing
reasonably converged fluxes, for a fully kinetic description the “high resolution” set-up is
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necessary. Incidentally, we note that the maximum time step is not significantly affected
by the choice of the electron model. The hybrid one is therefore cheaper essentially
thanks to the possibility of using a lower radial resolution (thus a lower number of total
grids points), reducing the actual CPU time per time step required by the computation.

All simulations have been performed considering a half torus in the toroidal direction.
We have verified that the results are not significantly modified if the full toroidal domain
is considered. Fluxes are reduced by ∼ 10%, which is within the error bars of time-
averaged values. Therefore, 64 ky modes have been used to represent the binormal
direction, ranging between kyρs,min=0.049 and kyρs,max = 3.1. The parallel direction z

has been discretized with 48 grid points, while the velocity space with nv‖ × nμ = 96 × 48
points (for grids covering 0 < L̂v‖ < 18 and −4.2 < L̂μ < 4.2). A reduced value of
magnetic pressure, corresponding to β = 10−4, has been used for the fully kinetic run, to
avoid any destabilization of kinetic ballooning modes. All reference quantities used for
normalizations are taken at ρvol = 0.65.
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Figure 7.30 : From left to right: Shown are the time traces of heat flux Q, particle
flux Γ and density fluctuations δn for both ions and electrons. Results obtained
with “high resolution” hybrid electrons simulations. The vertical black line at t
∼ 280R0/cs indicates the moment where collisions are switched on.

Considering both the hybrid and the fully kinetic model, collisions play a major role
in stabilizing the turbulence, and therefore must be retained in the simulations. If
neglected, fluxes, as well as fluctuations, are unrealistically too high. As an illustrative
example, in Figure 7.30 we plot the time traces of the heat and particle fluxes and of
the density fluctuations obtained from the ”high resolution” hybrid simulation. All the
aforementioned quantities are averaged over the entire simulation volume. Collisions
have been turned on at t ∼ 280 R0/cs (indicated with a vertical line in the corresponding
plots). One observes a very strong effect on all turbulent quantities: a reduction by a
factor of four is found for the electron heat flux and by approximately a factor of two
for the ion one. Furthermore, the ion and electron heat fluxes become comparable when
collisionality is retained, hinting towards a strong stabilization of TEMs modes. Similarly,
all fluctuations are strongly reduced when collisions are switched on. Equivalent results
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can be obtained when looking at the fully kinetic simulations, and regardless of the radial
resolution adopted. We note that ion and electron particles are identical as a result of
the quasi-neutrality and that impurities are not considered.
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Figure 7.31 : Heat power in MW crossing a given flux surface. Results obtained
with global gradient driven simulations, considering (left) hybrid and (right) kinetic
electrons. Dashed lines from runs without collisions, while full lines show predictions
based on collisional simulations. Ion fluxes are indicated in blue while electron ones
ion red. Stars indicate collisional local results, carried out with kinetic electron
model, obtained centering the flux-tube at ρvol=0.5, 0.6, 0.7 and 0.9 (the ion heat
flux obtained with local simulations at ρvol = 0.5 is not shown as it falls outside the
vertical axis). The color coding is the same for local and global results.

We remark that even when retaining finite collisionality, the simulated heat transport,
and in particular the ion heat flux, is sensibly higher compared to the experimental one.
The total heat power crossing a flux-surface is shown for both ions and electrons in Figure
7.31. Even without carrying out a detailed power balance analysis, we are considering an
Ohmic discharge, whose total power leaving the LCFS is ∼ 500 kW. Simulations predict
a total heat flux (ion and electron contributions) which is larger by at least a factor of
three at all radial locations, with an increasing difference approaching the LCFS. This
discrepancy can at least be partially attributed to having assumed a radially constant
temperature ratio between ions and electrons. This choice causes, especially in the core, a
very large ion temperature gradient for a moderate density gradient (e.g., R/LTi ∼ 7 and
R/Ln ∼ 1.5 for ρvol = 0.5) that strongly destabilizes ITG modes, leading to unrealistic
fluxes. This picture is confirmed by a series of flux-tube simulations carried out at
different radial locations (see Appendix D for more details) that predict an nonphysically
large heat flux in the core (Qi ∼ 4.4 MW and Qe ∼ 3.4 MW for electrons) while seem to
approach realistic values only towards the plasma edge. Furthermore, one has neglected
carbon in all these runs, which usually has a strongly stabilizing effect for TEM modes,
thus lowering the electron heat flux.
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7.2.3 GAM frequency characterization

In Figure 7.32 we plot the space-time evolution of the E × B shearing rate ωE×B =
dvE×B/dx. Being a higher order radial derivative compared to vE×B, it further highlights
the short scale radial modulation around low order rational surfaces that in particular
distinguish fully kinetic and hybrid simulations.

Figure 7.32 : Shearing rate ωE×B in units of cs/R0 obtained from collisionless
simulations and adopting a hybrid (left) and a fully kinetic (right) model for describing
electron dynamics. The same color coding has been used for the two figures. Radial
buffer regions have already been excluded from the plots.

One observes that the two simulation models provide a similar picture of mainly outwards
propagating avalanche-like structures over the outer part of the simulation domain
(0.6 � ρvol � 0.8). A clear difference however appears between the two simulations in
the form of a much stronger radial fragmentation in case of the fully kinetic electron
simulation compared to the hybrid one. This difference is due to the fully kinetic response
of passing electrons around low order mode rational surfaces. A fine scale modulation
of the temperature and density profiles develops around these surfaces when kinetic
electrons are retained. This in turns influences the flux-surface averaged component of
the electrostatic potential and the associated E × B shearing rate. This is furthermore
illustrated in Figure 7.33, where time-averaged values of the shearing rate, as well as
temperature and density gradient profiles are plotted. As expected, one observes at the
positions of low order mode rational surfaces (depicted with vertical dashed lines) a
flattening of both R/Ln and R/LTe (stronger for the latter quantity), while the shearing
rate at these same points goes through zero, very similar to what described for local
simulations in Ref. [106]. We remark that the amplitude and extent of these fine scale
structures are affected by the radial resolution adopted.

The effect of collisions has been investigated considering both electron models. The time
traces of the obtained ωE×B are depicted in Figure 7.34. Regardless of the electron model,
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Figure 7.33 : From top to bottom, (a) the time-averaged shearing rate ωE×B in
units of cs/R0, (b) the normalized logarithmic temperature gradient R/LTe and (c)
the normalized logarithmic electron density gradient R/Ln, plotted as a function
of the radial position. The location of rational surfaces has been indicated with
vertical dashed lines, in red the ones associated to the lowest considered toroidal
mode number n = 2, in black n=4 and in magenta for n=6. Results obtained with
the “high resolution” fully kinetic run.

collisions are found to influence the GAM and in particular its direction of propagation.
The dominant outwards propagation that was clearly visible in Fig. 7.32 is now replaced
by a more complex pattern of both outwards and inwards propagating avalanches. In
fact we note that the inwards propagation was already present in the collisionless results,
however it was less evident.

The frequency of the GAM has been determined in a similar way as described in section
7.1.3. Results obtained with the two electron models have been analyzed separately,
considering both the collisionless and the collisional interval of each simulation. The
results are depicted in Figure 7.35 (resp. 7.36) for the collisionless (resp. collisional) part
of each run. Note that for each plot the same color coding has been used for hybrid
and fully kinetic results. furthermore, the lowest spectral components have been filtered
out to highlight the global GAM. In each plot, we also present the results obtained
with local nonlinear flux-tube simulations (magenta diamonds), the local GENE linear
prediction obtained with the Rosenbluth Hinton test (red dot-dashed lines) and the
analytic prediction provided in Ref. [57] (green dashed lines).

Comparing the hybrid to the fully kinetic results, one first notes that the stronger
fragmentation observed in the fully kinetic radial profiles of the shearing rate, is also
found in the frequency spectra. This is particularly evident in Figure 7.36. In all cases,
one can identify a dominant GAM frequency ∼ 32 kHz, however the simulated mode
appears to be less coherent and with a narrower radial extent than what is experimentally
observed, see Fig. 7.26. Furthermore, contribution from other frequencies, both lower
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GAM

Figure 7.34 : Same as Figure 7.32 but showing results obtained retaining collisions.

and higher than the leading one, and following the radial profiles of the sound speed, are
non negligible. we therefore believe that we are simulating a GAM with a prominent
global nature, but nonetheless not as coherent and “radially global” as in the experiments.
Some of this discrepancy might be attributed to the fact that our simulation domain is
limited to ρvol = 0.85, but also the artificially constant temperature ratio Te/Ti cannot
be excluded as part of the explanation.
As we will show later on, further extending the radial domain of the simulation enhances
the radial extension of the dominant GAM frequency component, see e.g. Figure 7.40,
while the other peaks appear less affected. A much more coherent and global mode is
also obtained when simulating a better experimentally diagnosed discharge, reproducing
a GAM oscillation with an amplitude that increases up to the last radial point retained,
see e.g. Fig. 7.43 in section 7.3 and Appendix C.

Nonetheless, both electron models agree in describing a dominant frequency of the GAM
at approximately 32 kHz, which is already in good agreement with the experimentally
measured value of 28 kHz.
This picture and the mode frequency is not dramatically affected by the inclusion of
collisions. One can nonetheless point out that, besides the already mentioned effect on
direction of propagation, collisions are found to affect the relative amplitudes of GAMs
at different frequencies.

7.2.4 GAM fluctuations

A basic investigation of the density, temperature and magnetic fluctuations associated
with the GAM has been carried out analyzing the results of both hybrid and fully
kinetic runs. In the following, for simplicity, we will address only the results obtained
with the fully kinetic simulation, as, besides being the most accurate modeling possible,
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Figure 7.35 : Amplitudes, in arbitrary units, of the time Fourier transform of the
E × B velocity as a function of the radial position and the mode frequency. On the
left results obtained with hybrid electrons model while on the right with the fully
kinetic one. Collisions are neglected. The green dashed line indicates the analytic
prediction given in Ref. [57], the dot-dash red one the results obtained with local
Rosenbluth-Hinton test while the magenta diamonds the results obtained with local
fully kinetic flux-tube simulations.
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Figure 7.36 : Same as Figure 7.35 but showing results obtained analyzing the
interval of the simulation where collisions are retained.

it also provides electromagnetic fluctuations related to δA‖. Concerning density and
temperature fluctuations δn and δT , hybrid and kinetic electrons provide quantitatively
similar results, which agree between each other regarding both the dominant Fourier
poloidal harmonics and the RMS amplitudes.
In all cases we have analyzed, we observe that the amplitude of δne (as well as δTe)
increase from the core to the edge. As a purely illustrative example, we plot in Figure 7.37
a snapshot of the electron density fluctuation field evaluated at the end of simulations with
respectively hybrid and fully kinetic electron models, showing very similar amplitudes.

Similarly to the analysis of the flux-tube runs, the poloidal structure of e.g. density
fluctuation associated to the GAM has been obtained studying, the ky = 0 mode
contribution. The most important difference is that in this case each radial location is

178



7.2. Global simulations of TCV discharge #45353 with a radially coherent
GAM

Figure 7.37 : Snapshots of the electron density fluctuation, taken at the end of
each simulation, obtained assuming (a) a hybrid and (b) a kinetic electron model.

characterized by a different value of the electron temperature (and consequently sound
speed), therefore some care must be taken when computing x-averaged values, as only
narrow radial annuli should be considered.

In Figure 7.38, we plot the amplitudes of the Fourier transform in both time and poloidal
angle of the electron density fluctuation associated to ky = 0, radially averaged over
0.7 < ρvol < 0.75 (i.e. the region of the maximum GAM amplitude from the E × B
velocity analysis, see Figs. 7.35 and 7.35). As expected, a dominant m = 1 component
at 32 kHz (the GAM frequency) is found, accompanied by m = 2 sidebands, which,
thanks to the local RH analysis, which shows similar relative amplitudes of poloidal
Fourier modes (see Fig D.5), we attribute to the actual plasma magnetic geometry. The
same analysis can be repeated at different radial locations, obtaining for each point a
dominant m = 1 component at a frequency that follows the local sound speed (lower
moving towards LCFS). The amplitude reaches a maximum at ρvol = 0.75, in agreement
with the behaviour of vE×B. Other poloidal harmonics, in particular m = 2 and m = 3
are excited moving towards the LCFS, once again as a result of the actual plasma shape,
in particular increasing δ. For completeness, we have also looked at the radial extension
of components at different frequencies (obtained filtering the simulated signal using a
narrow band pass filter). As expected, we observe the largest radial excitation at the
frequency of 32 kHz, covering approximately 0.65 < ρvol < 0.77.

We have repeated the same analysis looking at temperature and δA‖ fluctuations. For
the former, global results appear to indicate, in contrast to local results and analytic
predictions, a dominant m = 0 component even at finite frequency, accompanied by lower
amplitude m=1 and m=2 sidebands. The origin of this poloidally uniform component is
currently under investigation. Concerning δA‖, having carried out the simulations with
a reduced value of β doesn’t allow to clearly identify neither a dominant frequency nor
the poloidal harmonics, as the simulated signal is too weak.
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Figure 7.38 : Amplitudes of the Fourier transform in both time and poloidal
angle of the electron density fluctuation associate to the ky = 0 mode. Amplitudes
are averaged over 0.7 < ρvol < 0.75. A GAM peak is visible around 32 kHz and
dominated by the m = ±1 poloidal Fourier component. Results obtained (on the left)
with hybrid and (on the right) with fully kinetic electrons. Collisional simulations.

7.2.5 Comparison with ORB5 results

The results that we have discussed so far appear only to be qualitatively similar to
what was originally obtained and discussed in Refs. [38, 55, 62]. For reference, we have
reproduced in Figure 7.39 the simulated shearing rate and its time-Fourier analysis
from Ref. [55]. The most evident difference is a much more uniform avalanche pattern
observed in ORB5 compared to the GENE results (see Figs. 7.32 and 7.34). Very clean
striations appear in the E × B shearing rate plots function of radius and time, which are
characterized by a dominant frequency f (see Fig. 7.39(b)). While the value of f obtained
in ORB, 32 kHz, is identical to the dominant GAM frequency estimated from GENE
results, the mode appears much more global radially than in the GENE simulations
reproduced and discussed in the previous sections.
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Figure 7.39 : Original ORB5 simulation performed in [38]. Shown are (a) the
E × B shearing rate as a function of radius and time, (b) the power spectral density
(dB scale, step 3 dB) of the E × B velocity and (c) a cut of the plot in (b) at 32
kHz. The red dashed line indicates

√
2cs/(2πR0). Note the different radial extents

between graphs (a) and (b, c). Reproduced from [55].
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7.2. Global simulations of TCV discharge #45353 with a radially coherent
GAM

We recall that the simulation of Ref. [38] was performed in the collisionless electro-
static regime, assuming a hybrid electron model, the latter with artificially heavy mass
(mi/me=200). Furthermore, the run was carried out considering the long wavelength
approximation in the field solver. All these approximations allowed to adopt a much
coarser radial grid, 128 grid points covering the full minor radius, compared to what
we used (with this choice one has δρi = 0.63 at the surface ψ/ψLCFS = 0.6 in ORB5
while the “high resolution” GENE set-up corresponds to δρi = 0.16). Finally, in the
ORB5 simulation a different radial domain was considered as well, with temperature and
density profiles inspired by the experimental ones but with gradients smoothly reduced
to zero beyond ρvol = 0.8, such as to avoid instabilities developing in the edge region that
would require an increase of the resolution. The absence of a sufficiently strong drive to
destabilize microturbulence can also be seen in Figure 7.39(a), where the shearing rate
rapidly goes to zero for ρvol > 0.8.
In order to understand how much these different settings affect the results, we have
carried out one GENE run with a numerical set-up as close as possible to the original
ORB5 one. We therefore simulate the radial annulus 0.15 < ρvol < 1, discretized with 128
points, using the last 10% at both ends as buffer regions. The slightly larger number of
radial grid points per Larmor radius in the GENE run compensates for the different choice
of the radial coordinate between the two codes. Given that already in Ref. [38] there was
no claim that the ORB5 simulation results reproduced the experimental turbulent state
for ρvol > 0.8, given that the measured temperature and density profiles were artificially
modified and an artificial shielding of the electric field furthermore applied at the plasma
edge, the same velocity grids as the one used for the previous GENE runs have been
used without more accurately resolving the edge region. We remark that, thanks to these
approximations, the simulation is computationally much lighter, requiring, in comparison
to the hybrid run described in section 7.2.2, a third of the computational resources to
achieve the same time statistics.
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Figure 7.40 : Same quantities and same color coding as Fig. 7.39. In this case
shown are results obtained with GENE using the same physical model and numerical
set-up as ORB5.

The shearing rate analysis of this new run is reported in Figure 7.40, where we have
plotted the results using the same color coding as in Fig. 7.39. We note that thanks to

181



Chapter 7. Study of GAM dynamics in TCV relevant conditions

the simplified numerical set-up, the E × B fluctuations present a more radially coherent
character, extending up to ρvol = 0.9 (the mode is damped further out by the radial
buffer). The dominant frequency is ∼ 31 kHz, in agreement with ORB5 estimates as well
as our other GENE simulations. We remark that GENE results, compared to ORB5,
still present a stronger contribution from other frequencies (radially localized following
the local sound speed profile) than the dominant one. The low part of the spectrum,
f < 32 kHz related to edge fluctuations, appears affected by the different treatment
between the two codes of the boundary region. At higher frequencies, corresponding to
oscillations located radially more inside in the plasma and thus at locations where the
boundary conditions are expected not to affect simulation results, GENE output indicates
contributions from a broader range of frequencies compared to ORB5, which finds only a
clear contribution at ∼38 kHz. This result is in agreement with the previously presented
GENE runs.
Furthermore, GENE appears to predict a more mixed outwards-inwards direction of
fluctuation propagation, compared to an almost exclusively outwards propagation in
ORB5. This is also reflected by a stronger radial short scale modulation of the E × B
avalanches. Part of this difference seems to be related to the long wavelength approxima-
tion originally adopted in the ORB5 field solver, which, once relaxed, appears to lead
to a stronger modulation of e.g. the shearing rate, i.e. qualitatively closer to what is
observed in GENE [129].

Comparing all GENE simulations carried out modeling TCV discharge #45353, we
conclude that a global oscillation at approximately 32 kHz is found, in agreement with
the experiments. However, this frequency is 15 − 20% higher than what is experimentally
measured with T-PCI. Moreover, in the simulations one observes contributions from other
frequencies that are not detected experimentally. Explanations of these discrepancies
can be found in the approximations adopted for carrying out such runs: impurities have
been neglected and an artificially constant electron to ion temperature ratio has been
assumed, the latter leading in particular to a non-physically large transport level.
The dominant frequency of the E × B flow appears as a quite robust parameter, not
significantly affected by the details of the simulation model (e.g. hybrid vs. fully kinetic
electrons), while the radial extent of the mode is more susceptible to the numerical set-up.
Collisionless runs carried out with artificially heavy electrons allow to determine the
leading GAM frequency with a reduced computational cost, and in this limit a reasonably
good agreement between GENE and ORB results was recovered. Nonetheless, considering
true electron to ion mass ratio and collisions is desirable as these parameters are found
to affect the mode properties, and consequently the turbulence level.
We finally remark that one has to be extremely careful when analyzing the results
obtained from any code. The limited time statistics acquired lead to particularly
important uncertainties on the frequencies. One thus has to make sure that the way
simulation data is post-processed does not artificially highlight some specific features of
the results.
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7.3. Radially coherent vs. dispersive GAM regimes

7.3 Radially coherent vs. dispersive GAM regimes

As already mentioned in the introduction of this chapter, the GAM is normally measured
in TCV as a radially coherent oscillation, in contrast with other machines where it
appears to be more radially localized and to possess a frequency that follows more closely
the local sound speed (typically a staircase profile is observed, rather than a continuous
dependence of fGAM on radius) [130]. The only experimental TCV condition in which
the mode was observed to possess a more local nature than usual, was during a q95
ramp. Here q95 is the safety factor at 95% of the plasma minor radius. In this case, the
mode appeared as less coherent and with a dispersive frequency when q95 was increased
beyond ∼ 6, see Figure 7.41 and Ref. [131]. Incidentally, we note that this appears in
contrast with what observed in ASDEX [132], where the eigenmode GAM was observed
in diverted discharges and the dispersive in limited ones. In general, the conditions
under which the regime transition happens are not yet understood and still under active
investigation, both experimentally and theoretically.

Figure 7.41 : Measured frequency of the GAM oscillations obtained from the
electron density fluctuations using the PCI diagnostic system. When increasing the
edge safety factor q95, one observes a transition from a radially coherent mode, i.e.
a constant frequency over a significant fraction of the plasma minor radius (black
circles), to a dispersive regime where the frequency varies with the radial location
(blue triangles). From Ref. [117].

In order to address the TCV observations, we have carried out two global simulations
assuming the experimental conditions corresponding to a radially coherent and a dispersive
GAM2. Contrary to the simulations discussed in the previous section, the discharges
considered here have ion profiles measured with the Charge eXchange Spectroscopy
system (CXS), which will therefore be used. At the same time, in order to limit the
cost of these runs, the hybrid electrons model is used and, furthermore, artificially heavy

2The global GAM considered here is different from the one presented in section 7.2 in order to have
exactly the same numerical set-up for comparing the coherent and dispersive GAM cases. Furthermore,
the discharge we consider in this section was experimentally better diagnosed and, as it will be shown,
the GAM appears in this case much more radially “global” than the case previously discussed.
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Figure 7.42 : Measured profiles of safety factor, electron and ion temperature for
the dispersive and coherent GAM. The two TCV discharges are respectively #49032
at t=0.6 s and #45886 at t=1.1 s.

electrons (mi/me=400) are assumed. This choice is mainly motivated by the different
electron temperature profiles observed in the two scenarios, making the dispersive mode
scenario computationally very expensive to be simulated with real mass ratio electrons.
Even though there is no experimental evidence of a relation between Te and the radial
localization of the GAM (only a scaling of the mode frequency with T

1/2
e , see e.g. Ref. [55],

has been shown, as expected from GAM theory), we note that the dispersive mode is
measured in conjunction with a significantly lower electron temperature profile (see also
Fig. 7.42). This translates in a lower ρ∗ compared to the global case (ρs/a = 1/294
vs. ρs/a = 1/122 measured at ρtor = 0.7). In order to have the same radial resolution
(in both cases we simulate the outer half of the plasma, 0.4 < ρtor < 1, with a 10%
buffer region at both ends of the computational domain), a higher number of nx points is
required for the dispersive mode case, which is unfortunately also combined with larger
velocity space grids, required because of larger radial temperature variation. The grids
used are reported in Table 7.6. Finally, we also remark that the electron density is
quite different in the two cases, higher for the local GAM, increasing in turn plasma
collisionality and further reducing the maximum numerical time step.

nx ny nz nv‖ nμ L̂x nmin L̂v‖ L̂μ

coherent 240 32 48 110 48 68 2 18.0 4.14
dispersive 480 32 48 136 78 146 2 20.1 4.47

Table 7.6 : Resolutions used for the global simulations investigating the coherent
vs. dispersive GAM.

Based on all the previous considerations, we already point out that this investigation
should be considered as preliminary and exploratory, essentially addressing the possibility
of a transition to a local GAM because of the higher q (or lower ρ∗) rather than a
proper attempt to reproduce the experimental microturbulence level. This latter task,
based on all the results already discussed, can be accomplished only thanks to a more
realistic simulation model, featuring kinetic electrons with real mass ratio. Given the
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actual plasma profiles for the local GAM scenario, requiring as mentioned previously
high numerical resolution, this is an extremely challenging effort, which is left for future
investigation.

The usual time evolution of the radial profiles of the E × B velocity obtained from
our simulations are plotted in Figures 7.43(a) and 7.44(a), for respectively coherent
and dispersive GAM conditions. Because of the much shorter (collisional) time step,
limited statistic have been collected for the run corresponding to the latter experimental
conditions. In both cases, we have carried out a first part of the simulation without
collisions, which are then switched on in order to measure their effect on zonal flows. In
the plots, the instant where they have been activated is indicated with a vertical line.
Moreover, in Figs. 7.43(b) and 7.44(b) we plot the amplitude of the corresponding time
Fourier transforms, evaluated over the collisional part of the runs.
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Figure 7.43 : (a) E × B velocity as a function of time and radius for the coherent
GAM conditions (TCV #45886), and (b) amplitude of the Fourier transform in time
evaluated over the collisional interval of the run. The green dashed line indicates
the local theoretical GAM frequency according to Gao et al. [57], while the dot-
dashed white one corresponds to the local frequency estimated via a series of local
Rosenbluth-Hinton tests.

Looking at Figures 7.43 and 7.44, one observes a clear difference between the results of
the two simulations, which, in agreement with the experimentally observed behaviour,
show once a radially coherent and once a dispersive GAM. Indeed, in correspondence with
the coherent conditions, we obtain in Fig. 7.43 a very clear single frequency oscillation
over a large fraction of the minor radius, with an amplitude increasing when approaching
the LCFS. This oscillation is at about 31 kHz (see Appendix C for more details) while
experimentally the GAM is measured at ∼ 28 kHz. This difference, which is already
within the experimental and simulation error bars, can also be reduced if one were to
include carbon impurity, which are known to reduce the GAM frequency [133]. We
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note that the frequency that we obtain from the simulation is closely matching the one
obtained with the Rosenbluth-Hinton test carried out at the ρtor = 0.9, i.e. the outermost
position before the radial buffer (see dot-dash line in Figure 7.43(b)). This appears more
as a coincidence rather than a numerical effect of the buffer region itself.
When instead the TCV conditions of the dispersive mode are simulated, we obtain a
GAM frequency that is following the local RH prediction, with each point being a source
of an oscillation that propagates radially only for a short extent. This is reflected by
the band of frequencies visible in Fig. 7.44(b), which closely follow the local prediction
obtained with the RH test.

The differences between the two discharges are however significant and not limited to the
safety factor profile. In both cases, based on the relative amplitudes of the heat fluxes
(Qe � Qi), we infer from the nonlinear results a TEM dominated regime. However,
besides the obvious differences between the magnetic geometries, the origin of different
GAM regimes can potentially be attributed to the different temperature and density, as
well as the corresponding gradient profiles, which obviously affect the local turbulence
level.
In order to rule out at least the effect of the different q profile, we have thus carried
out another run where the two experimental conditions are mixed. We assume the
temperature and density profiles corresponding to the coherent GAM while the magnetic
geometry of the dispersive case. A complete investigation would require to carry out a run
also with the other combination. It has not yet been done for lack of CPU resources and
the high computational cost foreseen for such a run. The results obtained are presented
in Figure 7.45, where one clearly observes a global mode at a frequency of ∼31 kHz, very
similar to what is shown in Figure 7.43. In this case the GAM appears to be even more
global than what obtained assuming the experimental conditions for the global GAM,
with oscillations covering the region 0.6 < ρtor < 0.9, even though less statistics have
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Figure 7.44 : Same as Figure 7.43 but showing the results obtained modeling the
dispersive TCV experimental conditions (TCV #49032).
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Figure 7.45 : Same as Figure 7.43 but showing the results obtained mixing experi-
mental TCV conditions: temperature and density profiles of the radially coherent
GAM with magnetic geometry of the dispersive GAM.

been acquired. Based on this result, we conclude that simply varying the safety factor is
not sufficient to induce a regime transition from radially coherent to dispersive GAM.

7.4 Conclusions

In this chapter we have presented several efforts of investigating GAM dynamics in
TCV relevant conditions and reproducing some of the many experimental observations
that have been reported. To this aim, we have carried out local and global simulations,
using different simulation models, in particular to develop an understanding of what
physical effects must be retained in order to reproduce the mode as it is observed in the
experiments.

We have first investigated with flux-tube simulations the behaviour of the GAM during
an experimental density ramp-up. Local runs reproduce a behaviour qualitatively and
quantitatively similar to what is experimentally observed. The intensity of the GAM
decreases with increasing density, while its frequency is little affected. Changes in the
turbulent regime are observed, from a TEM to an ITG dominated, which are mainly
caused by the variation of background plasma profiles. The simulated transport level
is within the error bars of the experimental one. We remark that the results obtained
are very sensitive to the input gradients, as minor changes within the experimental
uncertainties of the input parameters lead to significant variations of the transport level.

The local analysis, even though it appears to properly reproduce the experimental
turbulence level in this case, is however unable to simulate the preferred direction of
propagation of the GAMs, as experimentally observed. Similarly, if such modes posses a
global structure, this cannot be represented in the flux-tube limit. We have therefore
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investigated an experimental radially coherent GAM discharge with the global version of
GENE. Different numerical models have been used, and both hybrid and fully kinetic
electrons qualitatively reproduce the frequency and the spatial location of the GAMs.
Simulations appear however to reproduce a more continuum-like mode than what is
experimentally observed, with other frequencies excited at different radial locations.
This discrepancy is understood as a consequence of both the simulation set-up and the
approximations considered when prescribing the input plasma profiles. An agreement
with previous ORB5 simulations is recovered when the same numerical set-up is used.

Finally, we have investigated the different GAM regimes observed in TCV as a function
of the safety factor profiles. Our simulations succeeded in reproducing the “radially co-
herent” as well as the “dispersive” GAM when the corresponding experimental conditions
(magnetic geometry together with temperature and density profiles) are assumed. We
have showed that the sole variation of the safety factor profile is insufficient to induce
a regime transition, which instead appears to be more associated to the actual plasma
profiles. We can only speculate that the main responsible for the different regimes is ρ∗,
which is larger, by approximately a factor of two, for the coherent conditions compared
to the dispersive ones. Stronger finite machine size effects can thus be expected in the
first case compared to the latter. A simple way to investigate this hypothesis is by
carrying out a ρ∗ scan, and measure in the different cases the mode frequency. We have
initiated such a study in the collisionless regime. The results obtained so far are however
insufficient to confirm or disprove our hypothesis and it appears necessary to further
pursue the investigation including also the effect of collisionality.
Furthermore, we have carried out all our runs considering a simplified model for describing
the plasma, i.e. assuming hybrid heavy electrons. We have nonetheless obtained a good
agreement with the experimentally measured frequency. It is however desirable to repeat
at least the two simulations corresponding to the experimental coherent and dispersive
GAM, assuming more realistic fully kinetic electrons and with real mass ratios. This,
on the one hand will allow one to confirm our results with the most accurate modeling
possible, on the other hand, it will allow to carry out a more detailed comparison with
experiments looking also at density, temperature and electromagnetic fluctuations. Fi-
nally, truly one to one comparisons should be done with the help of synthetic diagnostics.
This new set of runs is expected to be computationally very expensive, not only due to
the high required resolutions but also because long statistics are necessary to accurately
measure the GAM frequency in the simulations. A more detailed review of the existing
TCV database, identifying possible discharges with flatter temperature profiles so as to
reduce the cost of the discretization of velocity space, it is thus desirable, especially for
the dispersive mode case which is currently too expensive to be simulated.
In principle, carbon impurities should also be retained, as they can lead to a lower fre-
quency and therefore further improve the agreement between simulation and experiments.
Including a third species is however expensive from a computational point of view, and
will probably only lead to a minor variation of the mode frequency.
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8 Conclusions

8.1 Summary

In this work we have extensively used the Eulerian gyrokinetic code GENE, in both
its local and global versions, in order to model TCV relevant conditions and study the
resulting microturbulent state, which is in turn responsible for most of the macroscopic
transport phenomena experimentally observed.
For the sake of completeness, a description of microinstabilities and the gyrokinetic model
have been recalled, together with some details about the actual implementation of the
gyrokinetic equations in GENE.
In view of using GENE with the TCV experimental magnetic geometry, series of bench-
marks have been developed in order to verify the interface of the code with the MHD
equilibrium solver CHEASE. Various tests have been successfully carried out in the linear
local limit, where GENE has been successfully compared to the flux-tube codes GKW
and GS2, looking at growth rates and frequencies of the most unstable modes at both
ion and electron scales, at the effect of a finite ballooning angle and at linear dynamics
of zonal flows as described by the standard Rosenbluth-Hinton test. In all cases an
excellent agreement has been recovered. Elongation of the plasma cross-section appears
as the shaping parameter inducing the strongest effects for the geometries that we have
considered, stabilizing the linear growth rates and increasing the ZF residual level. These
benchmarks have been generalized to global codes, in an effort currently involving GENE
and the Lagrangian δf , PIC code ORB5. A good agreement has already been found
when comparing linear growth rates, and similarly for nonlinear fluxes. The GENE code
has then been applied to investigate some of the experimental observations reported in
the TCV tokamak, which are summarized in the following.
One of the most interesting and not yet fully understood observations made on TCV
L-mode discharges is the strong beneficial effect played by negative triangularity of the
LCFS, which, compared to standard positive triangularity shapes, is found to uniformly
reduce the electron heat transport level by approximately a factor of two at all radial
locations in the outer half of the plasma minor radius. Experimentally, half the heating
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power is required in order to maintain the same electron temperature and density profiles,
which is interpreted as a better electron energy confinement. While one can speculate
that the origin of this confinement improvement is related to the TEM stabilizing effect
played by negative triangularity, how this shaping parameter, which has a finite radial
penetration depth, can uniformly influence all the outer half of the plasma remains
unclear. Local simulations indeed provide a beneficial effect for δ < 0, which is a function
of the radial position ρ, compatible with the experimental results only for ρ � 0.7
where triangularity is large, while negligible in the core at ρ 	 0.5. The hypothesis of
a shape-dependent profile stiffness, suggested by a recent analysis of a large database
of TCV discharges and potentially explaining the confinement improvement as being a
consequence of a less stiff edge when δ < 0, was investigated with the help of flux-tube
simulations. Based on these numerical results, TCV profiles appear to be very stiff with
respect to the density gradient, less with respect to the electron temperature gradient.
Even when using the most accurate numerical model possible, a large overestimation,
by at least a factor of five, remains when comparing locally-simulated and measured
heat fluxes in the TCV core, while a better agreement is observed moving towards the
LCFS. The overestimation of fluxes in fact prevents us from drawing firm conclusions
about an eventual profile stiffness dependence on δ and one has to be very careful not to
over-interpret simulation results by applying ad-hoc re-scaling factors to mimic global
effects.
Finite machine size stabilization, the so-called finite ρ∗ effects, with ρ∗ = ρs/a, is ex-
pected to play a major role in typical TCV conditions (ρ∗ ∼ 1/80) and the only way
to correctly account for such effects is by carrying out global simulations. These runs
are particularly expensive and, due to limited available computational resources, it has
not been possible to carry them out retaining at the same time impurities and collisions,
which are both expected to play a major stabilizing role. We have developed a strategy to
carry out “full-radius” simulations, where buffer regions required for numerical stability
are placed outside the actual LCFS, so as to be able to include the region where δ is
largest in the main simulation domain. Compared to local runs, results obtained with
global simulations carried out including collisions but neglecting carbon show some global
effects, in the form of a reduction of the maximum heat flux and a more radially uniform
difference between positive and negative δ shapes, which is now observed also at core
locations. Nevertheless, the simulated difference remains smaller than the observed factor
of two, and a heat transport overestimation remains, larger for the δ < 0 case. Moreover,
the simulated radial transport profile appears unrealistic as it is strongly peaked in the
core, while, based on the experiments, one would expect a much more radially uniform
transport level. Even though one has neglected carbon, this result appears to be mainly
the consequence of having used for the simulations a density profile providing a too
large gradient in the core, which in turn generates very strong turbulence and large
heat fluxes. This reflects also the limitation of carrying out gradient-driven runs in
comparison to the more realistic, but computationally too expensive, flux-driven runs.
Varying the profiles “manually” in order to attempt to lower the turbulent drive in the
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core is a non trivial exercise, given that from our preliminary results it appears that
all profiles would need to be adjusted and the overall computational effort would be
too large. We have therefore started modeling a more recent and experimentally better
diagnosed discharge. In this case, one is aiming at reproducing an experimental δ scan,
carried out at constant heating power, resulting in different profiles depending on the
shape (a larger pedestal is observed when δ < 0). Once again, in order to limit the
computational effort, carbon has been initially neglected. In this case, a much better
agreement between simulations and experiments is nevertheless recovered. Already with
flux-tube simulations, the overestimation of the transport level appears to be smaller
and very strong global effects are observed, with the heat flux being compatible with the
experimental one within a factor of two. We also note a large ion heat flux, in both local
and global simulations, which, based on flux-tube simulations, is expected to be reduced
to a negligible level when carbon is included.

Another very interesting series of observations has been made on TCV regarding GAM
dynamics. This mode, which can play a significant role in the self regulation of turbulence,
is normally observed as radially coherent, i.e. an oscillation of e.g. electron density
fluctuations at a constant frequency over a large fraction of the plasma minor radius
(ρ � 0.6), contrary to analytic linear predictions of the mode frequency being proportional
to the local sound speed. Various parameter scans have been experimentally performed
in order to better understand this behaviour and the only condition in which the mode
was observed to possess a radially dispersive nature was when the edge safety factor was
significantly increased.
We have first investigated, using the flux-tube version of the code, an experimental
density ramp-up for which the GAM was observed to disappear at increasing density as a
result of a larger broadband turbulence overcoming the GAM peak in the Phase Contrast
Imaging (PCI) spectra. When looking at the transport level for this specific discharge,
local GENE results appear to be already in a very good agreement with the experiments,
without invoking the need of strong global effects. This is understood as a consequence of
having analyzed a position (ρψ = 0.8) in the outer region of the plasma minor radius for
which the local value of ρ∗ is somewhat smaller than typical core conditions. Moreover,
strong ETG contributions have been neglected, and they should be quantified with
at least electron scale runs. We have analyzed the GAM dynamics by inspecting the
E × B velocity as a function of radius and time. Typical criss-crossing patterns are
found, without a preferred direction of propagation, an observation that we relate to
having carried out local simulations that adopt radially periodic boundary conditions.
The frequency of this oscillations (∼ 31 kHz) is slightly higher than the experimental
one (∼ 28 kHz). Nonetheless, if one accounts for the uncertainty in the experimental
input profiles by simply adding an error bar to the conversion from code normalized
quantities to physical units, simulation results appear to be compatible with experiments.
We observe oscillations at the same frequency as the GAMs in the profiles of heat and
particle fluxes. There therefore seems to be a coupling between GAM oscillations, which
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are associated to the n = 0 mode and consequently do not contribute to radial fluxes,
and transport avalanches, requiring further investigations.
Given that local simulations cannot reproduce any preferred direction of propagation
nor determine a finite radial extent of the mode, we have also carried out global GENE
simulations addressing these aspects. We have first performed simulations, with different
numerical models, investigating a discharge that was already studied with ORB5 runs.
Our global simulations, assuming both hybrid and fully kinetic electrons, qualitatively
reproduce the experimental frequency and the spatial location of the GAMs. However,
numerical results present a more continuum-like mode than experimentally observed,
i.e. with different frequencies excited at different radial locations. The structure of the
GAM and the mode frequency are not dramatically affected by the inclusion of collisions.
Nonetheless, in addition to a reduction of the turbulence level, retaining collisions is
found to affect the relative amplitudes of GAMs at different frequencies and give rise
to a more complex pattern of inward and outward propagation. These discrepancies
are understood as a consequence of both the simulation set-up and the approximations
considered when prescribing the input plasma profiles. An agreement with previous
ORB5 simulations is recovered when the same numerical set-up is used.
Finally, we have investigated the different GAM regimes observed in TCV as a function
of the safety factor profiles. To reduce the cost of the computational effort, which is
particularly high, we have adopted the hybrid electron model assuming a mass ratio
me/mi = 1/400. Our simulations succeeded in reproducing the coherent as well as the
dispersive GAM when the corresponding experimental conditions (magnetic geometry
together with temperature and density profiles) are assumed. We have shown that the
sole variation of the safety factor profile is insufficient to induce a regime transition,
which instead appears to be associated with the actual plasma temperature and density
profiles.

8.2 Outlook

The experimental transport levels experimentally observed with positive and negative
δLCFS has not yet been fully reproduced with simulations. The new experimental discharge
that we have started to investigate appears as a better suited case than the original one
reported in Ref. [13], thanks to much better diagnosed plasma profiles. It is thus desirable
to first pursue the two species simulations we have started by acquiring better statistics
(at least simulating up to 100R0/cs is required) and then repeat the two simulations
including at the same time three species (deuterium, carbon and electrons) and finite
collisionality. This will provide the most realistic description of microturbulence in a
TCV plasma. The understanding of the beneficial effect of δ < 0 is naturally easier if the
electron profiles are the same. The numerical effort of a global simulation is huge and,
based on out experience, it is reasonable to carry out such runs only if the uncertainties
in all measured profiles are as small as possible, rather than account for experimental
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error bars performing parameter scans. To this end, flux-tube simulations provide a very
valuable tool, as they are significantly less expensive and, even though global effects are
expected to play a significant role, a too large overestimation of transport levels with
these local runs should be interpreted as a sign of unrealistic values of input gradients.
The investigation of GAM dynamics should be further pursued by carrying out a collisional
ρ∗ scaling in order to assess the relevance of global effects and their impact on the
experimentally observed global nature of the GAM. This study can be carried out
considering a simplified model (hybrid heavy electrons) in order to limit the computational
effort which would otherwise render this approach unpractical. The experimental radially
coherent and dispersive GAM TCV conditions that we have already simulated in this
work should nonetheless be repeated assuming fully kinetic electrons and, if possible,
carbon. This will provide the most accurate modeling of actual TCV conditions and
allow a true one-to-one comparison between simulations and PCI spectra, thanks to
synthetic diagnostics already implemented as a post-processing tool.
The density ramp-up that we have described in section 7.1 should also be further
investigated. In particular, the quasi-coherent mode that we have not addressed here
should be analyzed first by carrying out a series of nonlinear local simulations at different
radial locations, given that experimentally the signal from this mode is stronger moving
towards the LCFS. The impact of experimental uncertainties is another element that
needs to be addressed. Moreover, even if in this particular case the flux-tube approach
appears to provide already a very good agreement between simulation and experiments,
simulating at least some of the experimental conditions with global runs, appears valuable
to provide further insight on GAM dynamics.
Finally, ETG modes have been neglected in almost all runs even though linearly they are
found unstable. Carrying out global multi-scale simulations is computationally extremely
expensive, and it appears almost impossible with the current CPU resources to foresee
a global run with multiple kinetic species and collisions, including contributions from
the ion down to the electron scale. It is nevertheless desirable to carry out a few local
multi-scale simulations, which are still very CPU intensive, but feasible in practice. In this
case one should assume edge-like conditions, where the local ρ∗ is smaller and therefore
finite machine size effects can be expected to be less relevant.
At last, we have carried out only gradient driven simulations, as flux-driven ones are too
expensive especially when kinetic electrons are considered. A few runs of this kind can
nonetheless be made assuming adiabatic electrons and addressing some basic properties,
such as the global nature of the GAM and its relation to avalanches.

A crucial next step of gyrokinetic simulations, which will require a huge effort also in
code development, is towards simulating the plasma edge. Even if in this work we have
not explicitly addressed issues, like e.g. the L-H transition or the ELM suppression, that
are crucial open questions intrinsically associated to the plasma boundary, it already
appears evident that a correct description of the plasma edge is of vital importance.
Correctly reproducing the effect of shaping or the GAM dynamics is strongly related
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to a proper description of the edge, where also prescribing the most realistic possible
boundary conditions is desirable and necessary.
The strong gradients and large fluctuation amplitudes of the edge region ultimately
lead to a breakdown of the standard δf gyrokinetic ordering. Therefore, an extension
of GENE towards a full-f description is necessary. Furthermore, more realistic sheath
boundary conditions should be implemented in order to be able to deal with open field
lines.
While all these improvements are associated to the physical model implemented in the
code, a successful extension of GENE will necessarily rely also on further improvements
of the algorithms and numerical techniques, allowing for a reduction of the computational
effort and, at the same time, an optimal usage of the future supercomputers.
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A The GKW code

A.1 GKW coordinate system

The GKW code [95] employs a field aligned coordinate system (r, ζ, s) similar to the
(x, y, z) system considered in GENE. The r coordinate corresponds to the geometric
minor radius r = (Rmax − Rmin) /2, while ζ is equivalent to the y coordinate in GENE
defined in Eq. (3.2) within a scaling factor 2πCy:

ζ =
1

2π

[
q
(
ψ̄
)

χ − ϕ
]

=
1

2πCy
y, (A.1)

Similar to Eq. (3.3), the magnetic field can thus be written as

B = F
(
ψ̄
)

∇ϕ + ∇ϕ × ∇ψ̄ = 2π
dψ̄

dr
∇r × ∇ζ, (A.2)

Comparing Eq. (3.3) to (A.2) one notes that the definitions for the poloidal magnetic
fluxes ψ and ψ̄ considered in GENE and GKW respectively differ by a factor 2π, ψ̄=ψ/2π.
In general, caution must be taken regarding the different definitions and orientations
of the coordinates considered in various codes for representing the magnetic field. A
detailed description of this issue is given in Ref. [134], together with practical indications
for conversion between different choices characterized by a so-called COCOS value.
The “parallel” coordinate s considered in GKW is however different from the straight
field line angle poloidal angle χ in GENE. The s coordinate is in fact one of the
Hamada coordinates

(
ψ̄, s, γ

)
, defined as s = s

(
ψ̄, θ

)
, γ = γ

(
ψ̄, θ, ϕ

)
, and such that

the corresponding contravariant component of the magnetic field

Bs = B · ∇s Bγ = B · ∇γ (A.3)
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are flux functions, i.e. Bγ = Bγ
(
ψ̄
)
, Bs = Bs

(
ψ̄
)
.

From these conditions one can derive

s
(
ψ̄, θ

)
=
∫ θ

0

dθ′

B · ∇θ′

/∮
dθ′

B · ∇θ′ , (A.4)

γ
(
ψ̄, θ, ϕ

)
=

ϕ

2π
+ g(θ, r) (A.5)

and

Bs
(
ψ̄
)

=
[∮

dθ′

B · ∇θ′

]−1
, (A.6)

Bγ
(
ψ̄
)

=
F

2π
〈 1
R2 〉, (A.7)

with

g
(
ψ̄, θ

)
=

F
(
ψ̄
)

2π

∫ θ

0

dθ′

B · ∇θ′

[
〈 1
R2 〉 − 1

R2

]
. (A.8)

Here 〈·〉 stands for the flux surface average defined by (2.108), which can in fact also be
rewritten as

〈A〉 =
∮

dsA =
∮

dθ′ A
B·∇θ′∮ dθ′

B·∇θ′
(A.9)

for a quantity A �= A
(
ψ̄
)
. One notes that the safety factor can be expressed as

q
(
ψ̄
)

=
Bγ

(
ψ̄
)

Bs
(
ψ̄
) =

F

2π

∮ 1
R2

dθ

B · ∇θ
. (A.10)

One can also show that the ζ coordinate defined in Eq. (A.1) can be written as

ζ = q
(
ψ̄
)

s − γ, (A.11)

from which one derives the relation between s and χ

χ = 2π

⎡
⎣s − g

q
(
ψ̄
)
⎤
⎦ . (A.12)

As in the flux-tube version of GENE, any fluctuating field quantity A(r, ζ, s) is Fourier
transformed with respect to r and ζ. The corresponding Fourier representation therefore
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reads

A(r, ζ, s) = eikζζ
∑
kr

Âkr (s)eikrr ∼ e−inϕ, (A.13)

yielding together with Eq. (A.1)

n =
kζ

2π
. (A.14)

2π-periodicity with respect to χ in (ψ̄, χ, ϕ) coordinates translates in (r, ζ, s) coordinates
to the pseudo-periodic condition with respect to s:

A(r, ζ, s + 1) = A(r, ζ − q(r), s) (A.15)

For a given kζ mode, this condition leads to coupling between the set of considered kr

modes, kr = δkr + pΔkr with Δkr = kζdq/dr, so that Eq. (A.13) becomes, after having
furthermore linearized the safety factor

A(r, ζ, s) = eikζζeiδkrr
+∞∑

p=−∞
Âδkr+pΔkr (s)eipΔkrr,

Âδkr+pΔkr (s + 1) = Âδkr+(p+1)Δkr
(s).

(A.16)

It is to be noted that when specifying the input parameters, kθ|GKW is given instead of
kζ itself. The value of kζ is then determined from kθ|GKW =

√
gζζk2

ζ evaluated at the
outer midplane (s = 0), gζζ = ∇ζ · ∇ζ being the diagonal metric tensor related to ζ. In
a similar way, the value of kr is specified via kR =

√
grrk2

r .
In the same way as one derived Eq. (4.8) from (4.7), one can express the ballooning
representation given in (4.8) in terms of GKW-specific variables:

A(r, ζ, s) = eikζζ
+∞∑

p=−∞
Â(χ + p2π)ei

kζ
2π

dq
dr (r+ r0

ŝ )(p2π−χ0)

= eikζζe−i
kζ

dq
dr

χ0
2π

+∞∑
p=−∞

Â(χ + p2π)eipΔkrr dq
dr ,

(A.17)

having again shifted the radial coordinate r + r0/ŝ → r. Comparing Eq. (A.17) to
Eq. (A.16) one can identify

⎧⎪⎪⎨
⎪⎪⎩

χ0 = −2π
δkr

kζ
dq
dr

Â(χ + p2π) = Âδkr+pΔkr (s).
(A.18)
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A.2 Normalization

As in the GENE code, all quantities are normalized to be order unity and again species-
dependent normalization factors are adopted for the velocity space. The specific choices
are however different, and are discussed here. In the GKW code, reference mass mref ,
density nref , temperature Tref and major radius Rref are defined, and the user is free to
choose their value. When interfacing with the CHEASE code, Rref = Rgeom(LCFS) it
is assumed and the reference value of the magnetic field Bref is evaluated at the same
location. These quantities are related via the definition of the reference thermal velocity
vth,ref

vth,ref =

√
2Tref
mref

(A.19)

and used to compute the reference gyroradius ρref = vth,ref/Ωref . These reference values
are then used to compute for each species a dimensionless mass m̃, thermal velocity ṽ,
density ñ and temperature T̃

m̃ =
m

mref
, ṽ =

vth
vth,ref

, ñ =
n

nref
, T̃ =

T

Tref
.

With these choices, the GKW phase space coordinates are all normalized according to

r = r̃Rref , ζ = ζ̃, s = s̃

v‖,j = ṽ‖vth,j, μ = μ̃
mv2

th,j
Bref

, t = t̃
Rref

vth,ref
,

where vth,j is the thermal velocity of the j−species as defined in Eq.(A.19).
We explicitly remark the different definition of the reference velocity with respect to
what is done in the GENE code, which is responsible, within a factor

√
2, for a different

normalization of the microscopic scales quantities as well as of time. On the other hand,
the normalized velocity space variables are the same. Furthermore, the normalization
of the radial direction with respect to the macroscopic length Rref causes a factor ρ̄ =
ρref/Rref to explicitly appear in the normalized equivalent of the Fourier representation
given in e.g. Eq. (A.13) which then reads

Ã(r̃, ζ̃, s̃) = e
ik̃ζ ζ̃

ρ̄
∑
k̃r

ˆ̃Ak̃r
(s̃)e

ik̃r r̃
ρ̄ . (A.20)
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B The GS2 code

B.1 GS2 coordinate system

The GS2 code [96] employes a Clebsch formulation to express the magnetic field as

B = ∇α × ∇ψ, (B.1)

where ψ is the poloidal flux function, defined as in the GENE code. The function
α = α(ψ, θ, ϕ) is determined by comparing Eq. (B.1) to the equivalent representation
B = F (ψ)∇ϕ + ∇ϕ × ∇ψ as

α = ϕ − qχ (B.2)

The GS2 field-aligned coordinate system (X, Y, θ) is directly based on the function α

defined in Eq. (B.2). In particular it is assumed for the radial direction X

X =
qs

r0Ba
ψ, (B.3)

while for the binormal Y coordinate

Y =
dψ

dr

α

Ba
, (B.4)

where Ba is the toroidal magnetic field measured at the geometric center of the flux
surface of interest: Ba = F (Rgeom)/Rgeom. We point out that in the GS2 code, the
geometric poloidal angle θ is used to parametrize a field line, therefore defining a “parallel”
direction equivalent to the z coordinate in GENE or the s direction in GKW. Also the
binormal direction Y is again equivalent, within a sign and different scaling factors, to
both the y coordinate defined in Eq. (3.2) for the GENE code and the ζ coordinate
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defined in Eq. (A.1) for the GKW code:

y = −CyBa
dr

dψ
Y, (B.5)

and

ζ = −Ba

2π

dr

dψ
Y, (B.6)

As for the GENE and GKW codes, fluctuating field quantities A(X, Y, θ) are Fourier
transformed with respect to both the radial and binormal directions. The corresponding
Fourier representation in GS2 variables therefore reads

A(X, Y, θ) = eikY Y
∑
kX

ÂkX
(θ)eikXX ∼ einϕ (B.7)

where we note the different sign appearing in the eikonal with respect to the ones
in GENE and GKW representations given in equations (3.8) and (A.13) respectively,
yielding together with Eq.(B.4)

n =
1

Ba

dψ

dr
kY . (B.8)

The set of radial kX modes, kX = δkX + pΔkX , with ΔkX = 2πŝkY , are again coupled
as a consequence of 2π-periodicity with respect to χ in (ψ, χ, ϕ) coordinates Equation
(B.7), after linearizing the safety factor, can thus be rewritten as

A(X, Y, θ) = eikY Y eiδkXX
+∞∑

p=−∞
ÂδkX+pΔkX

(θ)eipΔkXX ,

ÂδkX+pΔkX
(θ + 2π) = ÂδkX+(p+1)ΔkX

(θ).
(B.9)

Proceeding as already explained in section4.1.3 for the GENE code, one derives the
ballooning representation given in Eq. (4.8) in terms of GS2-specific variables:

A(X, Y, θ) = eikY Y
+∞∑

p=−∞
Â(χ + p2π)eikY ŝ

(
X+ X0

ŝ

)
(p2π−χ0)

= eikY Y e−ikY ŝχ0X
+∞∑

p=−∞
Â(χ + p2π)eipΔkXX .

(B.10)

having once again shifted the radial coordinate X + X0/ŝ → X. Comparing Eq. (B.10)
to Eq. (B.9) one finds:

⎧⎪⎨
⎪⎩

χ0 = −2π
δkX

kY ŝ

Â(χ + p2π) = ÂδkX+pΔkX
(θ).

(B.11)
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B.2 Normalization

In the GS2 code, one chooses a reference value for temperature, density and mass,
respectively Tref , nref and mref , while the reference thermal velocity vth,ref is defined as
vth,ref =

√
2Tref/mref . These values are used to compute the reference Larmor radius

and frequency ρref and Ωref , where we note that the magnetic field Bref is in this case
defined as the toroidal field at the location of geometric center of the flux surface of
interest, Bref = Ba. All the macroscopic lengths are normalized to the minor radius
a. In the same way as in the GENE and GKW codes, the velocity space variables are
species-dependent normalized.
Therefore, the GS2 coordinate system can be written as

X = X̃ρref , Y = Ỹ ρref , θ = θ̃,

E = ẼTj , λ = λ̃Bref , t = t̃
vth,ref

a

We note that with the aforementioned choices, the reference Larmor radius is the same as
in the GKW code, while a factor

√
2 remains compared to the GENE code. However time

and gradients of equilibrium quantities, because of the different choice of the macroscopic
reference length, are normalized to a different value with respect to both GENE and
GKW.
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C Development of synthetic diag-
nostics for T-PCI and C-ECE
systems

C.1 A Matlab post-processing graphic tool

A post-processing graphical interface written in IDL is already available together with
GENE. During this work a similar tool has been developed in Matlab.
The enormous amount of information contained in the distribution function evolved by
GENE is typically reduced by the code itself taking the relevant velocity moments which
are then saved, together with the electromagnetic fields, at a rate which is user-defined.
Usually this is done every few hundreds time steps, such as to avoid the creation of too
big output files maintaining at the same time a sufficiently high temporal resolution.
These files contain, for each the species, the four dimensional space-time evolution of
fluctuations, such as δT or δn. Normally, a further post processing of such information
is required, in order e.g. to compute the corresponding fluxes, the k-spectra or simply
evaluate averages and obtain quantities that can be directly compared with experimental
observables. Having a user friendly interface which allows to easily evaluate and visualize
such quantities is naturally of great help when one has to analyze and interprete the
results of a simulation.
In order to allow also non IDL users to profit of such a tool, a Matlab equivalent of the
existing one has been created. It consists of a graphical interface which allows the user to
specify the simulation he is interested in analyzing and then various diagnostics are made
available such as to obtain the most common quantities of interest. The tool has been
built modularly, such as to easily allow the introduction of any new diagnostic. Similarly
to the IDL one, the diagnostics are divided in groups according to their functionality
(e.g. analysis of local simulations, or of global runs or parameter scans). Differently to
what is currently done in IDL, we have introduced another layer of data saving. For each
required time step every diagnostic saves its own output in a specific file, such that for a
subsequent analysis it does not need to be recomputed but can simply be read.
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C.2 Synthetic diagnostics

Thanks to the experience gained in developing the Matlab GUI, a user interface has
been written also for T-PCI and C-ECE synthetic diagnostics. We recall that the Phase
Contrast Imaging measures a line integrated electron density fluctuation along a laser
beam [43]. Here Tangential refers to the specific geometry adopted in TCV, where the
laser beam crosses the plasma with a certain inclination. This allows to localize the
measurement where the beam is tangent to the magnetic field, therefore obtaining a high
radially resolution [55]. The C-ECE instead, collects the Electron Cyclotron Emission,
and through correlation analysis allows to determine the electron temperature.
A first preliminary version of synthetic diagnostics, valid only for flux-tube simulations
carried out considering circular concentric flux surfaces, was developed in [135]. During
this thesis this tool has been rewritten and generalized such as to be able to handle
any magnetic geometry, for both local and global version of the code. The mappings
between a position in cylindrical coordinates (R, Z) and flux-surface coordinates (ψ, χ)
are provided by the CHEASE code.
The synthetic diagnostics is build as a post-processing tool and relies on the integration of
fluctuating fields on diagnostic volumes reproducing the experimental ones. This choice
allows more flexibility in investigating the effect of e.g. the diagnostic spatial position,
compared to a direct implementation of the synthetic diagnostic directly in GENE, at
the price of handling large files as a higher sampling rate can be required to reproduce
the experimental acquisition rates.
Both the PCI and the ECE synthetic diagnostic are based on the integration of either
density or temperature fluctuation on a diagnostic volume which matches the experimental
one, such as to reproduce the experimental cut offs. In both cases, diagnostic volumes
need to be properly placed in the plasma. For the T-PCI, the spatial localization is
provided by the point at which the laser beam is tangent on a magnetic field line, around
which the density fluctuations are integrated (the integration length is left as a input
parameter). For the ECE one instead looks at a given flux-surface and integrates the
temperature fluctuation over a volume whose size is at the moment an input parameter.
The implementation of a ray tracing code, such as to properly reconstruct the emission
volume [136] is foreseen for the future.
Once synthetic signals have been collected, they can be analyzed using the very same
procedure as done in the experiments, even though the synthetic acquisition time is
normally much shorter than in reality, thus extreme care must be used when temporal
averages need to be computed.

As an example, we apply the PCI synthetic diagnostic to the simulation of the TCV dis-
charge #45886 described in section 7.3. We use the same geometry as in the experimental
measurements, considering all channels as acquiring. In the actual experimental set up,
only a part of the acquisition detector is functional (16 channels out of 30). Therefore, a
more sophisticated analysis must be used accounting for the non uniform spatial sampling
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systems

when evaluating the k numbers. We avoid such complication here also because it would
further impact the already limited time statistics.

Figure C.1 : Location of the PCI tangency points, indicated with a black cross,
projected on a poloidal plane. A snapshot of the electron density fluctuation δne is
shown in the background.

The specific location of the PCI tangency points for this discharge is shown in Fig. C.1
where they are projected on the poloidal plane of the middle channel, together with a
snapshot of the electron density fluctuation. The synthetic signals, already spatially
integrated are show in Figure C.2 together with the corresponding spectral amplitudes as
a function of frequency and k vector (here k is measured on the detector). One observes a
dominant component at 32 kHz radially propagating outwards with k ∼ 2 cm−1 (negative
k according to our conventions). The simulated amplitudes can be remapped on their
radial location, as shown in Figure C.3, which shows a very good agreement with the
experimental corresponding, given in Figure 7.26.
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Figure C.2 : Simulated signals from PCI diagnostic as a function of time and
corresponding 2D spectral amplitudes.
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location ρψ. To be compared with Figure 7.26
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D Local simulations for the TCV
discharge #45353

A series of local simulations, centered at ρvol=0.5, 0.6, 0.7 and 0.9, have been performed
considering the experimental TCV discharge #45353 already presented in chapter 7.
Aim of this exercise was to investigate the GAM properties with less expensive local
runs and help interpreting the results obtained with global simulations. Even though
the frequency and the radial localization of the GAM turn out to be different than the
one predicted with global runs, and the local code is in fact reproducing oscillations at
a frequency proportional to the local sound speed, density and magnetic fluctuations
appear to posses the same poloidal structure as the one observed in global simulations.
Based on this consideration we have therefore also carried out an extensive series of linear
Rosenbluth-Hinton tests such as to investigate, other than the dependency of the GAM
frequency on radial location, the effect of the experimental TCV magnetic geometry on
δn, δT and δA‖.

ρvol=0.5 ρvol=0.6 ρvol=0.7 ρvol=0.9
q 1.25 1.45 1.76 2.84
ŝ 0.71 1.02 1.42 2.64

R/Ln 1.78 4.6 7.64 20.85
R/LT 9.56 10.89 13.42 32.90

νei[cs/R] 0.23 0.36 0.62 3.02
βe 0.33×10−2 0.2×10−2 0.13×10−2 0.17×10−3

Table D.1 : Experimental plasma parameters characterizing the three radial loca-
tions considered for flux-tube simulations.

All runs have been performed considering the experimental magnetic geometry as well
as the measured temperature and density profiles. Electromagnetic fluctuations and
collisions have been retained. The fundamental local plasma parameters are summarized
in Table D.1. Simulations grids have been adapted for each run such as to ensure a
sufficiently large domain in the perpendicular direction, e.g. L̂x × L̂y ∼ 150 × 200. A
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D.1. GAM frequency from nonlinear simulations

typical grid uses nkx × nky × nz × nv‖ × nμ = 256 × 64 × 48 × 64 × 16 points.

D.1 GAM frequency from nonlinear simulations

The frequency of the GAM has been again evaluated by analysis the time evolution of
the E × B velocity. The results are shown in Figure D.1.
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Figure D.1 : On the left, radial and temporal evolution of E × B velocity profiles
and, on the right, the corresponding Fourier amplitudes (in log. color scale) evaluated
over the stationary state of the runs. Vertical black lines indicate the RH linear
frequency. From top to bottom results relative to ρvol =0.5, 0.6, 0.7 and 0.9.

We note that in this case one finds GAM oscillations for all cases, with the exception of
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Appendix D. Local simulations for the TCV discharge #45353

the innermost position where a non-coherent pattern develops in the turbulent state for
which it is quite hard to identify a dominant frequency. A very weak peak is found at
∼ 52 kHz which was then used for the plots in section 7.2. In all simulations the GAM
frequency is lower than what obtained from the linear Rosenbluth Hinton test, with a
difference that increases moving towards the magnetic axis.

D.2 GAM density and magnetic component

In order to investigate the poloidal structure of any fluctuation associated to the GAM,
we pick up the component associated to the ky = 0 mode. This already selects the zonal
(n = 0) contribution, whose poloidal structure can then be studied by further Fourier
decomposing along the poloidal angle χ. The obtained amplitudes are then averaged
over the radial direction. The results for the electron density fluctuation are shown in
Figure D.2 for the four different radial locations analyzed.
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Figure D.2 : For each row, amplitude as a function of poloidal harmonics m and
frequency in kHz of the electron density fluctuation associated to the ky = 0 mode.
The values have been averaged over the radial direction. From left to right results
relative to ρvol=0.5, 0.6, 0.7 and 0.9.

In all cases, one observes a contribution from zero frequency modes (stationary zonal
flows) and a GAM contribution at finite fGAM. The latter, in agreement with the
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D.3. Rosenbluth-Hinton tests investigating shaping effects

previously described behaviour of the E × B velocity, is not clearly seen in the core
(ρvol = 0.5), where however a broad m = 1 contribution from all modes having a frequency
below the linear GAM one (∼ 52 kHz at this position) is found.
As expected, at ρvol =0.6, 0.7 and 0.9 the GAM density fluctuation is dominated by
m = ±1 poloidal harmonics. A narrow band pass filter around the GAM frequency has
been applied to δne(t) in order to isolate any the sidebands that are already visible in
Fig. D.2. We find a contribution from m = ±2 at ρvol = 0.7 and m = ±2, ±3 at ρvol = 0.9.
These latter contributions, thanks also to the Rosenbluth-Hinton tests described in the
next section, are interpreted as a consequence of the actual plasma shape. In particular,
triangularity is associated to m = 3 contributions.

The same analysis has been repeated analyzing δA‖. In this case the analysis is more
delicate, as fluctuations are dominated at all radii by the near zero frequency, m = ±1
component. One can nevertheless isolate in the two intermediate positions ρvol=0.6
and 0.7 a finite frequency contribution, constituted mainly by m = ±1 and ±2. The
m = ±1 poloidal harmonic is especially evident at ρvol=0.6, i.e. at the location where β

is the largest value for which one still observes clear GAM oscillations in the nonlinear
fluctuations. At ρvol=0.9 one observes also contributions from the m = ±3 poloidal
harmonics. Again those components are understood as due to the actual magnetic
geometry, as discussed in the next section.

D.3 Rosenbluth-Hinton tests investigating shaping effects

A number of Rosenbluth-Hinton tests have been carried out employing the same set-up as
the one described in section 4.1.4. In this case however we have carried out all simulations
assuming non adiabatic electrons and retaining electromagnetic fluctuations. Because of
the light electrons, the recurrence problem cannot be avoided by increasing recurrence
time with higher resolution in velocity space (for the required resolution simulations
would rapidly become too expensive). Some numerical hyperdiffusion must instead be
used. We have thus carried out all runs assuming hypv = 0.5, which is sufficient to allow
carrying out simulations on grids with nz × nv‖ × nμ = 64 × 128 × 48 points. This value
has to be lowered when the damping is weak i.e. when looking at circular geometries as
otherwise it will impact the residual level.
In order to investigate the dependency of the GAM on shaping parameters, we have
again made use of the Miller parametrization given in Eqs. eqs. (4.1) and (4.2) such as to
easily vary each shaping parameter from the experimental situation to the circular case.
This analysis has been performed limited to the flux-surfaces ρvol = 0.7 and ρvol = 0.9,
whose shaping parameters are listed in Table D.2. They have been subsequently varied
according to their magnitude, and we have verified that changing the order with which
they are modified is not changing the results obtained.
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Appendix D. Local simulations for the TCV discharge #45353

ε ζ δ κ r ∂ζ
∂r

r√
1−δ2

∂δ
∂r

r
κ

∂δ
∂r dR/dr dZ/dr

ρvol = 0.7 0.20 3.310−3 0.15 1.20 0.023 0.31 0.16 -0.049 -0.035
ρvol = 0.9 0.25 1.810−2 0.26 1.27 0.17 0.96 0.43 -0.066 -0.081

Table D.2 : Coefficients describing the flux surfaces ρvol = 0.7 and 0.9 of TCV
discharge #45353 computed according to the parametrization provided in Eqs. (4.1)
and (4.2).

GAM frequency and damping

We discuss here how the linear frequency of the GAM varies with plasma shaping.
The corresponding results are depicted in Figures D.4 and D.4. One notes that the
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Figure D.3 : Dependence of the residual potential, GAM frequency and damping
on shaping parameters. From the flux surface of interest, starting from its Miller
parametrization (computed according to Eqs.(4.1) and (4.2)) the shaping parameters
are relaxed down to a circular plasma. For comparison the value obtained with
CHEASE and circular model are shown as well, while dashed lines indicate the
Rosenbluth-Hinton residual level [101], and the analytic GAM estimate of Sugama
[56].
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Figure D.4 : Same as Figure D.3, but showing the results for ρvol=0.9.

trends associated to a variation of a certain shaping parameter are the same for the
two positions being considered. Considering the GAM frequency ωGAM and the mode
growth rate γGAM, we observe that the Miller equilibrium exhibits a ∼ 10% larger ωGAM
compared to the original TCV equilibrium, which therefore depends mainly on the
up-down asymmetry of the experimental flux surfaces. The frequency further increase
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D.3. Rosenbluth-Hinton tests investigating shaping effects

when the radial dependencies of the shaping coefficients, as well as Shafranov shift, are
dropped. At the same time, the damping is found to be larger in the Miller equivalent
equilibria compared to the CHEASE ones, and strongly reduced when radially constant
shaping coefficients are assumed. We note that for all the CHEASE equilibria and their
Miller counterpart the damping is significantly large and a strong initial transient is
found, which makes the evaluation of γGAM non trivial. In agreement with the results
presented in Section 4.1.4, a reduction of elongation κ increases both frequency and
damping of the mode. From this set of runs, contrary to the one carried out for the
geometry benchmarks, one can more clearly identify the role played by triangularity,
whose reduction is causes the GAM frequency to diminish and the growth rate to increase.
Finally, we remark a strong decrease of the residual potential is always found when
triangularity elongation are reduced.

Density component

The previously described strategy of continuously relaxing the shaping parameters allows
also to study the evolution of the poloidal structure of the GAM density fluctuation. We
accomplish this exercise by analyzing the simulated density fluctuation over the first
part of the time trace (typically up to t ∼ 30R0/cs). We then decompose the density
fluctuation in Fourier series in time

δn(χ, t) =
∑
ω

δ̂nω(χ)eiωt,

and investigate the poloidal structure of δ̂ωGAM , where δ̂ωGAM is the component at the
GAM frequency. Thanks to carefully choice of the time window over which this is applied,
we avoid the need of filtering the signal in time to remove possible spurious harmonics
due to the initial transient phase.

In Figure D.5 the amplitudes of the poloidal harmonics, defined according to

δ̂ωGAM(χ) =
∑
m

ˆ̂
δωGAM,m

eimχ (D.1)

are plotted as a function of the poloidal mode number m. For clarity we show only the
results obtained with i) the Miller parametrization of the actual TCV flux-surfaces, ii)
elongated and triangular equivalent, iii) only elongated and iv) circular flux surfaces.
One observes, as expected from the linear GAM theory, that the leading therm is the
m = 1 component. Higher harmonics, and in particular m=2 as predicted in Ref. [60],
have already a non zero contribution even in the circular case. The introduction of a
finite triangularity is found to strongly enhances them.

The very same analysis can be repeated looking at the GAM temperature fluctuation,
and thus the pressure perturbation, which show the same poloidal structure.
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Figure D.5 : Fourier decomposition in poloidal harmonics of δnGAM fluctuations.
Shown are the results obtained with the Rosenbluth-Hinton test varying the shape of
the flux-surface. Starting from the Miller parametrization of TCV surfaces ρvol=0.7
(green squares on the left graph) and 0.9 (on the right), the shape is then relaxed to
maintaining only finite triangularity and elongation (black plus), then elongation
only (red crosses) and finally circular flux surfaces (blue circles).

Magnetic component

Similarly to the δn, we have investigated also at δA‖ and δB‖ fluctuations. The results
of our analysis are plotted in Figures D.6 and D.7 (showing respectively δA‖ and δB‖).
The leading term is in all cases m=2 (we note that because of the lower value of β

the simulations relative to ρvol = 0.9 show a smaller amplitude of the electromagnetic
fluctuations, but the effect of magnetic geometry is expected to be somewhat stronger
in comparison to ρvol=0.7). As predicted in e.g. Ref. [60], when plasma shaping is
introduced, a richer number of harmonics contribute to electromagnetic fluctuations.
In particular, we observe that triangularity δ is strongly destabilizing m=1 and m=3
harmonics of δA‖ (mainly m=1 of δB‖), which are even furthermore contributing (together
with higher m terms) when the full Miller parametrization (or, equivalently, the actual
TCV experimental equilibria, not shown here) is used. Elongation instead appears to
play only a minor role.

We remark that even when the plasma shape is simplified to flux-surfaces with circular
cross section, a strong m=1 component is always observed in both δA‖ and δB‖ fluc-
tuations. It turns out that the origin of this harmonic is to be found in finite aspect
ratio effects. Reducing ε by two orders of magnitude indeed results in a dominant m=2
component, as the analytically predicted.
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Figure D.6 : Fourier decomposition in poloidal harmonics of δA‖ fluctuations.
Shown are the results obtained with the Rosenbluth-Hinton test varying the shape of
the flux-surface. Starting from the Miller parametrization of TCV surfaces ρvol=0.7
(green squares on the left graph) and 0.9 (on the right), the shape is then relaxed to
maintaining only finite triangularity and elongation (black plus), then elongation
only (red crosses) and finally circular flux surfaces (blue circles).
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Figure D.7 : Same as Figure D.6 but showing the results for δB‖.
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