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Abstract
This thesis explores the applications of graphene for terahertz and far infrared optical compo-

nents and antennas, with particular emphasis on tunable and non-reciprocal devices. Both

terahertz technologies and graphene are emerging fields which hold many promises for a

number of future applications, including ultra-broadband communications, sensing and

security. A very important amount of research has been devoted to explore the potential

applications of graphene and its advantages over existing technologies. Conversely, there is a

clear set of applications that could benefit from the development of terahertz technologies,

but there are several technical challenges in terms of very limited availability of materials and

components to generate, manipulate and detect terahertz waves. The main idea of this work is

to bring these two topics together to demonstrate that terahertz and mid infrared technologies

can greatly benefit from the unique optical and electromagnetic properties of graphene.

The first original contribution of this thesis is an important theoretical upper bound for the

performance of non-reciprocal and tunable devices, demonstrating that both these compo-

nents can achieve a target performance at the expense of an unavoidable optical loss, which

depends uniquely on the properties of graphene. If graphene with higher mobility is used, this

unavoidable loss can be reduced; however, independently of the design geometry (waveguide

devices, free space planar devices, ...), the loss will always appear. This theoretical limit is an

important guideline for the design of graphene optical devices, as it can predict the best possi-

ble performances prior to any design effort or numerical simulation. It is also demonstrated

that devices able to reach the upperbound are actually possible, and hence these devices

(modulators, isolators among others) are optimal.

The thesis explores then a number of designs of graphene antennas for terahertz and mid

infrared frequencies, where it is shown that gated graphene can be used to achieve frequency

reconfiguration in resonant plasmonic antennas and beam steering in graphene based re-

flectarrays. Circuit models are provided as a simple way to understand the behavior of the

device. Furthermore, an experimental technique able to measure the complex conductivity

of graphene at infrared frequencies is demonstrates, providing a very useful evaluation of

graphene quality at those frequencies.

The potential of graphene for non-reciprocal applications is then demonstrated experimen-

tally, with the design, fabrication and measurement of the first terahertz isolator (operating

between 1 THz and 10 THz). The isolator is a device which allows the unilateral propagation of

light, and for that reason is often called “optical diode”. Our isolator uses graphene immersed

in a magnetostatic field, and exhibits approximately 7 dB of loss in one direction and more
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Abstract (English)

than 25 dB in the other. Thus, our device is shown to be quasi-optimum according to the

theoretical bound and greatly improved performances are predicted for devices with next

generation chemically deposited graphene.

Finally, the first tunable graphene reflectarray is presented, which is a metasurface able to

steer in a desired direction an incoming beam of terahertz radiation. The device acts as a

mirror, but, upon graphene gating, the direction of the reflected beam can be controlled and

the beam itself can be modulated with complex modulation schemes. This device provides

the first example of electronic beam steering of terahertz radiation.

Key words:

Graphene, Terahertz, Non-reciprocity, Modulators, Beam steering, Upper bounds, Optical

isolator, Tunable antenna, Plasmonics, Infrared.
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Sommario

Questa tesi esplora le applicazioni del grafene per componenti ed antenne operanti a frequen-

ze terahertz e infrarosso, con un’enfasi particolare su dispositivi riconfigurabili e non-reciproci.

Sia la tecnologia terahertz sia il grafene sono temi emergenti molto promettenti per molte

applicazioni future, incluse telecommunicazioni a banda ultralarga, sensori e sistemi di sicu-

rezza. Molti studi in letteratura hanno esplorato le applicazioni del grafene e i suoi vantaggi

rispetto a tecnologie esistenti. Vice versa, ci sono chiare applicazioni che possono trarre

beneficio dall’utilizzo delle frequenze terahertz ma esistono anche importanti sfide tecniche

in termini di limitata disponibilità di materiali e dispositivi per generare, manipolare e rilevare

le onde terahertz. L’idea principale di questa tesi è di portare questi due temi insieme per

dimostrare che le tecnologie a terahertz e infrarosso possono trarre grandi benefici dall’uso

del grafene grazie alle sue proprietà ottiche uniche.

Il primo contributo originale di questa tesi è un importante limite teorico sulle performances

di dispositivi non-reciproci e reconfigurabili, dimostrando che entrambi possono raggiungere

determinate figure di merito a scapito di perdite ottiche che non possono essere evitate,

le quali dipendono unicamente dalle proprieta del grafene. Se grafene ad alta mobilità è

utilizzato, queste perdite possono essere ridotte, ma, indipendentemente dalla geometria del

dispositivo (in guida d’onda, planare, ...) il limite minimo di perdite non può essere superato.

Questa teoria fornisce indicazioni importanti per il progetto di dispositivi ottici basati sul

grafene, dato che può predire le migliori performances prima del progetto e senza bisogno di

alcuna simulazione numerica. Inoltre, esempi di dispositivi (modulatori, isolatori e altro) che

raggiungono questo limite sono presentati, i quali possono essere considerati ottimi.

Successivamente, diversi progetti di antenne per frequenze terahertz e infrarosse basate sul

grafene sono presentate, dimostrando che il grafene controllato elettrostaticamente può essere

usato per regolare la frequenza di lavoro di antenne plasmoniche e per orientare un fascio

terahertz usando antenne reflectarray reconfigurabili. Circuiti equivalenti sono presentati al

fine di fornire un modo per meglio comprendere il comportamento del dispositivo. Inoltre,

una tecnica per misurare la conduttività complessa del grafene a frequenze infrarosse è

presentata e utilizzata per stimare la qualità del grafene misurato.

Il potenziale del grafene per applicazioni non-reciproche è quindi dimostrata sperimental-

mente grazie al progetto, fabbricazione e misura del primo isolatore a frequenze terhertz

(primo nella banda da 1 a 10 THz). Un isolatore è un dispositivo che consente la propagazione

della luce in una sola direzione, e per questo è anche chiamato “diodo ottico”. L’implemen-
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Sommario (Italiano)

tazione proposta utilizza grafene sottoposto a un campo magnetostatico e mostra 7 dB di

attenuazione e 25 dB nella direzione opposta. L’isolatore è quasi ottimo secondo il limite

teorico e performances molto migliori sono previste per il grafene di prossima generazione.

Infine, la prima antenna reflectarray reconfigurabile a frequenze terahertz basata sul grafene

è presentata. Essa è una metasuperficie in grado di riflettere le onde terahertz incidenti in

una direzione che può essere modificata dinamicamente (beam steering) applicando diverse

tensioni sugli elementi che includono grafene. Inoltre è possibile modulare il raggio riflesso

con varie modulazioni complesse. Questo è il primo dispositivo in grado di ottenere beam

steering con controllo elettronico per onde terahertz.

Parole chiave:

Grafene, Terahertz, Non-reciprocità, Modulatori, Beam steering, Limite teorico, Isolatore

ottico, Antenna riconfigurabile, Plasmoni, Infrarosso.
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Résumé

L’objet de cette thèse est d’explorer les applications du graphène pour les composants et an-

tennes dans la bande du terahertz et de l’infrarouge lointain, en mettant un accent particulier

sur les dispositifs ajustables et non-réciproques. Les deux technologies du terahertz et du

graphène sont des champs émergeants qui promettent beaucoup d’applications futures, y

compris pour les communications ultra-large bande, la détection et la sécurité intérieure.

Un grand nombre de recherches ont été consacrées à explorer les applications potentielles

du graphène et ses avantages par rapport aux technologies existantes. En parallèle, il existe

un ensemble d’applications qui pourraient bénéficier du développement des technologies

terahertz ; mais ils présentent plusieurs défis techniques en termes de disponibilité très limitée

des matériaux et des composants pour générer, manipuler et détecter les ondes terahertz.

L’idée principale de ce travail est d’associer ces deux sujets pour démontrer que les techno-

logies du terahertz et de l’infrarouge lointain peuvent grandement bénéficier des propriétés

électromagnétiques uniques du graphène.

La première contribution originale de cette thèse est l’établissement d’une borne supérieure

théorique pour les performances des dispositifs non-réciproques et ajustables. Elle démontre

qu’une performance ciblée peut être obtenue avec ces deux dispositifs au détriment d’une

perte optique inévitable, qui dépend uniquement des propriétés du graphène. Si on emploie

du graphène avec une plus grande mobilité, cette perte inévitable peut être réduite ; cependant,

et indépendamment de la géométrie en question (dispositifs de guide d’ondes, dispositifs

planaires pour l’espace libre ...), les pertes seront toujours présentes. Cette limite théorique est

une ligne directrice importante pour la conception de dispositifs optiques en graphène, car

elle permet de prédire les meilleures performances possibles avant tout effort de conception

ou de simulation numérique. Il est également démontré qu’on peut réaliser en pratique

des dispositifs (modulateurs, isolateurs...) capables d’atteindre la limite supérieure, et par

conséquent optimaux.

La thèse explore ensuite un certain nombre de conceptions d’antennes terahertz/infrarouge

en graphène, et on trouve que le graphène biaisé peut être utilisé pour modifier la fréquence

de reconfiguration pour les antennes plasmoniques de résonance et la direction du faisceau

dans les reflectarrays basés sur le graphène. Des modèles de circuit sont fournis en tant que

moyen simple pour comprendre le comportement du dispositif. En outre, une technique

expérimentale capable de mesurer la conductivité complexe du graphène dans l’ infrarouge

est introduite, fournissant une évaluation très utile de la qualité du graphène à ces fréquences.
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Résumé (Français)

Le potentiel du graphène pour les applications non-réciproques est ensuite démontré ex-

périmentalement, avec la conception, fabrication et mesure du premier isolateur terahertz

(fréquence de fonctionnement entre 1 THz et 10 THz). L’isolateur est un dispositif qui permet

la propagation unilatérale de la lumière et pour cette raison est souvent appelé "diode op-

tique". On utilise du graphène polarisé par un champ magnétostatique, qui présente environ

7 dB de perte dans une direction et plus de 25 dB dans l’autre. On démontre que ce dispositif

est quasi-optimal, du point de vue de ses performances comparées à la limite théorique. Des

améliorations très conséquentes pour les dispositifs montrés dans cette thèse sont à attendre

avec la prochaine génération de graphène CVD.

Enfin, le premier réflecteur ajustable en graphène, composé d’une métasurface capable de

dépointer un faisceau terahertz entrant, est présenté dans cette thèse. Le dispositif agit comme

un miroir, mais lorsque un champ électrique est appliqué au graphène, la direction du faisceau

réfléchi peut être commandée et le faisceau lui-même peut être modulé d’une façon complexe.

Ce dispositif fournit la première implémentation de contrôle électronique de la direction d’un

faisceau rayonné aux fréquences terahertz.

Mots-clés :

Graphène, Terahertz, Non-réciprocité, Modulateurs, Beam steering, Borne supérieure théo-

rique, Isolateur optique, Aantenne reconfigurable, Plasmons, Infrarouge.
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Notation and symbols

In the remainder of this document scalars are represented in italic, vectors are boldface,

matrices and tensors are underlined. The normalized unit vector parallel to a given vector

v is indicated with v̂. Imaginary unit is j , the superscript T is used to indicate matrix or

operator transposition, ˚ indicates the complex conjugate and H the Hermitian (transposed

and conjugate). When used in a matrix context, vectors are always assumed to be column

vectors, so that v ¨ v “ vTv.

For complex phasors notation of time-harmonic fields, the Engineering sign convention e jωt

with ω“ 2π f is used (which differs from the Physics one e´iωt ), so that, for instance, inductors

have a positive imaginary impedance and time derivatives are obtained multiplying by jω;

this is in agreement with the commonly used definition of Fourier transform, namely:

F pωq “
ż `8

´8
f ptqe´ jωt dt f ptq “ 1

2π

ż `8

´8
F pωqe` jωt dω

This time-harmonic notation implies that plane waves propagating along the complex wavevec-

tor k are expressed as e´ j k¨r or as e´γ¨r. The complex wavevector k is related to the complex

vector propagation constant γ as γ“ j k. The real and imaginary parts of γ are indicated as

γ“α` jβ. If α and β are parallel, then the scalars k, γ, α, β can be defined analogously along

the propagation direction.

The time-domain expression for a time-harmonic quantity A can be obtained as RepAe jωt q.

Phasors are expressed using the root mean square (RMS) effective value, so that the complex

Poynting vector is E ˆ H˚. The norm of a vector v is expressed as |v| or v and defined, to be

consistent with complex absolute value of a scalar, as |v| fi
ař

i |vi |2 “ ?
v˚ ¨ v “ ?

vHv.

All quantities are expressed following the International System of Units (SI). Some quantities

(such as mobility and carrier density) are expressed using centimeters instead of meters for

historical reasons. When a frequency is indicated with ω it is to be interpreted as an angular

frequency measured in rad¨s´1, if it is indicated as f or Γ then it is a frequency or rate expressed

in Hz. The symbol fi is used when defining new quantities.
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References are indicate by square brackets: [<N>]. If the reference is a journal article written

by the author of this thesis, then it is indicated as [JA<N>], if it is a conference article it is

indicated as [CA<N>]
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1 Introduction

This short introductory chapter presents a concise state of the art for graphene used in

photonic and electromagnetic applications. It also illustrates the currently existing solutions

for terahertz reflectarrays and isolators, which are the two specific devices targeted in this

thesis. Then the original achievements of this thesis are highlighted and the contributions of

the candidate are summarized in the frame of chapters organization of the thesis.

1.1 Graphene for photonics and electromagnetic applications: state

of the art

Graphene, a 2D material based on a monolayer honeycomb lattice of carbon atoms, was

isolated in 2004 [84] and has since then been an extremely important research topic due to its

outstanding physical properties [83, 33, 34].

Originally graphene was obtained by a process of micro-mechanical exfoliation, using scotch

tape to repeatedly peel small graphite samples and transfer them onto a desired substrate.

Graphite, in fact, is a solid composed of several graphene sheets which are weakly coupled to

each other. Hall conductivity measures and electric field effects demonstrated the properties

of these first mono-atomic flakes [84], sparking an enormous interest in this material. Field

effect measurement, in particular, demonstrated that graphene conductivity (also at terahertz

and infrared) can be tuned dynamically by applying an electric field on it. The exfoliation

technique is still used today to produce high quality graphene samples, but the achievable

size is limited to few hundreds of microns in the best cases.

For larger areas other techniques have been proposed, which however, because of lattice

defects and contaminations, show worse carrier mobility and therefore lower performances

for applied devices. These include epitaxial graphene [21] obtained on the face of SiC wafers

and, most importantly, chemically vapor deposited (CVD) graphene [90, 57, 6]. The CVD

process is usually performed on copper, obtaining the formation of a graphene layer on it.

Graphene is then transferred on the target substrate by spin coating a polymer, wet-etching

1



Chapter 1. Introduction

Figure 1.1 – Exfoliated (left) versus CVD graphene (right), reproduced from [33]. In this example two CVD layers
(indicated in the figures) are used.

the copper, depositing the film on the substrate and dissolving the polymer. More recently,

roll-to-roll graphene production was developed to achieve direct transfer from copper to

a transparent polymer [2]. Large area graphene (up to tens of centimeters) on arbitrary

substrates can be obtained by CVD process, being it limited only by the size of copper and of

the CVD reactor. The process is also cheap and therefore promising for industrial applications.

The technological gap bridged in the first seven years of graphene’s life is well represented in

Figure 1.1 which shows a comparison between exfoliated and CVD graphene samples [33].

Figure 1.2 – Graphene publications until August 2014, reproduced from [33]

Figures 1.2 and 1.3 also give a very clear indication of the impact of this material in the

scientific literature and the potential impact on everyday life. Figures 1.2 illustrates the

number of publications on graphene per year, while 1.3 shows examples of the properties of

graphene and their applications.

This thesis will focus in particular on the interactions of graphene with electromagnetic waves

and light [5, 51], where several important optical properties and related phenomena are

2



1.1. Graphene for photonics and electromagnetic applications: state of the art

Figure 1.3 – Graphene applications, reproduced from [33]

found. This rich behavior has been exploited for many devices and has the potential of deeply

affecting many photonics disciplines. Figure 1.4 and Table 1.1 summarize the most important

phenomena and applications related to graphene photonics and examples from the literature

are listed in Table 1.1. These properties highly depend on parameters such as graphene quality,

wavelength (or frequency), power and device geometry.

Table 1.1 – Examples of graphene photonics and electromagnetics applications

Phenomenon/device Applications Figure References
Transparent conductivity Touch screens 1.4a [2]

Solar panels 1.4b [75]
Transitors RF Amplifiers 1.4c [119]
Tuneable conductivity Modulators and swithces 1.4d,e,f [66, 98, 123, 124]

Tuneable lasers 1.4g [15]
Interband transitions Photodetectors 1.4h [126, 60]
Non linearity Long wavelength detectors 1.4i [60]

Saturable absorber 1.4j [72]
Mixers 1.4k [71]

Raman scattering 2D materials characterization 1.4l [32]
Ohmic losses Absorbers 1.4m [125]
Plasmonic resonances Chemical and bio-sensors 1.4n [93]
Non-reciprocity Faraday rotators and Isolators 1.4o [21, 22, 110]
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One of the most interesting properties of graphene is the fact that this material has at the same

time a significant DC conductivity (in the order of tens of ohms) and very good transparency

for visible light (an isolated graphene sheet in vacuum absorbs approximately 2.3% of visible

light [63]). This property makes it appealing for those situations where transparent electrodes

are needed, and in particular for touch screens (Figure 1.4a [2]) and solar panels (Figure 1.4b

[75]). More recently, graphene was proposed as a transparent protection layers for copper

and silver plasmonic [61], since it can act as a barrier against corrosion of these two metals

without interfering with plasmons at visible frequencies.

Graphene tunable conductivity via electric field effects can be used at DC to create graphene

field effect transistors (GFETs) or at terahertz and infrared frequencies to create tunable optical

devices. GFETs have been proposed to create amplifiers and RF circuits (Figure 1.4c[119]). For

amplification, unilateral gain larger than unity and useful modulations can be achieved up

to tens of GHz. Optical modulators and switches can be designed both for plane and guided

waves [66, 98, 123, 124]. Graphene can perform as a switch for microwaves (where however

there are technologies showing better performances, such PIN diodes and MEMS), terahertz

waves (Figure 1.4d [98]), far and mid infrared (Figure 1.4e [123, 124]) and near infrared (Figure

1.4f [66]), while for visible light absorption is constant and modulation is not possible. In

addition, including graphene in a laser cavity provides a way to tune the laser emission in a

dynamic way (Figure 1.4g [15]).

Graphene has been proposed to create photo-detectors as well. For visible and infrared light,

this can be achieved thanks to graphene interband transitions, which occur for photons having

energy larger than two times graphene Fermi level. When a photon induces an interband

transition, it is absorbed and an electron-hole couple is created, which can be then detected

as a current (Figure 1.4h [60]). For lower frequency (terahertz band) a similar effect can be

obtained exploiting non linearities in a GFET (Figure 1.4i [60]).

Non-linearities can be used to create other components as well, such as saturable absorbers

operating at visible frequencies (Figure 1.4j [72]) and radio-frequency mixers (Figure 1.4k [71]).

Graphene exhibits Raman scattering (Figure 1.4l [32]) which can be used as way to estimate

the number of layers and other important graphene parameters.

Two different loss mechanism act in graphene, namely ohmic losses and interband transi-

tions. Ohmic losses dominates at low frequencies, and can be used to create electromagnetic

absorbers (Figure 1.4m [125]) with operation frequency which extends from microwaves to

mid-infrared.

Graphene exhibits plasmons at mid infrared frequencies, and they provide a way to con-

fine electromagnetic radiation in extremely small volumes, enabling sensing of biological

molecules (Figure 1.4n [93]). Finally, the high graphene mobility can be used to create non-

reciprocal devices, such as Faraday rotators (Figure 1.4o [21, 22, 110]) which are key elements

for one way non-reciprocal isolators.
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a) b) c)

d) e) f)

h)g) i)

j) k) l)

m) n) o)

Figure 1.4 – Graphene photonics phenomena and applications. a) Graphene touch screen [2]. b) Graphene
solar panels [75]. c) High frequency graphene transistors [119]. d,e,f) Graphene modulators [66, 98, 123, 124]. g)
Tuneable lasers using graphene [15]. h) Graphene photodetectors [60]. i) Long wavelength (THz) detectors [60].
j) Graphene saturable absorbers [72]. k) Graphene RF mixers [71]. l) Raman spectroscopy on graphene [32]. m)
Graphene optical absorbers [125]. n) Graphene plasmonic biosensors [93]. o) Graphene Faraday rotators [21].

1.2 Applications of terahertz technology

Terahertz science is the study of physical phenomena, devices and systems operating in the

range conventionally defined from 0.3 to 3 THz (or alternatively in the extended range 0.1 to

10 THz). Due to important technological challenges, terahertz technology is still emerging,
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but it possesses a clear set of important applications [86].

Firstly, terahertz spectroscopy provides an excellent platform for sensing [23], since most

molecular vibration resonances can be resolved spectrally at these frequencies. In particular,

the detection of drugs and explosives [31] is very promising.

a) b)

Figure 1.5 – Applications of terahertz technology for security and airports, reproduced from [52]. a) Terahertz
transmission image of dangerous items concealed in a suitcase. b) Determination of contents of PET bottles with
handeld terahertz sensing scanner.

Terahertz has an important potential as a platform for medical diagnosis, e.g. for skin cancer

[127] and cornea hydration analysis [3]. Radioastronomy [62] and telecommunications [1] are

other important applications. For example, radioastronomy in this band allows the study of

interstellar dust, and in particular it allows the discrimination of different isotopes in the dust,

which is of key importance for interstellar chemistry [62].

Another very important field of application is homeland security. Terahertz radiation can, in

fact, propagate with low loss through many materials such as paper, cardboard and fabrics,

and therefore can be used for security imaging (see Figure 1.5) [52]. Unlike millimeter waves

body scanners, terahertz scanners can achieve the same or better resolution in a stand-off

radar configuration [19, 20]. Figure 1.6 shows an example of stand-off terahertz imaging setup,

which uses a rotating mirror to focus a terahertz beam on various parts of the target.

a) b)

Figure 1.6 – Terahertz stand-off imaging, reproduced from [19, 20]. a) A THz scanner which uses a rotating mirror
to achieve beam steering. b) THz imaging of a gun concealed below clothes.
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The use of mechanically rotating mirrors has, however, important limitations. First of all, the

speed of the mirror is limited, and therefore the acquisition of a single frame usually requires

times in the order of seconds because of this speed bottleneck [20]. In addition, these systems

are usually bulky and lack in reliability, due to the fact that the mirror oscillates with frequency

of tens of hertz.

Alternative solutions for beam-steering at terahertz frequencies are therefore an important

research topic. A possibility was proposed in [97], where chips based on CMOS technology

demonstrated beam steering at 0.28 THz (see figure 1.7). Unfortunately, this approach is

limited in frequency by the used CMOS technology.

a) b)

Figure 1.7 – 0.28 THz beam scanning on CMOS technology, reproduced from [97]. a) Beam scanning chips. b)
Electrically controlled beam scanning.

While this frequency band has a clear set of applications, there are also important technical

challenges for devices operating at terahertz frequencies, and therefore there is currently a

very important research effort finalized to overcome these challenges. The latter include the

limited availability of high power miniaturized terahertz sources, the propagation losses that

occur in many substrates commonly used for other bands and the lack of terahertz low-loss

non-reciprocal materials. The solution of these challenges is also the main motivation of

this thesis, where it is demonstrated that graphene can be beneficial for several terahertz

devices, focusing on reconfigurable antennas and non-reciprocal devices. In particular, a

beam-steering reflectarray based on graphene is demonstrated here as a very promising

alternative to mechanical beam-scanning. The reminder of the chapter presents a state of the

art of terahertz reflectarrays and isolators, which in this thesis have been implemented for the

first time using graphene.

1.3 Reflectarrays at terahertz frequencies: state of the art

The concept of reflectarray antennas [47] has been known since decades in the microwave

community. More recently, similar phase gradient structures were explored at visible and near

infrared frequencies [129], while no examples were available at terahertz frequencies until a

few years ago. This section summarizes the current state of the art of experimental reflectarray
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antennas at terahertz frequencies.

Table 1.2 – Terahertz reflectarray fabrication technologies

Reference Figure Dielectric spacer Ground plane Frequency

[81] 1.8 PDMS Platinum 1 THz
[82] 1.9 PDMS Platinum 1 THz
[80] 1.10 PDMS (freestanding) Thin gold strips 1 THz
[89] 1.11 BCB Aluminum 0.2-0.3 THz
[95, CA15] 1.12 PDMS (freestanding) Ion implanted gold 1 THz
This work 1.13 High resistivity silicon Silver and aluminum 0.7, 1, 1.3 THz

a) b)

Figure 1.8 – The first terahertz reflectarray, reproduced from [81].

Figure 1.9 – Polarization beam splitting terahertz reflectarray, reproduced from [82].

The main challenge for terahertz reflectarrays is the dielectric spacer. This has, in fact, to be a

material with low losses at terahertz frequencies and at the same time with thickness in the

order of a fraction of the terahertz wavelength. Table 1.2 shows solutions existing in literature.

Organic substrates such as PDMS (Polydimethylsiloxane) and BCB (Benzocyclobutene) have

been considered (figures 1.8, 1.9, 1.10, 1.11) [95, 81, 82, 80, 89], which however do not allow the

integration of reconfigurable technology because of the limited compatibility of the substrate

with nano-fabrication technologies. In this work we demonstrate the first reflectarray at

terahertz based on silicon and we demonstrate the possibility of integrating graphene to

achieve beam steering.

8
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Figure 1.10 – Polarization sensitive terahertz reflectarray, reproduced from [80].

Figure 1.11 – Wide phase range terahertz reflectarray, reproduced from [89]. a) Front view. b) Back view.

a) b)

Gold ion
implantation

Solid
metal

PDMS

Figure 1.12 – Gold ions implanted terahertz reflectarray, reproduced from [95, CA15]. a) Cell structure. b) Optical
picture.

1.4 Non-reciprocal devices for terahertz frequencies: state of the

art

The creation of isolators and circulators at terahertz is a very important open challenge. In this

thesis, the first isolator working in the band 1-10THz is presented and it is based on graphene

[JA12]. Before this work, ferrite has been considered and used to create an isolator up to 0.8

THz (see figure 1.14) [100]. However, despite its moderate frequency remaining below 1 THz,
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a) b)

SOI Si device (10 to 25 μm)

Pyrex support (525 μm)

Ag+Au Ag+Au

Terahertz reflectarray

Ag (140 nm) + Al (60nm)
SOI Si device (10 to 25 μm)

Pyrex support (525 μm)

Au Au

Printed circuit board

Graphene THz reflectarray mounted on PCB

Ag (140 nm) + Al (60nm)

Al2O3 (200nm)

Figure 1.13 – Reflectarrays in this work. a) Fixed beam, multiband terahertz reflectarray on silicon. b) Reconfig-
urable reflectarray with graphene

this device has very large insertion loss in the order of tens of dB.

Figure 1.14 – Ferrite based Faraday isolator, reproduced from[100]

Graphene has been considered in a theoretical paper as possible material for terahertz plas-

monic isolators [16, 65], and for experimental isolators at microwave frequencies [103, 107,

108]. Table 1.3 illustrates available technologies for terahertz non-reciprocity.

Table 1.3 – Technology for terahertz non-reciprocity

Technology Status References

Graphene Isolator at 2.9 and 7.6 THz This work
Ferrite Isolator up to 0.8 THz [100]
Doped Silicon Material properties measured [78]
HgTe Material properties measured [78]
Multiferroic materials Material properties measured [56, 55]
Ferrofluid materials Material properties measured [99]

It is clear that graphene is currently the best material available for terahertz non-reciprocal

isolators.
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1.5 Thesis organization and original contributions

Chapter 7
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Chapter 5

   Graphene non-

reciprocal devices

Appendix A

Micro-Nano

 fabrication

Figure 1.15 – Thesis organization

The contents of this thesis include both theoretical and experimental work, which is organized

in chapters as follows.

• Chapter 1: Introduction to the state of the art of graphene and terahertz technologies

and description of the thesis structure.

• Chapter 2: Theoretical framework to model graphene and 2D materials in Maxwell’s

equations. The chapter reviews the framework of Maxwell’s Equations and defines quan-

tities used in the reminder of the thesis. This chapter presents also all the conductivity

formulas used in the other chapters.

Original contributions: 2D materials are organized according to properties (locality,

anisotropy, chirality, reciprocity, gyrotropy,...). Such a detailed classification has not

been done previously, to the best of the candidate’s knowledge.

• Chapter 3: Theoretical upper-bound of graphene based reconfigurable and non-reciprocal

devices.

Original contributions: A bound introduced in [96] is extended to 2D materials, cor-

rected from some mistakes and extended to isolators and modulators performanc.

Optimal graphene transmission modulators, reflection modulators, isolators and Kerr

rotation are demonstrated. A bound is also given for phase modulators and reconfig-

urable or non-reciprocal antennas.

Publications:[JA8, JA12, JA13, CA28, CA19, CA17, CA22, CA23]

• Chapter 4: Plasmonic devices. The chapters begins with a review of plasmonics in

graphene.

Original contributions: propagation in narrow waveguides is addressed, plasmonic

antennas based on graphene are developed and are found to be frequency tunable.

Finally a new experimental method to measure the complex conductivity of graphene
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associated to plasmon propagation is discussed. Both the method and the realized

devices are original contributions.

Publications:[JA9, JA1, JA3, JA14, JA10, JA2, CA27, CA2, CA16, CA12, CA11, CA24, CA21,

CA13, CA8, CA3]

• Chapter 5: Graphene non reciprocal devices.

Original contributions: An ongoing research in collaboration with University of Geneva

(Dr. Alexey Kuzmenko) is described, resulting in metasurfaces to enhance Faraday

rotation in graphene and in the first THz non-reciprocal isolator based on graphene. To

the best of the author’s knowledge, this is also the first experimental isolator to work in

the high terahertz frequency (1 THz to 10 THz). The author designed the device and

analyzed the data. Nanolab (Dr. Clara Moldovan) fabricated the device and the group of

Alexey Kuzmenko (University of Geneva) measured the device.

Publications:[JA12]

• Chapter 6: This chapter describes the first terahertz graphene reflectarray able to per-

form beam steering.

Original contributions: First a fixed beam version of the reflectarray (without graphene)

is proposed. The multiband reflectarray pattern was designed by Dr. Hamed Hasani,

while the design of the fabrication process flow and fabrication itself are original con-

tributions of the author. The device was measured by Dr. Santiago Capdevila. The

final graphene reflectarray, a deliverable for the European Graphene Flagship project,

was designed, fabricated and measured by the author with the help of Dr. Santiago

Capdevila. Dr. Capdevila also designed the control unit to gate the reflectarray columns.

Publications:[JA4, CA5, CA19, CA15, CA20, CA17]

• Chapter 7:Conclusions and prospects for future research related to the topics of this

thesis.

• Appendix A: This appendix summarizes the fabrication process flows of the fabricated

devices.

1.6 Other contributions of the doctoral candidate

Additional contributions of the doctoral candidate (not included in this thesis) are:

• The development of vanadium dioxide modulated scatterers at terahertz, second author,

in collaboration with EPFL Nanolab (Dr. Wolfgang Vitale) and INRS-EMT.[JA15, CA17,

114]

• The development of stretchable terahertz reflectarrays (third author, in collaboration

with Dr. Pietro Romano)[CA15, 95].

• The design and fabrication of graphene quantum capacitance (second author, in collab-

oration with EPFL Nanolab (Dr. Clara Moldovan and Dr. Pankaj Sharma))[76].

• The development of a method to measure the phase response of optical nano-antennas.

• The integration of graphene quantum capacitance in an integral equations based elec-

trostatic method of moment code (second author, collaboration with Dr. Baptiste
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Hornecker)[46].

• Formal comments on the use of orbital angular momentum for radio communications[JA6,

JA7, CA30].

• The study of non-locality in graphene (third author, in collaboration with Dr. Arya

Fallahi and Dr. Tony Low)[JA3].

• Theoretical study of graphene NEMS in microwave phase shifters (collaboration with

Dr. Clara Moldovan and Dr. Wolfgang Vitale)[CA9, 76].

1.7 Funding sources

This work has been financially supported by the Swiss National Science Foundation (SNSF)

under grant 133583, the Hasler Foundation under Project 11149 and the European Commission

under Graphene Flagship (Contract No. CNECT-ICT-604391)
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2 Two-dimensional materials theory in
the framework of Maxwell’s equations

This chapter describes the theoretical modelling of graphene as a two-dimensional material

in the framework of Maxwell’s Equations for electromagnetism and photonics problems. First,

the Maxwellian framework with related definitions and assumptions is introduced. Second,

graphene is introduced in this framework and the conductivity formulas used in the reminder

of this thesis are presented. A discussion on which models are adequate for each condition is

also provided.

The majority of the contents shown in this chapters are well known, but are often fragmented

in literature. This chapter collects these concepts and aims at organizing then organically,

bridging optics, solid state physics and electromagnetism. The reader who is already accus-

tomed to this framework may skip this chapter or parts of it.

2.1 The Maxwellian framework

The electromagnetic and photonics phenomena considered in this thesis can be modeled

using Maxwell’s equations. These equations describe the mutual interaction between elec-

tric and magnetic field, explaining the propagation of electromagnetic waves. Importantly,

Maxwell’s equations are not the ultimate theory of light propagation, as they do not consider

quantum aspects such as photon entanglement. Nevertheless they can still be used to under-

stand a broad range of phenomena that are observed in graphene. In spite of the fundamental

quantum nature of graphene interaction with light, a semi-classical approach can be defined

where these effects are modeled as a macroscopic medium constitutive equations for electro-

magnetic fields. More specifically, the interaction between graphene and light is described by

its optical conductivity.

2.1.1 Electromagnetic propagation in vacuum

Even though Maxwell’s equations are well known, it is instructive to review here their definition

and, even more important, the assumptions that can be made with respect to each considered
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medium. Two-dimensional materials such as graphene can then be introduced by analogy.

Maxwell’s equations in the differential time-domain form in vacuum are:

∇¨D “ ρE

∇¨B “ 0

∇ˆE “ ´BB

Bt

∇ˆH “ BD

Bt
` JE

D “ ε0E

B “ μ0H (2.1)

where E is the electric field, D is the displacement field, H is the magnetic field, B is the

magnetic induction field, JE is the electric current density and ρE is the electric charge density.

All these quantities are vector fields (except the latter which is scalar) defined on space and

time.

Because in the following a complete framework for 2D materials is presented, it is useful

to include here the magnetic current density JM and the magnetic charge density ρM. The

updated equations read:

∇¨D “ ρE

∇¨B “ ρM

∇ˆE “ ´BB

Bt
´ JM

∇ˆH “ BD

Bt
` JE

D “ ε0E

B “ μ0H (2.2)

Even though there are currently no evidences on the existence of magnetic monopoles, the

response of many materials can be magnetic in the most general case, so it is useful to include

in Maxwell’s equations these auxiliary quantities from the beginning as they will simplify

conceptually the mathematical passages.

Because these equations are linear, taking Fourier’s transform in time they can be rewritten in
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2.1. The Maxwellian framework

frequency domain:

∇¨D “ ρE

∇¨B “ ρM

∇ˆE “ ´ jωB ´ JM

∇ˆH “ jωD ` JE

D “ ε0E

B “ μ0H (2.3)

At frequencies ω‰ 0 the first two equalities derive immediately from the second couple, also

considering charge conservation (continuity equations):

∇¨JE “ ´ jωρE

∇¨JM “ ´ jωρM (2.4)

which clearly show that all information about sources is contained in the current densities,

while full knowledge of charge densities is not sufficient. So the final set of equations needed

to fully describe the propagation of electromagnetic waves in vacuum in the electrodynamic

case (ω‰ 0) is:

∇ˆE “ ´ jωB ´ JM

∇ˆH “ jωD ` JE

D “ ε0E

B “ μ0H (2.5)

Replacing the D and B fields one finally gets:

∇ˆE “ ´ jωμ0H ´ JM

∇ˆH “ jωε0E ` JE (2.6)

If no sources are considered (homogeneous Maxwell’s equations), the possible solutions can
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Chapter 2. Two-dimensional materials theory in the framework of Maxwell’s equations

be decomposed in plane waves:

E “ E0e´ j k¨r

H “ H0e´ j k¨r

k ¨ E0 “ 0

H0 “ k ˆ E0

ωμ0

k2 “ k ¨ k “ ω2ε0μ0 (2.7)

The vector propagation phase and group velocities are defined respectively as:

vp fi k̂
ω

|k| “ k
ω

k2 (2.8)

vg fi ∇kω (2.9)

and for the considered vacuum case they are both equal to the speed of light c:

c “
d

1

ε0μ0
» 2.99792 ¨ 108 m ¨ s´1 (2.10)

For non-evanescent waves, i.e. if the imaginary part of k are null, E0, H0 and k are all or-

thogonal at each instant of time. The vector E0 is in general complex, and it encodes the

polarization of the propagating wave. The time evolution of the vector can be obtained, as for

any time-harmonic quantity, as RepE0e jωt q, and the trajectory of the E0 field as it evolves is in

the general case an ellipse in space. For non-evanescent plane waves the ellipse lies in the

plane orthogonal to k. Particular cases are the linear polarization (ReE0 ˆ ImE0 “ 0) and the

circular polarization (ReE0 ¨ ImE0 “ 0). The ratio between the electric and magnetic field is the

vacuum impedance, defined as:

η fi
E0

H0
“

c
μ0

ε0
» 376.73Ω (2.11)

The Poynting vector is defined as:

S fi E ˆ H in time domain (2.12)

S fi E ˆ H˚ in frequency domain (2.13)

and this definition is maintained for propagation in media. The stored electromagnetic energy

18



2.1. The Maxwellian framework

density is:

u “ uE ` uM “ 1

2
D ¨ E ` 1

2
B ¨ H in time domain (2.14)

2.1.2 Electromagnetic propagation in generic 3D medium

The study of the propagation of electromagnetic waves in materials different from vacuum

can be accomplished more easily by redefining the D and B fields. The first step to do so is to

distinguish two possible origins for the currents JM and JE:

• Actual external source currents (Jsrc
E and Jsrc

M )

• Currents induced in the medium by the fields E0 and H0 (Jmat
E and Jmat

M )

Maxwell equations then are written as:

∇ˆE “ ´ jωB ´ Jmat
M ´ Jsrc

M

∇ˆH “ jωD ` Jmat
E ` Jsrc

E (2.15)

and the D and B fields are redefined as

B ÐÝ B ` Jmat
M

jω

D ÐÝ D ` Jmat
E

jω
(2.16)

The final set of equations needed to describe propagation in the medium becomes then:

∇ˆE “ ´ jωB ´ Jsrc
M

∇ˆH “ jωD ` Jsrc
E

D “ fDpE,Hq
B “ fBpE,Hq (2.17)

The first two equations are referred to as the macroscopic Maxwell’s equations, while the

last two are the constitutive equations of the medium, and represent the full physical model

of the remaining phenomena occurring in the material. The two functionals fD and fB

characterize the materials and relate the displacement field D and the induced magnetic field

B to the electric and magnetic fields E and H. In the most general case, this relation can be

quite complex, as the D and B in a given point can depend on the E and H field in all the

points in space and time (with some constraints imposed by causality). Fortunately, for most
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materials, important simplifications take place in these relationships and are explored in the

next sections.

2.1.3 Interface/boundary conditions and 2D materials modelling

Interface conditions are a set of additional equations required when solving electromagnetic

problems involving more than one material, and they provide constraints on the electromag-

netic fields at the interface of the two materials. Importantly, these conditions can be extended

to include the presence of electric or magnetic currents existing exactly at the interface of the

two materials (and for this reason called surface currents). This is a crucial step to formalize

a model for 2D materials in the Maxwellian framework. Surface current can be described in

the distributional sense as a delta function; if the 2D material surface can be described by

an equation f px, y, zq “ 0 then it must be possible to represent the surface current as a 3D

distribution:

JsE “ JE δ
´

f px, y, zq
¯

JsM “ JM δ
´

f px, y, zq
¯

(2.18)

with the constraint of being parallel to the surface. A similar form must exist for the surface

charges. In the reminder, these kind of distributions are referred to as deltiform.

The following boundary conditions can then be deduced directly from macroscopic Maxwell’s

equations:

n̂12 ˆ
´

E2 ´ E1

¯
“ JsM

n̂12 ˆ
´

H2 ´ H1

¯
“ JsE

n̂12 ¨
´

B2 ´ B1

¯
“ ρsM

n̂12 ¨
´

D2 ´ D1

¯
“ ρsE (2.19)

where JsM and JsE are the magnetic and electric surface current densities while ρsM and ρsE are

the magnetic and electric charge densities. One more time, charge densities can be completely

determined from the current densities because of charge conservation.

As

(surface) currents in response to the surrounding fields, namely:

JsE “ fJE

´
E1∥,E2∥,H1∥,H2∥,B1K,B2K,D1K,D2K

¯
JsM “ fJM

´
E1∥,E2∥,H1∥,H2∥,B1K,B2K,D1K,D2K

¯
(2.20)
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with:

E1∥ “ n̂12 ˆ E1 E2∥ “ n̂12 ˆ E2 H1∥ “ n̂12 ˆ H1 H2∥ “ n̂12 ˆ H2

B1K “
´

n̂12 ¨ B1

¯
n̂12 B2K “

´
n̂12 ¨ B2

¯
n̂12 D1K “

´
n̂12 ¨ D1

¯
n̂12 D2K “

´
n̂12 ¨ D2

¯
n̂12

(2.21)

Because the differences in Equations 2.19 are actually determined by the surface current

themselves, the dependence can be expressed as the sum (or equivalently the average) of

these quantities. More specifically, defining:

E∥ “ 1

2

´
E1∥ ` E2∥

¯
H∥ “ 1

2

´
H1∥ ` H2∥

¯
DK “ 1

2

´
D1K ` D2K

¯
BK “ 1

2

´
B1K ` B2K

¯ (2.22)

we have:

JsE “ fJE

´
E∥,H∥,DK,BK

¯
JsM “ fJM

´
E∥,H∥,DK,BK

¯
(2.23)

The latter are the constitutive equations of the 2D material.

It is now worthy discussing which conditions are physically necessary to use this particular

description of 2D materials. First of all the thickness of the material has to be much smaller

than the wavelength in the host 3D material(s). Graphene is, for example, 0.34 nm thick (this

is an approximation because the indetermination principle actually “smears out” the position

of the electrons), which is three order of magnitude smaller than the wavelength of visible

light, and even electrically smaller for infrared or terahertz.

Secondly, the phase of the actual current distribution in the material must have a uniform

phase with depth. This rules out, for example, thin metallic films, which do not behave as 2D

materials because of variable current phase due to the skin depth effect. Examples of other

systems, a part from true 2D materials, are 2D electron gases (2DEGS) obtained, e.g., at the

interface of semiconductors, quantum wells or the surface of topological insulators. The latter

are 3D materials characterized by conducting states on their surface and, more in general, at

each interface between topological insulators and other insulators.

2.1.4 1D and 0D materials

In the previous section it was demonstrated that the modeling of true 2D materials (deltiform

in one dimensions) is possible in the framework of Maxwell’s equations without the need of

modeling them as thin anisotropic 3D materials. It is interesting at this point to briefly address
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a related question: can this approach be extended also to even lower dimensional systems?

For instance carbon nano-tubes (CNT) are an example of 1D materials where the size in two

dimensions is very small when compared to the wavelength. Similarly, quantum dots (QD) or

even directly single atoms (for optical frequencies and at a single photon level) are electrically

small in all three spatial dimensions, and hence can be considered as 0D entities.

The question can be made more precise by asking whether it is possible to determine a value

for the impedance of the object directly extending the approach used for 2D materials. The

unit of impedance (or reciprocally the conductance) clearly would depend on the number of

dimension of the systems, as shown in Table 2.1.

Table 2.1 – Low dimensional systems with impedance and conductance units

Number of Examples Impedance Conductivity Well
dimensions unit unit defined ?

3 Common 3D materials Ω ¨ m S¨m´1 Yes
2 2D materials, quantum wells Ω S Yes
1 1D materials, quantum wires Ω ¨ m´1 S¨ m No
0 Nano-particles, quantum dots Ω ¨ m´2 S¨m2 No

Unfortunately, while 2D materials conductivity and impedance are well-defined, it is impossi-

ble to describe objects which are deltiform in 2 dimensions (1D materials) or in 3 dimensions

(0D materials). The reason is that for such low dimensional objects the electromagnetic energy

stored in proximity of the electric or magnetic currents tends to infinity, forcing the currents

to be null. This is not the case for a surface current, which generates a finite discontinuity in

the field, and hence a finite amount of electromagnetic energy. To illustrate this point let us

consider the magnetic energy stored in proximity of a 1D material with length l supporting a

current I , within a distance r0. In the static case (which holds also in the dynamical case if r0

is much smaller than the wavelength) the total stored energy is given by:

B “ μ0I

2πr

UM “ 1

2μ0

ż l

0

ż r0

0

ż 2π

0
r B 2dθdr dz “

“ I 2μ0l

4π

«
ln |r |

ffr0

0

“
“ 8 (2.24)

A similar demonstration holds for the 0D case.

In conclusions the modeling of truly deltiform materials is impossible for the 1D and 0D

case, and the actual size of the object (e.g. the CNT diameter) is required to model it in the

framework of Maxwell’s equations. This is also the reason why the modeling of wire antennas
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with numerical methods always requires the actual wire thickness to provide meaningful

results. In contrast, graphene, independently of its actual physical thickness, can be modeled

as a true 2D material consistently with Maxwell’s equations.

2.1.5 Constitutive equations: particular cases

The general constitutive equations for 2D and 3D materials (Equations 2.17,2.23) are expressed

in the most general form, and hence little conclusions can be drawn unless more particular

cases are explored. Fortunately, most 2D and 3D materials are accurately modeled in these par-

ticular cases. In the remainder of this section these simplifications are introduced sequentially

and the constitutive equations (for both the 3D and 2D cases) are casted in the corresponding

particular form.

In plane 2D response

The first considered particular case concerns 2D materials: for most practical cases, one can

neglect the effect of the out-of-plane fields DK and BK, and so the corresponding equations

become:

JsE “ fJE

´
E∥,H∥

¯
JsM “ fJM

´
E∥,H∥

¯
(2.25)

Notably there is an important exception, which concerns the terahertz response of graphene

under strong magnetostatic bias. There the biasing field BK modifies the response at terahertz

frequencies. However, the effect can be modeled including the magnetostatic field as a simple

parameter, preserving linearity (see below) for terahertz radiation.

Linear media

Linear media are defined as media where the linear combination of possible field configu-

rations is also a possible field configuration. Hence the constitutive relations for 3D and 2D

materials can be rewritten as:

D “
�

space

ż t

´8

”
fEEpr,r1, t , t 1qEpr1, t 1q` fEMpr,r1, t , t 1qHpr1, t 1q

ı
dt 1dr1

B “
�

space

ż t

´8

”
fMEpr,r1, t , t 1qEpr1, t 1q` fMMpr,r1, t , t 1qHpr1, t 1q

ı
dt 1dr1 (2.26)
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Chapter 2. Two-dimensional materials theory in the framework of Maxwell’s equations

JsE “
�

space

ż t

´8
“
σEEpr,r1, t , t 1qE∥pr1, t 1q`σEMpr,r1, t , t 1qH∥pr1, t 1q‰

dt 1dr1

JsM “
�

space

ż t

´8
“
σMEpr,r1, t , t 1qE∥pr1, t 1q`σMMpr,r1, t , t 1qH∥pr1, t 1q‰

dt 1dr1 (2.27)

Importantly the tensors f are 3 ˆ 3 dyadics as they linearly relate two 3D fields, while the

tensors σ are 2ˆ2 dyadics as they relate 2D fields (i.e. surface currents and tangential E and H

fields)

Time invariance and frequency dispersion

Time invariance is an important property which applies to most media, which holds when

a material does not change its properties with time. If, in addition to linearity, also time

invariance is assumed (as done in the reminder of this document) then the constitutive

relations for 3D and 2D material can be written as convolutions in time domain:

D “
�

space

ż t

´8

”
fEEpr,r1, t ´ t 1qEpr1, t 1q` fEMpr,r1, t ´ t 1qHpr1, t 1q

ı
dt 1dr1

B “
�

space

ż t

´8

”
fMEpr,r1, t ´ t 1qEpr1, t 1q` fMMpr,r1, t ´ t 1qHpr1, t 1q

ı
dt 1dr1 (2.28)

JsE “
�

space

ż t

´8
“
σEEpr,r1, t ´ t 1qE∥pr1, t 1q`σEMpr,r1, t ´ t 1qH∥pr1, t 1q‰

dt 1dr1

JsM “
�

space

ż t

´8
“
σMEpr,r1, t ´ t 1qE∥pr1, t 1q`σMMpr,r1, t ´ t 1qH∥pr1, t 1q‰

dt 1dr1 (2.29)

Taking the Fourier transform in time it is possible to write the relation in the ω spectral domain

in a frequency-wise manner as:

D “
�

space

”
fEEpr,r1qEpr1q` fEMpr,r1qHpr1q

ı
dr1

B “
�

space

”
fMEpr,r1qEpr1q` fMMpr,r1qHpr1q

ı
dr1 (2.30)
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2.1. The Maxwellian framework

JsE “
�

space

“
σEEpr,r1qE∥pr1q`σEMpr,r1qH∥pr1q‰

dr1

JsM “
�

space

“
σMEpr,r1qE∥pr1q`σMMpr,r1qH∥pr1q‰

dr1 (2.31)

where the dependence on ω of all the quantities has been omitted. If at least one among the

kernels ( fDE, fDH ...) is not constant with ω then the medium is said to be frequency dispersive

(or simply dispersive), otherwise it is non-dispersive.

Spatial homogeneity and locality

The analogous of time invariance in the spatial domain is the medium homogeneity, namely

the fact that the medium has the same properties at any position in space. If that is assumed

in addition to time invariance, the kernels further simplifies:

D “
�

space

”
fEEpr ´ r1qEpr1q` fEMpr ´ r1qHpr1q

ı
dr1

B “
�

space

”
fMEpr ´ r1qEpr1q` fMMpr ´ r1qHpr1q

ı
dr1 (2.32)

JsE “
�

space

“
σEEpr ´ r1qE∥pr1q`σEMpr ´ r1qH∥pr1q‰

dr1

JsM “
�

space

“
σMEpr ´ r1qE∥pr1q`σMMpr ´ r1qH∥pr1q‰

dr1 (2.33)

Taking the Fourier transform in space it is possible to write the relation in the k spectral

domain as:

D “ fEEE ` fEMH

B “ fMEE ` fMMH (2.34)

JsE “ σEEE∥ `σEMH∥
JsM “ σMEE∥ `σMMH∥ (2.35)
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Chapter 2. Two-dimensional materials theory in the framework of Maxwell’s equations

where each equation holds for each considered wave-vector k. If the kernels (now simple

coefficients) are constant with k (this is the case for most cases) then the material is said to

be local. Otherwise it is said to be spatially dispersive or non-local. Importantly, for a local

non-homogeneous medium, equations 2.34 and 2.35 still hold, but they hold for each point r

in space rather than for each point in the spectral k domain.

In most cases, materials can be treated as local. If, however, the fields are forced in very

confined regions or have very large spatial variability, spatial dispersion might become relevant.

For example, the anomalous skin effect occurs when the mean free path of carriers in a

conductor (typically metal at low temperature) becomes comparable with the skin depth. The

effect can only be explained in a non local way, because the electron’s inertia causes, for each

point in space, electric currents dependent on the fields in a surrounding area, rather than

just in the point itself. Another example are graphene plasmons, which in certain extreme

confinement regions are expected to be affected by non-locality. Again, this is due to carrier’s

dynamics.

For 3D materials, the four tensor quantities in equation 2.34 have specific names:

D “ εE `ξH (2.36)

B “ ζE `μH (2.37)

εr “ ε´1
0 ε (2.38)

μ
r

“ μ´1
0 μ (2.39)

and can be represented in a single linear relationship:

ˆ
D

B

˙
“ C

ˆ
E

H

˙
C “

˜
ε ξ

ζ μ

¸
(2.40)

where C is the material matrix, ε is the material permittivity tensor, μ is the permeability

tensor, while ξ and ζ are the magneto-electric dyadics. The latter are usually represented as

ξ“χT ´ jκT and ζ“χ` jκ, so that [102]:

ˆ
D

B

˙
“ C

ˆ
E

H

˙
C “

˜
ε χT ´ jκT

χ` jκ μ

¸
(2.41)

This representation has two serious drawbacks, which were highlighted already in [96]. The

first drawback is that it is not easy to express a condition for causality in the considered

material using this representation. The second is that the conditions for reciprocity are

not straightforward (the meaning and importance of reciprocity are recalled later). In fact

reciprocity implies symmetry in the permittivity and permeability tensors, but this is not the

case for the full C matrix. On the contrary, the χ tensor is referred to as the non-reciprocal

Tellegen dyadic and κ as the reciprocal chiral dyadic [54].
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2.1. The Maxwellian framework

To solve these issues it was proposed [96] to redefine the material matrix in order to be always

consistent with the concept of impedance in terms of passivity, causality and reciprocity:

Q “ Y R Y “ jω

˜
ε jχT `κT

´ jχ`κ μ

¸
“

˜
ε jξ

´ jζ μ

¸
(2.42)

Q “ jω

ˆ
j D

B

˙
“ jω

¨
˚̊̊
˚̊̊
˚̋

j Dx

j Dy

j Dz

Bx

By

Bz

˛
‹‹‹‹‹‹‹‚

R “
ˆ

j E

H

˙
“

¨
˚̊̊
˚̊̊
˚̋

j Ex

j Ey

j Ez

Hx

Hy

Hz

˛
‹‹‹‹‹‹‹‚

(2.43)

The Y matrix has in particular the property of being symmetrical for reciprocal materials.

Importantly, although the matrix was called Z in [96] to recall similar properties with respect to

the impedances, it contains terms with multiple dimensions in the SI system, and it is renamed

here as Y because of its closer resemblance with an admittance matrix, as will be evident in

the following. In fact, as a further step, Equation 2.35 can be extended to 3D materials:

JE “ σEEE `σEMH

JM “ σMEE `σMMH (2.44)

and the quantities replaced in the Y matrix:

Y “
ˆ

jωε0 `σEE jσEM

´ jσME jωμ0 `σMM

˙
(2.45)

By analogy, the 2D material matrix is:

Y “
ˆ

σEE jσEM

´ jσME σMM

˙
(2.46)

The absence of the diagonal constant terms is linked to the fact that 2D materials have no

volume, and hence no background vacuum permittivity or permeability. These matrices will

be used especially in the next chapter.
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Chapter 2. Two-dimensional materials theory in the framework of Maxwell’s equations

Isotropy, chirality and reciprocity

The previously described cases are still very general, and a further classification is possible

accordingly to the properties of the material matrix. Table 2.2 is a classification of the main

types of 3D materials (and by extension 2D) including relevant parameters and number of

complex scalar values needed to fully describe the material. The most general case are bi-

Table 2.2 – Classification of 2D and 3D materials according to chirality and isotropy

3D materials 2D materials
Bi-anisotropic ε,χ,ζ,μ: 36 parameters σEE, σEM,σME,σMM: 16 parameters

ë [reciprocal case] ε,ζ,μ: 21 parameters σEE, σEM,σME,σMM: 10 parameters

Bi-isotropic ε,χ,ζ,μ: 4 parameters σEE, σEM,σME,σMM: 4 parameters
ë [reciprocal case] ε,ζ,μ: 3 parameters σEE, σEM,σME,σMM: 3 parameters

Anisotropic ε,μ: 18 parameters σEE,σMM: 8 parameters

ë [reciprocal case] ε,μ: 12 parameters σEE,σMM: 6 parameters

Gyrotropic ε,μ: 6 parameters σEE,σMM: 4 parameters

Isotropic ε,μ: 2 parameters σEE,σMM: 2 parameters
Anisotropic amagnetic ε: 9 parameters σEE: 4 parameters

ë [reciprocal case] ε: 6 parameters σEE: 3 parameters
Gyrotropic amagnetic ε: 3 parameters σEE: 2 parameters
Isotropic amagnetic ε: 1 parameter σEE, 1 parameter

anisotropic materials which requires the full specification of the full Y matrix. This implies

36 complex parameters to be specified for 3D materials and 16 for 2D materials. The term

anisotropic refers to the fact that the material is not invariant with a 3D rotation (or 2D for 2D

materials), i.e. its behavior depends on the material orientation, while the prefix bi- refers to

the fact that there is a crossed dependence of electrical properties and magnetic properties

(magneto-electric media). Bi-isotropic materials are invariant to 3D rotations but still have

magneto-electric properties – for example a non-racemic suspension of chiral molecules falls

in this category. Anisotropic materials have pure magnetic and electric interaction, and are

dependent on the orientation, while isotropic materials are rotationally invariant. Gyrotropic

materials are invariant to rotations along a specific axis (typically the tensor is given assuming

that this axis is z). For 3D materials the tensors then take the following form:

ε“
¨
˚̋ εd εo 0

´εo εd 0

0 0 εz

˛
‹‚ μ“

¨
˚̋ μd μo 0

´μo μd 0

0 0 μz

˛
‹‚ (2.47)

and for 2D materials

σEE “
ˆ

σdEE σoEE

´σoEE σdEE

˙
σMM “

ˆ
σdMM σoMM

´σoMM σdMM

˙
(2.48)

The term amagnetic is used to indicate that the material has negligible magnetic properties.
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2.2. Lorentz reciprocity principle

Reciprocal materials satisfy the Lorentz reciprocity principle, which means that the Y matrix

is symmetrical, adding more constraints and reducing the number of parameters needed

to fully describe the material. Importantly, isotropic materials are always reciprocal and

gyrotropic ones are always non-reciprocal (a part from trivial sub-cases). Reciprocity is

discussed in details in the reminder of this chapter.

All the considered 2D materials in this thesis are assumed to be amagnetic, and the interaction

is only of electrical nature. Consequently the tensor σEE is sufficient to describe the material,

and from now on it will be referred to simply as σ. Relevant 2D materials examples are

graphene (amagnetic isotropic), black phosphorus (reciprocal, amagnetic anisotropic) and

graphene under magnetic bias (gyrotropic amagnetic).

Finally, perfect electric conductors (PEC) and perfect magnetic conductors (PMC) are 2D

materials where σEE or σMM respectively tend to infinity times the identity matrix.

2.2 Lorentz reciprocity principle

Lorentz reciprocity principle is an extremely important principle which, expressed in a very

simplified way, claims that if the source of electromagnetic and an observer are switched

of positions then the observer will perceive the same amount of electromagnetic radiation.

Because the discussion of the validity of this principle involves also different cases of media,

let us rewrite here Equation 2.15 as

∇ˆE “ ´ jωμ0H ´ Jmat
M ´ Jsrc

M

∇ˆH “ jωε0E ` Jmat
E ` Jsrc

E (2.49)

Defining Jtot
E fi Jmat

E ` Jsrc
E and Jtot

M fi Jmat
M ` Jsrc

M the Maxwell’s equations takes the microscopic

form (i.e. in vacuum):

∇ˆE “ ´ jωμ0H ´ Jtot
M

∇ˆH “ jωε0E ` Jtot
E (2.50)

Let us now consider the same electromagnetic system under two different excitations condi-

tions, namely Jsrc
E and Jsrc

M change from one condition to the other and consequently all the

fields do. We name these two conditions ‘A’ and ‘B’, and we use these as subscripts in all the
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Chapter 2. Two-dimensional materials theory in the framework of Maxwell’s equations

resulting fields. Let us then define the following fields:

W fi EA ˆ HB ´ EB ˆ HA (2.51)

W tot
J ,E fi

`
Jtot

E,A ¨ EB ´ Jtot
E,B ¨ EA

˘
(2.52)

W tot
J ,H fi ´`

Jtot
M,A ¨ HB ´ Jtot

M,B ¨ HA
˘

(2.53)

W tot
J fi W tot

J ,E `W tot
J ,H (2.54)

W mat
J ,E fi

`
Jmat

E,A ¨ EB ´ Jmat
E,B ¨ EA

˘
(2.55)

W mat
J ,H fi ´`

Jmat
M,A ¨ HB ´ Jmat

M,B ¨ HA
˘

(2.56)

W mat
J fi W mat

J ,E `W mat
J ,H (2.57)

W src
J ,E fi

`
Jsrc

E,A ¨ EB ´ Jsrc
E,B ¨ EA

˘
(2.58)

W src
J ,H fi ´`

Jsrc
M,A ¨ HB ´ Jsrc

M,B ¨ HA
˘

(2.59)

W src
J fi W src

J ,E `W src
J ,H (2.60)

These fields are not physical fields, in the sense that they are not defined in a given space and

moment because they actually depend on two distinct situations. Hence they can be used to

compare the propagation in these two cases. For the moment we assume that only excitation

changes in the two conditions ‘A’ and ‘B’, later we will also assume that the materials involved

can change, always to compare the propagation in different conditions.

Let us now consider the divergence of the W field:

∇ ¨ W “ ∇¨pEA ˆ HB ´ EB ˆ HAq
“ p∇ˆ EAq ¨ HB ´ p∇ˆ HBq ¨ EA ´ p∇ˆ EBq ¨ HA ` p∇ˆ HAq ¨ EB (2.61)

Replacing Maxwell’s Equations in the curls we obtain:

∇ ¨ W “ W tot
J (2.62)

which is known as the Lorentz reciprocity principle. This principle will be also used in its

integral formulation in the reminder of this thesis, which reads:

�

S

W ¨ dS “
�

V

W tot
J dV (2.63)

where V is a volume of space and S is the closed surface delimiting this volume. If we assume

that in volume V there are no sources then inside it we have W src
J “ 0 and W tot

J “ W mat
J . Using

30



2.3. Passive, active and lossless materials

the formalism of the Y matrix shown above, it is possible rewriting this quantity as:

W mat
J “ RAY RB ´ RBY RA “ RA

`
Y ´ Y T

˘
RB (2.64)

If the Y matrix is symmetric then the material is said to be reciprocal and the following holds:

∇ ¨ W “ 0 (2.65)�

S

W ¨ dS “ 0 (2.66)

The importance of this relation will be evident when defining the scattering matrix formalism.

All the above passages apply both for 3D and 2D materials.

2.3 Passive, active and lossless materials

Materials can be classified according to their ability to attenuate or amplify propagating

electromagnetic waves in the following categories:

Lossless materials: cannot absorb or amplify electromagnetic fields.

Passive materials: can absorb electromagnetic energy but not provide it

Active materials: can provide electromagnetic energy and hence amplify waves.

The power flow is given by the real part of the Poynting vector S fi E ˆ H˚. The capability of

generating of absorbing optical power in a material is hence linked to Rep∇ ¨ Sq. Following

similar passages as in the reciprocity case we find that the power generated in the material is:

Rep∇ ¨ Sq “ ´RepR˚ ¨ Qq “ ´Re
´

RHY R
¯

“ ´1

2
RH

´
Y ` Y H

¯
R (2.67)

If we consider without loss of generality |R| “ 1 then the range of possible values for this

expression is bounded by the real part of the eigenvalues of Y . Negative divergence means

that energy is being absorbed in the material and vice versa. Hence:

Lossless materials: All eigenvalues of Y have zero real part.

Passive materials: At least one eigenvalue of Y has positive real part, no one has negative

real part.

Active materials: At least one eigenvalue of Y has negative real part.

This is exactly the behavior of a generic admittance matrix, confirming the advantage of using
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Chapter 2. Two-dimensional materials theory in the framework of Maxwell’s equations
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Figure 2.1 – Definition of scattering parameters for a) guided structures, b) layered structures and metasurfaces, c)
antennas.

the Y notation.

2.4 The scattering matrix formalism

Most of the photonic devices considered in this thesis interact with lights propagating as

known modes. The concept of mode is very general and it indicates a particular way in which

light can propagate resulting as a solution of Maxwell’s Equations potentially in presence of

waveguides. Three cases are of particular interest for this dissertation (see Figure 2.1):

• Electromagnetic wave propagating in waveguides (for guided devices).

• Electromagnetic wave propagating in free space (for planar devices).

• Electromagnetic waves radiating from antennas.
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2.4. The scattering matrix formalism

In all cases the considered modes are supported – for simplicity – by lossless reciprocal media

(e.g. vacuum, PEC or lossless dielectrics). Each mode can propagate semi-infinitely in one

direction, while on the other it terminates on the device. Because of reciprocity, each of these

access modes can support a progressive (or incident) wave towards the device and a regressive

(or scattered) one propagating away from it. The device is surrounded by a surface S which

encloses it and that is sufficiently large to ensure that the fields existing on S are solely due to

the considered access modes and not to, e.g., evanescent fields from the structure. S is called

enveloping surface after the concept is introduced in [77], chapter 5. Importantly, the access

modes must be orthogonal on S, as described in the following.

Figure 2.1a shows an example where S encloses a device (junction) whose terminals are

waveguides. Figure 2.1b instead represents a planar device, which operates with plane waves;

the S surface is simply the union of two planes which are taken sufficiently distant from the

planar device. Polarization can be described using horizontal and vertical components, and

2D infinite periodic structures (metasurfaces) can be modeled provided that the unit cell

is smaller than the wavelength. If it is larger, additional grating plane waves modes need

to be considered in the scattering matrix formalism. Figure 2.1c shows that also antennas

(i.e. structures converting guided modes to free space propagation) can be described in this

formalism, by considering a feeding mode and decomposing the radiated field in orthogonal

modes (e.g. spherical harmonics).

Once the access modes have been identified – and assuming that linearity holds – the structure

can be completely described using a scattering matrix S [77]. The scattering matrix describes

the linear relationship between the incident and scattered waves; the latter are modeled

assuming that each mode can be written as [77]:

E∥i “ pai e´γz ` bi e`γzqe∥i px, yq
H∥i “ pai h´γz ´ bi h`γzqh∥i px, yq (2.68)

ai and bi represent the progressive and regressive amplitudes of the i -th mode and they are

expressed in W1{2. The complex scalar γ is the propagation coefficient along the modal propa-

gation coordinate z while e and h are the tangential electric and magnetic fields distributions

along the two transversal coordinates x and y .

These distributions must be orthonormal for a proper mode decomposition, hence:

�

S

e∥i ˆ h˚
∥ j “ δi j (2.69)

where δi j is the Kronecker delta. In this formalism, the device internal details are completely
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Chapter 2. Two-dimensional materials theory in the framework of Maxwell’s equations

described by S:

b “ Sa (2.70)

A number of properties of the device can be expressed in a simple form using S. For example,

for lossless devices S is unitary, that is SSH “ I where I is the identity matrix. More in general,

the eigenvalues of S provide information on device passivity, in a similar way as the Y matrix

does for a material, however the magnitude of the eigenvalues is involved here:

Lossless device All eigenvalues of S have magnitude 1.

Passive device At least one eigenvalue of S has magnitude ă 1, none has magnitude ą 1.

Active device At least one eigenvalue of S has magnitude ą 1.

This is due to the fact that the total power entering the device is

Pin “ Pinc ´ Pscatt

“ aHa ´ bHb

“ aHa ´ aHSHSa

“ aHpI ´ SHSqa

“ ´
�

S

RepS ¨ dSq

“ ´
�

V

Rep∇¨SdV q

“ 1

2
RH

´
Y ` Y H

¯
R (2.71)

and the eigenvalues of SHS are the absolute value squared of the eigenvalues of S.

Similarly, if the device contains only reciprocal materials, then it is possible to consider two

excitations aA, aB and knowing already that:

�

S

W ¨ dS “ 0 (2.72)
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2.4. The scattering matrix formalism

we have [77, 96]:

�

V

∇¨WdV “
�

V

RA
`

Y ´ Y T
˘

RBdV

“
�

S

W ¨ dS

“
�

S

pEA ˆ HB ´ EB ˆ HAq ¨ dS

“ 2
`

aT
BbA ´ aT

AbB

˘
“ 2

`
aT

BbA ´ bT
BaA

˘
“ 2

`
aT

BSaA ´ aT
BSTaA

˘
“ 2aT

B

`
S ´ ST

˘
aA (2.73)

Importantly, the first passage above is just a sketch of the full demonstration, which makes

use of Maxwell’s equations for e and h to prove this result. If the materials are reciprocal, this

results implies S “ ST, namely the scattering matrix of reciprocal devices is symmetric.

In Chapter 3 this result will be generalized, and it will be demonstrated that, if the device

contains a single non-reciprocal material, the transposition of the Y matrix of the material

causes the transposition of the S matrix of the device. More in general, if all the Y matrices

of the used materials are transposed (and only non reciprocal materials are affected by this

operation), the final S matrix of the transformed device is also transposed. Most optical

non-reciprocal materials, including graphene, need a biasing magnetostatic field to acquire

non-reciprocal properties. Usually, if this magnetic field is reversed, the Y matrix of the device

is transposed, and, consequently, the scattering matrix is also transposed. This theorem is

already known in literature [113, 54], but it can be demonstrated as a straightforward corollary

of the theory presented in Chapter 3.

2.4.1 Scattering matrix for antennas

In Chapter 3 a description of antennas based on scattering parameters is needed. This is

a relatively unusual approach, and hence it is fully derived in this subsection. This can

be achieved by decomposing the radiated pattern in a summation of orthogonal modes.

These could be for instances spherical harmonics, but any set of modes Ei pθ,ϕq satisfying

orthonormality can be used, i.e.:

1

4πη

�
Ei pθ,ϕq ¨ E˚

j pθ,ϕqdΩ “ δi j Pref (2.74)
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Chapter 2. Two-dimensional materials theory in the framework of Maxwell’s equations

where the integral is taken on the sphere to infinity, η is the free space impedance and Pref

is some reference power. We can then fully describe the electromagnetic properties of the

antenna with an infinite-dimensional scattering matrix S defined for convenience with 0-

based indexing, where the 0 index refers to the antenna input port and the other indexes

to the radiation modes. In this formalism S00 “ Γ refers to the antenna input reflection

coefficient, Si 0 for i ě 1 to the radiation pattern, S0 j for j ě 1 to the reception pattern and

Si j for i , j ě 1 to the scattering behavior of the antenna when loaded with a matched load.

In practice, this infinite scattering matrix can be truncated in order to include only relevant

modes, especially for electrically small antennas; however we will not make use of such

truncation in the reminder as it is not needed. The total field radiated by the antenna can

then be expressed assuming an incident forward power wave a0 on the input port with power

Pforw “ |a0|2Pref. Notice that we are assuming here (and only for the antenna case) that the

power waves ai and b j are dimensionless complex numbers, normalized to a the reference

power Pref. This is useful as it simplifies following expressions and reconciles the results to the

orthonormality relation above which needs a reference power to be defined. The expression

for the total radiated field is:

Eradpθ,ϕq “ a0

8ÿ
i“1

Si 0Ei pθ,ϕq (2.75)

The radiated power can then be expressed exploiting the orthogonality of the radiation modes:

Prad “ 1

4πη

�
Eradpθ,ϕq ¨ E˚

radpθ,ϕqdΩ “ |a0|2Pref

8ÿ
i“1

|Si 0|2 (2.76)

We can then compute the total radiation efficiency εrad defined as the ratio of the radiated

power Prad to the incident power Pforw on the input port:

εrad “ Prad

Pforw
“

8ÿ
i“1

|Si 0|2 (2.77)

The conventional radiation efficiency ηrad defined as the ratio of the radiated power Prad to

the input power Pin can be found noting that Pin “ Pforwp1 ´|Γ|2q:

ηrad “ Prad

Pin
“ 1

1 ´|Γ|2

8ÿ
i“1

|Si 0|2 (2.78)
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2.4. The scattering matrix formalism

Since in the remainder also non reciprocal antennas are considered, it is convenient to intro-

duce here also the equivalent quantities in reception:

εrec “ Prec

Pbacw
“

8ÿ
j “1

|S0 j |2 (2.79)

ηrec “ Prec

Pout
“ 1

1 ´|Γ|2

8ÿ
j “1

|S0 j |2 (2.80)

where Pout is the output power at the antenna port and Pbacw is given by the relation Pout “
Pbackp1 ´ |Γ|2q. Notice that, with respect to the transmission case, in reception the index of

the scattering terms are reversed. For reciprocal antennas this leads to the same efficiency

as in the transmission case. For non-reciprocal antennas, however, these quantities might

differ. Recalling that the inversion of the magnetostatic field causes the transposition of the

scattering matrix, it is also possible to claim that the reception pattern and efficiency are the

transmission pattern and efficiency for opposite magnetic bias.

2.4.2 Transmission line models of layered structures and metasurfaces

In the following, transmission line theory is used to simulate numerically simple layered

structures. First, considering linear local isotropic 3D materials, macroscopic Maxwell’s

equations in absence of sources read:

∇ˆE “ ´ jωB

∇ˆH “ jωD

D “ εE

B “ μH (2.81)

In analogy to the vacuum case the solutions are plane waves:

E “ E0e´ j k¨r

H “ H0e´ j k¨r

k ¨ E0 “ 0

H0 “ k ˆ E0

ωμ

k2 “ k ¨ k “ ω2εμ (2.82)
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Assuming without loss of generality that the propagation occurs in the z direction (k “ kz ẑ)

and that the electric field is parallel to the x axis (E “ Ex x̂) we get:

E “ `
E`

0x e´ j kz z ` E´
0x e` j kz z

˘
x̂ (2.83)

H “ Z ´1
0

`
E`

0x e´ j kz z ´ E´
0x e` j kz z

˘
ŷ (2.84)

Z0 “
c

μ

ε
(2.85)

kz “ ω
?
εμ (2.86)

which is analogous to a transmission line model with parameters Z0 and kz , depending on

the material properties. A part from this mode (horizontal polarization) another one exist

(vertical) if the electric field is chosen parallel to the y axis.

Using the boundary conditions it is then possible to include 2D materials in this transmission

line model. More precisely, the following substitutions are made:

• Dielectric layers: replaced with a transmission line having characteristic impedance

Z0 “ a
με´1 and propagation constant γ“ j k “α` jβ“ jω

?
εμ.

• Metallic layers: modeled as a dielectric layers with μ“μ0 and an equivalent ε computed

from the conductivity (see Section 2.5).

• 2D materials: assumed to be amagnetic, modeled as conductance in parallel, identical

to the 2D conductivity of the 2D material.

• electrically thin metasurfaces, modeled as conductance in parallel, equal to their meta-

conductivity. This approach can be used only if the evanescent waves from the meta-

surface are confined in a space much smaller than the thickness of the surrounding

dielectric layers.

If two polarizations are relevant, one transmission line is used for each polarization (e.g.

horizontal and vertical), possibly coupled by non-isotropic 2D materials.

2.4.3 Metasurfaces: linear and circular four waves scattering matrix

A metasurface is a 2D periodic arrangement of structures including 3D materials, 2D materials

or both. A metasurface can also include layered structure along the propagation direction

z. If the incidence is normal, the periodicity of the metasurface must be smaller than the

wavelength in the access media (usually vacuum). For arbitrary incidence direction, the peri-

odicity must be smaller than half a wavelength. Figure 2.2 shows two conventions used in this

thesis for the scattering parameters of a metasurface, for linear and circular polarizations. This

approach is equivalent to a generalized Jones’s Matrix formalism [18]. Notice that, for circularly

polarized waves, modes are identified by the handedness of the polarization rather than by

the absolute rotation direction in the x y plane. This is linked to the fact that handedness is

preserved in a time reversal transformation, satisfying the condition that the regressive wave
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Figure 2.2 – Scattering matrix conventions for a) linearly and b) circularly polarized light for planar devices.

must be a time reversed version of the progressive wave. In this thesis the wave handedness is

abbreviated as either:

• RHCP: right hand circularly polarized

• LHCP: left hand circularly polarized

When referring to the absolute rotation in the x y plane, these will be referred as:

• CW: clockwise

• CCW: counterclockwise

Figure 2.3a represents these conventions when the z axis is taken in the same direction of

progressive waves, while Figure 2.3b illustrates the case where the z axis is reversed, which is

useful for devices operating in reflection (such as the isolator in chapter 5).

Both for linear and circular polarization conventions, the metasurface can be represented
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Figure 2.3 – Conventions on representing circularly polarized waves.

with a 4 ˆ 4 scattering matrix, with 16 complex degrees of freedom (CDOFs).

Slin “

¨
˚̊̊
˝

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

˛
‹‹‹‚ Scirc “

¨
˚̊̊
˝

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

˛
‹‹‹‚ (2.87)

In both cases, the matrices can be divided in four blocks:

S “
ˆ

J
LL

J
LR

J
RL

J
RR

˙
(2.88)

where:

• J
LL

is the Jones matrix representing reflection on the left side.
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2.4. The scattering matrix formalism

• J
LR

is the Jones matrix representing transmission from right to left.

• J
RL

is the Jones matrix representing transmission from left to right.

• J
RR

is the Jones matrix representing reflection on the right side.

The following relation can be used to convert between linearly polarization matrices and

circular ones:

Scirc “ ?
2

¨
˚̊̊
˝

1 ´ j 0 0

1 j 0 0

0 0 1 j

0 0 1 ´ j

˛
‹‹‹‚Slin

?
2

¨
˚̊̊
˝

1 1 0 0

´ j j 0 0

0 0 1 1

0 0 j ´ j

˛
‹‹‹‚ (2.89)

Important simplifications in the scattering matrix take place for some particular cases listed

below, which are relevant for many devices considered in the following.

Reciprocal metasurfaces

Reciprocal devices always have symmetric scattering matrices, and as a consequence the

device is described by 10 complex degrees of freedom:

Slin “

¨
˚̊̊
˝

S11 S12 S13 S14

S12 S22 S23 S24

S13 S23 S33 S34

S14 S24 S34 S44

˛
‹‹‹‚ Scirc “

¨
˚̊̊
˝

S11 S12 S13 S14

S12 S22 S23 S24

S13 S23 S33 S34

S14 S24 S34 S44

˛
‹‹‹‚ (2.90)

In this equations and in the following cases, the green quantities represent non-free parameters

which depends on the free ones (in black).

C3, C4, C6 and C8 structures

If the metasurface is either:

• C3: invariant to a rotation of 120° in the x y plane.

• C4: invariant to a rotation of 90° in the x y plane.

• C6: invariant to a rotation of 60° in the x y plane.

• C8: invariant to any rotation in the x y plane.
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then several parameters in the circular matrix representation are null:

Scirc “

¨
˚̊̊
˝

0 S12 S13 0

S21 0 0 S24

S31 0 0 S34

0 S42 S43 0

˛
‹‹‹‚ (2.91)

This property is of special importance for the isolator presented in chapter 5. The number of

CDOFs is 8.

Electrically thin metasurface

A metasurface is said to be electrically thin if it has the following properties:

• The metasurface includes only amagnetic materials

• Its thickness is much smaller than the wavelength in surrounding media

• The current in the metasurface is uniform along z (at least in phase)

Then the tangential component of the electric field E has the same value on each side of the

metasurface and the number of CDOFs is reduced to just 4:

Slin “

¨
˚̊̊
˝

S11 S12 S11 ` 1 S12

S21 S22 S21 S22 ` 1

S11 ` 1 S12 S11 S12

S21 S22 ` 1 S21 S22

˛
‹‹‹‚ (2.92)

Scirc “

¨
˚̊̊
˝

S11 S12 S12 ` 1 S11

S21 S22 S22 S21 ` 1

S21 ` 1 S22 S22 S21

S11 S12 ` 1 S12 S11

˛
‹‹‹‚ (2.93)

An electrically thin metasurface can be modeled equivalently as a 2D meta-conductivity σMETA,

which also has 4 CDOFs, and the scattering matrix in linear polarization form is given by:

Slin “
ˆ

Γ Γ` I

Γ` I Γ

˙
Γ“ ´σMETA

`
2η´1I `σMETA

˘´1
(2.94)

Graphene and patterned graphene both belong to this category, and the same applies to

any 2D material. Patterns obtained with metallic films may or may not fall in this category

accordingly to the film thickness and to the skin depth. In fact, if the thickness is comparable

or larger than the skin depth, then the induced current will not be uniform in the material

and hence the tangential electric field will be discontinuous. If the thickness is much smaller

than the skin depth of the metal (e.g. low frequency and thin metal) then the film falls in this

category and can be modeled as a resistive sheet.
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2.5 Drude and Drude-Lorentz models for plasmas, metals and semi-

conductors

As mentioned in the previous sections, the constitutive equations describe the physical phe-

nomena in the optical materials. In a wide category of conducting materials, these interactions

are dominated by free carriers, i.e. electrons or holes (missing electrons in the valence band);

these include plasmas, metals and semiconductors (at different frequencies). In most cases,

their optical properties can be predicted by a simple semi-classical model, called Drude model,

which takes into account both the carrier dynamic in the metal and the intrinsic polarizabil-

ity of the atoms in the lattice. This model is important since it can be used also as a first

low-frequency ( f ď 5 THz) approximation for graphene.

This model assumes the following about the conductor:

• The naked atomic lattice (imagining all carriers to be removed) has a permittivity of ε8.

• The carrier density (either electrons or holes) per unit volume is n, and carriers have

elementary charge qe.

• The carrier’s movement is predominantly thermal, and the thermal velocity is vth.

• The carriers collide with lattice imperfections and/or other scatterers (e.g. phonons);

the average time between collisions is τ, and the average length covered by the carriers

during this time (ballistic length) is l “ vthτ.

• The mass of the carriers is m. This can be in general different from the electron mass,

and given by a semi-classical approximation obtained from the band structure.

• The drift velocity vd “ qτm´1E is a small perturbation caused by the electric field E on

the carriers.

• The total current density at DC J “σE is given by J “ nqvd

• The material is considered isotropic, but extension to anisotropic cases are often straight-

forward (e.g. different m and τ for different crystal axes)

Then the DC conductivity (only carriers without background) is given by:

σDC “ nq2
eτ

m
(2.95)

and the optical conductivity is given by

σ “ σDC

1 ` jωτ
“ nq2

e m´1

τ´1 ` jω
(2.96)

Notice that the resistivity can be written as the series between a resistive and an inductive
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component:

ρ “ σ´1 “ 1

σDC
` jω

τ

σDC
“ m

nq2
eτ

` jω
m

nq2
e

“ R ` jωL (2.97)

R “ 1

σDC
“ m

nq2
eτ

(2.98)

L “ τ

σDC
“ m

nq2
e

(2.99)

L “ τR (2.100)

The inductive component is very important for plasmonic propagation, as explained in the

following, and it is basically due to the inertia of the carriers. In fact, it dominates when

the optical frequency is larger than the collision rate, and it can be understood as follows: a

free electron will be accelerated by a sinusoidally oscillating electric field, but with a delay of

90°. The resulting current has then the same delay that is found in an inductor driven by an

alternating voltage. The energy associated to this inductive term is stored as kinetic energy of

the carriers, and hence the inductance in the Drude model is referred to as kinetic inductance.

The total equivalent permittivity is:

ε “ ε8 ` σ

jω
“ ε8 ` nq2

e

m

1

jωτ´1 ´ω2 (2.101)

Two important frequencies are the collision rate Γ:

Γ “ τ´1 (2.102)

and the plasma frequency ωp:

ωp “
d

nq2
e

mε8
“

d
nq2

e

mεr8ε0
(2.103)

The permittivity can then be expressed as:

ε “ ε8

˜
1 ´ ω2

p

ω2 ´ jΓω

¸
(2.104)

εr “ εr8

˜
1 ´ ω2

p

ω2 ´ jΓω

¸
(2.105)
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If ωě 2πΓ and ωďωp then the equivalent permittivity has a dominant negative real part, and

the material behaves as a plasma. In this case, propagation is impossible, while the material

is transparent again for frequencies above the plasma frequency. Typical values for noble

metals are in the order of ultraviolet for the plasma frequency and mid to near infrared for the

collision rate, which means that noble metals exhibit plasmonic behavior at visible frequencies

[109]. Another important quantity is the carrier mobility μ, defined by:

vd “ μE (2.106)

and hence it is given by:

μ “ qeτ

m
(2.107)

The following relation between μ and σDC holds:

σDC “ nqeμ (2.108)

When a magnetostatic field B0 is applied to the material, it affects carrier’s trajectories though

Lorentz forces (Hall effect). The conductivity becomes a gyrotropic tensor [118, 105], and the

new conductivity model is referred to as Drude-Lorentz model. Assuming the field is parallel

to z axis (B0 “ B0ẑ):

σ“
¨
˚̋ σd σo 0

´σo σd 0

0 0 σz

˛
‹‚ (2.109)

where the diagonal conductivity σd is:

σd “ σDC
1 ` jωτ

pωcτq2 `p1 ` jωτq2 (2.110)

and the off-diagonal conductivity σo is:

σo “ σDC
ωcτ

pωcτq2 `p1 ` jωτq2 (2.111)

where ωc is the cyclotron angular frequency, namely the angular frequency of a carrier orbiting

in the magnetostatic field. This quantity is independent of the velocity v of the particle, and it
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is obtained equating the Lorentz force vB0qe and the centrifugal force mvωc:

ωc “ B0qe

m
(2.112)

The conductivity along the magnetic axis is instead unaffected:

σz “ σ “ σDC

1 ` jωτ
(2.113)

and the final permittivity tensor is simply (assuming no effect of magnetic field on ε8):

ε “ ε8I ` 1

jω
σ (2.114)

Importantly, if the magnetic field is very strong, the Drude Lorentz model might fail, as more

complex effects can occur, such as energy level quantization in the quantum Hall effect.

2.6 Graphene conductivity formulae

This sections presents useful formulas found in literature to model the complex conductivity

tensor of graphene as a function of several parameters. The formulas show excellent agreement

with experimental results, including the ones presented in this thesis.

2.6.1 Band structure

The conductivity of graphene depends on its band structure, which can be computed using a

tight-binding approximation considering only the nearest neighbor terms. The structure of

graphene is depicted in Figure 2.4a, and the computation leads to [14, 105]:

E˘ “ ˘t

d
3 ` 2cos

ˆ?
3ky a

˙
` 4cos

ˆ?
3

2
ky a

˙
cos

ˆ
3

2
kx a

˙
(2.115)

where k “ pkx ,ky q is the electron wave-vector, E is the electron energy, a “ 1.42 Å is the inter-

atomic distance between carbon atoms and t “ 2.8 eV is the nearest neighbor hopping energy.

The periodicity of graphene is
?

3a “ 2.46 Å.

The first Brillouin zone (Figure 2.4b) is characterized by a number of interesting features. First

of all it is composed of two branches which, for the nearest neighbor approximation, are

exactly one the opposite of the other (ambipolarity). The positive band is called conduction

46



2.6. Graphene conductivity formulae

a)

a

b)

c)

Figure 2.4 – Structure and band diagram of graphene. a) Exagonal honeycomb arrangement of carbon atom in
graphene, b) band-strcuture of graphene in an area slightly larger than the first Brillouin zone, c) detail of a Dirac
point.

band and the negative one valence band. The two branches touch each other in six points

(around the first Brillouin zone) which are named Dirac Points. Because of the ambipolarity,

for ideal graphene, the Fermi level (which separates occupied states and empty states) falls

exactly at the Dirac point (0 eV in Figure 2.4). Hence, at absolute 0 temperature (T “ 0K) the

valence band is fully occupied by electrons, while the conduction band is empty, i.e. fully

occupied by holes. The terms “Fermi level” and “chemical potential” will be used as synonyms

in this thesis.

Because conductivity phenomena often concern the interface between electrons and holes,

the relevant portion of the band structure is the one located around the Dirac points (e.g.

Figure 2.4c shows a neighborhood of a Dirac point). Strikingly, the band structure here can be

approximated with an excellent accuracy with a cone (called Dirac cone). This approximation

simplifies the conductivity models, also leading to closed form expressions. First of all, with a
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simple Taylor development, the approximating cone can be expressed as:

E˘ “ ˘3at

2
|k ´ kdirac| (2.116)

where kdirac is the position of the Dirac point in the k space. This constant offset can be

neglected for the phenomena considered in this thesis, and hence we can write:

E˘ “ ˘3at

2
|k| (2.117)

The proportionality between energy and momentum is typical also of photons in free space,

and it is associated to their lack of rest mass. For a photon in fact we have E “ �c|k|, which is

associated to a constant speed c. Similarly we can write here:

E˘ “ ˘�vf|k| (2.118)

vf fi
3at

2�
» 9.1 ¨ 105 m ¨ s´1 (2.119)

where � is the reduced Planck constant (�» 6.582 ¨ 10´16eV ¨ s) and vf is called Fermi velocity

in graphene and it usually approximated as 106 m ¨ s´1 or c{300. Because of this, carriers

in graphene are usually referred to as massless fermions. The approximated conical band

structure can be used to compute the density of electronic states (DOS) as a function of the

energy E , with good validity in the range ´1 eV ă E ă 1 eV. Considering a graphene square

patch with area L2 (though the analysis holds for any arbitrary shape), the possible electron

states are described by two quantum numbers m,n with:

k “ 2π

2L
pm,nq (2.120)

Two additional degrees of freedom have to be considered [14, 30]. First a factor gs “ 2, due to

the fact that each electron state in the k space can hosts two electrons with opposite spins.

Secondly, each Brillouin zone contains six Dirac cones. However, each cone is shared among

three Brillouin zones, and hence the actual number of distinct valleys multiplicity is gv “ 2.

The number of states with energy between 0 and |E | is:

# “ gsgv
1

4
π

ˆ
L|E |
π�vf

˙2

(2.121)
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-Vg

Figure 2.5 – Electrostatic gating of graphene. A thin oxide layer (light blue) sepatates graphene from a semicon-
ducting substrate (gray)

the final density of states is then:

ρpEq “ 1

L2

B#

BE
“ gsgv

2πp�vfq2 |E | “ 2|E |
πp�vfq2 (2.122)

Just as for 3D crystals, at T “ 0 K the all the states with energy below the Fermi level μc are

occupied while the ones above it are free. For arbitrary temperature T , the electrons follow

the Fermi statistics, i.e. the probability of occupancy depends on its energy as [14, 30]:

fdpE ´μcq “
ˆ

1 ` e
E´μc
kBT

˙´1

(2.123)

where kB is Boltzmann’s constant and fd is called Fermi distribution. At room temperature

(T “ 300 K) we have kBT “ 26 meV.

2.6.2 Graphene gating and doping

For pristine graphene the Fermi level is located exactly at the Dirac point. This implies that at

0 K all the electrons are in the valence band while all the holes are in the conduction band. If

the temperature is larger, then some holes appear in the valence band and some electrons in

the conductions band, and both these particles (called thermal carriers) can participate in

electrical conduction with relatively low conductivity. The Fermi level of graphene, however,

can be changed with at least two techniques:

Chemical doping other atoms are added to graphene (e.g. adatoms) and they become

ions either releasing an electron in graphene (donor dopant) or capturing one creating a

hole (acceptor dopant). The created carriers are then free to move in the atomic lattice

participating in the conduction.

Electrostatic gating a voltage is applied between graphene and another conductor through

an insulating gate layer (typically an oxide). The system behaves as a parallel plate capacitor
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and the induced electrons or holes on graphene can participate to the conduction (Figure

2.5). The free carriers create a bi-dimensional electron gas (2DEG) very similar to the one

found silicon field effect transistors (FETs)

In both cases, these techniques act on the net number of carriers on graphene. The latter

can be defined as a function of the temperature T and Fermi level μc (both constant and well

defined in equilibrium conditions). Defining n as the number of electrons in the conduction

band and p as the density of holes per unit surface we have:

n “
ż 8

0
ρpEq fdpE ´μcqdE (2.124)

p “
ż 0

´8
ρpEq

´
1 ´ fdpE ´μcq

¯
dE “

ż 8

0
ρpEq fdpE `μcqdE (2.125)

The net induced surface carrier density ns and the surface charge σq are then (Figure 2.6a and

b):

ns “ n ´ p “
ż 8

0
ρpEq

´
fdpE ´μcq´ fdpE `μcq

¯
dE (2.126)

σq “ ´qens “ qepp ´ nq (2.127)

It is also useful considering the electric field needed to induce the charges on graphene. This

is simply:

E “ σq

ε0εr
“ qens

ε0εr
(2.128)

Because the field depends on the relative permittivity εr of the gate oxide it is useful to

introduce an equivalent electric field which incorporate this effect and which is independent

of the used oxide:

Eeq fi εr E “ qens

ε0
(2.129)

The gate voltage is simply given by

Vg fi tE “ tε´1
r Eeq (2.130)

50



2.6. Graphene conductivity formulae

a)

Chemical potential (eV)
-1 -0.5 0 0.5 1

El
ec

tr
ic

 b
ia

s 
( V

/n
m

 )

-15

-10

-5

0

5

10

15

T = 3K
T = 300K
T = 1000K

Chemical potential (eV)
-1 -0.5 0 0.5 1

n-
p 

( 1
/c

m
2

 )
× 10 13

-8

-6

-4

-2

0

2

4

6

8

T = 3K
T = 300K
T = 1000K

Chemical potential (eV)
-0.4 -0.2 0 0.2 0.4

Q
ua

nt
um

 C
ap

ac
ity

 ( 
μ

F/
cm

2
 )

0

2

4

6

8

10

T = 3K
T = 300K
T = 1000K

Chemical potential (eV)
-1 -0.5 0 0.5 1

ch
ar

ge
 d

en
si

ty
 ( 

C
/m

2
 )

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

T = 3K
T = 300K
T = 1000K

b)

c) d)

Figure 2.6 – Control of carriers and chemical potential by gating. a) Carrier density ns versus μc. b) Charge density
σq versus μc. c) Effective electric field Eg versus μc. d) Quantum capacity per unit area Cq versus μc.

where t is the oxide thickness. Finally, for μc " kBT a closed form simplification can be found:

ns » signpμcq μ2
c

πp�vfq2 (2.131)

μc » signpnsq�vf

b
π|ns| (2.132)

2.6.3 Quantum capacitance of graphene

A gated sample of graphene behaves as a parallel plate capacitor. However, for very thin gate

oxides (e.g. 10 nm or less) the total capacity (per unit area) of the gated graphene is the series
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of two capacitive terms:

Ctot “ C ´1
ox `C ´1

q (2.133)

Cox fi
ε0εr

t
(2.134)

Cq fi
tσq

dpqeμcq (2.135)

The reason for this additional terms is understood as follows: in order to induce a variation

in the charge density in graphene, two energy variations must occur. First, the electrostatic

energy changes, which is modeled by the electrostatic oxide capacitance Cox; secondly, the

new induced electrons are actually causing a change in the Fermi level in graphene, and

hence this energy variation induced by the new charge behaves exactly as a capacitor, and

it is defined taking the derivative of the surface charge with respect with the variation of the

electron potential q´1
E μc. Using Equation 2.126 it is possible to exchange the derivative and

the integral obtaining a closed form formula for the quantum capacitance:

Cq “ dσq

dpqeμcq “ 2q2
e kBT

πp�vfq2 ln

ˆ
2 ` 2cosh

´ μc

kBT

¯˙
(2.136)

If the condition μc " kBT holds, then the effect of temperature is negligible and an approxi-

mated formula is found:

Cq » 2q2
e

πp�vfq2 |μc| (2.137)

The most important feature of this capacitance is that it can be tuned applying a different

gate voltage (since it depends on the Fermi level). Figure 2.6d illustrates this dependence. In

conclusion the quantum capacitance acts as a non linear capacitor since its value depends on

the applied voltage, and for a small radio-frequency signal it can be used as a varactor.

2.6.4 Scalar conductivity

Now that the behavior of carriers in the electrostatic case is known, the next step is the

development of models to describe the conductivity of the carriers themselves. Graphene

conductivity is influenced by several parameters. First of all it depends on the frequency

f , showing different behaviours and trends at various frequency bands. It is influenced by

the surface carriers density ns, which in turns depends on the Fermi level μc (also known as

chemical potential). For low value of the carrier density, the thermal carriers are significant,

and hence also the temperature T affects the conductivity. Finally, just as for the Drude

52



2.6. Graphene conductivity formulae

model presented in Section 2.5, the mean free time between carriers collisions (i.e. carriers’

scattering time τ) has an important impact on the conductivity, as it directly related to the

carrier mobility μ.

All these effects can be modeled using Kubo formula [43, 44, 41, 40], which provides an

excellent numerical approximation of graphene conductivity until visible light frequencies.

The formula is based on the previously described electronic band structure of graphene using

Hamiltonian operators to model the nearest neighbor hopping, and it is given by:

σpω,μc,τ,T q “ j q2
e pω´ jτ´1q

π�2

„
1

pω´ jτ´1q2

ż 8

0
ε

ˆB fdpεq
Bε ´ B fdp´εq

Bε
˙

dε´
ż 8

0

fdp´εq´ fdpεq
pω´ jτ´1q2 ´ 4pε{�q2

dε

j
(2.138)

The first integral is referred to as intra-band conductivity, and it refers to dynamical phenom-

ena in which carriers remain in the same electronic band. The second one is the inter-band

conductivity and it takes into account the absorption of photons in graphene due to the in-

terband transitions of carrier from the upper Dirac cone to the lower or vice versa. For this

second case, a highly energetic photon is needed to create the transition of the electron from

one band to the other, and hence this effect is visible only in the mid infrared and above.

While the inter-band integral cannot in general be solved analytically (i.e. requires numerical

integration), the intra-band one allows a close form expression. We then obtain:

σpω,μc,τ,T q “ σintra `σinter (2.139)

σintra “ ´ j q2
e kBT

π�2 pω´ jτ´1q ln

ˆ
2 ` 2cosh

´ μc

kBT

¯˙
(2.140)

σinter “ j q2
e pω´ jτ´1q

π�2

ż 8

0

fdp´εq´ fdpεq
pω´ jτ´1q2 ´ 4pε{�q2

(2.141)

The inter-band term can be neglected if �ω! 2μc. Typically, for frequencies lower than 5 THz,

this is an excellent approximation.

The intra-band term σintra can be further simplified if the condition μc " kBT holds, giving a
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Figure 2.7 – Chart illustrating the relationship between the couples μc,τ and μ,ns in the low temperature approxi-
mation. Note: μ,ns are expressed using centimeters, so μ is measured in cm2¨V´1¨s´1 and ns in cm´2

low temperature approximation:

σintra » q2
e |μc|τ

π�2p1 ` jωτq (2.142)

Comparing this equation with the Drude model, one can find perfect agreement if the following

condition is assumed on the carrier’s mass:

m “ |μc|v´2
f (2.143)

which matches the fact that for a photon the mass is fully relativistic (i.e. null rest mass) and

given by m “ Ec´2 confirming that massless Dirac fermions really behave as photons in free

space. The mobility is then given, by extension, as:

μ “ qeτv2
f

μc
“ qeτvf

�
a

π|ns|
(2.144)

This relation can be inverted as:

τ “ π�2nsμ

qeμc
“ �μ

?
πns

qevf
(2.145)

The conversion from the couple of parameters μc,τ to μ,ns is represented graphically in Figure

2.7. An important remark is that the plasma frequency is undefined in graphene , because,

unlike 3D plasma, it cannot completely stop a wave due to its bidimensional nature.
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Figure 2.8 – Numerical evaluation of graphene complex conductivity using Kubo formula. The parameters τ=30 fs
and μc =0.2eV are typical of CVD graphene. For conductivty, the imaginary part has a reverse sign to allow better
comparison with the real part. Impedance (reciprocal of conductivity) and quality factor (imaginary over real part)
are also shown

Figure 2.8 shows an example of conductivity computed with Kubo formula for typical CVD

graphene parameters (τ=30 fs and μc =0.2eV). Three regions can be clearly identified. For

frequencies much lower than τ´1 the conductivity is essentially real, namely graphene behaves

as a resistor. This range (ohmic region) extends from DC to microwaves. At terahertz and

far-infrared frequencies, the imaginary part of the conductivity becomes significant and

dominates in the near infrared, while the inter-band term is still negligible. Graphene shows

a plasma like behavior, and the region is called plasmonic region. For frequencies such that

�ω ą 2μc the conductivity is dominated by the inter-band contribution (interband region),

and it takes the constant value of

σuniv “ q2
e�

´1 “ 2πR´1
K “ » 61 μS (2.146)
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Chapter 2. Two-dimensional materials theory in the framework of Maxwell’s equations

independently of graphene parameters. This value is referred to as the universal dynamical

conductivity of graphene. RK “ hq´2
e is the Von Klitzing constant. The figure also shows

graphene impedance Z and quality factor Q defined as:

Z fi σ´1 (2.147)

Q fi ´ Impσq
Repσq “ ImpZ q

RepZ q (2.148)

The latter is of fundamental importance for plasmonic propagation in graphene explored in

Chapter 4 and it is related to the quality factor of graphene plasmonic resonators. We notice

that in the intra-band regime:

Q » ωτ for �ωă 2μc (2.149)
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Figure 2.9 – Numerical evaluation of graphene complex conductivity using Kubo formula upon Fermi level sweep.

56



2.6. Graphene conductivity formulae

Figure 2.9 illustrates the dependence of the conductivity on the Fermi level. An increased

Fermi level leads to higher carrier density (and hence higher ohmic conductivity) and to a

larger transition frequency between plasmonic behavior and inter-band one.
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Figure 2.10 – Numerical evaluation of graphene complex conductivity using Kubo formula for different values of τ.

Figure 2.10 illustrates the dependence of conductivity on the carrier scattering time. Larger τ

imply higher mobility and DC conductivity, and a lower transition frequency to the plasmonic

region. Importantly, when electrostatic bias is applied μc is changed and the conductivity of

graphene can be tuned. Upon change in the chemical potential, both τ and μ can change

accordingly to a number of factors. Typically, in high quality exfoliated graphene samples τ is

left approximately unchanged upon field effect tuning, while for chemically deposited (CVD)

graphene the impurities induce a different behavior, and μ tends to be constant instead.
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Chapter 2. Two-dimensional materials theory in the framework of Maxwell’s equations

2.6.5 Magnetostatically biased graphene

When a magneto-static field is applied orthogonally to graphene a number of important

phenomena occur [105, 41]. Firstly, the band structure is not continuous anymore showing

instead discrete energy levels called Landau levels:

En “ ?
nL (2.150)

L “
b

2�qeB0v2
f (2.151)

The conductivity is then expressed as[105, 41]:

J “σE σ“
ˆ

σd σo

´σo σd

˙
(2.152)

with:

σd “ j q2
e v2

f |qeB0|�pω´ jτ´1q
π

¨

¨
8ÿ

n“0

#
1

Mn`1 ´ Mn
¨ f pMnq´ f pMn`1q` f p´Mn`1q´ f p´Mnq

pMn`1 ´ Mnq2 ´�2 pω´ jτ´1q2 `

` 1

Mn`1 ` Mn
¨ f p´Mnq´ f pMn`1q` f p´Mn`1q´ f pMnq

pMn`1 ` Mnq2 ´�2 pω´ jτ´1q2

+
(2.153)

and

σo “ ´ q3
e v2

f B0

π

8ÿ
n“0

!
f pMnq´ f pMn`1q` f p´Mn`1q´ f p´Mnq

)
¨

¨
#

1

pMn`1 ´ Mnq2 ´�2 pω´ jτ´1q2 ` 1

pMn`1 ` Mnq2 ´�2 pω´ jτ´1q2

+
(2.154)

with

Mn “
b

2nv2
f |qeB0|� (2.155)

f pεq “ fdpε´μcq (2.156)

A low-temperature, low-magnetic-field approximation holds if the number of levels to be

considered is so large that the summations can be approximated as integrals and if inter-band
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2.6. Graphene conductivity formulae

transitions can be neglected. In that case the Drude Lorentz model can be used:

σd “ σDC
1 ` jωτ

pωcτq2 `p1 ` jωτq2

σo “ σDC
ωcτ

pωcτq2 `p1 ` jωτq2 (2.157)

where the DC conductivity and cyclotron frequency take a special form in graphene:

σDC “ σintrapω“ 0,T Ñ 0q “ q2
eτ|μc|
π�2 (2.158)

ωc » L2

2�μc
“ qeB0v2

f

μc
(2.159)

The cyclotron frequency is consistent with the Drude Lorentz model if we assume, one more

time, that m “ |μc|v´2
f .

It is worth mentioning here that the conductivity of graphene takes a particular simple form

with circular polarization. In fact, assuming that graphene lies on the x y plane, then the

conductivity tensor has two eigenvalues for the circularly polarized light:

σcw “ σd ` jσo

σccw “ σd ´ jσo (2.160)

So for circularly polarized light, gyrotropic graphene behaves again as a scalar conductivity,

but with two different values accordingly to the polarization handedness. This principle

is linked to the presence of Faraday rotation, where a linearly polarized wave pass trough

magnetostatically biased graphene and undergoes a rotation, because the phase of σcw is

different from the one of σccw

2.6.6 Non-locality (spatial dispersion) in graphene

This thesis also briefly explores spatial dispersion effects in graphene. The physical phe-

nomenon that causes spatial dispersion is the fact that carriers have a relatively high speed in

graphene (vf » c{300) and a good ballistic behavior (in the best samples the mean free path l

is in the order of microns). Furthermore, graphene supports plasmonic modes, which show

very sharp spatial variations (i.e. very confined waves with k wavevectors much larger than in

free space). Because of these effects, in some cases, non-local behavior cannot be neglected.

Below is one example of spatially dispersive graphene conductivity presented by Lovat et al in
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Chapter 2. Two-dimensional materials theory in the framework of Maxwell’s equations

[69] and used in [JA3]. This is a particular case for a low k-vector approximation:

σ “
ˆ

σXX σXY

σYX σYY

˙
(2.161)

σXX “ γ
π

α

«
1 ` v2

f

4α2

´
3 ´ j

2

ωτ

¯
k2

x ` v2
f

4α2 k2
y

ff

σXY “ γ
π

α

v2
f

2α2

´
1 ´ j

1

ωτ

¯
kx ky

σYX “ γ
π

α

v2
f

2α2

´
1 ´ j

1

ωτ

¯
kx ky

σYY “ γ
π

α

«
1 ` v2

f

4α2 k2
x ` v2

f

4α2

´
3 ´ j

2

ωτ

¯
k2

y

ff
(2.162)

with

γ “ ´ j
qekBT

π2�2 ln

„
2 ` 2cosh

´ μc

kBT

¯j
(2.163)

α “ ω´ jτ´1 (2.164)

which depends on the wavevector components kx and ky , and hence it is spatial dispersive. Im-

portantly, even if not obvious, the operator σ is isotropic (invariant to rotation) because, upon

rotation, also the components kx and ky are transformed and the total tensor is unchanged.

2.7 Numerical simulations

Simulations of the graphene based devices presented in this thesis have been performed using

several softwares.

ANSYS HFSS: The software ANSYS HFSS allows the simulation of truly 2D materials mod-

eled as an impedance boundary condition, and has been used for most of the simulations

in this thesis. A general 2D local electrical conductivity tensor can be used as input, al-

lowing the simulation of magneto-statically biased graphene. Plasmonic propagation on

graphene can be simulated and plasmons can be excited directly with wave-ports.

Homemade periodic MoM code: A periodic method of moment code developed by Dr.

Arya Fallahi has been used to model periodic metasurfaces including graphene. The

code supports magnetostatically biased graphene and spatial dispersion. Because of the

nature itself of the method of moment code (which reduces the problem to an impedance
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matrix) this software computes in a very precise way the W field involved in tunable and

non-reciprocal devices.

CST Studio Suite: CST has been used in simulations of graphene-only reflectarrays in

collaboration with Dr. Eduardo Carrasco. As HFSS, it supports truly 2D materials but has

been tested in this framework only for plasmonic resonators.

More details on the simulation techniques will be provided in the remaining chapters of this

thesis.
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3 Theoretical non-reciprocity and mod-
ulation upper bounds

Note: this chapter report work previously published by the Ph.D. candidate in references

[CA17, JA8, JA13].

3.1 Introduction

Graphene offers interesting possibilities for tunable and non reciprocal devices in a very

wide frequency spectrum spanning from microwaves to near infrared. However, it is also

characterized by optical losses, which can limit the performances of the devices. While

developing the concepts presented in this thesis, it soon became clear that the issue of optical

losses in graphene had to be tackled by answering very fundamental questions such as “What

is the minimum insertion loss to achieve a given reconfigurability function?” or “Is it possible

to build an ideal non-reciprocal isolator using graphene?”. Revisiting a theory developed in

[96], this chapter presents several fundamental limits on non-reciprocal and tunable devices

based on graphene.

The limits are expressed in the form of upper bound on several key performances of the

selected devices, and typically the outcome of these upper bounds is that there is a minimum

amount of insertion loss that has to be accepted in order to achieve a given functionality

(e.g. 100 % modulation depth in a graphene modulator or infinite isolation in a graphene

non reciprocal isolator). This minimum amount of loss, strikingly, depends only on graphene

conductivity, and it is independent of the particular geometry of the device. The bound is,

therefore, a very important tool to estimate the best possible performances as a function

of modulators and isolators based on graphene prior any actual design, just accordingly to

graphene parameters. Second, the bound provides important guidelines to the designer,

because it reveals how close an actual design is to the best possible performance, so that no

useless optimizations are run once the optimal performance has been reached. The theory

presented here has been used in the subsequent chapters to ensure the optimality of the

presented devices.
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The theory proposed here continues a research line started in 1954 by Mason [73, 39], who

found out that it is possible to define a value U (the unilateral amplifier gain) for an active

two-ports device. This value has the following property: if the two-ports device is embedded

in a lossless reciprocal network to obtain a new transformed two-ports device, the value U

does not change in this transformation. If the transformation is such that the transmission

coefficient S12 from port 2 to port 1 becomes null, then the transmission in the opposite

direction has a magnitude |S21| “ ?
U . The theory can be applied to amplifiers but also to non

reciprocal passives, and in that case U is a figure of merit for isolators, which are devices that

ideally transmit power waves perfectly in one direction, while blocking them in the other.

Five years later the theory was extended by Shaug-Pettersen and Tonning [96] showing an

important mathematical inequality for variable and non-reciprocal networks. Unfortunately,

although the inequality is correct, the demonstration provided in [96] contains several errors,

which were corrected in our work [JA8]. In [JA8] we also extended the bound to 2D materials,

and demonstrated a number of theoretical bounds expressed directly as a function of modula-

tors’ and isolators’ figures of merit. More recently, we also extended this concept to antennas

[JA13]. In this chapter the main results of [JA8, JA13] are presented, and a full demonstration

is given for the theoretical bound. Equations up to 3.39 summarizes the Shaug-Pettersen

bound [96], including our corrections to the demonstration and presenting the results for

general 3D and 2D materials. Subsequently we derive the figures of merit of graphene and we

demonstrate the possibility of designing optimal graphene devices [JA8, JA13].

3.2 General scattering upper bound: derivation

Let us consider a reconfigurable or nonreciprocal device based on a reconfigurable or nonre-

ciprocal 2D or 3D material such that the device can be described by a passive n ˆ n scattering

matrix. This representation is suitable for any passive n-mode-guided device, layered surfaces,

and periodic metasurfaces, as discussed in the previous chapter. We consider the behavior of

the device in two distinct situations, ‘A’ and ‘B’, characterized by the considered material Y

matrices Y A and Y B, the corresponding scattering matrices SA and SB, and arbitrary incident

waves aA and aB. We will refer to this tunable and/or non-reciprocal material as the functional

material, since it enables the device functionality. Let us also assume a general closed surface

S that completely surrounds the device, as explained in Chapter 2. If the device is an infinite

planar structure, then S is taken as the union of two planes, one on each side of the structure.

Among others, here, we address 2D materials, the presence of additional losses in other mate-

rials, and the case of multiple or inhomogeneous reconfigurable/non-reciprocal materials.

The general inequality obtained is then further developed in the next section to derive specific

upper bounds of the graphene-based devices used for our results. All the materials in the

device are passive, local and linear; all the materials a part from the functional material are

also assumed to be fixed (they do not change in situation ‘A’ and ‘B’) and reciprocal.
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3.2. General scattering upper bound: derivation

Recalling that (Chapter 2):

�

S

W ¨ dS “
�

S

pEA ˆ HB ´ EB ˆ HAq ¨ dS “ 2aT
B

`
S ´ ST

˘
aA (3.1)

we can now perform a similar derivation, considering that this time the functional material

and the device can have different properties in cases ‘A’ and ‘B’, which was not the case when

discussing simply Lorentz non-reciprocity. We then obtain:

�

S

W ¨ dS “
�

S

pEA ˆ HB ´ EB ˆ HAq ¨ dS

“ 2
`

aT
BbA ´ aT

AbB

˘
“ 2

`
aT

BbA ´ bT
BaA

˘
“ 2

`
aT

BSAaA ´ aT
BST

BaA

˘
“ 2aT

B

`
SA ´ ST

B

˘
aA (3.2)

Similarly, this quantity can also be expressed in terms of the material properties:

W mat
J “ QB ¨ RA ´ QA ¨ RB

“ RA ¨ QB ´ RB ¨ QA

“ RT
AY BRB ´ RT

BY ARA

“ RT
BY T

BRA ´ RT
BY ARA

“ RT
BpY T

B ´ Y AqRA (3.3)

In absence of sources in the device, W mat
J “ W tot

J and using:

�

S

W ¨ dS “
�

V

W tot
J dV “

�

V

W mat
J dV (3.4)

we obtain:

aT
B

`
SA ´ ST

B

˘
aA “ 1

2

�

V

RT
BpY T

B ´ Y AqRAdV (3.5)

where V is the volume of the functional material and it is assumed that all the remaining

materials a part from the functional one are reciprocal and fixed. The equality above holds
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for 3D materials, but if the considered material is 2D, then the relation can be extended

immediately by replacing the volume integral with a surface integral. For example, for an

amagnetic 2D material characterized by electric conductivity tensor σ we obtain:

aT
B

`
SA ´ ST

B

˘
aA “ 1

2

�

2Dmaterial

ET
tBpσA ´σT

B qEtAdS (3.6)

where Et represents the Electric field component tangential to the 2D material. A more

complete discussion on 2D materials is presented later in this chapter.

The thermal power P dissipated in the device in states ‘A’ and ‘B’ is given by:

PA “ aH
A

´
I ´ SH

A SA

¯
aA “ 1

2

�

V

RH
A

´
Y A ` Y H

A

¯
RAdV ` LA (3.7)

PB “ aH
B

´
I ´ SH

B SB

¯
aB “ 1

2

�

V

RH
B

´
Y B ` Y H

B

¯
RBdV ` LB (3.8)

where LA and LB represent the losses in other materials apart from the functional material.

This integral is always positive because of the passivity of the involved material, which implies

that Y ` Y H is hermitian and positively defined.

Let us now consider the following quantity:

γdev fi

ˇ̌̌
aT

B

`
SA ´ ST

B

˘
aA

ˇ̌̌2

aH
A

´
I ´ SH

A SA

¯
aA aH

B

´
I ´ SH

B SB

¯
aB

(3.9)

This quantity is always real and positive, and depends uniquely on the final scattering matrices

SA and SB of the device in the two states, and on two excitation vectors aA and aB which can

be chosen arbitrarily. This quantity is called, for reasons which will become clear later, the

device figure of merit. We can rewrite this expression using Equations 3.5, 3.7 and 3.8 as:

γdev “
ˇ̌̌�

V RT
BpY T

B ´ Y AqRAdV
ˇ̌̌2

”�
V RH

A

´
Y A ` Y H

A

¯
RAdV ` LA

ı”�
V RH

B

´
Y B ` Y H

B

¯
RBdV ` LB

ı (3.10)

Next, we will make a chain of inequalities to simplify this expression with the aim of reaching

an expression depending only on the properties of the functional material (i.e. independently
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of the actual fields). First we notice that γdev is maximized when there are no losses LA and LB:

γdev “
ˇ̌̌�

V RT
BpY T

B ´ Y AqRAdV
ˇ̌̌2

”�
V RH

A

´
Y A ` Y H

A

¯
RAdV ` LA

ı”�
V RH

B

´
Y B ` Y H

B

¯
RBdV ` LB

ı (3.11)

ď
ˇ̌̌�

V RT
BpY T

B ´ Y AqRAdV
ˇ̌̌2

”�
V RH

A

´
Y A ` Y H

A

¯
RAdV

ı”�
V RH

B

´
Y B ` Y H

B

¯
RBdV

ı (3.12)

Next, because of the integral absolute value theorem we have:

ˇ̌̌
ˇ̌�

V

RT
BpY T

B ´ Y AqRAdV

ˇ̌̌
ˇ̌
2

ď
˜�

V

ˇ̌̌
RT

BpY T
B ´ Y AqRA

ˇ̌̌
dV

¸2

(3.13)

and hence

γdev ď
´�

V

ˇ̌̌
RT

BpY T
B ´ Y AqRA

ˇ̌̌
dV

¯2

”�
V RH

A

´
Y A ` Y H

A

¯
RAdV

ı”�
V RH

B

´
Y B ` Y H

B

¯
RBdV

ı (3.14)

The next objective is to remove the integrals from the expression by maximizing it. To this aim,

let us consider three general real positive functions epr q, bpr q, cpr q. These functions can be

defined on a domain with an arbitrary number of dimensions. Now we consider the quantity:

ˆż b
epr qbpr qcpr q dr

˙2

(3.15)

if we consider the maximum value of epr q, namely max
r

epr q, we can then write

ˆż b
epr qbpr qcpr q dr

˙2

ď max
r

epr q
ˆż b

bpr qcpr q dr

˙2

(3.16)
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Furthermore, using the Cauchy-Schwarz inequality:

ˆż b
epr qbpr qcpr q dr

˙2

ď max
r

epr q
ˆż b

bpr qcpr q dr

˙2

ď max
r

epr q
ż

bpr q dr

ż
cpr q dr (3.17)

If we now define:

apr q fi
b

epr qbpr qcpr q (3.18)

epr q “ a2pr q
bpr qcpr q (3.19)

we obtain:

´ş
apr q dr

¯2

ş
bpr q dr

ş
cpr q dr

ď max
r

a2pr q
bpr qcpr q (3.20)

We can now apply Equation 3.20 to 3.14 obtaining:

γdev ď
´�

V

ˇ̌̌
RT

BpY T
B ´ Y AqRA

ˇ̌̌
dV

¯2

”�
V RH

A

´
Y A ` Y H

A

¯
RAdV

ı”�
V RH

B

´
Y B ` Y H

B

¯
RBdV

ı

ď max
V

ˇ̌̌
RT

BpY T
B ´ Y AqRA

ˇ̌̌2

RH
A

´
Y A ` Y H

A

¯
RARH

B

´
Y B ` Y H

B

¯
RB

(3.21)

After successfully removing the integrals, the next step is to remove the dependence on fields,

once again by maximization. To do so, first we define:

T A fi Y A ` Y H
A (3.22)

T B fi Y B ` Y H
B (3.23)
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obtaining:

γdev ď max
V

ˇ̌̌
RT

BpY T
B ´ Y AqRA

ˇ̌̌2

RH
A T ARARH

B T BRB

(3.24)

Because of passivity, both T A and T B are positive defined Hermitian matrices. Therefore they

can be written as [45]:

T A “ M H
A M A (3.25)

T B “ M H
B M B (3.26)

obtaining:

γdev ď max
V

ˇ̌̌
RT

BpY T
B ´ Y AqRA

ˇ̌̌2

RH
A M H

A M ARARH
B M H

B M BRB

(3.27)

Defining the vectors:

KA fi M ARA (3.28)

KB fi M BRB (3.29)

we get:

γdev ď max
V

ˇ̌̌
KT

BM´1 T
B pY T

B ´ Y AqM´1
A KA

ˇ̌̌2

KH
A KAKH

B KB

“ max
V

ˇ̌̌
KT

BM´1 T
B pY T

B ´ Y AqM´1
A KA

ˇ̌̌2

|KA|2|KB|2 (3.30)

This quantity does not change if the vectors K are multiplied by a real scalar, so we can assume,

without loss of generality, that |KA| “ 1 and |KB| “ 1; thus

γdev ď max
V

ˇ̌̌
KT

BM´1 T
B pY T

B ´ Y AqM´1
A KA

ˇ̌̌2
(3.31)
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In this expression, the only quantities affected by the particular choice of excitation are the

vectors K, whereas the remaining vectors depend only on the conductivities. If the conductivi-

ties are constant over the entire functional material (the non-constant case is discussed later),

the quantity being maximized is actually bounded by a certain value γmat:

ˇ̌̌
KT

BM´1 T
B pY T

B ´ Y AqM´1
A KA

ˇ̌̌2 ď γmat (3.32)

This is due to the fact that KA and KB are unit vectors and by the fact that the matrix A defined

as

A fi M´1 T
B pY T

B ´ Y AqM´1
A (3.33)

is independent of the choice of KA and KB and depends only on the conductivities. Then, by

definition, the upper bound γmat is the square of the two-norm of matrix A:

γmat “ ∥∥A
∥∥

2
2 “ Largest eigenvalue of pAH Aq (3.34)

The eigenvalues are not changed by a similarity transformation, so we can write:

γmat “ Largest eigenvalue of pM´1
A AH AM Aq (3.35)

Defining:

N fi M´1
A AH AM A (3.36)

and substituting the values of M A and A we find

γmat “ Largest eigenvalue of N (3.37)

N “ `
Y A ` Y H

A

˘´1 `
Y ˚

B ´ Y H
A

˘`
Y ˚

B ` Y T
B

˘´1 `
Y T

B ´ Y A

˘
(3.38)
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Combining the previous equations we finally find:

γdev ď γmat (3.39)

γdev fi

ˇ̌̌
aT

B

`
SA ´ ST

B

˘
aA

ˇ̌̌2

aH
A

´
I ´ SH

A SA

¯
aA aH

B

´
I ´ SH

B SB

¯
aB

(3.40)

γmat fi Largest eigenvalue of N (3.41)

N fi
`

Y A ` Y H
A

˘´1 `
Y ˚

B ´ Y H
A

˘`
Y ˚

B ` Y T
B

˘´1 `
Y T

B ´ Y A

˘
(3.42)

which is referred to as the general scattering upper bound.

Importantly, Equation 3.39 is an inequality relating γdev, which depends on the final device

properties only, and γmat, which depends on the material properties only. The fact that device

performances are bounded by material properties alone is the main strength of this approach,

which holds independently of the device geometry and prior to any device design. In the

following sections it is shown that, in all cases, devices with lower losses (and hence better

performances) posses a larger γdev, which therefore is named device figure of merit. However,

because the value of γdev is bounded by γmat, a minimum amount of loss is unavoidable, and

this loss is determined by γmat which is then called material figure of merit. The two quantities

can be used as metrics for the optimality of device and materials respectively, and they take

positive real value (from 0 to `8).

For some materials, the inverse matrices in 3.42 might be singular. In that case, for practi-

cal materials, the singularity is compensated by a zero in the other factors of 3.42. These

undefined eigenvalues can then be neglected, since they are associated with no loss and no

reconfigurability (or no non-reciprocity) at the same time. The vectors aA and aB are free

parameters, namely this upper bound represents actually an infinite set of upper bounds,

each holding for a different choice of aA and aB. It will be shown that an accurate choice of

these parameters can lead to specialized upper bounds on relevant figure of merit (such as,

for example, isolation and insertion loss of an optical isolator).

3.2.1 Multiple and non-homogeneous functional materials

When a device contains several reconfigurable/non-reciprocal materials, the right term of

Equation 3.31 indicates that the total γmat is equal to the maximum γmat of the materials

involved. Particularly important is the following case: consider a reconfigurable device with

two states (‘0’ and ‘1’); the device is based on a material with Y A and Y B, but some parts of

the material have Y matrix Y A on state ‘0’ (and Y B on state ‘1’), whereas the remainder has Y

matrix Y B on state ‘0’ (and Y A on state ‘1’). The γmat bound still holds in this case because we

can consider the two areas as two distinct materials having inverted states and identical γmat.

Finally, if the functional material is non-homogeneous, then it can be thought as an infinite
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set of materials, and the figure of merit will be equal to the maximum value of γmat over the

entire material.

3.3 Reconfigurability vs non-reciprocity

The general upper bound can be used to obtain performance upper bounds in two cases of

interest:

• Modulation or reconfigurability: The material is assumed to be reciprocal and its Y

matrix takes two different values in situations ‘A’ and ‘B’. This situation includes tunable

devices such as switches, modulators, phase shifters and reconfigurable antennas. In

this case Y T
A “ Y A ‰ Y B “ Y T

B.

• Non-reciprocity: The material properties do not change between situations ‘A’ and ‘B’

(only the excitation do), but the material is not reciprocal, and hence Y T
A ‰ Y A “ Y B ‰

Y T
B. The material matrix is then simply Y T ‰ Y .

For the modulation or reconfigurability case, the material figure of merit γmat is renamed as

γM, for the non reciprocal case as γNR.

3.3.1 Inversion of magnetostatic field

The mixed case (reconfigurable and non-reciprocal) is of difficult interpretation. There is,

however, a very simple case falling in this category where the bound gives an immediately

useful results. Let us consider the case where non-reciprocal materials are biased by a magne-

tostatic field; in this case, usually the inversion of the field causes the transposition of the Y

matrix of the material. Then we consider:

• Situation A: The material is biased by a magnetostatic field B0 and the resulting matrix

Y A is non-symmetric.

• Situation B: The material is biased by the reverse magnetostatic field ´B0 and the

resulting non-symmetric matrix Y B is then Y B “ Y T
A

Considering the N matrix, it is immediate to see that, because Y A ´ Y T
B “ 0, N “ 0. Hence

γmax “ 0 and using the general scattering inequality we immediately obtain S A ´ ST
B “ 0 and

hence S A “ ST
B . This is the demonstration that the scattering matrix is transposed upon

inversion of the biasing magnetic field, as mentioned in the previous chapter and in [113, 54].
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3.4. Graphene figure of merits

3.4 Graphene figure of merits

As mentioned above, the presented theory can be extended immediately to linear, local,

passive 2D materials, by noting that:

�

V

W mat
J dV “

�

V

RT
BpY T

B ´ Y AqRAdV

“
�

V

“`
Jmat

E,A ¨ EB ´ Jmat
E,B ¨ EA

˘´`
Jmat

M,A ¨ HB ´ Jmat
M,B ¨ HA

˘‰
dV

“
�

2Dmat

“`
J2Dmat

E,A ¨ EB ´ J2Dmat
E,B ¨ EA

˘´`
J2Dmat

M,A ¨ HB ´ J2Dmat
M,B ¨ HA

˘‰
dS

“
�

2Dmat

RT
B,tangpY T

B,2D ´ Y A,2DqRA,tangdS (3.43)

which follows from the deltiform distribution of currents on 2D materials. If the material is

also amagnetic (with electrical conductivity tensor σ), we have:

N fi
`
σA `σH

A

˘´1 `
σ˚

B ´σH
A

˘`
σ˚

B `σT
B

˘´1 `
σT

B ´σA

˘
(3.44)

3.4.1 Graphene reconfigurability figure of merit

Let us consider first the reconfigurability case applied to graphene. When an electrostatic field

is applied to graphene, its conductivity changes and the scattering properties of the device are

modulated (electro-optical modulation). For example, one can design a device having high

transmission coefficient in one state and low in the other (amplitude modulator). We assume

that τ remains constant while the Fermi level μc changes in response to gating. In this case,

graphene conductivity is a scalar, and the reconfigurability figure of merit is simplified:

γmat “ γM “ |σA ´σB|2

4RepσAqRepσBq (3.45)

We notice that the figure of merit takes an intuitive form, because its value is decreased if

the material has large conductivity real part (associated to ohmic loss) and it is increased

proportionally to the absolute value of the difference of the conductivities. If the low tempera-

ture intra-band approximation can be used (Equation 2.142), then the figure of merit takes a
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Figure 3.1 – Theoretical upper bound γM on the performance of graphene modulators as a function of multiple
parameters. In all plots, the quantities that are not swept or otherwise specified have values of f =1 THz, T =300 K,
μc,A=0.1 eV, μc,B=0.8 eV, τ=66 fs. a-d) frequency dependence of γM for several values of a) temperature, b) μc,A, c)
μc,B, and d) τ. e) parametric level curves of γM for different values of μc,A and μc,B

simpler form:

σA » q2
e |μc,A|τ

π�2p1 ` jωτq
σB » q2

e |μc,B|τ
π�2p1 ` jωτq

γmat » γM “ p1 `ω2τ2qp|μc,A|2 ´|μc,B|2q
4|μc,A||μc,B| (3.46)

and demonstrates that the figure of merit improves with increasing difference of chemical

potentials, increasing frequency and τ (once the conductivity is in the plasmonic region).

Figure 3.1 shows values of γM as a function of different parameters influencing the conductivity

of graphene in the two states, leading to the following conclusions. First, the best modulation

performances can be obtained between 10 and 100 THz and, evidently, for larger dynamic vari-

ations of the chemical potential. The performance sharply decreases at shorter wavelengths

due to the well–known universal conductivity of graphene at optical frequencies (see Equation
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2.146), effectively preventing any modulation; hence, γM=0. The transition frequency depends

on the largest chemical potential (Figure 3.1c) and is coarsely approximated by twice the Fermi

level, corresponding to the emergence of interband transitions. As expected, temperature is

only important for low values of Fermi level, whereas the graphene relaxation time τ has a very

strong impact on the ultimate performance because it directly affects the loss mechanism.

3.4.2 Graphene non-reciprocity figure of merit

When a magnetostatic field is applied to graphene, the conductivity takes the form in Equation

2.152:

σA “ σB “ σ “
ˆ

σd σo

´σo σd

˙
(3.47)

The graphene non-reciprocity figure of merit is then:

γmat “ γNR “ |σo|2

Re2pσdq´ Im2pσoq (3.48)

The figure of merit increases for larger off-diagonal conductivities, as expected, and it de-

creases for larger real part of the diagonal conductivity. Less intuitively, a larger imaginary part

of the off-diagonal conductivity can improve the figure of merit, as it compensates for the loss.

If the Drude Lorentz approximation can be used (Equation 2.157), then:

σd » σDC
1 ` jωτ

pωcτq2 `p1 ` jωτq2

σo » σDC
ωcτ

pωcτq2 `p1 ` jωτq2

γNR » pωcτq2 “ pμB0q2 “
ˆ

qeτv2
f B0

μc

˙2

(3.49)

showing that higher magnetic field and graphene mobility lead to better non-reciprocal figure

of merit.

Figure 3.2a illustrates that the optimal performance improves for larger magnetostatic biasing,

as expected. A less obvious observation is the fact that isolators perform better at low μc if

τ is unchanged; this finding can also be inferred by the inspection of (9). This observation

can be explained semi-classically by noting that the effective mass m “ |μc|v´2
f of the carriers

decreases (or similarly, the mobility increases) for low μc; thus, the bending of their trajectories

due to the magnetic field increases (higher cyclotron frequency). Figure 3.2b illustrates that

temperature is influential at low Fermi level, where the presence of thermal carriers of both
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Figure 3.2 – Theoretical upper bound (γNR) to the performance of graphene non-reciprocal devices as a function
of multiple parameters. Full magneto-optical conductivity is used (Equations 2.153 and 2.154). In all plots, the
quantities that are not swept have the values of f =1 THz, T =300 K, μc=0.34 eV, B0=4 T, and τ=66 fs. Each contour is
marked with the corresponding value of γNR. a) temperature vs. chemical potential sweep. b) bias magnetic field
vs. chemical potential sweep. c) frequency vs. relaxation time sweep. d) frequency vs. chemical potential sweep.

polarities degrades the performance. High values of τ, i.e., high graphene quality, can lead

to very high γNR, as shown in Figure 3.2c. Figures 3.2c and 3.2d illustrate that performance is

relatively frequency-invariant until the mid-infrared region, where the frequency drops due to

interband transitions and to the universal optical conductivity of graphene. The invariance

toward low frequencies can be explained by the independence of γNR on the imaginary part

of σd in (8). This behavior contrasts with that of γM in the modulation case, which degrades

significantly toward low-terahertz and microwave frequencies (see Figure 3.1). This difference

in behavior indicates that, unlike in modulators, plasmonic resonances are not instrumental

to achieving high performance in graphene-based non-reciprocal devices.

3.5 Device specific upper bounds

In this section several performance upper bounds useful for specific tunable and non-reciprocal

devices are presented. Tunability can be used for electro-optical modulators, switches or

reconfigurable antennas, while non reciprocity for isolators, circulators, gyrators and Kerr

rotators. Figure 3.3 illustrates some examples of these functionalities for planar devices (i.e.

operating for incident plane waves).

If graphene (or any material supported by the upper bound) is used to achieve modulation,

then the general scattering inequality applies and can be used. The inequality is valid for any
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pair of vectors aA and aB. In particular, if aA and aB are both chosen with only one nonzero

entry, a specific term of the matrix SA ´ST
B is selected to appear in the numerator. The selected

entry represents a specific signal path inside the multiport device, and the two vectors aA and

aB determine the source and the observation ports of the signal, respectively. For example

if for a 3-ports device aA “ r1,0,0sT and aB “ r0,1,0sT then the path from port 1 to port 2

is selected, or if aA “ r0,0,1sT and aB “ r0,0,1sT then the reflection coefficient of port 3 is

selected. Therefore aA and aB must be chosen according to the specific device capability

considered, as done in the examples below.

3.5.1 Modulators

Electro-optic modulation is the most studied application based on the dynamic reconfigu-

ration of graphene conductivity. The practical feasibility of these devices has been verified

at different frequencies, ranging from infrared to kHz. In particular, graphene demonstrates

a remarkable potential for modulation at THz frequencies, where alternative technologies

exhibit significant limitations16. Graphene modulators, either in guided-wave systems or
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as metasurfaces for free space beams, can be rigorously described using scattering matrix

formalism. The scattering matrix of the modulator takes two distinct values, SA and SB, for the

two scalar conductivities σA and σB of graphene, obtained by applying different electrostatic

bias fields. Here, we consider amplitude modulators both in reflection and in transmission.

Modulators in reflection

An amplitude modulator in reflection is a single port device that reflects electromagnetic

waves with different amplitudes in states ‘A’ and ‘B’. The scattering matrix is a complex scalar,

namely, SA “ ΓA for state ‘A’ and SB “ ΓB for state ‘B’. Because a modulator in reflection is a

single port device, here simply aA “ aB “ 1, and we obtain

γMod fi
|ΓA ´ΓB|2

p1 ´|ΓA|2qp1 ´|ΓB|2q ď γM (3.50)

The numerator indicates that the difference between the reflection coefficients in the two

states is affected by the bound. ΓA and ΓB can differ in absolute value (amplitude modulator)

or have approximately the same magnitude and differ in phase (phase modulator) or a mix of

these two cases. The value γMod is the device modulation figure of merit, and it expresses the

optimality of the device modulation.

To better understand the bound, we notice that a common phase factor among ΓA and ΓB is

irrelevant for modulation purposes. Hence we can represent the bound using these three real

numbers instead:

• The magnitude in state ‘A’ i.e. |ΓA|
• The magnitude in state ‘B’ i.e. |ΓB|
• The phase difference ϕfi =ΓA ´=ΓB

We then get:

γMod “ |ΓA|2 `|ΓB|2 ´ 2|ΓA||ΓB|cosϕ

p1 ´|ΓA|2qp1 ´|ΓB|2q ď γM (3.51)

Next we notice, after some algebraic passages:

γMod “ γAMod `γPMod ď γM (3.52)

γAMod fi
p|ΓA|´ |ΓB|q2

p1 ´|ΓA|2qp1 ´|ΓB|2q (3.53)

γPMod fi
2|ΓA||ΓB|p1 ´ cosϕq

p1 ´|ΓA|2qp1 ´|ΓB|2q (3.54)
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Figure 3.4 – 3D representation of the general modulation bound (Equation 3.51) using as example the value γM “ 1

γAMod and γPMod are metrics for the optimality of the device as amplitude or phase modulator

respectively. Their sum must be lower than the material reconfigurability figure of merit,

which means that if the target is the optimization of a phase modulator, then the amplitude

modulation must be minimized and vice versa. Clearly, since all γ quantities are real and

positive, we can always write γAMod ď γM and γPMod ď γM.

We notice that γAMod depends on two real parameters only, representing the magnitude of the

reflection coefficients. γPMod depends instead on all the parameters, but it can be reduced to a

simpler form at the cost of obtaining a slightly less strict bound. In fact, defining the minimum

among reflection coefficients magnitudes Rmin fi minp|ΓA|, |ΓB|q, we get:

γ1
PMod ď γPMod (3.55)

γAMod `γ1
PMod ď γAMod `γPMod “ γMod ď γM (3.56)

γAMod fi
p|ΓA|´ |ΓB|q2

p1 ´|ΓA|2qp1 ´|ΓB|2q ď γMod ď γM (3.57)

γ1
PMod fi

2R2
minp1 ´ cosϕq`
1 ´ R2

min

˘2 ď γMod ď γM (3.58)

γPMod fi
2|ΓA||ΓB|p1 ´ cosϕq

p1 ´|ΓA|2qp1 ´|ΓB|2q ď γMod ď γM (3.59)

Notice that if |ΓA| “ |ΓB| we actually have γ1
PMod “ γPMod, and hence we do not lose in terms

of optimality, implying that phase modulators should be designed with |ΓA| “ |ΓB| for better

performances. It is now useful to graphically represent the upper bound for the various cases.
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Figure 3.5 – Graphical representation of the amplitude (a) and phase (b) upper bounds (Equations 3.57, 3.58)

First, the general modulation bound (Equation 3.51) can be represented in the selected three

real variables as in Figure 3.4. Each modulator (at a given design frequency) is a point in

the Cartesian space p|ΓA|, |ΓB|,ϕq, called performance space, and must lie below the surface

represented in the figure (the region above is called forbidden region). The value γM “ 1 has

been used as example, for smaller values the surface becomes smaller, reducing the allowed

volume for the modulators. Next, the amplitude modulation bound (Equation 3.57) and the

phase modulation bound (Equation 3.58) can be obtained intersecting the surface with the

two planes in figure 3.4. The sections are depicted in Figure 3.5, where the forbidden regions

are yellow. One can clearly see that there is a trade off between modulation and insertion loss.

For example, for amplitude modulation, the ideal modulator has |ΓA| “ 1, |ΓB| “ 0, which is

impossible as this point is in the forbidden region. If 100% modulation efficiency is desired

(|ΓB| “ 0), then there is necessarily an insertion loss in the ON state, which is expressed as:

|ΓA| ď
c

γM

γM ` 1
(3.60)

If a lower modulation efficiency is tolerated, then the insertion loss can be reduced. Similarly,

if a 180° is needed (BPSK modulation) then the minimum unavoidable loss is given by:

|Rmin| ď
b

γ´1
M ` 1 ´

b
γ´1

M (3.61)

The plots 3.5 also represent a performance space which has however a lower number of

dimension, accordingly to the relevant performance parameters of the considered class of

devices. For amplitude modulators, as explained later, the bound can also be expressed in

terms of modulation depth and insertion loss.
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Modulators in transmission

The amplitude modulator in transmission is a two-port device in which one port is used as

input for the non-modulated wave and the other as output for the modulated signal. The

behaviour of the device in states ‘A’ and ‘B’ is described by two scattering matrices, SA and

SB. If reciprocal materials are used (as in the case of graphene with zero magnetic bias), the

scattering matrices are symmetric:

SA “
ˆ

Γ1A TA

TA Γ2A

˙
(3.62)

SB “
ˆ

Γ1B TB

TB Γ2B

˙
(3.63)

Similar to the reflection modulation case, the general scattering bound can be applied. Be-

cause we are interested in the transmission between ports 1 and 2, we select the path from

ports 1 and 2 by choosing aA “ r1,0sT and aB “ r0,1sT. In the numerator, we obtain an

expression that depends only on TA and TB:

|TA ´ TB|2

p1 ´|TA|2 ´|Γ1A|2qp1 ´|TB|2 ´|Γ2B|2q ď γM (3.64)

Unlike the numerator, the denominator contains quantities other than TA and TB. However,

for passive devices, the two factors in the denominator are always positive, implying

|TA ´ TB|2

p1 ´|TA|2qp1 ´|TB|2q ď |TA ´ TB|2

p1 ´|TA|2 ´|Γ1A|2qp1 ´|TB|2 ´|Γ2B|2q ď γM (3.65)

Hence, defining:

γMod fi
|TA ´ TB|2

p1 ´|TA|2qp1 ´|TB|2q ď γM (3.66)

we obtain a bound which is formally identical to the reflection case. Importantly, reaching

optimal performance in transmission requires a much more involved design procedure, as

shown in the reminder of this chapter.

3.5.2 Non-reciprocal devices specific upper bounds

The second major class of graphene passive photonic devices is based on the presence of a

magnetostatic field bias and the resulting off-diagonal terms in the conductivity tensor of
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graphene. This class includes Kerr and Faraday polarisation rotators, as well as isolators, which

are non-reciprocal devices. These devices are considered in the remainder of the paper. A

similar procedure as that used in the case of the modulators can be followed concerning the

mathematical derivation, its verification, and the practical exploitation of the results; thus,

only the key methodology difference and practical results are considered in detail.

Isolators

An isolator is a non-reciprocal two-port device that enables transmission in one direction but

prevents transmission in the other. A generic isolator can be represented by the scattering

matrix:

S “
ˆ

S11 S12

S21 S22

˙
(3.67)

(3.68)

The same procedure used for the modulators in transmission leads to:

γIsol fi
p|S12|´ |S21|q2

p1 ´|S12|2qp1 ´|S21|2q ď γNR (3.69)

(3.70)

This bound indicates that a certain insertion loss is to be accepted if a given level of isolation

is required. For perfect isolation, the minimum loss is:

|S12| ď
c

γNR

γNR ` 1
(3.71)

Kerr rotators

Magneto-optic Kerr rotation describes the variation of orientation of a linearly polarised plane

wave upon reflection on a magnetostatically-biased material. In the most general case, the

reflected wave might exhibit helicity, and in that case, the major axis of the reflected elliptic

polarisation is used to define the rotation. Magneto-optic Kerr rotation is well defined if

the reflective behaviour of the surface is invariant to a rotation of the surface itself. For a

metasurface, this condition is always met if the geometric pattern is invariant to a 90°rotation

(a symmetry that is also referred to as C4 symmetry). An immediate consequence of this

symmetry is that a normal incident left hand circularly polarized (LHCP) plane wave is always

reflected as a left hand circularly polarized (RHCP) one and vice versa. Hence, the scattering

matrix of the structure takes a simple form when LHCP and RHCP plane waves are used. Using
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the same approach used for phase modulation, it is possible to prove that:

γKerr fi
|2M sinϕ|2

p1 ´ M 2q2 ď γNR (3.72)

where M is the magnitude of the major axis of the reflected elliptical polarization and ϕ is the

magneto-optical Kerr rotation.

3.5.3 Bounds for reconfigurable and non-reciprocal antennas

In the reminder of this thesis, as well as in many other works in literature, several designs

of reconfigurable antennas based on graphene are presented, exploiting its tunable conduc-

tivity to obtain some form of reconfigurability. This section extends the upper bound to the

radiation efficiency of graphene antennas with tuneable radiation pattern. Subsequently is is

also demonstrated that similar bounds exist for non-reciprocal graphene antennas, namely

antennas which exhibit a reception pattern different from the radiation pattern (identical in

reciprocal antennas). These antennas are possible whenever non-reciprocal materials are

included in their structure, including magneto-statically biased graphene. In this case the

bound is expressed as a function of the radiation and reception efficiencies. The scattering

matrix notation for antennas (described in Chapter 2) will be used together with the general

scattering inequality.

Reconfigurable antennas

First we will consider the case of antennas containing gated graphene with tunable scalar

reciprocal conductivity. If the complex conductivity is changed from σA to σB then the overall

behavior of the antenna will change, and this can be described using two scattering matrices

for these two cases, namely SA and SB (Figure 3.6). Then

γdev ď γmat (3.73)

γdev fi

ˇ̌̌
aT

B

`
SA ´ ST

B

˘
aA

ˇ̌̌2

aH
A

´
I ´ SH

A SA

¯
aA aH

B

´
I ´ SH

B SB

¯
aB

(3.74)

γM “ |σA ´σB|2

4RepσAqRepσBq (3.75)
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If we choose aA and aB so that aA
0 “ 1, aA

iě1 “ 0, aB
0 “ 0, aB

iě1 “ pS A
i 0 ´ SB

i 0q˚ we obtain the

following inequality:

γmax ě
`ř8

i“1 |S A
i 0 ´ SB

i 0|2
˘2`

1 ´ř8
i“1 |SA

i 0|2
˘

aH
B

`
I ´ SH

B SB

˘
aB

ě
ř8

i“1 |SA
i 0 ´ SB

i 0|2

1 ´|ΓA|2 ´εA
rad

“ ΞAB

1 ´|ΓA|2 ´εA
rad

(3.76)

where ΞAB is called pattern diversity factor, and it is defined as:

ΞAB “
8ÿ

i“1

|SA
i 0 ´ SB

i 0|2 “
� |EA

rad ´ EB
rad|2dθdφ

4πZ0Pforw
(3.77)

Finally we notice that an identical bound holds if we exchange aA and aB. The intersection of

the two bounds can be written using the maximum function as:

ΞAB

1 ´ maxp|ΓA|2 `εA
rad , |ΓB|2 `εB

radq ď γmax (3.78)

This formula is referred to as the antenna reconfigurability upper bound. An important

simplification of the formula takes place if the antenna is matched in both states (a condition

which is easily obtained in reconfigurable reflectarrays), namely εX
rad “ ηX

rad:

ΞAB

1 ´ maxpηA
rad , ηB

radq ď γmax (3.79)

It is now worth discussing the correct interpretation of the pattern diversity factor ΞAB. This

quantity acts a metric (i.e. as a distance) in the set of all possible radiated field configurations.

Note for instance that it ΞAB “ 0 if the radiated field is the same in case A and B, because the

difference in the numerator goes to 0. In the simple case where εX
rad “ ηX

rad “ 1 (corresponding

to a lossless matched antenna) this factor has a maximum value of 4 if EA
rad “ ´EB

rad, that is if

the field undergoes a complete phase reconfiguration of 180°upon state switching, a result

which is in general very demanding from this upper bound perspective. If EA
rad and EB

rad are

orthogonal, as defined in Equation 2.74, then ΞAB “ 2. This is because one can distribute the

power integral on the two terms, thus obtaining the sum of the powers. This is the case, for

instance, when a complete beam steering without beam overlapping is achieved (Figure 3.6b).

For this case, if the antenna is lossy, mismatched or both, the maximum value of ΞAB can be
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a) b)

σA

σB

σA
σB

Figure 3.6 – Conceptual schematic of a reconfigurable antenna enabled by graphene field effect tuning. Panel
(a) shows that for identical incident waves and different graphene conductivities the radiation pattern is tuned.
Panel (b) illustrates the particular case of beam steering, where the radiated beam is directed towards two distinct
directions for the two states A and B.

found using the triangular inequality as

ΞAB
max “

´b
εA

rad `
b

εB
rad

¯2
“ εA

rad `εB
rad ` 2

b
εA

radε
B
rad (3.80)

and in case of orthogonal modes we have ΞAB “ εA
rad `εB

rad. It is also important to mention

that another related figure of merit for beam overlapping is the Neq provided in [94]. However,

since Neq does not depend on the phase of the electric field and ΞAB does, it is not possible to

write a univocal relationship between the two quantities.

An important consequence of inequality 3.79 is that the higher is the distance that we wish to

realize between the two radiation patterns the higher has to be the loss at the denominator,

in order to keep satisfying the inequality. Let us for example consider the case of matched

antennas with losses (εX
rad “ ηX

rad ď 1) and orthogonal beams, a situation found in graphene

beam steering reflectarrays[JA1, JA2, CA17]. For this case we have:

ΞAB

1 ´ maxpηA
rad , ηB

radq ď γmax (3.81)

This inequality can be represented in the Cartesian plane pηA
rad,ηB

radq as shown in Figure 3.7.

The realistic case presented there shows that, using commercial CVD graphene, the bound

does not prevent satisfactory values of radiation efficiency (around 70%), while the best
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Figure 3.7 – Representation of the reconfigurable antenna upper bound. Panel (a) shows the forbidden region
for a realistic case of graphene. Graphene conductivity has been computed with Kubo formula with parameters
T “ 300K, f “ 5THz, τ“ 50fs, μc “ 0.1eV and 0.6 eV in cases ‘A’ and ‘B’ respectively. For this case γmat “ 3.5. Panel
(b) is a parametric sweep of the same limit for different assumed value of γmat.

possible performances rapidly degrade for γmat<1.

Non-reciprocal antennas

The theory developed for reconfigurable antennas holds with minor modification also for the

non-reciprocal case. Here we are assuming as usual that a strong perpendicular magnetic field

is applied to graphene, the conductivity of which takes the gyrotropic form in Equation 3.47:

Following the same steps as above, we obtain the following expression:

ΞTR

1 ´|Γ|´ maxpεA
rad , εB

radq ď γmax (3.82)

which is referred to as the antenna non-reciprocity upper bound. In this case the pattern

diversity factor ΞTR expresses the distance between the radiation pattern (transmission mode)

and the reception pattern (receive mode), and it is defined as:

ΞTR “
8ÿ

i“1

|Si 0 ´ S0i |2 “
� |Erad ´ Erec|2dθdφ

4πZ0Pref
(3.83)

where Erad is the radiated field pattern when feeding the antenna port with incident power Pref

and Erec is the reception field pattern. The latter is more easily understood as the radiation

pattern in the case of opposite magnetostatic biasing of graphene. In fact, opposite bias has

the effect of transposing the scattering matrix, as explained in 2.
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Applications

The bound enables an estimation of the loss of the antenna prior to any design, and it applies

to any antenna geometry and operation frequency. Furthermore the bound can be readily

used for any 2D materials for which the conductivity is known, and likely extended to 3D and

lumped reconfigurable elements. The demonstrated upper bound is expressed in a negative

form, namely it gives information on which performances cannot be reached. Nevertheless,

this theory is of great utility for graphene and technology selection in the early stages of the

design, as it helps choosing graphene parameters prior to any numerical simulation. These

results are particularly important for the design of reflectarray antennas, later in this thesis.

3.6 Design of optimal planar devices

The theoretical upper bound limits the efficiency of graphene tuneable and non-reciprocal

devices, by stating that a minimum insertion loss is unavoidable accordingly to the material

property γmat and to the requested function (e.g. modulation or isolation). The upper bound

however does not guarantee that devices reaching the optimal performance (the minimum

insertion loss) can actually be designed. Because of this, a very large number of planar devices

were simulated with randomly chosen geometrical parameters.

The devices’ performances were then plotted in the performance spaces described above. Each

device is simulated at the chosen frequency of 1THz and represented as a single point in the

performance space. We verified that no devices were found in the forbidden region, validating

the bound. Interestingly, some devices were able to be very close to the forbidden region

boundary. These devices are optimal, in the Pareto optimality sense [85]. This means that no

device can be designed which is better in all the considered performance space dimensions.

For example, if an amplitude modulator lies on the boundary of the theoretical limit (Figure

3.5) then no device can be better in terms of insertion loss and modulation depth.

The devices are simulated using a code developed by Dr. Arya Fallahi [25, JA3, 26, 27, 28, 29,

JA8, 121] and graphene conductivity is computed using the full Kubo formalism described in

Chapter 2. The results are illustrated in the reminder of this section.

3.6.1 Optimal amplitude modulators

The first class of devices considered for optimal design are amplitude modulators. Both

reflection and transmission configurations will be explored, as they share the same theoretical
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bound (Equation 3.57):

γAMod fi
p|ΓA|´ |ΓB|q2

p1 ´|ΓA|2qp1 ´|ΓB|2q ď γM Reflection modulator (3.84)

γAMod fi
p|TA|´ |TB|q2

p1 ´|TA|2qp1 ´|TB|2q ď γM Transmission modulator (3.85)
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Figure 3.8 – Performances of electro-optical amplitude modulators. a) graphical representation of the amplitude
modulation inequality in the Cartesian plane p|ΓA|, |ΓB|qq [here, γM “ 0.6 is used as an example]. The squares
represent ideal modulators, and the circles denote the best possible modulators with 100% modulation depth.
Forbidden areas (yellow) are delimited by the boundary curve, where γmod “ γR, b) same as a but using the
insertion loss and modulation depth coordinates. c) upper bounds for different values of γM. The available designs
in the literature are represented by coloured symbols, and where possible, the corresponding bound is represented
using the same colour. d-f) simulations of randomly generated reflection modulators. Each red point represents a
single simulated device. The frequency considered is 1 THz, and the graphene parameters are T “ 300 K, μc,A “0.1
eV, μc,B “0.8 eV, and τ“66 fs (leading to γM “ 1.76). A graphene layer on a back metallised dielectric layer (d) can
reach optimal performance in a limited range. However, if graphene is patterned in a periodic square array (e)
or if an additional dielectric layer is added (f), optimal performances can be reached along the entire boundary
curve, including the best possible reflection modulation with 100% modulation depth. g-i) random simulations
of different device topologies for transmission modulation. g represents random sequences of graphene sheets
and dielectric layers. h represents random sequences of patterned graphene and dielectric layers. i shows an
example of a complex structure employing polarisers and hybrid graphene metal structures showing near-optimal
performances. Structures d-h are dual polarised, whereas the polarisers in i restrict the operation to single linear
polarisation (with a 90° polarisation twist).

As mention earlier, helpful intuition regarding this inequality is obtained by considering the

Cartesian plane p|ΓA|, |ΓB|q, as shown again in Figure 3.8a. The inequality states that there are
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some areas in the space of p|ΓA|, |ΓB|q that are strictly ‘forbidden’; these regions are highlighted

in yellow in Figure 3.8a. The boundaries of these forbidden regions are determined by γM and

thus solely by graphene conductivity. In this plot, an ideal modulator corresponds to the red

squares, i.e., |ΓA| “ 1 and |ΓB| “ 0, or vice versa. However, Inequality 3.84 readily shows that

such an ideal modulator is not practically realisable. For example, if the modulator is designed

to achieve perfect absorption in its ‘off’ state, such that |ΓB| “ 0, then |ΓA| cannot exceed the

value shown by the red circle in Figure 3.8a.

A more practical view is obtained by representing the same data in the Cartesian plane defined

by insertion loss and modulation depth (Figure 3.8b). This representation is accomplished by

assuming, without loss of generality, that |ΓA| ě |ΓB| and by defining the modulation depth as:

h fi
|ΓA|´ |ΓB|
|ΓA|` |ΓB| Reflection modulator (3.86)

h fi
|TA|´ |TB|
|TA|` |TB| Transmission modulator (3.87)

and the insertion loss IL as:

IL fi |ΓA| Reflection modulator (3.88)

IL fi |TA| Transmission modulator (3.89)

In this case, Inequality 3.84 writes:

γAMod fi
p2h ILq2

p1 ´ IL2qpp1 ` hq2 ´ IL2p1 ´ hq2q ď γM (3.90)

(3.91)

As noticed previously, the best possible modulator with 100% modulation depth will have a

loss of IL “ a
γM{p1 `γMq which is obtained by introducing h “ 1 in Inequality 3.90. This

case is represented by the red circle in Figure 3.8b, which corresponds exactly to the red circle

in the alternative representation in Figure 3.8a. Insertion loss (and other quantities in the

following) can be given in dB, and in that case the 20log10 convention has to be used since

these quantities are defined on field amplitudes (and not power).

In summary, the theory indicates that a given target value for modulation depth cannot be

reached without a minimum value for insertion loss. The general trend is intuitive and related

to the loss in graphene. More precisely, a high modulation originates from a strong interaction

of the fields with graphene, which in turn increases the loss. However, here, we rigorously

demonstrate that although arbitrarily complex designs might potentially allow the modulation
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depth to be increased without limit, such unbounded increases will always come at the cost of

a minimum amount of loss. Importantly, this minimum amount of loss is a known function of

the parameters of graphene alone, which allows us to fully utilise the developed theory for

practical purposes, as detailed below.

The bound γM is a function of graphene conductivity, and Figure 3.8c presents the frontiers cor-

responding to different values of γM. Modulators with different amplitudes that are available

in the literature are also reported on the graph, where possible with their corresponding fron-

tiers. Table 3.1 lists the references used for this comparison, which have varying performances

accordingly to the working frequency and graphene type.

Table 3.1 – Examples of graphene amplitude modulators from literature

Example number of Reference number Operation frequency Type

Example 1 Ref [98] 0.57–0.63 THz Experimental
Example 2 Ref [35] 25–30 THz Theoretical
Example 3 Ref [59] 193 THz Theoretical
Example 4 Ref [64] 0.5–2 THz Experimental
Example 5 Ref [70] 193 THz Theoretical
Example 6 Ref [120] 193 THz Theoretical

The performance achieved in these initial concept demonstrations is typically significantly be-

low the theoretical upper bound. This result suggests the important potential for improvement

if devices approaching the theoretical limit can indeed be designed in practice.

To provide our first answers to this question and subsequently to validate the theoretical pre-

diction, we simulated a very large number of randomly generated modulators. All modulators

use graphene of the same conductivities and use the design degrees of freedom depicted

in Figure 3.3e. Graphene conductivity is evaluated using Kubo formalism (as in Equation

2.138) for the parameters reported in the caption of Figure 3.8, leading to γM “ 1.76 and the

corresponding theoretical upper bound plotted in Figure 3.8(d-e-f). The red dots in the figures

report the computed performance of each randomly generated modulator.

The simplest possible reflection modulator, namely, uniform graphene over a metalized

substrate (Figure 3.8d), can only achieve near-optimal performance for small modulation

depths. In this case, the random simulations form a 1D locus. The same behaviour is observed

by employing a multilayer dielectric stack between graphene and reflector. The reason is that

the admittance seen at the input of the modulator, which determines the complex reflection

coefficient, is the sum of graphene conductivity and the admittance seen at the input of the

stack. The latter is always an imaginary number; thus, varying the permittivity, thickness, or

number of layers provides only a single equivalent degree of freedom, which is the cause of

the 1D locus.

Therefore, the logical next step is to consider the simplest modulators that provide additional

90



3.6. Design of optimal planar devices

design flexibility, namely, graphene patterning (Figure 3.8e) or the use of an additional di-

electric layer before graphene (Figure 3.8f). The distribution of the computed results (red

dots) provides evidence that these minimal increments in device complexity allow an almost

arbitrary approach to the absolute theoretical upper bound, which is of considerable practical

importance. The numerical results presented correspond to the conductivity of the given

selected graphene, but the conclusions apply to any conductivity. The method is bandwidth-

agnostic, thus different near-optimal solutions can be compared and selected according to

the bandwidth requirement.

The simulations provide convincing evidence of the bound validity. The frontiers of the perfor-

mance clouds for the randomly generated modulators almost exactly match the theoretical

upper bound. Importantly, many more simulations of complex randomly generated setups

were carried out, including combinations of a multilayer substrate, patterned graphene, and

the addition of metal. No single result was found to exceed the theoretical limit.

The optimal performances for modulators in transmission are more difficult to attain. Despite

closely approaching the bound for most modulation depth, non-patterned and patterned

multilayer structures are suboptimal when a 100%-modulation is desired (Figures 3.8g-h). The

physical interpretation is that in contrast to modulators in reflection, a good high-transmission

modulation state not only requires limiting loss in graphene but also must independently

impedance-match the system. The operation of a polarization twist upon transmission, which

is achieved in Figure 3.8i by using highly anisotropic hybrid graphene metal patterns, offers

a new degree of freedom. The hybrid metasurfaces modulate one polarization, whereas the

other polarization is left largely unaffected, allowing for feedback in the structure. However the

improvement is only useful for a 100% modulation depth and comes at increased complexity,

hence a simpler unpatterned multilayer structures as in Figure 3.8g is in general the best

solution (see the Supplementary Methods for designs close to the optimal performance).

3.6.2 Optimal isolators

The second class of graphene passive photonic devices considered are non-reciprocal optical

isolators. For isolators, Inequality 3.69 reads:

γIsol fi
p|S12|´ |S21|q2

p1 ´|S12|2qp1 ´|S21|2q ď γNR (3.92)

We will assume, without loss of generality, that |S12| ě |S21|. The inequality can be casted in a

different form defining the isolation ISO and insertion loss IL:

ISO fi
|S12|
|S21| ě 1 (3.93)

IL fi |S21| ď 1 (3.94)
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Figure 3.9 – Performances of non-reciprocal isolators. a) graphical representation of the isolation inequality on
the Cartesian plane p|S12|, |S21|q (here, γNR=0.6 is used as an example). The squares represent ideal isolators, and
the circles denote the best possible isolators with perfect isolation. Forbidden areas (cyan) are delimited by the
boundary γisol “ γNR. b) same as a but using the insertion loss and the isolation of the isolator as coordinates.
c) boundaries for different values of γNR. The available designs in the literature are represented by coloured
symbols, and where possible, the corresponding boundary is represented using the same colour. d-f) random
simulations for different device topologies. Each red point represents a single simulated device. The frequency
considered is 1 THz, and the graphene parameters are T =3 K, μc=0.2 eV, B0=4 T, and τ=66 fs (γNR=1.78). All
topologies use polarisers at both ends to convert Faraday rotation into isolation. d uses a graphene sheet enclosed
by two dielectric layers. e uses two dielectrics on each side of the graphene sheet. f uses two graphene sheets and
three dielectric layers in an alternating pattern.

In this case, Inequality 3.92 writes:

γIsol fi
IL2pISO ´ 1q2

p1 ´ ILqpISO2 ´ IL2q ď γNR (3.95)

Figures 3.9a and 3.9b represent the isolation inequality and the ideal and best possible optima.

As before, the minimum insertion loss for an isolator having perfect isolation is found setting

ISO Ñ 8

IL “
c

γNR

1 `γNR
. (3.96)

Figure 3.9c presents the variation in the best possible trade-off between isolation and insertion

loss for different values of γNR. The literature examples are listed in Table3.2:

Figures 3.9d to 3.9f illustrate that the best possible performance can be reached with simple

planar structures encapsulated between two polarizers. In the simplest case of a graphene

sheet placed between two dielectric slabs (Figure 3.9d), optimality is achieved everywhere
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3.6. Design of optimal planar devices

Table 3.2 – Examples of graphene isolators from literature

Example number of Reference number Operation frequency Type

Example 1 Ref [106] Microwaves Theoretical
Example 2 Ref [108] 20 GHz Experimental

except for a small degradation when perfect isolation is required (ISO Ñ 8). Increasing the

number of dielectric layers between graphene and polarizers does not solve this issue (Figure

3.9e). However, a structure comprised of three dielectric slabs and two graphene sheets in

an alternating pattern can reach optimal performances at moderate complexity (Figure 3.9f).

Unlike additional dielectric layers, a second graphene layer allows for decorrelating rotation

and loss in the system, approaching the theoretical upper bound. Similarly to the trans-

mission modulator case, impedance matching at both ports is essential to achieve optimal

performance.

3.6.3 Optimal Kerr rotators
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Figure 3.10 – Performances of magneto-optical Kerr rotators. a) graphical representation of the Kerr rotation
inequality on the Cartesian plane pM ,φq (here, γNR=0.6 is used as an example). The squares represent ideal
90° rotators, and the circles denote the best possible 90° rotators with perfect rotation. Forbidden areas (cyan)
are delimited by the boundary curve, where γKerr “ γNR. b) same as a with the major axis expressed in dB. c)
theoretical bound curve for different values of γNR. d-f) random simulations for different device topologies. Each
red point represents a single simulated device. The frequency considered is 1 THz, and the graphene parameters
are T =3 K, μc=0.2 eV, B0=4 T, and τ=66 fs (γNR=1.78). The topology shown in f) reaches optimal performance
values for every rotation in the range 0° -90° . d) is a single graphene layer on a back metallised substrate; in e), a
superstrate is added; and in f), two superstrates are added, leading to the optimal performances.

Finally, we show that also Kerr polarization rotators can reach optimal upper bound perfor-

mances. These devices can replace the Faraday rotator in Faraday isolators, by modifying

the geometry from transmission to reflection. In that case the amount of rotation needed is

45° . Alternatively, a Kerr rotator of 90° can act as a 180° gyrator for linearly polarized waves in
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Chapter 3. Theoretical non-reciprocity and modulation upper bounds

reflection. We previously found (Equation 3.72)

γKerr fi
|2M sinϕ|2

p1 ´ M 2q2 ď γNR (3.97)

where ϕ is the Kerr rotation angle, M is the magnitude of the reflected linear polarization.

M represents the magnitude of the major ellipse axis when the polarisation of the reflected

wave is elliptical. The inequality is graphically represented in Figure 3.10a-c using the same

conventions as in Figures 3.8 and 3.9. The ideal (90° ) and best possible Kerr rotators are

identified by green markers in the figures.

Figure 3.10d presents the Kerr rotation of uniform graphene on a metal-backed substrate.

Although optimal performance is obtained in a small region, the lack of degrees of freedom

again prevents optimal performance over the full optimal frontier. The insertion of a single

superstrate of a dielectric provides an additional degree of freedom but has no particular

effect on the performance (Figure 3.10e). However, two different superstrates allow for greatly

enhanced Kerr rotations thanks to Fabry-Pérot resonances (Figure 3.10f), leading to optimal

performances in a technologically simple structure. This enhancement is also in agreement

with a similar effect reported for Faraday rotation29, 30, 39. Finally, a significant number of

devices obtained by randomized combinations of the different strategies of Figure 3.10(d-f)

were also simulated, all satisfying the upper bound.

3.7 Applications to nanophotonics

In a recent paper (Ref. [130]), Dr. Zanotto et al. studied this upper bound and related device

optimization for electro-optical modulators based on tunable 3D materials. Figure 3.11 illus-

trates an important result of this work: optimal devices can be created exploiting resonances,

while waveguide modulators based on simple modulation of the propagation constant are

suboptimal. Similar considerations hold for graphene, where typical electro-optical waveguide

modulators [66] generally exploit the variation of just the real part of graphene conductivity,

using only a part of graphene’s potential. More complex approaches could be used such as

resonators or Mach-Zehnder configurations [120] to improve performances.

Figure 3.11, always taken from [130] provides a comparison of different electro-optical ma-

terials using the material figure of merit γmat “ γR of several electro-optical materials. The

method can be used for materials with different physical mechanisms; for example VO2 (vana-

dium dioxide) and GST (germanium antimony tellurium) are based on phase change, while

ITO (indium tin oxide) and silicon are based on carrier density modulation. This comparison

allows to select the best materials accordingly to the target optical frequency.
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3.8 Conclusions

The performance of graphene-based modulators and non-reciprocal devices is bounded by

absolute upper limits, which solely depend on the conductivity of the graphene employed.

This relationship allows the ultimate performance that will be achieved by such devices to

be predicted as a function of frequency and the other parameters that influence graphene

conductivity. Simple technological implementations allow for very close approaches to the
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upper limit for the metasurface implementation of an amplitude modulator in reflection

and transmission, as well as Kerr rotators and isolators. The observed influence of graphene

parameters on the upper bounds, as well as the device topologies allowed to approach them,

can be confirmed by physical insight. The developed theory applies to any passive linear

structure that can be described in terms of a scattering matrix and can thus be extended to

graphene guided devices and other 2DEGs. The method can be used also for 3D materials

and is very promising for the optimization of nanophotonic modulators based on tunable

materials.

This method, however, has also two minor drawbacks which might be removed by a future

more general formulation. Firstly it is frequency-agnostic, that is it holds frequency by fre-

quency. As a consequence, the presented optimal devices might achieve optimality only in

a narrow band and frequency-tunable components and filters cannot be studied directly

with this method (although they could be analyzed as modulators, and bounds on frequency

shifts could be provided with the aid of additional assumptions on the frequency behavior

of the device). Secondly, some materials are expected to have very large figures of merit but

simultaneously interact very weakly with light (e.g. low mobility band-gap 2D materials as

MoS2). Hence reaching the optimal performance likely requires high-Q resonances, leading to

narrowband devices and potentially losses in other parts of the device.

The developed methodology and practical results obtained are believed to constitute an

essential milestone toward the optimal operation of numerous future photonic devices.
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4 Graphene plasmonics for antenna
applications

4.1 Introduction

This chapters illustrates the use of graphene plasmonics for antennas applications. The

concept of graphene plasmon polariton mode is introduced in the Maxwellian framework with

a full theoretical analysis based on works already published in the literature. Subsequently,

the numerical simulation of these modes in the commercial software HFSS is presented and

demonstrated to be in excellent agreement with theory for the case of infinitely wide graphene

sheet, which can be solved analytically. Then it is illustrated how the graphene plasmons can

be used to create a high impedance plasmonic resonant antennas which can be frequency

tuned by gating graphene, discussing various geometries and extensions to metallic hybrids.

In addition, various designs of graphene plasmonic reflectarrays (done in collaboration with

Eduardo Carrasco, who first authored these works) have been designed and it was illustrated

how beam steering can be obtained. These reflectarray designs are conceptually different from

the experimental presented in Chapter 6, since they require either high quality graphene or

high frequency to exploit graphene plasmons. Finally, some preliminary measurement results

of a new method (still under development) to measure full graphene complex conductivity

are presented.

4.2 Theory of plasmon polaritons for 3D materials

Plasmonics is the branch of optics which studies the propagation and interaction of elec-

tromagnetic waves in the presence of materials behaving as plasma. For 3D materials, as

mentioned in Chapter 2 this behavior is found in the presence of free charge carriers, when

the frequency is larger than the collision rate and lower than the plasma frequency, and it

is characterized by a permittivity with dominant negative real part. At infrared and visible

frequencies, most metals behave as plasma, in particular noble metals such as silver, gold and

copper [116].

While the equivalent dielectric permittivity of these materials is strongly affected by the
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carriers, the magnetic permeability is usually very close to the value of vacuum (μ “ μ0,

μr “ 1). This implies that long range waves cannot propagate through the plasma medium

and instead they decay exponentially with distance. This is due to the fact that propagation

constant in a linear local isotropic medium is given by γ “ jω
?
με. If ε is negative, then

the argument of the square root is negative, and γ becomes real, indicating that the wave is

evanescent in the medium. These evanescent plasma waves are referred to as plasmons and

the material as plasmonic.

An important phenomenon can occur at the interface between a plasmonic material and

a dielectric is the coupling between plasmons and evenescent waves in the dielectric. This

phenomenon results in long range surface waves, named surface plasmons or transverse mag-

netic surfece plasmon polaritons (TM SPPs). These waves can exist only at the interface (i.e.

they are confined to the surface), and the energy associated to the wave decays exponentially

with the distance from the interface, both in the plasmonic material and in the dielectric.

The waves are usually characterized by very large wave numbers, which prevents them from

radiating in the dielectric.

This phenomenon is understood in the Maxwellian framework by solving Maxwell’s equations

at the interface of the two media [116]. Figure 4.1 shows the geometry of the problem.
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Figure 4.1 – Surface plasmon polaritons at the interface of a plasmonic material and a dielectric

Without loss of generality it can be assumed that the surface wave will propagate in the z

direction. TM and TE modes can be studied separately [104], and it is possible to prove that

no solution exists for the TE case. For the TM case, the magnetic field H associated to the

mode must be orthogonal to the propagaiton direction, and by symmetry we can conclude

that it is parallel to the y axis. Again by symmetry, the electric field E must lie in the xz plane.

Because here no surface currents are considered, using 2.19, it can be concluded that the

tangential components of the electric and magnetic fields are continuous along x. Recalling
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4.2. Theory of plasmon polaritons for 3D materials

from Chapter 2 the solution for propagation of plane waves in dielectrics:

E “ E0e´ j k¨r

H “ H0e´ j k¨r

k ¨ E0 “ 0

H0 “ k ˆ E0

ωμ

k2 “ k ¨ k “ ω2εμ

γ “ j k (4.1)

with the boundary conditions (Equation 2.19 without surface currents)

x̂ ˆ
´

E2 ´ E1

¯
“ 0

x̂ ˆ
´

H2 ´ H1

¯
“ 0 (4.2)

(4.3)

and applying them in each half space separately:

E1 “ pE1x x̂ ` E0z ẑqe´γz z´γ1x x (4.4)

E2 “ pE2x x̂ ` E0z ẑqe´γz z´γ2x x (4.5)

H1 “ H1y ŷ “ γz E1x ´γ1x Ez

jωμ
ŷ (4.6)

H2 “ H2y ŷ “ γz E2x ´γ2x Ez

jωμ
ŷ (4.7)

E1x “ ´ γz

γ1x
E0z (4.8)

E2x “ ´ γz

γ2x
E0z (4.9)

k0 “ ωc´1 (4.10)

γ2
z `γ2

1x “ ´εr1k2
0 (4.11)

γ2
z `γ2

2x “ ´εr2k2
0 (4.12)

H1y ´ H2y “ 0 (4.13)

Confinement of the waves can be enforced as:

Repγ1xq ą 0 (4.14)

Repγ2xq ă 0 (4.15)
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The following final dispersion relation is then found:

γz “ j k0

c
εr1εr2

εr1 `εr2
(4.16)

In the simplified case of no losses (real permittivities), because εr1 ą 0 and εr2 ă 0, the mode

can propagate if |εr2| ą |εr1| because the square root takes a real value. The mode is, in

particular, very confined (large imaginary part of the propagation constant γz ) if the two

values are very close.

When a thin plasmonic layer is considered, plasmons can appear at both the interfaces. If

the layer is thin enough, the two modes are coupled, leading to an even and an odd mode.

If the layer is very thin, substantial alteration of the propagation constant is observed [116].

Graphene can be considered as a thin plasmonic layer, and the supported mode is the even

mode of the structure above. However, a more direct and rigorous analysis can be done

modeling graphene as a true 2D material in the Maxwellian framework [50, 51], and it is

presented in the next section.

4.3 Theory of graphene surface plasmon polaritons

The analysis done for plasmons in 3D plasmonic materials can be extended to the case

of graphene with complex conductivity σ to determine the dispersion relation of plasmon

polaritons (in the reminder of this work graphene surface plasmon polariton modes are

referred to as graphene plasmons for simplicity). Here, graphene included in two dielectrics (a

superstrate and substrate) with different permittivity and μr “ 1 is considered (Figure 4.2 ).

The approach is similar to the previous case, but the boundary condition on magnetic field is
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4.3. Theory of graphene surface plasmon polaritons

modified to include the surface electric current supported by graphene:

E1 “ pE1x x̂ ` E0z ẑqe´γz z´γ1x x (4.17)

E2 “ pE2x x̂ ` E0z ẑqe´γz z´γ2x x (4.18)

H1 “ H1y ŷ “ γz E1x ´γ1x Ez

jωμ
ŷ (4.19)

H2 “ H2y ŷ “ γz E2x ´γ2x Ez

jωμ
ŷ (4.20)

E1x “ ´ γz

γ1x
E0z (4.21)

E2x “ ´ γz

γ2x
E0z (4.22)

k0 “ ωc´1 (4.23)

γ2
z `γ2

1x “ ´εr1k2
0 (4.24)

γ2
z `γ2

2x “ ´εr2k2
0 (4.25)

H1y ´ H2y “ Jsz “ σE0z (4.26)
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Figure 4.2 – Graphene surface plasmon polaritons

Confinement of the waves can be enforced again as:

Repγ1xq ą 0 (4.27)

Repγ2xq ă 0 (4.28)
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The following final dispersion relation is then found:

εr1b
γ2

z `εr1k2
0

` εr2b
γ2

z `εr2k2
0

“ ησ

k0
(4.29)

If the superstrate and substrate are identical with permittivity er then:

γz “ k0
?

er

dˆ
2
?

er

ησ

˙2

´ 1 (4.30)

If graphene is suspended in vacuum then:

γz “ k0

dˆ
2

ησ

˙2

´ 1 (4.31)

Solving Equation 4.29 in γz the propagation can be determined as function of the considered

parameters. Although the full Kubo formula with Equation 4.29 gives the exact analytical value

of the propagation constant, to better understand the propagation properties it is useful to

consider an approximation for the case of high confinement (Impγzq " k0). As shown later,

this is obtain for the case of low Fermi level in graphene. The limit of the dispersion relation

for large Impγzq is:

γz “ pεr1 `εr2q k0

ησ
(4.32)

Using the low temperature intra-band approximation (Equation 2.142) for graphene conduc-

tivity we obtain:

γz “ jε0pεr1 `εr2qω
2π�2

q2
e |μc|

`
1 `p jωτq´1

˘
(4.33)

β “ Repkq “ Impγzq “ ε0pεr1 `εr2qω
2π�2

q2
e |μc| (4.34)

α “ ´Impkq “ Repγzq “ pωτq´1β (4.35)
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4.3. Theory of graphene surface plasmon polaritons

Phase and group velocities (neglecting the losses given by α) are:

vp “ ω

β
“ q2

e |μc|
ε0pεr1 `εr2qωπ�2 (4.36)

vg “ Bω
Bβ “ q2

e |μc|
2ε0pεr1 `εr2qωπ�2 “ 1

2
vp (4.37)

Figures 4.3,4.4 and 4.5 illustrate the propagation for εr1 “ 1 and εr2 “ 4 and for various

graphene parameters.
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β  CVD(τ=50fs) 0.2 eV
β  CVD(τ=50fs) 0.4 eV

β  CVD(τ=50fs) 0.7 eV
β  Exfoliated(τ=500fs) 0.2 eV

β  Exfoliated(τ=500fs) 0.4 eV
β  Exfoliated(τ=500fs) 0.7 eV

Figure 4.3 – Computed propagation factor for plasmons in graphene between media with relative permittivity 1
and 4

Several important things can be noticed. First, plasma frequency is undefined in graphene,

since it concerns only 3D materials. The plasmons are supported by the inductive conductivity

of graphene due to the carrier’s inertia. The plasmonic mode is dispersive, with both phase and

group velocity inversely proportional to the frequency. The wavenumber is proportional to the

sum of the surrounding permittivities and not to their square root as in TEM structures (like

coplanar waveguides). The propagation is tuneable, since it depends on the Fermi Level which

can be controlled by applying a biasing voltage. In particular. the velocity is proportional to

the Fermi level, so that for low |μc| the mode is more confined. Losses are dominant for low

frequencies and plasmons become significant only for ω ă τ´1. For high quality graphene,

plasmons exist already at low terahertz frequencies, while for CVD graphene they appear in

the mid infrared starting from approximately 10-20 THz.

A very important figure of merit is the plasmon quality factor Q “ωτ, as plotted in 2.9. This

quantity has at least three consistent interpretations:

• As stated in the definition, it is the ratio between imaginary and real part of the conduc-

103



Chapter 4. Graphene plasmonics for antenna applications

Frequency (Hz)
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Figure 4.4 – Computed attenuation factor for plasmons in graphene between media with relative permittivity 1
and 4
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Figure 4.5 – Computed mode confinement for plasmons in graphene between media with relative permittivity 1
and 4

tivity Q “ ´ Impσq
Repσq “ωτ, indicating the quality of the inductive behavior of graphene.

• It is also the ratio between imaginary and real part of the propagation constant Q “
Impγq
Repγq “ωτ, indicating the quality of the plasmons with respect to attenuation.

• If graphene plasmonic resonators are built [122, 53] then the effect of the electromag-

netic field is limited to the quasi-static electric field, given that the size of the resonators

is very small due to confinement. These resonators can be modeled as an RLC equivalent
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4.4. Numerical simulations of graphene plasmon waveguides

circuit, where L and R are given by graphene Kubo/Drude model, and the capacitance

depends on the geometry of the device. If the resonance frequency is ω0 then it is found

Q “ω0
L
R “ω0τ.

Figure 4.6 illustrates the quality factor using the same graphene parameters as in the previous

figures.
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ω·τ  Exfoliated(τ=500fs)

Figure 4.6 – Computed quality factor for plasmons in graphene between media with relative permittivity 1 and 4

Finally, in the plasmonic range, the propagation factor (and hence the mode confinement)

depend on the Fermi level but not on τ, while the quality factor is independent of the Fermi

level and depends only on τ. These considerations, as well as the equivalence of the three

interpretations of the quality factor, apply in the plasmonic region of graphene conductivity,

while for lower or higher frequencies ohmic and interband losses dominate respectively and

plasmonic modes are not supported.

4.4 Numerical simulations of graphene plasmon waveguides

Before analyzing graphene based plasmonic antennas, it is important to identify and validate

an electromagnetic solver which can handle correctly this phenomenon with 2D materials

[JA9]. In the following, Ansys HFSS and CST have been used; this section summarizes the

validation of HFSS, while CST has been validated by Dr. Eduardo Carrasco and used for

plasmonic reflectarrays based on graphene [JA1, JA2, 13].

The dispersion of plasmonic modes on graphene infinite sheets has been studied using the

HFSS model in Figure 4.7a. Graphene is modeled using the impedance boundary condition

using as impedance the inverse of graphene conductivity. Two H-symmetry planes are used
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a) b)

Figure 4.7 – Numerical simulation of plasmons on infinite graphene sheet. a) Geometry of HFSS model. b)
Electrical field lateral view.

on the side exploiting the fact that the mode is transverse magnetic. The substrate considered

here is glass (εr “ 4) and the excitation is obtained using two wave ports on each side of

the structure. Top and bottom side of the box can be modeled as either radiation boundary

condition or perfect magnetic conductors. The last choice motivated by the fact that the fields

are in any case very weak there and no additional modes are supported by the box, since all the

structure is electrically small. Figure 4.7b shows the excited fields demonstrating successful

excitation of the plasmonic mode on graphene.

a) c)b)

Figure 4.8 – Numerical simulation of plasmons on ribbon waveguides. a) Geometry of HFSS model. b) Electrical
field lateral view. c) Electrical field transversal view.

For graphene strips (Figure 4.8a) graphene is again modeled with an impedance boundary

condition and wave-ports are used; howeve the radiation boundary condition (or alternatively
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4.4. Numerical simulations of graphene plasmon waveguides

the perfect magnetic conductor) is used in all the remaining four faces of the box. Figures 4.8b

and 4.8c illustrate the obtained electric fields.

Results can be exported from HFSS in the form of scattering parameters of the simulated

structure. When a substrate is used, care must be exercised to select the proper mode at

the waveport, since the structure can support other modes associated to the dielectric. This

problem is greatly attenuated using the perfect magnetic boundary condition instead of

the radiation one. When simulating plain homogeneous waveguides, as in this case, it is

expected to obtain a scattering matrix with null S11 and S22; however, due to the very confined

nature of the mode, there exist a mismatch between the mode computed by the wave port

and the one actually propagating. As a result, the final S11 and S22 are not null. However,

using an ABCD matrix approach as suggested in [87], it is possible to retrieve the actual

propagation parameters. This is done by converting the scattering matrix in an ABCD matrix

(alias transmission matrix):

ˆ
V2

I2

˙
“

ˆ
A B

C D

˙ˆ
V1

´I1

˙
(4.38)

and computing its eigenvalues. If ζ is an eiganvalue of the ABCD matrix, then the associated

propagation constant is given by:

ζ “ e´γΔL (4.39)

γ “ ´ lnpζq
ΔL

(4.40)

where ΔL is the geometrical length of the simulated waveguide. Because the exponential func-

tion is periodic in the complex plane, multiple solutions are to be considered when taking the

logarithm, and the ambiguity is solved repeating the simulation with a different ΔL. Another

approach could be to select a sufficiently small ΔL to remain in the first branch of the loga-

rithm. However this technique has the drawback of being influenced by the evanescent higher

order mode excited by the wave-ports, which are not matched perfectly to the waveguide, and

hence it is avoided here.

Figure 4.9 illustrates the propagation constants on infinite sheet and ribbons for τ“ 1ps,

uC “ 0.25eV, T “ 300K. For the infinite sheet case, the propagation matches very well the

theory prediction, and for the strip we can notice a further mode confinement and wave slow

down, associated to the larger overall capacitance of the equivalent transmission line (the

electric field is now completely surrounding graphene, and is not only found above and below

as in the infinite plane case). The used value of τ“ 1ps corresponds to high quality exfoliated

graphene [74], which is required to obtain plasmons at terahertz frequencies.
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Figure 4.9 – Simulated propagation constants on infinite sheet and ribbons for τ“ 1ps, uC “ 0.25eV, T “ 300K,
substrate εr “ 3.8

4.5 Graphene tuneable plasmonic dipole

4.5.1 Introduction

The slow and tunable propagation constant can be used to create miniaturized plasmonic

antennas based on graphene. This mechanism was explored in [68, 67], which however provide

only a study of the antenna scattering without modeling a proper source for the energy to be

radiated. In contrast, as we demonstrated in [JA9, JA14, JA10], it is indeed possible to design a

proper radiator based on terahertz graphene plasmons. The considered terahertz source is a

terahertz photo-mixer[36], which has generally a very high impedance in the order of 10 kΩ.

Photo mixers, also, are sufficiently miniaturized to fit in the gap of the graphene plasmonic

antenna. The rest of this section presents a theoretical study of these antennas.

4.5.2 Graphene plasmonic dipole

The geometry of the antenna is shown in Figure 4.10. Two rectangular patches of graphene

are separated by a gap (G “ 2μm) which hosts the source (e.g. a photomixer). The design

is obtained creating a gap in a rectangular W ˆ L graphene patch, which can be regarded

as a finite length L strip with width W . Since the SPP mode can propagate on finite-width

strips, the patch is expected to support standing wave resonances approximately (due to

fringing fields) given by L “ nλ{2 “ nπ{β, where β is the wave number of the finite-width

strip plasmon previously computed. We focus on the first resonance (n “ 1) for smallest

size and best-behaved input impedances. The length of the antenna is selected using the

resonance condition and considering a target resonance frequency of 1 THz.

As mentioned before, we aim here at designing actual antennas acting as interfaces between
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W
L

εr1

εr2

G

x

y z

Figure 4.10 – Geometry of the proposed graphene plasmonic dipole

Table 4.1 – Proposed plasmonic antennas and corresponding working points (W.P.). The last column shows the
electrical length with respect to the free space wavelength.

Antenna μcpeV q L(μm) W(μm) W.P. f(THz) Zi n(Ω) L{λ0

1 0.13 17 10 L 1.023 77 0.06
H 1.35 1020 0.08

2 0.25 23 20 L 1.172 33 0.09
H 1.534 425 0.12

free space propagation and a lumped source/detector, rather than simple scatterers. Radiation

is achieved placing a THz continuous-wave (CW) photomixer in the gap. In transmission,

the photomixer excites the patch resonance which enables radiation (note that a DC bias

must be applied between both graphene half-sections here). Reciprocally, in reception the

incident power is delivered to the photomixer that can operate also as a detector. Different

antennas were designed using the strip plasmon mode simulation approach, assuming differ-

ent chemical potentials μc. Table 4.1 shows the corresponding antenna dimensions for two

representative examples, hereafter referred to as Antenna 1 and 2, respectively.

Figure 4.11 illustrates the electric field and surface current of the antenna, which agree to the

expected plasmon resonance. Figure 4.12 shows the input impedance Zin of the antennas.

Each antenna shows two frequency working points where Zin is real: the first one (referred to

as L) with a low resistance value, the second one (H) with a high value. The latter is particularly

interesting since THz photomixers generally show a very high and real output impedance.

The second working point occurs when each of the patches support a single plasmonic mode

(rather than exciting the overall mode of the antenna). This does not occur for the double of

the frequency, as one would initially expect, but at a frequency of approximately
?

2 times

larger. This is due to the fact that β is proportional to ω2, as in equation 4.34. Hence, beta is

doubled for a frequency
?

2 times larger.

It is noticeable that placing the source in an asymmetric position (closer to one extremity than
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a) b)

Figure 4.11 – Electric field (a) and surface current (b) on the proposed graphene dipole
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Figure 4.12 – Input impedance of the graphene plasmonic dipole

the other) provides an additional degree of freedom for Zin. However this leads in general to

lower Zin.

Figure 4.13 shows that higher μc values lead to larger radiation efficiencies ηr. This effect is

mainly due to the larger resonating size of the antenna for higher μc. Avoiding excessively

small values for W is also important to maximize ηr. The total efficiency ηmηr where ηm is

the impedance matching efficiency. ηm is computed using a realistic value of 10 kΩ for the

photo-mixer impedance. The observed efficiencies are low compared to antennas operating

at microwave and millimeterwave frequency, but are actually better as compared with typical

THz antennas[48] where ηm alone is less than 1% for a 10 kΩ photomixer– and despite the

miniaturized size of the proposed antennas.

The radiation patterns in Fig. 4.14 resemble those of conventional (non-plasmonic) short
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Figure 4.13 – Radiation efficiency (a) and total efficiency (b) of the plasmonic antenna, assuming that the antenna
is connected with a 10 kΩ photomixer
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Figure 4.14 – Radiation pattern of the proposed graphene plasmonic dipole. a) E plane, b) H plane

dipoles. This is expected for such miniaturized antennas, since the current density is con-

centrated in the antenna phase center, leading to a radiation similar to the hertzian dipole.

The THz radiation is mostly directed in the substrate direction, which is desired in case a

dielectric lens is used to improve directivity[36]. It was also verified that adding such a lens

has a negligible impact on the input impedance.

4.5.3 Frequency tuning

When a bias voltage is applied to graphene, the plasmon wavenumber can be controlled,

and hence the operation frequency is expected to change. Because we are considering a

photo-mixer as the source for the antenna, however, one must keep in mind that the photo-

mixer also needs a bias DC voltage to operate. As a consequence, a stack of two graphene

layers separated by a gate dielectric is considered rather than a single graphene layer. The

dielectric is sufficiently thin to treat the graphene layers as a single one with the double of

conductivity. The symmetry of graphene band structure ensures the same upper and lower

conductivities (neglecting small residual unwanted doping) for initially undoped graphene.

The final antenna, shown in Figure 4.15, allows then independent biasing of graphene patches
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a) b)
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Figure 4.15 – Geometry of the tuneable graphene plasmonic dipole. a) 3D view of the structure. b) Cross section. c)
Final system including the silicon lens

and photomixer, and can be integrated with a silicon lens commonly used to increase the

directivity of terahertz antennas. This device has been studied theoretically and numerically

in [JA10].

Each dipole arm is a set of two stacked graphene patches separated by a thin Al2O3 insulating

film (εr = 9, tanδ = 0.01). The intermediate Al2O3 layer has thickness of 100 nm, which is

sufficiently large for capacitive quantum effects to be negligible but thin enough to preserve

low bias voltage and good coupling between the patches, as discussed next. The antenna width

W is 7 μm and the total length L is 11 μm. The structure lies on a dielectric substrate (here

GaAs, εr = 12.9 and tanδ = 0.001) and includes a gap of 2 μm representing the THz photomixer.

Note that for a simpler technological implementation only the lower patches are directly

connected to the photosource metallic electrodes. However, since both graphene layers are

only separated by an electrically very thin 100 nm dielectric, they are very strongly capacitively

coupled and behave as a single layer whose conductivity is approximately twice that of an

individual layer. This behavior is assumed in the following explanations and analytical consid-

erations, and is verified based on full-wave simulations. The parameters of the silicon lens are

S = 160 μm, H = 572 μm, R = 547 μm, εr = 11.66, tanδ = 0.0002). High quality is assumed, with

τ“1 ps.

Figure 4.16 illustrates the effect of different μc on the antenna input impedance. One can

notice a wide tuning range of more than one octave and a very uniform and high impedance

peak. The reason for this uniformity is discussed in the circuit model presented below.

Figure 4.17 illustrates the radiation efficiency of the antenna and the total efficiency (including

also return loss due to source antenna impedance mismatch) with a 10kΩ photomixer. Figure

4.18 demonstrates that the behavior of the antenna is very similar to a simplified case of a

single layer 2D material with the double of conductivity of graphene. It also shows that the
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Figure 4.16 – Input impedance of the tuneable graphene plasmonic antenna upon variation in the Fermi level.
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Figure 4.17 – Efficiency of the tuneable plasmonic graphene antenna. a) Radiation efficiency at the resonance
working point for various Fermi level values b) Total efficiency with a 10 kΩ photomixer

graphene stack leads to higher efficiency and operating frequencies if compared to a single

layer antenna.

Finally Figure 4.19 shows the normalized radiation pattern in two separate cases with and

without the silicon lens.
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Figure 4.18 – Total efficiency comparison for with a single layer antenna with the same Fermi level and geometry
and a single layer with doubled conductivity
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Figure 4.19 – Radiation pattern of the proposed graphene tuneable dipole. a) μc “ 0eV, f “ 0.8T H z. b)μc “ 0.2eV,
f “ 1.8T H z

4.5.4 Circuit model

A circuit model of the graphene dipole (Figure 4.20) has been developed[CA27]. The curcuit

model allows a complete understanding of the working principles of the antenna as well

as providing a tool to scale the antenna for different frequencies and applications. First a

transmission line (TL) model is derived for the plasmons. While the propagation constant is

already well known, the impedance of this model is non trivial, and its definition has been

selected so that two conditions are satisfied:

• the total current on the graphene strip must be equal to the current on the equivalent TL
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Figure 4.20 – Circuit model of the graphene plasmonic dipole

(in other words the current in the equivalent TL model is the so-called natural currents).

• Since losses are localized in graphene, they are modeled by a resistance in series with

the inductor of the TL equivalent LC cell.

Following this definition and computing the power associated to the plasmonic mode with a

Poynting vector integral, the impedance is computed as [CA27]:

RepZcq “ Impγzqω
2W |σ|2

ˆ
ε0εr1

|γx1|2Repγx1q ` ε0εr2

|γx1|2Repγx2q
˙

(4.41)

ImpZcq “ Repγzq
ImpγzqRepZcq (4.42)

Figure 4.21 – Detail of the plasmonic fringing fields at the end of a ribbon waveguide

The model include a parasitic capacitor to model the fringing fields in the gap of the antenna,
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while the two extremities are terminated by a load to model the reflection coefficient of

plasmons at the edges (see Figure 4.21). Importantly, the reflection coefficient is constant and

independent of graphene properties and antenna geometries, and found from simulations to

have a phase of approximately ´π{2.
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Figure 4.22 – Comparison of impedance between model and full wave simulations. Thick curves represent the
full wave results and thin ones the circuit model. a) Model without parasitic elements. b) Model with parasitic
elements
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Figure 4.23 – Total efficiency comparison. Thick curves represent the full wave results.

Figures 4.22 and 4.23 show that the agreement between input impedance and efficiency

simulations increases, especially when the parasitic elements are added to the model.

In a simplified version of this model [JA10] it is possible to estimate that the real part of the

input impedance at the resonance peak is:

Zin,r 9 4β

αLωr
“ 4

τL
(4.43)

which is independent of the operation frequency, explaining the smooth input impedance
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reconfigurability.

4.5.5 Metal graphene hybrid antenna
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Figure 4.24 – Geometry of the proposed hybrid dipole. a) Top view. b) Cross section.
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Figure 4.25 – Impedance tuning of the proposed hybrid dipole

Figure 4.24 illustrates a modified version of the frequency tunable antenna extended with

two metal bow-tie metallic elements [CA21]. Figure 4.25 illustrates the input impedance of

the hybrid graphene-metal antenna, while Figure 4.26 shows the achieved total and radiation

efficiency. The metallic elements sensibly increase the radiation efficiency of the antenna (of

roughly a factor of 3) while maintaining the frequency tuning capabilities. The overall size of

the antenna, however, increases.

These results demonstrate that hybrid metallic graphene antenna are very promising, since

they allow the use of reconfigurable properties of graphene while maximizing the radiation
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Figure 4.26 – Radiation efficiency of the proposed hybrid dipole

efficiency. This concept will be of fundamental importance for the experimental reflectarray

demonstrated in Chapter 6.

4.5.6 Graphene plasmonic reflectarrays

Plasmonic reflectarrays can be implemented with graphene following similar design rules.

They have been designed in collaboration with Dr. Eduardo Carrasco and can be found in

[JA1, JA2].

4.6 Fabry-Perot infrared complex conductivity measurement

4.6.1 Introduction

The evaluation of graphene properties in the infrared band can be achieved using FTIR

(Fourier Transform InfraRed spectroscopy) on graphene samples. This technique enables the

measurement of transmittance or reflectance of graphene placed on a substrate. Unfortunately,

this technique enables only the extraction of the real part of the conductivity, which is linked

to the absorbance of the graphene sample. Part of the information is hence lost in the process.

Importantly, the ratio of the real and imaginary conductivity, which is an indicator of the

quality of the sample, cannot be observed directly.

Kramers-Kronig relations can be used to reconstruct the imaginary conductivity from the

real one, but have several important limitations. Firstly, they only work with simple zero-pole

resonances, so the accuracy can be easily spoiled in presence of e.g. Fabry-Perot resonances

induced by the substrate. Importantly, graphene conductivity shows very broadband features,

such as the interband step. Kramers-Kronig, on the contrary, are effective only in presence
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of sharp and narrowband features, while they are impractical for broadband effects as they

require integration of a very broad frequency range, often outside the range of the instrument.

Because of the important limitations of Kramer-Kronig reconstruction, ellipsometry has been

used to retrieve directly the complex conductivity of graphene [17]. Unfortunately mid infrared

ellipsometry requires large spot size (in the order of two centimetres) and the method shown

in [17] relies on CaF2 substrates, preventing Fermi-Level tuning.

In collaboration with the Nanoelectronic Devices Laboratory (NANOLAB) and the BioNanoPho-

tonic Systems Laboratory (BIOS) at EPFL, a new method is being developed to measure the

full complex conductivity of gated graphene at infrared frequencies using an FTIR setup. The

method has the advantage of being able to resolve the conductivity in samples as small as

200 μm with the aid of a microscope connected to the FTIR setup. It consists in placing

graphene over a special substrate composed of a pyrex support bonded to a 10 to 20μ thick

high resistivity silicon layer with a metallization on the back. The bonding can be achieved

either with parylene or with anodic bonding. This structure is used also for the THz isolator

described in Chapters 5, 6 and in Appendix A, where a more complete description including

fabrication is available.

The thin silicon layer acts as a reflective Fabry-Perot etalon, namely a device showing strong

and frequency-periodic absorption peaks in the reflectivity. The presence of graphene affect

the shape of the peaks as noticed in [111]. There are two independent effects:

• The real part of the conductivity affects the depth of the peak;

• The imaginary part of the conductivity introduces a phase shift in the peak.

By comparing the peaks in a region of the substrate with and without graphene, its complex

conductivity can be successfully measured. In addition, a thin gate oxide (here Al2O3) can be

deposited on top of the sample prior to graphene transfer using ALD. A gate voltage can then

be applied from graphene to the silicon layer and the Fermi level of graphene can be tuned.

We verified that the interband step changes upon bias, as well as the features of the measured

complex conductivity. The reminder of this section illustrates te obtained measurement results

4.6.2 Measurement results

Figure 4.27 illustrates an example of the reflection coefficient of the bare substrate for different

frequencies. The periodicity in frequency is due to the thickness of the silicon etalon (10 μm)

which behaves as a dielectric with relative permittivity of 11.6 in the infrared region. The

absorption dips are

Figure 4.28 shows a single absorption dip measured on bare substrate and on graphene

(biased at -16 V to increase graphene conductivity and better show the effect). It is evident that
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Figure 4.27 – Fabry-Perot periodic dips in the reflection coefficient of the bare substrate

graphene contributes to higher absorption (due to the real part of graphene conductivity) and

to a frequency shift which correspond to an inductive behaviour, as expected for graphene in

this frequency band.

Figure 4.29 shows an example of characterized complex conductivity for -4 V, and the cor-

responding fitting with Kubo formula, while figure 4.30 shows the conductivity for different

biasing voltages. It is evident that, the larger the absolute value of the voltage, the larger

is the frequency for the interband step, and also the the larger is the imaginary part of the

conductivity, due to the increase of carrier number.
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4.6. Fabry-Perot infrared complex conductivity measurement
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5 Non-reciprocal devices based on
graphene

5.1 Introduction

This chapter contains the experimental results concerning devices exploiting non-reciprocal

effects in graphene. Faraday rotation is a phenomenon observed when a linearly polarized

electromagnetic wave propagates through a magneto-optical medium biased with a magneto-

static field. The polarization is rotated upon propagation. Unlike chiral media, the rotation

angle is independent of the propagation direction, and this implies non-reciprocity. Graphene

exhibits this phenomenon in a wide range of frequencies [106, 105, 107, 108, 103, 21, 22, 110].

This phenomenon can be completely explained in the Maxwellian framework. In Chapter 2

we demonstrated that the conductivity tensor of graphene takes two equivalent scalar values

for clockwise and counterclockwise waves:

σcw “ σd ` jσo

σccw “ σd ´ jσo (5.1)

It is easy to notice that at low frequency both σd and σo tend to be real. Hence σcw and

σccw have the same magnitude but different phases. If we consider Figure 5.1 we notice that

graphene in empty space can be modeled for normally incident waves as a parallel admittance

in a transmission line model. The admittance value is equal to either σcw or σccw.

An incident linearly polarized wave can be decomposed in two circular polarizations, and each

of the polarizations will undergo a different phase shift induced by graphene. Consequently

the final transmitted wave is linearly polarized but slightly rotated. For higher frequencies,

imaginary parts in the conductivity might induce also a difference in amplitude, and hence

ellipticity in the transmitted wave.
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Figure 5.1 – Faraday rotation: circuit model

5.2 Faraday rotation

Faraday rotation on CVD graphene samples fabricated in collaboration with EPFL Nanolab

has been measured in collaboration with University of Geneva, laboratory of prof. Alexey Kuz-

menko. Following the fabrication process presented in Appendix refchap:fabricationoverview,

CVD monolayer samples on a silicon substrate were fabricated and characterized in collabora-

tion with University of Geneva (group of Dr. Alexey Kuzmenko). The samples where measured

using a Fourier transform infrared spectrometer connected to a split-coil superconducting

magnet. A polarizer was used to create a linearly polarized incident light, while an analyzer (i.e.

a second polarizer) was used in front of the detector. Figure 5.2 shows the measured Faraday

rotation, which reaches almost 3° for a single monolayer.
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Figure 5.2 – Faraday rotation in CVD graphene. a) Transmission coefficient. b) Faraday rotation

5.3 Faraday rotation enhancement

Faraday rotation in graphene is limited by the low light-matter interaction for a uniform

monolayer in presence of plane waves. Also, Faraday rotation is limited in frequency, dropping

and oscillating for frequencies beyond 20 meV (approximately 5 THz), as shown in 5.2. There

are, however, strategies to improve the light-matter interaction by either patterning graphene

124



5.3. Faraday rotation enhancement

or adding resonators such as metallic elements. These strategies are currently being explored,

and this section summarizes the current status of this ongoing research by the author of this

thesis.

5.3.1 Magnetoplasmonic enhanced Faraday rotator

Reference [28] illustrates how a pattern of graphene square can exhibit Faraday rotation even

in frequency bands (e.g. 5 to 10 THz) where normally the ellipticity dominates, and the Faraday

rotation is very small. This is achieved because the separating lines between the squares act as

capacitors, compensating for the imaginary part of the conductivity due to plasmonic effects.

Consequently, a peak in the Faraday rotation appears and can be controlled with the geometry

of the pattern. This can be also understood considering the patches as magneto-plasmonic

resonators.

An experiment to verify this phenomenon is currently in progress; a first prototype, shown

in Figure 5.3, has been fabricated in EPFL CMi and measured in University of Geneva, in

collaboration with Dr. Alexey Kuzmenko.

Figure 5.3 – Patterned graphene for plasmonically enhanced Faraday rotation

The squares pattern has a periodicity of 1 μm and the gaps separating the squares are 100 nm

wide. The design was optimized to target a working frequency of 5 to 10 THz, where Faraday

rotation in uniform graphene is null. The design was simulated in Ansys HFSS 15.0.

Figure 5.4 shows preliminary measurements (with magnetic field bias of 7T) of the fabricated

device, showing excellent agreement with the numerical simulations for μc “0.41 eV and

τ“48 fs, confirming the concept of Faraday magneto-plasmonic enhancement and restoring

at 6 THz the 3° of Faraday rotation that are normally observed for lower frequencies.
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Figure 5.4 – Measured enhanced Faraday rotation at 7 T

5.3.2 Ring resonators enhanced Faraday rotator

Another experiment in progress aims to demonstrate that the Faraday rotation can also be

enhanced with ring resonators. This case would also allow for electrostatic biasing, since

graphene is not patterned. An experiment to verify this phenomenon is also currently in

progress; the device, shown in Figure 5.5, has been fabricated in EPFL CMi and will be mea-

sured in University of Geneva, in collaboration with Dr. Alexey Kuzmenko. In this case the

target is to increase the value of Faraday rotation and show ambipolarity with holes and

electrons carriers. The measurements on the devices are currently ongoing.

Figure 5.5 – Decorated graphene for enhanced Faraday rotation

5.4 Terahertz isolator based on graphene

Note: The graphene terahertz isolator is a collaboration between EPFL Laboratory of Electro-

magnetics and Antennas (design, data analysis), EPFL Nanoelectronic Devices Laboratory

(fabrication) and University of Geneva (measurement). The work is published in [JA12].
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5.4. Terahertz isolator based on graphene

5.4.1 Introduction

The realization of isolators at terahertz frequencies is a very important open challenge due

to the intrinsic lossy terahertz propagation in the used non-reciprocal materials. In this

chapter the design, fabrication and measurement of a terahertz non-reciprocal isolator (also

known as optical diode) for circularly polarized waves based on magnetostatically biased

monolayer graphene (operating in reflection) is reported. This is the first terahertz isolator

(frequency between 1 and 10 THz) with insertion losses lower than 10 dB ever demonstrated

experimentally. The device exploits the non-reciprocal optical conductivity of graphene and,

in spite of its simple design, it exhibits almost 20 dB of isolation and only 7.5 dB of insertion

loss at 2.9 terahertz. Operation with linearly polarized light can be achieved using quarter-

wave-plates as polarization converters.

Several theoretical works have proposed devices based on magnetostatically biased graphene

[103, 105, 106, 107, 108, 21, 110, 42], including isolators. In particular, a narrowband graphene

isolator was recently measured at 20 GHz [103, 108]. Ferrite isolators have been demonstrated

in the THz range [100], showing excellent operational bandwidth and eliminating the require-

ment for an external biasing magnetic field. However, currently available ferrite isolators

are useful only up 500 GHz and show prohibitive insertion losses in the order of tens of dB

beyond this frequency [100]. This intrinsic limit is due to losses in ferrites, and motivates

research in graphene and alternative materials. Precisely because of the losses in available able

magneto-optical materials, the realization of low loss non-reciprocal isolators is considered

one of the most important challenges in terahertz science.

Apart from ferrite and graphene, alternative materials have also been proposed to achieve

efficient terahertz non-reciprocity, and several works have been recently published presenting

experimental characterization of the properties of these materials. One example is given

by other free carrier based materials such as doped silicon [78]. In addition, thin films of

HgTe exhibit interesting non-reciprocal properties due to a combination of band structure

effects and high mobility carriers [101]. Ferrofluids have also been considered, since they

exhibit good transparency in the THz band [99]. Another promising example are multiferroic

materials, which show strong non-reciprocity and unidirectional propagation at terahertz

frequencies [55, 56]. However, these materials have not been employed for the experimental

demonstration of final isolator designs, and rarely the explored frequencies exceed 1.5 THz.

In the following we aim to exploit the non-reciprocity of magnetically biased monolayer

graphene using a reflection configuration to achieve isolation for circularly polarized waves.

The concept of isolator for circularly polarized light has been presented theoretically in a

transmission configuration for graphene and other magneto-optical materials [65, 24], while

strong circular dichroism was predicted for similar reflection structures [115].

The device presented in this contribution achieves isolation for circularly polarized waves

at 3 THz and 7.5 THz, showing performances very close to the theoretical upper bound for

non-reciprocal graphene devices4 with almost 20 dB of isolation and 7.5 dB of insertion loss.
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Chapter 5. Non-reciprocal devices based on graphene

Excellent agreement between simulations and measurements is also demonstrated.

5.4.2 Working principle and Design

The proposed graphene terahertz isolator is a planar device , and it is illustrated in Figure

5.6a and 5.6b. A number N of graphene sheets are placed on a back-metallized thin silicon

layer of 10 μm thickness (for our device N =3). The sheets are separated by thin Poly(methyl

methacrylate) (PMMA) layers (approximately 60 nm), while the thickness of the metallization

(chromium and platinum) is 200 nm. The whole structure is bonded to a Pyrex wafer which

has solely the function of mechanical support. A magnetostatic field B is applied orthogonally

to graphene.
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Figure 5.6 – The proposed graphene terahertz isolator. a) 3D view of the device. b) Cross section and schematics
of the working principle. c) Magnetic field induced splitting of σcw and σccw as a function of the bias B ( f = 3
THz and 8 THz, μc=0.53 eV, τ=35 fs, T =290 K) computed using Kubo formula. The real part of the equivalent
conductivity for the clockwise and counter-clockwise cases is shown for monolayer graphene and compared with
multiples of the free space impedance η. In yellow the area of interest for the design. d) Simulation of the reflection
coefficients for wave converted from right-handed to left-handed or vice-versa, using the simplified model. Two
working points are observed, however the direction of the isolation in the second one is reversed.

The device operation is based on reflecting incident LHCP (left hand circularly polarized)

plane waves as RHCP (right hand circularly polarized) ones, while absorbing RHCP incident

waves. The device thus achieves non-reciprocal unidirectional propagation and isolation for

circularly polarized waves [65, 100, 78] because time reversal transformation preserves the

handedness of the propagating wave (e.g. a time reversed LHCP is still LHCP). In addition,

as explained later, simple reciprocal polarizers and polarization converters can be combined

with this device to achieve terahertz isolation and source protection also for linearly polarized

light.
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5.4. Terahertz isolator based on graphene

Our device exploits Fabry-Perot resonances in the silicon layer to increase light-matter interac-

tion in graphene. As a result, three monolayers of graphene are sufficient to obtain near perfect

isolation. The principle of the isolator consists in creating for clockwise (CW) rotating waves

(incident RHCP or reflected LHCP) a total surface impedance equal to the impedance η of free

space (i.e. impedance matching), causing total absorption (reflection coefficient ΓRÑL “ 0).

On the contrary, for counter-clockwise (CCW) ones (incident LHCP or reflected RHCP) the

impedance is mismatched, and waves are reflected (ΓLÑR ‰ 0). This phenomenon can be

completely understood by solving Maxwell’s equations in the structure, and it is due to the

fact that graphene conductivity can be expressed as a scalar quantity for circular polarization

(Figure 5.6c), taking two different values σcw and σccw in the CW and CCW cases respectively,

as discussed for Faraday rotation.

To explain the device working principle, two models of the device will be used: a simplified

analytical model and a full multilayer model. The former is used to find preliminary design

rules and the second to refine the computation and fit the measured results. In both cases the

incident and reflected beams are approximated as plane waves propagating normally with

respect to the device. The approximation is motivated by the very small angle of the beams

with respect to the normal (approximately 8 degrees) and by the spot diameter (in the order

of millimetres) much larger than the wavelength of interest. The models then reduce the

multilayer structure to a transmission line circuit model.
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Figure 5.7 – Simplified transmission line circuit model of the isolator. a) Layered structure. b) Equivalent simplified
circuit

In the simplified model it is assumed that the platinum reflector is a perfect conductor (and

hence a short circuit in the model), the silicon is a lossless dielectric with εr “ 11.66 and

graphene layers are assumed to be in parallel and of equal conductivity (so that the total

conductivity of the graphene stack is N times the one of a single layer). The full model instead

represent each PMMA layer as a layer of thickness 70 nm of a dielectric with εr “ 2.4 while

platinum is described with a Drude model with plasma frequency ωp “ 7791 Trad ¨ s´1 and
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Chapter 5. Non-reciprocal devices based on graphene

collision frequency ν “ 56 THz [109]. Because Al2O3 has optical properties very similar to

silicon, it is considered part of the silicon spacer.

Importantly, the layer structure is actually split in two circuit models, one for the CW case and

the other for the CCW case. The only difference between these two cases is the conductivity of

graphene, namely σcw and σccw respectively. The CW case models the reflection from RHCP

light to LHCP, which has to be optimized to minimize the reflection coefficient (ΓRÑL “ 0).

In the other case (CCW) the isolator must reflect light from LHCP to RHCP (ΓLÑR ‰ 0). To

reach this goal, we consider the simplified model and we find the condition such that the

reflection in the CW case is minimized. It can be shown then that this choice, for this particular

geometry, leads to a quasi-optimal design.

As well known from basic transmission line theory, the reflection coefficient for this structure

is given by:

ΓCW,CCW “ 1 ´ηNσCW,CCW ` j n cotpnk0dq
1 `ηNσCW,CCW ´ j n cotpnk0dq (5.2)

where n “ ?
εr “ ?

11.66 is the refractive index of silicon, k0 is the wavenumber in vacuum, η

is the free space impedance and we identified for simplicity ΓCCW fi ΓLÑR and ΓCW fi ΓRÑL.

To satisfy the design condition ΓCW “ 0 the numerator must be set equal to 0:

1 ´ηNσCW,CCW ` j n cotpnk0dq “ 0 (5.3)

Because η and n are real, taking the real and imaginary part of Equation 5.3 two design rules

can be obtained:

N Repσcwq “ η´1 (5.4)

N Impσcwq “ nη´1 cotpωndc´1q (5.5)

After characterizing graphene at terahertz frequencies it was determined that for N “ 3 the

first design rule was satisfied for a field approximately equal to 7T. This fact is illustrated in

Figure 5.6c which shows a real part for σcw of 0.87 mS, very close to p3ηq´1 » 0.88 mS.

The second rule, instead, can be used to determine d . Targeting a working frequency of 3 THz,

we determined d=10μm.

Finally, if we assume that the two design rules are satisfied, we can compute the reflection
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5.4. Terahertz isolator based on graphene

coefficient. In fact, noting that

σccw “ σcw ´ 2iσo (5.6)

we obtain:

ΓCCW “ jηNσo

1 ´ jηNσo
(5.7)

Clearly, the larger is B (and hence σo) the larger is the reflection, which implies that the isolator

has lower insertion losses for high magnetostatic bias. The simulated performances of the

device are shown in Figure 5.6d. The working principle of the device can also be explained

in terms of Fabry-Perot resonances, as the cotangent periodicity predicts. Because of this, a

second working point around 7.5 THz is possible and it is confirmed by the measurements.

However, because of the frequency dispersion of graphene conductivity, in this second working

point the design rules are actually satisfied for the CCW case, inverting the direction of the

isolator. For higher frequencies graphene conductivity is too small, preventing other working

points, which however could be targeted increasing the number of layers.

5.4.3 Measurement and elaboration

The device was fabricated (see fabrication in Appendix A) and measured using a Fourier

transform infrared spectrometer connected to a split-coil superconducting magnet. A polarizer

is used to create a linearly polarized incident light, while an analyzer (i.e. a second polarizer) is

used in front of the detector (see Figure 5.8). The reflected elliptical polarization is mapped by

repeating the measurement for different values of the angle θ between the two polarizers. The

magnetostatic field is normal to the sample surface, while the light k vector is close to normal.

Figure 5.9 shows that the reflected polarization is identical to the incident one for B = 0 T. One

can see that the normalized reflection shows strong absorption dips. These strong absorption

features have a periodicity of 4.65 THz, corresponding to Fabry-Perot oscillation in a silicon

layer of 9.43μm in very good agreement with the nominal value. Figure 5.8b show instead a

rich polarization behaviour for B = 7 T. This is also shown better by the polarization diagrams

in Figure 5.8c at selected frequencies of interest. At the first working point we also notice that

the Kerr rotation φ goes up to 90° , and continues from -90° to 0° . The isolation and insertion

loss of the device are defined as:

ISO fi
maxpΓRÑL,ΓLÑRq
minpΓRÑL,ΓLÑRq (5.8)

IL fi maxpΓRÑL,ΓLÑRq (5.9)
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Figure 5.8 – Measured isolator performances. Measures have been performed at T = 290 K. a) Schematic of
the measurement setup configuration and definition of elliptical polarization parameters. b) measured elliptic
polarization parameters (major and minor axis Emin, Emax and Kerr rotation angle φ) as a function of frequency
for B= 0 T and 7 T. Emin, Emax are normalized with respect to Einc. The measures have been fitted (dashed traces)
with the full multilayer model and the best fit is obtained for μc=0.53 eV, τ=35 fs, d=9.15 μm, additional loss: 30%.
c) Polarization state shown for some representative frequencies. d) The extracted performances (isolation and
insertion loss expressed both as positive dB quantities) of the isolator for circularly polarized waves.

Even though our measurement setup is equipped only with linear polarizers, both these

quantities can be computed accurately from the measured polarization parameters (obtained

exciting the device with a linear polarization and mapping the reflected polarization with the

analyser). The sought isolation and insertion loss can then be retrieved as:

ISO fi
Emax ` Emin

Emax ´ Emin
(5.10)

IL fi
Emax ` Emin

Einc
(5.11)

(5.12)

where Emax and Emin are the major and minor axis of the mapped elliptical polarization of the

reflected electric field and Einc is the linearly polarized incident electric field. The full algorithm

is actually more complex and it enables the compensation of polarizer imperfections, and it is

explained in the Supplementary information of Ref [JA12].

The resulting performances are plotted in Figure 5.8d. At both working frequencies the
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Figure 5.9 – Full device characterization. a,b) Polarization parameters. c) Raw power data for the five magnetic
fields values at frequencies 2.6 THz, 2.9 THz, 3.2 THz, 4.5 THz. d) Corresponding fitted polarization plot (the
reference light blue circle has a radius of 0.5. The performance of the device is shown, in the whole measured band
up to 20 THz, in panels a and b. There is a striking difference between the behaviour in magnetic field at different
frequencies: for f = 4.5 THz, the light stay polarized linearly with no noticeable influence of the magnetic field. For
f = 2.9 THz on the contrary, a strong modification of the ellipticity of the light takes place. This variation is also
accompanied by a rotation of the light polarization.

isolation reaches almost 20 dB (18.8 dB and 18.5 dB respectively) and the insertion loss is

approximatively 7.5 dB. The results plotted in Figure 5.8b have been fitted with the full layered

model reaching a very good agreement. Conductivity of graphene is computed using the Kubo

formula, and the best fit is obtained for a graphene Fermi level μc=0.53 eV, τ=35 fs, d=9.15

μm, and the fitting improves sensibly if an additional overall loss of 30% is added to the model
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over the whole bandwidth. The high μc can be explained considering that graphene is still in

contact with the PMMA on one or two sides, and hence is likely to be highly doped by substrate

interactions. The 30% loss could be attributed to a systematic error due to the non-perfect

planarity of the isolator, which caused part of the energy to be reflected out of the detector.

Figure 5.9 shows the complete set of raw measures.
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Figure 5.10 – Device optimality: representation of the measured device performances for B = 7 T in the Carte-
sian plane between isolation and insertion loss for different frequencies. On the same plot the non-reciprocity
theoretical upper bound is represented for γNR=0.295, value found from the fitted graphene parameters. The
working frequencies (showing a maximum in the isolation) are highlighted. Because the curves are very close to
the theoretical bound the device is quasi-optimum with respect to it.

Figure 5.10 is a Cartesian plot of the isolation versus the insertion loss. The isolator upper

bound, discussed in Chapter 3, is also represented. For the fitted parameters, it can be shown

that the forbidden region is frequency-independent in the band from 0 THz to 20 THz. The

performance of the device is just 1 dB below the theoretical upper bound which means that

the device is near optimal.

While the presented isolator operates with circularly polarized light, it is clear that most

terahertz applications need components able to handle linearly polarized waves. It is however

quite simple to adapt our isolator to linear polarization operation using one or two quarter-

wave plates (QWPs) as polarization converters, as shown in Figure 5.11a and 5.11b . This

simple system can be used to protect a linearly polarized source from harmful reflections,

which is one of the most important applications of non-reciprocal isolators [100].

The wave produced by the source could in fact propagate trough the isolator but any reflected

signal trying to propagate backwards in the isolator would be highly attenuated, protecting

the source. If a linear polarizer is added after the source, then the latter is also protected

from cross-polarized reflected light. Similarly, bandpass filters can be used in cascade with

the isolator to protect the source from any unwanted signals having frequency outside the

working band of the isolator..
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a) Isolator

QWP QWP

Isolator

LHCP RHCP QWP

B B

 Vertical

Polarizer

Protected

    Input

Output Protected

    Input

 Vertical

Polarizer

Output

b)

Figure 5.11 – Linearly polarized light operation: By combining the proposed isolator for circular polarization
with simple quarter-wave plates (QWPs) it is possible to also achieve isolation for linearly polarized waves. The
QWPs are placed with the optical axis (orange) at 4° thus acting as polarization converters from circular to linear
polarization. Two configurations are proposed. Polarizers and/or filters can be used to completely protect a source
from cross polarization or other frequency signals coming from the output port.

5.5 Conclusions

In this work we demonstrated the possibility of designing and implementing close to optimal

terahertz isolators based on graphene. To achieve this goal, we proposed a reflection structure

which exploits the Fabry-Perot resonances in a thin layer of silicon to obtain isolation using

just three graphene monolayers. The operation of the device can be fully understood in the

framework of Maxwell’s Equations using a 2D linear conductivity tensor to model carrier

dynamics in magnetostatically biased graphene. One of the most significant aspects of this

design is its ability to be very close to the optimal performances available with the used

graphene. Equivalent devices operating in transmission require more complicated structures

or lead to suboptimal performances [JA8].

In addition it is worth mentioning some additional advantages related to this particular

device geometry. First, due to the fact that the device is planar (i.e. operating for plane

waves and not based on mono-modal waveguide ports), it works for incident waves having

different k vectors at the same time. Also, the isolator is expected to show modest frequency

reconfigurability depending on the incidence angle, because the latter would affect the Fabry-

Perot resonances. Electric field effect in gated graphene could be used to fine tune the device to

virtually infinite isolation, as demonstrated also at microwave frequencies [108]. In fact, perfect

isolation is obtained when the device surface impedance is equal to free space impedance,

and electrostatic gating allows a fine tuning of the total impedance of the device.

Because the device exploits Fabry-Perot resonances, it is relatively narrowband; however the
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absolute bandwidth is in the order of 50 GHz, which is an excellent value for telecommunica-

tions and for continuous wave applications. This value can possibly be increased using more

complex designs including patterned graphene, added metal patterns and more complex

multilayer structures[JA8]. The relative precision of the working frequency is given by the

substrate thickness, and hence it can be controlled and fine-tuned in a precise way, in the

technological process, by polishing or using additive dielectric depositions. Furthermore, for

different angles of incidence, the working frequency is expected to change due to the reduced

longitudinal wavelength of the wave, and this could be used to dynamically tune the operation

frequency.

Finally, the reflection configuration of the device eliminates completely the input impedance

mismatch (return loss) issue, which is instead a concern for any device operating in a trans-

mission configuration. For waves with a non-zero incidence angle (as the case for practical

application where receiver and transmitter are in separate locations) this fact is evident consid-

ering that the device is invariant to translation and hence it operates with a single diffraction

order. This implies that the wave cannot possibly be reflected to the receiver. For normally

incident waves, this is due to the fact that an incident left hand wave can only be reflected as

right hand and vice versa, because the device is invariant to rotation.

The main drawbacks of our device are the need of high magnetic field (7 T) and an insertion

loss of more than 7 dB. Both these issues cannot be solved by improving the design, since it

is already quasi-optimum in this sense. Hence the only way to lower the insertion loss and

reduce the required B biasing field is to use graphene with higher mobility, such as graphene

encapsulated in hexagonal boron nitride with room temperature mobilities in the order of

100,000 cm2V´1s´1. With a mobility of 40,000 cm2V´1s´1 and a biasing field of 1 T (easily

generated by rare earths permanent magnets) the insertion loss for perfect isolation would

be as low as 0.3 dB according to the upper bound, paving the way to commercially relevant

devices. These considerations are independent of the carrier density and, even if high mobility

is available only for lower carrier density, the design can be adapted using a larger number of

graphene layers.
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6 Beam steering reflectarray at tera-
hertz frequencies

6.1 Introduction

The objective of the work described in this chapter is the design, implementation and measure-

ment of the first reconfigurable terahertz reflectarray using graphene as tunable material. This

objective has been reached (although there are still wide margin for improvement) and the

rest of this chapter describes the design, fabrication and measurement of this novel terahertz

device.

Our implementation is based instead on a beam-steering reflectarray concept; a reflectarray is,

in this context, a planar metasurface which reflects an incident beam of THz light (generated

by an given illuminating source) in a direction which can be selected electronically with DC

control signals to the reflectarray. The working principle of the proposed device is explained

in the following section.

6.2 Reflectarray: working principle

The concept of reflectarray antenna is a very general one which covers several types of devices

[8, 47, 9, 88, 12, 7, 38, 37, 10, 11, 81, 91, 92, 49, 79, 82, 131, 129, 128, 4, 117]. The main idea of

the reflectarray is to create an electromagnetic beam with some given desired properties (e.g.

in terms of width, direction, polarization, intensity profile, radiation pattern, etc.) by using

a low profile (flat) metasurface illuminated by a source antenna. The surface is composed

by a (quasi)periodical arrangement of cells, where each cell reflects the impinging wave with

a certain phase delay (Figure 6.1 ). By carefully choosing the phase delay profile of the full

surface, the final shape of the reflected beam can be designed precisely. Figure 6.1a shows an

example of a simple design, where a progressive phase gradient is used to achieve anomalous

reflection. This can be done, for example, varying the size of resonant elements and in turns

the phase of each cell.

The most interesting property of reflectarrays is that it is possible to include tunable elements
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a) b)
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Figure 6.1 – Working principle for fixed and by-state dynamically reconfigurable reflectarrays, 2D view

in the reflective cells in order to control the reflective phase of each cell dynamically. Figure

6.1b shows an illustration of a simple example of this concept where each cell can be recon-

figured to take two values for the phase reflection [58]. By tuning all the cells simultaneously

with a common control signal, it is possible to select between two directions for the reflected

beam.

A generalization of this concept is found in beam steering reflectarrays. In this case, typically,

all the elements are identical, but their reflection phase can be controlled individually with

separate control signals. The signals can then be selected in order to obtain the phase profile

associated to the desired radiation pattern of the final antenna. Figure 6.2a shows the structure

of this device. The size of the cells is subwavelength, and hence, when the same control signal

is the same for all the cells, incident light is only reflected in the specular reflection, because of

symmetry. Figure 6.2b shows the effect of modifying the control signal applied on the cells.

For this demonstrator, beam steering in one dimension is proposed, in order to reduce the

control signals to one for each column. More complex implementation can be designed to

control the beam in two dimensions. Applying a periodic distribution of the control signals,

the initial symmetry of the device is broken, and the new period will determine the direction

of the reflected beam. By dynamically tuning the signals, beam steering becomes possible.
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V1
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V2
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V4

b)

Figure 6.2 – Working principle for full beam steering reflectarray antennas.

In this project, the tunable elements in the cells are graphene FETs, which exhibit a con-

ductivity depending on the applied gate voltage, which represents the control signal for our
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6.3. Fixed beam terahertz reflectarray

implementation. Graphene elements are connected by column, so that all the elements in the

same column have the same gating voltage and the same phase response. The substrate is

instead connected to a reference voltage (ground). For gate oxides, ALD Al2O3 has been used.

Importantly, to increase the efficiency of the reflectarray, a ground plane (or reflector) has

to be added below the structure. This is to prevent wasting energy in transmission and to

increase the interaction of terahertz light and graphene at the same time. The top layer of the

cell and the ground plane have to be spaced by a dielectric material with thickness in the order

of the wavelength, which was one of the most important difficulties of the project.

More in general, the fabrication of the reflectarray has been very challenging, as it required

the optimization of several clean room processes. However, the final process is now repeat-

able and reliable, and can be implemented with commonly available micro-nanofabrication

infrastructures. To tackle these challenges, we first fabricated an intermediate demonstrator

without graphene, to demonstrate fixed beam reflectarray operation and then we fabricated

the final demonstrator with beam steering capabilities. All the prototypes were fabricated at

EPFL Center of MicroNanoTechnology (CMi), graphene was provided by Cambridge University

(Ferrari’s Group) and from Graphenea. The reminder of this document first illustrates the the

fixed beam (no graphene) intermediate prototypes[JA4] and subsequently describes the final

graphene based prototypes.

6.3 Fixed beam terahertz reflectarray

A fixed beam intermediate prototype was developed in collaboration with Dr. Hamed Hasani.

This fixed beam reflectarray was designed to have deflection at different angles for each

frequency, given a fixed incident wave. Fabrication is given in Appendix A.

Figures 6.3 shows the simulated reflection at the three design frequencies as a function of

the geometrical parameters. Using these numerical simulations, the parameters have been

optimized in order to obtain the phase gradients needed to achieve different beam directions

at different frequencies.

The sample has been characterized at LEMA EPFL using a terahertz time domain system (Tera

K15, THz-TDS measurement system from Menlo System GmbH), see Figure 6.4. In order to

study the deflection capabilities, the receiver of the Tera K15 system has been mounted at a fix

angle of 30º from the normal incidence. On the other hand, the transmitter has been mounted

on top of a rotary arm, which allows changing its position, and thus being able to measure at

different incident angles. The reflectarray has then been mounted on a vertical surface along

with a fully metallized substrate, which will act as reference mirror. The size of the THz beam

has been adjusted to no more than 8 mm using an iris.

Figure 6.4 clearly illustrates that the incident beam is deflected in several directions according

to its frequency. For frequencies outside the working bands the chip behaves as a mirror. For
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Chapter 6. Beam steering reflectarray at terahertz frequencies

a)

b) c)

d) e)

Figure 6.3 – Geometry and performance of the fixed beam reflectarray

the three working frequencies, the beam is deflected in three distinct angles corresponding

to the design angles (0° , 20° and 50° ), confirming that the intermediate prototype is fully

functional.

6.4 Graphene beam steering reflectarray

Details on the fabrication of the graphene terahertz beam steerable reflectarray can be found

in Appendix A. The design of the cell has been carried out in the numerical tool Ansys HFSS.

First, graphene resistance has been measured in a fabricated gated graphene sample. We

noticed that the graphene resistance can vary in a range between 800 ohm and 4000 ohm. For

the used CVD graphene, the imaginary part of the conductivity in this frequency range can be

neglected, and the real part is very close to the DC conductivity. This fact makes unfeasible

to create a unit cell with a reflection phase changing uniformly with the voltage. Instead, a

two state cell where the reflection coefficient has a phase variation of 180° in the two states is
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6.4. Graphene beam steering reflectarray

a)

b)

c)

d)d)

c)

Figure 6.4 – Measurement of fixed beam terahertz reflectarray. a,b) Measurment setup with rotable stages. c)
Radiation pattern at the three design frequencies. d) Spectrum at the three design angles.

feasible.

a) b)
Graphene

Gold

Figure 6.5 – Figure 14: Unit cell. a) Design in HFSS, b) Dimensions

Hence, the unit cell shown in Figure 6.5, based on a resonant cut-wire design with graphene

in the gap working at frequency 1.2 THz, has been optimized to provide phase difference of

180° upon the two extreme valued of graphene resistance (800 ohm and 4000 ohm), see Figure

6.6. The final layout includes 40ˆ40 cells each having size of 100umˆ100um (Figure 6.7, 6.8,

6.9). Each column is piloted with an independent voltage provided by a control unit interfaced

to a computer (Figure 6.10).
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a) b)

800 Ω

4000 Ω 1.25 THz

1.2 THz

1.15THz

Figure 6.6 – Complex reflection coefficient of the period cell as a function of frequency and graphene resistance

a) b)

Figure 6.7 – Layout of the reflectarray (a) and details of the columns (b)

a) b)

Figure 6.8 – SEM picture of reflectarray before (a) and after (b) graphene etching

Beam steering can be achieved by illuminating the reflectarray at 45° and then gating the

columns with different voltages. For the final reflectarray sample, the Dirac point was found
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6.4. Graphene beam steering reflectarray

Ag (140 nm) + Al (60nm)

SOI Si device (10 to 25 μm)

Pyrex support (525 μm)

Al2O3 (200 nm)
Au Au

Printed circuit board

Figure 6.9 – Cross-section of the reflectarray mounted on the PCB

a) b)

Figure 6.10 – Picture of the reflectarray mounted on the PCB (a) and of the control unit (b)

for a gate voltage of 7V, while -23V was used to obtain the high conductivity state in graphene.

Each column was either gated with 7 (logical 1) or -23 V (logical 0). Patterns of logical 1s

and 0s can be used to create a super-period in the reflectarray. For example the string

‘000111000111000111. . . ’ shows a super-period of 6 colunms. These patterns are referred in

the following as “Period N ”, where N is the number of columns of the pattern periodicity. We

use the adjective “Opposite” to designate the opposite pattern (each 1 is transformed to 0 and

vice versa).

An Arduino board connected to a custom made array of CMOS control transistors has been

used to change the gating pattern programmatically (Figure 6.10). The deflection angle can

then be estimated according to anomalous reflection laws, see Table 6.1 for the full list of

patterns and corresponding expected deflection angles. The chip was then measured scanning

the receiver angle in the available range between -59° and -9° for control strings.

The first three plots of Figure 6.11 show the reflected power as a function of the measurement

angle and of frequency for three patterns (with period 4, 6 and 10). The black arrow illustrates

the presence of the beam in the central working frequency of 1.23 THz. The remaining ones

show differential plots obtained measuring the reflectarray in one configuration and then
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Chapter 6. Beam steering reflectarray at terahertz frequencies

Table 6.1 – Control strings for beam steering

Configuration Control string Angle

Period 4 0011001100110011001100110011001100110011 -6°
Period 4, opposite 0011110011001100110011001100110011001100 -6°
Period 5 0011000111001100011100110001110011000111 -13°
Period 5, opposite 1100111000110011100011001110001100111000 -13°
Period 6 0001110001110001110001110001110001110001 -17°
Period 6, opposite 1110001110001110001110001110001110001110 -17°
Period 8 0000111100001111000011110000111100001111 -24°
Period 8, opposite 1111000011110000111100001111000011110000 -24°
Period 10 0000011111000001111100000111110000011111 -28°
Period 10, opposite 1111100000111110000011111000001111100000 -28°

inverting all the control bits (see the opposite patterns in Table 6.1) and subtracting the

radiation patterns in the two cases. This allows removing almost completely the specular

reflection and obtaining a much clearer plot of the beam. The black arrows show clearly that

the beam is steering accordingly to the control string.
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Figure 6.11 – Frequency versus angle dispersion plots. Absolute and differential date is shown

Figure 6.12 shows a plot of the radiation pattern normalized to its maximum value at the central

working frequency of 1.23 THz. The curves in the plot are vertical slices of the differential

patterns in figure 18, including in also the patterns with periodicity 5 and 10. The angles of the

obtained maxima are in excellent agreement with the values predicted in Table 1. Importantly,

the beams appear very wide (approximately 30° ) because the reflectarray was measured with

focused beams. For collimated beams the directivity is expected to be greatly improved.
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6.5. Conclusions

Figure 6.12 – Reflectarray radiation pattern (normalized to maximum value) showing beam scanning. Dashed lies
are the expected direction of the beam using reflectarray theory

Finally, Figure 6.13 shows that if the bits of the control unit are shifted, the signal radiated

in the beam can be modulated as in a PSK scheme. This is also the first time to the author’s

knowledge that such a complex modulation scheme is implemented in terahertz frequencies.

Notice that the translational symmetry of the device guarantees constant amplitude of the

PSK signal.

a) b)

Figure 6.13 – PSK modulation scheemes using periodicities of 4 and 6

6.5 Conclusions

The objectives within the Graphene Flagship project have been successfully reached, since

beam steering at frequencies above 1 THz (1.2 to 1.3 THz) was obtained. Some optimization

of the unit cell can be performed in order to reduce the specular reflection, which however

goes beyond the scope of this initial demonstrator.

This is the first time that electronic beam steering has been demonstrated with a terahertz

reflectarray, and the potential applications of this device are numerous. The steered signal has
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a bandwidth of almost 100 GHz. We believe that this device represents an important milestone

in terahertz technology, which has been reached only thanks to the unique tunable properties

of graphene. These exciting results will be further explored in the Core 2 phase of the Flagship,

exploring new frequency ranges and gating schemes. Graphene tunability has been show to

greatly improve in the mid infrared range, and devices which even better performances are

possible in that range.
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7 Conclusions and perspectives

In this thesis a number of potential applications of graphene have been explored, and several

experimental demonstrators have been obtained. The work performed in this thesis is a part of

a much larger effort in bringing graphene and 2D materials on the market. Graphene research

is, in fact, in a very delicate phase: whenever a new technology is discovered, the journey

from the laboratory to the market is long and full of potential obstacles. The most important

obstacle is beating existing technologies in terms of costs and performances. To cross the gap

between research and commercialization, usually referred to as “valley of death”, it is very

important to identify a set of applications where the new technology is clearly superior to the

state of the art. For these reasons this thesis provided the following contributions:

• It developed a metric (the figure of merit of graphene deriving from the upper bound)

to compare graphene potential for modulators and non-reciprocal components. This

metric allows a fair comparison among various graphene types and with respect to

competing technologies in terms of the expected device performances, like insertion

loss. The metric demonstrated that graphene has a very high potential (which is still

partly unused) for modulators at terahertz and especially in the mid infrared. It also

demonstrated that the potential of graphene for non-reciprocal devices extends to the

mid infrared, even if little Faraday rotation is observed in unpatterned graphene.

• It developed a new method to characterize complex conductivity of materials (which is

at the moment still under development but showing already its usefulness in studying

carrier’s dynamics without patterning).

• It developed several experimental demonstrators. Most notably, the terahertz reflectar-

ray and terahertz isolators are very important contributions, since little or no available

technologies exist to perform these functions in the terahertz range. While it is clear that

graphene is not competitive in the microwave range for reconfigurable devices, it is one

of the few choices for both terahertz non-reciprocity and modulation. We also predicted

that a significant improvement is expected as soon as new methods to improve the

mobility are developed, since both for modulation and non-reciprocity high values of μ

(or τ) are beneficial for the graphene figure of merit.
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• The developed devices have been created using commercial CVD graphene. This is very

important, because many devices presented in literature use exfoliated samples instead.

Exfoliated graphene possesses superior performances in terms of mobility, but the size

of its samples is limited to few hundreds of micrometers, and hence it is not suitable for

commercial applications (while of course it is extremely useful for research purposes to

understand the ultimate potential of this material).

Several main conclusions can be drawn on the future of this technology from the point of

view of the applications explored in this thesis. First, research efforts should focus especially

in creating CVD graphene with high mobility and strategies to preserve the mobility during

device fabrication are very important. This is not the first time that this conclusion is reached,

but it is here particularly important and evident, especially in light of the developed graphene

figure of merit and its dependence on mobility. Second, graphene is a winning technology for

several terahertz applications. Besides the modulation, reflectarray and isolator applications

presented here, several works in the literature have pointed out other possibilities in this

frequency range. For example for terahertz detection [112] or to modulate the output of a

quantum cascade laser [15]. As such, graphene can contribute to close the terahertz gap.

Future interesting research lines to continue the work of this thesis include:

• Improving the performances of the terahertz reflectarray with a fine tuned design.

• Implementing an experimental infrared beam steering reflectarrays using graphene.

At infrared frequencies, in fact, graphene has the best potential for modulation and

reconfigurability. This device would be an example of a spatial light modulator in

reflection able to fully control the reflected beam. The easy integration of graphene with

silicon technology could be exploited to create complex control networks to address a

large area device.

• Integration of graphene tunable antennas, switches and reflectarrays in detectors, to

tune detection frequency (hyper-spectral imaging) polarization and direction.

• Extending the isolator concept to higher frequencies (mid infrared). The graphene non-

reciprocity figure of merit is, in fact, preserved up to frequencies in the order of tens of

terahertz. The creation of non-reciprocal mid infrared components, possibly integrated

directly in lasers, could contribute to the development of more robust sources, the

protection of which is the main application of isolators.

• If better mobility is achieved, then the creation of miniaturized microwave non-reciprocal

circuits would become an interesting avenue. In fact, while current ferrite non-reciprocal

components are usually bulky, graphene could lead to much smaller and lighter devices.

This provided that graphene mobility becomes sufficiently large at these frequencies to

ensure large graphene non-reciprocity figure of merit even with a small biasing field.

Finally, the work presented in this thesis was a key contribution to the European Graphene

Flagship Project (ramp up phase, tasks 5.4 and 5.5), and it opened very promising avenues to

scale the presented devices at mid infrared (which will be one of the tasks of the Core 1 phase
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of the Flagship Project), providing new understandings on the interaction between light and

two-dimensional materials.
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A Micro-nano fabrication of graphene
devices

A.1 Introduction

This chapter summarizes the fabrication processes that have been used in the reminder of

this thesis. All fabrication processes were performed in the Center of MicroNanoTechnology

(CMi) at EPFL, except from graphene transfer which was done by external collaborators

(Graphenea Inc. and Ferrari’s Group at Cambridge University). Printed circuit boards (PCBs)

were fabricated by the Atelier pour le routage et la fabrication de circuits imprimés (ACI).

A.2 Devices based on THz/IR silicon transmission substrate

A.2.1 Introduction

The first type of device is a general purpose transmission chip, on which graphene can be

transfered and studied with several techniques. The used substrate is high resistivity silicon,

which is transparent to infrared and terahertz radiation, and hence can be used to perform

measurements on graphene at these frequencies in transmission. In addition, the chip has a

top layer of silicon oxide (300 nm), which can be used to gate graphene tuning its conductivity.

The chip is double side polished, to be compatible with optical measurement.

Figure A.1 illustrates the fabrication process of the transmission chip (additional details about

the chip layout are given in the remaining chapters of the thesis). The starting substrate is a

silicon high resistivity wafer purchased from Topsil Semiconducting Materials A/S with resis-

tivity ρ ą 10kΩcm´1, thickness 525 μm, diameter 10 cm and ă 100 ą crystalline orientation

(Figure A.1a). The wafer is first cleaned using a standard full RCA cleaning composed of three

steps:

• RCA1: Solution of 5 parts of DI (deionized) water, 1 part of NH4OH and 1 part of

hydrogen peroxide H2O2 at 80° to remove organic impurities.

• HF: Solution of hydrofluoric acid HF and DI water 1:10 at room temperature to strip
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Appendix A. Micro-nano fabrication of graphene devices
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Figure A.1 – Process flow for THz/IR transmission chip. a) Initial high resistivity wafer. b) Dry oxidation c) Backside
cleaning

native silicon oxide.

• RCA2: Solution of 6 parts of DI water, 1 part of hydrochloric acid HCl and 1 part of

hydrogen peroxide H2O2 at 80° to remove metal contaminants.

• SRD: Spin rinse and dry (SRD) with deionized water.

Subsequently the wafer is dry-oxidized (Figure A.1b) at 1050 ° in a Centrotherm furnace until

the gate oxide reaches a thickness of approximately 300 nm (actual thickness 275 nm). The

oxide on the backside of the wafer is then etched (Figure A.1c) in an SPTS Advanced Plasma

System (APS) module, to allow the possibility of contacting the silicon below to bias graphene.

Metal patterns are defined using a lift-off process with optical lithography. First the wafer

is coated with a layer of LOR (lift-off resist) followed by a layer of AZ 1512 HS positive resist,

using an EVG 150 automatic resist processing cluster. The wafer is exposed using a chrome

mask (written using a DWL200 laser writing system) on a Süss MA6 UV exposure tool and

developed in the EVG 150 (Figure A.1d). The LOR layer is underetched in the development,

thus facilitating the lift-off. 50 nm of gold (after 5 nm of Cr for adhesion) are then evaporated

on the wafer using a Leybold Optics LAB 600H ebeam evaporator. This evaporator is optimized

for lift-off processes, and hence the ion beam is very directional preventing the deposition

of metal on the photoresist edge. The lift-off is performed in Microposit remover 1165 for 48
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hours and ultrasonication is performed if needed to help the release of the metal residues.

The wafer is rinsed in IPA (isopropyl alcohol) and SRD is performed (Figure A.1e).

The wafer is coated with a layer of protective photo-resist using the EVG 150 (Figure A.1f) and

dicing is performed using a DISCO DAD321 automatic dicer (Figure A.1g) and the chips are

then cleaned from photoresist in a with Remover 1156 (two baths at 75° , coarse rinse followed

by ultra-clean bath) and the final chips are dried (Figure A.1g).

A.2.2 Infrared and terahertz characterization of graphene

The substrates can be used as they are to study graphene at terahertz and infrared frequencies

(Figure A.2). Graphene is transfered by external partners (Graphenea Inc. and Ferrari’s Group

at Cambridge University). Graphene is first grown using chemical vapor deposition (CVD) on

a copper foil using a mixture of H2 and CH4 at approximately 1000C. Polymethyl methacrylate

(PMMA) is spin coated on graphene and then the copper is chemically dissolved. Graphene is

then transferred on the chip and, subsequently, the PMMA is dissolved in acetone and the chip

is rinsed. The chip can then be used to characterize graphene at THz or to study the induced

Faraday rotation. Metal contacts allows the study of DC conductivity (transport experiment)

including electrostatic and magnetostatic bias.

a)

High Res Si (525 μm)

SiO2 (300nm)

Au (50 nm) Au (50 nm)
b)

High Res Si (525 μm)

SiO2 (300nm)

Au (50 nm) Au (50 nm)
Graphene

Graphene on transmission substrate chipTransmission substrate chip

Figure A.2 – Process flow for graphene transfer. a) intial transmission chip. b) graphene transfer.

A.2.3 Magnetoplasmonic enhanced Faraday rotator

The magneto plasmonic Faraday rotators (fabricated but not yet characterized) have been

manufactured starting with a transmission substrate chip (Figure A.3a) onto which graphene

has been transferred (Figure A.3b). The graphene is then patterned using a standard e-beam

process. First, the chip is dehydrated on a hot plate (200° ) for 5 minutes. Then PMMA or ZEP

resist are spin coated on graphene and the chi is baked for 5 minutes. E-beam exposure is

done with doses from 600 to 1200 μCcm´2 with PMMA and from 180 to 280 μCcm´2 with ZEP.

PMMA is developed in MiBK:IPA 1:3 for 1 minute and rinsed in IPA for 1 minute, while ZEP

is developed in amyl-acetate for 1 minute and rinsed in 90:10 MiBK:IPA for 1 minute (Figure

A.3c). Graphene was then dry-etched in oxygen plasma in an Alcatel 601 E system (Figure

A.3d). The e-beam resist is then stripped in acetone. For PMMA stripping is easy and requires

only 1 hour in acetone (followed by IPA rinse). ZEP is usually stripped with oxigen plasma

or with specific solvents. However both these options damage or destroy graphene. Hence

acetone is used, and to ensure complete removal of the resist the chip is first placed in acetone
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at 45° for 1 hour and then in acetone at room temperature for two days. The chip is then rinsed

in IPA (Figure A.3e).

PMMA or ZEP

a)

High Res Si (525 μm)

SiO2 (300nm)

Au (50 nm) Au (50 nm) b)

High Res Si (525 μm)

SiO2 (300nm)

Au (50 nm) Au (50 nm)

Transmission substrate chip

c)

High Res Si (525 μm)

SiO2 (300nm)

Au (50 nm) Au (50 nm)

d)

High Res Si (525 μm)

SiO2 (300nm)

Au (50 nm) Au (50 nm) GR

GR

GR

PMMA or ZEP

High Res Si (525 μm)

SiO2 (300nm)

Au (50 nm) Au (50 nm)

Magnetoplasmonic enhanced Faraday rotator

GRe)

Figure A.3 – Process flow for graphene Magnetoplasmonic enhanced Faraday rotator. a) initial transmission chip.
b) graphene transfer. c) PMMA or ZEP coating, ebeam exposure and development. d) Oxigen plasma etching. e)
PMMA or ZEP stripping

A.2.4 Ring resonators enhanced Faraday rotator

The magneto plasmonic Faraday rotators (fabricated but not yet characterized) have been

manufactured starting with a transmission substrate chip (Figure A.3a). Because the patterns

are too small for optical lithography, they have been created using an e-beam lift-off process.

First the chip is dehydrated for 5 min on a hot plate, then MMA is spin coated on the chip

and baked for 5 minutes. Subsequently PMMA is spin coated and baked for 5 minutes. After

e-beam exposure and development (same process of single PMMA layer), the MMA is under-

etched, allowing easier lift-off (Figure A.3b). The chips cannot be evaporated directly, because

of residues at the bottom of the windows in the resist. A de-scum step is required to improve

metal adhesion (10 seconds in oxigen plasma in a Tepla Gigabatch). This de-scum step is

required whenever PMMA - MMA lift-off is used. 50 nm of gold are then evaporated and

lift-off is performed in acetone for two days. Chips are then rinsed in acetone (Figure A.3c).

Graphene is then transfered on the substrate. Graphene (produced by Graphenea) does not

break, allowing to conformally cover the gold patterns (Figure A.3d).
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a)

High Res Si (525 μm)

Au (50 nm)

Transmission substrate chip

Au (50 nm)

SiO2 (300nm)

High Res Si (525 μm)

Au (50 nm) Au (50 nm)

SiO2 (300nm)

MMA+PMMA

High Res Si (525 μm)

Au (50 nm) Au (50 nm)

SiO2 (300nm)

High Res Si (525 μm)

Au (50 nm) Au (50 nm)

SiO2 (300nm)

b)

c) d)

Ring resonators enhanced Faraday rotator

Figure A.4 – Process flow for Ring resonators enhanced Faraday rotator. a) initial transmission chip. b) MMA +
PMMA coating, ebeam exposure and development. c) de-scum and gold evaporation and lift-off. d) graphene
transfer.

A.3 Reflection substrate based on SOI silicon device layer

A.3.1 Introduction

Several devices developed in this thesis use a reflection stack based on a thin silicon layer

bonded to a metallic retro reflector. These chips are fabricated by metallizing and bonding

and SOI (Silicon on Insulator) wafer to a pyrex one, removing subsequently the handle and

box layer of the SOI waver. We developed two processes to obtain this result. The first one uses

parylene bonding and was developed by Dr Clara Moldovan (EPFL, Nanolab). The second,

developed by the PhD candidate, based on anodic bonding.

The parylene process is illustrated in Figure A.5. The starting substrate is an SOI waver (Figure

A.5a) with device layer of 10 to 25 μm, high resistivity silicon (ρ ą 1kΩcm´1), SiO2 box layer

and silicon handle layer. A layer of 200 nm of platinum is evaporated on the device layer

(Figure A.5b). Then parylene is spin coated on a pyrex waver and used as a glue to bond it to

the device layer, using a Süss Substrate Bonder SB6. (Figure A.5c). The device layer is then

removed by a first grinding (Figure A.5d) followed by dry etching in an Adixen AMS200 Etcher

(Figure A.5e). Importantly, this process does not affect the device layer, that is protected by

the SiO2 box. Another dry etching step in the SPTS Advanced Plasma System (APS) module

elimitates the box layer without affecting the device layer (Figure A.5f). Wafer is cleaned in SRD

and an ALD Al2O3 layer is deposited (Figure A.5g) with a Beneq TFS200 system. A protective

photoresist layer is spin coated (Figure A.5h) and the wafer is diced (Figure A.5i). The final

chips are cleaned in Microposit remover 1165 (Figure A.5j).

Figure A.6 shows a FIB section oft the parylene bonded reflection substrate.
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SOI Si device (10 to 25 μm)
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Figure A.5 – Process flow for reflection substrates (parylene bonding). a) initial SOI wafer. b) evaporation of 200
nm of platinum c) parylene coating and parylene bonding with pyrex support. d) grinding of handle layer. e) dry
etching of remaining handle layer. f) dry etching of SiO2 box. g) ALD deposition of Al2O3 h) protective photoresist
coating. i) dicing. j) resist strip

The anodic bonding process is illustrated in Figure A.7. The starting SOI waver (Figure A.7a)

is evaporated with a layer of 140 nm of silver followed by 60nm of aluminum (Figure A.7b).

For both layers an adhesion layer of 5 nm of chromium is used. Anodic bonding is performed

between aluminum and pyrex using a Süss Substrate Bonder SB6 (Figure A.7c). The device

layer is then removed by grinding (Figure A.7d) followed by dry etching (Figure A.7e). The box

layer is removed with a bath of 49% HF which does not attack silicon(Figure A.7f). Importantly,

the use of buffered oxide etch is to be avoided as it attacks aluminum potentially infiltrating

the bonding. HF 49% also attacks aluminum, but at a much slower rate, so that it has no effect

on the bonding. A protective photoresist layer is spin coated (Figure A.7g) and the wafer is

diced (Figure A.7h). The final chips are cleaned in Microposit remover 1165 (Figure A.7i).
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Si

Pt

Parylene D

Pyrex

Figure A.6 – FIB section of reflection substrate

A.3.2 Graphene terahertz isolator

The fabrication of the terahertz isolator consists simply in transferring three layers of graphene

(keeping the PMMA support layer) on the reflection stack (Figure A.8, performed by Graphenea

Inc.

A.3.3 Fabry Perot based measurement of graphene conductivity

The measurement of complex conductivity of graphene is performed using a reflection sub-

strate created with anodic bonding (although also parylene bonded chips have been tested

successfully). Figure A.9 illustrate the sample preparation process. The reflection substrate

chips (Figure A.9a) so not have an oxide gate, and after the resist stripping they might have

organic contaminants. RCA1 cleaning is then very important prior to the subsequent ALD

step (Figure A.9b) depositing 72 nm of Al2O3. Graphene can be transfered (Figure A.9c) and

optionally patterned (Figures A.9d,A.9e).
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Figure A.7 – Process flow for reflection substrates (anodic bonding). a) initial SOI wafer. b) evaporation of 140 nm
of silver and 60 nm of aluminum c) anodic bonding with pyrex support. d) grinding of handle layer. e) dry etching
of remaining handle layer. f) wet HF etching of SiO2 box. g) protective photoresist coating. h) dicing. i) resist strip
and RCA1 cleaning

a) b)
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Parylene (2 μm)

Pyrex support (525 μm)

Pt (200 nm)
Parylene (2 μm)
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Figure A.8 – Process flow for the isolator. a) Initial relfection chip with parylene bonding and ALD Al2O3. b) transfer
of three graphene layers keeping PMMA in between (by Graphenea)

A.3.4 Fixed beam terahertz multiband reflectarray

For the fixed beam reflectarray, no gate oxide is required, and the metal patterns are created

using the usual e-beam lift-off process with 160 nm of silver, followed by 35 nm of gold. A

chromium layer of 5 nm is used for adhesion (Figure A.10)
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Figure A.9 – Process flow for Fabry Perot resonant chip. a) Initial reflection chip with anodic bonding. b) ALD
deposition of Al2O3. c) Graphene transfer. d) PMMA or ZEP coating, e-beam exposure and development. e)
Graphene etching in oxigen plasma and resist strip.
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Figure A.10 – Process flow for the fixed beam terahertz multiband reflectarray. a) Initial reflection chip (anodic
bonding). b) MMA + PMMA resist spin coat, ebeam exposure and developing. c) De-scum and silver (160 nm) and
gold (35 nm) evaporation and liftoff in acetone

A.3.5 Graphene terahertz reflectarray

The graphene reflectarray is the most complex fabrication process presented in this thesis

(Figure A.11). The initial reflection substrate with anodic bonding (Figure A.11a) is cleaned

and a layer of ALD Al2O3 is deposited to form a gate oxide layer (Figure A.11b). Gold patterns

are defined with e-beam liftoff (Figure A.11c, A.11d). Graphene is transferred and patterned

using e-beam lithography with PMMA (Figure A.11e, A.11f, A.11g). The final chip is then glued

wire-bonded to a printed circuit board (PCB).
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Figure A.11 – Process flow for graphene terahertz reflectarray. a) Initial reflection chip (anodic bonding). b) ALD
deposition of Al2O3. c) MMA + PMMA resist spin coat, ebeam exposure and developing. d) De-scum and gold
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