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Abstract

This thesis uses the idea of lifting (or embedding) a nonlinear controlled dynamical
system into an infinite-dimensional space of measures where this system is equiva-
lently described by a linear equation. This equation and problems involving it are
subsequently approximated using well-known moment-sum-of-squares hierarchies.

First, we address the problems of region of attraction, reachable set and maxi-
mum controlled invariant set computation, where we provide a characterization
of these sets in terms of an infinite-dimensional linear program in the cone of
nonnegative measures and we describe a hierarchy of finite-dimensional semidefinite-
programming (SDP) hierarchies providing a converging sequence of outer approxi-
mations to these sets.

Next, we treat the problem of optimal feedback controller design under state and
input constraints. We provide a hierarchy of SDPs yielding an asymptotically
optimal sequence of rational feedback controllers. In addition, we describe hier-
archies of SDPs yielding approximations to the value function attained by any
given rational controller, from below and from above, as well as a hierarchy of
SDPs providing approximations from below to the optimal value function, hence
obtaining performance certificates for the designed controllers as well as for any
given rational controller.

Finally, we describe a method to verify properties of a closed loop interconnection
of a nonlinear dynamical system and an optimization-based controller (e.g., a model
predictive controller) for deterministic and stochastic nonlinear dynamical systems.
Properties such as global stability, the �2 gain or performance with respect to a
given infinite-horizon cost function can be certified.

The methods presented are easy to implement using freely available software
packages and are documented by a number of numerical examples.

Key words: region of attraction, reachable set, maximum controlled invariant set,
optimal control, moment hierarchy, sum-of-squares, semidefinite programming,
controller verification, lifting, embedding
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Résumé

Cette thèse utilise l’idée de lifting (ou embedding) d’un système dynamique non
linéaire contrôlé dans un espace de dimension infinie de mesures où ce système
est décrit de façon équivalente par une équation linéaire. Cette équation et les
problèmes l’impliquant sont ensuite approximés à l’aide des hiérarchies bien connues
moment-somme de carrés.

Tout d’abord, nous abordons les problèmes de calcul de la région d’attraction,
de l’ensemble atteignable et de l’ensemble invariant contrôlé maximal, où nous
fournissons une caractérisation de ces ensembles par un problème d’optimisation
linéaire de dimension infinie dans le cône de mesures non négatifs et nous décrivons
une hiérarchie de hierarchies de problèmes d’optimisation semi-définis (SDP) en
dimension finie fournissant une séquence d’approximations extérieures convergentes
de ces ensembles.

Ensuite, nous traitons le problème de la conception de contrôleur optimal sous
contraintes d’état et d’entrée. Nous fournissons une hiérarchie de SDP qui donne
une séquence asymptotiquement optimale de contrôleurs rationnels. En outre, nous
décrivons des hiérarchie de SDP produisant des approximations de la fonction
objectif atteinte par un contrôleur rationnel donné, lune par valeur supérieure,
l’autre inférieure, ainsi qu’une hiérarchie de SDP donnant une approximation
inférieure à la fonction objectif optimale, en obtenant donc des certificats de
performance pour la contrôleurs conçus ainsi que pour tout contrôleur rationnel
donné.

Enfin, nous décrivons une méthode pour vérifier les propriétés d’une boucle fermée
formée par l’interconnexion d’un système dynamique non linéaire et un contrôleur
résolvant un problème d’optimisation (par exemple, un contrôleur prédictif) pour
les systèmes dynamiques non linéaires déterministes et stochastiques. Les propriétés
telles que la stabilité globale, le gain �2 ou la performance par rapport à une fonction
de coût à horizon infini peuvent être certifiés.

Les méthodes présentées sont faciles à mettre en œuvre en utilisant des logiciels
disponibles gratuitement et sont documentées par un certain nombre d’exemples
numériques.
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Mots clefs : région d’attraction, ensemble atteignable, ensemble invariant contrôlé
maximal, commande optimale, hiérarchie des moment, somme des carrés, program-
mation semi-définie, vérification de contrôleur, lifting, embedding



Contents

Acknowledgements i

Abstract (English/Français) iii

List of figures xi

List of tables xv

Nomenclature xviii

1 Introduction 1

2 Preliminaries 7
2.1 Duality between C(K) and M(K) . . . . . . . . . . . . . . . . . . . 7

2.1.1 Weak-� topology . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Sub- and super-cones of C(K)+ and M(K)+ . . . . . . . . . . . . . 9

2.2.1 Sub-cones of C(K)+ . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Super-cones of M(K)+ . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Sub-cones of M(K)+ . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Super-cones of C(K)+ . . . . . . . . . . . . . . . . . . . . . 15

2.3 Lifting nonlinear dynamics . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Relaxed controls . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Continuous-time, finite-horizon . . . . . . . . . . . . . . . . 19
2.3.3 Continuous-time infinite horizon . . . . . . . . . . . . . . . . 22
2.3.4 Continuous-time infinite-horizon with stopping . . . . . . . . 24
2.3.5 Continuous-time input-affine systems – special case . . . . . 27
2.3.6 Discrete-time infinite-horizon . . . . . . . . . . . . . . . . . 29

3 Set approximation 33
3.1 Region of attraction & Reachable set . . . . . . . . . . . . . . . . . 34

3.1.1 ROA via optimization . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Lifting: first attempt . . . . . . . . . . . . . . . . . . . . . . 36

vii



3.1.3 Primal infinite-dimensional LP on measures . . . . . . . . . 38
3.1.4 Dual infinite-dimensional LP on functions . . . . . . . . . . 40
3.1.5 SDP approximations . . . . . . . . . . . . . . . . . . . . . . 43
3.1.6 Outer approximations and convergence results . . . . . . . . 46
3.1.7 Free final time . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.8 Numerical examples . . . . . . . . . . . . . . . . . . . . . . 49
3.1.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Maximum controlled invariant set . . . . . . . . . . . . . . . . . . . 59
3.2.1 Lifting: Primal LP . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Lifting: Dual LP . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.3 SDP approximations . . . . . . . . . . . . . . . . . . . . . . 66
3.2.4 Convergence results . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . 72

4 Optimal control 81
4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Tightening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Tightening with continuous densities . . . . . . . . . . . . . 88
4.3.2 Tightening with polynomial densities . . . . . . . . . . . . . 89

4.4 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5 Value function approximations . . . . . . . . . . . . . . . . . . . . . 96
4.6 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.1 Nonlinear double integrator . . . . . . . . . . . . . . . . . . 98
4.6.2 Controlled Lotka-Volterra . . . . . . . . . . . . . . . . . . . 100

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Verification of optimization-based controllers 105
5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Polynomial dynamical controller + input saturation . . . . . 108
5.2.2 Output feedback nonlinear MPC with model mismatch and

soft constraints . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.3 General optimization-based controller . . . . . . . . . . . . . 112
5.2.4 Optimization-based controller solved using a fixed number

of iterations of a first order method . . . . . . . . . . . . . . 113
5.3 Closed-loop analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Stability analysis – global . . . . . . . . . . . . . . . . . . . 115
5.3.2 Stability analysis – on a given subset . . . . . . . . . . . . . 117
5.3.3 Performance analysis – deterministic setting . . . . . . . . . 118



5.3.4 Performance analysis – stochastic setting . . . . . . . . . . . 122
5.3.5 Robustness analysis – global �2 gain, ISS . . . . . . . . . . . 124

5.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.1 Bilinear system + PI with saturation – performance analysis 127
5.4.2 Uncertain linear system – global asymptotic stability . . . . 128
5.4.3 Stability of a quadcopter on a given subset . . . . . . . . . . 129

5.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Numerical aspects 135
6.1 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . 136
6.2 Software implementation . . . . . . . . . . . . . . . . . . . . . . . . 137

7 Conclusion and outlook 139

A Mathematical background 141
A.1 Stochastic kernels and disintegration . . . . . . . . . . . . . . . . . 141
A.2 Infinite-dimensional linear programming . . . . . . . . . . . . . . . 142

B Superposition theorems 145
B.1 Proof of Theorem 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.2 Proof of Theorem 2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.3 Proof of Theorem 2.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . 152
B.4 Proof of Theorem 2.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . 157

Bibliography 168





List of Figures

1.1 Lifting idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.1 Univariate cubic dynamics – polynomial approximations (solid line)
to the ROA indicator function IX0 = I[−0.5,0.5] (dashed line) for
degrees k ∈ {4, 8, 16, 32}. . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Van der Pol oscillator – semialgebraic outer approximations (light
gray) to the ROA (dark gray) for degrees k ∈ {10, 12, 14, 16}. . . . . 52

3.3 Van der Pol oscillator – a polynomial approximation of degree 18 of
the ROA indicator function IX0 . . . . . . . . . . . . . . . . . . . . . 53

3.4 Double integrator – semialgebraic outer approximations (light gray)
to the ROA (dark gray) for degrees k ∈ {6, 8, 10, 12}. . . . . . . . . 54

3.5 Brockett integrator – semialgebraic outer approximations (light red,
larger) to the ROA (dark red, smaller) for degrees k ∈ {6, 10}. . . . 55

3.6 Acrobot – sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Acrobot – section for x4 = 0 of the semialgebraic outer approxima-
tions of degree k ∈ {6, 8}. Only the middle joint actuated – darker,
smaller; both joints actuated – lighter, larger. The states displayed
x1, x2 and x3 are, respectively, the lower pendulum angle, the upper
pendulum angle and the lower pendulum angular velocity. . . . . . 57

3.8 Discrete time double integrator – polynomial outer approximations
(light gray) to the MCI set (dark gray) for degrees k ∈ {8, 12}. . . . 73

3.9 Cathala system – polynomial outer approximations (light gray) to the
MCI set (dark gray) for degrees k ∈ {6, 10}. . . . . . . . . . . . . . . . 74

3.10 Filled Julia set – polynomial outer approximation of degree 12 (light
gray) and (an approximation of) the “true” set (dark grey) represented
as an ensemble of initial conditions randomly sampled within the state-
constraint set. The dashed line shows the boundary of the unit-ball
state-constraint set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



3.11 Controlled Hénon map – polynomial outer approximation of degree eight in
the uncontrolled setting (darker red, smaller) and in the controlled setting
(lighter red, larger). The (approximation of) the “true” set (black) in the
uncontrolled setting is represented as an ensemble of initial conditions
randomly sampled within the state-constraint set. . . . . . . . . . . . . 76

3.12 Continuous-time double integrator – polynomial outer approximations
(light gray) to the MCI set (dark gray) for degrees k ∈ {8, 14}. . . . . . 77

3.13 Spider-web system – polynomial outer approximations (light gray) to the
MCI set (dark gray) for degrees deg v = 16 and degw = 8 on the left and
degw = 16 on the right. . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.14 Acrobot on a cart – sketch . . . . . . . . . . . . . . . . . . . . . . . . 79

3.15 Acrobot on a cart – section of the polynomial outer approximations of
degree four for (x1, x4, x5) = (0, 0, 0). Only the middle joint actuated –
darker, smaller; middle joint and the cart actuated – lighter, larger. The
states displayed x2, x3 and x6 are, respectively, the lower pendulum angle,
the upper pendulum angle and the upper pendulum angular velocity. . . 80

4.1 Nonlinear double integrator – rational controller of degree six. . . . . . . 99

4.2 Nonlinear double integrator – upper bound on the value function associ-
ated to the designed controller (red); lower bound on the optimal value
function (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Nonlinear double integrator – densities . . . . . . . . . . . . . . . . . . 101

4.4 Nonlinear double integrator – sections of the value function approximations
for x1 = 0 (left) and x2 = 0 (right). The upper bound on the value function
associated to the designed controller is in red; the lower bound on the
optimal value function is in blue. . . . . . . . . . . . . . . . . . . . . . 102

4.5 Controlled Lotka-Volterra – (blue) trajectory starting from a high
initial population of the first species and low initial population of the
other species; (red) trajectory starting from low initial population
of the first species and high initial population of the other species. . 103

5.1 Control scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Bilinear system performance bound – Red: upper bound V (x, 0) of degree
6. Blue: true closed-loop cost J(x, 0). . . . . . . . . . . . . . . . . . . 128

5.3 Global asymptotic stability of an uncertain system – one trajectory
starting from the initial condition x0 = [1 1 1 1]T of the norm of the
state ‖xk‖, the Lyapunov function V (xk), the control input uk and
the disturbance wk. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



5.4 Stability of a quadcopter – trajectories of the norm of the state
‖xk‖, the Lyapunov function V (xk), the control input uk for initial
condition x0 = [1 1 1 1 1 1 1]�. . . . . . . . . . . . . . . . . . . . . . 131





List of Tables

3.1 Univariate cubic dynamics – relative volume error of the outer
approximation to the ROA X0 = [−0.5, 0.5] as a function of the
approximating polynomial degree. . . . . . . . . . . . . . . . . . . . 50

3.2 Van der Pol oscillator – relative error of the outer approximation to
the ROA X0 as a function of the approximating polynomial degree. 52

3.3 Double integrator – relative error of the outer approximation to the
ROA X0 as a function of the approximating polynomial degree. . . 53

3.4 Acrobot – comparison of computation time of MOSEK and SeDuMi
for different degrees of the approximating polynomial. The “–” in
the last cell signifies that SeDuMi could not solve the problem. . . . 56

5.1 Global asymptotic stability of an uncertain system – timing break-
down as a function of the number of iterations of the projected
gradient method M and the horizon length N used in the cost
function. The parsing and monomial reduction was carried out by
SOSOPT; the SDP solve by MOSEK. . . . . . . . . . . . . . . . . . 130

xv





Nomenclature

X The closure of a set X

deg p Total degree of a multivariate polynomial

X◦ The interior of a set X

μleb The Lebesgue measure, i.e.,
∫
f(x) dμleb(x) =

∫
f(x) dx and μleb(A) =

vol(A)

‖f‖C(X) The supremum norm of f over X, i.e., ‖f‖C(X) = supx∈X|f(x)|

‖f‖C0 The same as ‖f‖C(X) when the set X is clear from the context

‖f‖Ck The same as ‖f‖Ck(X) when the set X is clear from the context

‖f‖C1(X) The C1 norm of f over X, i.e., ‖f‖C1(X) = supx∈X|f(x)|+supx∈X‖∇f‖2

distX(x) The Euclidean distance of a point x to the set X

∇f The spacial gradient of f . If f is a function of (t, x), then ∇f = ∂f
∂x

R[x] The ring of all polynomials

R[x]d The vector space of all polynomials of total degree at most d

Σ The cone of all sum-of-squares polynomials

Σd The cone of all sum-of-squares polynomials of total degree at most
d

sptμ Support of a measure μ, i.e, the smallest closed set whose com-
plement has a zero measure. Equivalently, x ∈ sptμ if an only if
μ(U) > 0 for every open neighborhood U of x

X� The space of all bounded linear functionals on X (= topological
dual of X)

xvii



Acknowledgements

A� The adjoint of a linear operator A

AC([a, b];Y) The set of all absolutely continuous functions f : [a, b] → Y

C(X;Y) The space of all continuous functions f : X → Y

C(X) The space of all continuous functions f : X → R

C(X)+ The cone of all nonnegative continuous functions f : X → R

Ck(X) The space of all functions f : X → R which are continuous on X

and k-times continuously differentiable on X◦

Ck
b (X) The space of all bounded functions f : X → R which are continuous

on X and k-times continuously differentiable on X◦

Cb(X) The space of all bounded continuous functions f : X → R

IX The indicator function of the set X, i.e., IX = 1 on X and IX = 0

otherwise

l(N;X) The set of all sequences indexed with natural numbers taking values
in X

L(X;Y) The space of all Borel measurable functions f : X → Y

L(X) The space of all Borel measurable functions f : X → R

Lk(X) The space of all functions f : X → R
n such that

∫
X
|f |k dx < ∞ for

k < ∞ and such that ess supX|f | < ∞ for k = ∞

M(X) The space of all signed Borel measures on X

M(X)+ The cone of all nonnegative Borel measures on X

xviii



Chapter 1

Introduction

This thesis builds on the idea of lifting (or embedding) a nonlinear problem into
a larger (possibly infinite-dimensional) space where this problem is equivalently
represented by a linear problem. This linear problem is subsequently approximated
by a tractable finite-dimensional problem of a predefined complexity controlling
the quality of the approximation. This abstract idea is depicted in Figure 1.1.

Original problem

Lifted problem

Approximate problem

large but linear

nonlinear, not tractable finite-dimensional, tractable

Figure 1.1 – Lifting idea

This idea permeates many areas of science under different names and guises
including optimization, machine learning, graph theory, computer science, quantum
physics and many others. In this thesis we use this idea to address several problems
from the field of nonlinear controlled dynamical systems. In this field, the idea
of lifting goes back to the work of L. C. Young [You69] (with first ideas laid
out already in [You33]), which introduced the notions of generalized arcs and
generalized flows. Building on this work, the work of [VL78a, VL78b] introduced a
lifting of a nonlinear optimal control problem into a linear program in the space of
measures (the so called weak formulation) and used this lifting along with convex
duality theory to establish necessary and sufficient conditions of optimality for
this problem. Similar results were obtained for controlled stochastic differential

1



Chapter 1. Introduction

equation in [FV89] with much simplified arguments with the help of mollification
techniques; these techniques were later adopted in [Vin93], giving simpler proofs
under weaker assumptions of the results of [VL78a, VL78b]. Weak formulations of
optimal control problems were also studied independently in many other works,
for example in [Rub85] in a deterministic setting, in [Sto90, BB96] in a continuous
time and in [HLL96] in a discrete time in a stochastic setting. Later, this lifting
was used in [Ran01] for analysis of global stability of nonlinear dynamical systems.

To the best of our knowledge this lifting was not exploited computationally until
the early 2000’s starting with the work [HS00] dealing with stochastic optimal
control. In a deterministic setting, the first applications appear to be [PPR04] for
stabilizing controller design and [LHPT08] for optimal control.

In all these works, the nonlinear dynamics is replaced by a linear equation on
measures or densities. In this thesis we term any such equation a Liouville’s
equation as a reference to the Liouville’s equation known from classical mechanics
which governs the time evolution of a measure (or a density) transported by the
flow of a nonlinear dynamical system, although the use in this thesis is much
broader. In particular we work with controlled dynamical systems and we do
not use time-dependent measures but rather measures with time as a variable or
measures with no time dependence at all capturing averaged-over-time properties of
the trajectories starting from a given initial distribution. These measures are called
occupation measures and have been studied in the stochastic systems literature at
least since the work [DK57].

The approximation step in the lift-plus-approximate procedure seeks to approximate,
from the inside or from the outside, the cone of nonnegative measures (which
are the decision variables in the lifted problem) by easy-to-optimize-over finite-
dimensional cones and by replacing the infinite-dimensional Liouville’s equation
by a suitable finite-dimensional approximation. By approximating the cone of
nonnegative measures from the outside by a finite-dimensional cone and by replacing
the Liouville’s equation by a finite-dimensional truncation, one obtains a finite-
dimensional relaxation of the original problem, i.e., a problem which has a constraint
set looser than the original problem. On the other hand, by approximating the
cone of nonnegative measures from the inside by a finite-dimensional cone and by
replacing the Liouville’s equation by a finite-dimensional linear equation whose
satisfaction implies the satisfaction of the Liouville’s equation, we obtain a tightening
of the original problem, i.e., a problem whose set of constraints is tighter than that
of the original problem.

2



There is a range of finite-dimensional approximations to the cone of nonnegative
measures and, on the dual side, to the cone of nonnegative functions allowing one
to trade off the approximation quality and the complexity of this approximation. In
this thesis we use the so-called truncated moment cone and its dual, the truncated
quadratic module, which are both semidefinite programming (SDP) representable
cones and have been studied extensively in the literature with strong theoretical
results available. In particular, these cones are the building block of the hierarchy of
semidefinite programming relaxations for static polynomial optimization problems
of [Las01].

Contribution and organization

In Chapter 3, Section 3.1, we address the problem of region of attraction (ROA) and
reachable set computation; we treat the continuous time version of the problem on a
finite time interval. The main contribution is a characterization of the ROA and the
reachable set as an infinite-dimensional linear program in the cone of nonnegative
measures whose finite-dimensional SDP relaxations provide a converging sequence
of outer approximations to the ROA or to the reachable set. To the best of our
knowledge, this is the first characterization of these sets as the solution to a convex
optimization problem which can be systematically and tractably approximated
with convergence guarantees. This chapter is based on the results of [HK14]. A
converging sequence of inner approximations to these sets can be obtained by
characterizing the complements of these sets rather than the sets itself; this is
detailed in [KHJ13] for uncontrolled systems. In addition, a modified formulation
which allows for controller extraction from the solutions to the finite-dimensional
SDP relaxations is described in [KHJ14a]. These additional results are omitted
from the thesis for brevity.

In Chapter 3, Section 3.2, we address the problem of maximum controlled invariant
(MCI) set computation computation, where the MCI set is the set of all initial
conditions that can be kept forever in the state constraint set using admissible
controls. The main contribution is a formulation of the problem of MCI set
computation as an infinite-dimensional linear program in the cone of nonnegative
measure whose finite-dimensional SDP relaxations provide a converging sequence
of outer approximations to the MCI set. Again, to the best of our knowledge, this
is the first convex characterization of the MCI set which provides a systematic way
of approximating it with convergence guarantees. The added complexity compared
to the ROA problem is in the infinite-time nature which requires a different form of

3



Chapter 1. Introduction

the Liouville’s equation to be used and analyzed. In addition, we treat both discrete
and continuous time systems. The results of this chapter are based on [KHJ14b].

In Chapter 4, we address the problem of optimal feedback controller design. The
main contribution is a hierarchy of SDP tightenings of a lifted version of this problem
whose solutions provide a sequence of rational feedback controllers, which is proven
to be asymptotically optimal under certain technical conditions. The main challenge
is in tightening the Liouville’s equation in such a way that the tightening is feasible
irrespective of how coarse it is and at the same time asymptotically equivalent
to the Liouville’s equation. In addition, as a means of certifying performance of
the designed controllers, we describe converging hierarchies of approximations,
from above and from below, to the value function attained in an optimal control
problem by a given rational feedback controller as well as a hierarchy providing
lower bounds on the optimal value function. To the best of our knowledge this is
the first SDP hierarchy providing controllers with provable convergence as well as
the first convex-optimization-based method for computing value function estimates,
both from below and from above, valid globally over the whole state constraint set
that is not required to be control invariant. The results of this chapter are based
on [KHJ16]. The results of this and the previous chapters were obtained jointly
with Didier Henrion.

In Chapter 5, we address the problem of verifying closed-loop properties of a
nonlinear (possibly stochastic) discrete-time dynamical system controlled by an
optimization-based controller. The main idea is the observation that the Karush-
Kuhn-Tucker (KKT) system associated to an optimization problem with polynomial
data is a basic semialgebraic set. This allows one to use polynomial optimization
techniques to analyze the interconnection of a polynomial dynamical system and
such a controller. Properties such as global stability, the �2 gain or performance
with respect to a given infinite-horizon discounted cost function can be analyzed.
To the best of our knowledge, this is the first computational method that allows for
analysis of optimization-based controllers at this level of generality. This chapter
is more practically oriented and no convergence results are given. The results of
this chapter are based on [KJ13, KJ15].

In Chapter 6, we discuss computational aspects of the proposed methods and their
software implementation.
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Other work not included in the thesis manuscript

Besides the work included in the thesis manuscript, the candidate contributed to
several other areas of control and optimization.

First, we contributed to the area of stochastic model predictive control (SMPC),
where we developed a least-restrictive (in the sense of the size of the feasible
set) SMPC algorithm for constrained linear discrete-time systems with additive
disturbance [KGJO12, KGOJ14]. This algorithm guarantees the satisfaction of a
stochastic constraint on the amount of state-constraint violation averaged over time,
where the amount is quantified by a loss function and the averaging can be weighted.
The freedom in the choice of the loss function makes this formulation highly flexible
– for instance, probabilistic constraints, or integrated chance constraints, can be
enforced by an appropriate choice of the loss function. The algorithm exploits the
averaged-over-time nature by explicitly taking into account the amount of past
constraint violations when determining the current control input, which leads to
a significant reduction in conservatism compared to other SMPC schemes. The
algorithm enjoys computational complexity, both offline and online, comparable to
conventional (nominal or robust) MPC algorithms. This is a joint work with Ravi
Gondhalekar and Frauke Oldewurtel.

Second, we developed an algorithmic scheme for solving the infinite-time constrained
linear quadratic regulation (LQR) problem [SKJ14, SKJ15]. The basic idea is to
apply first-order splitting methods (in our case the Alternating Minimization
Algorithm or Forward-Backward Splitting) to a suitable reformulation of the
problem, where in each iteration we solve an unconstrained infinite-horizon LQR
problem (whose solution is known analytically) and a simple constrained infinite-
horizon problem. We show that each iteration of the algorithm can be carried
out using finite amount of memory and computation time and that the algorithm
converges to the optimal infinite-horizon LQR solution with the worst-case rates of
O(1/k2) for function values and O(1/k) for the iterates, which are rates optimal for
first-order methods. The algorithm requires no invariant sets or terminal weights
to be computed and can be efficiently warm started. This is in contrast to most
existing MPC schemes which solve a finite-horizon truncation of the problem in a
receding horizon fashion and hence are sub-optimal and have to rely on invariant
sets or on a difficult-to-estimate horizon length to ensure stability. This is a joint
work with Georgios Stathopoulos.

Finally, we investigated turnpike properties of nonlinear optimal control problems.
An optimal control problem is said to have a turnpike property on a given set if all

5



Chapter 1. Introduction

optimal solutions starting from initial conditions from that set approach and stay
close to a steady state point. Detection of this behavior justifies the use of simple
near-optimal controllers which steer the state to this steady-state and stay on it from
then on, hence replacing the problem of optimal control by that of stabilization. In
addition, existence of this property (and the so-called storage function certifying it)
can be used to design a stabilizing economic MPC controller ensuring convergence
to the optimal steady state. In [FKJB14, FKJB15], we investigated relationships
between the turnpike property, the property of dissipativity with respect to a steady
state and the property of optimal steady state operation. In particular we showed
that dissipativity with respect to a certain supply rate implies both the existence
of a turnpike and optimal operation at a certain steady-state. This in particular
implies that dissipativity, which is numerically checkable using sum-of-squares
optimization, can be used to establish the existence of the turnpike property. In
addition we established converse results under various technical assumptions. This
is a joint work with Timm Faulwasser and Dominique Bonvin.
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Chapter 2

Preliminaries

Many of the results of this thesis are derived by lifting an optimization problem
involving a nonlinear dynamical system into an infinite-dimensional optimization
problem on measures. This lifted problem is then approximated by a finite-
dimensional optimization problem and tightness of this approximation as its size
grows to infinity is theoretically analyzed.

The infinite-dimensional considerations are based on duality between continuous
functions and measures on a compact set, which is treated in Section 2.1. The
finite-dimensional approximations rely on identifying suitable sub- and super-cones
of the cones of nonnegative functions and nonnegative measures; these sub- and
super-cones are described in Section 2.2. The lifting of the nonlinear problem into
a problem on measures relies on various forms of the Liouville’s equation which are
derived in Section 2.3.

2.1 Duality between C(K) and M(K)

Let C(K) denote the space of all continuous functions defined on a compact
set K ⊂ R

n and let M(K) denote the set of all finite signed Borel measures
on K. By the Riesz representation theorem (e.g., [Rud86, Theorem 2.14]) we have
C(K)� = M(K), where C(K)� denotes the topological dual of C(K), i.e., the set
of all bounded linear functionals on C(K) with the duality pairing between any

7



Chapter 2. Preliminaries

f ∈ C(K) and μ ∈ M(K) = C(K)� defined by

〈f, μ〉 :=
∫
K

f dμ. (2.1)

The same duality holds for the associated positive cones in C(K) and M(K), i.e.,

C(K)�+ :=

{
μ ∈ M(K)

∣∣∣ ∫
K

f dμ ≥ 0 ∀ f ∈ C(K)+

}
= M(K)+, (2.2)

where C(K)+ denotes the closed convex cone of nonnegative continuous functions
on K, C(K)�+ is the dual cone of C(K)+ and M(K)+ denotes the closed convex
cone of nonnegative Borel measures on K. Similarly we have

M(K)�+ :=

{
f ∈ C(K)

∣∣∣ ∫
K

f dμ ≥ 0 ∀μ ∈ M(K)+

}
= C(K)+, (2.3)

where M(K)�+ is the dual cone1 of M(K)+.

2.1.1 Weak-� topology

The duality pairing (2.1) induces the so-called weak-� topology on M(K), which is
the coarsest topology on M(K) for which the linear functionals 〈f , ·〉 are continuous
on M(K) for all f ∈ C(K), i.e., it is the topology generated by the collection of
all sets of the form {μ ∈ M(K) |

∫
K
fdμ ∈ G} for some open set G ⊂ R and some

f ∈ C(K).

A sequence of measures μk ∈ M(K) converges to a measure μ ∈ M(K) in the
weak-� topology if and only if

lim
k→∞

∫
K

f dμk =

∫
K

f dμ ∀ f ∈ C(K). (2.4)

In our setting, i.e., with the set K compact, this convergence is equivalent to the
weak or narrow convergence used in probability theory. Here, however, we do not
restrict ourselves to probability measures (i.e., nonnegative measures with unit
mass), but work with arbitrary signed Borel measures.

1More precisely, M(K)�+ should be called the predual cone of M(K)+ since the topological
dual of M(K) is much larger than C(K); in particular the topological dual of M(K) contains all
bounded measurable functions on K.
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2.2. Sub- and super-cones of C(K)+ and M(K)+

2.2 Sub- and super-cones of C(K)+ and M(K)+

Much of the work of this thesis relies on identifying well-structured and easy-
to-optimize-over sub-cones or super-cones of C(K)+ and M(K)+ since, being
infinite-dimensional, the cones C(K)+ and M(K)+ are not suitable for numerical
optimization.

Recalling that for any pair of cones C1, C2 we have

C1 ⊂ C2 =⇒ C�
1 ⊃ C�

2 , (2.5)

we see that finding sub-cones of C(K)+ yields super-cones of M(K)+ and vice
versa.

In order to find easy-to-handle sub- or super-cones we need to impose additional
structure on the set K. From now on, we assume that the set K is given by

K := {x ∈ R
n | gi(x) ≥ 0, i ∈ {1, . . . , ng}} (2.6)

for some gi ∈ C(K), i ∈ {1, . . . , ng}.

2.2.1 Sub-cones of C(K)+

Given a set K defined by (2.6), there is a plethora of ways to construct subcones
of C(K)+. In particular, any cone of the form

{
σ0 +

ng̃∑
i=1

σig̃i | σi ∈ C(Rn)+

}
, (2.7)

where g̃i ∈ C(K) is an arbitrary finite product of gi’s (or any other function nonneg-
ative on K) is a (still infinite-dimensional) subcone of C(K)+. This representation
opens up a number of ways to obtain finite-dimensional sub-cones by restricting
the multiplying functions σi to a finite-dimensional sub-cone of C(Rn)+ and by
selecting a particular set of functions {g̃i}ñgi=1. We will not survey here all the
subcones proposed in the literature that stem from the general construction (2.7)
but rather focus on the most classical one, which enjoys a good tradeoff between
ease of optimization and richness of the set of functions belonging to this cone
and in addition has interesting theoretical properties. This cone can be defined for
an arbitrary algebra of functions gi, but from now on we restrict our attention to
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multivariate polynomials for which strong theoretical results exist and are easily
handled by a computer. This cone is the so-called truncated quadratic module2 and
is defined by

Qd(K) :=

{
σ0 +

ng∑
i=1

σigi | σi ∈ Σ, deg(σigi) ≤ d, i ∈ {0, . . . , ng}
}
, (2.8)

where we have set g0 = 1 and where Σ denotes the set of all sum-of-squares (SOS)
polynomials, i.e., polynomials σ of the form σ =

∑
i hi(x)

2 for some finitely many
polynomials hi. It is immediate to see that a polynomial p ∈ R[x]2k is SOS if and
only if

p(x) = rk(x)
�Wrk(x), W � 0, (2.9)

where rk(x) denotes the vector of all monomials in the variable x up to a total
degree k (and hence the size of W is

(
n+k
k

)
×
(
n+k
k

)
). The representation (2.9) is

sometimes referred to as a Gram matrix representation of an SOS polynomial and
we remark that such representation is not unique.

From this we immediately conclude that Qd(K) is a finite-dimensional subcone of
C(K)+ of dimension

(
n+d
d

)
(= dimension of R[x]d) and, importantly, is semidefinite

programming representable3 (SDP representable). Indeed, using the Gram matrix
representation of SOS polynomials, we deduce that a polynomial p ∈ R[x]d belongs
to Qd(K) if and only if there exist matrices W0 � 0, . . . ,Wng � 0 such that

p(x) = rd0(x)
�W0rd0(x) +

ng∑
i=1

gi(x)rdi(x)
�Wirdi(x), (2.10)

where d0 = �d/2� and di = �(d− deg gi)/2�, i ∈ {1, . . . , ng} (hence the size of each
matrix Wi, i ∈ {0, . . . , ng}, is equal to

(
n+di
di

)
×
(
n+di
di

)
). By comparing coefficients

in equation (2.10) we obtain
(
n+d
d

)
linear equalities between the coefficients of p

and the matrices Wi � 0 and therefore we conclude that Q(K)d is indeed SDP
representable.

To the best of our knowledge, the SDP representability of Q(K) was first noticed
in [CLR95] but was not computationally exploited until the early 2000’s in [Nes00,

2The symbol Qd(K) is a slight abuse of notation since the truncated quadratic module depends
on the algebraic description of the set K (i.e., on the particular set of functions gi used to describe
it) rather than on the geometry of K. Nevertheless, throughout this thesis we use this notation
with the understanding that Qd(K) refers to the truncated quadratic module generated by those
polynomials gi that were used in the definition of K.

3A set in R
n is semidefinite programming representable if it is a projection of the feasible set

of a linear matrix inequality (i.e., a projection of a spectrahedron).
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Las01, Par03].

One may ask why using the truncated quadratic module Qd(K) and not simply
Pd(K)+, the cone of all polynomials nonnegative on K of total degree no more
than d. The answer simple – except for a few special cases (e.g., the scalar case), the
cone Pd(K)+ has no computationally tractable representation, despite being finite-
dimensional. The fundamental question of quantifying the discrepancy between
Qd(K) ⊂ Pd(K)+ and Pd(K)+ is not well understood at present, even in simple
cases (e.g., K being a box or a ball). A notable exception is the case K = R

n, where
[Ble06] proved that this discrepancy becomes large (in the sense of normalized
volume in the space of coefficients) as the dimension n tends to infinity while the
degree d is held fixed.

Despite the lack of quantitative understanding of this discrepancy, a fundamental
asymptotic result holds provided that the functions defining the set K satisfy the
Archimedianity condition:

Definition 1 A set K defined by (2.6) satisfies the Archimedianity condition if
there exists an N ≥ 0 and a d ≥ 0 such that N − ‖x‖22 ∈ Qd(K).

We remark that the assumption of K satisfying the Archimedianity condition is
made without loss of generality since K is assumed compact and hence a redundant
ball constraint can be added to the description of K, making the condition hold
trivially.

Theorem 2.2.1 ([Put93]) If p ∈ R[x] is strictly positive on a basic semialgebraic
set4 K satisfying the Archimedianity condition, then p ∈ Qd(K) for some d ≥ 0.

We remark that in Theorem 2.2.1 the degree d for which p belongs to ∈ Qd(K)

can be far greater than deg(p) and in fact the discrepancy between the two can be
arbitrarily large.

An immediate but crucial corollary for this work is the following:

Corollary 2.2.1 Let a basic semialgebraic set K satisfy the Archimedianity con-
dition. If f ∈ C(K)+, then for any ε > 0 there exists a d ≥ 0 and a polynomial
p ∈ Qd(K) such that ‖f − p‖C(K) ≤ ε.

4A basic semialgebraic set is a set of the form (2.6) with gi polynomial, i.e., it is the intersection
of finitely many polynomial sub- or super-level sets.
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Corollary 2.2.1 says that Qd(K) is dense in C(K)+ as d tends to infinity, i.e.,

⋃
d≥0

Qd(K) = C(K)+,

where the closure is taken with respect to the standard uniform topology on C(K).

2.2.2 Super-cones of M(K)+

Using the results of the previous section and the cone duality relation (2.5) we im-
mediately obtain finite-dimensional super-cones of M(K)+ as Qd(K)�. Henceforth
we set M sup

d (K)+ := Qd(K)� and call M sup
d (K)+ the truncated moment cone.

The duality pairing between the two finite-dimensional cones Qd(K) and M sup
d (K)+

is inherited from the infinite-dimensional case (2.1). Given a polynomial p ∈
R[x]d ⊃ Qd(K) expressed in a multivariate monomial basis as p =

∑
|α|≤d pαx

α,

where p ∈ R(
n+d
d ) is the vector of coefficients of p and given a vector y ∈ R(

n+d
d ) ⊃

M sup
d (K)+, this duality pairing is given by

〈p,y〉 =
∑
|α|≤d

pαyα = p�y,

which boils down to (2.1), i.e., to integration of p with respect to a measure μ, if
the vector y is the truncated moment vector of some measure μ ∈ M(K), i.e., if
yα =
∫
K
xα dμ for all multiindices α ∈ N

n such that |α| :=∑n
i=1 αi ≤ d.

With these considerations, the cone M sup
d (K)+ is given explicitly as

M sup
d (K)+ =

{
y ∈ R(

n+d
d ) | 〈p,y〉 ≥ 0 ∀ p ∈ Qd(K)

}
and we see that indeed M sup

d (K)+ ⊃ M(K)+ for all d ≥ 0 in the sense that
any measure μ ∈ M(K)+ gives rise to an element y ∈ M sup

d (K)+ defined by
yα =
∫
K
xα dμ(x) for all α such that |α| ≤ d. Therefore

M sup
d (K)+ ⊃ M sup

d+1(K)+ ⊃ M(K)+ ∀ d ≥ 0,

where the first inclusion is to be understood in the sense that the vector ỹ defined
by the first

(
n+d
d

)
elements of any vector y ∈ M sup

d+1(K)+ satisfies ỹ ∈ M sup
d (K)+.

To derive an explicit SDP representation for M sup
d (K)+ we recall that for any

12
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two cones we have (C1 + C2)
� = C�

1 ∩ C�
2 , where + denotes the elmentwise (or

Minkowski) addition. Since

Qd(K) = Σ2d0 + g1Σ2d1 + . . .+ gngΣ2dng ,

where Σk denotes the set of all SOS polynomials of degree no more than k and di’s
are defined below Eq. (2.10), we conclude that

M sup
d (K)+ = Qd(K)� = Σ�

2d0
∩ (g1Σ2d1)

� ∩ . . . ∩ (gngΣ2dng )
� (2.11)

and hence it suffices to understand the dual cone of gΣ2d̄ for a polynomial g, where
d̄ = �(d− deg g)/2�. A direct computation gives

(gΣ2d̄)
� = {y ∈ R(

n+d
d ) | 〈p,y〉 ≥ 0 ∀ p ∈ gΣ2d̄}

= {y ∈ R(
n+d
d ) | 〈gh2,y〉 ≥ 0 ∀h ∈ R[x]d̄}

= {y ∈ R(
n+d
d ) | 〈gh�rd̄r

�̄
d h,y〉 ≥ 0 ∀h ∈ R(

n+d̄
d̄ )}

= {y ∈ R(
n+d
d ) | h�〈grd̄r�̄d ,y〉h ≥ 0 ∀h ∈ R(

n+d̄
d̄ )}

= {y ∈ R(
n+d
d ) | 〈grd̄r�̄d ,y〉 � 0}

= {y ∈ R(
n+d
d ) | Md(y, g) � 0}, (2.12)

where 〈· , y〉 acts componentwise on matrix arguments, rd̄ is the vector of all
multivariate monomials up to degree d̄ and the matrix

Md(y, g) := 〈g rd̄r�̄d ,y〉

is called the (truncated) localizing matrix. The matrix

Md(y) := Md(y, 1) = 〈rd̄r�̄d ,y〉

is called the (truncated) moment matrix. The size of Md(y, g) is
(
n+d̄
d̄

)
×
(
n+d̄
d̄

)
(notice the dependence of the size both on d and deg(g)). More importantly, notice
that the matrix Md(y, g) depends linearly on the truncated moment vector y.

The characterization of (gΣ2d̄)
� in (2.12) and (2.11) yield immediately a characteri-

zation of the truncated moment cone M sup
d (K)+ as

M sup
d (K)+ = {y ∈ R(

n+d
d ) | Md(y) � 0, Md(y, gi) � 0, i ∈ {1, . . . , ng}} (2.13)

which is the desired explicit SDP representation of M sup
d (K)+.
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The discrepancy between M sup
d (K)+ ⊃ M(K)+ and M(K)+ is quantitatively not

understood at present (even less than for the case of Qd(K) and C(K)+) but again
an important asymptotic result holds:

Theorem 2.2.2 ([Put93]) If a basic semialgebraic set K satisfies the Archi-
medianity condition and if a sequence of real numbers y satisfies Md(y) � 0,
Md(y, gi) � 0 for all i ∈ {1, . . . , ng} and for all d ≥ 0, then there exists a unique
measure μ ∈ M(K)+ such that

yα =

∫
K

xα dμ (2.14)

for all multiindices α ∈ N
n, i.e.,⋂

d≥0

M sup
d (K)+ = M(K)+ .

The measure μ from Theorem 2.2.2 is called the representing measure of the
moment sequence y and we remark that the statement (2.14) is equivalent to
〈p,y〉 =

∫
K
p dμ for all polynomials p.

2.2.3 Sub-cones of M(K)+

A natural way of obtaining easy-to-optimize-over sub-cones of M(K)+ is to restrict
the measures in M(K)+ to measures that have a density ρ ∈ Qd(K) with respect
to some reference measure μ̄ with known moments over K (e.g., the Lebesgue
measure). That is, we define

M sub
d (K)+ :=

{
μ ∈ M(K)+

∣∣∣∣ ∃ ρ ∈ Qd(K) s.t.

∫
K

f dμ =

∫
K

fρ dμ̄, ∀ f ∈ C(K)

}
.

(2.15)
The cones Qd(K) and M sub

d (K)+ are isomorphic and optimizing over M sub
d (K)+

amounts to optimizing over Qd(K), i.e., to semidefinite programming. Since
Qd(K) ⊂ Qd+1(K), the cones M sub

d (K)+ satisfy

M sub
d (K)+ ⊂ M sub

d+1(K)+ ⊂ M(K)+ ∀ d ≥ 0.
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Combining Corollary 2.2.1 with the fact that measures with densities in C(K)+ are
dense in the weak-� topology in M(K)+ provided that the support5 of the reference
measure spt μ̄ is equal to K, we obtain the following:

Corollary 2.2.2 If spt μ̄ = K and the basic semialgebraic set K satisfies the
Archimedianity condition, then

⋃
d≥0

M sub
d (K)+ = M(K)+, (2.16)

where the closure is with respect to the weak-� topology on M(K).

The statement (2.16) has the following interpretation: For every μ ∈ M(K)+ there
exists a sequence

(
ρd ∈ Qd(K)

)
d≥0

such that

lim
d→∞

∫
K

f(x)ρd(x)dμ̄(x) =

∫
K

f(x) dμ(x) ∀f ∈ C(K).

2.2.4 Super-cones of C(K)+

Super-cones of C(K)+, denoted by Csup
d (K)+, are obtained by dualizing M sub

d (K)+
using the duality relationship (2.5). A direct computation gives

Csup
d (K)+ :=

(
M sub

d (K)+

)�
=

{
f ∈ C(K) |

∫
K

fdμ ≥ 0 ∀μ ∈ M sub
d (K)+

}

=

{
f ∈ C(K) |

∫
K

fp dμ̄ ≥ 0 ∀p ∈ Qd(K)

}

=

{
f ∈ C(K) | Md(y

fμ̄) � 0, Md(y
fμ̄, gi) � 0, i ∈ {1, . . . , ng}

}
,

where μ̄ is a given reference measure and yfμ̄ is the moment sequence of the measure
fdμ̄, i.e.,

yfμ̄
α =

∫
K

xαf(x)dμ̄(x) (2.17)

for all multiindices α ∈ N
n. The cones Csup

d (K)+ satisfy

Csup
d (K)+ ⊃ Csup

d+1(K)+ ⊃ C(K)+ ∀ d ≥ 0.

5The support of a nonnegative measure μ is the smallest closed set whose complement has a
zero measure. Equivalently, x ∈ sptμ if an only if μ(U) > 0 for every open neighborhood U of x.
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Given that the moments yfμ̄ are available, testing whether a given f ∈ C(K)

belongs to Csup
d (K)+ amounts to solving a semidefinite programming feasibility

problem.

Noticing that the cone Csup
d (K)+ is isomorphic to M sup

d (K)+, we can also optimize
over Csup

d (K)+ by optimizing directly over the truncated moment sequences yfμ̄ ∈
R(

n+d
d ) and then finding an f ∈ C(K) such that (2.17) holds for all α such that

|α| ≤ d. Finding such f is easily done whenever the moment matrix M2d(y
μ̄)

associated to the moment sequence yμ̄ of the measure μ̄ is non-singular (a sufficient
condition for this is, e.g., K having a nonempty interior and the Lebesgue measure
being absolutely continuous with respect to μ̄). Then a polynomial f ∈ R[x]d
suffices with coefficients given by f = M2d(y

μ̄)−1yfμ̄. This follows from the
definition of Md(·) which implies that M2d(y

μ̄)f = yfμ̄ ∈ R(
n+d
d ), with yfμ̄ defined

by (2.17), for any polynomial f ∈ R[x]d with coefficient vector f and any vector of
moments yμ̄ of degree no more than d of a measure μ̄.

Theorem 2.2.1 leads immediately to the following corollary:

Corollary 2.2.3 Let K be a basic semialgebraic set satisfying the Archimedianity
condition and let the reference measure μ̄ satisfy spt μ̄ = K. Then the following
holds: if f ∈ Csup

d (K)+ for all d ≥ 0, then f ∈ C(K)+, i.e.,⋂
d≥0

Csup
d (K)+ = C(K)+.

This Corollary states that the approximations Csup
d (K)+ to C(K)+ are asymp-

totically tight provided that the support of the reference measure equals K and
K satisfies the Archimedianity condition. In other words the obvious necessary
condition for nonnegativity of f on K, f ∈ Csup

d (K)+ for some d ≥ 0, is also
sufficient if we require it to hold for all d ≥ 0, under the above-stated assumptions.

Developments of this and the preceding section were inspired by the work [Las11],
where similar reasoning was used to define SDP representable outer-approximations
to the cone of nonnegative polynomials of a given degree on a closed set.
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2.3. Lifting nonlinear dynamics

2.3 Lifting nonlinear dynamics

In this section we describe a lifting of a nonlinear controlled dynamical system into
the space of measures. The lifting is described both for continuous-time dynamics

ẋ(t) = f(x(t), u(t)) (2.18)

and for discrete-time dynamics

xt+1 = f(xt, ut), (2.19)

where x ∈ R
n is the state of the system and u ∈ R

m the control input, which is
constrained to lie in a compact set U. Unless specified otherwise, throughout this
section we only assume that f is measurable and bounded on every compact set,
both in continuous and discrete time.

The goal is to lift the nonlinear dynamics into a linear equation on measures. This
lifting leads to a different equation depending on whether we work in continuous
or discrete-time and whether we work on a finite or infinite time horizon.

First we deal with a technical issue arising in continuous time.

2.3.1 Relaxed controls

In continuous time, the lifting presented will in general not be equivalent to the
original dynamics (2.18) but rather to the relaxed differential inclusion

ẋ(t) ∈ conv f(x(t),U), (2.20)

where conv denotes the closed convex hull. Trajectories of this differential inclusion
are in a one-to-one correspondence with the trajectories of

ẋ(t) =

∫
U

f(x(t), u) dγt(u), (2.21)

where γt ∈ P (U) is called a relaxed or measure-valued control. Here P (U) is the
set of all probability measures, i.e., nonnegative measures with unit mass.

To see the equivalence, observe that any point y ∈ conv f(x(t),U) can be obtained
as a convex combination of finitely many points f(x(t), ui(t)), ui(t) ∈ U, with
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weights wi(t); defining γt =
∑

i wi(t)δui(t), where δui(t) denotes the Dirac measure at
ui(t), we see that y =

∫
U
f(x(t), u) dγt(u) =

∑
i wi(t)f(x(t), ui(t)) as desired. In the

other direction, the equivalence follows by approximating an arbitrary probability
measure γt by a finite convex combination of Dirac measures and taking the limit,
using the closedness of conv f(x(t),U) and the density of convex combinations of
Dirac measures in the space of all probability measures (in the weak-� topology).

Clearly, any trajectory of the original system (2.18) is also a trajectory of the relaxed
systems (2.20) and (2.21). Importantly, the Filippov-Ważewski Theorem [AF09,
Theorem 10.4.4, Corollary 10.4.5] gives a partial converse. This theorem states that
the trajectories of the relaxed system (2.20) and (2.21) can be arbitrarily closely
approximated by the trajectories of the original system (2.18) in the sense that the
trajectories of (2.18) are dense (with respect to the supremum norm on C([0, T ];Rn))
in the set of trajectories of (2.20) and (2.21) on any finite interval [0, T ].

This theorem justifies the use of the relaxed dynamics instead of the original one
in practical applications, whenever working with the relaxed dynamics is more
convenient. Nevertheless, contrived examples can be constructed, where the solution
to a problem (e.g., the optimal value of an optimization problem or the size of
the region of attraction) differs depending on whether the relaxed or non-relaxed
dynamics is used. A typical such problem would be one where the state of a single
integrator (ẋ = u) is constrained to stay at zero (X = {0}) and the control input
is constrained to the discrete set U = {−1, 1}. The relaxed dynamics (2.21) can
fulfill such constraint with the relaxed control given by γt =

1
2
δ−1 +

1
2
δ+1, which

corresponds to chattering between the two control values infinitely quickly. The
non-relaxed control cannot chatter infinitely quickly and therefore cannot fulfill
this constraint. It is, in general, precisely this chattering phenomenon that lies
behind the discrepancy between the trajectories of the relaxed and non-relaxed
dynamics.

Obvious sufficient conditions for a full equivalence of trajectories6, i.e., for trajecto-
ries of (2.18), (2.20) and (2.21) to coincide are

• f(x,U) closed and convex for all x,

• input affine dynamics ẋ = f(x) + g(x)u with U closed and convex,

6Note that the fact that the set of trajectories of the relaxed and non-relaxed dynamics
coincides does not imply that the optimal value of an optimal control problem involving these
dynamics is the same. Problems exhibiting this behavior are, however, highly contrived and have
necessarily cost function non-convex in u (otherwise chattering would imply higher rather than
lower cost function through Jensen’s inequality).
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2.3. Lifting nonlinear dynamics

• uncontrolled dynamics ẋ = f(x).

The input-affine (sometimes called control-affine) dynamics offers, besides the
equivalence between the trajectories of the relaxed and non-relaxed dynamics, also
computational advantages and is discussed separately in Section 2.3.5.

Now we proceed to describe the liftings of the (relaxed) dynamics to an infinite-
dimensional space of measures.

2.3.2 Continuous-time, finite-horizon

Consider any trajectory x(· |x0) of the relaxed system (2.21) starting from an initial
condition x0 generated by a relaxed control γt(· | x0) ∈ P (U), t ∈ [0, T ].

Then we define the conditional occupation measure μ(· | x0) ∈ M([0, T ]×R
n×U)+

by

μ(A× B × C | x0) :=

∫ T

0

∫
U

IA×B×C(t, x(t |x0), u) dγt(u |x0) dt (2.22)

for all sets7 A ⊂ [0, T ], B ⊂ R
n and C ⊂ U.

In words, the quantity μ(A×B × C | x0) equals to the amount of time spent by
the relaxed state-control trajectory (x(· |x0), γ·(· |x0)) in B × C ⊂ R

n ×U during
A ⊂ [0, T ].

Now suppose that the initial condition is not a single point but an initial measure8

μ0 ∈ M(Rn)+ and a state trajectory along with an admissible relaxed control input
generating it is associated to each initial condition from the support of μ0. Then
we define the occupation measure μ ∈ M([0, T ]× R

n ×U)+ by

μ(A× B × C) :=

∫
Rn

μ(A× B × C | x0) dμ0(x0) (2.23)

for all A ⊂ [0, T ], B ⊂ R
n and C ⊂ U. The quantity μ(A × B × C) equals

to the average amount of time spent by the relaxed state-control trajectories

7Throughout the thesis we somewhat downplay the role of measurability. In particular
whenever we write “for all sets” we mean “for all Borel measurable sets”.

8The initial measure μ0 can be thought of as the probability distribution of the initial state,
although we do not require the mass of μ0 to be normalized to one.
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(x(· |x0), γ·(· |x0)) in B × C ⊂ R
n ×U during A ⊂ [0, T ], where the averaging is

over the distribution of the initial conditions μ0.

Lastly, we define the final measure as

μT (B) :=

∫
Rn

IB(x(T |x0)) dμ0(x0) (2.24)

for all B ⊂ R
n. This measures captures the distribution of the state at time T

after it has been propagated by the relaxed control system (2.21) starting at time
zero from the initial measure μ0.

Now we derive an equation linking the measures μ0, μ and μT , which will be
the sought lifting, for the finite time interval [0, T ], of the nonlinear relaxed
dynamics (2.21) into a linear equation on measures. This equation will play a key
role in subsequent developments, in particular in Section 3.1 on region of attraction
and reachable set approximation. To derive the equation, fix an initial condition
x0 ∈ R

n and a trajectory x(· |x0) generated by a relaxed control γ·(· |x0) satisfying
γt(· |x0) ∈ P (U) for all t ∈ [0, T ]. Then for any v ∈ C1([0, T ]× R

n) we have

d

dt
v(t, x(t |x0)) =

∂v

∂t
(t, x(t |x0)) +∇v(t, x(t |x0)) ·

d

dt
x(t |x0)

=
∂v

∂t
(t, x(t |x0)) +∇v(t, x(t |x0)) ·

∫
U

f(x(t |x0), u) dγt(u |x0).

Integrating from 0 to T and using the definition of the conditional occupation
measure we obtain

v(T, x(T |x0))− v(0, x0) =

∫ T

0

∫
U

∂v

∂t
+∇v(t, x(t |x0)) · f(x(t |x0), u) dγt(u |x0)

=

∫
[0,T ]×Rn×U

∂v

∂t
+∇v(t, x) · f(x, u) dμ(t, x, u |x0).

Integrating with respect to μ0 and using the definition of the occupation and final
measures we get for all v ∈ C1([0, T ]× R

n)∫
Rn

v(T, x) dμT (x) =

∫
Rn

v(0, x) dμ0(x)+

∫
[0,T ]×Rn×U

∂v

∂t
+∇v(t, x)·f(x, u) dμ(t, x, u).

(2.25)
Equation (2.25) is called Liouville’s equation. It is a linear equation in the variables
(μ, μ0, μT ) and it is a lifting, on the time interval [0, T ], of the nonlinear relaxed
dynamics (2.20) and (2.21) into the space of measures.
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2.3. Lifting nonlinear dynamics

Remark 2.3.1 The function v appearing in Eq. (2.25) is called a test function
and we stress that v is not a variable in the equation, but rather the equation is
required to hold for all test functions v from a suitable class of functions, in the
case of Eq. (2.25) for all v ∈ C1([0, T ]× R

n).

It follows from the above discussion that any family of relaxed state-control
trajectories starting from a given initial measure μ0 gives rise to an occupation
measure μ and a final measure μT such that the triplet (μ, μ0, μT ) satisfies (2.25).
Importantly, the converse is true as well in the sense that for any triplet of measures
(μ, μ0, μT ) satisfying (2.25) there exists a family of trajectories of (2.21) starting
from μ0 that generates μ and μT through (2.22), (2.23), (2.24). This is formalized
in the following theorem.

Theorem 2.3.1 If a triplet of nonnegative compactly supported finite measures

(μ, μ0, μT ) ∈ M([0, T ]× R
n ×U)+ ×M(Rn)+ ×M(Rn)+

satisfies (2.25) for all v ∈ C1([0, T ]× R
n), then there exists a measure

η ∈ M(C([0, T ];Rn))+

supported on the absolutely continuous trajectories of (2.20) such that

μ(A× B ×U) =

∫
C([0,T ];Rn)

∫ T

0

IA×B(t, x(·)) dt dη(x(·)),

μ0(B) =

∫
C([0,T ];Rn)

IB(x(0)) dη(x(·))

and
μT (B) =

∫
C([0,T ];Rn)

IB(x(T )) dη(x(·))

for all A ⊂ R and B ⊂ R
n.

The proof is given in Appendix B.1 and is based on Ambrosio’s superposition
principle [Amb08, Theorem 3.2]. A particular case of the theorem for μ0 = δx0 was
know at least since the work [VL78a].

Remark 2.3.2 Note that in Theorem 2.3.1 we allow for superposition of multiple
trajectories starting from the same initial condition; there can be many such trajec-
tories even if f is Lipschitz (which we do not assume) since we are working in a
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controlled setting. Therefore we refer to this and related theorems stated below as
superposition theorems.

Remark 2.3.3 Note that the theorem is stated only in terms of the state trajectories
of (2.20). This was done for simplicity of the statement; the family of relaxed
control trajectories generating the state trajectories of (2.20) can be readily backed
out from the state trajectories (see the discussion below Eq. (2.21)).

2.3.3 Continuous-time infinite horizon

Consider any trajectory x(· |x0) of the relaxed system (2.21) starting from an initial
condition x0 generated by a relaxed control γt(· | x0) ∈ P (U), t ∈ [0,∞).

Then, given a discount factor β > 0, we define the conditional discounted occupation
measure μ(· | x0) ∈ M(Rn ×U)+ as

μ(B × C | x0) :=

∫ ∞

0

∫
U

e−βtIA×B(x(t |x0), u) dγt(u |x0) dt (2.26)

for all sets B ⊂ R
n and C ⊂ U.

The quantity μ(B × C | x0) is equal to the (discounted) time spent by the relaxed
state-control trajectory (x(· |x0), γ·(· |x0)) in B × C ⊂ R

n ×U. The discounting
in the definition of the occupation measure ensures that μ(B × C | x0) is always
finite; in fact we have μ(Rn ×U | x0) = β−1.

Now suppose that the initial condition is not a single point but an initial measure9

μ0 ∈ M(Rn)+ and a state trajectory along with an admissible relaxed control input
generating it is associated to each initial condition from the support of μ0. Then
we define the discounted occupation measure μ ∈ M(Rn ×U)+ as

μ(B × C) :=

∫
Rn

μ(B × C | x0) dμ0(x0) (2.27)

for all B ⊂ R
n, C ⊂ U. The quantity μ(B×C) is equal to the average (discounted)

amount of time spent by the relaxed state-control trajectories (x(· |x0), γ·(· |x0))

in B × C ⊂ R
n × U, where the averaging is over the distribution of the initial

conditions μ0.

9The initial measure μ0 can be thought of as the probability distribution of the initial state,
although we do not require the mass of μ0 to be normalized to one.

22



2.3. Lifting nonlinear dynamics

Now we derive an equation linking the measures μ0 and μ, which will be the sought
lifting, for the time interval [0,∞), of the nonlinear relaxed dynamics (2.21) into
a linear equation on measures. This equation will play a key role in subsequent
developments, in particular in Section 3.2 on maximum controlled invariant set
approximation. To derive the equation, fix an initial condition x0 ∈ R

n and a
trajectory x(· |x0) generated by a relaxed control γ·(· |x0) satisfying γt(· |x0) ∈ P (U)

for all t ∈ [0,∞).

Let C1
b (R

n) denote the space of all bounded continuously differentiable functions
on R

n. Then for any v ∈ C1
b (R

n) integration by parts yields∫
Rn×U

∇v · f(x, u) dμ(x, u |x0) =

∫ ∞

0

∫
U

e−βt∇v · f(x(t | x0), u) dγt(u |x0) dt

=

∫ ∞

0

e−βt d

dt
v(x(t |x0)) dt

= β

∫ ∞

0

e−βtv(x(t |x0)) dt− v(x(0 |x0))

= β

∫
Rn×U

v(x) dμ(x, u |x0)− v(x(0 |x0)),

where the boundary term at infinity vanishes due to discounting and the fact v is
bounded. Integrating with respect to μ0 then gives the sought equation

β

∫
Rn×U

v(x) dμ(x, u) =

∫
Rn

v(x) dμ0(x) +

∫
Rn×U

∇v · f(x, u) dμ(x, u) ∀v ∈ C1
b (R

n).

(2.28)

Equation (2.28) is called the discounted Liouville’s equation. It is a linear equation
in the variables (μ, μ0) and it is a lifting, on the time interval [0,∞), of the nonlinear
relaxed dynamics (2.20) and (2.21) into the space of measures.

Remark 2.3.1 regarding the test function v applies to Eq. (2.28) as well.

It follows from the above discussion that any family of relaxed state-control
trajectories starting from a given initial measure μ0 gives rise to a discounted
occupation measure μ such that the pair (μ, μ0) satisfies (2.28). Importantly,
the converse is true as well in the sense that for any pair of measures (μ, μ0)

satisfying (2.28) there exists a family of trajectories of (2.21) starting from μ0 that
generates μ through (2.26) and (2.27). This is formalized in the following theorem.
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Theorem 2.3.2 If a pair of nonnegative compactly supported finite measures

(μ, μ0) ∈ M(Rn ×U)+ ×M(Rn)+

satisfies (2.28) for all v ∈ C1
b (R

n), then there exists a measure

η ∈ M(C([0,∞);Rn))+

supported on the absolutely continuous trajectories of (2.20) such that

μ(B ×U) =

∫
C([0,∞);Rn)

∫ ∞

0

e−βtIB(x(·)) dt dη(x(·)),

and
μ0(B) =

∫
C([0,T ];Rn)

IB(x(0)) dη(x(·))

for all B ⊂ R
n.

The proof of the Theorem is in Appendix B.2 and is based on results from stochas-
tic optimal control theory and on Ambrosio’s superposition principle [Amb08,
Theorem 3.2].

Remark 2.3.3 regarding control trajectories and Remark 2.3.2 regarding superposi-
tion of trajectories apply to Theorem 2.3.2 as well.

2.3.4 Continuous-time infinite-horizon with stopping

In this section we discuss a generalization of the infinite-time setting of Section 2.3.3,
where now we allow a state-dependent stopping of the trajectories. Hence assume
that an initial condition, a relaxed control input γt(· | x0) as well as a stopping
function τ (x0) ∈ L(Rn; [0,∞]) are given (note that the stopping function is allowed
to be infinite). Then we define the conditional stopped discounted occupation
measure as

μ(B × C | x0) :=

∫ τ(x0)

0

∫
U

e−βtIA×B(x(t |x0), u) dγt(u |x0) dt (2.29)

for all sets B ⊂ R
n and C ⊂ U.

Integrating over a given distribution of initial conditions μ0 we define the discounted
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stopped occupation measure as

μ(B × C) :=

∫
Rn

∫ τ(x0)

0

∫
U

e−βtIA×B(x(t |x0), u) dγt(u |x0) dt dμ0(x) (2.30)

and the stopped final measure

μT (B) :=

∫
Rn

e−βτ(x0)IB(x(τ(x0) |x0)). (2.31)

Note that trajectories starting from distinct initial conditions x0 can be stopped
at different times, some finite, some infinite, based on the values of τ(x0). The
discounted stopped occupation measure μ captures the average (discounted) time
spent in subsets of Rn×U until stopping, where the averaging is over the distribution
of the initial conditions μ0. The stopped final measure μT captures the (discounted)
spatial distribution at the end points of the stopped trajectories (note that whenever
τ(x0) = +∞ in (2.31) the integrand is zero).

A computation completely analogous to the one in Section 2.3.3 reveals that the
three measures μ, μ0 and μT satisfy the equation∫

Rn

v(x) dμT (x) + β

∫
Rn×U

v(x) dμ(x, u) =

∫
Rn

v(x) dμ0(x) +

∫
Rn×U

∇v · f(x, u) dμ(x, u)
(2.32)

for all v ∈ C1
b (R

n), which is a linear equation in the variables μ, μ0 and μT .

This equation is called the stopped discounted Liouville’s equation and we remark
that the unstopped version (2.28) is obtained by setting μT = 0 in (2.32).

At present a superposition theorem similar to Theorem 2.3.2 is not available in
full generality. However, and that is what will be needed in Chapter 4, such result
can be proven in the uncontrolled setting and under the assumption that f is
locally Lipschitz. We, however, have to allow for multiple stoppings for a single
initial condition. This brings us from stopping functions to stopping measures
that capture the distribution of stopping times for a given initial condition and
mathematically are simply probability measures on [0,∞].

Theorem 2.3.3 Let f̄ : Rn → R
n be locally Lipschitz and let the triplet of non-

negative compactly supported measures

(μ, μ0, μT ) ∈ M(Rn)+ ×M(Rn)+ ×M(Rn)+
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satisfy∫
Rn

v(x) dμT (x) + β

∫
Rn

v(x) dμ(x) =

∫
Rn

v(x) dμ0(x) +

∫
Rn

∇v · f̄(x) dμ(x) (2.33)

for all v ∈ C1
b (R

n). Then there exists an ensemble of probability measures {τx0 ∈
P ([0,∞])}x0∈Rn (a stochastic kernel10) such that∫

Rn

v(x) dμ0(x) =

∫
Rn

v(x(0 |x0)) dμ0(x0), (2.34a)∫
Rn

v(x) dμ(x) =

∫
Rn

∫ ∞

0

∫ τ

0

e−βtv(x(t |x0)) dt dτx0(τ) dμ0(x0), (2.34b)∫
Rn

v(x) dμT (x) =

∫
Rn

∫ ∞

0

e−βτv(τ(x0)) dτx0(τ) dμ0(x0), (2.34c)

for all bounded measurable functions v, where x(· |x0) denotes the unique trajectory
of ẋ = f̄(x) starting from x0, which is defined at least on [0, sup spt τx0 ] for all
x0 ∈ sptμ0.

The proof of the Theorem is in Appendix B.3.

Remark 2.3.4 Theorem 2.3.3 says that any measures satisfying (2.33) are gener-
ated by a superposition of the trajectories of the dynamical system ẋ = f̄(x), where
the superposition is over the final time of the trajectories. Note that there is a
unique trajectory corresponding to each initial condition (since the vector field f̄

is locally Lipschitz) but this unique trajectory can be stopped at multiple times (in
fact at a whole continuum of times) allowing for superposition; this superposition
is captured by the stopping measures τx0, x0 ∈ R

n. For example, if τx0 is a Dirac
measure at a given time, then there is no superposition; if τx0 has a discrete dis-
tribution, then there is a superposition of finitely or countably many overlapping
trajectories starting at x0 stopped at different time instances; if τx0 has a continuous
distribution then there is a superposition of a continuum of overlapping trajectories
starting from x0 stopped at different time instances.

10See Section A.1 for the definition of a stochastic kernel.
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2.3.5 Continuous-time input-affine systems – special case

In this section we treat the special case of input-affine dynamics

ẋ(t) = f(x(t)) +
m∑
i=1

fui(x(t))ui(t), (2.35)

where the control input u = (u1, . . . , um) is constrained to lie in a box U = [0, ū]m,
ū > 0 (note that any box can be affinely transformed to a box of this form). Notice
first that in this case the trajectories of the relaxed and non-relaxed dynamics
coincide. More importantly from a practical point of view the input-affine form of
the dynamics allows us to derive a special form of the Liouville’s equation which
allows for a controller extraction from the solutions to the Liouville’s equation and
allows for computational savings when relaxed or tightened later on.

We demonstrate the derivation on the infinite-horizon discounted Liouville’s equa-
tion (2.28) and only state the final results for the case of finite time interval and
for the case of infinite time interval with stopping, the derivation being identical.

Given a pair of measures (μ, μ0) ∈ M(Rn ×U)+ ×M(Rn)+ solving (2.28), which
in our case reads

β

∫
Rn×U

v(x) dμ(x, u) =

∫
Rn

v(x) dμ0(x)+

∫
Rn×U

∇v(x) ·
(
f(x)+

m∑
i=1

fui(x)ui

)
dμ(x, u),

(2.36)
we disintegrate (see Section A.1) μ as dμ(x, u) = dν(u | x)dμ̄(x), where ν(· | x) is
a stochastic kernel on U given R

n and μ̄ is the x-marginal11 of μ. Defining the
feedback control law

ui(x) =

∫
U

ui dν(u | x), (2.37)

the above equation becomes

β

∫
Rn

v(x) dμ̄(x) =

∫
Rn

v(x) dμ0(x) +

∫
Rn

∇v(x) ·
(
f(x) +

m∑
i=1

fui(x)ui(x)
)
dμ̄(x).

11Given a measure μ ∈ M(X × U), the x-marginal of μ is the unique measure μ̄ ∈ M(X)
satisfying μ̄(B) = μ(B ×U) for all B ⊂ X.
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Defining further the control measures dνi(x) = ui(x)dμ̄(x), we obtain

β

∫
Rn

v dμ̄(x) =

∫
Rn

v dμ0(x) +

∫
Rn

∇v(x) · f(x) dμ̄(x) +
m∑
i=1

∫
Rn

∇v · fui(x) dνi(x)

(2.38)
for all v ∈ C1

b (R
n).

Notice that since U = [0, ū]m and sptμ ⊂ R
n ×U, the controller (2.37) satisfies

ui(x) ∈ [0, ū] for all x ∈ spt μ̄, i.e., the extracted controller is admissible (which is
not guaranteed in more general settings, in particular if U is not convex, in which
case one can only guarantee u(x) ∈ convU even if the dynamics is input-affine).
In particular each control measure νi is absolutely continuous with respect to the
x-marginal of the occupation measure with density ui(x) ∈ [0, ū] for all x ∈ spt μ̄.

Importantly, any solution

(μ̄, μ0, ν) ∈ M(Rn)+ ×M(Rn)+ ×M(Rn)m+

to (2.38) satisfying νi ≤ ūμ̄ gives rise to a solution (μ, μ0) ∈ M(Rn×U)+×M(Rn)+
to (2.36) with μ defined by

μ(B × C) =

∫
B

IC(u(x)) dμ̄(x)

for all B ⊂ R
n, C ⊂ R

m, where u = (u1, . . . , um) with each ui(·) being the density
(i.e., the Radon-Nikodým derivative) of νi with respect to μ̄. Since 0 ≤ νi ≤ ūμ̄ we
have ui(x) ∈ [0, ū] for all x ∈ spt μ̄ and hence sptμ ⊂ R

n ×U as desired.

Hence there is a one-to-one correspondence between solutions to (2.36) and solutions
to (2.38) satisfying the additional constraint νi ≤ ūμ̄.

The advantage of using (2.38) compared to (2.36) is twofold. First, it is the easy
extraction of a feedback controller as a density of νi with respect to μ̄ (this will
be even more apparent in Section 4 when we tighten Eq. (2.38) and work with
densities in which case the extracted controller is simply the ratio of the densities
of νi and μ̄). Second, the equation (2.38) involves only measures on R

n, whereas
Eq. (2.36) involves measures on R

n × R
m, which, when relaxed or tightened later

on, leads to significantly smaller optimization problems involving approximations
of these measures.

28



2.3. Lifting nonlinear dynamics

For the finite-time case, the equivalent equation to (2.25) is

∫
Rn

v dμT (x) =

∫
Rn

v dμ0(x) +

∫
Rn

∂v

∂t
+∇v · f dμ̄(t, x) +

m∑
i=1

∫
Rn

∇v · fui dνi(t, x)

(2.39)
for all v ∈ C1([0, T ]× R

n), where the variables are

(μ̄, μ0, μT , ν) ∈ M([0, T ]× R
n)+ ×M(Rn)+ ×M(Rn)+ ×M([0, T ]× R

n)m+

and again we have the additional constraint νi ≤ ūμ̄.

For the case of infinite-time with stopping, the equivalent equation to (2.32) is

∫
Rn

v dμT (x)+β

∫
Rn

v dμ̄(x) =

∫
Rn

v dμ0(x)+

∫
Rn

∇v·f dμ̄(x)+
m∑
i=1

∫
Rn

∇v·fui dνi(x)

(2.40)
for all v ∈ C1

b (R
n), where the variables are

(μ̄, μ0, μT , ν) ∈ M(Rn)+ ×M(Rn)+ ×M(Rn)+ ×M(Rn)m+

and again we have the additional constraint νi ≤ ūμ̄.

2.3.6 Discrete-time infinite-horizon

Consider any trajectory {xt|x0}∞t=0 of the discrete-time system (2.19) starting form
an initial condition x0 generated by the control {ut|x0}∞t=0.

Then, given a discount factor α ∈ (0, 1), we define the conditional discounted
occupation measure μ(· | x0) ∈ M(Rn ×U)+ as

μ(B × C | x0) :=
∞∑
t=0

αtIB×C(xt|x0 , ut|x0) (2.41)

for all sets A ⊂ R
n and B ⊂ U.

The quantity μ(B × C | x0) equals to the (discounted) number of visits of the
state-control trajectory

(
{xt|x0 , ut|x0}∞t=0

)
in B × C ⊂ R

n ×U. The discounting
in the definition of the occupation measure ensures that μ(B × C | x0) is always
finite; in fact we have μ(Rn ×U | x0) = (1− α)−1.
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Chapter 2. Preliminaries

Now suppose that the initial condition is not a single point but an initial mea-
sure12 μ0 ∈ M(X)+ and a state trajectory along with an admissible control input
generating it is associated to each initial condition from the support of μ0. Then
we define the discounted occupation measure μ ∈ M(Rn ×U)+ as

μ(B × C) :=

∫
Rn

μ(B × C |x0) dμ0(x0). (2.42)

The quantity μ(B × C | x0) equals to the average (discounted) number of visits
of the state-control trajectories

(
{xt|x0 , ut|x0}∞t=0

)
in B × C ⊂ R

n ×U, where the
averaging is over the distribution of the initial conditions μ0.

Now we derive an equation linking the measures μ0 and μ, which will be the
sought lifting, on the infinite horizon {0, 1, . . .}, of the nonlinear discrete-time
dynamics (2.19) into a linear equation on measures. This equation will play a key
role for maximum controlled invariant set approximation in Section 3.2, in discrete
time. To derive this equation fix an initial condition x0 ∈ R

n and a trajectory
{xt|x0}∞t=0 generated by a control sequence {ut|x0}∞t=0. Then for any v ∈ Cb(R

n),
where Cb(R

n) denotes the set of all bounded continuous functions, we have

∫
Rn×U

v(x) dμ(x, u |x0) =
∞∑
t=0

αtv(xt|x0) = v(x0|x0) + α
∞∑
t=0

αtv(xt+1|x0)

= v(x0|x0) + α
∞∑
t=0

αtv(f(xt|x0 , ut|x0))

= v(x0|x0) + α

∫
X×U

v(f(x, u)) dμ(x, u |x0).

Integrating with respect to μ0 we arrive at the sought equation∫
Rn×U

v(x) dμ(x, u) =

∫
Rn

v(x) dμ0(x)+α

∫
Rn×U

v(f(x, u)) dμ(x, u) ∀v ∈ Cb(R
n).

(2.43)

Equation (2.43) is called discounted Liouville’s equation. It is a linear equation
in the variables (μ, μ0) and it is a lifting, on the infinite horizon {0, 1, . . .}, of the
nonlinear discrete-time dynamics (2.19) into the space of measures.

Remark 2.3.1 regarding the test function v applies to Eq. (2.43) as well.

12The initial measure μ0 can be thought of as the probability distribution of the initial state,
although we do not require the mass of μ0 to be normalized to one.
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2.3. Lifting nonlinear dynamics

It follows from the above discussion that any family of state-control trajectories
of (2.19) starting from a given initial measure μ0 gives rise to a discounted occupa-
tion measure μ such that the pair (μ, μ0) satisfies (2.43). Importantly, the converse
is true as well in the sense that for any pair of measures (μ, μ0) satisfying (2.43)
there exists a family of trajectories of (2.19) starting from μ0 that generates μ

through (2.41) and (2.42). This is formalized in the following theorem, where
l(N;Rn) denotes the set of all Rn-valued sequences indexed with natural numbers .

Theorem 2.3.4 If a pair of nonnegative compactly supported finite measures

(μ, μ0) ∈ M(Rn ×U)+ ×M(Rn)+

satisfies (2.43) for all v ∈ Cb(R
n), then there exists a measure

η ∈ M(l(N;Rn))+

supported on the trajectories of (2.19) such that

μ(B ×U) =

∫
l(N;Rn)

∞∑
t=0

αtIB(xt) dη((xk)
∞
k=0),

and
μ0(B) = μ(B ×U) =

∫
l(N;Rn)

IB(x0) dη((xk)
∞
k=0),

for all B ⊂ R
n.

The proof of the Theorem is in Appendix B.4 and is based on results from Markov
chain theory.

Remark 2.3.3 regarding control trajectories and Remark 2.3.2 regarding superposi-
tion of trajectories apply to Theorem 2.3.4 as well.
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Chapter 3

Set approximation

This chapter addresses the problems of region of attraction (ROA), reachable
set and maximum controlled invariant (MCI) set computation. These sets are
fundamental in non-linear control theory and their approximations have a range
of practical applications, e.g., for reach-avoid or target-hitting problems (see, e.g.,
[ML11]), collision avoidance and viability analysis (where the ROA is called capture
basin and the MCI set viability kernel) [ABSP11] or for model predictive control
design [RM09].

In this chapter we characterize each of these sets as an infinite-dimensional linear
program (LP) in the cone of nonnegative measures. Then, for each of the sets,
we derive an LP on continuous functions dual to the corresponding primal LP on
measures and show that any feasible solution to this dual LP provides an outer
approximation to the set. After that we approximate this infinite-dimensional
LP by relaxing the primal LP and tightening the dual LP using moment-sum-of-
squares hierarchies as described in Sections 2.2.1 and 2.2.2, obtaining a hierarchy
of finite-dimensional semidefinite programming (SDP) relaxations of the primal LP
and tightenings of the dual LP. Importantly, the hierarchy of dual SDP tightenings
provides a sequence of outer approximations to these sets which is proven to
converge in the sense of volume discrepancy tending to zero.

One of the main virtues of the proposed method is its simplicity and generality.
The outer approximations are obtained as the solution to a single, convex, semidef-
inite programming problem with no initialization required and no ad hoc tuning
parameters. The outer approximations are obtained as a super-level set of a single
multivariate polynomial and hence are easy to manipulate. The only parameter of
the problem is the degree of this polynomial allowing one to trade off computational

33



Chapter 3. Set approximation

complexity and tightness of the approximation. The only assumption is that all
data is polynomial, hence covering a broad class of systems without imposing any
structural assumptions. In addition, the approach is highly flexible: for example,
convexity of the outer approximations and other shape constraints can be easily
enforced and the approach extends to other classes of systems (e.g., trigonometric,
piecewise polynomial, hybrid).

This is in contrast with most existing approaches which typically rely on non-
convex bilinear matrix inequalities (see, e.g., [Che11, KSK14]) with their inherent
numerical difficulties, including complicated initialization of iterative schemes and
only local convergence, or rely on careful analysis of the dynamics for a particular
class of systems (see, e.g., [CCG09, Sta09]).

We believe that our approach is closer in spirit to level-set and Hamilton-Jacobi
approaches [MT03] or transfer operator approaches [WV10], but we do not rely
on spatial and/or temporal discretization but rather on moment-sum-of-squares
hierarchies, and our approach comes with convergence guarantees.

3.1 Region of attraction & Reachable set

Consider the relaxed control system

ẋ(t) ∈ conv f(x(t),U), x(t) ∈ X, t ∈ [0, T ], (3.1)

where conv denotes the convex hull1, x(t) ∈ R
n is the state, u(t) ∈ R

m the control
input and T > 0 a given terminal time. Each entry of the vector field f is assumed
to be polynomial2, i.e., fi ∈ R[x, u], i ∈ {1, . . . , n}. The state and the control input
are subject to the basic semialgebraic constraints

x(t) ∈ X := {x ∈ R
n : gXi (x) ≥ 0, i ∈ {1, . . . , nX}}, t ∈ [0, T ],

u(t) ∈ U :={u ∈ R
m : gUi (u) ≥ 0, i ∈ {1, . . . , nU}}, t ∈ [0, T ],

(3.2)

with gXi ∈ R[x] and gUi ∈ R[u]. The target set is defined by

XT := {x ∈ R
n : gXTi (x) ≥ 0, i ∈ {1, . . . , nT}} ⊂ X,

1Since f is continuous and U compact, conv f(x,U) is necessarily compact and hence closure
is not required in (3.22) as opposed to Section 2.3.1 where f was not required to be continuous.

2Note that the infinite-dimensional results of Sections 3.1.3 and 3.1.4 hold with any Lipschitz
f ; the assumption of f being polynomial and the constraint sets semialgebraic is required only
for finite-dimensional relaxations of Section 3.1.5.
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3.1. Region of attraction & Reachable set

and the initial set by

XI := {x ∈ R
n : gXIi (x) ≥ 0, i ∈ {1, . . . , nT}} ⊂ X,

with gXTi ∈ R[x] and gXIi ∈ R[x].

Throughout this chapter we make the following standing assumption:

Assumption 3.1.1 The sets X, U, XT and XI are compact.

The region of attraction (ROA) is defined as

X0 :=
{
x0 ∈ X | ∃ x(·) ∈ AC([0, T ];Rn) s.t. ẋ(t) ∈ conv f(x(t),U) a.e.,

x(0) = x0, x(T ) ∈ XT , x(t) ∈ X ∀ t ∈ [0, T ]
}
,

where AC([0, T ];Rn) denotes the set of all absolutely continuous functions on [0, T ]

taking values in R
n and a.e. stands for “almost everywhere” with respect to the

Lebesgue measure on [0, T ]. In words, ROA is the set of all initial conditions
that can be steered to the target XT without violating the state constraints using
relaxed controls satisfying the input constraints. The set X0 is bounded (by
Assumption 3.1.1) and unique.

The reachable set is defined as

XR :=
{
xT ∈ X | ∃ x(·) ∈ AC([0, T ];Rn) s.t. ẋ(t) ∈ conv f(x(t),U) a.e.,

x(0) ∈ XI , x(T ) = xT , x(t) ∈ X ∀ t ∈ [0, T ]
}
,

In words, the reachable set is the set of all states that can be reached from the
given initial set XI without violating the state constraint set using relaxed controls
satisfying the input constraints. The set XR is also bounded and unique.

Remark 3.1.1 The sets X0 and XR are related by a change of direction of time
and hence being able to characterize and compute approximation of one implies
the same for the other. Indeed, the ROA for the dynamics ẋ ∈ conv f(x,U)

with a target set XT is precisely the reachable set for the time-reversed dynamics
ẋ ∈ conv−f(x,U) with the initial set XI = XT and vice versa. Hence from now
on we focus on the ROA only, all the results following for the reachable set by
changing the sign of f and replacing XT with XI .
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Chapter 3. Set approximation

Next we derive a characterization of the ROA as an infinite-dimensional LP in
the cone of nonnegative measures. We proceed in several steps. First, we pose
the problem as a nonlinear optimization problem. Then we lift this problem into
an infinite-dimensional problem, which, however, turns out to be non-convex. In
the last and crucial step of the derivation, we describe an equivalent convex (in
fact linear) formulation of this problem. After that we derive a dual (in the space
of continuous functions) to the infinite-dimensional LP on measures and present
a hierarchy of SDP relaxations of the primal, and tightenings of the dual, which
provides a converging sequence of outer approximations to the ROA.

3.1.1 ROA via optimization

The following characterization of ROA is almost tautological:

sup
X0⊂Rn

μleb(X0)

s.t. ∀ x0 ∈ X0 ∃ x(· | x0) ∈ AC([0, T ];Rn) s.t.

ẋ(t | x0) ∈ conv f(x(t | x0),U) a.e. on [0, T ]

x(t | x0) ∈ X ∀ t ∈ [0, T ]

x(T | x0) ∈ XT ,

(3.3)

where μleb denotes the Lebesgue measure (hence μleb(X0) is the volume of X0).
Any set X0 feasible in (3.3) satisfies X0 ⊂ X0 and the supremum in (3.3) is equal
to the volume of the ROA X0. Hence any minimizer X�

0 of (3.3) satisfies X�
0 ⊂ X0

and μleb(X0 \X�
0 ) = 0.

3.1.2 Lifting: first attempt

Now we lift the problem (3.3) into the space of measures. The key ingredient is the
finite-time Liouville’s equation (2.25) which serves as the lifting of the nonlinear
relaxed dynamics (3.1) into a linear equation on measures. Constraints on the
trajectories are imposed via support constraints on these measures.
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3.1. Region of attraction & Reachable set

The lifting reads

q∗ = sup
μ0,μ,μT

μleb(spt μ0)

s.t.
∫
XT

v(T, ·) dμT =
∫
X
v(0, ·) dμ0 +

∫
[0,T ]×X×U

Lv dμ ∀v ∈ C1([0, T ]×X)

μ ∈ M([0, T ]×X×U)+
μ0 ∈ M(X)+
μT ∈ M(XT )+,

(3.4)
where the operator L : C1([0, T ]×X) → C([0, T ]×X) is defined by

Lv :=
∂v

∂t
+∇v · f, (3.5)

the symbol sptμ0 denotes the support of μ0 and the first constraint is precisely the
Liouville’s equation (2.25). Problem (3.4) is an infinite-dimensional optimization
problem in the cone of nonnegative measures. Note, however, that the objective
function of (3.3) is nonconvex and hence this infinite-dimensional problem is
not a conic optimization problem; therefore, a convex reformulation described in
Section 3.1.3, is needed.

We emphasize that the test function v is not a decision variable in the problem,
but rather the equality constraint is required to hold for all v ∈ C1([0, T ]×X) (see
Remark 2.3.1).

The rationale behind problem (3.4) is as follows. The first constraint is the
Liouville’s equation (2.25) which ensures that any triplet of measures (μ0, μ, μT )

feasible in (3.4) corresponds to an initial, an occupation and a terminal measure
generated by trajectories of (3.1) in the sense of Theorem 2.3.1. Constraints on
the trajectories and controls are encoded via constraints on the supports of the
measures implicitly encoded by the inclusion to an appropriate cone of nonnegative
measures. In particular, the constraint μ ∈ M([0, T ] × X × U)+ ensures that
sptμ ⊂ [0, T ]×X×U and hence that the trajectories satisfy the state and control
constraints over the time interval [0, T ]; the constraint μT ∈ M(XT )+ ensures that
sptμT ⊂ XT and hence that the trajectories end in the target set. Maximizing
the volume of the support of the initial measure then yields an initial measure
with the support equal to the ROA up to a set of zero volume3. This discussion is
summarized in the following Lemma.

3Even though the support of the initial measure attaining the maximum in (3.4) can differ
from the ROA on the set of zero volume, the outer approximations obtained in Section 3.1.6 are
valid “everywhere”, not “almost everywhere”.
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Lemma 3.1.1 The optimal value of problem (3.4) is equal to the volume of the
ROA X0, that is, q∗ = μleb(X0).

Proof: By definition of the ROA, for any initial condition x0 ∈ X0 there is a
trajectory of (3.1) (which is necessarily generated by an admissible relaxed control
input) which satisfies the state constraints and ends in the target set. Therefore for
any initial measure μ0 with sptμ0 ⊂ X0 there exist an occupation measure μ and
a final measure μT such that the constraints of problem (3.4) are satisfied. Thus,
q∗ ≥ μleb(X0).

Now we show that q∗ ≤ μleb(X0). For contradiction, suppose that a triplet of
measures (μ0, μ, μT ) is feasible in (3.4) and that μleb(sptμ0 \ X0) > 0. From
Theorem 2.3.1 there is a family of admissible trajectories of the inclusion (3.1)
starting from μ0 generating the (t, x)-marginal of the occupation measure μ and the
final measure μT . However, this is a contradiction since no trajectory starting from
sptμ0 \X0 can be admissible. Thus, μleb(sptμ0 \X0) = 0 and so μleb(sptμ0) ≤
μleb(X0). Consequently, q∗ ≤ μleb(X0). �

3.1.3 Primal infinite-dimensional LP on measures

The key idea behind the results of this chapter consists in replacing the direct
maximization of the support of the initial measure μ0 by the maximization of
the integral below the density (w.r.t. the Lebesgue measure) of μ0 subject to the
constraint that this density exists and is less than or equal one. This procedure is
equivalent to maximizing the mass4 of μ0 under the constraint that μ0 is dominated
by the Lebesgue measure. This leads to the following infinite-dimensional LP:

p∗ = sup
μ,μ0,μT

∫
X
1 dμ0

s.t.
∫
XT

v(T, ·) dμT =
∫
X
v(0, ·) dμ0 +

∫
[0,T ]×X×U

Lv dμ ∀v ∈ C1([0, T ]×X)

μ ∈ M([0, T ]×X×U)+
μ0 ∈ M(X)+
μT ∈ M(XT )+
μ0 ≤ μleb

(3.6)
In problem (3.6) the constraint μ0 ≤ μleb means that μ0(A) ≤ μleb(A) for all A ⊂ X.
Note how the objective functions differ in problems (3.4) and (3.6).

4The mass of the measure μ0 is defined as
∫
X
1 dμ0 = μ0(X).
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The following theorem is then almost immediate.

Theorem 3.1.1 The optimal value of the infinite-dimensional LP problem (3.6)
is equal to the volume of the ROA X0, that is, p∗ = μleb(X0). Moreover, the
supremum is attained by a triplet of measure (μ, μ0, μT ) for which μ0 is equal to
the restriction of the Lebesgue measure to the ROA X0.

Proof: Since the constraint set of problem (3.6) is tighter than that of problem
(3.4), by Lemma 3.1.1 we have that μleb(sptμ0) ≤ μleb(X0) for any feasible μ0. From
the constraint μ0 ≤ μleb we get

∫
X
1 dμ0 = μ0(sptμ0) ≤ μleb(sptμ0) ≤ μleb(X0) for

any feasible μ0. Therefore p∗ ≤ μleb(X0). But by definition of the ROA X0, the
restriction of the Lebesgue measure to X0 is feasible in (3.6), and so p∗ ≥ μleb(X0).
Consequently p∗ = μleb(X0). �

Now we reformulate problem (3.6) to the so-called standard form of a linear
program (see Appendix A.2 for a brief introduction to infinite-dimensional linear
programming) which is more convenient for dualization and theoretical analysis. To
this end, let us define the complementary measure (a slack variable) μ̂0 ∈ M(X)+
such that the inequality μ0 ≤ μleb in (3.6) can be written equivalently as the
constraints μ0 + μ̂0 = μleb, which is in turn equivalent to∫

X

w(x) dμ0(x) +

∫
X

w(x) dμ̂0(x) =

∫
X

w dμleb(x) ∀w ∈ C(X).

Then problem (3.6) is equivalent to the infinite-dimensional primal LP

p∗ = sup
μ,μ0,μT ,μ̂0

∫
X
1 dμ0

s.t.
∫
XT

v(T, ·) dμT =
∫
X
v(0, ·) dμ0 +

∫
[0,T ]×X×U

Lv dμ ∀ v ∈ C1([0, T ]×X)∫
X
w dμ0 +

∫
X
w dμ̂0 =

∫
X
w dμleb ∀w ∈ C(X)

μ ∈ M([0, T ]×X×U)+
μ ∈ M([0, T ]×X×U)+
μ0 ∈ M(X)+
μT ∈ M(XT )+
μ̂0 ∈ M(X)+,

(3.7)
which is a standard form infinite-dimensional linear program.
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3.1.4 Dual infinite-dimensional LP on functions

In this section we derive a linear program dual to (3.7) (and hence to (3.6)) on
the space of continuous functions. A certain super-level set of one of the functions
feasible in this dual LP will provide an outer approximation to the ROA X0.

The dual infinite-dimensional LP reads (see Appendix A.2 for a brief introduction
to infinite-dimensional LP duality):

d∗= inf
v,w

∫
X

w(x) dμleb(x)

s.t. −Lv(t, x, u) ∈ C([0, T ]×X×U)+,

w − v(0, ·)− 1 ∈ C(X)+,

v(T, ·) ∈ C(XT )+,

w ∈ C(X)+,

(3.8)

where the infimum is over (v, w) ∈ C1([0, T ]×X)×C(X). The dual has the following
interpretation: the first constraint (equivalent to Lv ≤ 0 on [0, T ]×X×U) forces
v to decrease along admissible trajectories and hence necessarily v(0, x) ≥ 0 for
all x ∈ X0 because of the third constraint (equivalent to v(T, x) ≥ 0 on for all
x ∈ XT ). Consequently, w ≥ 1 on X0 because of the second constraint equivalent
to w(x) ≥ v(0, x) + 1 for all x ∈ X. Therefore w ≥ IX0 on X, where IX0 denotes
the indicator function5 of the region of attraction. The objective function then
minimizes the integral of w, trying to make w as small as possible under the implicit
constraint that w ≥ IX0 .

This instrumental observation is formalized in the following Lemma.

Lemma 3.1.2 Let (v, w) be a pair of function feasible in (3.8). Then v(0, ·) ≥ 0

on X0, w ≥ 1 on X0 and w ≥ IX0 on X.

Proof: By definition of X0, given any x0 ∈ X0 there exists u(t) such that x(t) ∈ X,
u(t) ∈ U for all t ∈ [0, T ] and x(T ) ∈ XT . Therefore, since v(T, ·) ≥ 0 on XT and

5The indicator function of a set is a function equal to one on that set and zero otherwise.
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Lv ≤ 0 on [0, T ]×X×U,

0 ≤ v(T, x(T )) = v(0, x0) +

∫ T

0

d

dt
v(t, x(t)) dt

= v(0, x0) +

∫ T

0

Lv(t, x(t), u(t)) dt

≤ v(0, x0) ≤ w(x0)− 1,

where the last inequality follows from the second constraint of (3.8). The fact
that w ≥ IX0 follows from the last constraint of (3.8) which requires w to be
nonnegative on X. �

Next, we have the following salient result:

Theorem 3.1.2 There is no duality gap between the primal infinite-dimensional
LP problems (3.6) and (3.7) and the infinite-dimensional dual LP problem (3.8) in
the sense that p∗ = d∗.

Proof: To streamline the exposition, let

M := M([0, T ]×X×U)×M(X)×M(XT )×M(X),

C := C([0, T ]×X×U)× C(X)× C(XT )× C(X),

and let K and K� denote the positive cones of M and C respectively. Note that
the cone K of nonnegative measures of M can be identified with the topological
dual of the cone K of nonnegative continuous functions of C (see Section 2.1). The
cone K is equipped with the weak-� topology (see Section 2.1.1). Then, the LP
problem (3.7) can be rewritten as

p∗ = supγ 〈γ, c〉
s.t. Aγ = β

γ ∈ K,

(3.9)

where the infimum is over the vector γ := (μ, μ0, μT , μ̂0), the linear operator
A : K → C1([0, T ]×X)� ×M(X) is defined by

Aγ := (−L�μ− δ0 ⊗ μ0 + δT ⊗ μT , μ0 + μ̂0) ,

where L is the adjoint of the operator L defined in (3.5), the right hand side
of the equality constraint in (3.9) is the vector of measures β := (0 , μleb) ∈
M([0, T ]×X)×M(X), the vector function in the objective is c := (0, 1, 0, 0) ∈ C,
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Chapter 3. Set approximation

so the objective function itself is

〈γ, c〉 =
∫
X

1 dμ0 = μ0(X).

The dual LP to (3.9) reads (see Section A.2)

d∗ = infz 〈β, z〉
s.t. A�(z)− c ∈ K�,

(3.10)

where the infimum is over z := (v, w) ∈ C1([0, T ] × X) × C(X), and the linear
operator A� : C1([0, T ]×X)× C(X) → C is defined by

A�z := (−Lv, w − v(0, ·), v(T, ·), w)

and satisfies the adjoint relation 〈Aγ, z〉 = 〈γ, A�z〉. The LP problem (3.10) is
exactly the LP problem (3.8).

To conclude the proof we use an argument similar to that of [Las09, Section
C.4]. From Theorem A.2.1 there is no duality gap between LPs (3.9) and (3.10)
if the supremum p∗ is finite and the set S := {(Aγ, 〈γ, c〉) : γ ∈ K} is closed
in the weak-� topology of K. The fact that p∗ is finite follows readily from
the constraint μ0 + μ̂0 = μleb, μ̂0 ≥ 0, and from compactness of X. To prove
closedness, we first remark that A is weakly-� continuous6 since A�(z) ∈ C for all
z ∈ C1([0, T ]×X)×C(X). Then we consider a sequence γk = (μk, μk

0, μ
k
T , μ̂

k
0) ∈ K�

and we want to show that (ν, a) := limk→∞(Aγk, 〈γk, c〉) belongs to S, where
ν ∈ C1([0, T ]×X)�×M(X) and a ∈ R. To this end, consider first the test function
z1 = (T − t, 1) which gives 〈Aγk, z1〉 = μk(0, T × X × U) + μk

0(X) + μ̂k
0(X) →

〈ν, z1〉 < ∞; since the measures are nonnegative, this implies that the sequences
of measures μk, μk

0 and μ̂k
0 are bounded. Next, taking the test function z2 = (1, 1)

gives 〈Aγk, z2〉 = μT (X) + μ̂0(X) → 〈ν, z2〉 < ∞; this implies that the sequence μk
T

is bounded as well. Thus, from the weak-� compactness of the unit ball (Alaoglu’s
Theorem [Lue69, Section 5.10, Theorem 1]) there is a subsequence γki that converges
weakly-� to an element γ ∈ K� so that limi→∞(Aγki , 〈γki , c〉) ∈ S by continuity
of A. �

Note that, by Theorem 3.1.1, the supremum in the primal LPs (3.6) and (3.7)
is attained (by the restriction of the Lebesgue measure to X0). In contrast, the
infimum in the dual LP (3.8) is not attained in C1([0, T ]×X)× C(X), but there

6The weak-� topology on C1([0, T ]×X)� ×M(X) is induced by the standard topologies on
C1 and C – the topology of uniform convergence of the function and its derivative on C1 and the
topology of uniform convergence on C.
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3.1. Region of attraction & Reachable set

exists a sequence of feasible solutions to (3.8) whose w-component converges to
the discontinuous indicator IX0 as we show next.

Theorem 3.1.3 There is a sequence of feasible solutions to the dual LP (3.8)
such that its w-component converges from above to IX0 in L1 norm and almost
uniformly7.

Proof: By Theorem 3.1.1, the optimal solution to the primal is attained by the
restriction of the Lebesgue measure to X0. Consequently,

p∗ =
∫
X

IX0(x)dμ
leb(x). (3.11)

By Theorem 3.1.2, there is no duality gap (p∗ = d∗), and therefore there exists a
sequence (vk, wk) ∈ C1([0, T ]×X)× C(X) feasible in (3.8) such that

p∗ = d∗ = lim
k→∞

∫
X

wk(x) dμ
leb(x). (3.12)

From Lemma 3.1.2 we have wk ≥ IX0 on X for all k. Thus, subtracting (3.11)
from (3.12) gives

lim
k→∞

∫
X

(wk(x)− IX0(x)) dμ
leb(x) = 0,

where the integrand is nonnegative. Hence wk converges to IX0 in L1 norm. From
[Ash78, Theorems 2.5.2 and 2.5.3] there exists a subsequence converging almost
uniformly. �

3.1.5 SDP approximations

In this section we formulate finite-dimensional SDP relaxations of the primal infinite-
dimensional LP (3.7) and finite-dimensional SDP tightenings of the dual LP (3.10).
These approximations are derived readily using the results of Section 2.2.2 and
2.2.1 on finite-dimensional SDP approximation of the cone of nonnegative measures
from the outside and the cone of nonnegative functions from the inside. In addition,

7A sequence of functions wk converges almost uniformly if ∀ ε > 0, ∃B ⊂ X, μleb(B) < ε, such
that wk → w uniformly on X\B. Note that almost uniform convergence implies convergence
almost everywhere [Ash78, Theorem 2.5.2]
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Chapter 3. Set approximation

we truncate the equality constraints of (3.7)∫
XT

v(T, x) dμT (x)−
∫
X

v(0, x) dμ0(x)−
∫
[0,T ]×X×U

Lv(t, x, u) dμ(t, x, u) = 0,

∫
X

w(x) dμ0(x) +

∫
X

w(x) dμ̂0(x) =

∫
X

w(x) dμleb(x)

by enforcing it only for the particular choice of test functions v(t, x) = tαxβ and
w(x) = xγ for all α ∈ N, β ∈ N

n and γ ∈ N
n such that α + |β| ≤ kv and γ ≤ k,

where
kv := k − deg f + 1.

The resulting finite-dimensional truncation of this linear system of equations is
denoted by

Ak(y,y0,yT , ŷ0) = bk,

where y, y0, yT and ŷ0 represent the truncated moment sequences of the measures
(μ, μ0, μT , μ̂0).

Without loss of generality we make the following assumption for the reminder of
this section.

Assumption 3.1.2 One of the polynomials defining the sets X, U respectively XT ,
is equal to gXi (x) = RX−‖x‖22, gUi (u) = RU −‖u‖22 respectively gXTi (x) = RT −‖x‖22
for some constants RX ≥ 0, RU ≥ 0 respectively RT ≥ 0 and the set [0, T ] is modeled
as {t | t(T − t) ≥ 0}.

Assumption 3.1.2 is without loss of generality since the sets X, U and XT are
bounded, and therefore redundant ball constraints of the form RX − ‖x‖22 ≥ 0,
RU − ‖u‖22 ≥ 0 and RT − ‖x‖22 ≥ 0 can always be added to the description of
the sets X, U and XT for sufficiently large RX , RU and RT . Note also that this
assumption implies the Archimedianity condition (see Definition 1) for the sets
[0, T ]×X×U, X and XT .

Using the results of Section (2.2.2), the finite-dimensional SDP relaxation of order
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k reads
p∗k = max

(y,y0,yT ,ŷ0)
(y0)0

s.t. Ak(y,y0,yT , ŷ0) = bk
y ∈ M sup

k ([0, T ]×X×U)+
y0 ∈ M sup

k (X)+,

yT ∈ M sup
k (XT )+,

ŷ0 ∈ M sup
k (X)+,

(3.13)

where the truncated moment cone is defined in (2.13) and the objective function
is the first element (i.e., the mass) of the truncated moment sequence y0 corre-
sponding to the initial measure. The constraint set of (3.13) is therefore looser
than that of (3.7) in the sense the the truncated moment sequences associated to
any tuple of measure (μ, μ0, μT , μ̂0) feasible in (3.7) are also feasible in (3.13) but
the converse is not true in general. However, the discrepancy between the two
constraint sets monotonically vanishes as the relaxation degree k tends to infinity
(see Corollary 3.1.1 below).

In problem (3.13), a linear function is minimized subject to linear constraints and
subject to inclusions in SDP representable cones. Therefore the problem (3.13)
translates to and SDP.

Using the results of Section 2.2.1, the finite-dimensional SDP tightening of (3.10),
which is also the SDP dual to (3.13), reads

d∗k = inf
v∈R[t,x]kv , w∈R[x]k

w�l

s.t. −Lv ∈ Qk([0, T ]×X×U)

w − v(0, ·)− 1 ∈ Qk(X)

v(T, ·) ∈ Qk(XT )

w ∈ Qk(X),

(3.14)

where l is the vector of the moments of the Lebesgue measure over X indexed in
the same basis in which the polynomial w(x) with coefficients w is expressed. In
problem (3.14), a linear objective function is minimized subject to the inclusion
into an SDP representable cone and hence this problem translates to an SDP. The
constraint set of problem (3.14) is tighter than that of (3.8) in the sense that any
pair of functions (v, w) feasible in (3.14) is also feasible in (3.8) but the converse
is not true in general. However, the discrepancy between the two constraint sets
monotonically vanishes as the degree k tends to infinity (see Corollary 3.1.1 below).

Theorem 3.1.4 There is no duality gap between primal SDP problem (3.13) and
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dual SDP problem (3.14), i.e., p∗k = d∗k.

Proof: See the Appendix of this section. �

3.1.6 Outer approximations and convergence results

In this section we show how the dual SDP problem (3.14) gives rise to a sequence of
outer approximations to the ROA X0 with a guaranteed convergence. In addition,
we prove convergence of the primal and dual optimal values p∗k and d∗k to the volume
of the ROA, and convergence of the w-components of optimal solutions to the dual
SDP problem (3.14) to the indicator function of the ROA IX0 .

Let the polynomials (wk, vk) ∈ R[x]kv×R[x]k, denote an optimal solution to the kth

degree dual SDP approximation (3.14) and let w̄k := mini≤k wi and v̄k := mini≤k vi
denote their running minima. Then, in view of Lemma 3.1.2 and the fact that any
feasible solution to (3.14) is feasible in (3.8), the sets

X0k := {x ∈ X : vk(0, x) ≥ 0} (3.15)

and
X̄0k := {x ∈ X : v̄k(0, x) ≥ 0} (3.16)

provide outer approximations to the ROA; in fact, the inclusions X0k ⊃ X̄0k ⊃ X0

hold for all k ∈ {1, 2, . . .}.

Our first convergence result proves convergence of wk and w̄k to the indicator
function of the ROA IX0 .

Theorem 3.1.5 Let wk ∈ Rk[x] denote the w-component of an optimal solution
to the dual SDP (3.14) and let w̄k(x) = mini≤k wi(x). Then wk converges from
above to IX0 in L1 norm, i.e.,

lim
k→∞

∫
X

wk(x)− IX0 dx = 0.

In addition, w̄k converges to IX0 from above both in L1 norm and almost uniformly.

Proof: From Lemma 3.1.2 and Theorem 3.1.3, for every ε > 0 there exists a (v, w) ∈
C1([0, T ]×X)×C(X) feasible in (3.8) such that w ≥ IX0 and

∫
X
(w−IX0) dμ

leb < ε.
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Set

ṽ(t, x) := v(t, x)− εt+ (T + 1)ε,

w̃(x) := w(x) + (T + 3)ε.

Since v is feasible in (3.8), we have Lṽ = Lv−ε, and ṽ(T, x) = v(T, x)+ε. Since also
w̃(x)−ṽ(0, x) ≥ 1+2ε, it follows that (ṽ, w̃) is strictly feasible in (3.8) with a margin
at least ε. Since [0, T ]×X and X are compact, there exist8 polynomials v̂ and ŵ of
a sufficiently high degree such that sup

[0,T ]×X

|ṽ − v̂| < ε, sup
[0,T ]×X×U

|Lṽ − Lv̂| < ε and

supX |w̃−ŵ| < ε. The pair of polynomials (v̂, ŵ) is therefore strictly feasible in (3.8)
and as a result, under Assumption 3.1.2, feasible in (3.14) for a sufficiently large
degree k (this follows from Theorem 2.2.1), and moreover ŵ ≥ w. Consequently,∫
X
|w̃ − ŵ| dμleb ≤ εμleb(X), and so

∫
X
(ŵ − w) dμleb ≤ εμleb(X)(T + 4). Therefore∫

X

(ŵ − IX0) dμ
leb < εK, ŵ ≥ IX0 ,

where K := [1+ (T +4)μleb(X)] < ∞ is a constant. This proves the first statement
since ε was arbitrary.

The second statement immediately follows since given a sequence wk → IX0 in L1

norm, there exists a subsequence wki that converges almost uniformly to IX0 by
[Ash78, Theorems 2.5.2 and 2.5.3] and clearly w̄k(x) ≤ min{wki(x) : ki ≤ k}. �

The following Corollary follows immediately from Theorem 3.1.5.

Corollary 3.1.1 The sequence of infima of SDPs (3.14) converges monotonically
from above to the supremum of the infinite-dimensional LP problem (3.8), i.e.,
d∗ ≤ d∗k+1 ≤ d∗k and limk→∞ d∗k = d∗. Similarly, the sequence of maxima of
LMI problems (3.13) converges monotonically from above to the maximum of the
infinite-dimensional LP problem (3.6), i.e., p∗ ≤ p∗k+1 ≤ p∗k and limk→∞ p∗k = p∗.

Proof: Monotone convergence of the dual optima d∗k follows immediately from
Theorem 3.1.5 and from the fact that the higher the relaxation order k, the looser
the constraint set of the minimization problem (3.14). To prove convergence of the
primal maxima observe that from weak SDP duality we have d∗k ≥ p∗k and from
Theorems 3.1.5 and 3.1.2 it follows that d∗k → d∗ = p∗. In addition, clearly p∗k ≥ p∗

8This follows from an extension of the Stone-Weierstrass theorem that allows for a simultaneous
uniform approximation of a function and its derivatives by a polynomial on a compact set; see,
e.g., [BBL02].
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and p∗k+1 ≤ p∗k since the higher the relaxation order k, the tighter the constraint
set of the maximization problem (3.13). Therefore p∗k → p∗ monotonically from
above. �

Theorem 3.1.5 establishes a functional convergence of wk to IX0 and Corollary 3.1.1
a convergence of the primal and dual optima p∗k and d∗k to the volume of the
ROA μleb(X0) = p∗ = d∗. Finally, the following theorem establishes a set-wise
convergence of the sets (3.15) and (3.16) to the ROA X0.

Theorem 3.1.6 Let (vk, wk) ∈ Rkv [t, x]×Rk[x] denote a solution to the dual SDP
problems (3.14). Then the sets X0k and X̄0k defined in (3.15) and (3.16) converge
to the ROA X0 from the outside such that X0k ⊃ X̄0k ⊃ X0 and

lim
k→∞

μleb(X0k \X0) = 0 and lim
k→∞

μleb(X̄0k \X0) = 0.

Moreover the convergence of X̄0k is monotonous, i.e., X̄0i ⊂ X̄0j whenever i ≥ j.

Proof: The inclusion X0k ⊃ X̄0k ⊃ X0 follows from Lemma 3.1.2 since any solution
to (3.14) is feasible in (3.8) and since X̄0k = ∩k

i=1X0i. The latter fact also proves
the monotonicity of the sequence X̄0k. Next, from Lemma 3.1.2 we have wk ≥ IX0

and therefore, since wk ≥ vk(0, ·) + 1 on X, we have wk ≥ IX0k
≥ IX̄0k

≥ IX0 on X.
In addition, from Theorem 3.1.5 we have wk → IX0 in L1 norm on X; therefore

μleb(X0) =

∫
X

IX0 dμ
leb = lim

k→∞

∫
X

wk dμ
leb ≥ lim

k→∞

∫
X

IX0k
dμleb

= lim
k→∞

μleb(X0k) ≥ lim
k→∞

μleb(X̄0k).

But since X0 ⊂ X̄0k ⊂ X0k we must have μleb(X0) ≤ μleb(X̄0k) ≤ μleb(X0k) and
the theorem follows. �

3.1.7 Free final time

In this section we outline a straightforward extension of our approach to the problem
of reaching the target set XT at any time before T < ∞ (and not necessarily
staying in XT afterwards).

It turns out that the set of all initial states x0 from which it is possible to reach
XT at a time t ≤ T can be obtained as the support of an optimal solution μ∗

0 to
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the problem

p∗ = sup
μ0,μ,μT

∫
X
1 dμ0

s.t.
∫
[0,T ]×XT

v dμT =
∫
X
v(0, ·) dμ0 +

∫
[0,T ]×X×U

Lv dμ ∀v ∈ C1([0, T ]×X)∫
X
w dμ0 +

∫
X
w dμ̂0 =

∫
X
w dμleb ∀w ∈ C(X)

μ ∈ M([0, T ]×X×U)+
μ0 ∈ M(X)+
μT ∈ M([0, T ]×XT )+
μ̂0 ∈ M(X)+

(3.17)
Note that the only difference to problem (3.6) is in the support constraint of the
final measure μT .

The dual to this problem reads as

d∗= inf
v,w

∫
X

w(x) dμleb(x)

s.t. −Lv(t, x, u) ∈ C([0, T ]×X×U)+,

w − v(0, ·)− 1 ∈ C(X)+,

v(T, ·) ∈ C([0, T ]×XT )+,

w ∈ C(X)+,

(3.18)

The only difference to problem (3.8) is in the third constraint which now requires
that v(t, x) is nonnegative on XT for all t ∈ [0, T ].

All results from the previous sections hold with proofs being almost verbatim
copies.

3.1.8 Numerical examples

In this section we present five examples of increasing complexity to illustrate our
approach: a univariate uncontrolled cubic system, the Van der Pol oscillator, a
double integrator, the Brockett integrator and an acrobot. For numerical implemen-
tation, one can either use Gloptipoly 3 [HLL09] to formulate the primal problem
on measures and then extract the dual solution provided by a primal-dual SDP
solver or formulate directly the dual SOS problem using, e.g., YALMIP [Löf04] or
SOSTOOLS [PAGV+13]. As an SDP solver we used SeDuMi [PTZ07] for the first
three examples and MOSEK for the last two examples. For computational purposes
the problem data should be scaled such that the constraint sets are contained in,
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e.g., unit boxes or unit balls; in particular the time interval [0, T ] should be scaled
to [0, 1] by multiplying the vector field f by T . Computational aspects are further
discussed in Chapter 6.

Whenever the approximations X0k defined in (3.15) are monotonous (which is
not guaranteed) we report these approximations (since then they are equal to the
monotonous version X̄0k defined in (3.16)); otherwise we report X̄0k.

Univariate cubic dynamics

Consider the system given by

ẋ = x(x− 0.5)(x+ 0.5),

the constraint set X = [−1, 1], the final time T = 100 and the target set
XT = [−0.01, 0.01]. The ROA can in this case be determined analytically as X0 =

[−0.5, 0.5]. Polynomial approximations to the ROA for degrees d ∈ {4, 8, 16, 32}
are shown in Figure 3.1. As expected the functional convergence of the polyno-
mials to the discontinuous indicator function is rather slow; however, the set-wise
convergence of the approximations X0k is very fast as shown in Table 3.1. Note
that the volume error is not monotonically decreasing – indeed what is guaranteed
to decrease is the integral of the approximating polynomial w(x), not the volume
of X0k. Taking the monotonically decreasing approximations X̄0k defined in (3.16)
would prevent the volume increase. Numerically, a better behavior is expected
when using alternative polynomial bases (e.g., Chebyshev polynomials) instead of
the monomials; see the conclusion for a discussion.

Table 3.1 – Univariate cubic dynamics – relative volume error of the outer approxi-
mation to the ROA X0 = [−0.5, 0.5] as a function of the approximating polynomial
degree.

degree 4 8 16 32

error 31.60 % 3.31 % 0.92 % 1.49 %
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Figure 3.1 – Univariate cubic dynamics – polynomial approximations (solid line)
to the ROA indicator function IX0 = I[−0.5,0.5] (dashed line) for degrees k ∈
{4, 8, 16, 32}.

Van der Pol oscillator

As a second example consider a scaled version of the uncontrolled reversed-time
Van der Pol oscillator given by

ẋ1 = −2x2,

ẋ2 = 0.8x1 + 10(x2
1 − 0.21)x2.

The system has one stable equilibrium at the origin with a bounded region of
attraction

X0 ⊂ X := [−1.2, 1.2]2.

In order to compute an outer approximation to this region we take T = 100 and
XT = {x : ‖x‖2 ≤ 0.01}. Plots of the ROA estimates X0k for k ∈ {10, 12, 14, 16}
are shown in Figure 3.2. We observe a relatively-fast convergence of the super-level
sets to the ROA – this is confirmed by the relative volume error9 summarized in
Table 3.2. Figure 3.3 then shows the approximating polynomial itself for degree
k = 18. Here too, a better convergence is expected if instead of monomials, a more

9The relative volume error was computed approximately by Monte Carlo integration.
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appropriate polynomial basis is used.

Table 3.2 – Van der Pol oscillator – relative error of the outer approximation to
the ROA X0 as a function of the approximating polynomial degree.

degree 10 12 14 16

error 49.3 % 19.7 % 11.1 % 5.7 %
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Figure 3.2 – Van der Pol oscillator – semialgebraic outer approximations (light
gray) to the ROA (dark gray) for degrees k ∈ {10, 12, 14, 16}.

Double integrator

To demonstrate our approach in a controlled setting we first consider a double
integrator

ẋ1 = x2

ẋ2 = u.
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Figure 3.3 – Van der Pol oscillator – a polynomial approximation of degree 18 of
the ROA indicator function IX0 .

The goal is to find an approximation to the set of all initial states X0 that can be
steered to the origin at10 the final time T = 1. Therefore we set XT = {0} and the
constraint set such that X0 ⊂ X, e.g., X = [−0.7, 0.7]× [−1.2, 1.2]. The solution
to this problem can be computed analytically as

X0 = {x : V (x) ≤ 1},

where

V (x) =

⎧⎨
⎩x2 + 2

√
x1 +

1
2
x2
2 if x1 +

1
2
x2|x2| > 0,

−x2 + 2
√

−x1 +
1
2
x2
2 otherwise.

The ROA estimates X0k for k ∈ {6, 8, 10, 12} are shown in Figure 3.4; again we
observe a relatively fast convergence of the super-level set approximations, which
is confirmed by the relative volume errors in Table 3.3.

Table 3.3 – Double integrator – relative error of the outer approximation to the
ROA X0 as a function of the approximating polynomial degree.

degree 6 8 10 12

error 75.7 % 32.6 % 21.2 % 16.0 %

10In this case, the sets of all initial states that can be steered to the origin at time T and at
any time before T are the same. Therefore we could also use the free-final-time approach of
Section 3.1.7.
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Figure 3.4 – Double integrator – semialgebraic outer approximations (light gray)
to the ROA (dark gray) for degrees k ∈ {6, 8, 10, 12}.

Brockett integrator

Next, we consider the Brockett integrator

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2 − u2x1

with the constraint sets X = {x ∈ R
3 : ||x||∞ ≤ 1} and U = {u ∈ R

2 : ||u||2 ≤ 1},
the target set XT = {0} and the final time T = 1. The ROA can be computed
analytically (see [LHPT08]) as X0 = {x ∈ R

3 : T (x) ≤ 1}, where

T (x) =
θ
√
x2
1 + x2

2 + 2|x3|√
θ + sin2 θ − sin θ cos θ

,

and θ = θ(x) is the unique solution in [0, π) to

θ − sin θ cos θ

sin2 θ
(x2

1 + x2
2) = 2|x3|.
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3.1. Region of attraction & Reachable set

The ROA estimates X0k are not monotonous in this case and therefore in Figure 3.5
we rather show the monotonous estimates X̄0k defined in (3.16) for degrees k ∈
{6, 10}. We observe fairly good tightness of the estimates.

k = 6 k = 10

Figure 3.5 – Brockett integrator – semialgebraic outer approximations (light red,
larger) to the ROA (dark red, smaller) for degrees k ∈ {6, 10}.

Acrobot

As our last example we consider the acrobot system adapted from [MH91], which
is essentially a double pendulum with both joints actuated; see Figure 3.6. The
system equations are given by

ẋ =

⎡
⎣ x3

x4

M(x)−1N(x, u)

⎤
⎦ ∈ R

4,

where

M(x) =

[
3 + cos(x2) 1 + cos(x2)

1 + cos(x2) 1

]
and

N(x, u) =[
g sin(x1 + x2)− a1x3 + a2 sin(x1) + x4 sin(x2)(2x3 + x4) + u1

− sin(x2)x
2
3 − a1x4 + g sin(x1 + x2) + u2

]

with g = 9.8, a1 = 0.1 and a2 = 19.6. The first two states are the joint angles
(in radians) and the second two the corresponding angular velocities (in radians
per second). The two control inputs are the torques in the two joints. Here,
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Chapter 3. Set approximation

rather than comparing our approximations with the true ROA (which is not easily
available), we study how the size of the ROA approximations is influenced by the
actuation of the first joint. We consider two cases: with both joints actuated and
with only the middle joint actuated. In the first case the input constraint set is
U = [−10, 10]× [−10, 10] and in the second case it is U = {0}× [−10, 10]. The state
constraint set is for both cases U = [−π/2, π/2]× [−π, π]× [−5, 5]× [−5, 5]. Since
this system is not polynomial we take a third order Taylor expansion of the vector
field around the origin. An exact treatment would be possible via a coordinate
transformation leading to rational dynamics to which our approach can be readily
extended; this extension is, however, not treated in this thesis and therefore we use
the simpler (and non-exact) approach with Taylor expansion. Figure 3.7 shows
the approximations X0k of degree k ∈ {6, 8}; as expected disabling actuation of
the first joint leads to a smaller ROA approximation. For this largest example
presented in this section we also report computation times for two SDP solvers: the
recently released MOSEK SDP solver and SeDuMi. Computation times11 reported
in Table 3.4 show that MOSEK outperforms SeDuMi in terms of speed by a large
margin; this finding does not seem to be specific to this particular problem and
holds for all ROA computation problems presented. Before solving, the problem
data was scaled such that the constraint sets become unit boxes.

x1

x2

u1

u2

Figure 3.6 – Acrobot – sketch

Table 3.4 – Acrobot – comparison of computation time of MOSEK and SeDuMi for
different degrees of the approximating polynomial. The “–” in the last cell signifies
that SeDuMi could not solve the problem.

degree 4 6 8

MOSEK 0.93 s 23.5 s 2029 s

SeDuMi 7.1 s 2775 s –

11Table 3.4 reports pure solver times, excluding the Yalmip parsing and preprocessing overhead,
using Apple iMac with 3.4 GHz Intel Core i7, 8 GB RAM, Mac OS X 10.8.3 and Matlab 2012a.
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3.1. Region of attraction & Reachable set

Figure 3.7 – Acrobot – section for x4 = 0 of the semialgebraic outer approximations
of degree k ∈ {6, 8}. Only the middle joint actuated – darker, smaller; both joints
actuated – lighter, larger. The states displayed x1, x2 and x3 are, respectively, the
lower pendulum angle, the upper pendulum angle and the lower pendulum angular
velocity.

3.1.9 Appendix

In this appendix we prove Theorem 3.2.5. In order to prove the theorem we rewrite
primal LMI problem (3.13) in a vectorized form as follows

p∗k = min c�y
s.t. Ay = b

e+Dy ∈ K,

(3.19)

where y := [y�, y�0 , y�T , ŷ
�
0 ]

� and K is a direct product of cones of positive
semidefinite matrices of appropriate dimensions, here corresponding to the moment
matrix and localizing matrix constraints. The notation e+Dy ∈ K means that
vector e + Dy contains entries of positive semidefinite moment and localizing
matrices, and by construction matrix D has full column rank (since a moment
matrix is zero if and only if the corresponding moment vector is zero). Dual LMI
problem (3.14) then becomes

d∗k = max b�x− e�z
s.t. A�x+D�z = c

z ∈ K,

(3.20)

57



Chapter 3. Set approximation

and we want to prove that p∗k = d∗k. The following instrumental result is a minor
extension of a classical lemma of the alternatives for primal LMI (3.19) and dual
LMI (3.20). The notation intK stands for the interior of K.

Lemma 3.1.3 If matrix D has full column rank, exactly one of these statements
is true:

• there exists x and z ∈ intK such that A�x+D�z = c

• there exists y �= 0 such that Ay = 0, Dy ∈ K and c′y ≤ 0.

Proof of Lemma 3.1.3: A classical lemma of alternatives states that if matrix D̄ has
full column rank, then either there exists z ∈ intK such that D̄�z = c̄ or there exists
ȳ such that D̄ȳ ∈ K and c̄�ȳ ≤ 0, but not both, see e.g. [Trn05, Lemma 2] for a
standard proof based on the geometric form of the Hahn-Banach separation theorem.
Our proof then follows from restricting this lemma of alternatives to the null-space
of matrix A. More explicitly, there exists x and z such that A�x+D�z = c if and
only if z is such that D̄�z = c̄ with D̄ = DF, c̄ = F�c for F a full-rank matrix
such that AF = 0. Matrix D̄ has full column rank since it is the restriction of the
full column rank matrix D to the null-space of A. �

Proof of Theorem 3.2.5: First notice that the feasibility set of LMI problem
(3.19) is nonempty and bounded. Indeed, a triplet of zero measures is a trivial
feasible point for (3.6) and hence (0, 0, 0, μleb) is feasible in (3.7); consequently a
concatenation of truncated moment sequences corresponding to the quadruplet of
measures (0, 0, 0, μleb) is feasible in (3.19) for each relaxation order k. Boundedness
of the even components of each moment vector follows from the structure of the
localizing matrices corresponding to the functions from Assumption 3.1.2 and from
the fact that the masses (zero-th moments) of the measures are bounded because
of the constraint μ0 + μ̂0 = μleb and because T < ∞. Boundedness of the whole
moment vectors then follows since the even moments appear on the diagonal of
the positive semidefinite moment matrices.

To complete the proof, we follow [Trn05, Theorem 4] and show that boundedness
of the feasibility set of LMI problem (3.19) implies existence of an interior point
for LMI problem (3.20), and then from standard SDP duality it follows readily
that p∗ = d∗ since D has a full column rank; see, e.g., [Trn05, Theorem 5] and
references therein.
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3.2. Maximum controlled invariant set

Let ȳ denote a point in the feasibility set of LMI problem (3.19), i.e. a vector
satisfying Aȳ = b and e +Dȳ ∈ K. Suppose that there is no interior point for
LMI problem (3.20), i.e. there is no x and z ∈ intK such that A′x +D′z = c.
Then from Lemma 3.1.3 there exists y �= 0 such that Ay = 0, Dy ∈ K and c′y ≤ 0.
It follows that there exists a ray ȳ + ty, t ≥ 0 of feasible points for LMI problem
(3.19), hence implying that the feasibility set is not bounded. �

3.2 Maximum controlled invariant set

The approach is developed in parallel for discrete and continuous time.

Discrete time

Consider the discrete-time controlled system

xt+1 = f(xt, ut), xt ∈ X, ut ∈ U, t ∈ {0, 1, . . .} (3.21)

with a given polynomial transition mapping f with entries fi ∈ R[x, u], i = 1, . . . , n,
and given compact12 basic semialgebraic state and input constraints

xt ∈ X := {x ∈ R
n : gXi(x) ≥ 0, i = 1, 2, . . . , nX},

ut ∈ U := {u ∈ R
m : gU i(u) ≥ 0, i = 1, 2, . . . , nU}

with gXi ∈ R[x], gU i ∈ R[u].

The maximum controlled invariant (MCI) set is defined as

X∞ :=

{
x0 ∈ X : ∃

(
{xt}∞t=1, {ut}∞t=1

)
s.t. xt+1 = f(xt, ut),

ut ∈ U, xt ∈ X, ∀t ∈ {0, 1, . . .}
}
.

A control sequence {ut}∞t=0 is called admissible if ut ∈ U for all t ∈ {0, 1, . . .}.
12The assumption of compactness is crucial for the subsequent theoretical developments. On

the other hand, the assumptions that the constraint sets are basic semialgebraic and the mapping
f polynomial plays no role in the infinite-dimensional considerations and only facilitates the
convergence results of the finite-dimensional relaxations. The above is valid for both discrete and
continuous time.
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Chapter 3. Set approximation

In words, the MCI set is the set of all initial states which can be kept inside the
constraint set X forever using admissible control inputs.

Continuous time

Consider the relaxed continuous-time controlled system

ẋ(t) ∈ conv f(x(t),U), x(t) ∈ X, t ∈ [0,∞), (3.22)

where conv denotes the convex hull13, f is a polynomial vector field with entries fi ∈
R[x, u], i = 1, . . . , n, and compact basic semialgebraic state and input constraint
sets are defined by

X := {x ∈ R
n : gXi(x) ≥ 0, i = 1, 2, . . . , nX},

U := {u ∈ R
m : gU i(u) ≥ 0, i = 1, 2, . . . , nU}

with gXi ∈ R[x], gU i ∈ R[u].

The maximum controlled invariant (MCI) set is defined as

X∞ :=

{
x0 ∈ X : ∃ x(·) s.t. ẋ(t) ∈ conv f(x(t),U) a.e., x(t) ∈ X ∀ t ∈ [0,∞)

}
,

where x(·) is required to be absolutely continuous and a.e. stands for “almost
everywhere” with respect to the Lebesgue measure on [0,∞).

In words, the MCI set is the set of all initial states for which there exists a trajectory
of the convexified inclusion (3.22) which remains in X forever.

3.2.1 Lifting: Primal LP

In this section we show how the MCI set computation problem can be cast as
an infinite-dimensional LP in the cone of nonnegative measures. The procedure
is completely analogous to Section 3.1.3 and hence we only outline it. Lifting of
the system dynamics (3.21) and (3.22) in continuous and discrete time, respec-
tively, are the corresponding discounted Liouville’s equations (2.43) and (2.28).
Analogously to Section 3.1.3 the problem of MCI set computation can be cast

13Since f is continuous and U compact, conv f(x,U) is necessarily compact and hence closure
is not required in (3.22) as opposed to Section 2.3.1 where f was not required to be continuous.

60



3.2. Maximum controlled invariant set

as an infinite-dimensional optimization problem with the decision variables being
the measures (μ, μ0) appearing in the Liouville’s equation and the objective being
the maximization of the support of the initial measure μ0. The non-convexity
of support maximization is than circumvented by maximizing the mass of the
initial measure μ0 subject to the constraint that it is dominated by the Lebesgue
measure, that is, μ0 ≤ μleb. State and input constraints are expressed through
constraints on the supports of the initial and occupation measure. The constraint
that μ0 ≤ μleb can be equivalently rewritten as μ0 + μ̂0 = μleb for some non-
negative slack measure μ̂0 ∈ M(X)+. This constraint is in turn equivalent to∫
X
w(x) dμ0(x) +

∫
X
w(x) dμ̂0(x) =

∫
X
w(x) dμleb(x) for all w ∈ C(X). These

considerations lead to the following primal LPs.

Discrete time

The primal LP in discrete time reads

p∗ = sup
μ,μ0,μ̂0

∫
X
1 dμ0

s.t.
∫
X×U

v dμ =
∫
X
v dμ0 + α

∫
X×U

v ◦ f dμ ∀ v ∈ C(X)∫
X
w dμ0 +

∫
X
w dμ̂0 =

∫
X
w dμleb ∀w ∈ C(X)

μ ∈ M(X×U)+,

μ0 ∈ M(X)+,

μ̂0 ∈ M(X)+,

(3.23)

where μleb denotes the Lebesgue measure on X and the first equality constraint
is precisely the discrete-time discounted Liouville’s equation (2.43). This is an
infinite-dimensional LP in the cone of nonnegative measures. The following crucial
theorem relates an optimal solution of this LP to the MCI set X∞.

Theorem 3.2.1 The optimal value of LP problem (3.23) is equal to the volume
of the MCI set X∞, that is, p∗ = μleb(X∞). Moreover, the supremum is attained
by the restriction of the Lebesgue measure to the MCI set X∞.

Proof: By definition of the MCI set X∞, for any initial condition x0 ∈ X∞
there exists an admissible control sequence such that the associated state sequence
remains in X. Therefore for any initial measure μ0 ≤ μleb with sptμ0 ⊂ X∞ there
exist a discounted occupation measure μ with sptμ ⊂ X×U and a slack measure
μ̂0 with spt μ̂0 ⊂ X such that the constraints of problem (3.23) are satisfied. One
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such measure μ0 is the restriction of the Lebesgue measure to X∞, and therefore
p∗ ≥ μleb(X∞). The fact p∗ ≤ μleb(X∞) follows from Lemma 3.2.1 below since the
first equality constraint of (3.23) is the discounted Liouville’s equation (2.43). �

The following lemma is a direct consequence of the superposition Theorem 2.3.4.

Lemma 3.2.1 For any pair of measures (μ0, μ) satisfying equation (2.43) with
sptμ0 ⊂ X and sptμ ⊂ U×X we have μleb(sptμ0) ≤ μleb(X∞).

Proof: Suppose that a pair of measures (μ0, μ) satisfies (2.43) and that μleb(sptμ0\
X∞) > 0. From Theorem 2.3.4 there is a family of trajectories of (3.21) starting
from μ0 with discounted occupation measure whose x-marginal coincides with the
x-marginal of μ. However, this is a contradiction since no trajectory starting from
sptμ0 \X∞ remains in X for all times and sptμ ⊂ X. Thus, μleb(sptμ0 \X∞) = 0

and so μleb(sptμ0) ≤ μleb(X∞). �

Continuous time

The primal LP in continuous time reads

p∗ = sup
μ,μ0,μ̂0

∫
X
1 dμ0

s.t. β
∫
X×U

v dμ =
∫
X
v dμ0 +

∫
X×U

∇v · f dμ ∀ v ∈ C1(X)∫
X
w dμ0 +

∫
X
w dμ̂0 =

∫
X
w dμleb ∀w ∈ C(X)

μ ∈ M(X×U)+,

μ0 ∈ M(X)+,

μ̂0 ∈ M(X)+,
(3.24)

where μleb denotes the Lebesgue measure on X and the first equality constraint
is precisely the continuous-time discounted Liouville’s equation (2.28). This is an
infinite-dimensional LP in the cone of nonnegative measures. The following crucial
theorem relates an optimal solution of this LP to the MCI set X∞.

Theorem 3.2.2 The optimal value of LP problem (3.24) is equal to the volume
of the MCI set X∞, that is, p∗ = μleb(X∞). Moreover, the supremum is attained
by the restriction of the Lebesgue measure to the MCI set X∞.

Proof: The fact that μ0 equal to the restriction of the Lebesgue measure to X∞ is
feasible in (3.24) (and therefore p∗ ≥ μleb(X∞)) follows by the same arguments as
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in discrete time. The fact that p∗ ≤ μleb(X∞) follows from Lemma 3.2.2 below since
the first equality constraint of (3.24) is the discounted Liouville’s equation (2.28).
�

The following lemma is a direct consequence of the superposition Theorem 2.3.2.

Lemma 3.2.2 For any pair of measures (μ0, μ) satisfying equation (2.28) with
sptμ0 ⊂ X and sptμ ⊂ U×X we have μleb(sptμ0) ≤ μleb(X∞).

Proof: Suppose that a pair of measures (μ0, μ) satisfies (2.28) and that μleb(sptμ0\
X∞) > 0. From Theorem 2.3.2 there is a family of trajectories of (3.22) starting
from μ0 with discounted occupation measure whose x-marginal coincides with the
x-marginal of μ. However, this is a contradiction since no trajectory starting from
sptμ0 \X∞ remains in X for all times and sptμ ⊂ X. Thus, μleb(sptμ0 \X∞) = 0

and so μleb(sptμ0) ≤ μleb(X∞). �

3.2.2 Lifting: Dual LP

In this section we derive LPs dual to the primal LPs (3.23) and (3.24). Since
the primal LPs are in the space of measures, the dual LPs will be on the space
of continuous functions. Super-level sets of feasible solutions to these LPs then
provide outer approximations to the MCI sets, both in discrete and in continuous
time. As in Section 3.1, both duals are derived by standard infinite-dimensional
LP duality theory (see Appendix A.2 for a brief introduction).

Discrete time

The dual LP in discrete time reads

d∗ = inf
v,w

∫
X

w(x) dμleb(x)

s.t. v − α · v ◦ f ∈ C(X×U)+
w − v − 1 ∈ C(X)+
w ∈ C(X)+

(3.25)

where the infimum is over the pair of functions (v, w) ∈ C(X)× C(X).
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The following key observation shows that the unit super-level set of any function
w feasible in (3.25) provides an outer-approximation to X∞.

Lemma 3.2.3 Any feasible solution to problem (3.25) satisfies v ≥ 0, w ≥ 1 on
X∞ and w ≥ IX∞ on X.

Proof: Given any x0 ∈ X∞ there exists a sequence {ut}∞t=0, ut ∈ U, such
that xt ∈ X for all t. The first constraint of problem (3.25) is equivalent to
αv(xt+1) ≤ v(xt), t ∈ {0, 1, . . .}. By iterating this inequality we get

v(x0) ≥ αtv(xt) → 0 as t → ∞

since xt ∈ X and X is bounded. Therefore v(x0) ≥ 0 and w(x0) ≥ 1 for all
x0 ∈ X∞. The fact that w ≥ IX∞ on X then follows from the last constraint
of (3.25). �

The following theorem is instrumental in proving the convergence results of Sec-
tion 3.2.3.

Theorem 3.2.3 There is no duality gap between primal LP problems (3.23) on
measures and dual LP problem (3.25) on functions in the sense that p∗ = d∗.

Proof: Follows by the same arguments as Theorem 3.1.2 using standard infinite-
dimensional LP duality theory (see Appendix A.2) and the fact that the feasible
set of the primal LP is nonempty and bounded (in the total variation norm on
M(X × U) × M(X) × M(X)). To see non-emptiness, notice that the vector of
measures (μ0, μ, μ̂0) = (0, 0, μleb) is trivially feasible. To see the boundedness, it
suffices to evaluate the equality constraints of (3.23) for v(x) = w(x) = 1. This
gives μ0(X) + μ̂0(X) = μleb(X) < ∞ and μ(X) = μ0(X)/(1 − α), which, since
α ∈ (0, 1) and all measures are nonnegative, proves the assertion. �
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Continuous time

The dual LP in continuous time reads

d∗ = inf
v,w

∫
X

w(x) dμleb(x)

s.t. βv −∇v · f ∈ C(X×U)+
w − v − 1 ∈ C(X)+
w ∈ C(X)+

(3.26)

where the infimum is over the pair of functions (v, w) ∈ C1(X)× C(X).

The following key observation shows that the unit super-level set of any function
w feasible in (3.26) provides an outer-approximation to X∞.

Lemma 3.2.4 Any feasible solution to problem (3.26) satisfies v ≥ 0, w ≥ 1 on
X∞ and w ≥ IX∞ on X.

Proof: Given any x0 ∈ X∞ there exists an admissible relaxed control function
γt(·), γt(U) = 1, such that x(t) ∈ X for all t. For that x(t) we have d

dt
v(x(t)) =∫

U
∇v · f(x(t), u) dγt(u) ≤

∫
U
βv(x(t)) dγt(u) = γt(U)βv(x(t)) = βv(x(t)). Then

by Gronwall’s inequality v(x(t)) ≤ eβtv(x0), and consequently

v(x0) ≥ e−βtv(x(t)) → 0 as t → ∞

since x(t) ∈ X and X is bounded. Therefore v(x0) ≥ 0 and w(x0) ≥ 1 for all
x0 ∈ X∞. The fact that w ≥ IX∞ on X then follows from the last constraint
of (3.26). �

The following theorem is instrumental in proving the convergence results of Sec-
tion 3.2.3.

Theorem 3.2.4 There is no duality gap between primal LP problems (3.24) on
measures and dual LP problem (3.26) on functions in the sense that p∗ = d∗.

Proof: Follows by the same arguments as Theorem 3.1.2 using standard infinite-
dimensional LP duality theory (see Appendix A.2) and the fact that the feasible
set of the primal LP is nonempty and bounded (in the total variation norm on
M(X × U) × M(X) × M(X)). To see non-emptiness, notice that the vector of
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measures (μ0, μ, μ̂0) = (0, 0, μleb) is trivially feasible. To see the boundedness, it
suffices to evaluate the equality constraints of (3.24) for v(x) = w(x) = 1. This
gives μ0(X) + μ̂0(X) = μleb(X) < ∞ and μ(X) = μ0(X)/β, which, since β > 0 and
all measures are nonnegative, proves the assertion. �

3.2.3 SDP approximations

In this section we formulate finite-dimensional SDP relaxations of the primal
infinite-dimensional LPs (3.23) and (3.24) and finite-dimensional SDP tightenings
of the dual LPs (3.25) and (3.26). In complete analogy to Section 3.1.5, these
approximations are derived readily using the results of Section 2.2.2 and 2.2.1 on
finite-dimensional SDP approximation of the cone of nonnegative measures from
the outside and the cone of nonnegative functions from the inside in conjunction
with truncating the infinite-dimensional linear eqauality constraints of (3.23) and
(3.24) by enforcing it only for polynomial test functions up to a prescribed degree.

Discrete time

The equality constraint of (3.23)∫
X×U

v(x) dμ(x, u) =

∫
X

v(x) dμ0(x) + α

∫
X×U

v(f(x, u)) dμ(x, u) ∀ v ∈ C(X),

∫
X

w(x) dμ0(x) +

∫
X

w(x) dμ̂0(x) =

∫
X

w(x) dμleb(x) ∀w ∈ C(X)

is truncated by enforcing it only for the particular choice of test functions v(x) = xα

and w(x) = xβ for all α ∈ N
n such that |α| ≤ kv and |β| ≤ k, where

kv :=

⌊
k

deg f

⌋
.

The resulting finite-dimensional truncation of this linear system of equations is
denoted by

Ak(y,y0, ŷ0) = bk,

where y, y0 and ŷ0 represent the truncated moment sequences of the measures
(μ, μ0, μ̂0).

Combining this truncation with the results of Section 2.2.2, the primal relaxation
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of degree k in discrete time reads

p∗k = max
y,y0,ŷ0

(y0)0

s.t. Ak(y,y0, ŷ0) = bk
y ∈ M sup

k (X×U)+
y0 ∈ M sup

k (X)+,

ŷ0 ∈ M sup
k (X)+,

(3.27)

where the truncated moment M sup
k (·)+ cone is defined in (2.13) and the objective

function is the first element (i.e., the mass) of the truncated moment sequence
y0 corresponding to the initial measure. In problem (3.27), a linear objective is
minimized subject to SDP representable conic inclusions and therefore problem
(3.27) translates to a semidefinite program (SDP). The constraint set of (3.27)
is looser than that of (3.23) in the sense the the truncated moment sequences
associated to any triple of measure (μ, μ0, μ̂0) feasible in (3.23) are also feasible
in (3.27) but the converse is not true in general. However, the discrepancy between
the two constraint sets monotonically vanishes as the relaxation degree k tends to
infinity (see Theorem 3.2.5).

Using the results of Section 2.2.1, we immediately arrive at a degree-k SDP
tightening of (3.25), which is also the SDP dual to (3.27):

d∗k = inf
v∈R[x]kv ,w∈R[x]k

w�l

s.t. v − α · v ◦ f ∈ Qk(X×U)

w − v − 1 ∈ Qk(X)

w ∈ Qk(X),

(3.28)

where l is the vector of Lebesgue moments over X indexed in the same basis in
which the polynomial w(x) with coefficients w is expressed and the quadratic
module Qk(·) is defined in (2.8). In problem (3.28), a linear objective function is
minimized subject to the inclusion into an SDP representable cone and hence this
problem translates to an SDP. The constraint set of problem (3.28) is tighter than
that of (3.25) in the sense that any pair of functions (v, w) feasible in (3.28) is also
feasible in (3.25) but the converse is not true in general. However, the discrepancy
between the two constraint sets monotonically vanishes as the degree k tends to
infinity (see Theorem 3.2.5 below).
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Continuous time

The equality constraint of (3.24)

β

∫
X×U

v(x) dμ(x, u) =

∫
X

v(x) dμ0(x)+

∫
X×U

∇v · f(x, u) dμ(x, u) ∀ v ∈ C1(X).

∫
X

w(x) dμ0(x) +

∫
X

w(x) dμ̂0(x) =

∫
X

w(x) dμleb(x) ∀w ∈ C(X)

is truncated by enforcing it only for the particular choice of test functions v(x) = xα

and w(x) = xβ for all α ∈ N
n such that |α| ≤ kv and |β| ≤ k, where

kv := k − deg f + 1.

The resulting finite-dimensional truncation of this linear system of equations is
denoted by

Ak(y,y0, ŷ0) = bk,

where y, y0 and ŷ0 represent the truncated moment sequences of the measures
(μ, μ0, μ̂0).

Combining this truncation with the results of Section 2.2.2, the primal relaxation
of order k in discrete time reads

p∗k = max
y,y0,ŷ0

(y0)0

s.t. Ak(y,y0, ŷ0) = bk
y ∈ M sup

k (X×U)+
y0 ∈ M sup

k (X)+,

ŷ0 ∈ M sup
k (X)+,

(3.29)

where the truncated moment M sup
k (·)+ cone is defined in (2.13) and the objective

function is the first element (i.e., the mass) of the truncated moment sequence
y0 corresponding to the initial measure. In problem (3.27), a linear objective is
minimized subject to SDP representable conic inclusions and therefore problem
(3.27) translates to a semidefinite program (SDP). The constraint set of (3.29)
is looser than that of (3.24) in the sense the the truncated moment sequences
associated to any triple of measure (μ, μ0, μ̂0) feasible in (3.24) are also feasible
in (3.29) but the converse is not true in general. However, the discrepancy between
the two constraint sets monotonically vanishes as the relaxation degree k tends to
infinity (see Theorem 3.2.5).
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Using the results of Section 2.2.1, we immediately arrive at a degree-k SDP
tightening of (3.26), which is also the SDP dual to (3.29):

d∗k = inf
v∈R[x]kv ,w∈R[x]k

w�l

s.t. βv −∇v · f ∈ Qk(X×U)

w − v − 1 ∈ Qk(X)

w ∈ Qk(X),

(3.30)

where l is the vector of Lebesgue moments over X indexed in the same basis in
which the polynomial w(x) with coefficients w is expressed and the quadratic
module Qk(·) is defined in (2.8). In problem (3.30), a linear objective function is
minimized subject to the inclusion into an SDP representable cone and hence this
problem translates to an SDP. The constraint set of problem (3.30) is tighter than
that of (3.26) in the sense that any pair of functions (v, w) feasible in (3.30) is also
feasible in (3.26) but the converse is not true in general. However, the discrepancy
between the two constraint sets monotonically vanishes as the degree k tends to
infinity (see Theorem 3.2.5 below).

3.2.4 Convergence results

In this section we state several convergence results for the finite dimensional
relaxations resp. tightenings (3.27), (3.29) resp. (3.28), (3.30). Let wk and vk
denote an optimal solution to the degree k dual SDP approximation (3.28) or
(3.30), and define

X∞,k := {x ∈ X : vk(x) ≥ 0}.

Then, in view of Lemmas 3.2.3 and 3.2.4, we know that wk over-approximates the
indicator function of the MCI set X∞ on X, i.e., wk ≥ IX∞ on X, and that the
sets X∞,k approximate from the outside the MCI set X∞, i.e., X∞,k ⊃ X∞. In
the sequel we prove the following:

• The optimal values of the finite-dimensional primal and dual problems p∗k
and d∗k coincide and converge to the optimal values of the infinite dimensional
primal and dual LPs p∗ and d∗ which also coincide (in view of Theorems 3.2.3
and 3.2.4) and are equal to the volume of the MCI set.

• The sequence of functions wk converges on X from above to the indicator
function of the MCI set in L1 norm. In addition, the running minimum
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mini≤k wi converges on X from above to the indicator function of the MCI
set set in L1 norm and almost uniformly.

• The sequence of sets X∞,k converges to the MCI set X∞ in the sense that
the volume discrepancy tends to zero, i.e., limk→∞ μleb(X∞,k \X∞) = 0.

The proofs of the results follow very similar reasoning as the results on region of
attraction approximations in Section 3.1.

Lemma 3.2.5 There is no duality gap between primal SDP problems (3.27 and
3.29) and dual SDP problems (3.28 and 3.30), i.e. p∗k = d∗k.

Proof: The proof is similar to the proof of Theorem 3.2.5 and therefore we only
outline the key points. To prove the absence of duality gap, it is sufficient to show
that the feasible sets of the primal SDPs (3.27) and (3.29) are non-empty and
compact. The result then follows by standard SDP duality theory (see the proof
of Theorem 3.2.5 for a detailed argument). The non-emptiness follows trivially
since the vector of measures (μ0, μ, μ̂) = (0, 0, μleb) is feasible in the primal infinite-
dimensional LPs (3.23) and (3.24) and therefore the truncated moment sequences
corresponding to these measures are feasible in the primal SDP relaxations (3.27)
and (3.29). To see the compactness observe that the first components (i.e., masses)
of the truncated moment vectors y0, y and ŷ0 are bounded. This follows by
evaluating the equality constraints of (3.23) and (3.24) for w(x) = v(x) = 1.
Indeed, in discrete-time we get (y)0 = (y0)0/(1− α) and in continuous-time we get
(y)0 = (y0)0/β; in addition, in both cases we have (y0)0+(ŷ0)0 = μleb(X) < ∞ and
therefore the first components are indeed bounded (since they are trivially bounded
from below, in fact nonnegative, due to the constraints on moment matrices).
Boundedness of the even components of each truncated moment vector then follows
from the structure of the localizing matrices corresponding to the functions from
Assumption 3.1.2. Boundedness of the entire truncated moment vectors then
follows since the even moments appear on the diagonal of the positive semidefinite
moment matrices. �

The following result shows the convergence of the optimal values of the finite-
dimensional relaxations / approximations to the optimal values of the infinite-
dimensional LPs.

Theorem 3.2.5 The sequence of infima of SDP problems (3.28) and (3.30) con-
verges monotonically from above to the supremum of the LP problems (3.25) and
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(3.26), i.e., d∗ ≤ d∗k+1 ≤ d∗k and limk→∞ d∗k = d∗ = p∗. Similarly, the sequence of
maxima of SDP problems (3.27) and (3.29) converges monotonically from above
to the maximum of the LP problems (3.23) and (3.24), i.e., p∗ ≤ p∗k+1 ≤ p∗k and
limk→∞ p∗k = p∗ = d∗.

Proof: The monotonicity of the optimal values of the relaxations p∗k resp. approx-
imations d∗k is evident form the structure of the feasible sets of the corresponding
SDPs. The convergence of the primal relaxations pk to p∗ follows from the com-
pactness of the feasible sets of the primal SDPs (3.27) and (3.29) (shown in the
proof of Lemma 3.2.5) by standard arguments on the convergence of Lasserre’s
SDP hierarchy (see, e.g., [Las09]). The converge of the optimal value of the dual
approximations d∗k to d∗ then follows from Lemma 3.2.5. The equality between p∗

and d∗ is the statement of Theorems 3.2.3 and 3.2.4. �

The next theorem shows functional convergence from above to the indicator function
of the MCI set.

Theorem 3.2.6 Let wk ∈ Rk[x] denote the w-component of a solution to the dual
SDP problems (3.28) or (3.30) and let w̄k(x) = mini≤k wi(x). Then wk converges
from above to IX∞ in L1 norm, i.e.,

lim
k→∞

∫
X

wk(x)− IX∞ dx = 0.

In addition w̄k converges to IX∞ from above both in L1 norm and almost uniformly14.

Proof: The convergence in L1 norm follows immediately from Theorem 3.2.5 and
from the fact that wk ≥ IX∞ by Lemmas 3.2.3 and 3.2.4. The convergence of the
running minima follows from the fact that there exists a subsequence of {wk}∞k=0

which converges almost uniformly (by, e.g., [Ash78, Theorems 2.5.2 and 2.5.3]). �

Our last theorem shows a set-wise convergence of the outer-approximations to the
MCI set.

Theorem 3.2.7 Let (vk, wk) ∈ Rkv [x]× Rk[x] denote an optimal solution to the
dual SDP problem (3.28) or (3.30) and let X∞,k := {x ∈ R

n : vk(x) ≥ 0}. Then

14A sequence of functions wk converges almost uniformly if ∀ ε > 0, ∃B ⊂ X, μleb(B) < ε, such
that wk → w uniformly on X\B. Note that almost uniform convergence implies convergence
almost everywhere [Ash78, Theorem 2.5.2]
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X∞ ⊂ X∞,k,

lim
k→∞

μleb(X∞,k \X∞) = 0 and μleb(∩∞
k=1X∞,k \X∞) = 0.

Proof: From Lemmas 3.2.3 or 3.2.4 we have X∞,k ⊃ X∞ and wk ≥ IX∞ ;
therefore, since w ≥ v + 1 and w ≥ 0 on X, we have wk ≥ IX∞,k

≥ IX∞ and
{x : wk(x) ≥ 1} ⊃ X∞,k ⊃ X∞. From Theorem 3.2.6, we have wk → IX∞ in L1

norm on X. Consequently,

μleb(X∞) =

∫
X

IX∞ dμleb = lim
k→∞

∫
X

wk dμ
leb ≥ lim

k→∞

∫
X

IX∞,k
dμleb

= lim
k→∞

μleb(X∞,k) ≥ lim
k→∞

μleb(∩k
i=1X∞,i) = μleb(∩∞

k=1X∞,k).

But since X∞ ⊂ X∞,k for all k, we must have

lim
k→∞

μleb(X∞,k) = μleb(X∞) and μleb(∩∞
k=1X∞,k) = μleb(X∞),

and the theorem follows. �

3.2.5 Numerical examples

In this section we present numerical examples that illustrate our results. The
primal SDP relaxations were modeled using Gloptipoly 3 [HLL09] and the dual
SOS problems using Yalmip [Löf04]. The resulting SDP problems were solved
using SeDuMi [PTZ07] (which, in the case of primal relaxations, also returns the
dual solution providing the outer approximations). For numerical computation
(especially for higher relaxation orders), the problem data should be scaled such that
the constraint sets are (within) unit boxes or unit balls; for ease of reproduction,
most of the numerical problems shown are already scaled. On our problem class we
observed only marginal sensitivity to the values of the discrete- and continuous-time
discount factors α and β and report results with α = 0.9 and β = 1 for all examples
presented.

For a discussion on the scalability of our approach and the performance of alternative
SDP solvers see the acrobot-on-a-cart example below and Chapter 6.

Discrete time
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3.2. Maximum controlled invariant set

Double integrator Consider the discrete-time double integrator:

x+
1 = x1 + 0.1x2

x+
2 = x2 + 0.05u

with the state constraint set X = [−1, 1]2 and input constraint set U = [−0.5, 0.5].
The resulting of MCI set outer approximations of degree 8 and 12 are shown in
Figure 3.8; the approximation is fairly tight for modest degrees. The true MCI set
was computed using the standard algorithm based on polyhedral projections [Bla99].

Cathala system Consider the Cathala system borrowed from [KK11]:

x+
1 = x1 + x2

x+
2 = −0.5952 + x2 + x2

1.

The chaotic attractor of this system is contained in the set X = [−1.6, 1.6]2. MCI
set outer approximations are shown in Figure 3.9; again, the approximations are
relatively tight for small relaxation orders. The true MCI set was (approximately)
computed by gridding.
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0.8

1

x x

k = 8 k = 12

Figure 3.8 – Discrete time double integrator – polynomial outer approximations
(light gray) to the MCI set (dark gray) for degrees k ∈ {8, 12}.

Julia sets Consider over z ∈ C, or equivalently over x ∈ R
2 with z := x1 + ix2,

the quadratic recurrence

z+ = z2 + c
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−1.5 −1 −0.5 0 0.5 1 1.5
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−0.5

0
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1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x x

k = 6 k = 10

Figure 3.9 – Cathala system – polynomial outer approximations (light gray) to the MCI
set (dark gray) for degrees k ∈ {6, 10}.

with c ∈ C a given complex number and i the imaginary unit. The filled Julia set
is the set of all initial conditions of the above recurrence for which the trajectories
remain bounded. The shape of the Julia set depends strongly on the parameter c. If
c lies inside the Mandelbrot set, then the Julia set is connected; otherwise the set is
disconnected. In both cases the boundary of the set has a very complicated (in fact
fractal) structure. Here we shall compute outer approximations of the filled Julia set
intersected with the unit ball. To this end we set X = {x ∈ R

2 : ‖x‖ ≤ 1}. Figure
3.10 shows outer approximations of degree 12 for parameter values c = −0.7 + i0.2

(inside the Mandelbrot set) and c = −0.9 + i0.2 (outside the Mandelbrot set). The
“true” filled Julia set was (approximately) obtained by randomly sampling initial
conditions within the unit ball and iterating the recurrence for one hundred steps.
Taking higher degree of the approximating polynomials does not give significant
improvements due to our choice of the monomial basis to represent polynomials.
An alternative basis (e.g. Chebyshev polynomials – see the related discussions in
[HLS09] in Section 3.1) would allow us to improve further the outer estimates and
better capture the intricate structure of the filled Julia set’s boundary.

Hénon map Consider the modified controlled Hénon map

x+
1 = 0.44− 0.1x3 − 4x2

2 + 0.25u,

x+
2 = x1 − 4x1x2,

x+
3 = x2,
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c = −0.7 + i0.2 c = −0.9 + i0.2

Figure 3.10 – Filled Julia set – polynomial outer approximation of degree 12 (light gray)
and (an approximation of) the “true” set (dark grey) represented as an ensemble of initial
conditions randomly sampled within the state-constraint set. The dashed line shows the
boundary of the unit-ball state-constraint set.

adapted from [LZFQ12] with X = [−1, 1]3 and U = [−umax, umax]. We investigate
two cases: uncontrolled (i.e., umax = 0) and controlled with umax = 1. Figure 3.11
shows outer approximations to the MCI set of degree eight for both settings and
the “true” MCI set in the uncontrolled setting (approximately) obtained by random
sampling of initial conditions inside the constraint set X. The outer approximations
suggest that, as expected, allowing for control leads to a larger MCI set.

Continuous time

Double integrator Consider the continuous-time double integrator

ẋ1 = x2

ẋ2 = u,

with state constraint set X = [−1, 1]2 and input constraint set U = [−1, 1]. The
resulting MCI set outer approximations for degrees 8 and 12 are in Figure 3.12. The
approximations are fairly tight even for relatively low relaxation orders. The true
MCI set was (approximately) computed as in Section 3.2.5 by methods of [Bla99]
after dense time discretization.
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Figure 3.11 – Controlled Hénon map – polynomial outer approximation of degree eight
in the uncontrolled setting (darker red, smaller) and in the controlled setting (lighter
red, larger). The (approximation of) the “true” set (black) in the uncontrolled setting
is represented as an ensemble of initial conditions randomly sampled within the state-
constraint set.

Spider-web system As our second example we take the spider-web system
from [Ahm08] given by equations

ẋ1 = −0.15x7
1 + 200x6

1x2 − 10.5x5
1x

2
2 − 807x4

1x
3
2 + 14x3

1x
4
2 + 600x2

1x
5
2 − 3.5x1x

6
2 + 9x7

2

ẋ2 = −9x7
1 − 3.5x6

1x2 − 600x5
1x

2
2 + 14x4

1x
3
2 + 807x3

1x
4
2 − 10.5x2

1x
5
2 − 200x1x

6
2 − 0.15x7

2

with the constraint set X = [−1, 1]2. Here we exploit the fact that the system
dynamics are captured by constraints on v only whereas w is merely over approxi-
mating v + 1, and the fact that outer approximations to the MCI set are given not
only by {x : v(x) ≥ 0} but also by {x : w(x) ≥ 1}. Therefore, if low-complexity
outer approximations are desired, it is reasonable to choose different degrees of v
and w in (3.30) – high for v and lower for w – and use the set {x : w(x) ≥ 1} as
the outer approximation. That way, we expect to obtain relatively tight low-order
approximations. This is confirmed by numerical results shown in Figure 3.13. The
degree of v is equal to 16 for both figures, whereas degw = 8 for the left figure
and degw = 16 for the right figure. We observe no significant loss in tightness by
choosing a smaller degree of w. The true MCI set was (approximately) computed
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Figure 3.12 – Continuous-time double integrator – polynomial outer approximations
(light gray) to the MCI set (dark gray) for degrees k ∈ {8, 14}.

by gridding.
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Figure 3.13 – Spider-web system – polynomial outer approximations (light gray) to the
MCI set (dark gray) for degrees deg v = 16 and degw = 8 on the left and degw = 16 on
the right.

Acrobot on a cart As our last example we consider the acrobot on a cart system
adapted from [JJ10], which is essentially a double pendulum on a cart where the
inputs are the force acting on the cart and the torque in the middle joint of the
double pendulum. The system is sketched in Figure 3.14. It is a sixth order system
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with with two control inputs; the dynamic equation is given by

ẋ =

⎡
⎢⎢⎢⎣

x4

x5

x6

M(x)−1N(x, u)

⎤
⎥⎥⎥⎦ ∈ R

6

where

M(x) =

⎡
⎣ a1 a2 cos x2 a3 cos x3

a2 cos x2 a4 a5 cos(x2 − x3)

a3 cos x3 a5 cos(x2 − x3) a6

⎤
⎦

and

N(x, u) =

⎡
⎣ u1 + a2x

2
5 sin x2 + a3x

2
6 sin x3 − δ0x4

−a5x
2
6 sin(x2 − x3) + δ2x6 + a7 sin x2 − x5(δ1 + δ2)

u2 + a5 sin(x2 − x3)x
2
5 + δ2x5 − δ2x6 + a8 sin x3

⎤
⎦ .

The states x1, x2, x3 represent, respectively, the position of the cart (in meters),
the angle of the lower rod and the angle of the upper rod of the double pendulum
(both in radians); the states x4, x5 and x6 are then the corresponding velocities
in meters per second for the cart and radians per second for the pendulum rods.
The constants are given by a1 = 0.85, a2 = 0.2063, a3 = 0.0688, a4 = 0.0917,
a5 = 0.0344, a6 = 0.0229, a7 = 2.0233, a8 = 0.6744, δ0 = 0.3, δ1 = 0.1, δ2 = 0.1.
We are interested in computing the maximum controlled invariant subset of the
state constraint set

X = [−1, 1]× [−π/3, π/3]× [−π/3, π/3]× [−0.5, 0.5]× [−5, 5]× [−5, 5].

We investigate two cases. First, we consider the situation where only the middle
joint is actuated and there is no force on the cart; therefore we impose the constraint
(u1, u2) ∈ U = {0} × [−1, 1]. Second, we consider the situation where we can also
exert a force on the cart; in this case we impose (u1, u2) ∈ U = [−1, 1]× [−1, 1].
Naturally, the MCI set for the second case is larger (or at least the same) as
for the first case. This is confirmed15 by outer approximations of degree four
whose section for x1 = 0, x4 = 0, x5 = 0 is shown in Figure 3.15. In order to
compute the outer approximations we took a third order Taylor expansion of the
non-polynomial dynamics even though exact treatment would be possible via a
coordinate transformation leading to rational dynamics to which our methods
can be readily extended; this extension is, however, not treated in this thesis and
therefore we opted for the simpler (and non-exact) approach using Taylor expansion.

15There is no a priori guarantee on set-wise ordering of the outer approximations; what is
guaranteed is the ordering of optimal values of the optimization problems (3.29) or (3.30).
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Before solving the problem we made a linear coordinate transform so that the state
constraint set becomes the unit hypercube [−1, 1]6.

This example, which is the largest of those considered in this section, took 110
seconds to solve16 with SeDuMi for k = 4; the corresponding time with the MOSEK
SDP solver was 10 seconds. Using MOSEK we could also solve this example for
k = 6 (in 420 seconds) although there the solver converged to a solution with a
rather poor accuracy17 and therefore we do not report the results.

x1

u1

u2x2

x3

Figure 3.14 – Acrobot on a cart – sketch

16All examples were run on an Apple iMac with 3.4 GHz Intel Core i7, 8 GB RAM and Mac
OS X 10.8.2. The time reported is the pure solver time, not including the Yalmip preprocessing
time.

17Note that the MOSEK SDP solver is still being developed and its accuracy is likely to improve
in the future.
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x3
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x6 = ẋ3

−π/2 −π/4
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π/2 −π/2
−π/4

0
π/4

π/2
−1

−0.5

0
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1

Figure 3.15 – Acrobot on a cart – section of the polynomial outer approximations of
degree four for (x1, x4, x5) = (0, 0, 0). Only the middle joint actuated – darker, smaller;
middle joint and the cart actuated – lighter, larger. The states displayed x2, x3 and x6
are, respectively, the lower pendulum angle, the upper pendulum angle and the upper
pendulum angular velocity.
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Optimal control

In this chapter we use the lift-plus-approximate scheme for infinite-horizon dis-
counted optimal control problems. The main contribution is a hierarchy of SDP
tightenings to the lifted problem whose solutions provide a sequence of rational
feedback controllers which is proven to be asymptotically optimal, under certain
technical conditions. In addition, we describe converging SDP hierarchies of ap-
proximations, from above and from below, to the value function attained in an
optimal control problem by any given rational feedback controller as well as an
SDP hierarchy providing lower bounds on the optimal value function. This value
function approximations can serve as performance certificates of the designed
controllers or of any given rational controller.

The novelty is in tightening the Liouville’s equation (by optimizing over measures
having polynomial densities) rather than relaxing it (as was done, e.g., in [LHPT08]),
which facilitates theoretical analysis of the extracted controllers, but also brings
about additional technical difficulties. In particular, the discounted Liouville’s
equation (2.28) is not suitable for this purpose since measures with polynomial
densities (of arbitrarily large degrees) satisfying this equation may not exist. Hence,
we resort to an alternative formulation of the optimal control problem by introducing
stopping, which leads to the stopped discounted Liouville’s equation (2.32) for
which solutions with polynomial densities exist. Importantly, this alternative
formulation is in a well-defined sense equivalent to the original one.

The results of this chapter can be seen as generalization of the stabilizing controller
design procedure of [PPR04] to the optimal control setting (with convergence
analysis) or as a generalization of the results of [Las11] from the setting of static
polynomial optimization to the setting of optimal control.

81



Chapter 4. Optimal control

The method presented here is also related to [RV14], where, however, the approx-
imation step of the lift-plus-approximate procedure is carried out using spacial
discretization rather than using moment-sum-of-squares hierarchies, no state con-
straints are considered and no convergence guarantees are given.

4.1 Problem statement

We consider the continuous-time input-affine1 controlled dynamical system

ẋ(t) = f(x(t)) +
m∑
i=1

fui(x(t))ui(t), (4.1)

where x ∈ R
n is the state, u ∈ R

m is the control input, and the data are polynomial:
f ∈ R[x]n, fui ∈ R[x]n, i = 1, . . . ,m. The system is subject to semi-algebraic state
and box2 input constraints

x(t) ∈ X := {x ∈ R
n | gi(x) ≥ 0, i = 1, . . . , ng}, (4.2a)

u(t) ∈ U := [0, ū]m, (4.2b)

where g ∈ R[x]ng and ū > 0. The set X is assumed compact and the polynomials
defining X are assumed to be such that

ḡ(x) :=

ng∏
i=1

gi(x) > 0 ∀x ∈ X◦, (4.3)

where X◦ denotes the (topological) interior of X.

Since X is assumed compact, we also assume, without loss of generality, that the
inequalities defining the sets X contain the inequality N − ‖x‖2 ≥ 0 for some
N ≥ 0, which implies the Archimedianity condition (see Definition 1).

1Any dynamical system ẋ = f(x, u) depending nonlinearly on u can be transformed to the

input-affine form by using state inflation
[
ẋ
u̇

]
=

[
f(x, u)

ũ

]
, where u is now a part of the state and

ũ a new control input; constraints on ũ then correspond to rate constraints on u. Similarly, cost
functions depending non-linearly on u in problem (4.4) can be handled using state inflation in
exactly the same fashion.

2Any box can be affinely transformed to [0, ū]m. For an axis-aligned box given by a vector
of lower bounds lb ∈ R

m and a vector of upper bounds ub ∈ R
m one such transformation is

u = ū−1diag(ub − lb)ũ + lb with ũ ∈ [0, ū]m. The general, non-axis-aligned, case follows by
composing with appropriate rotation matrices.
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The goal of this chapter is to (approximately) solve for all x0 ∈ X the following
optimal control problem (OCP):

V (x0) := inf
u(·),τ

∫ τ
0
e−βt[lx(x(t)) +

∑m
i=1 lui(x(t))ui(t)] dt+ e−βτM

s.t. x(t) = x0 +
∫ t
0
f(x(s)) +

∑m
i=1 fui(x(s))ui(s) ds,

(x(t), u(t)) ∈ X×U ∀t ∈ [0, τ ]

u ∈ L([0, τ ];Rm), τ ∈ [0,∞],

(4.4)

where β > 0 is a given discount factor and M is a constant chosen such that

M > β−1 sup
x∈X,u∈U

{l(x, u)}, (4.5)

where the joint stage cost

l(x, u) := lx(x) +
m∑
i=1

lui(x)ui (4.6)

is, without loss of generality, assumed to be nonnegative on X×U. The state and
input stage cost functions lx and lui , i = 1, . . . ,m, are assumed to be polynomial.
The function τ in OCP (4.4) is referred to as a stopping time; the optimization
is therefore both over the control input u and over the final time τ , which can be
finite or infinite and can depend on the initial condition x0.

The function x �→ V (x) in (4.4) is called the value function. The reason for choosing
the slightly non-standard objective function in (4.4) is twofold. First, with this
objective function the value function V is bounded (by M from above and by
zero from below) on X. Second, the value function V coincides with the value
function associated to the more traditional3 discounted infinite-horizon optimal
control problem for all initial conditions x0 ∈ X for which the trajectories can be
kept within the state constraint set X forever using admissible controls, i.e., for all
x0 in the maximum control invariant set associated to the dynamics (4.1) and the
constraints (4.2). To see the first claim, set τ = 0 for all x0 ∈ X. To see the second
claim notice that with M chosen as in (4.5), it is always beneficial to continue the
time evolution whenever possible and therefore τ = +∞ for all x0 in the maximum
controlled invariant set associated to (4.1) and (4.2).

3By more traditional we mean a discounted optimal control problem with cost∫∞
0

e−βtl(x(t), u(t)) dt and no stopping.
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The use of stopping times is very common in stochastic systems literature (see, e.g.,
[PS06]). Here, however, we use stopping times mostly for mathematical reasons4.

Remark 4.1.1 A constant M satisfying (4.5) can be found either by analyti-
cally evaluating the supremum in (4.5) or by using the SDP relaxation techniques
of [Las01] to find an upper bound.

Given a Lipschitz continuous feedback controller u ∈ C(X;U) and a stopping
function τ ∈ L(X; [0,∞]) such that the unique solution to (4.1) is contained in X

for all t ∈ [0, τ(x0)] and all x0 ∈ X, we let

Vu,τ ∈ L(X; [0,∞])

denote the value function attained by (u, τ) in (4.4), i.e., setting u(t) = u(x(t))

and τ = τ(x0). By Vu we denote the value function Vu,τ�u , where τ �u ∈ L(X; [0,∞])

is the optimal stopping function associated to u. Note that, by the choice of M
in (4.5), the optimal stopping function τ �u is equal to the first hitting time of the
complement of the constraint set X, i.e.,

τ �u(x0) = inf{t ≥ 0 | x(t |x0) /∈ X},

where x(t |x0) is the trajectory of (4.1) with u(t) = u(x(t)) starting from x0. Notice
also that Vu,τ (x) ≥ V (x) for all x ∈ X and that for any pair (u, τ) feasible in (4.4)
we have Vu,τ (x) ≤ M for all x ∈ X.

Throughout this chapter, we make the following technical assumption:

Assumption 4.1.1 There exists a sequence of Lipschitz continuous feedback con-
trollers {uk ∈ C(X;U)}∞k=1 and stopping functions {τ k ∈ L(X; [0,∞])}∞k=1 feasible
in (4.4) such that

lim
k→∞

∫
X

(Vuk,τk(x)− V (x))dx = 0 (4.7)

and such that for every k ≥ 0 there exist a function ρk ∈ C1(X) and a scalar γk > 0

such that ρk(x) = 0 if dist∂X(x) < γk and

∫
X

∫ τk(x0)

0

e−βtv(xk(t |x0)) dt dx0 =

∫
X

v(x)ρk(x) dx ∀v ∈ C(X), (4.8)

4One reason is the boundedness of the value function V . The second, less obvious, reason
is the existence of solutions with polynomial densities to the stopped discounted Liouville’s
equation (2.32), which is not guaranteed without allowing for stopping (i.e., for the standard
discounted Liouville’s equation (2.28) without the terminal measure); see Remark 4.3.1 below.
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where xk(· |x0) denotes the solution to (4.1) controlled by uk.

Remark 4.1.2 Note that Vuk,τk ≥ V on X by construction and therefore (4.7) is
equivalent to the L1 convergence of Vuk,τk to V .

Assumption 4.1.1 says that the optimal control inputs and stopping times for OCP
(4.4) can be well approximated by Lipschitz continuous feedback controllers and
measurable stopping functions such that the resulting densities of the discounted
occupation measures are continuously differentiable and vanish near the boundary
of X. Note that the existence of an optimal feedback controller, as well as whether
it can be well approximated by Lipschitz controllers, are subtle issues. Similarly it
is a subtle issue whether asymptotically optimal stopping functions can be found
such that the associated densities ρk in (4.8) are continuously differentiable and
vanish near the boundary of X (note, however, that the left hand side of (4.8)
can always be represented as

∫
X
v(x)dμk(x) for some measure μk ∈ M(X)+).

This problem is of rather technical nature and has been studied in the literature
(e.g., [Cri07, Section 1.4], [Ran02] or [RH03]), where affirmative results have been
established in related settings5. We do not undertake a study of this problem here
and rely on Assumption 4.1.1, which is, for ease of reading, not stated in its most
general form. For example, the functions ρk do not need to be C1 but only weakly
differentiable and the integration on the left-hand side of (4.8) can be weighted by
a nonnegative function ρk0 ∈ L1(X) satisfying ρk0 ≥ 1 on X and ρk0 → 1 in L1(X).
In addition, we conjecture that it is enough to require ρk = 0 on ∂X and not
necessarily on some neighborhood of ∂X; this is in particular the case when X is a
box or a ball but we expect all the results of the chapter to hold with a general
semialgebraic set for which the defining functions satisfy (4.3). We also remark
that the requirement of Assumption 4.1.1 that an asymptotically optimal sequence
of Lipschitz controllers exists can be removed if the problem (4.4) is posed directly
in a closed-loop form, i.e., by requiring that the control input in problem (4.4) is
generated by a Lipschitz continuous feedback controller. The closed-loop form is
slightly less standard and hence here we adhere to the open-loop formulation (4.4)
and rely on Assumption 4.1.1.

The main result of this chapter is a hierarchy of semidefinite programming tighten-
5In particular [Cri07, Section 1.4] establishes the relationship between the regularity of the

densities transported along the flow of a nonlinear vector field and the regularity of the vector
field itself; [Ran02] establishes the existence of densities certifying almost global stability, whereas
[RH03] establishes the existence of asymptotically optimal densities in a constrained optimal
control setting where the state constrained set is assumed to be control invariant and to have a
C1 boundary.
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ings of problem (4.4), which provides a sequence of rational controllers uk such that,
under Assumption 4.1.1, (4.7) holds with τ k = τ �

uk
, i.e., a sequence of asymptotically

optimal rational controllers in the sense of the L1 convergence of the associated
value functions (see Remark 4.1.2).

4.2 Lifting

First we lift the problem (4.4) to an infinite-dimensional LP in the space of measures.
As in Chapter 3, the lifting consists of replacing the nonlinear dynamics with a
particular form of Liouville’s equation. In our case, since we are working on infinite
horizon with stopping and the system dynamics is input affine with box constraints,
the best suited form is Eq. (2.40).

In order to lift the problem for all initial conditions x0 ∈ X we impose the constraint
that μ0 ≥ μleb, where μleb is the Lebesgue measure on X. This will enable us to
obtain a feedback controller from the subsequent SDP tightenings of the lifted
problem rather than an open-loop control trajectory (see Section 2.3.5 and the
discussion below Eq. (4.10)).

The infinite-dimensional LP reads

inf
μ, μ0, μT , ν

∫
X
lx(x) dμ(x) +

∑m
i=1

∫
X
lui(x) dνi(x) +M

∫
X
1 dμT (x)

s.t.
∫
X
v dμT =

∫
X
v dμ0 +

∫
X
(∇v · f − βv) dμ+

∑m
i=1

∫
X
∇v · fui dνi ∀v ∈ C1

μ ∈ M(X)+, μ0 ∈ M(X)+, μT ∈ M(X+), ν ∈ M(X)m+
μ0 ≥ μleb

ūμ ≥ νi, i ∈ {1, . . . ,m},
(4.9)

where the first constraint is precisely the stopped discounted Liouville’s equation
in the input-affine form (2.40), which we repeat here for convenience in full:

∫
X

v dμT =

∫
X

v dμ0+

∫
X

(∇v·f−βv) dμ+
m∑
i=1

∫
X

∇v·fui dνi ∀ v ∈ C1(X). (4.10)

The constraints ūμ ≥ νi ensure the satisfaction of input constraints (see Sec-
tion 2.3.5). In particular ūμ ≥ νi implies that each control measure νi is absolutely
continuous with respect to μ with density (i.e., Radon-Nikodým derivative) bounded
by ū, i.e., there exists a ui ∈ L∞(X; [0, ū]) such that dνi(x) = ui(x)dμ(x) for all
i ∈ {1, . . . ,m}. The function u(x) = (u1(x), . . . , um(x)) can be viewed as a feedback
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controller ; indeed, substituting dνi(x) = ui(x)dμ(x) in (4.10) yields∫
X

v dμT =

∫
X

v dμ0 +

∫
X

(∇v · f̄(x)− βv) dμ ∀ v ∈ C1(X), (4.11)

where the f̄ = f(x)+
∑m

i=1 fuiui(x) denotes the vector field of the ODE (4.1) when
the loop is closed with the feedback controller u(x). The equation (4.11) is nothing
but Eq. (2.33), i.e., a stopped discounted Liouville’s equation for the closed-loop
vector field f̄ . Note that, at this point, the controller u(x) is not guaranteed to be
Lipschitz and so is not the closed-loop vector field f̄ ; later on, when considering
polynomial tightenings of (4.9), this controller will be Lipschitz and so will be the
closed-loop vector field f̄ .

Remark 4.2.1 (Non-uniform weighting) Note that instead of μ0 ≥ μleb, we
could have imposed that μ0 is greater than any measure having a polynomial density
ρ̄0 with respect to the Lebesgue measure μleb. This has no impact on all theoretical
results established in the rest of the chapter as long as ρ̄0 is strictly positive on X. In
particular, asymptotic convergence of the value functions associated to the designed
controllers is preserved. The choice of non-uniform ρ̄0 may, however, influence
the speed of convergence in different subsets of X. In general we expect faster
convergence where ρ̄0 is large and slower convergence where it is small. Choosing a
non-constant ρ̄0 therefore allows one to assign a different importance to different
subsets of X.

4.3 Tightening

Now we use the ideas of Section 2.2.3 to tighten, rather than relax (as in Chapter 3
or in [LHPT08]), the lifted problem (4.9). The reason for using tightenings rather
than relaxations is the fact that, contrary to relaxations, feasible solutions to the
tightenings are also feasible in the original problem, which makes them more suited
for controller design with strong theoretical guarantees (as in Theorem 4.3.1 below).

The idea is to restrict the measures in (4.9), to measures which possess a density
with respect to the Lebesgue measure. We do that in two steps: first we restrict
the densities to measures with continuous (resp. C1) densities and then we restrict
further to polynomial densities belonging to suitable SDP representable quadratic
modules, as in Section 2.2.3.
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4.3.1 Tightening with continuous densities

The first tightening reads:

inf
ρ, ρ0, ρT , σ

∫
X
lx(x)ρ(x) dx+

∑m
i=1

∫
X
lui(x)σi(x) dx+M

∫
X
ρT (x) dx

s.t. ρT − ρ0 + βρ+ div(ρf) +
∑m

i=1 div(σifui) = 0

ρ ≤ 0 on ∂X

ρ0 ≥ 1 on X

ūρ ≥ σi on X, i = 1, . . . ,m.

ρT ≥ 0 on X

σi ≥ 0 on X, i = 1, . . . ,m.
(4.12)

The optimization in (4.12) is over functions (ρ, ρ0, ρT , σ) ∈ C1(X)×C(X)×C(X)×
C1(X)m with σ = (σ1, . . . , σm). The optimal value of (4.12) will be denoted by
p� and the value attained in (4.12) by any tuple of densities (ρ, ρ0, ρT , σ) feasible
in (4.12) will be denoted by p(ρ, ρ0, ρT , σ).

The equality constraint of (4.12)

ρT − ρ0 + βρ+ div(fρ) +
m∑
i=1

div(fuiσi) = 0 (4.13)

is termed the functional stopped discounted Liouville’s equation. Satisfaction
of (4.13) by

(ρ, ρ0, ρT , σ) ∈ C1(X)× C(X)× C(X)× C1(X)m

implies the satisfaction of the (measure) Liouville’s equation (4.10) by the measures

(dμ, dμ0, dμT , dν) = (ρdx, ρ0dx, ρTdx, σdx) ∈ M(X)+×M(X)+×M(X)+×M(X)m+
(4.14)

provided that ρ = 0 on ∂X. This follows readily from integration by parts applied
on the divergence terms in (4.13), where the constraint ρ = 0 on ∂X ensures that
the boundary terms vanish. This is the reason for adding the constraint ρ ≤ 0 on
∂X to (4.12), which in conjunction with ūρ ≥ σi ≥ 0, implies that indeed ρ = 0 on
∂X. Noticing also that the constraint ūρ ≥ σ and ρ0 ≥ 1 imply that ūμ ≥ ν and
μ0 ≥ μleb, we conclude that the problem (4.12) is indeed a tightening of (4.9) in
the sense that any feasible solution to (4.12) gives rise to a feasible solution to (4.9)
via (4.14).
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4.3.2 Tightening with polynomial densities

Using the results of Sections 2.2.1 and Section 2.2.3, the infinite-dimensional
LP (4.12) is then further tightened by optimizing over polynomials instead of
continuous functions and by replacing nonnegativity constraints by inclusions in
appropriate SDP representable quadratic modules.

Polynomial approximation of degree d of (4.12) reads

inf
(ρ,ρ0,ρT ,σ)∈R[x]3+md

∫
X
lx(x)ρ(x) dx+

∑m
i=1

∫
X
lui(x)σi(x) dx+M

∫
X
ρT (x) dx

s.t. ρT − ρ0 + βρ+ div(ρf) +
∑m

i=1 div(σifui) = 0

−ρ ∈ Qd(X) + giR[x]d−deg gi + ḡR[x]d−deg ḡ i = 1, . . . , ng

ρ0 − 1 ∈ Qd(X)

ūρ− σi ∈ Qd(X) + ḡQd−deg ḡ(X) i = 1, . . . ,m

ρT ∈ Qd(X)

σi ∈ Qd(X) + ḡQd−deg ḡ(X), i = 1, . . . ,m,
(4.15)

where ḡ is the polynomial defined in (4.3). Once a basis for R[x]d is fixed (e.g.,
the standard monomial basis), the objective becomes linear in the coefficients
of polynomials (ρ, ρ0, σ, ρT ), and the equality constraint is imposed by equating
the coefficients. The inclusions in the quadratic modules translate to semidefi-
nite constraints and affine equality constraints; see Section 2.2.1. Optimization
problem (4.15) therefore immediately translates to an SDP.

Remark 4.3.1 (Feasibility & role of terminal measure ) Trivially, any fea-
sible solution to (4.15) is feasible in (4.12). Also, problem (4.15) is feasible for any
d ≥ 0 as (ρ, ρ0, ρT , σ) = (0, 1, 1, 0) is always feasible in (4.15). This is crucial from
a practical point of view and is not satisfied with other, more obvious, formulations
(e.g., those not involving a stopping time in (4.4)); the reason for this is that, in
the absence of a terminal measure (i.e., ρT = 0), the functional stopped discounted
Liouville’s equation (4.13) may not have a solution with a polynomial ρ even though
ρ0 and the dynamics are polynomial. Indeed, for example with f = −x, fui = 0,
β = 1, ρ0 = 1 on X = [−1, 1] and zero elsewhere, the only solution to (4.13) with
ρT = 0 is ρ(x) = −ln(|x|).

Remark 4.3.2 (Why ḡ) Note that the satisfaction of the constraints of (4.15)
imply the satisfaction of the constraints of (4.12) even without the terms involving
ḡ in the second, fourth and the sixth constraint. The terms involving ḡ are included
in order to increase the algebraic strength of the nonnegativity certificates which
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enables us to prove our main result, Theorem 4.3.1, with the help of Lemma 4.4.3.
Mere application of the Putinar’s positivstellensatz (Proposition 2.2.1) and its
immediate corrolary (Corrolary 2.2.1) is not sufficient since here we approximate
with nonnegative polynomials vanishing on the boundary of ∂X (note that the
constraints of (4.12) imply that ρ ≥ 0 on X and ρ = 0 on ∂X).

If non-uniform weighting of initial conditions (see Remark 4.2.1) was required, the
constraint ρ0 − 1 ∈ Qd(X) would be replaced by ρ0 − ρ̄0 ∈ Qd(X) for a polynomial
weighting function ρ̄0 nonnegative on X.

Rational feedback controller

Given an optimal solution (ρd, ρd0, ρ
d
T , σ

d) to (4.15), we define a rational feedback
controller ud by

ud
i (x) :=

σd
i (x)

ρd(x)
∀x ∈ X, i = 1, . . . ,m, (4.16)

where the control input is defined by the limit when ρd(x) = 0 (since 0 ≤ σd
i (x) ≤

ūρ(x), this limit always exists and that the resulting controller is continuous
on X and satisfies ui(x) ∈ [0, ū] for all x ∈ X). The controller ud is nothing
but the density of the measure dνd(x) = σd(x)dx with respect to the measure
dμd(x) = ρd(x)dx (see the discussion around Eq. (4.11)).

The main result of this chapter is the following theorem stating that the controllers
ud are asymptotically optimal:

Theorem 4.3.1 For all d ≥ 0 we have ud(x) ∈ U for all x ∈ X and if Assump-
tion 4.1.1 holds, then

lim
d→∞

∫
X

(Vud(x)− V (x)) dx = 0, (4.17)

that is, Vud → V in L1(X) (note that Vud ≥ V on X).

4.4 Proof of Theorem 4.3.1

In this section we prove the main result of this chapter, Theorem 4.3.1. A crucial
ingredient to the proof is Theorem 2.3.3, which immediately leads to the following
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specialization for our setting:

Theorem 4.4.1 (Superposition) If measures μ, μ0, μT and νi, i = 1, . . . ,m,
satisfy (4.10) with sptμ0 ⊂ X, sptμ ⊂ X and sptμT ⊂ X and dνi = uidμ for some
Lipschitz u ∈ C(X;U), then there exists an ensemble of probability measures (i.e.,
measures with unit mass) {τx0}x0∈X such that∫

X

v(x) dμ0(x) =

∫
X

v(x(0 |x0)) dμ0(x0), (4.18a)∫
X

v(x) dμ(x) =

∫
X

∫ ∞

0

∫ τ

0

e−βtv(x(t |x0)) dt dτx0(τ) dμ0(x0), (4.18b)∫
X

v(x) dμT (x) =

∫
X

∫ ∞

0

e−βτv(τ(x0)) dτx0(τ) dμ0(x0), (4.18c)∫
X

v(x) dνi(x) =

∫
X

∫ ∞

0

∫ τ

0

e−βtv(x(t |x0))ui(x(t |x0)) dt dτx0(τ) dμ0(x0)

(4.18d)

for all bounded measurable functions v : Rn → R, where x(· | x0) denotes the unique
trajectory of system (4.1) controlled with the Lipschitz controller u(t) = u(x(t))

which satisfies x(t |x0) ∈ X for all t ∈ spt τx0.

Proof: Theorem 4.4.1 follows from Theorem 2.3.3 by setting f̄ = f +
∑m

i=1 fuiui.
The conclusion that x(t | x0) ∈ X for all t ∈ spt τx0 follows by taking v = IRn\X
in (4.18b). �

Theorem 4.4.1 immediately enables us to prove a representation of the cost of
problem (4.12) in terms of trajectories of (4.1).

Lemma 4.4.1 If (ρ, ρ0, ρT , σ) is feasible in (4.12) and u = σ/ρ, then

p(ρ, ρ0, ρT , σ) =

∫
X

∫ ∞

0

∫ τ

0

e−βtlx(x(t |x0))dt dτx0(τ)ρ0(x0) dx0

+
m∑
i=1

∫
X

∫ ∞

0

∫ τ

0

e−βtlui(x(t |x0))ui(x(t |x0)) dt dτx0(τ)ρ0(x0)dx0

+M

∫
X

∫ ∞

0

e−βτ dτx0(τ)ρ0(x0)dx0, (4.19)

where x(· | x0) are trajectories of (4.1) controlled by u(t) = u(x(t)) and τx0 are
stopping probability measures with support spt τx0 included in [0,∞]. Moreover the
state-control trajectories x(· |x0) and u(x(· |x0)) are feasible in (4.4) in the sense
that x(t |x0) ∈ X and u(t |x0) ∈ U for all t ∈ spt τx0.
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Proof: Let (ρ, ρ0, ρT , σ) be feasible in (4.12) and let p(ρ, ρ0, ρT , σ) denote the
value attained by (ρ, ρ0, ρT , σ) in (4.12). The equality constraint of (4.12) is
exactly (4.13). Since the constraint of (4.12) implies ρ = 0 on ∂X, equation (4.10)
holds with dμ0 = ρ0dx, dμ = ρdx, dμT = ρTdx and dνi = uidμ = uiρdx = σidx,
where ui =

σi
ρ
∈ C(X;U), i = 1, . . . ,m. By Theorem 4.4.1 (setting v(x) = lx(x)

in (4.18b), v(x) = 1 in (4.18c) and v(x) = lui(x) in (4.18d)) we obtain the result
(noticing that the constraints of (4.12) imply that u(x) ∈ U for all x ∈ X). �

Corollary 4.4.1 If (ρ, ρ0, ρT , σ) is feasible in (4.12) and u = σ/ρ, then

p(ρ, ρ0, ρT , σ) ≥
∫
X

Vu(x0)ρ0(x0)dx0. (4.20)

If in addition the stopping measures {τx0}x0∈X in (4.19) are equal to the Dirac
measures {δτ(x0)}x0∈X for some stopping function τ ∈ L(X; [0,∞]), then

p(ρ, ρ0, ρT , σ) =

∫
X

Vu,τ (x0)ρ0(x0)dx0. (4.21)

Proof: Let (ρ, ρ0, ρT , σ) be feasible in (4.12). Using Lemma 4.4.1, p(ρ, ρ0, ρT , σ)
has representation (4.19), where the state-control trajectories in (4.19) are feasible
in (4.4). Since the measures τx0 in (4.19) have unit mass for all x0 ∈ X, we
obtain (4.20). If τx0 = δτ(x0) for some stopping function τ ∈ L(X; [0,∞]), then the
integrals with respect to τx0 in (4.19) become evaluations at τ (x0) and hence (4.21)
holds. �

Corollary 4.4.1 immediately implies that the problem (4.12) (and hence prob-
lem (4.15)) is a tightening of the original problem (4.4):

Theorem 4.4.2 The optimal value of (4.12) of p� satisfies

p∗ ≥
∫
X

V (x) dx. (4.22)

Proof: Follows from Corollary 4.4.1 since ρ0 ≥ 1 and Vu ≥ V ≥ 0. �

Now we are in a position to prove the following crucial lemma linking problems
(4.4) and (4.12).

Lemma 4.4.2 If {uk ∈ C(X;U)}∞k=1 and {τ k ∈ L(X; [0,∞])}∞k=1 are respectively
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sequences of controllers and stopping functions satisfying the conditions of As-
sumption 4.1.1, then the corresponding densities {ρk, ρk0, ρkT , σk}∞k=1 with ρk0 = 1 are
feasible in (4.12) and satisfy

lim
k→∞

p(ρk, ρk0, ρ
k
T , σ

k) =

∫
X

V (x0)dx0. (4.23)

Conversely, if {ρk, ρk0, ρkT , σk}∞k=1 is a sequence such that limk→∞ p(ρk, ρk0, ρ
k
T , σ

k) =

p� and if Assumption (4.1.1) holds, then equation (4.7) holds with uk = σk/ρk.

Proof: To prove the first part of the statement consider the controllers uk, stopping
functions τ k and densities ρk from Assumption (4.1.1). Setting ρk0 = 1 and
defining σk

i := uk
i ρ

k and ρkT := ρk0 − βρk − div(ρkf)−∑m
i=1 div(fuiσ

k
i ) we see that

(ρk, ρk0, ρ
k
T , σ

k) satisfy (4.13) with ρk = 0 on ∂X. Therefore (ρk, ρk0, ρ
k
T , σ

k) are
feasible in (4.12). In addition, in view of (4.8), the representation (4.19) holds with
τx0 = δτk(x0). Therefore by Lemma 4.4.1

p(ρk, ρk0, ρ
k
T , σ

k) =

∫
X

Vuk,τk(x0)ρ
k
0(x0)dx0

and hence (4.23) holds since {Vuk,τk}∞k=1 satisfies (4.7) and ρk0 = 1 for all k ≥ 0.

To prove the second part of the statement, let {ρk, ρk0, ρkT , σk}∞k=1 be any sequence
such that limk→∞ p(ρk, ρk0, ρ

k
T , σ

k) = p�. Then this sequence satisfies (4.23) by
Theorem 4.4.2 and by the first part of Lemma 4.4.2 just proven. Therefore (4.7)
holds with uk := σk/ρk since

p(ρk, ρk0, ρ
k
T , σ

k) ≥
∫
X

Vuk(x0)dx0

by Corollary 4.4.1. �

We will also need the following result showing that nonnegative C1 functions
vanishing on a neighborhood of ∂X can be approximated by polynomials in ḡQd(X)

(which necessarily vanish on ∂X).

Lemma 4.4.3 Let ρ ∈ C1(X) such that ρ ≥ 0 on X and ρ = 0 on {x ∈ X :

dist∂X(x) < ζ} for some ζ > 0. Then for any ε > 0 there exists d ≥ 0 and a
polynomial pd ∈ ḡQd−deg ḡ(X) such that

‖ρ− pd‖C1(X) < ε
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and pd = 0 on ∂X.

Proof: Since ḡ > 0 on X◦, we can factor ρ = ḡh with h ∈ C1(X) given by

h(x) :=

{
ρ(x)/ḡ(x) if dist∂X(x) ≥ ζ

0 otherwise.

Since polynomials are dense in C1 (e.g., [BBL02]) there exists for every δ > 0 a
polynomial ĥ > 0 such that

‖ĥ− h‖C1(X) < δ. (4.24)

Applying Theorem 2.2.1 to ĥ we see that there exists p̂d̂ ∈ Qd̂(X) for some d̂ ≥ 0

such that
‖ĥ− p̂d̂‖C1(X) < δ. (4.25)

Defining pd := p̂d̂ḡ we see that pd ∈ ḡQd−deg ḡ(X) with d = d̂ + deg(ḡ) and that
pd = 0 on ∂X. Finally,

‖ρ− pd‖C0 = ‖hḡ − p̂d̂ḡ‖C0 ≤ ‖ḡ‖C0‖h− p̂d̂‖C0 < 2δ‖ḡ‖C0

and

‖∇ρ−∇pd‖C0 = ‖ḡ ∇h+ h∇ḡ − ḡ ∇p̂d̂ + p̂d̂ ∇ḡ‖C0

≤ ‖∇ḡ‖C0‖h− p̂d̂‖C0 + ‖ḡ‖C0‖∇h−∇p̂d̂‖C0

≤ 2δ
(
‖∇ḡ‖C0 + ‖ḡ‖C0

)
.

Therefore choosing δ such that 2δ
(
‖∇ḡ‖C0 + 2‖ḡ‖C0

)
< ε gives the desired result.

�

Now we are ready to prove our main result, Theorem 4.3.1.

Proof (of Theorem 4.3.1): Consider the sequences {uk ∈ C(X;U)}∞k=1, {τ k ∈
L(X; [0,∞])}∞k=1 from Assumption 4.1.1. By the first part of Lemma 4.4.2 the
sequence of associated densities (ρk, ρk0, ρ

k
T , σ

k) generated by (uk, τ k) is feasible
in (4.12) and satisfies (4.23). By Assumption 4.1.1, ρk = 0 and σk = 0 on
{x ∈ X : dist∂X(x) < γk} (since σk = ukρk) with γk > 0.
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Hence by Lemma 4.4.3 there exist polynomial densities ρk,pol ∈ ḡQdk−deg ḡ(X),
σk,pol ∈ ḡQdk−deg ḡ(X)m for some degrees dk ≥ 0 such that

‖ρk − ρk,pol‖C1(X) < 1/k (4.26)

‖σk
i − σk,pol

i ‖C1(X) < 1/k (4.27)

ūρk,pol − σk,pol
i ∈ ḡQdk−deg ḡ(X) for all i = 1, . . . ,m (since uk(x) ∈ U = [0, ū]m for

all x ∈ X and hence ūρk ≥ σk
i on X). Notice also that since ρk,pol ∈ ḡQdk−deg ḡ(X),

we have −ρk,pol ∈ ḡRdk−deg ḡ. Next, since ρk0 ≥ 1 and ρkT ≥ 0, we can find, by
Corollary 2.2.1, polynomial densities ρ̂k,pol0 ∈ 1 +Qdk(X) and ρ̂k,polT ∈ Qdk(X) such
that

‖ρk0 − ρ̂k,pol0 ‖C0(X) < 1/k, (4.28)

‖ρkT − ρ̂k,polT ‖C0(X) < 1/k. (4.29)

Since (ρk, ρk0, ρ
k
T , σ

k) satisfy the equality constraint of (4.12) we have

ρ̂k,polT + βρk,pol − ρ̂k,pol0 + div(ρk,polf) +
m∑
i=1

div(σk,pol
i fui) = ωk

where

ωk := ρ̂k,polT −ρkT+β(ρk,pol−ρk)−(ρ̂k,pol0 −ρk0)+div[(ρk,pol−ρk)f ]+
m∑
i=1

div[(σk,pol
i −σk

i )fui ]

is a polynomial such that ‖ωk‖C0 → 0 as k → ∞ in view of (4.26)-(4.29). Defining
the constants εk = 1/k + ‖ωk‖C0 and setting

ρk,polT := ρ̂k,polT + εk

ρk,pol0 := ρ̂k,pol0 + εk + ωk

we see that

ρk,polT + βρk,pol − ρk,pol0 + div(ρk,polf) +
m∑
i=1

div(σk,pol
i fui) = 0,

and ρk,pol0 − 1 and ρk,polT are strictly positive on X and hence belong to Qdk(X).
The densities (ρk,pol, ρk,pol0 , ρk,polT , σk,pol) are therefore feasible in (4.15) for some
dk ≥ 0. In addition, by construction, ‖ρk,pol0 − ρk0‖C0 → 0 and ‖ρk,polT − ρkT‖C0 → 0
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as k → ∞. Therefore we have obtained a sequence of polynomial densities
(ρk,pol, ρk,pol0 , ρk,polT , σk,pol) that are feasible in (4.15) and such that

‖ρk,pol0 −ρk0‖C0 → 0, ‖ρk,polT −ρkT‖C0 → 0, ‖ρk,pol−ρk‖C1 → 0, ‖σk,pol−σk‖C1 → 0

as k → ∞. This implies that

|p(ρk,pol, ρk,pol0 , ρk,polT , σk,pol)− p(ρk, ρk0, ρ
k
T , σ

k)| → 0

and hence (ρk,pol, ρk,pol0 , ρk,polT , σk,pol) satisfies (4.23) and so

p(ρk,pol, ρk,pol0 , ρk,polT , σk,pol) → p�

by Theorem 4.4.2. Therefore (4.7) holds with the rational controllers uk :=

σk,pol/ρk,pol by the second part of Lemma 4.4.2. This finishes the proof. �

4.5 Value function approximations

In this section we propose a converging hierarchy of approximations from below
and from above to the value function Vu associated to a rational controller u = σ/ρ

with σ ∈ R[x]m and ρ ∈ R[x] satisfying 0 ≤ σi ≤ ūρ on X. In addition we describe
a hierarchy of approximations from below to the optimal value function V . This
is useful as a post-processing step that can be used to get explicit bounds on
the suboptimality of the rational controller obtained from the solution to (4.15),
although the results of this section apply to any rational controller.

Note that, trivially, approximations from above to Vu provide approximations from
above to V . Defining f̂ = ρf +

∑m
i=1 fuiσi ∈ R[x]n and l̂ = ρlx +

∑m
i=1 luiσi ∈ R[x],

the degree d polynomial upper and lower bounds are given by

min
Vu∈R[x]d

∫
X
Vu(x) dx

s.t. βρVu −∇Vu · f̂ − l̂ ∈ Qd(X)

Vu −M ∈ Qd(X) + ḡRd−deg ḡ,

(4.30)

and
max

Vu∈R[x]d

∫
X
Vu(x) dx

s.t. −(βρVu −∇Vu · f̂ − l̂) ∈ Qd(X)

M − Vu ∈ Qd(X) + ḡRd−deg ḡ,

(4.31)
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respectively. Fixing a basis of R[x]d, the objective functions of (4.30) and (4.31)
become linear in the coefficients of Vu respectively Vu in this basis. Problems (4.30)
and (4.31) immediately translate to SDPs using the results of Section 2.2.1.

Theorem 4.5.1 Let Vu
d and Vu

d denote solutions to (4.30) and (4.31) of degree
d. Then Vu

d ≥ Vu ≥ Vu
d on X and

lim
d→∞

∫
X

Vu
d
(x) dx =

∫
X

Vu(x) dx = lim
d→∞

∫
X

Vu
d(x) dx. (4.32)

Proof: See the Appendix of this Chapter. �

As a simple corollary we obtain a converging sequence of polynomial over-approximations
to V , the optimal value function of (4.4):

Theorem 4.5.2 Let V
d2
ud1 denote the degree d2 polynomial approximation from

above to the value function associated to the rational controller ud1 obtained
from (4.15) using (4.16). Then V

d2
ud1 ≥ V on X and

lim
d1→∞

lim
d2→∞

∫
X

(V
d2
ud1 (x)− V (x)) dx = 0.

Now we describe a hierarchy of lower bounds on V :

max
V ∈R[x]d, p∈R[x]md

∫
X
V (x) dx

s.t. lx − βV +∇V · f + ū
∑m

i=1 pi ∈ Qd(X)

lui +∇V · fui − pi ∈ Qd(X)

−pi ∈ Qd(X)

M − V ∈ Qd(X) + ḡRd−deg ḡ.

(4.33)

Theorem 4.5.3 If V ∈ R[x]d is feasible in (4.33), then V ≤ V on X.

Proof: Follows by similar arguments based on Gronwall’s Lemma as in the proof
of Theorem 4.5.1. �

Remark 4.5.1 The question whether V converges from below to V as degree d

in (4.33) tends to infinity is open (although likely to hold). A proof would require
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an extension of the superposition Theorem 2.3.3 to non-Lipschitz vector fields or
an extension of the argument of [GQ09] to the case of μT �= 0, either of which is
beyond the scope of this thesis.

Remark 4.5.2 Besides closed-loop cost function with respect to the OCP (4.4),
one can assess other aspects of the closed-loop behavior of the dynamical system (4.1)
controlled by the rational controller u = σ/ρ. In particular, the region of attraction
or the maximum controlled invariant set can be estimated by methods of Chapter 3,
which extend readily to the case of rational systems.

4.6 Numerical examples

This section demonstrates the approach on numerical examples. To improve
the numerical conditioning of the SDPs solved, we use the Chebyshev basis to
parametrize all polynomials. More specifically, we use tensor products of univariate
Chebyshev polynomials of the first kind to obtain a multivariate Chebyshev basis.
We note, however, that similar results, albeit slightly less accurate could be obtained
with the standard multivariate monomial basis (in which case the SDPs can be
readily formulated using high level modelling tools such as Yalmip [Löf04] or
SOSOPT [Sei10]). The resulting SDPs were solved using MOSEK.

4.6.1 Nonlinear double integrator

As our first example we consider the nonlinear double integrator

ẋ1 = x2 + 0.1x3
1

ẋ2 = 0.3u

subject to the constraints u ∈ [−1, 1] and x ∈ X := {x : ‖x‖2 ≤ 1} and stage costs
lx(x) = x�x and lu(x) = 0. The discount factor β was set to 1; the constant M

to 1.01 > supx∈X{x�x}/β = 1. The input constraint set [−1, 1] is transformed
to [0, 1] using the transformation u = 2ũ − 1 with ũ ∈ [0, 1]. First we obtain a
rational controller of degree six by solving (4.15) with d = 6. The graph of the
controller is shown in Figure 4.1. Next we obtain a polynomial upper bound Vu of
degree 14 on the value function associated to u by solving (4.30) with d = 14. To
assess suboptimality of the controller u we compare it with a lower bound V on the
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optimal value function of the problem (4.4) obtained by solving (4.33) with d = 14.
The graphs of the two value functions are plotted in Figure 4.2. We see that the gap
between the upper bound on Vu and lower bound on V is relatively small, verifying
a good performance of the extracted controller; this is confirmed by looking at the
sections of the value function approximations in Figure 4.4. Quantitatively, the
average performance gap defined as 100

∫
X
(Vu − V )dx/

∫
X
V dx is equal to 19.5%.

Finally, Figure 4.3 shows the extracted densities; notice in particular the density of
the terminal measure ρT which is, as expected, small everywhere except for those
regions near the boundary of X through which the state trajectories are most likely
to exit X. Notice also that the initial density ρ0 is not identically equal to one;
this shows that, for this example and for this choice of the degree bounds on the
densities, it is beneficial to have an initial density not identically equal to one which
results in a higher cost in (4.12) for a fixed controller, but allows more freedom in
shaping the other densities ρ, σ and ρT (and hence the controller u = σ/ρ) through
Equation (4.13), and overall results in a lower cost in (4.15) (and hence in (4.12)).

x1 x2

u(x)

Figure 4.1 – Nonlinear double integrator – rational controller of degree six.
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x1 x2

Figure 4.2 – Nonlinear double integrator – upper bound on the value function associated
to the designed controller (red); lower bound on the optimal value function (blue).

4.6.2 Controlled Lotka-Volterra

In our second example we apply the proposed method to a population model
governed by n-dimensional controlled Lotka-Volterra equations

ẋ = r ◦ x ◦ (1− Ax) + u+ − u−,

where 1 ∈ R
n is the vector of ones and ◦ denotes the componentwise (Hadamard)

product. Each component xi of the state x ∈ R
n represents the size of the

population of species i. The vector r ∈ R
n contains the intrinsic growth rates of

each species and the matrix A ∈ R
n×n captures the interaction between the species.

If Ai,j > 0, then species j is harmful to species i (e.g., competes for resources) and
if Ai,j < 0, then species j is helpful to species i (e.g., species i feeds on species j);
the diagonal components Ai,i are normalized to one. The control inputs u+ ∈ [0, 1]n

and u− ∈ [0, 1]n represent, respectively, the inflow and outflow of new species from
the outside. For our numerical example we select n = 4 and model parameters

r =

⎡
⎢⎢⎢⎣

1

0.6

0.4

0.2

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣

1 0.3 0.4 0.2

−0.2 1 0.4 −0.1

−0.1 −0.2 1 0.3

−0.1 −0.2 −0.3 1

⎤
⎥⎥⎥⎦ ,
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x1 x1

x1 x1

x2 x2

x2 x2

ρ0 ρ

σ ρT

Figure 4.3 – Nonlinear double integrator – densities

which results in a system with four states and eight control inputs. The economic
objective is to harvest species number one while ensuring that no species goes
extinct. More specifically the cost function is lu(x) = (−1.0, 0.5, 0.6, 0.8, 1.1, 2, 4, 6)

and lx(x) = 1, where the vector lu(x) is associated with the control input vector
u = (u−, u+). Therefore there is a reward for harvesting species number one and
cost associated with both introduction and hunting of all other species, the cost of
hunting being lower than the cost of introduction. The reason for choosing lx(x) = 1

is in order to make the joint stage cost l(x, u) (4.6) nonnegative; this choice does
not affect optimality since lx(x(t)) = 1 irrespective of the control input applied.
The non-extinction constraint is expressed as g(x) = 1−(Q−1x−q)�(Q−1x−q) ≥ 0

with Q = diag(0.475 · 1) and q = 0.525 · 1. We choose β = 1 and M = 16.16 >

supx∈X,u∈U{l(u, x)}/β = 16. We apply the coordinate transformation x = Qx̂+ q

and obtain a rational controller of degree eight by solving (4.15). Figure 4.5 we
shows plots for two different initial conditions, one with low population size of
the first species and one with high. Finally, we evaluate the suboptimality of
the extracted controller using the polynomial lower bound on the optimal value
function of degree 11 obtained from (4.33). Using Monte Carlo simulation with
1000 samples of initial conditions drawn from a uniform distribution over the
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x2 x1

x1 = 0 x2 = 0

Figure 4.4 – Nonlinear double integrator – sections of the value function approximations
for x1 = 0 (left) and x2 = 0 (right). The upper bound on the value function associated to
the designed controller is in red; the lower bound on the optimal value function is in blue.

constraint set we obtain average cost of the extracted controller to be 0.89 whereas
the lower bounds predicts average cost of 0.72; hence the extracted controller is
no more than 23.6% suboptimal (modulo the statistical estimation error). Note
that we could also obtain a deterministic suboptimality estimate using the upper
bound on the value function of the extracted controller obtained from (4.30). In
this case, however, the upper bound (4.30) is not informative. Nevertheless, the
Monte Carlo simulation along with the lower bound (4.33) is a viable alternative
in this case, since the extracted controller is simple and hence trajectories of the
controlled system can be simulated rapidly.

4.7 Appendix

This Appendix contains the proof of Theorem 4.5.1; we use the same notation as
in Section 4.5. The inequalities Vu

d ≥ Vu ≥ Vu
d follow from Gronwall’s Lemma by

noticing that the constraints of (4.30) and (4.31) imply that

∇Vu
d · (f +

m∑
i=1

fuiui) ≤ βVu
d − (lx +

m∑
i=1

luiui), (4.34)

∇Vu
d · (f +

m∑
i=1

fuiui) ≥ βVu
d − (lx +

m∑
i=1

luiui) (4.35)
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Figure 4.5 – Controlled Lotka-Volterra – (blue) trajectory starting from a high
initial population of the first species and low initial population of the other species;
(red) trajectory starting from low initial population of the first species and high
initial population of the other species.

on X and Vu ≥ M , Vu ≤ M on ∂X. We detail the argument for the inequality
Vu

d ≥ Vu, the inequality Vu ≥ Vu
d being similar. Given x0 ∈ X the inequality (4.34)

implies that

d

dt
Vu

d
(x(t |x0)) ≤ βVu

d
(x(t |x0))−

[
lx(x(t |x0)) +

m∑
i=1

lui(x(t |x0))ui(x(t |x0))

]
,

and therefore by Gronwall’s Lemma

Vu
d
(x(t |x0)) ≤ eβtVu

d
(x0)−
∫ t

0

eβ(t−s)

[
lx(x(s |x0))+

m∑
i=1

lui(x(s |x0))ui(x(s |x0))

]
ds

and hence

Vu
d
(x0) ≥ e−βtVu

d
(x(t |x0))+

∫ t

0

e−βs

[
lx(x(s |x0))+

m∑
i=1

lui(x(s |x0))ui(x(s |x0))

]
ds

(4.36)
for all t ∈ [0, τ ], where τ := inf{t ≥ 0 | x(t |x0) /∈ X} ∈ [0,∞] is the first exit time
of X. Next we observe that Vu(x0), the value function associated to u, is equal to⎧⎪⎪⎨
⎪⎪⎩
∫∞
0

e−βs

[
lx(x(s |x0)) +

∑m
i=1 lui(x(s |x0))ui(x(s |x0))

]
ds, τ = ∞

Me−βτ +
∫ τ
0
e−βs

[
lx(x(s |x0)) +

∑m
i=1 lui(x(s |x0))ui(x(s |x0))

]
ds, τ < ∞.

103



Chapter 4. Optimal control

In view of (4.36), we conclude that Vu
d
(x0) ≥ Vu(x0) if τ = ∞ since Vu

d is polyno-
mial and hence bounded on X (and hence e−βtVu

d
(x(t |x0)) → 0); and we conclude

that Vu
d
(x0) ≥ Vu(x0) if τ < ∞ since x(τ |x0) ∈ ∂X and Vu

d ≥ M on ∂X.

Convergence of the upper and lower bounds (4.32) follows from Theorem 4.4.1 using
infinite-dimensional LP duality and standard arguments for proving convergence of
moment hierarchies in exactly the same fashion as in the proofs of Theorems 3.1.5
and 3.2.6; hence we only outline the proof. The hierarchy of SOS programming
problems (4.30) and (4.31) is dual to the hierarchy of moment relaxations of
an infinite-dimensional LP in the cone of nonnegative measures whose dual is
an infinite-dimensional LP in C1(X) and feasible solutions of this dual provide
upper or lower bounds on Vu. Crucial to applying infinite-dimensional duality
strong duality result of Theorem A.2.1 is the boundedness of measures satisfying
the discounted Liouville’s equation (4.10) with νi ≤ ūμ and μ0 = μleb

X , where
μleb
X is the restriction of the Lebesgue measure to X. Plugging v = 1 in (4.10)

we have μT (X) + βμ(X) = μ0(X). Since μ0(X) = μleb
X (X) = vol X < ∞ and

β > 0 we conclude that μT and μ are indeed bounded, which implies that νi is
also bounded for i = 1, . . . ,m. Equally important is the absence of duality gap
between the finite-dimensional moment relaxations and SOS tightenings (which are
both SDP problems); this follows immediately from the presence of the constraint
gi = N −‖x‖22 among the constraints describing X, which implies the boundedness
of the truncated moment sequences feasible in the moment relaxations. The absence
of duality gap then follows from [Trn05, Lemma 2]. �
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Chapter 5

Verification of optimization-based
controllers

This chapter presents a computational approach to analyze closed-loop properties of
optimization-based controllers for constrained polynomial discrete-time dynamical
systems. We assume that we are given an optimization-based controller that at
each time instance generates a control input by solving an optimization problem
parametrized by a function of the past measurements of the controlled system’s
output, and we ask about closed-loop properties of this interconnection. This
setting encompasses a wide range of control problems including the control of a
polynomial dynamical system by a linear controller (e.g., a PID) with an input
saturation, output feedback model predictive control (MPC) with inexact model
and soft constraints, or a general optimization-based controller where the underlying
problem is solved approximately with a fixed number of iterations of a first-order
optimization method. Importantly, the method verifies all KKT points; hence it
can be used to verify closed-loop properties of optimization-based controllers where
the underlying, possibly nonconvex, optimization problem is solved with a local
method with guaranteed convergence to a KKT point only.

The closed-loop properties possible to analyze by the approach include: global
stability and stability on a given subset, performance with respect to a discounted
infinite-horizon cost (where we provide polynomial upper and lower bounds on
the cost attained by the controller over a given set of initial conditions, both in a
deterministic and a stochastic setting), the �2 gain from a given disturbance input
to a given performance output (where we provide a numerical upper bound).

The main idea behind the presented approach is the observation that the KKT
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system associated to an optimization problem with polynomial data is a basic semi-
algebraic set (i.e., a system of polynomial equalities and inequalities). Consequently,
provided that suitable constraint qualification conditions hold, the solution of this
optimization problem belongs to a projection of this set. Hence, the closed-loop
evolution of a polynomial dynamical system controlled by an optimization-based
controller solving at each time step an optimization problem with polynomial data
can be seen as a difference inclusion where the successor state lies in a set defined
by polynomial equalities and inequalities. This difference inclusion is then analyzed
using sum-of-squares (SOS) techniques.

The approach is based on the observation of Primbs [Pri01] who noticed that the
KKT system of a constrained linear quadratic optimization problem is a set of
polynomial equalities and inequalities and used the S-procedure to derive sufficient
linear matrix inequality (LMI) conditions for a given linear MPC controller to
be stabilizing. This chapter significantly extends the approach in terms of both
the range of closed-loop properties analyzed and the range of practical problems
amenable to the method. Indeed, our approach is applicable to general polynomial
dynamical systems, both deterministic and stochastic, and allows the analysis
not only of stability but also of various performance measures. The approach is
not only applicable to an MPC controller with linear dynamics and a quadratic
cost function as in [Pri01] but also to a general optimization-based controller,
where the optimization problem may not be solved exactly, encompassing all the
above-mentioned control problems.

To the best of our knowledge, this is the first computational method that allows for
analysis of optimization-based controllers at this level of generality with applications
ranging from classical setups of a PID + saturation to modern embedded control
applications where a model predictive controller (MPC) is deployed under tight
constraints on computation time. The latter has been an active research topic with
methods existing for the constrained linear quadratic case which, however, typically
rely on a bound on the number of iterations of a given optimization method to
achieve a given accuracy where these bounds are conservative and/or computation-
ally difficult to obtain (e.g., requiring the solution to a mixed-integer optimization
problem whose size grows quickly with the input data dimension) [BP12, RJM12].
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5.1. Problem statement

5.1 Problem statement

We consider the nonlinear discrete-time dynamical system

x+ = fx(x, u), (5.1a)

y = fy(x), (5.1b)

where x ∈ R
nx is the state, u ∈ R

nu the control input, y ∈ R
ny the output,

x+ ∈ R
nx the successor state, fx : Rnx × R

nu → R
nx a transition mapping and

fy : R
nx → R

ny an output mapping. We assume that each component of fx and fy
is a multivariate polynomial in (x, u) and x, respectively.

We assume that the system is controlled by a given set-valued controller

u ∈ κ(Ks), (5.2)

where κ : Rnθ → R
nu is polynomial and

Ks := {θ ∈ R
nθ | ∃λ ∈ R

nλ s.t. g(s, θ, λ) ≥ 0, h(s, θ, λ) = 0}, (5.3)

where each component of the vector-valued functions g : Rns × R
nθ × R

nλ → R
ng

and h : Rns × R
nθ × R

nλ → R
nh is a polynomial in the variables (s, θ, λ). The set

Ks is parametrized by the output of a dynamical system

z+ = fz(z, y), (5.4a)

s = fs(z, y), (5.4b)

where fz : Rnz×R
ny → R

nz and fs : R
nz×R

ny → R
ns are polynomial. The problem

setup is depicted in Figure 5.1. In the rest of this chapter we develop a method to
analyze the closed-loop stability and performance of this interconnection. Before
doing that we present several examples which fall into the presented framework.

5.2 Examples

The framework considered allows for the analysis of a large number of practical
control scenarios. The common idea is to write the control input u as the output
of an optimization problem with polynomial data parametrized by the state of
the dynamical system (5.4). The control input u then belongs to the associated
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x+ = fx(x, u)

y = fy(x)

z+ = fz(z, y)

s = fs(z, y)

u ∈ κ(Ks)
Ks

s y

Figure 5.1 – Control scheme

KKT system (provided that mild regularity conditions are satisfied) which is of
the form (5.3).

5.2.1 Polynomial dynamical controller + input saturation

Any polynomial dynamical controller (e.g., a PID controller) plus an input sat-
uration can be written in the presented form provided that the input constraint
set is defined by finitely many polynomial inequalities satisfying mild constraint
qualification conditions (see, e.g., [Pet73]). Indeed, regarding z as the state and s

as the output of the controller and generating u according to u ∈ projU(s), where

projU(s) = argmin
θ∈U

1

2
‖θ − s‖22 (5.5)

is the set of Euclidean projections of s on the constraint set U (there can be
multiple solutions since U is in general nonconvex). Assuming that the input
constraint set is of the form

U = {v ∈ R
nu | gU(v) ≥ 0}, (5.6)

where gU : Rnu → R
ngU has polynomial entries, the KKT conditions associated to

the optimization problem (5.5) read

θ − s−∇gU(θ)λ = 0 (5.7a)

λ�gU(θ) = 0 (5.7b)

λ ≥ 0 (5.7c)

gU(θ) ≥ 0, (5.7d)
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where λ ∈ R
nu is the vector of Lagrange multipliers associated with the constraints

defining U and ∇gU is the transpose of the Jacobian of gU (i.e., [∇gU ]i,j =
∂[gU ]j
∂xi

).
Assuming that constraint qualification conditions hold such that any minimizer
of (5.5) satisfies the KKT conditions (5.7) we conclude that

u ∈ κ(Ks)

with κ being the identity (i.e., κ(θ) = θ),

h(s, θ, λ) =

[
θ − s−∇gU(θ)λ

λ�gU(θ)

]

and

g(s, θ, λ) =

[
λ

gU(θ)

]
,

where h and g are polynomials in (s, θ, λ) as required.

Note that the description of the input constraint set (5.6) is not unique. For
example, if the input constraint set is [−1, 1], then the function gU can be

gU(θ) = (1− θ)(1 + θ) (5.8)

or

gU(θ) =

[
1− θ

1 + θ

]
(5.9)

or any odd powers of the above. Depending on the particular description, the
constraint qualification conditions may or may not hold. It is therefore important
to choose a suitable description of U which is both simple and such that the
constraint qualification conditions hold. We remark that in the case of U = [−1, 1]

both (5.8) and (5.9) satisfy these requirements.

Note also that the KKT system (5.7) may be satisfied by points which are not
global minimizers of (5.5) if the set U is nonconvex; this is an artefact of the
presented method and cannot be avoided within the presented framework. We
note, however, that the input constraint set U is in most practical cases convex.
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5.2.2 Output feedback nonlinear MPC with model mismatch
and soft constraints

This example shows how to model within the presented framework a nonlinear MPC
controller with state estimation, a model mismatch1, soft constraints and no a priori
stability guarantees (enforced, e.g., using a terminal penalty and/or terminal set)
and possibly only locally optimal solutions delivered by the optimization algorithm.
In this case the system (5.4) is an estimator of the state of the dynamical system (5.1)
and in each time step the following optimization problem is solved

minimize
û,x̂,ε

ls(ε) +
∑N−1

i=0 li(s, x̂i, ûi) + lN(s, xN)

subject to x̂i+1 = f̂(x̂i, ûi), i = 0, . . . , N − 1

a(s, x̂, û, ε) ≥ 0

b(s, x̂, û) = 0,

(5.10)

where x̂ = (x̂0, . . . , x̂N ), û = (û0, . . . , ûN−1), ε = (ε1, . . . , εnε) are slack variables for
the inequality constraints, f̂ is a polynomial model of the true transition mapping fx,
ls is a polynomial penalty for violations of the inequality constraints, li, i = 0, . . . , N ,
are polynomial stage costs and a and b (vector) polynomial constraints parametrized
by the state estimate s produced by (5.4). If the dimension of the state estimate s

is equal to the dimension of the state of the model x̂ (which we do not require),
then most MPC formulations will impose x̂0 = s, which is encoded by making
one of the components of b equal to x̂0 − s. The formulation (5.10) is, however,
not restricted to this scenario and allows arbitrary dependence of the constraints
(along the whole prediction horizon) on the state estimate s. The control input
applied to the system is then u = û�

0, where û�
0 is the first component of any vector

û� optimal in (5.10).

1In this example we assume that we know the true model of the system but in the MPC
controller we intentionally use a different model (e.g., we use a linearized or otherwise simplified
model for the sake of computation speed); the true model is used only to verify closed-loop
properties of the true model controlled by the MPC controller. See Section 5.3.5 for the case
where the true model is not known exactly even for the verification purposes and the model
mismatch is captured by an exogenous disturbance.
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The KKT system associated to (5.10) reads

∇x̂,û,εL(s, x̂, û, ε, λ) = 0 (5.11a)

λ�
a a(s, x̂, û, ε) = 0 (5.11b)

b(s, x̂, û) = 0 (5.11c)

x̂i+1 − f̂(x̂i, ûi) = 0, i = 0, . . . , N − 1 (5.11d)

λa ≥ 0 (5.11e)

a(s, x̂, û, ε) ≥ 0, (5.11f)

where λ := (λa, λb, λ
0
f̂
, . . . , λN−1

f̂
) and

L(s, x̂, û, ε, λ) := ls(ε) +
N−1∑
i=0

li(s, x̂i, ûi)− λ�
a (a(s, x̂, û, ε))

+ lN(s, xN) + λ�
b b(s, x̂, û) +

N−1∑
i=0

λi
f̂
(x̂i+1 − f̂(x̂i, ûi))

is the Lagrangian of (5.10). The KKT system (5.11) is a system of polynomial
equalities and inequalities. Consequently, setting

θ := (û, x̂, ε), κ(θ) = û0

and assuming that constraint qualification conditions hold such that every optimal
solution to (5.10) satisfies the KKT condition (5.11), there exist polynomial func-
tions h(s, θ, λ) and g(s, θ, λ) such that û�

0 ∈ κ(Ks) for every û�
0 optimal in (5.10).

Remark 5.2.1 Let us mention that, provided suitable constraint qualification
conditions hold, not only every globally optimal û�

0 will satisfy the KKT system
but also every locally optimal solution to (5.10) and every critical point of (5.10)
will; hence the proposed method can be used to verify stability and performance
properties even if only local solutions to (5.10) are delivered by the optimization
algorithm.

Remark 5.2.2 Note that the situation where the optimization problem (5.10) is
not solved exactly can be handled as well. One way to do so is to include an auxiliary
variable δ capturing the inaccuracy in the solution, either in the satisfaction of the
KKT system (5.11) or directly as an error on the delivered control action û0 (e.g.,
defining κ(θ) = û0(1 + δ) with θ = (û, x̂, ε, δ)) and imposing |δ| ≤ Δ, where Δ > 0
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is a known bound on the solution accuracy. If the solution inaccuracy is due to a
premature termination of a first-order optimization method used to solve (5.10),
a more refined analysis can be carried out within the presented framework; this is
detailed in Section 5.2.4.

5.2.3 General optimization-based controller

Clearly, there was nothing specific about the MPC structure of the optimization
problem solved in the previous example and therefore the presented framework
can be used to analyze arbitrary optimization-based controllers which at each time
step solve an optimization problem parametrized by the output of the dynamical
system (5.4):

minimize
θ∈Rnθ

J(s, θ)

subject to a(s, θ) ≥ 0

b(s, θ) = 0,

(5.12)

with J , a and b polynomial. The associated KKT system reads

∇θJ(s, θ)−∇θa(s, θ)λa +∇θb(s, θ)λb = 0 (5.13a)

λ�
a a(s, θ) = 0 (5.13b)

λa ≥ 0 (5.13c)

a(s, θ) ≥ 0 (5.13d)

b(s, θ) = 0, (5.13e)

which is a system of polynomial equalities and inequalities in (s, θ, λ), where
λ = (λa, λb) and hence can be treated within the given framework. In particular
the functions h and g defining the set Ks read

h(s, θ, λ)=

⎡
⎣∇θJ(s, θ)−∇θa(s, θ)λa +∇θb(s, θ)λb

λ�
a a(s, θ)

b(s, θ)

⎤
⎦

and

g(s, θ, λ) =

[
λa

a(s, θ)

]
.

See Remark 5.2.2 for the situation where the problem (5.12) is not solved exactly.
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5.2.4 Optimization-based controller solved using a fixed num-
ber of iterations of a first order method

The presented framework can also handle the situation where the optimization
problem (5.12) is solved using an iterative optimization method, each step of which
is either an optimization problem or a polynomial mapping. This scenario was
elaborated on in detail in [KJ13], where it was shown that the vast majority of first
order optimization methods fall into this category. Here we present the basic idea
on one of the simplest optimization algorithms, the projected gradient method.
When applied to problem (5.12), the iterates of the projected gradient method are
given by

θk+1 ∈ projS(θk − η∇θJ(s, θk)), (5.14)

where projS(·) denotes the set of Euclidean projections on the constraint set

S = {θ ∈ R
nθ | a(s, θ) ≥ 0, b(s, θ) = 0}

and η > 0 is a step size. The update formula (5.14) can be decomposed into two
steps: step in the direction of the negative gradient and projection on the constraint
set. The first step is a polynomial mapping and the second step is an optimization
problem. Indeed, equation (5.14) can be equivalently written as

θk+1 ∈ argmin
θ∈Rnθ

1
2
‖θ − (θk − η∇θJ(s, θk))‖22

s.t. a(s, θ) ≥ 0

b(s, θ) = 0.

(5.15)

For each k ∈ {0, 1, . . .}, the KKT system associated to (5.15) reads

θk+1 − (θk − η∇θJ(s, θk))−∇θ a(s, θk+1)λ
k+1
a

+∇θ b(s, θk+1)λ
k+1
b = 0 (5.16a)

b(s, θk+1) = 0 (5.16b)

a(s, θk+1)
�λk+1

a = 0 (5.16c)

a(s, θk+1) ≥ 0 (5.16d)

λk+1
a ≥ 0, (5.16e)

which is a system of polynomial equalities and inequalities. Note in particular the
coupling between θk and θk+1 in equation (5.16b). Assuming we apply M steps
of the projected gradient method, the last iterated θM is therefore characterized
by M coupled KKT systems of the form (5.16), which is a system of polynomial
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equalities and inequalities as required by the proposed method.

Other optimization methods, in particular most of the first order methods (e.g.,
fast gradient method [Nes04], AMA [Tse91], ADMM [GM76] and their accelerated
versions [GOSB14]), including local non-convex methods (e.g., [HJ14]), and some
of the second order methods (e.g., the interior point method with exact line search)
are readily formulated in this framework as well; see [KJ13] for more details on
first-order methods.

5.3 Closed-loop analysis

In this section we describe a method to analyze closed-loop properties of the
interconnection depicted in Figure 5.1 and described in Section 5.1. First, notice
that the closed-loop evolution is governed by the difference inclusion

x+ ∈ fx(x, κ(Ks)), (5.17a)

z+ = fz(z, fy(x)). (5.17b)

Since all problem data is polynomial and the set Ks is basic semialgebraic it is possi-
ble to analyze stability and performance using sum-of-squares (SOS) programming.
This is detailed next.

We will use the following notation:

ĥ(x, z, θ, λ) := h(fs(z, fy(x)), θ, λ) (5.18a)

ĝ(x, z, θ, λ) := g(fs(z, fy(x)), θ, λ). (5.18b)

For the rest of the chapter we impose the following standing assumption:

Assumption 5.3.1 The set Ks is nonempty for all s ∈ R
ns.

Assumption 5.3.1 implies that the control input (5.2) is well defined for all s ∈ R
ns .

114



5.3. Closed-loop analysis

5.3.1 Stability analysis – global

A sufficient condition for the state x of the difference inclusion (5.17) to be stable
is the existence of a function V satisfying

V (x+, z+, θ+, λ+)− V (x, z, θ, λ) ≤ −‖x‖22 (5.19a)

V (x, z, θ, λ) ≥ ‖x‖22 (5.19b)

for all
(x, z, θ, λ, x+, z+, θ+, λ+) ∈ K,

where

K = {(x, z, θ, λ, x+, z+, θ+, λ+) | x+ = fx(x, κ(θ)),

ĥ(x, z, θ, λ) = 0, ĝ(x, z, θ, λ) ≥ 0, ĥ(x+, z+, θ+, λ+) = 0,

ĝ(x+, z+, θ+, λ+) ≥ 0, z+ = fz(z, fy(x))}. (5.20)

These equations require that a Lyapunov function V exists which decreases on the
basic semialgebraic set K implicitly characterizing the closed-loop evolution (5.17).
Therefore, we can seek a Lyapunov function for system (5.17) by restricting V

to be a polynomial of a pre-defined degree and replacing the inequalities (5.19)
by tractable sufficient conditions. For simplicity, we use here the inclusion to a
quadratic module as the sufficiency condition, although from a practical point of
view it is advisable to use simpler subsets of the quadratic modules in order for the
resulting optimization problem to be tractable; see Section 6.1 for a discussion of
computation aspects. Since we will refer to individual SOS multipliers appearing
in the definition of a quadratic module later when discussing computational results,
we write out the inclusion to a quadratic module explicitly when necessary.

Setting
ξ := (x, z, θ, λ, x+, z+, θ+, λ+),
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a sufficient condition for (5.19) to hold is

V (x, z, θ, λ)− V (x+, z+, θ+, λ+)− ‖x‖22 = (5.21a)

σ0(ξ) + σ1(ξ)
�ĝ(x, z, θ, λ) + σ2(ξ)

�ĝ(x+, z+, θ+, λ+)

+ p1(ξ)
�ĥ(x, z, θ, λ) + p2(ξ)

�ĥ(x+, z+, θ+, λ+)

+ p3(ξ)(x
+ − fx(x, κ(θ)) + p4(ξ)(z

+ − fz(z, fy(x)),

V (x, z, θ, λ)− ‖x‖22 = (5.21b)

σ̄0(ξ) + σ̄1(ξ)
�ĝ(x, z, θ, λ) + p̄1(ξ)

�ĥ(x, z, θ, λ),

where σi(ξ) and σ̄i(ξ) are SOS multipliers and pi(ξ) and p̄i(ξ) polynomial multipliers
of compatible dimensions and pre-specified degrees. The satisfaction of (5.21a)
implies the satisfaction of (5.19a) and the satisfaction of (5.21b) implies the
satisfaction of (5.19b) for all ξ ∈ K; this follows readily from the results of
Section 2.2.1 since the satisfaction of (5.21) implies that the left-hand sides of (5.21a)
and (5.21b) belong to Qd(K) for some d ≥ 0.

Remark 5.3.1 Note that instead of including the equalities x+ − fx(x, κ(θ)) and
z+ − fz(z, fy(x)) in the description of K we could also directly substitute for x+

and z+. In general, direct substitution is preferred if the mappings fx, fz and fy are
of low degree, especially linear, in which case there is no increase in the degree of
the composition of V with fx or with fz and fy. Otherwise, the formulation (5.21)
is preferred.

From the previous discussion we conclude that closed-loop stability of the state
x of (5.17) is implied by the feasibility of the following SOS problem, which
immediately translates to an SDP:

find V, σ0, σ1, σ2, p1, p2, p3, p4, σ̄0, σ̄1, p̄1

s.t. (5.21a), (5.21b)

σ0, σ1, σ2, σ̄0, σ̄1 SOS polynomials
V, p1, p2, p3, p4, p̄1 arbitrary polynomials,

(5.22)

where the decision variables are the coefficients of the polynomials

(V, σ0, σ1, σ2, p1, p2, p3, p4, σ̄0, σ̄1, p̄1).

The following theorem summarizes the results of this section.
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Theorem 5.3.1 If the problem (5.22) is feasible, then the state x of the closed-loop
system (5.17) is globally asymptotically stable.

5.3.2 Stability analysis – on a given subset

This section addresses the stability analysis on a given subset X of the state space
R

nx ×R
nz of the difference inclusion (5.17). The set X serves to restrict the search

for a stability certificate to a given subset of the state space if global stability
cannot be proven, as well as it can be used to encode physical constraints on the
states of the original system x and/or known relationships between the states x

and z (e.g., if z is an estimate of x and a bound on the estimation error is known).

We assume that the set X is defined as

X := {(x, z) ∈ R
nx+nz | ψi(x, z) ≥ 0, i = 1, . . . , nψ}. (5.23)

where ψi(·) are polynomials. The Lyapunov conditions (5.19) are then enforced on
the intersection of X with the set K (defined in (5.20)), i.e., on the set

K̄ := {(x, z, θ, λ, x+, z+, θ+, λ+) |
(x, z, θ, λ, x+, z+, θ+, λ+) ∈ K, (x, z) ∈ X},

which is a set defined by finitely many polynomial equalities and inequalities. Hence
the problem of stability verification on X leads to an SOS problem completely
analogous to (5.22).

However, the pitfall here is that the satisfaction of Lyapunov conditions (5.19) (with
K replaced by K̄) does not ensure the invariance of the closed-loop evolution of
(x, z) in the set X. Asymptotic stability is guaranteed only on the largest sub-level
set contained in X of the function

V̄ (x, z) = sup
θ,λ

{V (x, z, θ, λ) | (x, z, θ, λ) ∈ K̂},

where

K̂ := {(x, z, θ, λ) | ĝ(x, z, θ, λ) ≥ 0, ĥ(x, z, θ, λ) = 0,

(x, z) ∈ X}.

Finding this largest sub-level set or an inner approximation to it is hard in general.
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Nevertheless, if we choose V as a function of (x, z) only, then trivially V̄ (x, z) =

V (x, z) and in this case finding an inner approximation is possible.

This can be done by solving the following optimization problem:

maximize
γ∈R+,{σ0,i},{σ0,i}

γ

s.t. ψi(x, z) = σ0,i(x, z)+σ1,i(x, z)(γ − V (x, z)),

{σ0,i}, {σ1,i} SOS polynomials ∀ i ∈ {1, . . . , nψ}.
(5.24)

Satisfaction of the first constraint implies that ψi(x, z) ≥ 0 for all (x, z) such
that V (x, z) ≤ γ and all i ∈ {1, . . . , nψ}; therefore {(x, z) | V (x, z) ≤ γ} ⊂ X

for any γ feasible in (5.24). Maximizing γ then maximizes the size of the inner
approximation.

Problem (5.24) is only quasi-convex because of the bilinearity between σ1 and γ

but can be efficiently solved using a bi-section on γ. Indeed, for a fixed value of γ
problem (5.24) is an SDP, typically of much smaller size than (5.22).

This immediately leads to the following theorem.

Theorem 5.3.2 If a polynomial V ∈ R[x, z] satisfies (5.19) for all

(x, z, θ, λ, x+, z+, θ+, λ+) ∈ K̄

and γ ∈ R+ is feasible in (5.24), then all trajectories of the closed-loop system (5.17)
starting from the set {(x, z) | V (x, z) ≤ γ} lie in the set X and limt→∞ xt = 0.

Since K̄ is defined by finitely many polynomial equalities and inequalities, the
search for V satisfying the conditions of Theorem 5.3.2 can be cast as an SOS
problem completely analogous to (5.22).

5.3.3 Performance analysis – deterministic setting

In this section we analyze the performance of the controller (5.2) with respect to a
given cost function. The performance is analyzed for all initial conditions belonging
to a given set X defined in (5.23). In order to facilitate the performance analysis
of the difference inclusion (5.17) we introduce a selection oracle:
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5.3. Closed-loop analysis

Definition 2 (Selection oracle) A selection oracle is any function O : 2R
nu \

{∅} → R
nu satisfying O(A) ∈ A for all A ⊂ R

nu, A �= ∅.

In words, a selection oracle is a function which selects one point from any nonempty
subset of Rnu (note that at least one such function exists by the axiom of choice).
The performance analysis of this section then pertains to the discrete-time recur-
rence

xt+1 = fx(xt,Ot(κ(Kst))), (5.25a)

zt+1 = fz(zt, fy(xt)), (5.25b)

and all results hold for an arbitrary and possibly time-dependent sequence of
selection oracles Ot; hence in what follows we suppress the dependence of all
quantities on the selection oracle sequence. The cost function with respect to which
we analyze performance is

C(x0, z0) = Lατ(x0,z0) +

τ(x0,z0)−1∑
t=0

αtl(xt, ut), (5.26)

(xt, zt)
∞
t=0 is the solution to (5.17), ut = O(κ(Kst)), α ∈ (0, 1) is a discount factor,

l is a polynomial stage cost,

τ(x, z) := inf{t ∈ {1, 2, . . .} | (xt, zt) /∈ X, (x0, z0) = (x, z)} (5.27)

is the first time that the state (xt, zt) leaves X (setting τ (x, z) = +∞ if (xt, ut) ∈ X

for all t) and

L > sup{l(x, u) | (x, z) ∈ X, u ∈ κ(Ks)}/(1− α) (5.28)

is a constant upper bounding the stage cost l on X divided by 1− α. We assume
that L < ∞, which is fulfilled if the projection of X on R

nx is bounded and
the set Ks is bounded for all s = fs(z, fy(x)) with (x, z) ∈ X. A constant L

satisfying (5.28) is usually easily found since X is known and the controller (5.2) is
usually set up in such a way that it satisfies the input constraints of system (5.1),
which are typically a bounded set of a simple form.

The reason for choosing (5.26) is twofold, similarly to Chapter 4 where a similar cost
function was employed. First, C(x0, z0) =

∑∞
t=0 α

tl(xt, ut) for all (x0, z0) such that
(xt, zt) ∈ X for all t; that is, whenever (xt, zt) stays in the state constraint set X for
all t, the cost (5.26) coincides with the standard infinite-horizon discounted cost.
Second, C(x0, z0) ≤ L for all (x0, z0) ∈ X; that is, the cost function is bounded on
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Chapter 5. Verification of optimization-based controllers

X, which enables us to obtain polynomial upper and lower bounds on C (which
is not possible if C is infinite outside the maximum positively invariant subset
of (5.17) included in X as is the case for the standard infinite-horizon discounted
cost).

In the rest of this section we derive polynomial upper and lower bounds on C(x, z).
To this end define

K̂c := {(x, z, θ, λ) | ĝ(x, z, θ, λ) ≥ 0, ĥ(x, z, θ, λ) = 0,

(x, z) /∈ X}.

The upper bound is based on the following lemma:

Lemma 5.3.1 If

V (x, z, θ, λ)− αV (x+, z+, θ+, λ+)− l(x, κ(θ)) ≥ 0 (5.29)

∀ (x, z, θ, λ, x+, z+, θ+, λ+) ∈ K̄,

V (x, z, θ, λ) ≥ L ∀ (x, z, θ, λ) ∈ K̂c (5.30)

and
V (x, z) ≥ V (x, z, θ, λ) ∀ (x, z, θ, λ) ∈ K̂, (5.31)

then V (x, z) ≥ C(x, z) for all (x, z) ∈ X.

Proof: See the Appendix of this Chapter. �

The lower bound is based on the following lemma:

Lemma 5.3.2 If

V (x, z, θ, λ)− αV (x+, z+, θ+, λ+)− l(x, κ(θ)) ≤ 0 (5.32)

∀ (x, z, θ, λ, x+, z+, θ+, λ+) ∈ K̄,

V (x, z, θ, λ) ≤ L ∀ (x, z, θ, λ) ∈ K̂c (5.33)

and
V (x, z) ≤ V (x, z, θ, λ) ∀ (x, z, θ, λ) ∈ K̂, (5.34)

then V (x, z) ≤ C(x, z) for all (x, z) ∈ X.
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5.3. Closed-loop analysis

Proof: Analogous to the proof of Lemma 5.3.1. �

The previous two lemmas lead immediately to optimization problems providing
upper and lower bounds on C(x, z).

An upper bound on C(x, z) is given by the following optimization problem:

minimize
V,V

∫
X

V (x, z)ρ(x, z)d(x, z)

s.t. (5.29), (5.30), (5.31),

(5.35)

where ρ(x, z) is a user-defined nonnegative weighting function allowing one to put a
different weight on different initial conditions. Typical examples are ρ(x, z) = 1 or
ρ(x, z) equal to the indicator function of a certain subset of X (see Example 5.4.1).

A lower bound on C(x, z) is given by the following optimization problem:

maximize
V,V

∫
X

V (x, z)ρ(x, z)d(x, z)

s.t. (5.32), (5.33), (5.34).

(5.36)

In both optimization problems, the optimization is over continuous functions (V, V )

or (V, V ); in order to make the problems tractable we tighten the problems by
restricting the class of functions to polynomials and by replacing the constraints
by inclusions to SDP representable cones. For (5.29), (5.31) and (5.32), (5.34), the
resulting conditions are completely analogous to (5.21) (i.e., they are inclusions to
truncated quadratic modules as defined in Section 2.2.1). For (5.30) and (5.33) we
have to deal with the condition (x, z) /∈ X. A sufficient condition for (5.30) is

V (x, z, θ, λ)− L = −σψi(ζ)ψi(x, z) + σ0(ζ) (5.37)

+ σ1(ζ)
�ĝ(x, z, θ, λ) + p̄1(ζ)

�ĥ(x, z, θ, λ) ∀ i ∈ {1, . . . , nψ},

where
ζ := (x, z, θ, λ),

σ0, σ1 and σψi ’s are SOS and p̄1 is a polynomial. For each i ∈ {1, . . . , nψ} this
condition implies that V (x, z, θ, λ)− L ≥ 0 on

Kc,i = {(x, z, θ, λ) | ĝ(x, z, θ, λ) ≥ 0, ĥ(x, z, θ, λ) = 0,

ψi(x, z) ≤ 0}.
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Since ∪nψ
i=1Kc,i = Kc, the condition (5.37) indeed implies (5.30). A sufficient

condition for (5.33) is obtained by replacing the left-hand side of (5.37) by L −
V (x, z, θ, λ).

Therefore, all constraints of the optimization problems (5.35) and (5.36) can be
enforced through sufficient SDP representable constraints. The objective function
is linear in the coefficients of the polynomials V or V and can be evaluated in
closed form as long as the moments of the Lebesgue measure on X are known.

In conclusion, by restricting the class of decision variables in (5.35) and (5.36) to
polynomials of a prescribed degree and replacing the nonnegativity constraints by
sufficient SDP representable constraints, we have tightened the problems (5.35)
and (5.36) to an SDP.

5.3.4 Performance analysis – stochastic setting

A small modification of the developments from the previous section allows us to
analyze the performance in a stochastic setting, where (5.17) is replaced by

xt+1 = fx(xt,Ot(κ(Kst)), wt), (5.38a)

zt+1 = fz(zt, fy(xt, vt)), (5.38b)

where (Ot)
∞
t=0 is an arbitrary selection oracle sequence (see Definition 2) and

(wt, vt)
∞
t=0 is an iid (with respect to time) process and measurement noise with

known joint probability distributions Pw,v, i.e.,

P(wt ∈ A, vt ∈ B) = Pw,v(A× B)

for all Borel sets A ⊂ R
nw and B ⊂ R

nv . We analyze the performance with respect
to the cost function

Cs(x0, z0) = E

{
Lατ(x0,z0)}+

τ(x0,z0)−1∑
t=0

αtl(xt, ut)

}
, (5.39)

where τ(x0, z0) defined in (5.27) is now a random variable and L satisfies (5.28).
The expectation in (5.39) is over the realizations of the stochastic process (wt, vt)

∞
t=0.

The rationale behind (5.39) is the same as behind (5.26).

The stochastic counterpart to Lemma 5.3.1 reads
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5.3. Closed-loop analysis

Lemma 5.3.3 If

V (x, z)−αEV (fx(x, κ(θ), w), fz(z, fy(x, v)))−l(x, κ(θ))

≥ 0 ∀ (x, z, θ, λ) ∈ K̂, (5.40)

and
V (x, z) ≥ L ∀ (x, z) ∈ Xc, (5.41)

then V (x, z) ≥ Cs(x, z) for all (x, z) ∈ X,

where Xc is the complement of X.

Proof: See the Appendix of this chapter. �

The stochastic counterpart to Lemma 5.3.2 reads

Lemma 5.3.4 If

V (x, z)− αEV (fx(x, κ(θ), w), fz(z, fy(x, v)))− l(x, κ(θ))

≤ 0 ∀ (x, z, θ, λ) ∈ K̂, (5.42)

and
V (x, z) ≤ L ∀ (x, z) ∈ Xc, (5.43)

then V (x, z) ≤ Cs(x, z) for all (x, z) ∈ X.

Proof: Similar to the proof of Lemma 5.3.3. �

Upper and lower bounds on Cs are then obtained by

minimize
V

∫
X

V (x, z)ρ(x, z)d(x, z)

s.t. (5.40), (5.41),

(5.44)

and
maximize

V

∫
X

V (x, z)ρ(x, z)d(x, z)

s.t. (5.42), (5.43),

(5.45)

where ρ(x, z) is a given nonnegative weighting function. Polynomial upper and lower
bounds on Cs are obtained by restricting the functions V and V to polynomials and
replacing the nonnegativity constraints by sufficient SDP representable constraints
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in exactly the same fashion as in the deterministic setting. The expectation in the
constraints (5.40) and (5.42) is handled as follows: Given a polynomial p(x, w, v) =∑

α,β,γ p(α,β,γ)x
αwβvγ with coefficients {p(α,β,γ)} indexed by multiindices (α, β, γ),

we have

E p(x, w, v) =

∫
p(x, w, v)dPw,v(w, v)

=
∑
α,β,γ

p(α,β,γ)x
α

∫
wβvγdPw,v(w, v),

where the moments
∫
wβvγdPw,v(w, v) are fixed numbers and can be precomputed

offline. Hence, the expectation in (5.40) and (5.42) is linear in the decision variables,
as required, and is available in closed form provided that the moments of Pw,v are
known.

Remark 5.3.2 Note that in problems (5.44) and (5.45) we use only one function
V and V instead of pairs of functions (V, V ) and (V, V ) in problems (5.35) and
(5.36). Using a pair of functions gives more degrees of freedom and hence smaller
conservatism of the upper and lower bounds, but is difficult to use in the stochastic
setting because of the need to evaluate the expectation of a function of (θ+, λ+)

which has an unknown dependence on (w, v). In order to overcome this, one would
either have to impose additional assumptions or resort to a worst-case approach.

5.3.5 Robustness analysis – global �2 gain, ISS

In this section we describe how to analyze performance in a robust setting in terms
of the �2 gains from w and v to a performance output

ŷ = fŷ(x), (5.46)

where fŷ is a polynomial. We assume the same dynamics (5.38) as in Section (5.3.4)
but now all that is known about w and v is that they take values in a given (possibly
state-dependent) set

W(x, z) = {(w, v) ∈ R
nw × R

nv | ψw(x, z, w, v) ≥ 0}, (5.47)

where each component of ψw : Rnx+nz+nw+nv → R
nψw is a polynomial in (x, z, w, v).

Note that we do not a priori assume that the set W(x, z) is compact.
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5.3. Closed-loop analysis

Defining

Kw=
{
(x, z, θ, λ, w, v, x+z+, θ+, λ+, w+, v+) | (5.48)

ĥ(x, z, θ, λ) = 0, ĝ(x, z, θ, λ) ≥ 0,

ĥ(x+, z+, θ+, λ+) = 0, ĝ(x+, z+, θ+, λ+) ≥ 0,

ψw(x, z, w, v) ≥ 0, ψw(x
+, z+, w+, v+) ≥ 0,

x+ − fx(x, κ(θ), w) = 0, z+ − fz(z, fy(x, v)) = 0
}
,

and

K̂w=
{
(x, z, θ, λ, w, v) | ĥ(x, z, θ, λ) = 0, ĝ(x, z, θ, λ) ≥ 0,

ψw(x, z, w, v) ≥ 0}, (5.49)

we can seek a function V such that

V (x+, z+, θ+, λ+, w+, v+)− V (x, z, θ, λ, w, v) ≤
− ‖fŷ(x)‖22 + αw‖w‖22 + αv‖v‖22

∀ (x, z, θ, λ, w, v, x+z+, θ+, λ+, w+, v+) ∈ Kw, (5.50)

V (x, z, θ, λ, w, v) ≥ 0 ∀ (x, z, θ, λ, w, v) ∈ K̂w. (5.51)

and

V (0, 0, θ, λ, w, v) = 0 ∀ (0, 0, θ, λ, w, v) ∈ K̂w. (5.52)

The following lemma and its immediate corollary links the satisfaction of (5.50), (5.51)
and (5.52) to the �2 gain from w and v to ŷ.

Lemma 5.3.5 If V satisfies (5.50), (5.51) for some αw ≥ 0 and αv ≥ 0, then

∞∑
t=0

‖ŷt‖22 ≤ V (x0, z0, θ0, λ0, w0, v0) (5.53)

+ αw

∞∑
t=0

‖wt‖22 + αv

∞∑
t=0

‖vt‖22.

Proof: See the Appendix of this Chapter. �
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Corollary 5.3.1 If V satisfies (5.50), (5.51) and (5.52) for some αw ≥ 0 and
αv ≥ 0, then the �2 gain from w to ŷ respectively from v to ŷ is bounded by αw

respectively αv.

Proof: Follows by setting (x0, z0) = (0, 0) and using (5.52) which implies that
V (x0, z0, θ0, λ0, w0, v0) = 0 in (5.53). �

Minimization of an upper bound on the �2 gain from w and v to ŷ is then achieved
by the following optimization problem:

minimize
V,αw,αv

αw + γαv

s.t. (5.50), (5.51), (5.52),
(5.54)

where the parameter γ ≥ 0 trades off the minimization of the �2 gains from w to ŷ

and from v to ŷ.

Remark 5.3.3 If instead of (5.51) we require V (x, z, θ, λ, w, v) ≥ ‖x‖2 for all
(x, z, θ, λ, w, v) ∈ K̂w, then this along with (5.50) implies that the system (5.38) is
input-to-state stable (ISS) with respect to the input (w, v) ∈ W(x, z).

Since the sets Kw and K̂w are basic semialgebraic, we can find upper bounds on the
�2 gains αw and αv by restricting V to be a polynomial of a prescribed degree and
by replacing the nonnegaivity constraints of (5.54) by sufficient SDP representable
constraints (e.g., by inclusions to truncated quadratic modules as in Section 2.2.1).
By doing so we immediately obtain a tractable SDP tightening of (5.54).

5.4 Numerical examples

This section illustrates the approach on two numerical examples. The SOS problems
were modeled using SOSOPT [Sei10] and solved using MOSEK. For both examples
we report the parsing time of SOSOPT, the time to carry out monomial reduction
by SOSOPT and the solve time of MOSEK. The bottleneck of the approach is
the monomial reduction phase (which, however, is very effective in the sense of
reducing the size of the problem significantly). It is expected that a more efficient
implementation of the reduction phase and polynomial handling in general would
allow the approach to scale much beyond what is presented here. The reduction
is carried out in part automatically by SOSOPT and in part by selecting a given
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subset of variables whose monomials are then used in the basis of SOS multipliers
(see Section 6.1)

5.4.1 Bilinear system + PI with saturation – performance
analysis

First we demonstrate the approach on a bilinear dynamical system

x+ = fx(x, u) :=

[
0.9x1 + u+ 0.2ux1

0.85x2 + x1

]
y = fy(x) := x2

controlled by a PI controller with input saturation given by

z+ = fz(z, y) := z − kiy

s = fs(z, y) := kp(z − y)

with kp = 0.05, ki = 0.02. The control input is given by saturating u on the
input constraint set U = [−0.5, 0.5], i.e, u = projU(s). In addition the system
is subject to the state constraints ‖x‖∞ ≤ 10. In view of Section 5.2.1, this set
up can be analyzed using the presented method. The goal is to estimate the
performance of this closed-loop system with respect to the cost function (5.26)
with l(x, u) = ‖x‖2 + u2, α = 0.95 and L = (2 · 102 + 0.52)/(1 − α) = 4.05 · 103
chosen according to (5.28). We estimate the performance using the optimization
problem (5.35), where we consider V as function of (x, z) only and therefore do not
need the upper bounding function V . Assume that we are interested only in closed-
loop performance for initial conditions starting from X′ = {x | ‖x‖∞ ≤ 1} and
z = 0 (i.e., zero integral component at the beginning of the closed-loop evolution),
which is a strict subset of the set X := {(x, z) | ‖x‖∞ ≤ 10, z ∈ R}. To this effect
we minimize

∫
X′ V (x, 0) dx as the objective of (5.35), which corresponds to setting

ρ(x, z) = IX′(x)δ0(z), where δ0 is the Dirac distribution centered at zero. We
compare the upper bound obtained by solving (5.35) with the exact cost function
evaluated on a dense grid of initial conditions in X′ by forward simulation of the
closed-loop system. The comparison is in Figure (5.2); we see a relatively good fit
over the whole region of interest X′. The constraints (5.29) and (5.30) of (5.35)
were replaced with sufficient SOS conditions with SOS multipliers of degree four
containing only monomials in (x, z) and polynomial multipliers of degree three
containing monomials in (x, z, θ, λ).
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Figure 5.2 – Bilinear system performance bound – Red: upper bound V (x, 0) of degree
6. Blue: true closed-loop cost J(x, 0).

5.4.2 Uncertain linear system – global asymptotic stability

Consider the Quanser active suspension model in continuous-time ẋ = Acx+Bcu

with

Ac =

⎡
⎢⎣

0 1 0 −1

−Ks/Ms −Bs/Ms 0 Bs/Ms

0 0 0 1

Ks/Mus Bs/Mus −Kus/Mus −(Bs +Bus)/Mus

⎤
⎥⎦ ,

Bc = [0 1/Ms 0 −1/Mus]
T
,

where Ks = 1205, Kus = 2737, Mus = 1.5, Bs = 20, Bus = 20 and the mass Ms is
unknown and possibly time-varying in the interval [2.85, 4]. After discretization2

with sampling period 0.01, this model can be written as x+ = (A0 +A1w)x+ (B0 +

B1w)x, where w := 1/Ms ∈ [1/4, 1/2.85].

We consider an MPC controller (with perfect state measurement) with cost function
given by matrices Q = I and R = 20 minimized over prediction horizon N subject to
input constraint |u| ≤ 250 and nominal dynamics x+ = A0x+B0u. This problem
is expressed in a dense form (i.e., the state is eliminated using the dynamics
equation) to which we apply M steps of the projected gradient method (5.14)
(see Section 5.2.4) initialized with the LQ solution and seek a quadratic ISS
Lyapunov function V (see Remark 5.3.3) while minimizing the �2 gain αw using
the optimization problem (5.54) (with αv = 0). The problem (5.54) is feasible
(for all combinations of M and N tested) when we take the SOS multipliers σ1,

2The matrices A0, A1, B0, B1 were found as a least-squares fit of the continuous-time dynamics
discretized on a grid of values of w ∈ [1/4, 1/2.85].
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σ2 in equation (5.21a) of degree two in (x, θ) and the polynomial multipliers p1,
p2 of degree one in (x, θ, λ). The list of monomials r(x, θ, λ, w) constituting the
multiplier σ0 in the Gram matrix form σ0 = r(x, θ, λ, w)TWr(x, θ, λ, w), W � 0, is
determined automatically by SOSOPT and contains monomials linear in λ, x, θ
and w, and products x · w and θ · w. In Eq. (5.21b) we set all multipliers to zero
except for σ̄0, monomials of which are again determined automatically by SOSOPT.
Determining the smallest list of monomials r(x, θ, λ, w) takes the most time of the
whole procedure; this is documented by Table 5.1 reporting the time breakdown
for different values of N and M . The optimal �2 gain αw is equal to zero, showing
closed-loop global robust asymptotic stability (i.e., convergence ‖xk‖ → 0 for any
sequence {wk ∈ [1/4, 1/2.85]}∞k=0). Figure 5.3 shows a sample trajectory of ‖xk‖,
V (xk) (the Lyapunov function is a function of x only in this case) and uk and wk

for N = M = 4.
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Figure 5.3 – Global asymptotic stability of an uncertain system – one trajectory
starting from the initial condition x0 = [1 1 1 1]T of the norm of the state ‖xk‖,
the Lyapunov function V (xk), the control input uk and the disturbance wk.

5.4.3 Stability of a quadcopter on a given subset

This example investigates stability of a linearized attitude and vertical velocity
model of a quadcopter. The system has seven states (Roll, Pitch and Yaw angles
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Table 5.1 – Global asymptotic stability of an uncertain system – timing breakdown
as a function of the number of iterations of the projected gradient method M
and the horizon length N used in the cost function. The parsing and monomial
reduction was carried out by SOSOPT; the SDP solve by MOSEK.

parsing monomial reduction SDP solve

M,N = 1, 1 0.99 s 1.12 s 0.45 s

M,N = 2, 2 1.56 s 5.9 s 0.5 s

M,N = 3, 3 4.85 s 65.5 s 1.95 s

M,N = 4, 4 45 s 755 s 13.9 s

and angular velocities, and velocity in the vertical direction) and four control
inputs (the thrusts of the four rotors). The system is controlled by a one-step
MPC controller (with perfect state information) which at time k approximately
minimizes the cost xT

kQxk + uT
kRuk + xT

k+1Pxk+1, where Q = I, R = 10I and P is
the infinite-time LQ matrix associated to the cost matrices Q and R, using one step
of the projected gradient method (5.14) subject to the input constraints ‖u‖∞ ≤ 1.
This model is open-loop unstable and therefore we investigate closed-loop stability
in the region X = [−1, 1]7 as described in Section 5.3.2. The SOS problem (5.22)
is feasible when seeking a quadratic Lyapunov function using SOS multipliers σ1,
σ2 in equation (5.21a) of degree two in x and the polynomial multipliers p1, p2 of
degree one in (x, θ, λ). The smallest set of monomials constituting σ0 is chosen
automatically by SOSOPT. In (5.21b), we chose all multipliers zero except for
σ̄0 whose monomials are determined automatically by SOSOPT. Computing the
largest γ such that {x | V (x) ≤ γ} is included in X yields γ = 6.37; this proves
that all trajectories starting in {x | V (x) ≤ γ} stay there and converge to the
origin. One closed-loop trajectory of ‖x‖2, V (x) and u are depicted in Figure 5.4;
note that this trajectory does not start in {x | V (x) ≤ γ} but still converges to
the origin and the Lyapunov function decreases. The parsing time and monomial
reduction carried out by SOSOPT took 2.7 s and 16.2 s, respectively; the MOSEK
solve time was 0.55 s.
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Figure 5.4 – Stability of a quadcopter – trajectories of the norm of the state
‖xk‖, the Lyapunov function V (xk), the control input uk for initial condition
x0 = [1 1 1 1 1 1 1]�.

5.5 Appendix

Proof of Lemma 5.3.1

Let (xt, zt) be a solution to (5.17) for t ∈ {0, 1, . . .} and let ut ∈ κ(Ks). Then there
exist θt ∈ R

nθ and λt ∈ R
nλ such that

(xt, zt, θt, λt, xt+1, zt+1, θt+1, λt+1) ∈ K̄ (5.55)

and
(xt, zt, θt, λt) ∈ K̂ (5.56)

for all t ∈ {0, 1, . . . , τ − 1}, where τ := τ(x0, z0) is defined in (5.27) and

(xτ , zτ , θτ , λτ ) ∈ K̂c. (5.57)

Using (5.29) and (5.55), we conclude that

V (xt, zt, θt, λt)− αV (xt+1, zt+1, θt+1, λt+1)− l(xt, ut) ≥ 0

for all t ∈ {0, 1, . . . , τ − 1}. This implies that

ατV (xτ , zτ , θτ , λτ ) +
τ−1∑
t=0

αtl(xt, ut) ≤ V (x0, z0, θ0, λ0).
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Using (5.30) and (5.57) we conclude that

C(x0, z0) = ατL+
τ−1∑
t=0

αtl(xt, ut) ≤ V (x0, z0, θ0, λ0).

Using (5.31) and (5.56) we have V (x0, z0, θ0, λ0) ≤ V (x0, z0) and hence V (x0, z0) ≥
C(x0, z0) as desired. �

Proof of Lemma 5.3.3

The proof proceeds along similar lines as the deterministic version by decomposing
the probability space according to the values of the stopping time τ . On the
probability event {τ = k} we get, by iterating the inequality (5.40),

αkV (xk, zk) + E

{ k−1∑
t=0

αtl(xt, ut) | τ = k

}
≤ V (x0, z0).

Since (xk, zk) /∈ X on {τ = k} we have V (xk, zk) ≥ L by (5.41) and hence

αkL+ E{
k−1∑
t=0

αtl(xt, ut) | τ = k} ≤ V (x0, z0)

on {τ = k}. Summing over k gives the result.

Proof of Lemma 5.3.5

Let (xt, zt) be a solution to (5.38) with (wt, vt) ∈ W(xt, zt) for all t ∈ {0, 1, . . .}.
Then there exist θt ∈ R

nθ and λt ∈ R
nλ such that

(xt, zt, θt, λt, wt, vt, xt+1zt+1, θt+1, λt+1, wt+1, vt+1) ∈ Kw

and
(xt, zt, θt, λt, wt, vt, ) ∈ K̂w

for all t ∈ {0, 1, . . .}. Hence, by (5.50) and (5.51),

V (xt+1, zt+1, θt+1, λt+1, wt+1, vt+1)−V (xt, zt, θt, λt, wt, vt)

≤ −‖ŷt‖22 + αw‖wt‖22 + αv‖vt‖22 (5.58)
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and
V (xt, zt, θt, λt) ≥ 0

for all t ∈ {0, 1, . . .}. Iterating (5.58) we obtain

T−1∑
t=0

‖ŷt‖22 ≤ −V (xT , zT , θT , λT , wT , vT )

+ V (x0, z0, θ0, λ0, w0, v0) +
T−1∑
t=0

αw‖wt‖22 + αv‖vt‖22

≤ V (x0, z0, θ0, λ0, w0, v0) +
T−1∑
t=0

αw‖wt‖22 + αv‖vt‖22,

where we have used the fact that V (xT , zT , θT , λT ) ≥ 0 in the second inequality.
Letting T tend to infinity gives the result. �
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Chapter 6

Numerical aspects

In this chapter we briefly discuss computational aspects of the proposed methods.
We discuss software implementation as well as computational complexity.

On the side of polynomials, the bulk of computational complexity and software
implementation work boils down to imposing the inclusion of a polynomial p ∈ R[x],
x ∈ R

n, in a truncated quadratic module Qd(K) defined in (2.8). As discussed in
Section 2.2.1, this is equivalent to the existence of matrices W0 � 0, . . . ,Wng � 0

such that

p(x) = rd0(x)
�W0rd0(x) +

ng∑
i=1

gi(x)rdi(x)
�Wirdi(x), (6.1)

where gi’s are the polynomials defining the set K and d0 = �d/2� and di =

�(d− deg gi)/2�, i ∈ {1, . . . , ng}.

On the side of moments, the main computational complexity and software im-
plementation work comes down to imposing the inclusion of a vector y ∈ R(

n+d
d )

in the truncated moment cone M sup
d (K)+ defined in (2.13). This boils down to

constructing the moment and localizing matrices Md(·) and Md(·, gi) defined in
Section 2.2.2 and imposing the satisfaction of the constraints

Md(y) � 0, Md(y, gi) � 0, i ∈ {1, . . . , ng}, (6.2)

which is equivalent to semidefinite programming feasibility problem.
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6.1 Computational complexity

For computational complexity discussion, we restrict our attention to the polynomial
side as the moment side is dual to it and hence the same conclusions apply there.

By and large, the computational complexity is governed by the complexity of
imposing the inclusion of a polynomial in a truncated quadratic module Qd(K)

through Eq. (6.1). The size of each matrix Wi, i ∈ {0, . . . , ng}, in (6.1) is equal to(
n+di
di

)
×
(
n+di
di

)
and hence the size of the largest matrix, W0, grows asymptotically

as O(nd/2) when d is held fixed and n varies and grows as O((d/2)n) when d varies
and n is held fixed.

This relatively steep growth in the size of the SDP matrices precludes the use of
these methods when the number of variables n or the degree d is large unless special
structure is imposed on the matrices Wi. The simplest way to impose structure on
Wi is to discard certain monomials from the monomial vector rdi(x). The simplest
way to do so is to restrict the vectors of monomials rdi(x) to monomials of a certain
subset of the variables (x1, . . . , xn). This clearly leads to conservatism, i.e., to the
shrinkage of the set of polynomials spanned by the right-hand side of (6.1) (i.e.,
the right-hand side of (6.1) now spans only a subset of Qd(K)). Nevertheless, if the
polynomial p and the polynomials gi possess a certain kind of sparsity structure
and this structure is taken into account in the variable reduction process, the
asymptotic result of Theorem 2.2.1 still holds [Las06].

In addition, there exist automatic monomial reduction techniques (e.g., the Newton
polytope [Stu98]) which discard those monomials in r(x) which cannot appear in
the decomposition of p(x). It is also possible to directly reduce the size of the SDP
having (6.1) as a constraint using a facial reduction algorithm, e.g., [PP14]. The
benefit of facial reduction is that it works at the SDP level and is therefore not
limited to the situation where r(x) is a subset of the monomial basis, allowing one
to use numerically better conditioned bases (e.g., the Chebyshev basis) while still
benefiting from a possible size reduction. Importantly, either of these reduction
techniques incurs no conservatism, i.e., the set of polynomials spanned by the
right-hand side of (6.1) remains unaltered.

Besides monomial reduction, one can also replace the constraint Wi � 0 by
a sufficient and less computationally demanding constraint. This is the idea
of [AM14], where the authors propose to replace the constraint Wi � 0 either by
the constraint that Wi is diagonally dominant or scaled diagonally dominant. The
former replacement leads to a set of linear inequality constraints and the latter to
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a set of second order cone constraints. This is clearly a conservative replacement
but the hope is that the simpler constraint and the higher degree of maturity of
linear programming or second order cone solvers (compared to SDP solvers) can
outweigh this conservatism by allowing one to solve the problem for much higher
values of the degree d.

In the numerical examples accompanying Chapters 3 and 4, we observed little
benefit in using any of the above mentioned complexity reduction techniques. This
is due to the fact that in these cases, the polynomial p in (6.1) is itself a variable
(e.g., a linear transformation of the polynomials w and v in (3.9)) and there is no
apparent structure to exploit in the dynamical systems used (or their constraints)
in those examples. On the other hand, the results of Chapter 5 benefited strongly
from reduction techniques due the large amount of structure of the KKT systems
involved.

6.2 Software implementation

Fortunately, user friendly software packages exist both for manipulating poly-
nomials and imposing their inclusion in truncated quadratic modules as well as
for manipulating truncated moment sequences and imposing their inclusion in
truncated moment cones.

These software packages parse a high-level code, call an underlying SDP solver and
parse its output. Hence, implementing any of the methods presented in this thesis
is straightforward, necessitating only a few lines of code and a call to one of these
software packages.

On the polynomial side, the list of available packages is very long. Let us mention
Yalmip [Löf04], SOSOPT [Sei10] and SOSTOOLS [PAGV+13], to name just a few.
All of these packages provide similar functionality. On the moment side, the only
available package, to our knowledge, is Gloptipoly 3 [HLL09].

As for the underlying SDP solver, there we used MOSEK or SeDuMi [PTZ07]
throughout the thesis. These are both primal-dual interior point solvers suitable
for medium-size problems. In order for the methods of this thesis to scale higher
(without any structure exploitation), first-order or augmented Lagrangian methods
(most notably SDPNAL [ZST10]) need to be employed. These methods, however,
are more sensitive to numerical conditioning and have, so far, not shown particularly
promising results on the class of problems studied here. One exception is the
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work [Nie12] where SDPNAL was applied iteratively, with solution of one iteration
used to construct a preconditioner for the subsequent iteration and reported
promising results for the case of static polynomial optimization. However, the
question of preconditioning general moment-sum-of-squares problems (e.g., those
encountered in this thesis) remains largely open.
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Chapter 7

Conclusion and outlook

This thesis used the idea of lifting a nonlinear problem into an equivalent infinite-
dimensional problem and subsequently approximating this problem by a sequence of
linear (or conic) finite-dimensional problems. We have demonstrated the efficiency of
this approach on several problems from the field of nonlinear control and dynamical
systems, providing both novel theoretical results and easy-to-use numerical methods.

The main virtue of the proposed methods is in their simplicity and generality: The
results are obtained as the solution to a single convex semidefinite programming
problem with no initialization and no ad hoc tuning parameters and with the only
assumption that the data defining the problem are polynomial.

The price to pay for this generality is scalability of the approach, where, currently,
the proposed methods are applicable to small and moderate-size systems only,
although applicability to larger systems is expected as numerical methods for
semidefinite programming progress and/or as a structure of a particular class of
problems is discovered and computationally exploited. First application of the meth-
ods of this thesis to larger systems from robotics were already reported [MVTT14].

The particular lifting (i.e., the Liouville’s equation) and the particular way of
approximating the infinite-dimensional problem (i.e., the moment-sum-of-squares
hierarchy) are by no means the only way of carrying out the lift-plus-approximate
procedure and it is entirely possible that different implementations of this procedure
may be more suited for the class of problems studied in this thesis. This is a subject
of future research.
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Appendix A

Mathematical background

A.1 Stochastic kernels and disintegration

In this appendix we discuss stochastic kernels and disintegration, which play an
important role in theoretical results of this thesis.

Let Y ⊂ R
n and Z ⊂ R

m be two Borel sets. The object ν(· | ·) is called a stochastic
kernel on Y given Z if, first, ν(· |z) is a probability measure on Y for every fixed
z ∈ Z, and, second, if ν(A | ·) is a measurable function on Z for every Borel A ⊂ Y.

Stochastic kernels appear when disintegrating a measure μ ∈ M(Y × Z)+ as
dμ(y, z) = dν(y |z)dμ̄(z) by which we mean∫

Y×Z

g(y, z) dμ(y, z) =

∫
Z

∫
Y

g(y, z) dν(y |z) dμ̄(z)

for all μ-integrable functions g, where ν(· | ·) is a stochastic kernel on Y given Z

and μ̄ ∈ M(Z)+ is the z-marginal of μ, i.e.,

μ̄(A) = μ(Y × A).

for all Borel A ⊂ Z. The existence of such disintegration is guaranteed by [Bog06,
Corollary 10.4.13].

Intuitively, the probability measure ν(· | z) can be thought of as the conditional
distribution, given z, of a random variable defined on Y × Z and having the joint
distribution μ, although we do not assume that the mass of μ is normalized to one.
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A.2 Infinite-dimensional linear programming

In this appendix we give a brief overview of infinite-dimensional linear programming.
The material is taken from [HLL96, Chapter 6].

Let X and Y be two real vector spaces and let a bilinear form 〈· , ·〉X,Y : X×Y → R

be given satisfying:

• For all x ∈ X there exists y ∈ Y such that 〈x, y〉 �= 0,

• For all y ∈ Y there exists x ∈ X such that 〈x, y〉 �= 0.

Then we call (X,Y) a dual pair with the duality pairing 〈· , ·〉X,Y. We endow
X with the weak topology, which is the coarsest topology that makes 〈·, y〉X,Y

continuous on X for all y ∈ Y. Then Y is the topological dual of X w.r.t. the
weak topology, i.e., the space of all linear functionals on X continuous w.r.t the
weak topology.

Example A typical example of these spaces encountered throughout the thesis is
X = M(K) and Y = C(K) with the duality pairing given by

〈f, μ〉 =
∫
K

f dμ

for all f ∈ C(K) and μ ∈ M(K). The weak topology on X = M(K) as just defined
then coincides with the weak-� topology on M(K).

Let (Z,W) be another dual pair of vector spaces with duality pairing 〈· , ·〉Z,W and
let a continuous (w.r.t. the weak topologies on X and Z) operator A : X → Z be
given along with its adjoint A� : W → Y satisfying

〈Ax, w〉Z,W = 〈x,A�w〉X,Y

for all x ∈ X and w ∈ W.

Let also a convex cone C ⊂ X satisfying 0 ∈ C be given as well as two vectors
c ∈ Y and b ∈ Z. Then a standard-form primal infinite-dimensional LP reads

p� = inf
x∈X

〈x, c〉X,Y

s.t. Ax = b

x ∈ C.

(A.1)
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The dual LP reads
d� = sup

w∈W
〈b, w〉Z,W

s.t. c−A�w ∈ C�,
(A.2)

where
C� := {y ∈ Y | 〈x, y〉X,Y ≥ 0 ∀ x ∈ X}

is the dual cone to C.

We remark that this setting is very general and encompasses all of the finite-
dimensional conic programs, e.g., linear programs, second-order cone programs,
semidefinite programs, exponential cone programs etc. as well as all the infinite-
dimensional LPs encountered in this thesis.

As is the case for finite-dimensional LPs, the following holds for the pair of infinite-
dimensional LPs (A.1) and (A.2)

• (Weak duality) If (A.1) and (A.2) are feasible, then p� ≤ d�.

• (Complementarity) If x is feasible for (A.1) and w is feasible for (A.2) and
〈x, c−A�w〉X,Y = 0, then x is optimal in (A.1) and w is optimal in (A.2).

Importantly, the following strong duality theorem holds:

Theorem A.2.1 If (A.1) is feasible and if the set

{(Ax, 〈x, c〉X,Y) | x ∈ C} ⊂ Z× R

is closed (in the product topology of the weak topology on Z and the standard
topology on R), then the optimal value in (A.1) is attained and p� = d�.

Proof: Theorem 3.10 in [AN87]. �

143





Appendix B

Superposition theorems

The goal of this Appendix is to prove the superposition Theorems 2.3.1, 2.3.2. For
convenience we restate each theorem here.

B.1 Proof of Theorem 2.3.1

Theorem 2.3.1 If a triplet of nonnegative compactly supported finite measures

(μ, μ0, μT ) ∈ M([0, T ]× R
n ×U)+ ×M(Rn)+ ×M(Rn)+

satisfies∫
Rn

v(T, x) dμT (x) =

∫
Rn

v(0, x) dμ0(x)+

∫
[0,T ]×Rn×U

∂v

∂t
+∇v(t, x)·f(x, u) dμ(t, x, u)

(B.1)
for all v ∈ C1([0, T ]× R

n), then there exists a measure

η ∈ M(C([0, T ];Rn))+

supported on the absolutely continuous trajectories of

ẋ(t) ∈ conv f(x(t),U) (B.2)
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such that

μ(A× B ×U) =

∫
C([0,T ];Rn)

∫ T

0

IA×B(t, x(·)) dt dη(x(·)),

μ0(B) =

∫
C([0,T ];Rn)

IB(x(0)) dη(x(·))

and
μT (B) =

∫
C([0,T ];Rn)

IB(x(T )) dη(x(·))

for all A ⊂ R and B ⊂ R
n.

Proof: Let X denote a compact set such that sptμ ⊂ [0, T ]×X×U, sptμ0 ⊂ X

and sptμT ⊂ X and let μ̄ denote the (t, x) marginal of μ, i.e.,

μ̄(A× B) = μ(A× B ×U)

for all A ⊂ [0, T ] and B ⊂ X.

We start by disintegrating (see Section A.1) the measure μ as

dμ(t, x, u) = dν(u | t, x)dμ̄(t, x),

where dν(u | t, x) is a stochastic kernel on U given [0, T ]×X. Then we can rewrite
equation (B.1) as∫

X

v(T, ·) dμT −
∫
X

v(0, ·) dμ0

=

∫
[0,T ]×X

∫
U

∂v

∂t
+ grad v · f(t, x, u) dν(u | t, x) dμ̄(t, x)

=

∫
[0,T ]×X

∂v

∂t
+ grad v ·

[ ∫
U

f(t, x, u) dν(u | t, x)
]
dμ̄(t, x)

=

∫
[0,T ]×X

∂v

∂t
+ grad v · f̄(t, x) dμ̄(t, x), (B.3)

where
f̄(t, x) :=

∫
U

f(t, x, u) dν(u | t, x) ∈ conv f(t, x,U).

Therefore we will study the trajectories of the differential equation

ẋ(t) = f̄(t, x(t)). (B.4)
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In the remainder of the proof we show that the measures μT and μ̄ are generated
by a family of absolutely continuous trajectories of this differential equation (which
is clearly a subset of (B.2)) starting from μ0. Note that the vector field f̄ is only
known to be measurable1, so this equation may not admit a unique solution.

Observe that the t-marginal of μ (and hence of μ̄) is equal to the Lebesgue measure
restricted to [0, T ] scaled by ρ := μ0(X) (=μT (X)). Indeed, plugging v(t, x) = tk,
k ∈ N, in (B.1), we obtain μT (X) =

∫
tkdμ0 +

∫
ktk−1 dμ; taking k = 0 gives

μT (X) = μ0(X) and k ≥ 1 gives
∫
tk−1 dμ = μT (X)T k/k, which is nothing but the

Lebesgue moments on [0, T ] scaled by μT (X) = μ0(X). Therefore (see Section A.1)
we can disintegrate μ̄ as

dμ̄(t, x) = dμt(x)dt, (B.5)

where dμt(x) is a stochastic kernel on X given t scaled by ρ and dt is the standard
Lebesgue measure on [0, T ]. The kernel μt can be thought of as the distribution2

of the state at time t. The kernel μt is defined uniquely dt-almost everywhere, and
we will show that there is a version such that the function t �→

∫
X
w(x) dμt(x) is

absolutely continuous for all w ∈ C1(X) and such that the continuity equation

d

dt

∫
X

w(x) dμt(x) =

∫
X

gradw(x) · f̄(t, x) dμt(x) ∀w ∈ C1(X) (B.6)

with the initial condition μ0 is satisfied almost everywhere w.r.t. the Lebesgue
measure on [0, T ].

Fix w ∈ C1(X) and define the test function v(t, x) := ψ(t)w(x), where ψ ∈

1Measurability of f̄(t, x) follows by first observing that for f(t, x, u) = IA×B×C(t, x, u) we
have f̄(t, x) = IA(t)IB(x)ν(C | t, x), which is a product of measurable functions, and then by
approximating an arbitrary measurable f(t, x, u) by simple functions (i.e., sums of indicator
functions). This is a standard measure theoretic argument; details are omitted for brevity.

2It will become clear from the following discussion that for t = 0 and t = T this kernel (or a
version thereof) coincides with μ0 and μT , respectively; hence there is no ambiguity in notation.
Note also that the kernel μt, t ∈ [0, T ], is defined uniquely up to a subset of [0, T ] of Lebesgue
measure zero; by a “version” we then mean a particular choice of the kernel.
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C1([0, T ]). Then from equation (B.3)

ψ(T )

∫
X

w dμT − ψ(0)

∫
X

w dμ0

=

∫
[0,T ]×X

∂(ψw)

∂t
+ grad(ψw) · f̄(t, x) dμ̄(t, x)

=

∫ T

0

∫
X

ψ̇(t)w(x) + ψ(t)gradw(x) · f̄(t, x) dμt(x)dt

=

∫ T

0

[
ψ̇

∫
X

w dμt + ψ

∫
X

gradw · f̄ dμt

]
dt,

which can be seen as an equation of the form

ψ(T )d − ψ(0)c =

∫ T

0

ψ̇(t)a(t) + ψ(t)b(t) dt ∀ψ ∈ C1([0, T ]), (B.7)

where c :=
∫
X
w(x) dμ0(x), d :=

∫
XT

w(x) dμT and b(t) :=
∫
X
gradw · f̄(t, x) dμt(x)

are constants and a(t) is an unknown function. One solution is clearly a(t) =∫
X
w dμt. Now we show that

ã(t) := c+

∫ t

0

b(τ) dτ =

∫
X

w dμ0 +

∫ t

0

∫
X

gradw · f̄ dμτdτ

also solves the equation. Indeed, since from (B.3) with v replaced by w we have
ã(T ) =

∫
X
w dμT = d, integration by parts gives

∫ T

0

ψ̇(t)ã(t) dt = ψ(T )d− ψ(0)c−
∫ T

0

ψ(t)b(t) dt,

so ã(t) indeed solves equation (B.7). Now we prove that this solution is unique.
Since ã is a solution we have

ψ(T )d− ψ(0)c =

∫ T

0

ψ̇(t)ã(t) + ψ(t)b(t) dt,

and subtracting this from (B.7) we get

0 =

∫ T

0

ψ̇(t)[a(t)− ã(t)] dt ∀ ψ ∈ C1([0, T ]),
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or equivalently

0 =

∫ T

0

φ(t)[a(t)− ã(t)] dt ∀ φ ∈ C([0, T ]).

Since C([0, T ]) is dense in L1([0, T ]), this implies a(t) = ã(t) dt-almost everywhere.
Consequently, since C1(X) is separable,∫

X

w dμt=

∫
X

w(x)dμ0 +

∫ t

0

∫
X

gradw · f̄ dμτdτ ∀ w ∈ C1(X) (B.8)

dt-almost everywhere. The right-hand side of this equality is an absolutely con-
tinuous function of time for each w ∈ C1(X) and the left-hand side is a bounded
positive linear functional on C(X) for all t ∈ [0, T ]. By continuity of the right-
hand-side of (B.8) with respect to time, this right-hand side is a bounded positive
linear functional on C1(X) for all t ∈ [0, T ] and therefore can be uniquely extended
to a bounded positive linear functional on C(X) (since C1(X) is dense in C(X)).
Therefore, for all t ∈ [0, T ] the right-hand side has a representing measure [Rud86,
Theorem 2.14] and hence there is a version of μt such that the equality (B.8)
holds for all t ∈ [0, T ]. With this version of μt the function t �→

∫
X
w(x) dμt(x) is

absolutely continuous and μt solves the continuity equation (B.6).

To finish the proof, we use [Amb08, Theorem 3.2] which asserts the existence of a
nonnegative measure η on C([0, T ];Rn) which corresponds to a family of absolutely
continuous solutions to ODE (B.4) whose projection at each time t ∈ [0, T ] coincides
with μt. More precisely, there is a nonnegative measure η ∈ M(C([0, T ];Rn))+
supported on a family of absolutely continuous solutions to ODE (B.4) such that
for all measurable w : Rn → R∫

X

w(x)μt(x) =

∫
C([0,T ];Rn)

w(x(t)) dη(x(·)) ∀ t ∈ [0, T ]. (B.9)

Using IA×B(t, x) = IA(t)IB(x), it follows from (B.5) that

μ̄(A× B) =

∫
[0,T ]×X

IA(t)IB(x) dμ̄(t, x) =

∫ T

0

IA(t)

∫
X

IB(x) dμt(x) dt.

Therefore, using (B.9) with w(x) = IB(x) and Fubini’s theorem [Rud86, Theorem
8.8], we get

μ̄(A× B) =

∫
C([0,T ];Rn)

∫ T

0

IA×B(t, x(t)) dt dη(x(·)),
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and so the occupation measure of the family of trajectories coincides with μ̄. Clearly,
the initial and the final measures of this family coincide with μ0 and μT as well.

�

B.2 Proof of Theorem 2.3.2

Theorem 2.3.2 If a pair of nonnegative compactly supported finite measures

(μ, μ0) ∈ M(Rn ×U)+ ×M(Rn)+

satisfies

β

∫
Rn×U

v(x) dμ(x, u) =

∫
Rn

v(x) dμ0(x) +

∫
Rn×U

∇v(x) · f(x, u) dμ(x, u) (B.10)

for all v ∈ C1
b (R

n), then there exists a measure

η ∈ M(C([0,∞);Rn))+

supported on the absolutely continuous trajectories of

ẋ(t) ∈ conv f(x(t),U) (B.11)

such that
μ(B ×U) =

∫
C([0,∞);Rn)

∫ ∞

0

e−βtIB(x(·)) dt dη(x(·)),

and
μ0(B) =

∫
C([0,T ];Rn)

IB(x(0)) dη(x(·))

for all B ⊂ R
n.

Proof: The proof is based on fundamental results of [Amb08] and [BB96] and on
the compactification procedure discussed in [Kur11].

Let X denote a compact set such that sptμ ⊂ X ×U, sptμ0 ⊂ X. We begin by
embedding the problem in a stochastic setting. To this end, define the extended
state space E as the one-point compactification of Rn, i.e., E = R

n∪{Δ}, where Δ

is the point compactifying R
n. Define also the linear operator A : D(A) → C(E×U)

150



B.2. Proof of Theorem 2.3.2

by
w �→ Aw := gradw · f,

where the domain of A, D(A), is defined as

D(A) := {w : E → R | w ∈ C1(Rn), w(Δ) = 0, lim
x→Δ

w(x) = 0,

lim
x→Δ

gradw · f(x, u) = 0 ∀ u ∈ U}.

In words, D(A) is the space all continuously differentiable functions vanishing at
infinity such that gradw ·f also vanishes at infinity for all u ∈ U. Now consider the
relaxed martingale problem [BB96]: find a stochastic process Y : [0,∞]× Ω → E

defined on some filtered probability space (Ω,F , (Ft)t≥0, P ) and a stochastic kernel
ν(· | ·) (stationary relaxed Markov control) on U given E such that

• P (Y (0) ∈ A) = μ0(A) ∀A ⊂ E

• for all w ∈ D(A) the stochastic process

w(Y (t))−
∫ t

0

∫
U

Aw(Y (s), u) ν(du |Y (s)) ds (B.12)

is an Ft-martingale (see, e.g., [Kal10] for a definition).

Observe that there exists a countable subset of D(A) (e.g., all polynomials with
rational coefficients attenuated near infinity) dense in D(A) in the supremum norm.
Next, D(A) is clearly an algebra that separates points of E and A1 = 0. Finally,
since f(x, u) is polynomial and hence locally Lipschitz, the ODE ẋ = f(x, u) has
a solution on [0,∞) for any x0 ∈ E and any fixed u ∈ U in the sense that if
there is a finite escape time te, then we define x(t) = Δ for all t ≥ te. Each such
solution satisfies the martingale relation (B.12) (with a trivial probability space).
Therefore, A satisfies Conditions 1-3 of [BB96] and it follows from Theorem 2.2
and Corollary 2.2 therein that for any pair of measures satisfying the discounted
Liouville’s equation (B.10), there exists a solution to the above martingale problem
whose discounted occupation measure is equal to μ, that is,

μ(A× B) = E

{∫ ∞

0

e−βtIA×B(Y (t), u) ν(du |Y (t)) dt

}
, P (Y (0) ∈ A) = μ0(A),

where E denotes the expectation w.r.t. the probability measure P . From the
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martingale property of (B.12) and the definition of A we get

E{w(Y (t))} − E

{∫ t

0

∫
U

gradw · f(Y (s), u) ν(du |Y (s)) ds

}
= E{Y (0)}.

Now let μt denote the marginal distribution of Y (t) at time t; that is,

μt(A) := P (Y (t) ∈ A) = E{IA(Y (t))} ∀ A ⊂ X.

Then the above relation becomes∫
X

w(x) dμt(x)−
∫ t

0

∫
X

∫
U

gradw(x) ·f(x, u) ν(du |x) dμs(x) ds =

∫
X

w(x) dμ0(x),

where we have used Fubini’s thorem to interchange the expectation operator and
integration w.r.t. time. Defining the relaxed vector field

f̄(x) =

∫
U

f(x, u) ν(du |x) ∈ conv f(x,U)

and rearranging we obtain∫
X

w(x) dμt(x) =

∫
w(x) dμ0(x) +

∫ t

0

∫
X

gradw(x) · f̄(x) dμs(x) ds, (B.13)

where the equation holds for all w ∈ C1(X) almost everywhere with respect
to the Lebesgue measure on [0,∞). The Lemma then follows from Ambrosio’s
superposition principle [Amb08, Theorem 3.2] using the same arguments as in the
proof of Theorem 2.3.1.

�

B.3 Proof of Theorem 2.3.3

Theorem 2.3.3 Let f̄ : R
n → R

n be locally Lipschitz and let the triplet of
nonnegative compactly supported measures

(μ, μ0, μT ) ∈ M(Rn)+ ×M(Rn)+ ×M(Rn)+
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satisfy∫
Rn

v(x) dμT (x)+β

∫
Rn

v(x) dμ(x) =

∫
Rn

v(x) dμ0(x)+

∫
Rn

∇v · f̄(x) dμ(x) (B.14)

for all v ∈ C1
b (R

n). Then there exists an ensemble of probability measures {τx0 ∈
P ([0,∞])}x0∈Rn (a stochastic kernel) such that∫

Rn

v(x) dμ0(x) =

∫
Rn

v(x(0 |x0)) dμ0(x0), (B.15a)∫
Rn

v(x) dμ(x) =

∫
Rn

∫ ∞

0

∫ τ

0

e−βtv(x(t |x0)) dt dτx0(τ) dμ0(x0), (B.15b)∫
Rn

v(x) dμT (x) =

∫
Rn

∫ ∞

0

e−βτv(τ(x0)) dτx0(τ) dμ0(x0), (B.15c)

for all bounded measurable functions v, where x(· |x0) denotes the unique trajectory
of ẋ = f̄(x) starting from x0, which is defined at least on [0, sup spt τx0 ] for all
x0 ∈ sptμ0.

Proof: Let X denote a compact set such that sptμ ⊂ X, sptμ0 ⊂ X and sptμT ⊂ X.
Since X is compact we can modify f̄ outside of X such that f̄ is globally Lipschitz
and (B.14) still holds.

Suppose therefore that (B.14) holds with a globally Lipschitz f̄ . First we will prove
a simple result. In the rest of this Appendix we will use the notation Ck

b for the
space of all bounded k-times continuously differentiable functions.

Lemma B.3.1 If β > 0, then for any w ∈ C1
b (R

n), the equation

∇v · f̄ − βv = w (B.16)

has a solution v such that for all x0 ∈ R
n it holds

v(x0) = −
∫ ∞

0

e−βtw(x(t |x0)) dt. (B.17)

Proof: Since f̄ is globally Lipschitz the solution x(t |x0) is defined for all x0 ∈ R
n

and all t ≥ 0. Therefore (B.17) is well defined (since w is bounded and β > 0).
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Direct computation then gives:

∇v · f̄(x(t | x0)) =
d

dt
v(x(t |x0))

= − d

dt

∫ ∞

0

e−βsw(x(s |x(t |x0))) ds

= − d

dt

∫ ∞

0

e−βsw(x(t+ s |x0)) ds

= −
∫ ∞

0

e−βs∇w(x(t+ s |x0)) · f̄(x(t+ s |x0)) ds

= −
∫ ∞

0

e−βs d

ds
w(x(t+ s |x0)) ds

= −β

∫ ∞

0

e−βsw(x(t+ s |x0)) ds− [e−βsw(x(t+ s |x0))]
∞
0

= −β

∫ ∞

0

e−βsw(x(s |x(t |x0))) ds+ w(x(t |x0))

= βv(x(t |x0)) + w(x(t |x0)).

Setting t = 0, we arrive at (B.16). �

Proof (of Theorem 2.3.3) We will proceed in several steps.

Two Diracs. We start with the simplest case of μ0 = δx0 and μT = aδxT , a > 0,
xT ∈ R

n, and some μ ≥ 0. First we will show that if (μT , μ0, μ) solves (B.14) then
there exists a time τ ≥ 0 such that x(τ |x0) = xT . Consider now any w ∈ C1

b (R
n),

w ≥ 0 and the associated v ∈ C1(Rn) solving (B.16). Then we have

av(xT )− v(x0) =

∫
Rn

(∇v · f̄ − βv) dμ =

∫
Rn

w dμ ≥ 0.

Therefore, by Lemma B.3.1,

av(xT ) ≥ v(x0) = −
∫ ∞

0

e−βtw(x(t |x0)) dt.

Using (B.17) again on v(xT ) we get

−a

∫ ∞

0

e−βtw(x(t |xT )) dt ≥ −
∫ ∞

0

e−βtw(x(t |x0)) dt,

or
a

∫ ∞

0

e−βtw(x(t |xT )) dt ≤
∫ ∞

0

e−βtw(x(t |x0)) dt. (B.18)
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Now pick S ≥ 0 (to be specified later) and consider the traces

X0 = {x(t | x0) | 0 ≤ t ≤ S}.

XT = {x(t | xT ) | 0 ≤ t ≤ S}.

Assuming there is no τ ≥ 0 such that x(τ |x0) = xT we have X0 ∩XT = ∅ and since
X0 and XT are compact there exists (e.g., by Uryshon’s Lemma with mollification)
a function w ∈ C1

b (R
n; [0, 1]) such that w = 0 on X0 and w = 1 on XT . Then the

left hand side of (B.18) is greater than or equal to a(1− e−βS)/β whereas the right
hand side is less than or equal to e−βS/β. Since a > 0 and β > 0 we arrive at a
contradiction with (B.18) by picking a sufficiently large S. Therefore there exists a
τ ≥ 0 such that x(τ |x0) = xT (i.e., xT and x0 are on the same trace of the flow
associated to ẋ = f(x)).

Now we prove that a ≤ e−βτ . Since xT = x(τ | x0) and x0 are on the same trace
we have

v(x0) = e−βτ v(xT )︸ ︷︷ ︸
v(x(τ |x0))

−
∫ τ

0

w(x(t |x0)) dt.

Using again av(xT ) ≥ v(x0) if w ≥ 0 we get

av(xT ) ≥ e−βτv(xT )−
∫ τ

0

w(x(t |x0)) dt, or

(e−βτ − a)

∫ ∞

0

e−βtw(x(t |xT ))dt ≥ −
∫ τ

0

w(x(t |x0)) dt. (B.19)

Consider the set
Xτ = {x(t | x0) | 0 ≤ t ≤ τ}.

Since x0 and xT are on the same trace (and xT follows x0) there exists w ∈ C1
b (R

n),
w ≥ 0, such that w = 0 on Xτ and w > 0 elsewhere (such function always exists
since every closed set in R

n is the zero set of a nonnegative bounded smooth
function). With this choice of w the equation (B.19) gives

(e−βτ − a)

∫ ∞

0

e−βtw(x(t |xT ))dt ≥ 0

and therefore a ≤ e−βτ because the integral is strictly positive (since x(t | xT ) /∈ Xτ

for for all t ≥ 0). This proves the first two claims.
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To finish we observe that any solution to (B.16) satisfies

e−βτv(xT ) = v(x0) +

∫ τ

0

e−βtw(x(t |x0)) dt.

Therefore
av(xT ) = v(x0)ae

βτ + aeβτ
∫ τ

0

e−βtw(x(t |x0)) dt.

Using (B.17) we get

av(xT ) = v(x0) + aeβτ︸︷︷︸
≥0

∫ τ

0

e−βtw(x(t |x0)) dt+ (1− aeβτ )︸ ︷︷ ︸
≥0

∫ ∞

0

e−βtw(x(t |x0)) dt.

Since
av(xT )− v(x0) =

∫
Rn

w dμ

we conclude that∫
Rn

w dμ = aeβτ
∫ τ

0

e−βtw(x(t |x0)) dt+ (1− aeβτ )

∫ ∞

0

e−βtw(x(t |x0)) dt,

i.e., μ is indeed generated by trajectories of ẋ = f(x) (in this case by two trajectories,
both starting at x0, one stopping at τ , the other one continuing to infinity with
weights given by the ratio of masses of μ0 and μT ). That is the measure τx0 is
given by

τx0 = aeβτδτ + (1− aeβτ )δ∞

as expected.

Dirac at x0, sum of Diracs for μT . Next we treat the case where μT =∑∞
i=1 aiδxi for some ai ≥ 0 and xi ∈ R

n. Using the same argument as in the
previous case we can show that

xi ∈ X0 = {x(t | x0) | t ≥ 0}

for all i and that the condition
∞∑
i=1

aie
βτi ≤ 1,
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holds with τi being the times to reach xi from x0. Then we have

τx0 =
∞∑
i=1

aie
βτiδτi + (1−

∞∑
i=1

aie
βτi)δ∞.

Dirac at x0 arbitrary μT . In the same way as before we can show that the
support of μT must be on the trace X0. Then we can define the measure τ̂x0 by

τ̂x0(A) := μT (x(A | x0)), A ⊂ [0,∞)

and show that it has to satisfy the condition
∫∞
0

eβtdτ̂x0(t) ≤ 1. Next, using the
fact that the mapping t �→ x(t |x0) is invertible, we obtain∫

Rn

v dμT =

∫ ∞

0

v(x(t |x0)) dτ̂x0(t).

The conclusion of the theorem then holds with τx0 defined by

τx0(A) =

∫ ∞

0

IA(t)e
βtdτ̂x0(t) +

[
1−
∫ ∞

0

eβtdτ̂x0(t)

]
IA(∞), A ⊂ [0,∞].

Arbitrary μ0, arbitrary μT . The general case follows by approximating μ0 by
a sum of Dirac measures, using the fact that any measure is the weak limit of a
sequence of Dirac measures. �

B.4 Proof of Theorem 2.3.4

Theorem 2.3.4 If a pair of nonnegative compactly supported finite measures

(μ, μ0) ∈ M(Rn ×U)+ ×M(Rn)+

satisfies∫
Rn×U

v(x) dμ(x, u) =

∫
Rn

v(x) dμ0(x)+α

∫
Rn×U

v(f(x, u)) dμ(x, u) ∀v ∈ Cb(R
n).

(B.20)
for all v ∈ Cb(R

n), then there exists a measure

η ∈ M(l(N;Rn))+
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supported on the trajectories of (2.19)

xt+1 = f(xt, ut), ut ∈ U, (B.21)

such that

μ(B ×U) =

∫
l(N;Rn)

∞∑
t=0

αtIB(xt) dη((xk)
∞
k=0),

and
μ0(B) = μ(B ×U) =

∫
l(N;Rn)

IB(x0) dη((xk)
∞
k=0),

for all B ⊂ R
n.

Proof: Let X denote a compact set such that sptμ ⊂ X×U, sptμ0 ⊂ X. We start
by embedding our problem in the setting of discrete-time Markov control processes;
terminology and notation is borrowed from the classical reference [HLL96]. Let
us define a stochastic kernel on U given X as a map ν(· | ·) such that ν(· |x) is a
probability measure on U for all x ∈ X and ν(B | ·) is a measurable function on
X for all B ⊂ U. Any such stochastic kernel gives rise to a discrete-time Markov
process when applied to system (B.21) as a stationary randomized control policy (a
policy which, given x, chooses the control action randomly based on the probability
distribution ν(· |x), i.e., Prob(u ∈ B |x) = ν(B |x) for all B ⊂ U). The transition
kernel Rν(· | ·) of this stationary Markov process is then given by

Rν(A |x) =
∫
U

IA(f(x, u)) dν(u |x) = Prob(x+ ∈ A |x) ∀A ⊂ R
n,

where x is the current state and x+ the successor state. The t-step transition kernel
is then defined by induction as

Rt
ν(A |x) :=

∫
Rn

R(A |y) dRt−1
ν (y |x), t ∈ {2, 3, . . .}

with R1
ν := Rν . Given an initial distribution μ0, the distribution of the Markov

chain at time t, μ̃t, is given by

μ̃t(A) =

∫
X

Rt
ν(A |x) dμ0(x) = Prob(xt ∈ A).

The joint distribution of state and control is then

μt(A× B) =

∫
A

ν(B |x) dμ̃t(x).

158



B.4. Proof of Theorem 2.3.4

The discounted occupation measure associated to the Markov process is defined by

μ(A× B) =
∞∑
t=0

αtμt(A× B). (B.22)

Note that this relation reduces to (2.41) when μt = δ(xt,ut)

These considerations along with the following result from [HLL96] lead immediately
to the desired conclusion.

Lemma B.4.1 For any pair of measures (μ0, μ) satisfying equation (B.20) there
exists a stationary randomized control policy ν(· |x) such the Markov chain {xt}∞t=0

with transition kernel Rν starting from initial distribution μ0 (i.e., Markov chain ob-
tained by applying the randomized control policy ν to the difference equation (B.21))
has the discounted occupation measure (B.22) equal to μ.

The measure η ∈ M(l(N R
n))+ from Theorem 2.3.4 is then obtained as the law

(i.e., the pushforward measure of the underlying probablity space to l(N;Rn)) of
the Markov chain {xt}∞t=0 from Lemma B.4.1.

�

Proof of Lemma B.4.1 For completeness we give here a proof of Lemma B.4.1.
We start by disintegrating (see Section A.1) μ as dμ(x, u) = dν(u |x)dμ̃(x), where
μ̃ denotes the x-marginal of μ and ν is a stochastic kernel on U given X. According
to the discussion preceding Lemma B.4.1, applying ν to (B.21) gives rise to a
stationary discrete-time Markov process with the transition kernel Rν starting
form the initial distribution μ0.

With this notation, equation (B.20) can be equivalently rewritten as∫
X

v(x) dμ̃(x) =

∫
X

v(x) dμ0(x) + α

∫
X

∫
Rn

v(y) dRν(y |x) dμ̃(x) (B.23)

for any measurable v(x) (derivation of equation (B.20) did not depend on the
continuity of v). Taking v(x) := IA(x) we obtain

μ̃(A) = μ0(A) + α

∫
X

Rν(A |x) dμ̃(x) ∀A ⊂ X. (B.24)

Using relation (B.23) with v(x) := Rν(A |x) to evaluate the integral w.r.t. μ̃ on
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the right hand side of (B.24) we get

μ̃(A) = μ0(A) + α

∫
X

Rν(A |x) dμ0(x) + α2

∫
X

R2
ν(A |x) dμ̃(x).

By iterating this procedure we obtain

μ̃(A) = μ0(A) +
t∑

i=1

αi

∫
X

Ri
ν(A |x) dμ0(x)︸ ︷︷ ︸
μi(A)

+ αt+1

∫
X

Rt+1
ν (A |x) dμ̃(x)︸ ︷︷ ︸
→ 0

, (B.25)

and taking the limit as t → ∞ gives

μ̃(A) =
∞∑
t=0

αtμ̃t(A),

where the third term in (B.25) converges to zero because α ∈ (0, 1), Rt+1
ν (A |x) ≤ 1

and μ̃ is a finite measure. Hence the x-marginal of the discounted occupation
measure of the Markov chain coincides with the x-marginal of μ.

Finally, to establish equality of the whole measures observe that

∞∑
t=0

αtμt(A× B) =
∞∑
t=0

αt

∫
A

ν(B |x) dμ̃t(x) =

∫
A

ν(B |x) dμ̃(x) = μ(A× B).

�
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