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Zusammenfassung
Anfrageoptimierung ist ein Schlüsselproblem im Bereich der Datenbanksysteme. Das Ziel

ist es, einen Anfrage (welche die zu generierenden Daten beschreibt) in einen effizienten

Plan zu überführen (welcher einen Weg beschreibt, um die angefragten Daten zu generieren).

Anfrageoptimierung gehört zur Klasse der NP-harten Optimierungsprobleme und die Grösse

der Probleminstanzen, die in annehmbarer Zeit gelöst werden können, ist daher in der Praxis

beschränkt. In dieser Doktorarbeit stelle ich sieben neuartige Verfahren vor, mit deren Hilfe wir

deutlich grössere Probleme als mit den vorher existierenden Verfahren lösen können. Diese

sieben Verfahren beziehen sich auf fünf verschiedene Varianten der Anfrageoptimierung,

insbesondere auf das klassische Anfrageoptimierungsproblem, auf Anfrageoptimierung mit

Parametern, auf Anfrageoptimierung mit mehreren Kostenmetriken, auf Anfrageoptimierung

mit Parametern und mehreren Kostenmetriken, und auf Anfrageoptimierung mit mehreren

Anfragen.

Die ersten Kapitel dieser Arbeit beziehen sich vor allem auf Anfrageoptimierung mit mehreren

Kostenmetriken. Mit Hilfe von Näherungsverfahren können wir näherungsweise optimale

Pläne innerhalb von Sekunden finden für Probleme, bei denen es Stunden dauern würde,

einen garantiert optimalen Plan zu finden. Wir stellen ausserdem einen inkrementellen Algo-

rithmus vor, der es Benutzern ermöglicht, den präferierten Plan in einem interaktiven Prozess

zu bestimmen. Desweiteren führen wir eine neue Problemvariante der Anfrageoptimierung,

Anfrageoptimierung mit mehreren Parametern und Kostenmetriken, ein. Indem wir dieses

Problem lösen, können wir Anfrageoptimierung vor der Laufzeit durchführen und somit Ver-

zögerungen während der Ausführung vermeiden. Ausserdem präsentieren wir den ersten

stochastischen Algorithmus für Anfrageoptimierung mit mehreren Kostenmetriken. In den

späteren Kapiteln dieser Arbeit wenden wir uns anderen Varianten der Anfrageoptimierung

zu. Wir stellen einen Ansatz vor, der es erlaubt zahlreiche Problemvarianten der Anfrageopti-

mierung innerhalb grosser Computersysteme zu parallelisieren. Anfragen werden heutzutage

mit Hilfe von hoch-parallelen Systemen verarbeitet und es gibt keinen Grund, warum man

dieselben Systeme nicht auch für die Optimierung verwenden sollte. Wir stellen ebenfalls

einen Ansatz vor, der es erlaubt, Anfrageoptimierungsprobleme mit Hilfe linearer Programme

anzunähern. Dies erlaubt es, spezialisierte Software zu verwenden, um die letztgenannten

Probleme zu lösen. Dieser Ansatz erlaubt es uns, deutlich grössere Suchräume zu durchforsten

als es mit traditionellen Methoden möglich ist. Schlussendlich zeigen wir, wie eine Anfrage-

optimierungsvariante mit Hilfe eines Quantencomputers gelöst werden kann. Wir erhielten

Zugang zu einem D-Wave 2X Adiabatic Quantum Annealer und werden experimentelle Resul-
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tate präsentieren, die die Optimierunszeit des Quantencomputers mit der Optimierungszeit

eines klassischen Computers vergleichen.

Stichwörter: Anfrageoptimierung, Näherungsverfahren, Stochastische Algorithmen, parallele

Verarbeitung, Quantencomputing
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Abstract
The goal of query optimization is to map a declarative query (describing data to generate)

to a query plan (describing how to generate the data) with optimal execution cost. Query

optimization is required to support declarative query interfaces. It is a core problem in the

area of database systems and has received tremendous attention in the research community,

starting with an initial publication in 1979. In this thesis, we revisit the query optimization

problem. This visit is motivated by several developments that change the context of query

optimization. That change is not reflected in prior literature.

First, advances in query execution platforms and processing techniques have changed the

context of query optimization. Novel provisioning models and processing techniques such as

Cloud computing, crowdsourcing, or approximate processing allow to trade between different

execution cost metrics (e.g., execution time versus monetary execution fees in case of Cloud

computing). This makes it necessary to compare alternative execution plans according to

multiple cost metrics in query optimization. While this is a common scenario nowadays, the

literature on query optimization with multiple cost metrics (a generalization of the classical

problem variant with one execution cost metric) is surprisingly sparse. While prior methods

take hours to optimize even moderately sized queries when considering multiple cost metrics,

we propose a multitude of approaches to make query optimization in such scenarios practical.

A second development that we address in this thesis is the availability of novel software

and hardware platforms that can be exploited for optimization. We will show that integer

programming solvers, massively parallel clusters (which nowadays are commonly used for

query execution), and adiabatic quantum annealers enable us to solve query optimization

problem instances that are far beyond the capabilities of prior approaches.

In summary, we propose seven novel approaches to query optimization that significantly

increase the size of the problem instances that can be addressed (measured by the query

size and by the number of considered execution cost metrics). Those novel approaches

can be classified into three broad categories: moving query optimization before run time

to relax constraints on optimization time, trading optimization time for relaxed optimality

guarantees (leading to approximation schemes, incremental algorithms, and randomized

algorithms for query optimization with multiple cost metrics), and reducing optimization time

by leveraging novel software and hardware platforms (integer programming solvers, massively

parallel clusters, and adiabatic quantum annealers). Those approaches are novel since they

address novel problem variants of query optimization, introduced in this thesis, since they are

novel for their respective problem variant (e.g., we propose the first randomized algorithm
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for query optimization with multiple cost metrics), or because they have never been used

for optimization problems in the database domain (e.g., this is the first time that quantum

computing is used to solve a database-specific optimization problem).

Key words: Query optimization, multi-objective query optimization, parametric query opti-

mization, multiple query optimization, approximation algorithms, randomized algorithms,

incremental algorithms, parallelization, integer programming, quantum computing
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1 Introduction

The goal of query optimization is to map a declarative query (describing data to generate) to an

optimal query plan (describing how to generate the data) [116]. Choices related to operation

order or operator implementations typically lead to myriads of alternative plans for a given

query. The execution cost of an average plan is often by many orders of magnitude higher than

the cost of the best plan [64]. Query optimization is therefore crucial to support declarative

query interfaces efficiently. This is why relational database system integrate sophisticated

query optimizer components that are the result of thousands of man years worth of work [82].

But the scope of query optimization extends beyond traditional database systems. Tools

such as Hive [4] and Spark SQL [7] support SQL-like queries on top of the Hadoop [3] or

Spark [6] framework. Services such as Google BigQuery [2] and Amazon RedShift [1] support

SQL processing in the Cloud. All those and other systems benefit from advances in query

optimization methods.

Query optimization is an NP-hard optimization problem and it is even NP-hard to find ap-

proximately optimal solutions [33]. This means that the time for finding an optimal solution

(for all currently known algorithms) grows exponentially in the size of the input problem. At

the same time, the query optimization problem is usually solved at run time which implies

tight constraints on optimization time. Taken together, this means that the size of the queries

that we can optimize in a principled fashion (i.e., with formal guarantees on finding optimal

or near-optimal query plans) is in practice quite limited. Query optimization is a challenging

problem that must however be solved in order to enable declarative query interfaces. This

combination has led to a large body of research work in the database community, starting with

a first publication in 1979 [116]. Query optimization is one of the core research problems in the

database domain that keeps receiving significant attention in the community (as evidenced

by dedicated tracks at the top database conferences1).

While there is a large body of work on query optimization, most of the existing work is based

on similar assumptions as the first paper on cost-based query optimization in 1979 [116].

1http://www.vldb.org/2015/program/Table.html
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Chapter 1. Introduction

The context of query optimization has however changed in the meantime and some of those

assumptions must be revised. This change of context was not reflected appropriately in the

query optimization literature prior to the work presented in this thesis.

The work in this thesis is primarily motivated by advances in query execution platforms and

by advances in optimization software and hardware platforms. Execution and optimization

platforms both define the context of query optimization. Advances in query execution plat-

forms have the potential to motivate changes to the problem model in query optimization.

Advances in optimization platforms represent opportunities that can be seized for making

query optimization more efficient.

Query execution platforms have advanced in various ways over the past decades: flexible

provisioning models such as Cloud computing and crowdsourcing allow to scale out auto-

matic processing (Cloud computing) or human computation (crowdsourcing). Approximate

processing techniques allow users to reduce query execution overhead when accepting lower

result precision. At a high level of abstraction, many of those advances allow users to trade

between different execution cost metrics. Cloud computing allows users to trade execution

time for monetary execution fees (by adapting number and type of the computational re-

sources rented from the Cloud provider) while approximate processing techniques allow users

to trade between execution time and result precision or completeness (by adapting sample

sizes). Multitenancy scenarios motivate providers to consider tradeoffs between the system

resources allocated for the execution of one query (e.g., in terms of main memory, disc space,

and the number of CPU cores) and its execution time. Energy consumption is becoming an

important execution cost metric in addition to execution time.

In summary, there are nowadays many scenarios in which multiple execution cost metrics

are important. This challenges the assumption that query plans are compared according to

a single cost metric (usually execution time) that most query optimization algorithms are

based upon. The literature on query optimization with multiple execution cost metrics, multi-

objective query optimization, is surprisingly sparse. Existing optimization algorithms are

either highly specific or highly inefficient (we discuss prior art in more detail in Section 1.1). In

this dissertation, we propose first of all a broad range of techniques (including approximation

algorithms, incremental algorithms, randomized algorithms, and pre-processing methods) to

make query optimization with multiple diverse execution cost metrics practical.

The first algorithms for cost-based query optimization [116] were executed on a single com-

puter and did not rely on any specialized software. Most current query optimizers still use a

similar software and hardware platform. This means however that we miss opportunities to

leverage advances in hardware and software platforms for optimization. Massively parallel

clusters with shared-nothing architectures are nowadays commonly used for query execution.

In this thesis, we will show that we can use them for query optimization as well. Software

solvers for standard problems (e.g., mixed integer linear programming) have steadily improved

their performance over the last decades. We will see that they enable us to treat problem

2



Classical
cost(pl an) : R

Multi-Objective
cost(pl an) : Rm

Parametric
cost(pl an) : Rn →R

Multi-Objective Parametric
cost(pl an) : Rn →Rm

Figure 1.1 – Query optimization variants can be classified according to how they model the
cost of a single query plan (arrows represent generalizations). This thesis introduces multi-
objective parametric query optimization together with a first approach, we provide the first
practical algorithms for multi-objective query optimization, and we significantly extend the
instance sizes that can be treated in classical and parametric query optimization.

instances in query optimization whose size exceeds the capabilities of classical algorithms

by far. Finally, hardware solvers have very recently become available that exploit quantum

mechanics to solve NP-hard optimization problems. We will show how to solve certain query

optimization variants on such a machine. Based on a research grant giving us access to the

corresponding hardware, located at NASA Research Center in California, we evaluate our

approach experimentally and compare against classical computers.

The approaches that we present in this thesis are applicable to multiple query optimization

variants. Some of them are classical problem variants while others are introduced in this thesis.

Figure 1.1 categorizes query optimization variants based on how they model the execution

cost of one single query plan. Classical query optimization considers one execution cost

metric. Therefore, each query plan is associated with a scalar execution cost value (usually

representing estimated execution time). Considering multiple execution cost metrics leads to

multi-objective query optimization. The cost of one query plan is modeled by a cost vector

where different vector components represent cost according to different metrics. Optimizing

query templates (containing placeholders) instead of fully specified queries leads to paramet-

ric query optimization. In that case, the cost of a query plan is modeled by a cost function that

depends on parameters with unknown values (parameters represent placeholders in the query

template). The latter two query optimization variants generalize classical query optimization

in different ways. Multi-objective parametric query optimization generalizes both of the

latter variants by modeling the cost of a plan by a cost function mapping a multi-dimensional

parameter space to a multi-dimensional cost space.

With regards to the aforementioned variants, this thesis makes the following contributions. We

introduce multi-objective parametric query optimization, analyze the problem, and propose

a first corresponding approach. This allows to address scenarios in query optimization that

cannot be modeled using any of the other models. We are the first to make multi-objective

query optimization with diverse cost metrics practical. While prior approaches take hours to
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Chapter 1. Introduction

optimize a single standard query (see Chapter 2), we propose a broad range of approaches

that reduce optimization time to a few seconds or less. For the classical query optimization

variants with one execution cost metric, we show how to exploit novel software and hardware

platforms in order to treat problem instances that are far beyond the capabilities of prior

approaches.

In summary, the contribution of this thesis are various approaches that very significantly

extend the size of the problem instances that can be treated in query optimization. Size is not

only measured by the size of the input queries but also by the number of execution cost metrics

that are used to compare plans. The approaches that we propose can be categorized into

three broad categories: we move query optimization before run time to relax constraints on

optimization time, we reduce optimization time by relaxing optimality guarantees (leading to

approximation algorithms, incremental algorithms, or randomized algorithms), or we leverage

novel software and hardware platforms for optimization (massively parallel clusters, mixed

integer linear programming solvers, or adiabatic quantum annealers).

The seven approaches that are presented in this thesis are derived from seven papers that have

been published (with one exception) at the VLDB or at the SIGMOD conference. Some of them

have additionally been invited into the “Best of VLDB” special issue of the VLDB Journal and

selected for the ACM SIGMOD Research Highlight Award 2015. A list of those papers follows:

• Immanuel Trummer, Christoph Koch.

Approximation schemes for many-objective query optimization.

SIGMOD 2014.

• Immanuel Trummer, Christoph Koch.

An incremental anytime algorithm for multi-objective query optimization.

Talk Recording: https://www.youtube.com/watch?v=J54gVIt9UAo

SIGMOD 2015.

• Immanuel Trummer, Christoph Koch.

Multi-objective parametric query optimization.

Talk Recording: https://www.youtube.com/watch?v=hO3IaSfFtJY

VLDB 2015.

• Immanuel Trummer, Christoph Koch.

A fast randomized algorithm for multi-objective query optimization.

SIGMOD 2016.

• Immanuel Trummer, Christoph Koch.

Parallelizing query optimization on shared-nothing architectures.

VLDB 2016.

• Immanuel Trummer, Christoph Koch.

Solving the join ordering problem via mixed integer linear programming.

4



1.1. State of the Art

http://arxiv.org/pdf/1511.02071v1.pdf, 2015.

• Immanuel Trummer, Christoph Koch.

Multiple query optimization on the D-Wave 2X adiabatic quantum computer.

VLDB 2016.

In the remainder of this introductory chapter, we will shortly discuss prior art (see Section 1.1),

describe the thesis contributions in more detail (see Section 1.2), and describe the structure of

this thesis (see Section 1.3).

1.1 State of the Art

The classical query optimization problem has been introduced in the seventies [116]. Extended

variants such as parametric query optimization [78], multi-objective query optimization [107],

and multiple query optimization [118] have been introduced later. In this dissertation (and in

the associated paper), we also introduce the multi-objective parametric query optimization

problem [139] which generalizes most of the previously proposed query optimization variants.

Query optimization algorithms can generally be classified into exhaustive algorithms, which

formally guarantee to find an optimal or near-optimal solution, and heuristic or randomized

algorithms. The latter type of algorithm gives up formal guarantees on generating optimal

plans in order to avoid prohibitive optimization time. Modern database systems often use two

different optimization algorithms in combination: an exhaustive algorithm is used by default

but a randomized algorithm is used instead if queries are too large for exhaustive optimization.

The Postgres database system uses for instance an exhaustive query optimization algorithm

for small SQL queries and switches to a randomized algorithm for optimizing larger queries.

The general goal in query optimization is however to push back the limit on the query size

starting from which randomized or heuristic algorithms have to be used. The reason is that

randomized optimization can in principle lead to query plans with catastrophic execution

cost. In this thesis, we present several approaches that allow to optimize significantly larger

queries than prior techniques. We do so by exploiting several opportunities to speed up

query optimization that have so far been overlooked. For instance, we show how many

query optimization variants can be parallelized over large clusters with hundreds of nodes.

Query optimization has been parallelized before but existing approaches are only able to

exploit moderate degrees of parallelism in shared-memory architectures [67, 145, 68]. They

do not allow to exploit massive degrees of parallelism in shared-nothing architectures. Such

architectures are however often used for query execution and there is no reason not to exploit

them for optimization as well.

Another opportunity that has been overlooked in query optimization is the possibility to re-

duce query optimization to other standard problems. We show how to reduce query optimiza-

tion to mixed integer linear programming which allows to leverage extremely sophisticated
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Chapter 1. Introduction

solver implementations. Linear programming has already been used in the context of query

optimization but only in sub-functions of traditional query optimization algorithms [59, 73].

Quantum annealing [50] is yet another opportunity to speed up optimization that has very

recently become available. Quantum annealing has been recently applied to optimization

problems outside of the database community [16, 109]. On the other side, there has been

theoretical work examining the potential of quantum computing for certain problems in the

database domain [63]. The work presented in this thesis is however unique in that it is the first

time that quantum computing (implemented by the D-Wave 2X adiabatic quantum annealer)

is actually applied to solve a database-specific optimization problem.

Prior to the work presented in this thesis, the literature on query optimization with multiple

cost metrics has been rather sparse. Most existing approaches [13, 147] were targeted at

very specific combinations of execution cost metrics and execution platforms and did not

generalize to many relevant scenarios. A single algorithm would have been generic enough to

deal with most relevant cost metrics [60]. This algorithm was not experimentally evaluated

in the initial publication. We integrated that algorithm into the optimizer of the Postgres

database system. It turns out that even the optimization of relatively simple standard queries

(queries of the TPC-H benchmark) can easily take hours. While this algorithm is therefore

not suitable for use in practice, we will present multiple approaches in this thesis that make

generic multi-objective query optimization practical.

The coming chapters of this thesis will treat different problem variants and propose a diverse

set of approaches. More detailed discussions of the state of the art concerning specific problem

variants and optimization techniques can be found in the respective chapters.

1.2 Thesis Contributions

The main contribution of this thesis is to very significantly extend the size of problem in-

stances that can be treated in query optimization. Problem size refers to the size of the input

query but also to the number of execution cost metrics according to which alternative plans

are compared. We propose various approaches that enable us to treat query optimization

problem instances of a size that is far beyond the capabilities of all prior methods. Those

approaches are illustrated in Figure 1.2 and can be classified into three broad categories:

moving optimization before run time to relax constraints on optimization time, relaxing for-

mal optimality guarantees to speed up optimization, and leveraging advanced software and

hardware platforms to speed up optimization. We propose one or several approaches in each

of those broad categories. We discuss those approaches in the following.

Query optimization usually happens at run time: a query is received by the system, the query

optimizer generates an execution plan for the query which is immediately executed. Keeping

optimization time low is critical in that context as it adds to the total query evaluation time. A

first possibility to deal with problem instances where optimization time is high, is to move
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Figure 1.2 – Dissertation overview: we cope with difficult instances of the query optimization
problem by either moving optimization before run time, relaxing optimality guarantees,
or exploiting advanced optimization platforms. This dissertation presents one or several
approaches in each of those broad categories.
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optimization before run time. This does not decrease optimization time but it relaxes the

constraints on optimization time: if query optimization happens before run time then higher

optimization times are acceptable.

Moving query optimization before run time (see the y-axis in Figure 1.2) is possible if queries

correspond to query templates that are known before run time. Query templates are not fully

specified and contain placeholders that will be filled in at run time. Based on query templates,

it is however possible to calculate all query plans that are potentially optimal (for at least one

template instance) in a pre-processing step. Optimization at run time is thereby avoided:

instead of optimization, the most suitable plan is selected out of the pre-computed plan set.

Optimizing query templates instead of fully-specified queries while considering multiple

execution cost metrics leads to a novel query optimization problem variant. We introduce and

analyze that variant in Chapter 4 and propose a suitable optimization algorithm.

If it is not possible to move query optimization before run time then optimization time must

be kept low. The x-axis in Figure 1.2 represents the possibility to reduce optimization time

by relaxing optimality guarantees. In this category, we present approximation schemes (see

Chapter 2) that find query plans with guaranteed near-optimal execution cost values according

to multiple cost metrics. A parameter allows to trade seamlessly between optimization time

and optimality guarantees. We will show, based on experiments with an extended version of

the query optimizer of the Postgres database system2, that guaranteed near-optimal plans can

often be found in seconds where finding optimal plans would take hours for a given query.

In the same category, we present an incremental algorithm for query optimization with

multiple execution cost metrics (see Chapter 3). This algorithm does not require to choose

approximation precision beforehand. As optimization time progresses, it generates plans of

increasing quality while always providing bounds on how far the current solutions are from

the optima. In addition, the algorithm allows users to integrate feedback during optimization

in order to guide search towards more promising parts of the search space.

Query optimization is an NP-hard optimization problem and it is NP-hard to find optimal so-

lutions already when considering only one execution cost metric [33]. Finding optimal or guar-

anteed near-optimal query plans is therefore unrealistic for very large queries. Randomized

algorithms become efficient by giving up any worst-case guarantees on result optimality. Prior

to this thesis, randomized algorithms were available only for classical query optimization with

one execution cost metric. We introduce the first randomized algorithm for multi-objective

query optimization in Chapter 5. This algorithm relaxes optimality guarantees completely

and treats queries of a size that is unrealistic for approximation schemes and incremental

algorithms. Our randomized algorithm exploits the specific properties of the multi-objective

query optimization problem and thereby outperforms classical general-purpose random-

ized algorithms for multi-objective optimization. While our randomized algorithm offers no

worst-case guarantees on result optimality, we will see that it performs well in average.

2http://www.postgresql.org/
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As illustrated in Figure 1.2, we assume for all previously discussed approaches that the query

optimizer runs on a commodity computer without relying on specialized software. The z-

axis in Figure 1.2 represents the possibility to leverage advanced optimization hardware and

software platforms in order to speed up query optimization. While the approaches on the

x-axis and y-axis target query optimization with multiple cost metrics, approaches on the

z-axis are also applicable to classical query optimization. We discuss the approaches on the

z-axis in the following.

Exploiting advanced software solvers is a first possibility to speed up query optimization.

Chapter 7 describes a method that transforms instances of the classical query optimization

problem into mixed integer linear (MILP) programs. This transformation replaces plan cost

functions by linearized approximations. The optimal solution to the transformed problem

represents therefore no optimal but a guaranteed near-optimal solution to the original prob-

lem (the cost is within a multiplicative factor that is chosen by the user or administrator).

Highly sophisticated standard solvers such as CPLEX3 can be applied to solve the resulting

problems. Such solvers have steadily improved their performance over the last decades [27]

(hardware independently) and we will see that they can treat significantly larger search spaces

in query optimization than traditional query optimization algorithms. Furthermore, the re-

sults reported in this thesis represent only snapshots capturing the state of the art in MILP. By

linking query optimization to MILP, we will automatically benefit from all future advances in

this highly fruitful research domain.

Exploiting massive degrees of parallelism is another possibility to speed up query optimization.

Query execution platforms are nowadays often massively parallel. If we use that parallelism

for query execution, why shouldn’t we use it for optimization as well? Parallel algorithms for

query optimization have been proposed prior to this dissertation. Those prior algorithms are

however only able to exploit very moderate degrees of parallelism. They employ a fine-grained

problem decomposition method that requires parallel optimizer threads to share intermediate

results. This leads to huge communication overhead when used in the shared-nothing archi-

tectures that are typical for large-scale analytics platforms. Chapter 6 describes a radically

different parallelization method that decomposes the search space in the coarsest possible

way. The search space is divided into a number of equal-sized partitions that corresponds to

the number of optimizer threads. Those partitions can be searched independently without

communication between different threads. Thereby we parallelize query optimization over

large clusters with hundreds of nodes.

The proposed parallelization method is applicable to classical query optimization but also

to multi-objective query optimization, parametric query optimization, and multi-objective

parametric query optimization. It can be combined with several other approaches in Figure 1.2.

We characterize the scenarios in which it is useful to combine several approaches in Chapter 9.

A novel hardware solver for NP-hard optimization problems has recently become available:

3http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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the D-Wave adiabatic quantum annealer4. This machine is claimed to exploit the laws of

quantum mechanics to solve NP-hard optimization problems. It operates on qubits that can

be in a superposition of states (1 and 0) that would be considered mutually exclusive according

to the laws of classical physics. With a very simplifying intuition, operating on qubits allows

quantum computers to explore multiple computational paths at the same time.

The D-Wave machine has been controversially discussed over the past years, focusing on

the question of (i) whether or not quantum mechanics play indeed a significant role during

its computation and (ii) whether its technology will lead to performance advantages over

classical computers. In the meantime, strong evidence has been collected that the D-Wave

machine is capable of quantum tunneling (i.e., it exploits quantum mechanics to escape from

local minima during optimization) [50]. This seems to answer the first question positively,

as acknowledged by MIT Professor Scott Aaronson (“this completely nails down the case for

computationally-relevant collective quantum tunneling in the D-Wave machine”5) among

others. It does however not prove performance advantages for practically relevant optimiza-

tion problems. The work presented in Chapter 8 contributes to that discussion as we present

experimental results evaluating the D-Wave quantum annealer on query optimization variants.

Those experiments are based on a research grant giving us access to a D-Wave 2X adiabatic

quantum annealer with 1097 qubits, located at NASA Ames Research Center in California.

Using the quantum annealer is challenging as it requires to translate problems into strength

values of magnetic fields on and between qubits. We will see in Chapter 8 how this transforma-

tion can be accomplished for the multiple query optimization problem (a variant of classical

query optimization where multiple queries are optimized according to one execution cost

metric). We will also analyze the complexity of that transformation in terms of how the number

of required qubits (the scarcest resource on current annealer machines) grows asymptotically

in the problem dimensions. We will see that there are test cases where the quantum annealer

finds near-optimal query plans by several orders of magnitude faster than a classical computer.

To the best of our knowledge, this is the first time that quantum computing was used to solve

a database-related optimization problem.

1.3 Thesis Outline

Each of the following chapters discusses one algorithm (or several similar algorithms) for a

variant of the query optimization problem. Different chapters treat different problem variants.

We introduce the problem model and required notations at the beginning of each chapter in

order to make them self-contained. We also discuss in each chapter the prior work that relates

to the specific problem variant that is treated and to the specific method that is used. More

precisely, the following approaches will be discussed in the coming chapters:

4http://www.dwavesys.com/
5http://www.scottaaronson.com/blog/?p=2555
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• Chapter 2 introduces approximation schemes for multi-objective query optimization

that allow to gradually relax optimality guarantees to speed up optimization.

• Chapter 3 describes an incremental algorithm that divides optimization into many small

incremental steps, allowing users to integrate feedback after each step. This algorithm

makes query optimization an interactive process.

• Chapter 4 introduces a new query optimization problem variant: multi-objective para-

metric query optimization. Solving this problem allows to make optimization a pre-

processing step if queries correspond to query templates that are known in advance.

• Chapter 5 describes a randomized algorithm that is tailored to the multi-objective

query optimization problem. This algorithm treats significantly larger queries than the

previous approaches while giving up optimality guarantees.

• Chapter 6 describes a decomposition approach that allows to parallelize classical query

optimization, multi-objective query optimization, parametric query optimization, and

multi-objective parametric query optimization over large clusters with hundreds of

nodes. Such clusters are nowadays common for large-scale data analysis and if we use

them for data processing, why shouldn’t we use them for optimization?

• Chapter 7 shows how query optimization problem instances can be transformed into

mixed integer linear programs. This allows to apply mature integer programming solvers

to the problem which can treat significantly larger search spaces than traditional query

optimization algorithms.

• Chapter 8 describes how to solve the multiple query optimization problem on a quantum

computer and presents corresponding experimental results. We had access to a D-Wave

2X adiabatic quantum annealer with over 1000 qubits, located at NASA Ames Research

Center in California. This is the first database-specific optimization problem that was

solved using quantum computing.

In Chapter 9, we provide guidelines on how to select the right combination of the proposed

optimization methods for a given scenario. We also discuss directions for future work.
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2 Approximation

In this chapter, we will see that finding guaranteed optimal plans is hard if multiple cost metrics

are considered. We will explore the potential of approximation schemes that gradually relax

optimality guarantees in order to speed up optimization. We will find that guaranteed near-

optimal query plans can often be found within seconds where finding guaranteed optimal

query plans takes hours.

2.1 Introduction

Minimizing execution time is the only objective in classical query optimization [116]. Nowa-

days, there are however many scenarios in which additional objectives are of interest that

should be considered during query optimization. This leads to the problem of multi-objective

query optimization (MOQO) in which the goal is to find a query plan that realizes the best

compromise between conflicting objectives. Consider the following example scenarios.

Example 1. A Cloud provider lets users submit queries on data that resides in the Cloud. Queries

are processed in the Cloud and users are billed according to the accumulated processing time

over all nodes that participated in processing a certain query. The processing time of aggregation

queries can be reduced by using sampling but this has a negative impact on result quality.

From the perspective of the users, this leads to the three conflicting objectives of minimizing

execution time, minimizing monetary costs, and minimizing the loss in result quality. Users

specify preferences in their profiles by setting weights on different objectives, representing rela-

tive importance, and by optionally specifying constraints (e.g., an upper bound on execution

time). Upon reception of a query, the Cloud provider needs to find a query plan that meets all

constraints while minimizing the weighted sum over different cost metrics.

Example 2. A powerful server processes queries of multiple users concurrently. Minimizing

the amount of system resources (such as buffer space, hard disk space, I/O bandwidth, and

number of cores) that are dedicated for processing one specific query and minimizing that

query’s execution time are conflicting objectives (each specific system resource would correspond

to an objective on its own). Upon reception of a query, the system must find a query plan that
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Chapter 2. Approximation

represents the best compromise between all conflicting objectives, considering weights and

bounds defined by an administrator.

The main contribution in this chapter are several MOQO algorithms that are generic enough

to be applicable in a variety of scenarios (including the two scenarios outlined above) and are

much more efficient than prior approaches while they formally guarantee the generation of

near-optimal query plans.

2.1.1 State of the Art

The goal of MOQO, according to our problem model, is to find query plans that minimize a

weighted sum over different cost metrics while respecting all cost bounds. This means that

multiple cost metrics are finally combined into a single metric (the weighted sum); it is still not

possible to reduce MOQO to single-objective query optimization and use classic optimization

algorithms such as the one by Selinger [116]. Ganguly et al. have thoroughly justified why this

is not possible [60]; we quickly outline the reasons in the following. Algorithms that prune

plans based on a single cost metric must rely on the single-objective principle of optimality:

replacing subplans (e.g., plans generating join operands) within a query plan by subplans that

are better according to that cost metric cannot worsen the entire query plan according to that

metric. This principle breaks when the cost metric of interest is a weighted sum over multiple

metrics that are calculated according to diverse cost formulas.

Example 3. Assume that each query plan is associated with a two-dimensional cost vector of

the form (t ,e) where t represents execution time in seconds and e represents energy consumption

in Joule. Assume one wants to minimize the weighted sum over time and energy with weight 1

for time and weight 2 for energy, i.e. the sum t +2e. Let p be a plan that executes two subplans

p1 with cost vector (7,1) and p2 with cost vector (6,2) in parallel. The cost vector of p is (7,3)

since its execution time is the maximum over the execution times of its subplans (7 = max(7,6))

while its energy consumption is the sum of the energy consumptions of its subplans (3 = 1+2).

Replacing p1 within p by another plan p ′
1 with cost vector (1,3) changes the cost vector of p

from (7,3) to (6,5). This means that the weighted cost of p becomes worse (it increases from 13

to 16) even if the weighted cost of p ′
1 (7) is better than the one of p1 (9).

The example shows that the single-objective principle of optimality can break when optimiz-

ing a weighted sum of multiple cost metrics. Based on that insight, Ganguly et al. proposed a

MOQO algorithm that uses a multi-objective version of the principle of optimality [60]. This

algorithm guarantees to generate optimal query plans; it is however too computationally

expensive for practical use as we will show in our experiments. The algorithm by Ganguly et

al. is the only MOQO algorithm that we are aware of which is generic enough to handle all

objectives that were mentioned in the example scenarios before. Most existing MOQO algo-

rithms are specific to certain combinations of objectives where the single-objective principle

of optimality holds [12, 147, 81].
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2.1.2 Contributions and Outline

We summarize our contributions before we provide details:

• Our primary contribution are two approximation schemes for MOQO that scale to

many objectives. They formally guarantee to return near-optimal query plans while

speeding up optimization by several orders of magnitude in comparison with exact

algorithms.

• We formally analyze cost formulas of many relevant objectives in query optimization

and derive several common properties. We exploit these properties to design efficient

approximation schemes and believe that our observations can serve as starting point

for the design of future MOQO algorithms.

• We integrated the exact MOQO algorithm by Ganguly et al. [60] and our own MOQO

approximation algorithms into the Postgres optimizer and experimentally compare

their performance on TPC-H queries.

Our approximation schemes formally guarantee the generation of query plans whose cost

is within a multiplicative factor α of the optimum in each objective. Parameter α can be

tuned seamlessly to trade near-optimality guarantees for lower computational optimization

cost. The near-optimality guarantees distinguish our approximation schemes from pure

heuristics, since heuristics can produce arbitrarily poor plans in the worst case. We show

in our experimental evaluation that our approximation schemes reduce query optimization

time from hours to seconds, comparing with an existing exact MOQO algorithm proposed by

Ganguly et al. that is referred to as EXA in the following.

We discuss related work in Section 2.2 and introduce the formal model in Section 2.3. Our

experimental evaluation is based on an extended version of Postgres that we describe in

Section 2.4. Note that our algorithms for MOQO are not specific to Postgres and can be used

within any database system. We present the first experimental evaluation of the formerly

proposed EXA in Section 2.5. Our experiments relate the poor scalability of EXA to the high

number of Pareto plans (i.e., plans representing an optimal tradeoff between different cost

objectives) that it needs to generate. The representative-tradeoffs algorithm (RTA), that we

present in Section 2.6, generates only one representative for multiple Pareto plans with similar

cost tradeoffs and is therefore much more efficient than EXA. We show that most common

objectives in MOQO allow to construct near-optimal plans for joining a set of tables out of

near-optimal plans for joining subsets. Due to that property, RTA formally guarantees to

generate near-optimal query plans if user preferences are expressed by associating objectives

with weights (representing relative importance). If users can specify cost bounds in addition

to weights (representing for instance a monetary budget or a deadline), RTA cannot guarantee

the generation of near-optimal plans anymore and needs to be extended. We present the

iterative-refinement algorithm (IRA) in Section 2.7. IRA uses RTA to generate a representative
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plan set in every iteration. The approximation precision is refined from one iteration to

the next such that the representative plan set resembles more and more the Pareto plan set.

IRA stops once it can guarantee that the generated plan set contains a near-optimal plan. A

carefully selected precision refinement policy guarantees that the amount of redundant work

(by repeatedly generating the same plans in different iterations) is negligible. We analyze the

complexity of all presented algorithms and experimentally compare our two approximation

schemes (RTA and IRA) against EXA in Section 2.8.

2.2 Related Work

Algorithms for Single-Objective Query Optimization (SOQO) are not applicable to MOQO

or cannot offer any guarantees on result quality. Selinger et al. [116] presented one of the

first exact algorithms for SOQO which is based on dynamic programming. Multi-Objective

Query Optimization is the focus of this chapter. The algorithm by Ganguly et al. [60] is a

generalization of the SOQO algorithm by Selinger et al. This algorithm is able to generate

optimal query plans considering a multitude of objectives with diverse cost formulas. We

describe it in more detail later, as we use it as baseline for our experiments.

Algorithms for MOQO have not been experimentally evaluated for more than three objectives.

They are usually tailored to very specific combinations of objectives. Neither the proposed al-

gorithms nor the underlying algorithmic ideas can be used for many-objective QO with diverse

cost formulas. Allowing only additive cost formulas (and user preference functions) [147, 81]

excludes for instance run time as objective in parallel execution scenarios (where time is cal-

culated as maximum over parallel branches). The approach by Aggarwal et al. [12] is specific

to the two objectives run time and confidence. Multiple objectives are only considered by

selecting an optimal set of table samples prior to join ordering which does not generalize to dif-

ferent objectives. Optimizing different objectives separately misses optimal tradeoffs between

conflicting objectives [11]. Separating join ordering and multi-objective optimization (e.g.,

by generating a time-optimal join tree first, and mapping join operators to sites considering

multiple objectives later [61, 107]) assumes that the same join tree is optimal for all objectives.

This is only valid in special cases. Papadimitriou and Yannakakis [107] present multi-objective

approximation algorithms for mapping operators to sites. Their algorithms do not optimize

join order and the underlying approach does not generalize to more than one bounded objec-

tive. Algorithms for multi-objective optimization of data processing workflows [124, 125, 88]

are not directly applicable to MOQO. Furthermore, the proposed approaches can be classified

into heuristics that do not offer near-optimality guarantees [125, 88], and exact algorithms

that do not scale [124].

Parametric Query Optimization (PQO) assumes that cost formulas depend on parameters

with uncertain values. The goal is for instance to find robust plans [18, 17] or plans that

optimize expected cost [40]. PQO and MOQO share certain problem properties while subtle

differences prevent us from applying PQO algorithms to MOQO problems in general. Several
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approaches to PQO split for instance the PQO problem into several SOQO problems [59,

72, 28] by fixing parameter values. This is not possible for MOQO since cost values, unlike

parameter values, are only known once a query plan is complete and cannot be fixed in

advance. Other PQO algorithms [72] directly work with cost functions instead of scalar values

during bottom-up plan construction. This assumes that all parameter values can be selected

out of a connected interval which is typically not the case for cost objectives such as time or

disc footprint. Our work connects to Iterative Query Optimization since we propose iterative

algorithms. Kossmann and Stocker [91] propose several iterative algorithms that break the

optimization of a large table set into multiple optimization runs for smaller table sets, thereby

increasing efficiency. Their algorithm is only applicable to SOQO and does not offer formal

guarantees on result quality. Work on Skyline Queries [90] and Optimization Queries [65]

focuses on query processing while we focus on query optimization. Our work is situated in the

broader area of Approximation Algorithms. We use generic techniques such as coarsening

that have been applied to other optimization problems [55, 97]; the corresponding algorithms

are however not applicable to query optimization and the specific coarsening methods differ.

2.3 Formal Model

We represent queries as set of tables Q that need to be joined. This model abstracts away

details such as join predicates (that are however considered in the implementations of the

presented algorithms). Query plans are characterized by the join order and the applied join

and scan operators, chosen out of a set J of available operators. The two plans generating the

inputs for the final join in a query plan p are the sub-plans of p. The set O contains all cost

objectives (e.g., O= {buffer space, execution time}); we assume that a cost model is available

for every objective that allows to estimate the cost of a plan. The function c(p) denotes the

multi-dimensional cost of a plan p (bold font distinguishes vectors from scalar values). Cost

values are real-valued and non-negative. Let o ∈O an objective, then co denotes the cost for o

within vector c. Let W a vector of non-negative weights, then the function CW(c) =∑
o∈O coWo

denotes the weighted cost of c. Let B a vector of non-negative bounds (setting Bo =∞ means

no bounds), then cost vector c exceeds the bounds if there is at least one objective o with

co > Bo . Vector c respects the bounds otherwise. The following two variants of the MOQO

problem differ by the expressiveness of the user preference model.

Definition 1. Weighted MOQO Problem. A weighted MOQO problem instance is defined by a

tuple I = 〈Q,W〉 where Q is a query and W a weight vector. A solution is a query plan for Q. An

optimal plan minimizes the weighted cost CW over all plans for Q.

Definition 2. Bounded-Weighted MOQO Problem. A bounded-weighted MOQO problem

instance is defined by a tuple I = 〈Q,W,B〉 and extends the weighted MOQO problem by a

bounds vector B. Let P the set of plans for Q and PB ⊆ P the set of plans that respect B. If PB is

non-empty, an optimal plan minimizes CW among the plans in PB. If PB is empty, an optimal

plan minimizes CW among the plans in P.
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Figure 2.1 – The two MOQO problem variants

Figure 2.1a illustrates weighted MOQO. It shows cost vectors of possible query plans (consid-

ering time and buffer space as objectives) and the user-specified weights (as vector from the

origin). The line orthogonal to the weight vector represents cost vectors of equal weighted

cost. The optimal plan is found by shifting this line to the top until it touches the first plan cost

vector. Figure 2.1b illustrates bounded-weighted MOQO. Additional cost bounds are specified

and a different plan is optimal since the formerly optimal plan exceeds the bounds. We will

use the set of cost vectors depicted in Figure 2.1 as running example throughout the chapter.

The relative cost function ρ measures the cost of a plan relative to an optimal plan.

Definition 3. Relative Cost. The relative cost function ρI of a weighted MOQO instance I =
〈Q,W〉 judges a query plan p by comparing its weighted cost to the one of an optimal plan

p∗: ρI (p) = CW(c(p))/CW(c(p∗)). The relative cost function of a bounded-weighted MOQO

instance I = 〈Q,W,B〉 is defined in the same way if no plan exists that respects B. Otherwise, set

ρI (p) =∞ for any plan p that does not respect B and ρI (p) =CW(c(p))/CW(c(p∗)) if p respects

B.

Letα≥ 1, then anα-approximate solution to a weighted MOQO or bounded-weighted MOQO

instance I is a plan p whose relative cost is bounded by α: ρI (p) ≤ α. The following classi-

fication of MOQO algorithms is based on the formal near-optimality guarantees that they

offer.

Definition 4. MOQO Approximation Scheme. An approximation scheme for MOQO is tuned

via a user-specified precision parameter αU and guarantees to generate an αU -approximate

solution for any MOQO problem instance.

Definition 5. Exact MOQO Algorithm. An exact algorithm for MOQO guarantees to generate

a 1-approximate (hence optimal) solution for any MOQO problem instance.

The following definitions express relationships between cost vectors. A vector c1 dominates

vector c2, denoted by c1 � c2, if c1 has lower or equivalent cost than c2 in every objective. Vector
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Figure 2.2 – Pareto frontier and dominated area

c1 strictly dominates c2, denoted by c1 ≺ c2, if c1 � c2 and the vectors are not equivalent

(c1 �= c2). Vector c1 approximately dominates c2 with precision α, denoted by c1 �α c2, if

the cost of c1 is higher at most by factor α in every objective, i.e. ∀o : co
1 ≤ co

2 ·α. A plan p

and its cost vector are Pareto-optimal for query Q (short: Pareto plan and Pareto vector)

if no alternative plan for Q strictly dominates p. A Pareto set for Q contains at least one

cost-equivalent plan for each Pareto plan. The Pareto frontier is the set of all Pareto vectors.

Figure 2.2 shows the Pareto frontier of the running example and the area that each Pareto

vector dominates. An α-approximate Pareto set for Q contains for every Pareto plan p∗ a

plan p such that c(p) �α c(p∗). An α-approximate Pareto frontier contains the cost vectors

of all plans in an α-approximate Pareto set. During complexity analysis, j = |J| denotes

the number of operators, l = |O| the number of objectives, n = |Q| the number of tables to

join, and m the maximal cardinality over all base tables in the database. Users formulate

queries and have direct influence on table cardinalities. Therefore, n and m (and also j ) are

treated as variables during asymptotic analysis. Introducing new objectives (that cannot be

derived from existing ones) requires changes to the code base and detailed experimental

analysis to provide realistic cost formulas. This is typically not done by users, therefore l is

treated as a constant (the number of objectives is often treated as a constant when analyzing

multi-objective approximation schemes [107, 55]).

2.4 Prototypical Implementation

We extended the Postgres system (version 9.2.4) to obtain an experimental platform for com-

paring MOQO algorithms. We extended the cost model, the query optimizer, and the user

interface. The extended cost model supports nine objectives. The cost formulas used in the

cost model are taken from prior work and are not part of our contribution. Evaluating their

accuracy is beyond the scope of this chapter. We quickly describe the nine implemented cost

objectives. Total execution time (i.e., time until all result tuples have been produced) and

startup time (i.e., time until first result tuple is produced) are estimated according to the cost

formulas already included in Postgres. Minimizing IO load, CPU load, number of used cores,

hard disc footprint, and buffer footprint is important since it allows to increase the number

of concurrent users. The five aforementioned objectives often conflict with run time since us-
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Figure 2.3 – Evolution of optimal plan for TPC-H Query 3 when changing user preferences

ing more system resources can often speed up query processing. Energy consumption is not

always correlated with time [147, 57]. Dedicating more cores to a query plan can for instance

decrease execution time by parallelization while it introduces coordination overhead that

results in higher total energy consumption. Energy consumption is calculated according to the

cost formulas by Flach [57]. Sampling allows to trade result completeness for efficiency [66].

The tuple loss ratio is the expected fraction of lost result tuples due to sampling and serves as

ninth objective. Joining two operands with tuple loss a,b ∈ [0,1], the tuple loss of the result is

estimated by the formula 1− (1−a)(1−b).

We extended the plan space of the Postgres optimizer by introducing new operators and

parameterizing existing ones (we did not implement those operators in the execution engine).

The extended plan space includes a parameterized sampling operator that scans between 1%

and 5% of a base table. Join and sort operators are parameterized by the degree of parallelism

(DOP). The DOP represents the number of cores that process the corresponding operation

(up to 4 cores can be used per operation). The Postgres optimizer uses several heuristics to

restrict the search space: in particular, i) it considers Cartesian products only in situations in

which no other join is applicable, and ii) it optimizes different subqueries of the same query

separately. We left both heuristics in place since removing them might have significant impact

on performance. Not using those heuristics would make it difficult to decide whether high

computational costs observed during MOQO are due to the use of multiple objectives or to

the removal of the heuristics.

The original Postgres optimizer is single-objective and optimizes total execution time. We

implemented all three MOQO algorithms that are discussed in this chapter: EXA, RTA, and

IRA. The implementation uses the original Postgres data structures and routines wherever

possible. Users can switch between the optimization algorithms and can choose the approxi-

mation precision α for the two approximation schemes. Users can specify weights and bounds

on the different objectives. The higher the weight on some objective, the higher its relative

importance. Bounds allow to specify cost limits for specific objectives (e.g., time limits or

energy budgets). When optimizing a query, the optimizer tries to find a plan that minimizes
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(a) Coarse-Grained Approximation (α= 2)
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(b) Fine-Grained Approximation (α= 1.25)
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Figure 2.4 – Three-dimensional Pareto frontier approximations for TPC-H Query 5

the weighted cost among all plans that respect the bounds. Figure 2.3 shows how the optimal

query plan for TPC-H query 3 changes when user preferences vary. Initially, the tuple loss is

upper-bounded by zero (i.e., all result tuples must be retrieved) and all weights except the one

for total execution time are set to zero. So the optimizer searches for the plan with minimal

execution time among all plans that do not use sampling. Figure 2.3a shows the resulting plan.

Increasing the weight on buffer footprint leads to a plan that replaces the memory-intensive

Hash joins by Sort-Merge and Index-Nested-Loop (IdxNL) joins (see Figure 2.3b). Setting

an additional upper bound on startup time leads to a plan that only uses IdxNL joins (see

Figure 2.3c).

Users cannot make optimal choices for bounds and weights if they are not aware of the

possible tradeoffs between different objectives. A user might for instance want to relax the

bound on one objective, knowing that this allows significant savings in another objective. All

implemented MOQO algorithms produce an (approximate) Pareto frontier as byproduct of

optimization. Our prototype allows to visualize two and three dimensional projections of the

Pareto frontier. Figure 2.4 shows the cost vectors of the approximate Pareto frontier for TPC-H

query 5 (and an interpolation of the surface defined by those vectors), considering objectives

tuple loss, buffer footprint, and total execution time. Figure 2.4a shows a coarse-grained

approximation of the real Pareto frontier (with α = 2) and Figure 2.4b a more fine-grained

approximation for the same query (α= 1.25).

2.5 Analysis of Exact Algorithm

Ganguly et al. [60] proposed an exact algorithm (EXA) for MOQO. This algorithm is not part of

our contribution but we provide a first experimental evaluation in a many-objective scenario

and a formal analysis under less optimistic assumptions than in the original publication.

Algorithm 1 shows the pseudo-code of EXA (compared with the original publication, the

code was slightly extended to generate bushy plans in addition to left-deep plans). EXA first

calculates a Pareto plan set for query Q and finally selects the optimal plan out of that set

(considering weights and bounds). EXA uses dynamic programming and constructs Pareto
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plans for a table set out of the Pareto plans of its subsets. It is a generalization of the seminal

algorithm by Selinger et al. [116], generalizing the pruning metric from one to multiple cost

objectives. EXA starts by calculating Pareto plans for single tables. Plans generating the

same result are compared and pruned, meaning that dominated plans are discarded. EXA
constructs Pareto plans for table sets of increasing cardinality. To generate plans for a specific

table set, EXA considers i) all possible splits of that set into two non-empty subsets (every

split corresponds to one choice of operands for the last join), ii) all available join operators,

and iii) all combinations of Pareto plans for generating the two inputs to the last join.

2.5.1 Experimental Analysis

We implemented EXA within the system described in Section 2.4. The implementation allows

to specify timeouts (the corresponding code is not shown in Algorithm 1). If the optimization

time exceeds two hours, the modified EXA finishes quickly by only generating one plan for

all table sets that have not been treated so far. We experimentally evaluated EXA using the

TPC-H [136] benchmark. We generated several test cases for each TPC-H query by randomly

selecting subsets of objectives with a fixed cardinality out of the total set of nine objectives.

All experiments were executed on a server equipped with two six core Intel Xeon processors

with 2 GhZ and 128 GB of DDR3 RAM running Linux 2.6 (64 bit version). We ran five optimizer

threads in parallel.

The goal of the evaluation was to answer three questions: i) Is the performance of EXA good

enough for use in practice? ii) If not, how can the performance be improved? iii) What as-

sumptions are realistic for the formal complexity analysis of MOQO algorithms? Figure 2.5

shows experimental results for the three metrics optimization time, allocated memory during

optimization, and number of Pareto plans for the last table set that was treated completely (be-

fore a timeout occurred or before the optimization was completed). Every marker represents

the arithmetic average value over 20 test cases for one specific TPC-H query and a specific

number of objectives. The TPC-H queries are ordered according to the maximal number of

tables that appears in any of their from-clauses. This number correlates (with several caveats1)

with the search space size. Gray markers indicate that some test cases incurred a timeout. If a

timeout occurred, then the reported values are lower bounds on the values of a completed

computation.

Optimizing for one objective never requires more than 100 milliseconds per query and never

consumes more than 1.7 MB of main memory. For multiple objectives, the computational

cost of EXA becomes however quickly prohibitive with growing number of tables (referring

to Question i)). EXA often reaches the timeout of two hours and allocates gigabytes of main

memory during optimization. This happens already for queries joining only three tables;

while the number of possible join orders is small in this case, the total search space size is

1The Postgres optimizer may for instance convert EXISTS predicates into joins which leads to many alternative
plans even for queries with only one table in the from-clause.
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already significant as over 10 different configurations are considered for the scan and for the

join operator respectively (considering for instance different sample densities and different

degrees of parallelism).

Figure 2.5 explains the significant difference in time and space requirements between SOQO

and MOQO: The number of Pareto plans per table set is always one for SOQO but grows quickly

in the number of tables (and objectives) for MOQO. The space consumption of EXA directly

relates to the number of Pareto plans. The run time relates to the total number of considered

plans which is much higher than the number of Pareto plans but directly correlated with it2.

Discarding Pareto plans seems therefore the most natural way to increase efficiency (referring

to Question ii)).

Ganguly et al. [60] used an upper bound of 2l (l designates the number of objectives) on

the number of Pareto plans per table set for their complexity analysis of EXA. This bound

derives from the optimistic assumption that different objectives are not correlated. Figure 2.5

shows that this bound is unrealistic (8, 64, and 512 are the theoretical bounds for 3, 6, and

9 objectives). The bound is a mismatch from the quantitative perspective (as the bound is

exceeded by orders of magnitude3) and from the qualitative perspective (as the number of

Pareto plans seems to correlate with the search space size while the postulated bound only

depends on the number of objectives). Therefore, this bound is not used in the following

complexity analysis (referring to Question iii)).

2.5.2 Formal Complexity Analysis

All query plans can be Pareto-optimal in the worst case (when considering at least two ob-

jectives). The following analysis remains unchanged under the assumption that a constant

fraction of all possible plans is Pareto-optimal. If only one join operator is available, then the

number of bushy plans for joining n tables is given by (2(n −1))!/(n −1)! [60]. If j scan and

join operators are available, then the number of possible plans is given by

Nbushy ( j ,n) = j 2n−1(2(n −1))!/(n −1)!.

Theorem 1. EXA has space complexity

O(Nbushy ( j ,n)).

Proof. Plan sets are the variables with dominant space requirements. A scan plan is repre-

sented by an operator ID and a table ID. All other plans are represented by the operator ID

of the last join and pointers to the two sub-plans generating its operands. Therefore, each

2All plans considered for joining a set of tables are combinations of two Pareto plans; the number of considered
plans therefore grows quadratically in the number of Pareto plans.

3We generate up to 443 Pareto plans on average when considering three objectives and up to 3157 plans when
considering six objectives.
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stored plan needs only O(1) space. Each stored cost vector needs O(1) space as well, since l is

a constant (see Section 2.3).

Let Q the set of tables to join. EXA stores a set of Pareto plans for each non-empty subset of Q.

The total number of stored plans is the sum of Pareto plans over all subsets. Let k ∈ {1, . . . , |Q|}
and denote by xk the total number of Pareto plans, summing over all subsets of Q with

cardinality k. Each plan is Pareto-optimal in the worst case, therefore xk = (n
k

)
Nbushy ( j ,k). It

is xk ≤ 2xk+1 for k > 1. Therefore, the term xn =Nbushy ( j ,n) dominates. The analysis is tight

since all possible plans are stored in the worst case.

Theorem 2. EXA has time complexity

O(N 2
bushy ( j ,n)).

Proof. Every plan is compared with all other plans that generate the same result. So the time

complexity grows quadratically in the number of Pareto plans and a similar reasoning as in

the proof of Theorem 1 can be applied.

The main advantage of the single-objective Selinger algorithm [116] over a naive plan enu-

meration approach is that its complexity only depends on the number of table sets but not

on the number of possible query plans. The preceding analysis shows that this advantage

vanishes when generalizing the Selinger algorithm to multiple cost objectives (leading to EXA).

The complexity of EXA is even worse than that of an approach that successively generates all

possible plans while keeping only the best plan generated so far.

2.6 Approximating Weighted MOQO

EXA is computationally expensive since it generates all Pareto plans for each table set. We

present a more efficient algorithm: the representative-tradeoffs algorithm (RTA). The new

algorithm generates an approximate Pareto plan set for each table set. The cardinality of

the approximate Pareto set is much smaller than the cardinality of the Pareto set. Therefore,

RTA has lower computational cost than EXA while it formally guarantees to return a near-

optimal plan. RTA exploits a property of the cost objectives that we call the principle of

near-optimality. We provide a formal definition in Section 2.6.1 and show that most relevant

objectives in query optimization possess that property. We describe RTA in Section 2.6.2 and

prove that it produces near-optimal plans. In Section 2.6.3, we analyze its time and space

complexity. We prove that its complexity is more similar to the complexity of SOQO algorithms

than to the one of EXA.
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2.6.1 Principle of Near-Optimality

The principle of optimality states the following in the context of MOQO [60]: If the cost of the

sub-plans within a query plan decreases, then the cost of the query plan cannot increase. A

formal definition follows.

Definition 6. Principle of Optimality (POO). Let P a query plan with sub-plans pL and pR .

Derive P∗ from P by replacing pL by p∗
L and pR by p∗

R . Then c(p∗
L ) � c(pL) and c(p∗

R ) � c(pR )

together imply c(P∗) � c(P ).

The POO holds for all common cost objectives. EXA generates optimal plans as long as

the POO holds. We introduce a new property in analogy to the POO. The principle of near-

optimality intuitively states the following: If the cost of the sub-plans within a query plan

increases by a certain percentage, then the cost of the query plan cannot increase by more

than that percentage.

Definition 7. Principle of Near-Optimality (PONO). Let P a query plan with sub-plans pL

and pR and pick an arbitrary α ≥ 1. Derive P∗ from P by replacing pL by p∗
L and pR by p∗

R .

Then c(p∗
L ) �α c(pL) and c(p∗

R ) �α c(pR ) together imply c(P∗) �α c(P ).

We will see that the PONO holds for the nine objectives described in Section 2.4 as well as

for other common objectives. Cost formulas in query optimization are usually recursive and

calculate the (estimated) cost of a plan out of the cost of its sub-plans. Different formulas apply

for different objectives and for different operators. Most cost formulas only use the functions

sum, maximum, minimum, and multiplication by a constant. The formula max(tL , tR )+ tM

estimates for instance execution time of a plan whose final operation is a Sort-Merge join

whose inputs are generated in parallel; the terms tL and tR represent the time for generating

and sorting the left and right input operand and tM is the time for the final merge. Let F any

of the three binary functions sum, maximum, and minimum. Then F (αa,αb) ≤αF (a,b) for

arbitrary positive operands a,b and α≥ 1. Let F (a) the function that multiplies its input by a

constant. Then trivially F (αa) ≤αF (a). Therefore, the PONO holds as long as cost formulas

are combined out of the four aforementioned functions (this can be proven via structural

induction). The formula for tuple loss is an exception since it multiplies two factors that

depend on the tuple loss in the sub-plans: The tuple loss of a plan is estimated out of the

tuple loss values a and b of its sub plans according to the formula F (a,b) = 1− (1−a)(1−b).

It is F (αa,αb) = α(a +b)−α2ab. This term is upper-bounded by α(a +b − ab) = αF (a,b)

since 0 ≤ a,b ≤ 1 and α ≥ 1. Note that failure probability is calculated according to the

same formula as tuple loss (if the probabilities that single operations fail are modeled as

independent Bernoulli variables). Objectives such as monetary cost are calculated according

to similar formulas as energy consumption.
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Figure 2.6 – Dominated versus approximately dominated area (with α= 1.5) in cost space

2.6.2 Pseudo-Code and Near-Optimality Proof

We exploit the PONO to transform EXA into an approximation scheme for weighted MOQO.

Algorithm 2 shows the parts of Algorithm 1 that need to be changed. RTA is the resulting

approximation scheme. RTA takes a user-defined precision parameter αU as input. It gen-

erates a plan whose weighted cost is not higher than the optimum by more than factor αU .

We formally prove this statement later. RTA uses a different pruning function than EXA: New

plans are still compared with all plans that generate the same result. But new plans are only

inserted if no other plan approximately dominates the new one. This means that RTA tends

to insert less plans than EXA. Figure 2.6 helps to illustrate this statement: EXA inserts new

plans if their cost vector does not fall within the dominated area, RTA inserts new plans if

their cost vector does neither fall into the dominated nor into the approximately dominated

area. The following theorems exploit the PONO to show that RTA guarantees to generate

near-optimal plans. They will implicitly justify the choice of the internal precision that is used

during pruning.

Theorem 3. RTA generates an α
|Q|
i -approximate Pareto set.

Proof. The proof uses induction over the number of tables n = |Q|. RTA examines all available

access paths for single tables and generates an αi -approximate Pareto set. Assume RTA
generates αn

i -approximate Pareto sets for joining n < N tables (inductional assumption). Let

p∗ an arbitrary plan for joining n = N tables and p∗
L , p∗

R the two sub-plans generating the

operands for the final join in p∗. Due to the inductional assumption, RTA generates a plan

pL producing the same result as p∗
L with c(pL) �αN−1

i
c(p∗

L ), and a plan pR producing the same

result as p∗
R with c(pR ) �αN−1

i
c(p∗

R ). The plans pL and pR can be combined into a plan p

that generates the same result as p∗ and with c(p) �αN−1
i

c(p∗), due to the PONO. RTA might

discard p during the final pruning step but it keeps a plan p̃ with c(p̃) �αi c(p), therefore

c(p̃) �αN
i

c(p∗) and RTA produces an αN
i -approximate Pareto set.

Corollary 1. RTA is an approximation scheme for

weighted MOQO.
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Proof. RTA generates an αU -approximate Pareto set according to Theorem 3 (since α
|Q|
i =αU ).

This set contains a plan p with c(p) �αU c(p∗) for any optimal plan p∗. It is CW(c(p)) ≤
αU ·CW(c(p∗)) for arbitrary weights W and p is therefore an αU -approximate solution.

The pruning procedure is sensitive to changes. It seems for instance tempting to reduce the

number of stored plans further by discarding all plans that a newly inserted plan approximately

dominates. Then the cost vectors of the stored plans can however depart more and more

from the real Pareto frontier with every inserted plan. Therefore, the additional change would

destroy near-optimality guarantees.

2.6.3 Complexity Analysis

We analyze space and time complexity. The analysis is based on the following observations.

Observation 1. The cost of a plan that operates on a single table with t tuples grows at most

quadratically in t .

Observation 2. Let F (tL , tR ,cL ,cL) the recursive formula calculating—for a specific objective

and operator—the cost of a plan whose final join has inputs with cardinalities tL and tR and

generation costs cL and cR . Then F is in

O(tLcR +cL + (tL tR )2).

Observation 3. There is an intrinsic constant for every objective such that the cost of all query

plans for that objective is either zero or lower-bounded by that constant.

Observations 1 and 2 trivially hold for objectives whose cost values are taken from an a-priori

bounded domain such as reliability, coverage, or tuple loss (domain [0,1]). They clearly hold

for objectives whose cost are proportional to input and output sizes4 such as buffer or disc

footprint (the maximal output cardinality of a join is tL tR which is dominated by the term

(tL tR )2). Quicksort has quadratic worst-case complexity in the number of input tuples. It is

the most expensive unary operation in our scenario, according to objectives such as time,

energy, number of CPU cycles, and number of I/O operations. The (startup and total) time

of a plan containing join operations can be decomposed into i) the time for generating the

inputs to the final join, ii) the time for the join itself, iii) and the time for post-processing of

the join result (e.g., sorting, hashing, materialization). The upper bound in Observation 2

contains corresponding terms, taking into account that the right (inner) operand might have

to be generated several times. It does not include terms representing costs for pre-processing

join inputs (e.g., hashing) as this is counted as post-processing cost of the plan generating the

corresponding operand. Observation 2 can be justified similarly for objectives such as energy,

number of CPU cycles, and number of I/O operations.

4Using size and cardinality as synonyms is a simplification since tuple (byte) size may vary. It is however realistic
to assume a constant upper bound for tuple sizes (e.g., the buffer page size). Also, the analysis can be generalized.
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Observation 3 clearly holds for objectives with integer cost domains such as buffer and disc

footprint (bytes), CPU cycles, time (in milliseconds), and number of used cores. It also covers

objectives with non-discrete value domains such as tuple loss. Tuple loss has a non-discrete

value domain since—given enough tables in which we can vary the sampling rate—the tuple

loss values of different plans can get arbitrarily close to each other (e.g., compare tuple loss

ratio of one plan sampling 1% of every table with one that samples 2% in one table and 1% of

the others, the values get closer the more tables we have). Assuming that the scan operators

are parameterized by a discrete sampling rate (e.g., a percentage), there is still a gap between 0

and the minimal tuple loss ratio greater than zero. This gap does not depend on the number

of tables (sampling at least one table with 99% creates a tuple loss of at least 1%). We derive a

non-recursive upper bound on plan costs from our observations.

Lemma 1. The cost of a plan joining n tables of cardinality m is bounded by O(m2n) for every

objective.

Proof. Use induction over n. The lemma holds for n = 1 due to Observation 1. Assume the

lemma has been proven for n < N (inductional assumption). Consider a join of N tables. Cost

is monotone in the number of processed tuples for any objective with non-bounded domain

(not for tuple loss). So every join is a Cartesian product in the worst case and that implies

(tL tR )2 = m2N . The inductional assumption implies cL + tLcR ∈O(m2N−1) so (tL tR )2 remains

the dominant term.

The cost bounds allow to define an upper bound on the number of plans that RTA stores per

table set.

Lemma 2. RTA stores O((n logαi
m)l−1) plans per table set.

Proof. Functionδmaps continuous cost vectors to discrete vectors such thatδo(c) = �logαi
(co)�

for each objective o and internal precision αi . If δ(c1) = δ(c2) for two cost vectors c1 and c2,

then c1 �αi c2 and also c2 �αi c1. This means that the cost vectors mutually approximately

dominate each other. Therefore, RTA can never store two plans whose cost vectors are mapped

to the same vector by δ. The number of plans that have cost value zero for at least one objective

is (asymptotically) dominated by the number of plans with non-zero cost values for every

objective. Considering only the latter plans, their cost is lower-bounded by a constant (assume

1 without restriction of generality) and upper-bounded by a function in O(m2n). The cardinal-

ity of the image of δ is therefore upper-bounded by O((n logαi
m)l ). As RTA discards strictly

dominated plans, the bound tightens to O(l (n logαi
m)l−1) which equals O((n logαi

m)l−1)

since l is constant (see Section 2.3).

The function Nstor ed (m,n) = (n logαi
m)l−1 denotes in the following the asymptotic bound on

plan set cardinalities.
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Theorem 4. RTA has space complexity

O(2nNstor ed (m,n)).

Proof. Plan sets are the variables with dominant space consumption. Each stored plan needs

only O(1) space as justified in the proof of Theorem 1. Summing over all subsets of Q yields

the total complexity.

Theorem 5. RTA has time complexity

O( j 3nN 3
stor ed (m,n)).

Proof. There are O(2k ) possibilities of splitting a set of k tables into two subsets. Every split

allows to construct O( jN 2
stor ed (m,k − 1)) plans. Each newly generated plan is compared

against all O(Nstor ed (m,k −1)) plans in the set5. Summing time complexity over all table sets

yields
∑

k=1..n
(n

k

)
2k jN 3

stor ed (m,k) ≤ j 3nN 3
stor ed (m,n).

The time complexity is exponential in the number of tables n. This cannot be avoided unless

P = N P since finding near-optimal query plans is already NP-hard for the single-objective

case [33]. The time complexity of RTA differs however only by factor N 3
stor ed (m,n) from

the single-objective Selinger algorithm for bushy plans [140] (which has complexity O( j 3n)).

This factor is a polynomial in number of join tables and table cardinalities. Unlike EXA, the

complexity of RTA does not depend on the total number of possible plans. This lets expect

significantly better scalability (see Figure 2.7 for a visual comparison).

2.7 Approximating Bounded MOQO

RTA finally selects an αU -approximate plan out of an αU -approximate Pareto set. This is al-

ways possible since similar cost vectors have similar weighted cost. This principle breaks when

5This analysis assumes that plans are compared pairwise to identify Pareto plans. Alternatively, spatial data
structures [115] can be used to verify quickly if a plan’s cost lie within an approximately dominated cost space area.
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considering bounds in addition to weights. Even if two cost vectors are extremely similar, one

of them can exceed the bounds while the other one does not. Figure 2.8 illustrates this problem.

There is no α ≤ αU except α = 1 that guarantees a-priori that an α-approximate Pareto set

contains an αU -approximate plan. Choosing α= 1 leads however to high computational cost

and should be avoided (RTA corresponds to EXA if α= 1).

Assuming that the pathological case depicted in Figure 2.8 occurs always for α> 1 is however

overly pessimistic. An αU -approximate Pareto set may very well contain an αU -approximate

solution. We present an iterative algorithm that exploits this fact: The iterative-refinement

algorithm (IRA) generates an approximate Pareto set in every iteration, starting optimistically

with a coarse-grained approximation precision and refining the precision until a near-optimal

plan is generated. This requires a stopping condition that detects whether an approximate

Pareto set contains a near-optimal plan (without knowing the optimal plan or its cost). We

present IRA and a corresponding stopping condition in Section 2.7.1. A potential drawback of

an iterative approach is redundant work in different iterations. We analyze the complexity of

IRA in Section 2.7.2 and show how a carefully selected precision refinement policy makes sure

that the amount of redundant work is negligible. We also prove that IRA always terminates.

2.7.1 Pseudo-Code and Near-Optimality Proof

Algorithm 3 shows pseudo-code of IRA. IRA uses the functions FindParetoPlans and SelectBest
which were already defined in Algorithm 2. IRA chooses in every iteration an approximation

precision α and calculates an α-approximate Pareto set. The precision gets refined from

one iteration to the next. We will discuss the particular choice of precision formula in the

next subsection. At the end of every iteration, IRA selects the best plan popt in the current

approximate Pareto set. It terminates, once that plan is guaranteed to be αU -optimal. The

stopping condition of IRA compares popt with the best plan that can be found if the bounds

are slightly relaxed (i.e., multiplied by a factor). This termination condition makes sure that

IRA does not terminate before it finds an αU -approximate plan. This implies that IRA is an

approximation scheme.

Theorem 6. IRA is an approximation scheme for bounded-weighted MOQO.
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Proof. Denote by P the set of plans generated in the last iteration, by α the precision used in

the last iteration, and by popt the best plan in P . The termination condition was met in the

last iteration so there is no plan p ∈P respecting the relaxed bounds αB with CW(c(p))/α<
CW(c(popt ))/αU . Let p∗ be an optimal plan for the input query (not necessarily contained in

P ). Assume first that p∗ respects the bounds B. Plan set P contains a plan pR whose cost

vector is similar to the one of p∗: c(pR ) �α c(p∗). The weighted cost of pR is near-optimal:

CW(c(pR )) ≤αCW(c(p∗)). Plan pR can violate the bounds B by factor α but respects the relaxed

bounds: c(pR ) � αB. Let p be the best plan in P that respects the relaxed bounds αB, the

weighted cost of p is smaller or equal to the one of pR . Therefore, CW(c(p))/α is a lower bound

on CW(p∗). If the weighted cost of popt is not higher than that by more than factor αU , then

popt is an αU -approximate solution. Assume now that p∗ does not respect the bounds B.

Then no possible plan respects the bounds and weighted cost is the only criterion. Since

α≤αU , the set P must contain an αU -approximate solution (popt ).

2.7.2 Analysis of Refinement Policy

The formula for calculating the approximation precision α should satisfy several requirements.

First, the formula needs to be strictly monotonically decreasing in i (the number of iterations)

since IRA otherwise executes unnecessary iterations that do not generate new plans. Second,

it should decrease quickly enough in i such that the time required by the new iteration is

higher or at least comparable to the time required in all previous iterations6. This ensures

that the amount of redundant work is small compared with the total amount of work, as IRA
can generate the same plans in several iterations. Third, it should decrease as slowly as the

other requirements allow; choosing a lower α than necessary should be avoided, since the

complexity of the Pareto set approximation grows quickly in the inverse of α. The formula

α = α2−i /(3l−3)

U is strictly monotonically decreasing in i . It also satisfies the second and third

requirement as we see next. The following theorem concerns space and time complexity of

the i -th iteration of IRA. The proof is analogous to the proofs in Section 2.6.3.

Theorem 7. The i -th iteration of IRA has

space complexity O(2n2i /3(n2 logm/logαU )l−1),

and time complexity O( j 3n2i (n2 logm/logαU )3l−3).

Assume that the time per iteration is proportional to the worst-case complexity, or within a

factor that does not depend on i (but possibly on n, m, or l ). Then the required time doubles

from one iteration to the next, so the time of the last iteration is dominant. So the precision

formula satisfies the second requirement and (approximately) the third, since decreasing

iteration precision significantly slower would violate the second requirement.

Theorem 8. IRA always terminates.

6Memory space can be reused in the new iteration so we only consider run time in the choice of α.
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Figure 2.9 – Optimizer performance comparison for weighted MOQO using timeout of two
hours

Proof. For a fixed bounded-weighted MOQO instance I = 〈Q,W,B〉 and plan space, there is

only a finite number of possible query plans. Therefore, there is an α> 1 such that no plan p

exists which satisfies c(p) �αB but not c(p) � B. The precision refinement formula is strictly

monotonically decreasing in i (iteration counter). So the aforementioned α is reached after a

finite number of iterations. Then the best plan that respects the strict bounds is equivalent to

the best plan that respects the relaxed bounds, so the termination condition is satisfied.

2.8 Experimental Evaluation

We experimentally compare the approximation schemes against EXA. The algorithms were

implemented within the system described in Section 2.4. A timeout of two hours was specified,

using the technique outlined in Section 2.5.1. The experiments were executed on the hardware
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platform described in Section 2.5.1. We generated 20 test cases for each TPC-H query and three,

six, and nine objectives respectively. Every test case is characterized by a set of considered

objectives (selected randomly out of the nine implemented objectives), by weights on the

selected objectives (chosen randomly from [0,1] with uniform distribution), and (only for

bounded MOQO) by bounds on a subset of the selected objectives. Bounds for objectives with

a-priori bounded value domain (e.g., tuple loss) are chosen with uniform distribution from

that domain. Bounds for other objectives are chosen by multiplying the minimal possible

value for a given objective and query by a factor chosen uniformly from [1,2].

Figure 2.9 compares the performance of EXA and RTA with α ∈ {1.15,1.5,2}. Figure 2.9 shows

for each TPC-H query and each number of objectives i) the percentage of test cases that

resulted in a timeout, and arithmetic average values for the metrics ii) optimization time (in

milliseconds), iii) allocated memory during optimization (in kilobytes), iv) number of Pareto

plans for the last table set that was treated completely (before a timeout or before optimization

finished), and v) weighted cost of the generated plan (as percentage of the optimal value

over the plans generated by all algorithms for the same test case). Queries are ordered on

the x-axis according to the maximal number of tables joined in any of their from-clauses as

this relates to the search space size (with the caveats mentioned in Section 2.5.1). The time

limit is marked by a dotted line in the subfigure showing optimization times. The fill pattern

of the bars representing results for EXA varies depending on whether EXA had at least one

timeout for the corresponding query and the corresponding number of objectives (RTA did

not incur any timeouts). If EXA had timeouts, then the reported values for time and memory

consumption are lower bounds on the corresponding values for a completed optimizer run.

The search space size correlates with the number of tables to join, and the number of objectives

influences how many plans can be pruned during optimization. Therefore, the percentage of

timeouts (for EXA), the optimization time, and the memory consumption all tend to increase

in the number of objectives and the number of joined tables, as long as no timeouts distort

the results. EXA occasionally has timeouts already when considering only three objectives.

For nine objectives, EXA is not able to solve a single test case within the limit of two hours

for queries that join more than three tables. Choices related to join order, operator selection,

table sample density, and parallelization create a search space of considerable size, even for

only four join tables. We have seen in Section 2.5 that exact optimization takes less than

0.1 seconds despite the size of the search space, as long as only one objective is considered.

Considering multiple objectives makes exact pruning however ineffective and leads to the

high computational overhead of EXA. RTA is orders of magnitude faster than EXA; increasing

α reduces optimization time and memory footprint. For nine objectives, RTA with α= 1.15

generates for instance near-optimal plans for TPC-H query 2 within less than 1.5 seconds

average time. EXA reaches the timeout of two hours for all 20 test cases.

The average quality of the plans produced by RTA is often significantly better than the worst

case guarantees. Even for α= 2, RTA generates plans with an average cost overhead of below

1% (100 times better than the theoretical bound) for 19 out of the 22 TPC-H queries. The
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2.9. Conclusion

Postgres optimizer selects locally optimal plans for the subqueries within a query. We left this

mechanism in place as justified in Section 2.4, even if it weakens the formal approximation

guarantees for queries that contain subqueries (TPC-H queries 2, 4, 7, 8, 9, 11, 13, 15, 16, 17, 18,

20, 21, 22). In practice, the approximation guarantees were only violated in one case (TPC-H

query 7) and only for specific choices of α (α= 1.15).

Figure 2.10 shows the results for bounded MOQO. EXA is compared against IRA (instead

of RTA) since only IRA guarantees to generate query plans that respect all hard bounds if

such plans exist. Optimization always considers all nine objectives while the number of

bounds varies between three and nine. Figure 2.10 reports the number of iterations (instead

of the number of Pareto plans), the reported numbers for memory consumption refer to the

memory reserved in the last iteration (memory that was allocated before can be reused). The

performance of EXA is insensitive to the number of bounds. The performance of IRA varies

with the number of bounds: Time and memory consumption tend to be higher when hard

bounds are specified. This can be seen by comparing Figure 2.10 with Figure 2.9, as IRA
behaves exactly like RTA if no bounds are specified. The reason is that IRA may have to choose

a much smaller internal approximation factor than RTA, in order to verify if the best generated

query plan is near-optimal among all plans respecting the bounds. The performance gap

between approximate and exact MOQO is still significant: Summing over all test cases for

bounded MOQO, EXA had 464 timeouts while each IRA instance had at most 4 timeouts. The

total optimization time was more than 1200 hours for EXA and less than 15 hours for IRA
with α = 1.15. The number of iterations of IRA increases sometimes with the user-defined

approximation factor. If hard bounds are set then the internal approximation precision

required to guarantee a near-optimal plan does not necessarily correlate with the user-defined

precision. However, even if the number of iterations increases, the total optimization time is

not influenced significantly (except for queries with very low total optimization time where

overhead by repeated query preprocessing is non-negligible). This was the goal of our precision

refinement policy.

2.9 Conclusion

Our MOQO approximation schemes find guaranteed near-optimal plans within seconds where

exhaustive optimization takes hours. We analyzed the cost formulas of typical cost metrics in

MOQO and identified common properties. We believe that our findings can be exploited for

design and analysis of future MOQO algorithms.
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1: // Find best plan for query Q, weights W, bounds B
2: function EXACTMOQO(Q,W,B)
3: // Find Pareto plan set for Q
4: P ← FindParetoPlans(Q)
5: // Return best plan out of Pareto plans
6: return SelectBest(P ,W,B)
7: end function

8: // Find Pareto plan set for query Q
9: function FINDPARETOPLANS(Q)

10: // Calculate plans for singleton sets
11: for all q ∈Q do
12: P q ←�
13: for all pN access path for q do
14: Prune(P q , pN )
15: end for
16: end for
17: // Consider table sets of increasing cardinality
18: for all k ∈ 2..|Q| do
19: for all q ⊆Q : |q| = k do
20: P q ←�
21: // For all possible splits of set q
22: for all q1, q2 ⊂ q : q1∪̇q2 = q do
23: // For all sub-plans and operators
24: for all p1 ∈P q1 , p2 ∈P q2 , j ∈ J do
25: // Construct new plan out of sub-plans
26: pN ← Combine( j , p1, p2)
27: // Prune with new plan
28: Prune(P q , pN )
29: end for
30: end for
31: end for
32: end for
33: return P Q

34: end function

35: // Prune plan set P with new plan pN
36: procedure PRUNE(P , pN )
37: // Check whether new plan useful
38: if ¬∃p ∈P : c(p) � c(pN ) then
39: // Delete dominated plans
40: P ← {p ∈P | ¬(c(pN ) � c(p))}
41: // Insert new plan
42: P ←P ∪ {pN }
43: end if
44: end procedure

45: // Select best plan in P for weights W and bounds B
46: function SELECTBEST(P ,W,B)
47: PB ← {p ∈ P | c(p) � B}
48: if PB �= � then
49: return argmin[p ∈ PB]CW(c(p))
50: else
51: return argmin[p ∈ P ]CW(c(p))
52: end if
53: end function

Algorithm 1 – Exact algorithm for MOQO
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1: // Find αU -approximate plan for query Q, weights W
2: function RTA(Q,W,αU )
3: // Find αU -approximate Pareto plan set
4: P ← FindParetoPlans(Q,αU )
5: // Return best plan in P for infinite bounds
6: return SelectBest(P ,W,∞)
7: end function

8: // Find αU -approximate Pareto plan set
9: function FINDPARETOPLANS(Q,αU )

// Derive internal precision from αU

αi ← |Q|�αU

...
10: [13] // Prune access paths for single tables

Prune(P q , pN ,αi )
...

11: [25] // Prune plans for non-singleton table sets
Prune(P q , pN ,αi )
...

12: end function
13: // Prune set P with plan pN using precision αi

14: procedure PRUNE(P , pN ,αi )
15: // Check whether new plan useful
16: if ¬∃p ∈P : c(p) �αi c(pN ) then

...
17: end if
18: end procedure

Algorithm 2 – The Representative-Tradeoffs Algorithm: An approximation scheme for Weighted
MOQO. The code shows only the differences to Algorithm 1.
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1: // Find αU -approximate plan for query Q,
2: // weights W, bounds B
3: function IRA(Q,W,B,αU )
4: i ← 0 // Initialize iteration counter
5: repeat
6: i ← i +1
7: // Choose precision for this iteration

8: α←α2−i /(3l −3)
U

9: // Find α-approximate Pareto plan set
10: P ← FindParetoPlans(Q,α)
11: // Select best plan in P

12: popt ←SelectBest(P ,W,B)

13: until �p ∈P : c(p) �αB∧ CW(c(p))
α < CW(c(popt ))

αU

14: return popt

15: end function

Algorithm 3 – The Iterative-Refinement Algorithm: An Approximation Scheme for Bounded-
Weighted MOQO. The Code Uses Sub-Functions From Algorithm 2.
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3 Incrementalization

The approximation schemes presented in the last chapter make multi-objective query op-

timization feasible for medium-sized queries. They require however users to specify their

preferences before optimization starts. For users, it is often more convenient to select preferred

execution cost tradeoffs in an interactive process. The algorithms presented in the last chapter

are not suitable to support interactive query optimization. In this chapter, we will see an

incremental anytime algorithm that divides optimization into many small incremental steps.

This algorithm enables responsive user interfaces where users may integrate their preferences

after each incremental step, thereby leading optimization quickly towards interesting parts of

the cost space.

3.1 Introduction

Classical query optimization considers only one cost metric for query plans and aims at

finding a plan with minimal cost [116]. This model is insufficient for scenarios where multiple

cost metrics are of interest. Multi-Objective Query Optimization (MOQO) judges query plans

based on multiple cost metrics such as monetary fees of execution (e.g., in cloud computing)

and energy consumption in addition to execution time [107, 137, 139]. Plans are associated

with cost vectors instead of cost values and the goal is to find a plan with an optimal tradeoff

between conflicting cost metrics. The optimal tradeoff is user-specific since different users

might have different priorities.

The approach presented in the last chapter assumes that users select the optimal cost tradeoff

indirectly by specifying weights and constraints prior to query optimization. User studies have

however shown that users generally have troubles accurately expressing their preferences

indirectly in a multi-objective scenario without having prior knowledge of the available trade-

offs [146]. It is more natural for users to select the preferred tradeoff out of a set of alternatives

and this procedure tends to lead users to better choices. We apply those results from general

multi-objective optimization to MOQO and postulate that MOQO should be an interactive

process (at least for queries with non-negligible execution time) in which users select the
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Chapter 3. Incrementalization

query plan with optimal cost tradeoff out of a set of alternatives. The following examples

illustrate two out of many possible application scenarios.

Example 4. In cloud computing, there is a tradeoff between execution time and fees as buying

more resources can speed up execution. Users performing SQL processing in the cloud can benefit

from a visualization of available cost tradeoffs before they select a query plan for execution.

Example 5. In approximate query processing, there is a tradeoff between execution time and

result precision since sampling can be used to reduce execution time. Visualizing available

tradeoffs helps users to hand-tune the execution of queries that process large data sets or are

executed frequently.

It is not necessary to make users aware of all alternative query plans for their query. It is

sufficient if users have an overview of the Pareto-Optimal plans; a plan is Pareto-optimal if no

alternative plan has better cost according to all cost metrics at the same time (this definition is

slightly simplified). For two or three cost metrics, the Pareto-optimal plan cost tradeoffs can

be visualized as a curve or as a surface in three-dimensional space. For higher number of cost

metrics, users could successively visualize the Pareto surface for different combinations of

cost metrics or look at aggregates (minima and maxima) for the different cost metrics. Having

an overview of the available cost tradeoffs, users can directly select the query plan which fits

best to their priorities.

An ideal interactive MOQO optimizer presents an overview of all Pareto-optimal cost tradeoffs

quickly after receiving the user query as input. The problem is that the number of Pareto plans

might be extremely large already for medium-sized queries. We have seen in Chapter 2 that

calculating all Pareto-optimal plans is often not realistic within a reasonable time frame. This

leads to approximation algorithms for MOQO that quickly find a representative set of query

plans whose cost vectors approximate the Pareto-optimal cost tradeoffs with a given target

precision. There is a tradeoff between optimization time and target precision; choosing a

finer target precision increases optimization time. Approximate MOQO can take several tens

of seconds for TPC-H queries when choosing a rather fine-grained target precision which

is inconvenient for an interactive interface. It is impossible to know which precision the

user requires to make his decision. It is also unclear how much time optimization will take

for a given query and target precision since this depends on the size of the result plan set

which is the output of optimization. The most natural approach is therefore an interface that

iteratively refines the approximation of the Pareto cost tradeoffs, while allowing continuous

user interaction; users may for instance interact with the MOQO optimizer by selecting a query

plan for execution (thereby ending optimization) or by setting cost bounds for different cost

metrics (which can be exploited to speed up optimization as bounds restrict the search space).

Figure 3.1 illustrates the interaction between user and optimizer: query plans are evaluated

according to the two cost metrics (execution) time and monetary fees in the example, and

plan costs are represented as points in a two-dimensional space.

The algorithms that we have seen in Chapter 2 are however ill-suited to be used within such
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Figure 3.1 – Example interaction between user and interactive anytime optimizer: the user
selects a query plan by finally clicking on the desired cost tradeoff.

43



Chapter 3. Incrementalization

Time

R
es

u
lt

Q
u

al
it

y

Anytime
One-shot

(a) Anytime versus one-shot algorithms

Invocation Number
R

u
n

T
im

e

Incremental
Memoryless

(b) Incremental versus memoryless al-
gorithms

Figure 3.2 – Incremental anytime algorithms

an interface for several reasons. First, they require to specify a target precision in advance and

return results only once a full result plan set is generated that is guaranteed to approximate

the Pareto plan set with the target precision. An interactive scenario rather requires algorithms

that return several result plan sets of increasing approximation precision with high frequency

(low waiting time between consecutive result sets). Algorithms that continuously improve

result quality instead of returning only one result at the end of execution are generally called

anytime algorithms in contrast to one-shot algorithms. Figure 3.2a illustrates the difference.

A second shortcoming of existing MOQO algorithms is that they are non-incremental: they

cannot systematically exploit results of prior invocations to speed up optimization for very

similar input problems. Users might for instance adapt the cost bounds several times when

optimizing a single query which changes part of the input for the optimization algorithm

(the bounds change while the query remains the same). Starting optimization from scratch

every time that this happens is inefficient since the same query plans might get regenerated

several times. An interactive scenario rather requires an incremental algorithm that maintains

state across several invocations for the same query to minimize redundant computation.

Figure 3.2b illustrates the difference between incremental and memoryless algorithms.

The original scientific contribution of this chapter is an incremental anytime algorithm for

MOQO. This algorithm has the anytime property since it generates a rough approximation of

the Pareto plan set quickly that is refined in multiple steps, having low latency between con-

secutive refinements. The algorithm is incremental since it maintains state across consecutive

invocations for the same query with different cost bounds, thereby avoiding to regenerate the

same plans. Hence our algorithm is suitable for interactive MOQO.
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We summarize the contributions of this chapter:

1. We present an incremental anytime algorithm for interactive MOQO; it continuously

refines the approximation of the Pareto-optimal cost tradeoffs and avoids regenerating

plans over multiple invocations.

2. We analyze the space complexity of that algorithm, the time complexity of a single

invocation, and the amortized complexity of several invocations.

3. We experimentally evaluate an implementation of that algorithm within the Postgres

database management system comparing with non-incremental non-anytime MOQO

algorithms, using TPC-H queries as test cases.

The remainder of this chapter is organized as follows. Section 3.2 discusses related work.

Section 3.3 introduces the formal model that is used throughout the remainder of the chapter.

Section 3.4 discusses the incremental anytime algorithm for interactive MOQO in detail. Sec-

tion 3.5 proves correctness of the algorithm, analyzes its space complexity, the time complexity

of a single invocation, and the amortized time of several invocations. Section 3.6 contains

experimental results for TPC-H queries; the presented algorithm was implemented on top of

the Postgres optimizer.

3.2 Related Work

We discuss prior work solving similar problems as we do (MOQO) and prior work using similar

algorithmic techniques as we do (work on anytime algorithms, incremental algorithms, and ap-

proximation algorithms). Classical query optimization [116] judges query plans based on only

one cost metric. Single-objective query optimization algorithms are not applicable to MOQO

in the general case; a detailed explanation can be found in Chapter 2. MOQO algorithms were

proposed in the context of the Mariposa system [133] where query plans are evaluated based

on the two cost metrics execution time and execution fees: Papadimitriou and Yannakakis

propose a fully polynomial-time approximation scheme for MOQO [107]. Their algorithm

combines polynomial run time with formal approximation guarantees but does not optimize

join order (only the mapping from query plan nodes to processing sites is optimized for a

fixed join order) and is therefore not applicable to the query optimization problem addressed

in this chapter. It has been shown that even single-objective query optimization cannot be

approximated in polynomial time if join order is optimized [33]; those results apply to MOQO

as well since MOQO is a generalization of single-objective query optimization. Ganguly et

al. [60] described an algorithm for MOQO based on dynamic programming; this algorithm

produces the full set of Pareto-optimal cost tradeoffs but its execution time can be excessive

in practice (see Chapter 2). In Chapter 2, we proposed several approximation schemes for

MOQO. We assumed that users specify a preference function in the form of weights and cost

bounds prior to optimization; the optimizer searches for a plan maximizing that preference
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function. Specifying a preference function in advance is however often difficult for users [146];

this is why we assume now that users select their preferred query plan in an interactive process.

Our prior algorithms are unsuitable to be used within an interactive process since they are not

incremental, meaning that consecutive invocations for the same query result in large amounts

of redundant work, and since they are not anytime algorithms, meaning that they do not

improve result precision in regular intervals. We discuss and justify the design constraints that

an interactive interface imposes on the optimization algorithm in more detail in Section 3.4.

During formal analysis (see Section 3.5) and experimental evaluation (see Section 3.6), we

use algorithms as baseline that are very similar to the ones proposed in our prior work. Other

MOQO algorithms are tailored towards specific combinations of cost metrics [147, 12]; while

such special-purpose algorithms achieve good performance, they break when taking into

account additional cost metrics [137]. The algorithm proposed in this chapter is applicable for

a broad range of plan cost metrics such as execution time, energy consumption, monetary

fees, result precision and others; we cover the same metrics as the generic approximation

schemes that were discussed before.

Anytime algorithms are algorithms whose result quality improves gradually as computation

time progresses [149]; they are often applied to computationally intensive problems in situ-

ations where computation might be interrupted. MOQO is computationally intensive and

user input may interrupt the current optimization at any time in our interactive scenario.

Anytime algorithms have been proposed for query processing [144, 69] while we use them

for query optimization. Chaudhuri motivated the development of anytime algorithms for

classical query optimization [34]. We argue that anytime algorithms are even more beneficial

for MOQO due to the higher computational cost and due to the additional challenge of user

interaction. Incremental algorithms avoid redundant work when solving similar problem

instances in consecutive invocations (e.g., when calculating shortest paths for several graphs

with similar structure [15]). In our case we solve many consecutive optimization problems for

the same query but with different bounds and different approximation precision. Bizarro et al.

proposed an incremental algorithm for parametric query optimization [28]; plan cost depends

on unknown parameters in their scenario and the optimizer might have to optimize the same

query for many different combinations of parameter values. Storing result plans together with

the corresponding input parameters allows to bypass future optimizer invocations for similar

parameter values. Parametric query optimization is related to MOQO since both extend the

problem model of classical query optimization; parametric query optimization associates

plans however with cost functions while MOQO associates plans with cost vectors. MOQO

algorithms are in general not applicable for parametric query optimization and vice versa, a

detailed discussion of the differences can be found in Chapter 4. The algorithm presented in

this chapter is an approximation scheme [87]: it differs from an exhaustive algorithm since it

does not guarantee to return the optimal result. It offers however formal worst-case guarantees

on how far the quality of the produced result is from the optimum; this distinguishes our

algorithm from pure heuristics. Approximation schemes for MOQO have been described in the

previous chapter but they are neither anytime algorithms nor incremental. Our algorithm is
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iterative which connects it to other iterative query optimization algorithms [92, 137]. The algo-

rithm proposed by Kossmann and Stocker [92] is however only applicable to single-objective

query optimization while our iterative algorithm from the previous chapter is non-incremental,

meaning that results generated in prior iterations are not reused, and the goal was to minimize

total query optimization time rather than the time between consecutive results.

3.3 Model

Our notation is similar to the one used in the previous chapter. Nevertheless, we introduce

notation from scratch to make the current chapter self-contained.

We model a Query as a set Q of tables that need to be joined. We use this simple query model

to describe our algorithm in Section 3.4 but we outline in Section 3.4.3 how the algorithm can

be extended to support a richer query model. A Query Plan either scans a single table or is

composed out of two Sub-Plans such that the result of those sub-plans is finally joined. We

denote by p = p1 �� p2 the plan p that uses p1 and p2 as sub-plans and joins their results.

Query plans are associated with scalar cost values in classical query optimization [116]. As we

consider multiple cost metrics in MOQO, each plan is associated with a Cost Vector instead of

a cost value. We denote by c(p) ∈Rl+ the cost vector associated with plan p. Each component

of that vector represents the cost value according to one of the l metrics. Note that cost

values are always non-negative. We use boldface for vectors (e.g., c) to distinguish them

from scalar values. The algorithm presented in Section 3.4 supports the same class of cost

metrics as the one described in the previous chapter; this set includes for instance execution

time, monetary execution fees, result precision, energy consumption, or various measures of

resource consumption concerning system resources such as buffer space, number of cores, or

IO bandwidth. The class of supported cost metrics is characterized more thoroughly during

formal analysis in Section 3.5. The focus of this dissertation is on optimization and not on

costing; we do not provide our own cost formulas but assume that cost models from prior

work are used to estimate the cost of query plans.

Considering one cost metric, a query plan p1 is at least as good as another query plan p2 if the

cost of p1 is lower than or equivalent to the cost of p2. With multiple cost metrics, a plan p1 is

at least as good as p2 if its cost is lower than or equivalent to the cost of p2 according to each

cost metric; if this is the case then we say that p1 Dominates p2 and denote it by c(p1) � c(p2).

If p1 dominates p2 and p1 has lower cost than p2 according to at least one metric then we say

that p1 Strictly Dominates p2 and denote it by c(p1) ≺ c(p2). Consider the set P of all possible

plans for a fixed query: we call each plan p∗ ∈ P Pareto-Optimal if there is no alternative plan

p ∈ P such that c(p) ≺ c(p∗). We call the set P∗ ⊆ P a Pareto Plan Set if for each possible plan

p ∈ P there is a plan p∗ ∈ P∗ with c(p∗) � c(p). Note that several subsets of P can be Pareto

plan sets.

Full Pareto plan sets can be excessively large; this motivates to approximate the real Pareto set.
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Let α> 1 be the Precision Factor. Then each subset P∗
α of P is an α-Approximate Pareto Plan

Set if for each possible plan p ∈ P there is a plan p∗ ∈ P∗
α such that c(p∗) �αc(p). Each Pareto

plan set is an approximate Pareto plan set with factor α= 1. By multiplying the cost vector of

plan p by a factor greater than 1, we make its cost appear higher than it actually is; this reduces

the requirements compared to the definition of the Pareto plan set. The higher α is chosen,

the lower the approximation precision and the smaller the corresponding approximate Pareto

plan set can be. We derive size bounds in Section 3.5.

Often, users care only about query plans whose cost is upper-bounded for certain cost metrics.

Users might for instance have a deadline which implies an upper bound on execution time,

or a monetary budget limiting execution cost. We model Cost Bounds by a cost vector b with

the semantics that users are only interested in plans p with c(p) � b. If c(p) � b for some plan

p then we also say that it Respects the cost bounds while it otherwise Exceeds the bounds. If

a user specifies cost bounds b then he is interested in an approximation of a subset of the

Pareto plan set: an α-Approximate b-Bounded Pareto Plan Set is a subset P∗ of the set P

of possible plans such that for each plan p ∈ P with αc(p) � b there is a plan p∗ ∈ P∗ such

that c(p∗) �αc(p). The input to the Approximate Bounded MOQO Problem is a query Q, an

approximation factor α, and cost bounds b. The result is a α-approximate b-bounded Pareto

plan set for query Q. During Interactive MOQO, many approximate bounded MOQO problems

may have to be solved, reflecting gradually refined approximation precision and bounds that

may change due to user input.

We finally discuss the parameters used in our formal analysis: n is the number of query tables,

m the cardinality of the biggest table in the data base. Parameter l is the number of cost

metrics. We treat n as variable while we treat m and l as constants during complexity analysis.

Those assumptions are consistent with the ones made in the previous chapter.

3.4 Description of Algorithm

We describe the Incremental Anytime MOQO Algorithm, short IAMA, for interactive MOQO

in this section. The algorithms presented in the previous chapter assume that users specify

a preference function prior to optimization; the goal of optimization is to find a plan that

optimizes this preference function. IAMA differs since users select the optimal query plan

for their query in an interactive process. IAMA consists of two main parts: the main control

loop and the incremental optimizer. The main control loop handles the interaction with the

user and decides which part of the plan search space to explore next. It uses the incremental

optimizer as a sub-function to generate fresh query plans. The incremental optimizer gener-

ates query plans for the given query; it allows to focus plan generation by specifying an area of

interest within the plan cost space and to choose the resolution with which Pareto-optimal

cost tradeoffs are approximated. Choosing a higher resolution yields more accurate results

while choosing a lower resolution reduces optimization time. The main control loop uses the

optimizer to increase approximation precision step by step for a given area in the cost space
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which leads to the anytime behavior of IAMA.

The incremental optimizer was designed with two performance constraints in mind. First, it

must be incremental, meaning that it avoids regenerating the same query plans in consecutive

invocations; this is important as the optimizer is invoked many times for a given query while

only the resolution and the area of interest in the cost space change. Second, the time of

any single optimizer invocation must be proportional to the resolution and to the size of the

chosen cost space area. Both optimizer properties are crucial to enable an interactive process:

If the optimizer was not incremental then each invocation would start from scratch and

generating a fine-grained approximation could easily take several tens of seconds. Receiving

user input during such a long time is likely which only leaves the choice between blocking

the interface until optimization is finished (leading to poor user experience) or interrupting

optimization without being able to reuse any results (making it unlikely that high resolutions

are ever reached). If invocation time was not guaranteed to be at most proportional to the

input parameters then the interface might not be able to generate a first approximation of

optimal cost tradeoffs quickly.

The proposed optimizer algorithm satisfies both performance constraints. It uses a variant

of the classical dynamic programming approach to query optimization [116] and generates

optimal plans for joining table sets out of optimal plans for joining subsets. A single-objective

optimizer would store one cost-optimal plan per table set1 while the IAMA optimizer might

have to store many alternative query plans that all realize Pareto-optimal cost tradeoffs. The

IAMA optimizer becomes incremental by maintaining two plan sets across invocations: the

result plan set and the candidate plan set. Both sets may contain completed query plans,

joining all tables in the current query, as well as partial query plans, joining only a subset of

tables. Result plans have already been verified to be crucial in order to approximate a specific

cost space area with a specific resolution. Candidate plans have only been determined to be

potentially useful for a given cost space area and resolution. A future optimizer invocation will

decide whether they are relevant indeed.

Both plan sets are indexed by plan cost and by resolution level. Using a data structure support-

ing multi-dimensional range queries allows to efficiently retrieve plans whose cost is within

a certain range and which are registered for a certain range of resolution levels. Indexing

plans by their cost vectors enables the optimizer to focus on certain cost space areas. Indexing

candidate plans by resolution allows to avoid checking relevance of the same candidate for

the same resolution twice. We will formally prove in Section 3.5 that the proposed algorithm

indeed verifies relevance only once per resolution and candidate plan. Indexing result plans by

resolution is required to guarantee that optimization time is always proportional to the chosen

resolution. When inserting new partial candidate plans during an optimizer invocation, they

should for instance only be combined with result plans that are registered for the current

1Single-objective optimizers might still store several cost-optimal plans for a table set if they produce differ-
ent tuple orderings that might speed up following operations; we neglect tuple orderings here to simplify the
explanations.
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resolution level or lower. We illustrate how our algorithm works by means of a highly simplified

example before providing details.

Example 6. We consider the two cost metrics execution time and monetary fees (e.g., in a

cloud scenario) and optimize the simple query R �� S. The user selects very tight cost bounds

on execution fees. The initial goal of the optimizer is to quickly produce a coarse-grained

approximation of the optimal cost tradeoffs for the query. Therefore, optimization starts with

the lowest possible resolution level 0.

The optimizer starts by considering alternatives scan plans for the two single relations R and

S. If the optimizer encounters a scan plan whose cost exceed the user bounds then this plan

is stored as candidate for later optimizer invocations as it might become useful once the user

changes the bounds. If the optimizer encounters several plans for the same table whose cost are

roughly comparable then only one of them is stored as result plan while the others are stored as

candidates; the other plans might become useful once the resolution is refined. In a second step,

the optimizer combines result scan plans to form join plans answering the entire query. The

optimizer separates result plans from candidate plans in the same fashion as before and shows

the cost of the result plans to the user.

Without user intervention, the resolution is increased to 1. Now the optimizer reconsiders some

of the scan plans for R and S that were stored as candidates. The optimizer does not reconsider

candidate plans whose cost exceed the bounds since the user did not change them. The optimizer

reconsiders candidate plans whose cost was roughly comparable to the cost of a result plan.

Two plans whose costs were considered equivalent at resolution level 0 might not be equivalent

anymore at resolution level 1; such plans are inserted as result plans. Then the optimizer uses

the freshly inserted result scan plans to combine fresh plans for the entire query.

Assume the user relaxes the tight bound on monetary fees. Now the resolution is reset to 0 in

order to quickly generate a rough approximation of available cost tradeoffs for the new bounds.

The optimizer only reconsiders candidate scan plans whose costs exceeded the previous bounds

but no candidates whose cost was considered equivalent to one of the result plans at resolution

0 or 1. Freshly inserted result plans are used to combine fresh plans for the entire query; the user

view is updated.

Section 3.4.1 describes the main control loop and Section 3.4.2 discusses the pseudo-code of

the incremental optimizer. Section 3.4.3 proposes finally several extensions.

3.4.1 Main Control Loop

Algorithm 4 is the main function of IAMA. Its input is a query and its output is the query plan

that the user selects for execution in an interactive process. Algorithm 4 contains the main

control loop from lines 12 to 25; each iteration of the main loop generates new query plans by

invoking the OPTIMIZE procedure (its implementation is discussed in the next subsection),

visualizes their cost using the VISUALIZE procedure (we do not provide pseudo-code for this
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procedure), and selects the focus for the next optimizer invocation, taking into account user

input, if any.

The optimization focus is described by the two local variables b and r . Variable b is a vector

of upper cost bounds restricting the area of interest in the cost space. Variable b is used as

parameter for the optimizer invocation and the optimizer focuses on generating plans that

respect the cost bounds (i.e., plans whose cost vector is dominated by b). The cost bounds are

initialized to default values (this can also be the value ∞, indicating that no bounds are set by

default) and can be adapted by the user in each iteration of the main control loop. Adapting

the bounds gives users the opportunity to focus plan search on the relevant part of the cost

space, thereby speeding up optimization. Variable r represents the resolution with which

the Pareto-optimal cost tradeoffs are approximated. At a low resolution, the optimizer does

not distinguish query plans with similar cost vectors and generates a relatively small set of

representative query plans. At a high resolution, the optimizer generates more query plans and

the approximation of the set of Pareto-optimal cost tradeoffs is therefore more fine-grained.

Assuming a two-dimensional visualization of cost vectors, a high resolution translates into

pixels representing alternative cost tradeoffs being closer together while a low resolution

means that those pixels are far apart from each other (see Figure 3.1 from Section 3.1 for an

example: the resolution increases from Figure 3.1a to Figure 3.1b). This motivates the use of

the term resolution. We assume that a predetermined number of resolution levels is used; the

value domain of variable r is the set of resolution levels {0, . . . ,rM }. Variable r is initialized with

the lowest possible resolution and is increased by one in each iteration of the main control

loop if no user input is received. If the user changes the cost bounds then the resolution is

set to zero again. Gradually increasing resolution allows to keep each optimizer invocation

short (note that this reasoning is only valid since the optimizer is incremental). Under the

reasonable assumption that the time for one iteration of the main loop is mainly determined

by optimization time, the short optimization times lead to high iteration frequencies. This

guarantees that the plan cost visualization is updated frequently and that the interface remains

responsive. Resetting the resolution after a bounds change makes sure that first results become

visible quickly after the user adapts the cost space area of interest.

Variable Res stores the set of result plans and variable C and the set of candidate plans. Both

sets contain partial plans that join subsets of Q in addition to completed plans that join all

tables in Q; we use the superscript notation to refer to subsets of plans that join specific

table sets (e.g., Resq for q ⊆Q denotes the subset of result plans that join table set q). Plans

in both sets are also indexed by their cost vectors and by the resolution at which they were

inserted (result set) or at which they should be considered for insertion (candidate set). We

refer to subsets of plans that are associated with a specific resolution range and cost range

using square brackets: Resq [0..b,0..r ] selects for instance all result plans that join table set

q , were inserted at a resolution between 0 and r (both limits inclusive), and whose cost is

dominated by b. The analogous notation applies for candidate plans. Those plan selections

correspond to range queries in the space that is spanned by all of the plan cost metrics and by

the resolution level as additional dimension. A classic survey on data structures supporting
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1: // Generate Pareto plan set of increasing resolution
2: // for query Q until user selects query plan
3: function INCANYMOQO(Q)
4: // Initialize bounds and resolution
5: b ← default bounds
6: r ← 0
7: // Fill in scan plans for single tables
8: for q ∈Q, p ∈SCANPLANS(q) do
9: PRUNE(Resq ,C and q ,b,r, p)

10: end for
11: // Main control loop
12: repeat
13: // Generate more plans
14: OPTIMIZE(Q,Res,C and ,b,r )
15: // Visualize cost of known plans
16: VISUALIZE(ResQ [0..b,0..r ])
17: // Update bounds or refine resolution
18: if User changed bounds then
19: b ← user-specified bounds
20: r ← 0
21: else
22: // Refine resolution until rM is reached
23: r ← min(rM ,r +1)
24: end if
25: until User selects plan p
26: // Return result plan
27: return p
28: end function

Algorithm 4 – Main function for interactive query optimization: processes user input, visualizes
plan cost, and invokes incremental optimization procedure.

range queries was compiled by Bentley and Friedman [24]. Different data structures offer

different tradeoffs between insertion and retrieval time. We will later prove and exploit the fact

that the number of plan insertions is bounded for a fixed query while the number of retrieval

operations is not (see Section 3.5.4). Prioritizing fast retrieval over fast insertion times and

selecting a corresponding data structure seems therefore advantageous.

Both sets, result plans and candidate plans, are initially empty in each invocation of Algo-

rithm 4. They are initialized before the main control loop starts, by inserting plans for scanning

single query tables using procedure PRUNE. The pruning procedure decides whether to insert

plans into the result or candidate set and its implementation will be discussed in the next sub-

section. New plans can get generated and inserted into Res and C and in each invocation of

the OPTIMIZE procedure. Note that we assume call-by-reference parameter passing such that

the optimizer sub-function can alter the state of Res and C and . Procedure VISUALIZE visual-
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1: // Generate plans for query Q, insert them into result
2: // set Res if they are relevant for current resolution r
3: // and bounds b or insert them into candidate set C and
4: // if they might become relevant later.
5: procedure OPTIMIZE(Q,Res,C and ,b,r )
6: // Check candidate plans
7: for q ⊆Q do
8: for pC ∈C and q [0..b,0..r ] do
9: C and q ←C and q \ {pC }

10: PRUNE(Resq ,C and q ,b,r, pC )
11: end for
12: end for
13: // Generate plans using fresh candidates
14: for k ← 2 to |Q| do
15: for q ⊆Q : |q| = k do
16: for q1 ⊂Q : q1 �= �; q2 ←Q \ q1 do
17: for pF ∈FRESH(Resq1 ,Resq2 ,b,r ) do
18: PRUNE(Resq ,C and q ,b,r, pF )
19: end for
20: end for
21: end for
22: end for
23: end procedure

Algorithm 5 – Incremental optimization algorithm for multi-objective query optimization.

izes only cost tradeoffs of completed query plans which respect the current cost bounds and

are appropriate for the current resolution; the input set to procedure VISUALIZE is therefore

the subset of completed query plans described by ResQ [0..b,0..r ].

3.4.2 Incremental Optimizer

Algorithm 5 is the incremental optimizer procedure that is invoked in each iteration of the

main loop (lines 12 to 25 in Algorithm 4). It obtains as input the current query Q, the set of

result and candidate plans (which it may alter), as well as cost bounds b and resolution r . After

the optimizer invocation, the result set is guaranteed to contain a b-bounded approximation

of the Pareto plan set for query Q with resolution r . This may or may not require the optimizer

to insert new plans into the result set. As the optimizer is incremental, it will only insert new

plans in addition to the ones already contained in Res if this is required to satisfy the previously

mentioned guarantee. The optimizer may also insert plans into the candidate plan set C and ,

discard plans from the candidate set, or re-index candidate plans for a different resolution. The

purpose of the candidate set is to avoid redundant work over different optimizer invocations:

the non-incremental MOQO algorithm from the last chapter discards query plans that are not

useful for the current invocation. IAMA keeps them as candidate plans instead and does not
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need to regenerate them in later invocations. Re-indexing and discarding candidate plans also

minimizes redundant work: if it has been verified during the current optimizer invocation that

a certain candidate plan is irrelevant for a given resolution then it is not necessary to recheck

that candidate plan for the same resolution again in future invocations. Re-indexing that

candidate plan for a higher resolution makes sure that the knowledge gained in the current

invocation (about the irrelevance of that candidate) is not lost. If candidate plans are irrelevant

even for the highest resolution then they can be safely discarded.

Algorithm 5 consists of two phases. In the first phase (lines 6 to 12), the optimizer reconsiders

candidate plans that were generated in previous invocations. It iterates over all table subsets

of Q in arbitrary order and retrieves for each set all candidate plans that are indexed for the

current resolution and the current cost bounds. All considered plans are deleted from the

candidate set and pruned; the pruning procedure might insert them again as candidates

but for a higher resolution than the current one. The pruning procedure (whose pseudo-

code is discussed later) might also insert them into the result plan set. The second phase of

Algorithm 5 (lines 13 to 22) generates new plans by combining plans in the result sets. During

that phase, the optimizer iterates over table sets of increasing cardinality; for each table set,

it considers all possible splits into two non-empty subsets. For each split of a set q into two

subsets q1 and q2, the optimizer considers combining a plan joining the tables in q1 with one

joining the tables in q2 to obtain a plan joining all tables in q . In contrast to classical query

optimization algorithms [116], the incremental optimizer does not combine all plans in the

result plan sets but only considers fresh combinations of sub-plans that were not generated in

prior optimizer invocations. Function FRESH (whose pseudo-code is discussed next) returns

only such plans.

Algorithm 6 shows pseudo-code for the pruning procedure PRUNE and for function FRESH

generating fresh query plans. Procedure PRUNE inserts a new query plan into the result

set if its cost vector cannot be approximated by any alternative result plan at the current

resolution. We use the expression INSERT(S, p) for some set S and a plan p as shortcut for

S ← S ∪ {p}. Resolution levels r translate into an approximation factor αr by which the cost

vector of the new plan is multiplied before it is compared with the cost vectors of the alternative

plans (line 7). The approximation factors αr are chosen such that αr > 1 and αr >αr+1 for all

resolution levels r ; we demonstrate the effects of different choices for the number of resolution

levels and approximation factors in Section 3.6. Scaling the cost vector of the new plan by a

factor greater than one makes it more likely that the scaled vector is dominated by the cost

vector of one of the alternative result plans, meaning that the new plan is not inserted into the

result set; the new plan can only be inserted if its cost is for each cost metric lower than the

cost of any other result plan by factor αr at least. The higher the factor αr , the less likely it is

that the new plan is inserted. This means that the result plan set tends to grow with shrinking

approximation factor and growing resolution; as the time complexity grows in the size of the

result set, the complexity grows with increasing resolution as well. We calculate precise bounds

in Section 3.5. We also show in Section 3.5 that an invocation of the optimizer function with

resolution r yields an αn
r -approximate Pareto plan set, where n = |Q| designates the number
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1: // Insert plan p for query q into result set Res if p is
2: // relevant for current resolution r and bounds b.
3: // Insert p into candidate set C and if p could
4: // become relevant later.
5: procedure PRUNE(Resq ,C and q ,b,r, p)
6: // Compare p with alternative plans and bounds
7: if ∃p A ∈ Resq [0..b,0..r ] : c(p A) �αr ·c(p) then
8: // p A approximates p for resolution r
9: // → keep p as candidate for higher resolutions

10: if r < rM then
11: INSERT(C and q [c(p),r +1], p)
12: end if
13: else if c(p)� b then
14: // Cost of p exceeds the bounds
15: // → keep p as candidate for different bounds
16: INSERT(C and q [c(p),r ], p)
17: else
18: // p is immediately relevant
19: // → add p to result plan set
20: INSERT(Resq [c(p),r ], p)
21: end if
22: end procedure

23: // Given two sets of sub-plans Resq1 and Resq2 , filter
24: // to relevant plans for resolution r and bounds b and
25: // generate all fresh combinations of sub-plans.
26: function FRESH(Resq1 ,Resq2 ,b,r )
27: // Filter to relevant sub-plans
28: P1 ← Resq1 [0..b,0..r ]
29: P2 ← Resq2 [0..b,0..r ]
30: // Generate relevant sub-plan pairs
31: pai r s ←ΔP1 × (P2 \ΔP2)
32: pai r s ← pai r s ∪ ((P1 \ΔP1)×ΔP2)
33: pai r s ← pai r s ∪ (ΔP1 ×ΔP2)
34: // Generate fresh plans
35: f r esh ←�
36: for 〈p1, p2〉 ∈ pai r s :ISFRESH(p1, p2) do
37: f r esh ← f r esh ∪ {p1 �� p2}
38: end for
39: return f r esh
40: end function

Algorithm 6 – Sub-functions of the optimization procedure.

of tables in the query. The underlying reason is intuitively that each pruning operation may

in the worst case introduce an approximation error that accumulates over different pruning

operations; the number of pruning operations for a single query plan is proportional to n.
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Knowing the relationship between αr and the result precision allows to choose the factors αr

such that a desired target precision is still reached for the maximal expected number of tables;

alternatively, the choice of αr can be adapted to the current query. If the scaled cost vector of

the new plan is dominated at the current resolution, it is inserted as candidate plan for higher

resolutions or discarded if the maximal resolution has been reached. If the cost vector of the

new plan exceeds the current bounds, it may become useful again once the bounds change; in

that case the new plan is therefore inserted as candidate for the current resolution again.

As discussed before, our goal is to make the time complexity of one optimizer invocation

proportional to the current resolution and cost bounds, independently from how many candi-

date and result plans have accumulated from prior invocations. This goal leads to two subtle

design decisions concerning the pruning function that are nevertheless crucial in order to

obtain the complexity properties we were aiming for: First, the new plan is only compared to

alternative plans that have been inserted at the current resolution level or at a lower one. The

disadvantage is that we might insert the new plan even if plans that are preferable over the new

plan were already inserted at a higher resolution; the advantage is however that the number of

plan comparisons is proportional to the size of the result plan set at the current resolution.

The second decision is that we do not discard result plans that are dominated by the new plan

in case that the new plan is inserted into the result set. This differs from the approximation

schemes from the previous chapter which always keep the result plan sets as small as possible.

The reason that we do not discard result plans is that they might have been used already as

sub-plans to combine other query plans in prior invocations of the optimizer; this might have

happened at the current resolution or at a higher one. Discarding a result plan would require

to discard at the same time all plans that use it as sub-plan to keep the result plan sets for

different table sets consistent (we also assume that plans are represented by pointers to their

sub-plans as discussed in Section 3.5.2); the number of plans to discard is not necessarily

proportional to the size of the result plan set at the current resolution. We renounce discarding

result plans to keep the time complexity of the current optimizer invocation proportional to

the current resolution.

Function FRESH uses result plans for two table subsets q1 and q2 to combine new plans that

are fresh, i.e., they have not been generated in prior optimizer invocations. The expression ΔS

designates for some plan set S a subset of plans that potentially were not yet combined with

all other plans indexed for the current resolution and cost range. During invocation series in

which the bounds are tightened while resolution is refined, we can include all plans that were

inserted in the current invocation in ΔS (in such cases we are sure that all previously inserted

plans respecting the current bounds were already combined with each other) and set ΔS = S

otherwise. We can use auxiliary data structures that index plans based on the invocation at

which they were inserted in combination with the index on cost and resolution; this allows to

evaluate the expressions ΔS and (S \ΔS) efficiently. For each cross product between plan sets,

we check first if one of the two operand sets is empty before evaluating the entire expression.

Predicate ISFRESH evaluates to true for plans that were not yet combined in prior invocations;

we can use a hash table to perform this check efficiently. Fresh plans are returned and will be
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pruned.

3.4.3 Extensions

The algorithm presented in the last subsections is simplified and does not possess several

features that are standard in query optimization. The code can easily be extended to in-

corporate the features discussed next and the implementation used for our experiments in

Section 3.6 supports them as well. First, the presented code only optimizes join order but

not the choice of join operators. Supporting different join operators just requires to add an

inner loop iterating over all applicable join operators and creating corresponding plans in

function FRESH (see Algorithm 6). Second, alternative operators might produce the same

set of result tuples while some of them generate them in an order that can be exploited by

future operations. This is why dynamic-programming based query optimizers distinguish

plans generating different interesting tuple orders [116] during pruning; the cost-based plan

comparison is restricted to plans generating similar tuple orders and it is straight-forward to

generalize this principle to the multi-objective case. Third, the presented code is based on a

simple query model, representing queries as sets of tables that need to be joined. Predicates

and projections can be handled by applying them as early as possible in the join tree and the

required code extensions are standard [116]. The seminal paper by Selinger [116] describes

how complex SQL statements containing nested queries can be decomposed into simple

select-project-join query blocks that can be optimized by our algorithm.

3.5 Formal Analysis

We analyze the algorithm presented in Section 3.4: More precisely, we analyze the optimizer

sub-function that is represented in Algorithm 5. Section 3.5.1 proves formal worst-case

guarantees on how closely the result plan sets, produced by the optimizer, approximate the

real Pareto plan set. Section 3.5.2 analyzes space complexity and Section 3.5.3 analyzes the

time complexity of a single optimizer invocation. In Section 3.5.4, we analyze the amortized

time complexity of several consecutive optimizer invocations for the same query.

3.5.1 Result Precision

The following analysis is based on the Principle of Near-Optimality(PONO) for MOQO, in-

troduced in the previous chapter, which states that replacing optimal sub-plans within a

complete query plan by near-optimal sub-plans still yields a near-optimal complete plan

for a broad class of cost metrics. The class of cost metrics to which the PONO applies is

characterized by the Aggregation Function, i.e. by the recursive function that calculates the

cost of a plan according to that metric out of the cost of the two sub-plans: the PONO applies

to all cost metrics whose aggregation function can be represented using a combination of

the operators sum, maximum, minimum, and multiplication by a constant. This applies for
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instance to metrics such as energy consumption or execution time2. The PONO has also been

shown to apply for several other metrics whose aggregation formulas do not fit into the latter

scheme, such as failure resilience or result precision. A formal definition of the PONO follows.

Definition 8 (PONO). Let p be a query plan with sub-plans p1 and p2 and pick an arbitrary

α≥ 1. Derive p∗ from p by replacing p1 by p∗
1 and p2 by p∗

2 . Then c(p∗
1 ) �αc(p1) and c(p∗

2 ) �
αc(p2) together imply c(p∗) �αc(p).

The following theorems are based on the PONO. We also assume Monotone Cost Aggregation,

meaning that the cost of a plan must be higher or equal to the cost of its sub-plans according

to each cost metric.

Theorem 9. After invoking OPTIMIZE with bounds b and resolution r for query Q, Resq [0..b,0..r ]

contains an αr -approximate b-bounded Pareto plan set for each table q ∈Q.

Proof. For each table q , all applicable scan plans are generated and pruned before the main

loop starts. Let p be an arbitrary scan plan for an arbitrary table q . Once procedure OPTIMIZE

is invoked later for resolution r and bounds b, there are two possibilities for p: either p was

inserted into the result plan set in prior invocations or it is not in the result plan set at the start

of the current invocation. If p was not inserted before then we must make sure that it is either

inserted in the current invocation or not required to form an αr -approximate b-bounded

Pareto plan set.

If p was not inserted before then it must be included in C and q [0..b,0..r ] unless it exceeds the

bounds b or can be approximated by an alternative plan. In both cases, p is not required for

an αr -approximate b-bounded Pareto plan set. If p is however in C and q [0..b,0..r ] at the start

of the current invocation then procedure OPTIMIZE will retrieve and prune p; plan p will be

inserted if it is required for an αr -approximate b-bounded Pareto plan set.

Theorem 10. After invoking OPTIMIZE with bounds b and resolution r for query Q, Resq [0..b,0..r ]

contains an αk
r -approximate b-bounded Pareto plan set for each table subset q ⊆Q with cardi-

nality k = |q|.

Proof. The proof is an induction over the number of tables k. Theorem 9 proves the induction

start for k = 1. Assume that the inductional assumption has been proven for all k < K . Let

q ⊆Q be a set of K tables and p an arbitrary plan that joins those tables with αK
r c(p) � b. Plan

p must have two sub-plans p1 and p2 that each join at most K −1 tables. Let q1 and q2 be the

set of tables joined by p1 and p2 respectively. We assume monotone cost aggregation which

implies αK
r c(p1) � b and αK

r c(p2) � b. The inductional assumption applies to p1 and p2 such

that Resq1 [0..b,0..r ] will contain a plan p∗
1 with c(p∗

1 ) � αK−1
r c(p1) and Resq2 [0..b,0..r ] will

2The energy consumption of a plan is the sum of the energy consumption of the sub-plans. The plan execution
time is the maximum of the execution times of the sub-plans for parallel execution, and the sum for sequential
execution.
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contain a plan p∗
2 with c(p∗

2 ) �αK−1
r c(p2) after the optimizer invocation. Plans p∗

1 and p∗
2 can

be combined into a plan p∗ that joins the same tables as p and has similar cost according to the

PONO: c(p∗) �αK−1
r c(p). Plan p∗ is generated either in the current optimizer invocation with

resolution r and bounds b or in one of the prior invocations. If p∗ is generated in the current

invocation then it is inserted unless an alternative plan p∗∗ with c(p∗∗) �αr c(p∗) �αK
r c(p)

is already in the result set. In that case the theorem holds. If p∗ was generated in prior

invocations then it was either inserted into the result set, or it was already pruned at resolution

r and its cost too similar to one of the result plans, or it will be pruned in the current iteration.

In all cases the theorem holds.

Knowing the relationship between the precision factors αr and the approximation quality of

the result plan sets allows to choose the factor αrM for the maximal resolution in function of

the desired target precision.

3.5.2 Space Consumption

The optimizer (meaning procedure OPTIMIZE, see Algorithm 5) is called once per iteration

of the main loop. We analyze the accumulated space consumption of several optimizer

invocations for the same query. We denote the resolution used in the i -th invocation by ri

and the cost bounds used in the i -th invocation by bi . Resolution r = mini ri designates the

minimal resolution used over all invocations and vector b dominates all used cost bounds: ∀i :

bi � b. Result and candidate plan sets are the variables with dominant space consumption in

IAMA. We upper-bound the number of plans stored in those sets after all optimizer invocations

to obtain the accumulated space complexity.

Lemma 3. Let q be a set containing k tables. Then Resq contains O(kl logl
αr

(m)) result plans.

Proof. The cost of a query plan joining k tables is asymptotically bounded by O(m2k ) for

a broad range of cost metrics, as shown in the previous chapter. Given an approximation

factor αr > 1, the number of cost values in the interval [1,m2k ] such that there are no two

cost values c1 and c2 with c1 ≤αr c2 and c2 ≤αr c1 is bounded by O(k logαr
(m)). Generalizing

to l dimensions, the number of cost vectors taken from [1,m2k ]l such that there are no two

vectors c1 and c2 with c1 � αr c2 and c2 � αr c1 is bounded by O(kl logl
αr

(m)). The pruning

function of IAMA only inserts query plans into the result set if their cost vectors cannot

be approximated by any other plan in the result set, using approximation factor αr for the

comparison. Therefore, the result set for q can never contain two plans whose cost vectors

can mutually approximate each other. So the bound on the number of cost vectors translates

into a bound on the number of plans.

The preceding lemma exploits an upper bound on the plan cost derived from the number of

joined tables. The cost bounds additionally restrict the maximal number of result plans since

plans are only inserted into the result set if they respect the current bounds. We denote by
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r pt (k,b,r ) the asymptotic upper bound on the number of result plans joining a set of k tables

when using bounds b and resolution r . The next lemma derives a bound on the number of

candidate plans from the bound on the number of result plans.

Lemma 4. C and q contains O(2k r pt 2(k,b,r )) candidate plans for a table set q with k tables.

Proof. Each candidate plan for q is constructed by combining two result plans that join subsets

of q . There are O(2k ) possibilities of splitting a set with k tables into two subsets. Assume that

q is split into two subsets q1 and q2. The cardinalities of Resq1 and Resq2 are both bounded

by r pt (k,b,r ) since r pt grows monotonically in k and |q1|, |q2| < k. The number of possible

splits times the number of sub-plan combinations bounds the number of candidates.

We refer to the asymptotic upper bound on the number of candidate plans per table set by

cpt (k,b,r ) in the following. The total space complexity of IAMA is obtained by summing the

number of result and candidate plans over all table sets.

Theorem 11. The accumulated space consumption of several optimizer invocations for an

n-table query is in

O(3nr pt 2(n,b,r )).

Proof. Each plan can be represented in O(1) space: scan plans are represented by the ID

of the table being scanned; other plans can be represented by the IDs of the two sub-plans

generating the operands for the final join. Plan cost vectors have constant space consumption

since l is treated as a constant (see Section 3.3). We assume O(l ) = O(1) indexing space

overhead per plan which is true for many data structures supporting range queries, including

the cell data structure [24]. The number of candidate plans dominates the number of result

plans. Summing over all table sets we obtain a space complexity of O(
∑n

k=1

(n
k

)
cpt (k,b,r )).

Using the definition of cpt , considering that cpt (k,b,r ) ≤ cpt (n,b,r ) for k ≤ n, and exploiting∑n
k=0

(n
k

)
2k = 3n yields the final complexity.

3.5.3 Time of Single Optimizer Invocation

We analyze the time complexity of a single optimizer invocation for a query with n tables,

for bounds b, and for resolution r . The following analysis is valid independently from which

invocations of OPTIMIZE precede the analyzed invocation. We simplify and assume that

retrieving F plans by a range query takes O(F ) time. We can for instance use a data structure

similar to the cell data structure, described by Bentley and Friedmann [24]: we partition the

resolution and plan cost space into cells3, associate a list of plans with every cell, and make

those lists accessible via direct lookup. Assuming suitable cell sizes and plan cost distributions

3We can use logarithmic partitioning for the cost space which should lead to a more uniform distribution of
plans over cells since the area in the cost space that a result plan approximately dominates is defined by multiplying
its cost vector by a constant factor.
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such that the number of empty cells as well as the number of plans in partially included cells

is negligible for most range queries, retrieval is in O(F ) time and single plan insertion in O(1).

Lemma 5. Invoking PRUNE for a plan joining k tables is in O(r pt (k,b,r )) time.

Proof. The pruning procedure retrieves all result plans joining the same tables as the new

plan if they respect the bounds b and are indexed for resolution r or smaller. The number

of plans is in O(r pt (k,b,r )) and so is the retrieval time. The cost vector of the new plan is

compared against the cost vectors of all retrieved plans. One comparison requires to compare

l cost values but l is a constant (see Section 3.3). Adding the new plan takes constant time.

Lemma 6. Invoking FRESH for two table sets with maximally k tables is in O(r pt 2(k,b,r ))

time.

Proof. Function FRESH iterates over pairs of result plans. The plans from those sets are

combined pair-wise forming O(r pt 2(k,b,r )) pairs. Constructing a new plan and calculating

its cost from the cached cost of the sub-plans using recursive cost formulas is in O(1).

We use the previous results to calculate the time complexity of the OPTIMIZE procedure.

Theorem 12. Invoking OPTIMIZE for a query with n tables is in O(3nr pt 3(n,b,r )) time.

Proof. The first part of the OPTIMIZE procedure checks which candidate plans have become

relevant. For one table set with k tables, this requires to retrieve and prune all candidate plans

that respect bounds b and are marked as potentially relevant for resolution r or smaller which

takes O(cpt (k,b,r )r pt (k,b,r )) = O(2k r pt 3(k,b,r )) time. The second part of the OPTIMIZE

procedure generates fresh plans using the newly inserted result plans and prunes the generated

new plans. For one table set with k tables, this requires again O(2k r pt 3(k,b,r )) time, using

the complexity results for pruning and plan generation. Summing over all table sets yields a

time complexity of O(
∑n

k=1

(n
k

)
2k r pt 3(k,b,r )) which is in O(3nr pt 3(n,b,r )).

The time complexity of one optimizer invocation only depends on the parameters (resolu-

tion and cost bounds) of the current invocation but not on parameters used for previous

invocations. This means that plans stored from previous iterations do not cause any time

overhead.

3.5.4 Amortized Optimization Time
over Several Optimizer Invocations

We analyzed the time complexity of a single optimizer invocation in the preceding subsection.

Now we analyze the amortized time complexity of a large series of invocations for the same

query. After each invocation, the optimizer keeps plans that could be relevant for future
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invocations, thereby avoiding redundant computation. The amortized time complexity of

a series of invocation is therefore lower than the time complexity of a single invocation.

Resolution r and bounds b vary between invocations while query Q is fixed. We assume

an invocation series where the Δ operator in function FRESH filters plans to the ones that

were inserted in the current invocation (e.g., if the user keeps tightening the bounds and the

resolution is refined). The next lemmata bound the amount of redundant computation.

Lemma 7. Each possible plan is generated at most once.

Proof. Scan plans are only generated before the main loop of Algorithm 4 is entered; this code

is executed only once per query. Other plans are only generated in function FRESH and we

explicitly make sure to generate plans only for fresh sub-plan combinations using predicate

ISFRESH.

Lemma 8. Each sub-plan pair is generated at most once.

Proof. Each possible plan is inserted at most once into the result plan set since it is generated

at most once (according to the previous lemma) and since each plan is removed from the

candidate set once it is inserted into the result set. Assume that optimizer invocations are

numbered and denote for two arbitrary plans p1 and p2 by i1 and i2 the invocations at

which they become result plans. Then the corresponding plan pair can only be considered at

invocation max(i1, i2): it cannot be considered before since at least one of the plans is not in

the result set at this point and it cannot be considered afterwards since none of the two plans

was freshly inserted at that time.

Candidate plans are considered for insertion (into the result set) in the first phase of the OPTI-

MIZE procedure. Each possible plan is only considered a limited number of times according to

the following lemma.

Lemma 9. Each generated plan is retrieved at most rM +1 times from the candidate plan set.

Proof. Each retrieved candidate plan is deleted from the candidates and pruned. During

pruning, the plan can be inserted as candidate again (and considered in future invocations).

All considered plans respect the current bounds. Therefore, no plan can be re-inserted as

candidate because it exceeds the bounds. It can only be re-inserted as candidate if it is

approximately dominated by another plan. But then the plan becomes candidate only for a

higher resolution than the current one. As there are only rM +1 resolution levels, the plan can

be re-considered only so many times.

The preceding two lemmata bound the total amount of work that is necessary per query plan

over several optimizer invocations. The following theorem analyzes amortized complexity of a

large series of optimizer invocations.

62



3.6. Experimental Evaluation

Theorem 13. Procedure OPTIMIZE has amortized time complexity O(3n) for a large number of

invocations.

Proof. We split time T i
opt for the i -th optimizer invocation into a time component T i

dep that

depends on the number of retrieved and generated plans and another time component T i
i d p

which does not, such that T i
opt = T i

dep +T i
i d p .

We express T i
dep in the following. Newly generated or retrieved plans must be pruned and

we assume that pruning time dominates plan generation, retrieval, and insertion time. Let

si be the number of plans and plan pairs that were generated or retrieved as candidates in

the i -th invocation. The pruning time for a query with n tables must be in O(r pt (n,∞,rM )),

using Lemma 5 and the fact that pruning time becomes maximal for the highest resolution

and without bounds. Hence we obtain T i
dep ∈O(si · r pt (n,∞,rM )).

Even if no plans are retrieved or generated, there is still time overhead for verifying whether

candidate plans have to be pruned or fresh plans can be generated. This requires us to iterate

over all table sets (searching for candidates) and to iterate over each split of each table set

(searching for fresh plans). Using a similar reasoning as in the previous proofs, we obtain

T i
i d p ∈O(3n).

The time T =∑x
i=1 T i

opt denotes the time of x consecutive optimizer invocations for the same

query. We certainly have T ∈O((r pt (n,∞,rM ) ·∑x
i=1 si )+x ·3n). However, as the total number

of generated plans for a fixed query is bounded (see Section 3.5.2), as each plan and plan

pair is generated only once (Lemmata 7 and 8), and as each plan is retrieved at most rM +1

times (Lemma 9), we can bound
∑x

i=1 si independently from the number of invocations x.

This means that for a sufficiently large number of invocations, the time component that is

independent of the number of retrieved and generated plans must become dominant.

As IAMA avoids redundant work, its averaged time complexity over many iterations equals the

time complexity of single-objective query optimization with bushy plans.

3.6 Experimental Evaluation

Section 3.6.1 describes and justifies the experimental setup and Section 3.6.2 discusses the

experimental results.

3.6.1 Experimental Setup

We evaluate an incremental anytime algorithm for MOQO, its simplified pseudo-code was

presented in Section 3.4, in comparison with two baselines: the memoryless algorithm is

equivalent to the iterative MOQO algorithm proposed in the previous chapter except that we
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use a different precision refinement policy, the one-shot algorithm corresponds to the non-

iterative MOQO algorithm presented in Chapter 2 as well. The memoryless algorithm produces

the same sequence of result plan sets as the incremental anytime algorithm; it is however

non-incremental and produces each plan set from scratch. The one-shot algorithm produces

the result plan set with highest resolution directly, avoiding any intermediate steps; it therefore

lacks the anytime property and takes a long time to produce the first result. We compare the

algorithms according to average and maximal time of a single optimizer invocation within a

series of invocations for the same query. It is crucial to minimize the time for single optimizer

invocations in an interactive scenario: if single optimizer invocations take too long then

it is unlikely that they won’t be interrupted by user interaction. We do not evaluate space

consumption: all three evaluated algorithms finally produce a result plan set with the same

resolution so the total space consumption does not differ significantly between them. We

evaluate all algorithms in a scenario without user interaction to make the comparison as fair

as possible; the cost bounds are initially fixed to ∞.

Our implementation is based on an extended version of the Postgres 9.2 database system:

this version features an optimizer that considers multiple plan cost metrics and was already

used in Chapter 2. We reuse the cost models of the three plan cost metrics execution time,

consumed system resources (namely the number of reserved cores), and result precision. We

chose a scenario with three plan cost metrics on purpose since this is the maximal number

of metrics that allows to visualize Pareto-optimal cost tradeoffs to the user (in the form of a

surface in 3D); it is of course still possible to provide users with aggregate information about

available cost tradeoffs for higher numbers of metrics. Our implementation only covers the

parts of the optimization algorithms that are required for this benchmark. We evaluate the

algorithms on TPC-H queries containing at least one join. The performance of the algorithms

is strongly correlated with the number of joined tables. In the following figures, we report

average numbers over all queries with the same number of tables to make those correlations

visible. Also, the Postgres optimizer may split up optimization of one TPC-H query into

multiple optimizations of sub-queries with different numbers of tables. In those cases, we

measured optimization times for different sub-queries separately. The relative performance of

the evaluated algorithms also depends on the number of resolution levels. We experimented

with different numbers of resolution levels (i.e., we used different values for rM ) and applied

the formula αr =αT +αS(rM −r )/rM to calculate the precision factors used during pruning; we

use different values for the target precision αT and for the precision step αS . All experiments

were executed on a MacBook air with 4 GB RAM and an Intel Core i5 processor with 1.4 GHz.

3.6.2 Experimental Results

Figure 3.3 shows average times per optimizer invocation for a moderate target precision

of αT = 1.01 and αS = 0.05. Choosing αT = 1.01 means that the final result plan set is an

1.018 ≈ 1.08-approximate Pareto plan set, based on the formal analysis from Section 3.5.1 and

on the fact that TPC-H queries have at most eight tables. Hence the costs of the result query
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Figure 3.3 – Average time per optimizer invocation for TPC-H sub-queries and target precision
αT = 1.01

plans are formally guaranteed to be not higher than optimal by more than about 8 percent.

These are rather weak guarantees and, correspondingly, optimization takes never more than

ten seconds, even for the two baselines. Such optimization times are not unusual for MOQO,

as demonstrated in the previous chapter. The plan search space size increases in the number

of query tables and so do optimization times4. Note that no TPC-H sub-query joins seven

tables which is the reason for the missing bar at that position. When considering only one

resolution level, the incremental anytime algorithm (IAMA) cannot show its strengths and is

slower than the two baselines by at most 37%. This overhead is due to plan indexing and the

extended pruning function. The situation changes once we increase the number of resolution

levels: already with five resolution levels, IAMA is up to four times faster than the one-shot

algorithm and up to three times faster than the memoryless algorithm. With 20 resolution

levels, IAMA is up to one order of magnitude faster than both baselines. Only IAMA is able

to exploit different resolution levels by splitting up optimization into several incremental

optimization steps. The behavior of the one-shot algorithm does not depend on the number

of resolution levels; the memoryless algorithm generates the same sequence of result plan sets

as IAMA but is not incremental and has to start optimization from scratch in each invocation.

Figure 3.4 shows analogous results for target precision αT = 1.005 (and αS = 0.5); using that

4There is a slight decrease from six to eight tables since the only TPC-H query joining eight tables refers to many
small tables for which less sampling strategies are considered.
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Figure 3.4 – Average time per optimizer invocation for TPC-H sub-queries and target precision
αT = 1.005

target precision during pruning, all evaluated algorithms guarantee the generation of 1.04-

approximate Pareto plan sets so the precision is higher than before. This results in optimization

times of between 41 and 53 seconds for all three algorithms with one resolution level. This

makes incremental computation even more necessary than in the last example. IAMA is up

to 14 times faster than the memoryless algorithm and beats the one-shot algorithm by up

to factor 37. This means that the relative advantage that IAMA gives over non-incremental

algorithms increases, the more difficult the optimization task is (e.g., higher target precision

or higher number of tables). Figure 3.5 finally shows not the average but the maximal time for

one optimizer invocation: IAMA is up to eight times faster than both baselines and we believe

that this ratio could be extended by a more optimized sequence of precision factors. The two

baselines are in practice equivalent when considering maximum time: for the memoryless

algorithm, the invocation with maximal execution time is usually the last one in which it has

to accomplish the same work as the one-shot algorithm.

3.7 Conclusion

User preferences are difficult to formalize so MOQO should be an interactive process. We

presented an incremental anytime algorithm that is well suited for interactive MOQO.
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4 Pre-Computation

On a high level, the algorithms presented in the last two chapters make query optimization

with multiple cost metrics practical by significantly reducing optimization time compared

to the exhaustive algorithm. An alternative way to make multi-objective query optimization

practical, is to move optimization before run time. In that case, optimization may take a long

time. Since it happens before run time, the constraints on optimization time are however

relaxed. It is possible to move optimization before run time if the queries received at run time

correspond to query templates that are known in advance. In this chapter, we will see an

approach for pre-computing all Pareto-optimal plans for each possible instance of a given

query template. This requires however to generalize the problem model of query optimization

even further than in the previous chapters by considering at the same time multiple cost

metrics and multiple parameters. Parameters represent unspecified parts in the query tem-

plate. The resulting optimization problem, multi-objective parametric query optimization,

generalizes many previously proposed problem variants in query optimization. We will see

that multi-objective parametric query optimization differs in many aspects from other query

optimization variants and needs to be solved by specialized optimization algorithms.

4.1 Introduction

Classical Query Optimization (CQ) models the cost of a query plan as a scalar cost value c ∈R.

The optimization goal is to find the plan with minimal cost for a given query. Multi-Objective

Query Optimization (MQ) [60, 88, 137] generalizes the classical model and associates each

query plan with a cost vector c ∈ Rn describing the cost of the plan according to multiple

cost metrics. The optimization goal is to find a set of query plans that are all Pareto-optimal,

meaning that no other plan has better cost according to all cost metrics at the same time.

Parametric Query Optimization (PQ) [59, 73, 28] generalizes the classical model in a different

way and associates each query plan with a cost function c : Rn →R describing the cost of the

plan as function of multiple parameters whose values are not known at optimization time.

The optimization goal is to find a plan set that contains an optimal plan for each possible

combination of parameter values. In this chapter, we introduce Multi-Objective Parametric
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Query Optimization (MPQ) and describe and analyze corresponding query optimization

algorithms; MPQ generalizes and unifies the cost models of MQ and of PQ at the same time

by representing the cost of a query plan as vector-valued function c : Rn →Rm . This allows to

model multiple parameters as well as multiple cost metrics and is required in the following

example scenarios.

Example 7. A Cloud provider lets users query a large scientific data set over a Web interface.

Query processing takes place in the Cloud. User queries correspond to query templates such as

SELECT * FROM Table1 WHERE P1 AND P2 where P1 and P2 represent unspecified predicates;

users submit queries by specifying those predicates in the Web interface. Query processing

time in the Cloud can often be reduced when accepting higher monetary fees [88]. After having

submitted a query, users are therefore provided with a visualization of possible tradeoffs between

execution time and monetary fees (that are realized by alternative query plans) and can select

their preferred tadeoff. To speed up this process, the Cloud provider calculates all relevant query

plans for each query template in a preprocessing step. The selectivities of the predicates are

unknown at preprocessing time and must be represented as parameters, execution time and

monetary fees are the two cost metrics. A query plan is relevant if there is at least one point in the

parameter space for which its time-fees tradeoff is Pareto-optimal, meaning that no alternative

plan has both, lower fees and lower execution time. Figure 4.1 illustrates the preprocessing result

in this scenario (for a query with two unspecified predicates).

Example 8. Embedded SQL queries are a classical use case for PQ [73, 28]: to avoid query

optimization overhead at run time, all potentially relevant query plans are calculated in advance

for a given query template. Parameters model the selectivity of unspecified predicates or the

amount of buffer space that is available at run time. Execution time is the only cost metric in

the classical setting. In the context of approximate query processing [12], execution time can

however be traded against result precision. In such a scenario, the two metrics execution time

and result precision both must be considered during optimization. The optimal query plan

is selected at run time based not only on concrete parameter values but also on a policy that

determines the optimal tradeoff between result precision and execution time, based for instance

on the current system load or on minimum precision requirements for one specific invocation.

The kind of query optimization that is described in the example scenarios requires to consider

multiple parameters and multiple cost metrics; this is a novel variant of query optimization

that we call MPQ. Figure 4.2 describes the context of MPQ: MPQ takes place before run time;

the input to MPQ is a query associated with parameters. A parameter may represent any

quantity that influences the cost of query plans and is unknown at optimization time. The

goal of MPQ is to generate a complete set of relevant plans, meaning a set that contains a plan

p∗ for each possible plan p and each point in the parameter space x such that p∗ has at most

the same cost as p at x according to each cost metric. Formulated differently, the goal is to

find a set of Pareto-optimal query plans for all points in the parameter space. As in PQ [73], all

relevant query plans are generated in advance so that no query optimization is required at run

time.
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Figure 4.1 – MPQ associates each point x in the parameter space with a set of Pareto-optimal
query plans {pi } (the illustration uses cost metrics and parameters from Scenario 1)

4.1.1 State-of-the-Art

MPQ is a generalization of MQ and of PQ; it is not possible to apply existing MQ or PQ

algorithms to MPQ since PQ algorithms support only one cost metric and MQ algorithms do

not support parameters. It may at first seem possible to model cost metrics as parameters;

if all but one cost metric could be represented as parameters then PQ algorithms could be

applied. Trying to model for instance monetary fees as a parameter in Scenario 7 (such that

execution time becomes a function of predicate selectivities and monetary budget) leads

however to the following problems: First, existing PQ algorithms [78, 59, 74, 18, 51, 32] usually

assume that the value domain of each parameter is known in advance. This is realistic for

predicate selectivity or the available amount of buffer space but not for monetary fees, as

finding the minimal execution fees for a given query is a hard optimization problem all by

itself. Second, cost metrics and parameters have different semantics: Assume for instance

that alternative query plans for a given query have execution fees between 1 and 10 USD

and that a plan p priced at 5 USD has lower execution time than all plans with higher fees.

The result set of MPQ should only contain p but none of the more expensive plans since p

is always preferable over them. A PQ algorithm (e.g., [59, 73]) would however generate plans

with minimal execution time for each possible cost value between 6 and 10 USD, as the goal in

classical PQ is to cover the whole parameter space by optimal plans (while the goal in MPQ is

not to cover the whole cost space). The result set of PQ can be larger than the result set of MPQ

by an arbitrary factor and result set size relates to optimization time. Additional problems arise

since parameter domains are usually assumed to be connected intervals while cost values may

be sparsely distributed in the total cost range. Altogether, transforming a MPQ problem into a

PQ problem by modeling cost metrics as parameters seems inappropriate. A popular branch

of PQ algorithms decomposes a PQ problem into multiple non-parametric CQ problems; it is

however impossible to analogously decompose a MPQ problem into multiple non-parametric

MQ problems for reasons outlined in Section 4.4. More related work is discussed in Section 4.3.
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Figure 4.2 – The context of MPQ

4.1.2 Contribution and Outline

We summarize our contributions before providing details:

• We formally analyze the MPQ problem with piece-wise-linear (PWL) plan cost func-

tions. We show in particular that the MPQ problem has no equivalent for certain

fundamental properties of the PQ problem that have inspired the design of a broad class

of PQ algorithms based on parameter space decomposition.

• We present the first algorithms for MPQ; those algorithms can deal with multiple cost

metrics and parametric cost functions together. We present a generic MPQ algorithm

that can deal with arbitrary plan cost functions and a specialization for PWL cost func-

tions.

• We formally analyze our algorithms and show that both presented algorithms guarantee

to generate all relevant query plans. We experimentally evaluate the algorithm for PWL

cost functions in several example scenarios.

Section 4.2 introduces the formal model, Section 4.3 discusses related work. We analyze the

MPQ problem in Section 4.4 and show that it differs from PQ in several important aspects.

Section 4.5 presents and analyzes the Relevance Region Pruning Algorithm (RRPA). This is a

generic algorithm for MPQ that can handle arbitrary plan cost functions. As many algorithms

for CQ, MQ, and PQ, it is based on dynamic programming and generates and prunes query

plans for joining table sets of increasing cardinality. The pruning function differs from prior

approaches: Every query plan is associated with a region in the parameter space for which it

is relevant (the Relevance Region, abbreviated RR). During pruning, this region is repeatedly

reduced by comparisons with alternative plans. Plans are pruned once their RR becomes

empty. We prove that RRPA formally guarantees to generate all relevant query plans for

arbitrary queries.

The implementation of elementary RRPA operations such as adding cost functions and inter-

secting RRs depends on the considered class of cost functions. Most work on PQ focuses either

on linear or on PWL cost functions which both can be stored and manipulated efficiently.

Linear functions are however often a bad approximation for real plan cost functions [113]

while PWL functions can approximate arbitrary cost functions up to an arbitrary degree of
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detail [73]. We therefore focus on PWL cost functions and present PWL-RRPA, a specialization

of RRPA to PWL cost functions, in Section 4.6. We prove that all RRs that occur during the

execution of PWL-RRPA belong to a limited class of shapes and propose data structures for

representing cost functions and RRs. We provide pseudo-code for implementing all elemen-

tary operations of PWL-RRPA efficiently on those data structures and analyze the resulting

complexity. PWL-RRPA was experimentally evaluated in multiple scenarios; the results are

discussed in Section 4.7.

4.2 Definitions

Our notation is similar to the ones used in the previous chapters. Nevertheless, we introduce

notation from scratch to make the current chapter self-contained.

A query is represented by a set Q of tables that need to be joined. A query plan specifies

the join order and the operators executing scan and join operations. The symbol O denotes

the set of available operators. Let p1 and p2 be two query plans that join disjoint sets of

tables and o ∈O a join operator. The function Combi ne(p1, p2,o) designates the query plan

that joins the results of p1 and p2 using operator o. Plans p1 and p2 are called sub-plans of

the resulting plan. The function P(Q) denotes the set of all possible plans for query Q. The

execution cost of a query plan can depend on parameters whose exact values are not known

at query optimization time. Parameters represent for instance predicate selectivities or the

amount of available buffer space at query execution time. Parameter values for a fixed set of

parameters are represented as a vector x (bold font distinguishes vectors from scalar values in

the following). The parameter space X is the set of possible parameter vectors. Query plans

are compared according to a set M of cost metrics for which analytic cost models are available.

Let p be a query plan and x a parameter vector. The cost function c(p,x) estimates the cost

of plan p under the circumstances described by parameter vector x. The cost function yields

a vector c that contains one value for each cost metric. Let m ∈M be a cost metric, then cm

denotes the cost value for that metric. The notation c(p) designates the cost function for a

constant plan p such that c(p)(x) := c(p,x).

Example 9. This example is based on Scenario 7. Consider a query template containing three

predicates that are specified at run time. The selectivities of those three predicates are three pa-

rameters, the value domain of each parameter is the continuous interval [0,1]. The selectivities

of all three predicates together can be described by a three-dimensional vector (for instance,

x = (0.1,0.5,0.2) if the first predicate has selectivity 10%, the second predicate has selectivity

50%, and the third predicate has selectivity 20%). The parameter space containing all possible

parameter vectors is the three-dimensional space X= [0,1]3 ⊆R3. The cost of a fixed query plan

depends on the selectivities of the predicates and is measured according to the two cost metrics

execution time and monetary fees, therefore M= {t i me, f ees}. The value domain for each of

the two cost metrics is the set R+ ⊆R of non-negative real numbers. The cost function c(p) of

a fixed plan p therefore maps three-dimensional parameter vectors to two-dimensional cost

vectors: c(p) : X→R2+.
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Plan quality metrics for which a higher value is better (e.g., result precision in Scenario 8) can

always be transformed into cost metrics for which a lower value is better (e.g., replace result

precision θ ∈ [0,1] by precision loss 1−θ). Let p1 and p2 be two query plans that produce the

same result. Plan p1 dominates plan p2 in all points of the parameter space in which p1 has at

most the same cost as p2 according to each cost metric. The function Dom(p1, p2) ⊆X yields

the parameter space region where p1 dominates p2:

Dom(p1, p2) = {x ∈X|∀m ∈M : cm(p1,x) ≤ cm(p2,x)}

The plans p1 and p2 mutually dominate each other in parameter space regions where they

have equivalent cost. Plan p1 strictly dominates plan p2 in all points of the parameter

space in which p1 dominates p2 without having equivalent cost. The function StD(p1, p2) ⊆
Dom(p1, p2) yields the parameter space region where p1 strictly dominates p2:

StD(p1, p2) = Dom(p1, p2) \ {x ∈X|c(p1,x) = c(p2,x)}

A plan’s region of optimality is in PQ the parameter space region where no alternative plan has

lower cost [73]. The multi-objective analogue to the region of optimality is the Pareto region;

the Pareto region pReg (p) ⊆X of plan p is the parameter space region where no alternative

plan from P(Q) producing the same result as p strictly dominates p:

pReg (p) =X\ ( ∪
p∗∈P(Q)

StD(p∗, p))

A parametric optimal set of plans is in PQ a plan set that contains at least one cost-optimal

plan for each point in the parameter space [73]. The multi-objective analogue is a Pareto plan

set (PPS); P ⊆P(Q) is a PPS iff it contains for each possible plan p∗ ∈P(Q) and each parameter

vector x ∈X at least one plan plan that dominates p∗ for x:

∀p∗ ∈P(Q) ∀x ∈X ∃p ∈ P : x ∈ Dom(p, p∗)

Example 10. Let p1, p2, and p3 be three plans for the same query. Assume there is only one pa-

rameter σ ∈ [0,1] (X= [0,1]) that represents the selectivity of an unknown predicate. The two cost

metrics time and monetary fees are considered, therefore M= {t i me, f ees}. The plans have the

following cost functions: ct i me (p1) = 2σ, c f ees(p1) = 3, ct i me (p2) = 0.5+σ, c f ees(p2) = 2, and

plan p3 has the same cost as p2. The following relationships hold among others: Plans p2 and

p3 mutually dominate each other in the entire parameter space: Dom(p2, p3) = Dom(p3, p2) =
[0,1]. Plan p2 strictly dominates p1 for σ> 0.5. The Pareto region of p1 is the selectivity interval

[0,0.5]. The Pareto regions of p2 and p3 are the entire parameter space. The sets {p1, p2} and

{p1, p3} both form a PPS.

A Pareto plan designates in the following a plan in a PPS. A relevance mapping (RM) for a

PPS P maps each Pareto plan to a relevance region (RR) in the parameter space such that we

can restrict our attention to the plans whose RR includes x whenever we need to find the best
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Figure 4.3 – Two-dimensional convex polytope as intersection of three halfplanes

plans for a parameter space point x ∈X:

∀p∗ ∈P(Q) ∀x ∈X ∃p ∈ P : x ∈ r el M(p)∩Dom(p, p∗)

The RR of a plan can be different from its Pareto region. The algorithm presented in Section 4.5

uses RMs and discards plans with empty RRs. The Multi-objective parametric query opti-

mization (MPQ) problem is the focus of this chapter. An MPQ problem is defined by a query

Q, a parameter space X, and a set of cost metrics M. Any PPS for Q is a solution to the MPQ

problem.

We introduce a restricted variant of MPQ, the next definitions are prerequisites. An m-

dimensional convex polytope is a set of points in Rm that i) is convex, meaning that any

two points in the convex polytope are connected by a line segment that completely lies within

the convex polytope again, and ii) corresponds to the intersection of a finite set of halfspaces,

a halfspace being the set of solutions to a linear inequality of the form wT ·x ≤ b with w,x ∈Rm

and b ∈ R. Figure 4.3 illustrates how a convex polytope is constructed by intersecting three

halfspaces in R2. The cost function c(p,x) of a plan p is linear in the entire parameter space,

if for each cost metric m ∈M, there is a weight vector wm and a constant bm ∈ R such that

c(p,x) = wT
m · x+bm for each x ∈ X. The cost function is piecewise-linear (PWL) if the pa-

rameter space can be partitioned into convex polytopes such that c(p,x) is linear in each

polytope. Note that PWL cost functions may have discontinuities between regions in which

they are linear. PWL functions are of high practical relevance since they can approximate

arbitrary functions [74]. Most work on PQ (e.g., [59, 73]) restricts the PQ problem by assuming

either linear or PWL cost functions. In analogy to that, we introduce a restricted variant of

the MPQ problem: PWL-MPQ assumes that all vector-valued cost functions are PWL and

that the parameter space itself forms a convex polytope (which is a standard assumption in

PQ [73]). The PWL-MPQ problem is analyzed in Section 4.4 and a corresponding optimization

algorithm is presented in Section 4.6. This algorithm exploits that the parameter space in

PWL-MPQ can be partitioned into linear regions for a plan set P : a linear region is a convex

polytope in the parameter space for which all plans in P have linear cost functions.
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4.3 Related Work

We introduced four different variants of query optimization in Section 4.1.1 (CQ, PQ, MQ, and

MPQ) and justified why existing algorithms cannot be applied for MPQ. We discuss related

work in PQ and MQ in more detail now.

PQ algorithms associate query plans with cost functions instead of cost values. The cost

functions depend on parameters that represent for instance predicate selectivities. The goal in

PQ is usually to generate a plan set that contains one optimal plan for each possible parameter

value combination [59, 73, 74, 28]. Many approaches to PQ are based on parameter space

decomposition [59, 73, 74, 51, 28]. They repeatedly invoke a standard optimizer to generate

optimal plans for fixed parameter values (if the parameter values are fixed then the cost of a

query plan can be modeled as a constant value again) in order to decompose the parameter

space into regions in which a single plan is optimal. We will see in Section 4.4 why similar

approaches fail for MPQ. Another branch of PQ algorithms [62, 43, 73, 74, 18, 32] is based

on dynamic programming, similar to the CQ algorithm by Selinger [116]. They are specific

to PQ since they consider only one cost metric during pruning (some approaches consider

robustness in addition to execution time [17, 10] but robustness is directly derived from exe-

cution time and not an independent cost metric) and use data structures and corresponding

manipulation functions that are intrinsically specific to assumptions that hold in PQ but not in

MPQ (e.g., many PQ algorithms model the parameter space region in which a plan is optimal

as convex polytope which works for PQ with PWL cost functions but not for MPQ with PWL

cost functions as shown in Section 4.4). Using PQ algorithms for MPQ would require that

the optimal plan according to one cost metric is always guaranteed to be optimal according

to all other cost metrics. This case is unrealistic; even more so since many relevant cost

metrics are anti-correlated (e.g., result precision and processing time in approximate query

processing [12]). Ioannidis et al. [78] use randomized algorithms for PQ; they do not support

multiple cost metrics. Randomized algorithms can never offer formal worst-case guarantees

on generating complete plan sets, unlike the algorithms presented in this chapter. Classical

PQ deals with unknown parameter values by generating all plans that could be relevant. Other

approaches define probability distributions over parameter values with the goal to generate

one robust plan [17, 10] or one plan that minimizes expected cost [40]. In contrast to that,

classical PQ aims at scenarios where new information becomes available at run time that

should be considered during plan selection.

MQ algorithms compare query plans according to several cost metrics. The goal is to find

a plan that represents the best compromise between conflicting metrics according to user

preferences. The single-objective query optimization algorithm by Selinger has been gener-

alized to MQ [60, 137]: plans producing the same result are compared according to multiple

cost metrics during pruning and plans that are not Pareto-optimal are discarded. The latter

approach can deal with a broad range of cost metrics but does not support parameters. Other

MQ algorithms are tailored to specific combinations of cost metrics and user preference func-

tions that allow efficient pruning [81, 147, 11, 12]. They allow for instance only cost metrics
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Case of Single Cost Metric Case of Multiple Cost Metrics

(S1) If the same plan is optimal for two points
in a linear parameter space region, then that
plan is also optimal on the line connecting
those two points.

(M1) If the same plan is Pareto-optimal for
two points in a linear parameter space re-
gion, then this plan is not necessarily Pareto-
optimal on the line connecting those two
points.

(S2) Each plan has one connected region
within a linear parameter space region for
which it is optimal. This region is either
empty or forms a convex polytope.

(M2) The Pareto region of a plan within a lin-
ear region is not necessarily connected and
the connected parts of it do not form convex
polytopes in general.

(S3) If the same plan is optimal for all vertices
of a convex polytope in a linear parameter
space region, then that plan is optimal for all
points within the polytope.

(M3) If all vertices of a convex polytope in
a linear parameter space region have the
same set of Pareto plans, then (M3a) those
plans are not necessarily Pareto-optimal for
all points of the polytope, and (M3b) plans
can be Pareto-optimal within the polytope
that are not Pareto-optimal on the vertices.

Table 4.1 – Comparing the case of one cost metric and the case of multiple cost metrics in
parametric query optimization; all statements refer to linear regions in the parameter space

for which the cost of a query plan is calculated as weighted sum over the cost of its sub-

plans [147]; this is however not possible in many relevant scenarios (e.g., the execution time

of a plan equals the maximum over the execution times of its sub-plans if they are executed

in parallel). None of those approaches supports parameters. The algorithms that we present

in this chapter place only minimal restrictions on the cost metrics (see Section 4.5.2) and

allow parameters which is required to solve MPQ problems. Yet another branch of MQ algo-

rithms separate multi-objective optimization from join ordering; they produce for instance a

time-optimal join tree first and configure operators within that tree considering multiple cost

metrics later [61, 107]. Such approaches are not applicable to MPQ since it is unrealistic to find

one join tree that is optimal for all parameter values (parameters such as predicate selectivities

clearly have strong influence on the optimal join order). Algorithms for multi-objective data

flow optimization [124, 125, 88] are not applicable to query optimization with join reordering.

4.4 Problem Analysis

We analyze the newly introduced MPQ problem. The PQ problem (i.e., the MPQ problem

with only one cost metric) was already analyzed in prior work [59]. The MPQ problem is a

generalization of the PQ problem and the following analysis therefore focuses on pointing

out differences between the PQ problem and the MPQ problem. We will see in Section 4.4.1

that having multiple cost metrics instead of only one changes many fundamental problem

properties. This has important implications on the design of MPQ algorithms that we discuss
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in Section 4.4.2.

4.4.1 Analysis

Most work on PQ assumes that all cost functions are PWL [59, 73, 51]. We make the same

assumption in the following. Our comparison between PQ and MPQ focuses on three problem

properties that have been shown to hold for PQ. Those three problem properties were already

called the guiding principles of PQ [51] since many PQ algorithms exploit them in one way or

another [59, 73, 51], assuming that they hold either over the whole parameter space [59, 73]

or at least locally [51]. We will see that the guiding principles do not hold anymore for MPQ

which makes many successful approaches to PQ inapplicable to MPQ. Table 4.1 summarizes

the differences between PQ and MPQ. The left column contains statements about PQ that

were proven by Ganguly [59]; the right column contains the adapted statements for MPQ that

are proven next. All statements refer to linear regions (convex polytopes in the parameter

space in which all compared cost functions are linear for each cost metric).

Theorem 14. The parameter space can be partitioned into linear regions for an arbitrary set of

cost functions.

Proof. Given only one cost metric, the parameter space can always be partitioned into linear

regions according to results from PQ [73]. Denote by Ci the partitioning according to the i -th

cost metric for 1 ≤ i ≤ M (represented as a set of polytopes). Then {c = c1 ∩ . . .∩cM |ci ∈Ci } is

a partitioning of the parameter space into linear regions according to all cost metrics. The

partitions are intersections of convex polytopes and therefore convex polytopes themselves.

We refer to the three statements about PQ by S1, S2, and S3 in the following, and to the three

statements about MPQ by M1, M2, and M3.

Theorem 15. Let p1 and p2 two arbitrary plans and X ⊆X a linear region for {p1, p2}. Then

the region D within X in which p1 dominates p2 forms a convex polytope.

Proof. Denote by Dm ⊆ X the region in which p1 is better or equivalent to p2 according to

cost metric m ∈M. Each region Dm forms a convex polytope (see results on PQ with linear

cost functions [59]). Plan p1 dominates p2 in the region in which it is better or equivalent to

p2 according to all cost metrics. Region D corresponds therefore to the intersection of the Dm :

D =∩m∈MDm . A convex polytope is an intersection of halfplanes. Therefore, the intersection

of convex polytopes is a convex polytope again.

The following series of counter-examples proves the statements from Table 4.1. The multi-

objective equivalent of an optimal plan is a Pareto-optimal plan. Statement S1 about PQ does

not generalize to the multi-objective case. Figure 4.4 shows a corresponding counter-example.
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Figure 4.4 – If a plan is Pareto-optimal for two parameter values, it is not necessarily Pareto-
optimal for the values in between

The example shows the two-dimensional cost function of two plans within a one-dimensional

parameter space. Plan 1 is Pareto-optimal in the whole parameter space (parameter value

range [0,3]). Plan 2 is however only Pareto-optimal for the parameter value ranges [0,1) and

[2,3] but not for parameter values between 1 and 2. The example is minimal for MPQ since

having less than two cost metrics leads to PQ and having less than one parameter leads to MQ.

The negative result therefore applies to MPQ in general.

This example shows at the same time that Pareto regions are not necessarily connected (first

part of M2). Figure 4.5 illustrates the second part of statement M2: the connected parts of

the Pareto region are not necessarily convex. The example depicted in Figure 4.5 uses two

plans and a two-dimensional parameter space. The example requires a two-dimensional

parameter space since connected regions in a one-dimensional parameter space always form

convex polytopes. Let c1(x1, x2) = (x1, x2) be the two-dimensional cost function of plan 1 (the

two-dimensional identity function) and c2(x1, x2) = (1,1) the cost function of plan 2. The

region in which plan 1 dominates plan 2 forms a convex polytope as depicted in Figure 4.5.

The remaining region is the Pareto region of plan 2. Figure 4.5 shows clearly that the Pareto

region is not convex.

The example in Figure 4.4 also proves M3a. The example in Figure 4.6 proves M3b. Figure 4.6

shows cost functions of three plans for two cost metrics and one parameter. Plan 3 is Pareto-

optimal for the parameter range (0.5,1.5) but neither for the range [0,0.5] nor for the range

[1.5,2]. The cost functions in our examples are not monotone but the examples can be adapted

(just turn the figures counterclockwise by 45 degrees). A common assumption in PQ is that
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plan cost functions are monotone in the parameters [17]. We see that this assumption does

not change our negative results.

4.4.2 Implications on Algorithm Design

The three properties of the PQ problem that are listed in the left column of Table 4.1 have

allowed to design PQ algorithms that split one PQ problem into several CQ problems. This

approach has the advantage that an existing query optimizer for CQ can be turned into an

optimizer for PQ with relatively low implementation overhead: the code of the existing CQ

optimizer remains mostly unchanged (this is why such approaches to PQ are called non-

intrusive [73]) and only a relatively small piece of code has to be added that splits the PQ

problem into several CQ problems. We will see now, why such approaches fail for MPQ.

The Recursive Decomposition Algorithm proposed by Hulgeri and Sudarshan [73] is a non-

intrusive PQ algorithm and works as follows: Given a convex polytope in the parameter space,

the algorithm calculates an optimal plan for each vertex of that polytope (using a CQ query

optimizer). If the same plan is optimal for each vertex, then that plan is optimal for every point

within the polytope (according to statement S3 from Table 4.1) and no further decomposition is

necessary. If different plans are optimal for different vertices, then the polytope is decomposed

into fragments and the algorithm is recursively applied to each fragment.

The described algorithm is representative for other non-intrusive approaches to PQ [59, 73, 74]

since all of them successively decompose the parameter space into fragments in which only

one plan is optimal. Statement S3 is crucial for all those algorithms since it leads to a sufficient

condition for checking whether further decomposition is unnecessary. Statement M3 shows

that no analogue condition can be found for MPQ: even if the same set of plans is Pareto-

optimal for all vertices of a convex polytope in the parameter space, it may still be necessary

to decompose that polytope further in order to find all Pareto plans (according to Statement

M3b). This means that it is not possible to generalize non-intrusive algorithms for PQ to MPQ

(which would allow to split one MPQ problem into several MQ problems to which existing

MQ algorithms could be applied [60]). Motivated by this insight, we propose quite a different
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approach to MPQ in the following section.

4.5 Generic Algorithm

In this section, we present the Relevance Region Pruning Algorithm (RRPA) for MPQ. The

algorithm associates each query plan with a RR in the parameter space that is used during

pruning to detect irrelevant plans. The algorithm is generic and not specific to PWL cost

functions. Section 4.5.1 describes the algorithm and Section 4.5.2 proves that RRPA finds

complete PPSs for arbitrary MPQ problem instances. We do not explicitly describe how to

deal with nested queries during optimization; techniques for decomposing complex SQL

statements into simple SPJ query blocks have been proposed in prior work [116].

4.5.1 Outline of Algorithm

The analysis from the previous section has shown that trying to adapt non-intrusive PQ

algorithms to MPQ is not a promising direction. We adopt a dynamic programming (DP)

based approach instead, calculating optimal plans for joining table sets out of optimal plans

for joining subsets. Such an approach seems promising because DP has been widely used for

designing algorithms in CQ [116], MQ [60], and PQ [73]. Algorithm 7 shows pseudo-code of

RRPA. The main function takes a query Q as input and returns a PPS for Q. The algorithm

uses two families of global variables: For each sub-query q ⊆Q, variable P q will eventually

contain a PPS for q and variable Rq a corresponding RM (let p ∈P q a plan for q , then Rq (p)
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designates the RR of p). We assume that the plan sets are initially empty. RRPA first calculates

PPSs and RMs for each base table q ∈Q; it considers all possible scan plans for each base table

and prunes out plans that are dominated in the entire parameter space. Details of the pruning

function are discussed later. After the base tables, RRPA treats table sets in ascending order of

cardinality. An auxiliary function generates the PPS for joining a table set q ⊆Q by considering

all possible splits of q into two non-empty subsets (each split represents one specific pair

of operands for the last join), all possible operators for the last join, and all pairs of plans

for generating the inputs to the last join (those plans are selected out of the PPSs that were

calculated before). A tentative plan is generated for every combination of operands, operator,

and sub-plans. This plan is compared pairwise against all other plans that generate the same

result and are already contained in P q . Those comparisons happen in the pruning function.

The goal is to identify and discard suboptimal plans that are not required to form a PPS.

Pruning is based on the concept of RRs that was introduced in Section 4.2. Every plan is

associated with a RR in the parameter space for which no alternative plan is known that

has equivalent or dominant cost. The RR of a newly generated plan is initialized by the full

parameter space. It is reduced during a series of comparisons between the newly generated

plan and the old plans joining the same tables. At every comparison, the RR of the new plan

is reduced by the points in the parameter space for which an old plan dominates the new

plan. If the RR of the new plan becomes empty, it is discarded. Otherwise, the new plan is

inserted. Before inserting the new plan, the RRs of the old plans are reduced by regions in

which they are dominated by the new plan. Old plans with empty RRs are discarded. The

following example illustrates the pruning method.

Example 11. We revisit Scenario 7. Figure 4.7 shows the cost functions of two query plans that

join the same two tables. The amount of data that needs to be joined depends linearly on the

selectivity of one predicate; all cost functions therefore depend on this parameter. Plan 1 uses

a single-node join while plan 2 uses a parallel join involving multiple nodes. Plan 1 executes

faster than plan 2 for small amounts of input data since no data needs to be shuffled around

in the network (assuming that all required input data resides initially on one node). Plan 2

executes faster for larger amounts of input data due to parallelization. The monetary fees of

plan 2 are however always higher than the fees for plan 1, since the fees are proportional to

the total work (summing up over different nodes) and the total amount of work increases by

parallelization.

Assume that plan 1 was generated before plan 2. The RR of plan 2 directly after its creation is the

entire parameter space [0,1]. Plan 2 is pruned with all previously generated plans for joining

the same tables, this is only plan 1 in our example. Plan 1 is preferable over plan 2 according

to execution time and monetary fees at the same time as long as the selectivity is smaller than

0.25. The RR of plan 2 is therefore reduced by the interval [0,0.25] such that plan 2 remains

relevant for the interval [0.25,1]. Note that this example uses only linear cost functions that

depend on only one parameter while RRPA can work with arbitrary cost functions that depend

on an arbitrary number of parameters.
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Algorithm 7 does not specify how elementary operations such as adding cost functions or

intersecting relevance regions are implemented. The best way of implementing those oper-

ations depends on the considered class of cost functions (which also implicitly determines

the class of RR shapes that one needs to consider). It is therefore impossible to specify an

implementation for the generic case. For the same reason it is not possible to analyze the

time complexity of RRPA. We will however present a specialized version of RRPA for PWL cost

functions in Section 4.6 and analyze its complexity.

4.5.2 Proof of Completeness

We prove that RRPA generates complete PPSs for arbitrary input queries. We make the

common assumption that the Principle of Optimality (POO) [60] holds for each cost metric:

replacing a sub-plan pS within a query plan p by an alternative sub-plan p ′
S that has better

or equivalent cost than pS for a specific parameter vector x and according to a specific cost

metric m, can only lead to a plan whose cost according to m is better than or equivalent to the

one of p for x. The POO restricts the cost function of a plan with regards to the cost functions

of its sub-plans but it does not restrict the shapes of cost functions in general.

The proof that RRPA generates PPSs is an induction over the number of tables to join. The

following lemma will be used for the inductive step.

Lemma 10. If RRPA generates PPSs and corresponding RMs for all queries that join up to N

tables then it also generates PPSs and corresponding RMs for queries that join up to N +1 tables.
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Proof. Let Q be a query joining N +1 tables (|Q| = N +1), vector x ⊆X an arbitrary parameter

vector, and p an arbitrary plan for Q. Plan p has two sub-plans, p1 and p2, that join at most

N tables each. Therefore, RRPA generates a plan p∗
1 that produces the same result as p1 and

dominates p1 for x. Additionally, x is included in the RR of p∗
1 . RRPA also generates a plan

p∗
2 with the analogous properties relative to p2. The plans p∗

1 and p∗
2 can be combined into a

plan p∗ that produces the same result as p and dominates p for x (due to the POO).

RRPA will generate p∗ and initialize its RR with the full parameter space. Plan p∗ is only

pruned once its RR becomes empty during the pairwise comparisons with other plans. This

can only happen, if RRPA keeps another plan that dominates p∗ for x and x will be included

in that plan’s RR. RRPA generates a PPS for query Q and the corresponding RM since p and x

were chosen arbitrarily.

The following theorem is the main result of this subsection.

Theorem 16. RRPA generates PPSs for arbitrary MPQ problem instances.

Sketch. The proof is an induction over the number of tables to join. Under the assumption

that RRPA generates PPSs and corresponding RMs for single tables (the induction start), it

also generates PPSs and corresponding RMs for arbitrary table sets according to Lemma 10

(the induction step). RRPA considers all possible plans for each base table and only discards

plans that are dominated in the entire parameter space. This proves the induction start.

4.6 Algorithm for Piecewise-Linear Cost Functions

RRPA presented in the last section is generic since it can deal with arbitrary cost functions.

The pseudo-code of RRPA (Algorithm 7) left certain questions open such as how to represent

RRs and how to efficiently intersect and reduce them; the answers to those questions depend

on the considered class of cost functions. In this section, we present a specialized version

of RRPA for PWL cost functions: PWL-RRPA. We propose data structures to represent cost

functions and RRs in Section 4.6.1 and show how elementary operations can be efficiently

implemented on them in Section 4.6.2. We show in Section 4.6.3 how the representation

of parameter space regions can be simplified. In Section 4.6.4, we analyze the complexity

of PWL-RRPA. Note that PWL-RRPA guarantees to generate PPSs for arbitrary PWL-MPQ

problem instances as it is a specialization of RRPA.

4.6.1 Data Structures

Expressions of the form Rq (p) designate in Algorithm 7 the RR of a plan p joining a table set

q . Figure 4.8 describes the internal representation of RRs as entity-relationship diagram. A RR

is represented by a set of convex polytopes, called the cutouts, such that a parameter space
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vector is contained in a RR if it is not contained in any of the cutouts. The following theorem

justifies this representation.

Theorem 17. Any relevance region that occurs during the execution of PWL-RRPA can be

represented as complement of a set of convex polytopes.

Proof. The RR of a new plan is the entire parameter space and can therefore be represented

as the complement of an empty set. After initialization, the RR can get reduced several

times by regions in which a plan is dominated by another. When comparing two plans with

PWL cost functions, the parameter space can be partitioned into linear regions according to

Theorem 14. The region in which one plan dominates another within a linear region forms

a convex polytope according to Theorem 15. Therefore, the RR can still be represented as

complement of convex polytopes after reduction.

The cost function of a plan p is represented by the expression c(p) in Algorithm 7. Figure 4.9

shows the internal representation of cost functions as entity-rela- tionship diagram. A multi-

objective PWL cost function is composed out of one single-objective PWL cost function per

cost metric. The PWL cost function is linear within parameter space regions that form convex

polytopes. Each PWL function is therefore represented as a set of linear functions; each linear

function is characterized by the parameter space region to which it applies (attribute r eg in

Figure 4.9) and a weight vector (attribute w in Figure 4.9) with one weight per parameter to-

gether with the scalar base cost (b in Figure 4.9) that define the linear function. The parameter

space regions of the linear pieces must not overlap; then the PWL function can be evaluated

for a specific parameter vector x by identifying the unique piece whose region contains x and

evaluating the formula b +wT ·x to obtain the cost value. A multi-objective PWL function is

evaluated by evaluating all its components according to the aforementioned method.
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PWL cost functions can approximate the real cost functions of single scan and join operations

up to an arbitrary precision [73]. The accumulated cost of an entire query plan (using standard

accumulation function such as minimum, maximum, and weighted sum) can therefore be

represented as PWL function again; this fact has been used by prior PQ algorithms [73].

Generalizing this reasoning to the multi-objective case is trivial. Therefore, the representation

proposed in Figure 4.9 covers each cost function that occurs during the execution of PWL-
RRPA (assuming that the cost of single operations is approximated by PWL functions).

4.6.2 Implementation of Elementary Operations

PWL-RRPA performs two operations on RRs: it reduces the RR of a plan by the region in

which it is dominated by another (e.g., Algorithm 7, Line 39) and it checks whether a RR is

empty (Algorithm 7, Line 41). Algorithm 8 shows pseudo-code for both operations. The field

specifier .cutout s refers to Figure 4.8 and denotes the set of cutouts for a variable representing

a RR. Convex polytopes are subtracted from a RR by adding them as cutouts, as illustrated in

Figure 4.10.

Function ISEMPTY is based on the following theorem.

Theorem 18. A relevance region is empty iff the union of its cutouts forms a convex polytope

that covers the entire parameter space.

Proof. Let Ci ⊆X be the set of cutouts. The RR is empty iff ∀x ∈X∃i : x ∈Ci . This is the case iff

X⊆∪i Ci which is equivalent to X=∪i Ci since all cutouts are contained within the parameter

space X. As X forms a convex polytope according to the definition of the PWL-MPQ problem

(see Section 4.2), the union of the cutouts of an empty RR is a convex polytope.

The union of the cutouts may not be convex and may not form a polytope. Checking whether a

region of arbitrary shape (the union of the cutouts) contains the parameter space is inefficient.

It is therefore crucial to note that the containment check is only necessary in the special case

that the union of cutouts forms a convex polytope. The algorithm by Bemporad et al. [22]

checks whether a union of convex polytopes is a convex polytope again and constructs the
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corresponding polytope in that case. Checking containment between two convex polytopes is

a standard problem [80].

PWL-RRPA performs two operations on cost functions: It calculates the cost function of a

new plan by accumulating the cost of its sub-plans (Algorithm 7, Line 26) and—given two cost

functions—it calculates the region in which one dominates the other (e.g, Algorithm 7, Line 39).

Algorithm 9 shows pseudo-code for both operations. The comps relationship (see Figure 4.9)

associates a multi-objective cost function with one single-objective function for each cost

metric. We treat the comps relationship as an array and refer to the single-objective cost

function for metric m by the notation .[m]. The function ACCUMULATECOST accumulates the

cost of a new plan out of the cost of its sub-plans. It iterates over all cost metrics and calculates

the cost function for each metric separately. For each metric, it partitions the parameter

space into regions in which both sub-plans have linear cost functions. Each nonempty linear

region becomes a piece in the cost function of the new plan. The weight vector of the new

piece corresponds to the component-wise sum of the weight vectors of the two sub-plans

and the join cost vector (denoted by o.w in the pseudo-code) in the corresponding parameter

space region1; Figure 4.11 illustrates this step for a two-dimensional parameter space with

parameters σ1 and σ2, the two-dimensional weight vectors are shown at the interior of their

linear regions. The base cost of the new piece is the sum over the join base cost (o.b) and the

base costs of the sub-plans. Cost is therefore accumulated by adding the cost of the sub-plans.

The function trivially generalizes to scenarios where cost is accumulated as weighted sum,

minimum, or maximum of two cost functions.

Function DOM returns a set of convex polytopes representing the region in which plan p1

dominates plan p2. A plan dominates another in regions in which it has better or equivalent

cost according to each cost metric. Function DOM initially calculates for each cost metric m

the set DomPol y sm of convex polytopes in the parameter space in which p1 is better than or

equivalent to p2 according to m. In a second step, the function intersects the polytope sets

1To simplify the pseudo-code, we made the strong assumption that the cost function of the final join is always
linear in parameter space regions in which the cost functions of the two sub-plans are linear. This is not true
in general but the code can easily be generalized by first accumulating the cost of the sub-plans, and then
accumulating the resulting cost and the join cost in a second step.
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associated with specific cost metrics to obtain the region in which p1 is better or equivalent

according to all metrics.

4.6.3 Simplifying Parameter Space Regions

It is crucial to keep the representation of parameter space regions as simple as possible. For

convex polytopes, this means that we want to represent them using as few constraints as

possible. For RRs, it means that we want to represent them using the smallest possible number

of cutouts. Our algorithm regularly tries to simplify the representation of parameter space

regions. We found simplification steps to be indispensable for efficient optimization: opti-

mization time decreases by two orders of magnitude when implementing the simplifications

that are described in the following.

Algorithm 10 shows pseudo-code for the methods that we use to simplify parameter space

regions. Convex polytopes are the basic components of all shapes that we represent. A convex

polytope is described by a set of linear constraints. We can construct polytopes step by

step by adding one constraint after the other one. Function ADDCONSTRAINTSIMP can be

used to construct polytopes step by step. At each invocation, this function adds a constraint

and tries to simplify the representation by removing redundant constraints. The auxiliary

function CANREMOVE is used to verify whether a specific constraint can be removed. This

function obtains as input a polytope, pol y , and a constraint of that polytope, C . We use the

notation pol y.constr to access the constraints that define a polytope. Function CANREMOVE

compares the input polytope against a new polytope that is derived from the input polytope

by removing the input constraint. If the new polytope is contained within the input polytope

then removing the constraint did not change the input polytope. In that case, the constraint

is redundant and can be removed without changing the polytope. Note that this method of

identifying redundant constraints is more powerful than testing whether the new constraint is

implied by a single constraint. A constraint can be implied by a group of constraints but not

by a single constraint. Our method allows to detect those cases as well.

Function ADDCONSTRAINTSIMP obtains as input a polytope pol y and a new constraint newC

to add to the polytope. The function first determines whether the new constraint to add is

redundant. If this is the case, then the input polytope is not changed. If the new constraint is

not redundant then it is inserted. In addition, we verify whether some of the old constraints

become redundant due to the new constraint. For that purpose, we iterate over the old

constraints and remove redundant ones.

We can construct RRs step by step by adding cutouts. Function SUBTRACTPOLYSIMP adds

one new cutout and simplifies the region representation. We simplify RRs by discarding

redundant cutouts. A cutout is redundant if it is covered by another cutout of the same region.

Function SUBTRACTPOLYSIMP obtains as input a RR r r and a new cutout newCut . It first

verifies whether the new cut is covered by one of the old cutouts. While we compare a new

constraint against all old constraints together in case of convex polytopes, we only compare
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pairs of cutouts. The reason is that the union of cutouts is not necessarily a convex polytope.

Therefore we must restrict ourselves to pairwise comparisons between cutouts. If the new

cutout is not covered by one of the old cutouts then the new cutout is added. In that case, we

verify whether some of the old cutouts are covered by the new cutout. All covered cutouts are

removed to simplify the region representation.

4.6.4 Complexity Analysis

The complexity of PQ, MQ, and MPQ algorithms depends heavily on the number of plans that

are stored per table set. Prior work analyzing the complexity of PQ and MQ algorithms often

considers the number of plans as random variable and derives upper bounds on its expected

value [60, 59]. We adopt the same approach for analyzing the complexity of PWL-RRPA. We

focus on the case of linear cost functions; the analysis can easily be generalized to PWL cost

functions for a given number of pieces. Let nX be the number of parameters. The linear cost

function of a plan p can be described by a set of real-valued weights w p
m,i ∈R for m ∈M and i ∈

{0, . . . ,nX }. The cost of p according to metric m is given by the expression w p
m,0 +

∑
1≤i w p

m,i xi

where xi designates the value of the i -th parameter. We say that a plan p1 dominates a plan

p2 parameter value independently (p.v.i.) if w p1

m,i ≤ w p2

m,i for each metric m and for each

i ∈ {0, . . . ,nX }. If p1 dominates p2 p.v.i. then p1 dominates p2 (according to the definition in

Section 4.2) for all possible (positive) parameter values. Given a concrete parameter space,

a plan p1 dominating another plan p2 p.v.i. is a sufficient (but not a necessary) condition

for p1 dominating p2 in the entire parameter space. We now derive an upper bound on the

expected number of Pareto plans assuming that plan cost weights are chosen randomly; we

assume that weights of different plans and different weights for the same plan are chosen

independently. All those assumptions are common in the complexity analysis of PQ and MQ

algorithms [60, 59]. By nM = |M|, we designate the number of cost metrics.

Theorem 19. The expected number of Pareto plans per table set is upper-bounded by 2((nX +1)·nM ).

Sketch. The cost function of a plan is described by (nX +1) ·nM cost weights. Hence, a cost

function can be thought of as a point in (nX +1) ·nM -dimensional space. Ganguly et al. [60]

derive an upper bound of 2l on the size of the cover set when choosing an unspecified number

of points in l -dimensional space (see Theorem 3 in their publication). Setting l = (nX +1) ·nM ,

we can use that result to obtain an upper bound on the number of plans that are not dominated

p.v.i. by any other plan. This is an upper bound on the number of plans that PWL-RRPA is

expected to retain for any given table set after pruning (the bound is pessimistic since a plan

that is not dominated p.v.i. may still be dominated in the entire concrete parameter space).

The upper bound derived in Theorem 19 is consistent with prior results in the areas of PQ and

MQ: the upper bound of 2nM on the expected number of plans derived for the case of nM cost

metrics and no parameters (MQ) [60] corresponds to a specialization of our result. Our bound

grows exponentially in the number of parameters which is in line with prior results on PQ [74]
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(tighter bounds require additional assumptions [59]). We denote our bound on the number of

plans per table set by nP in the following, the number of scan and join operators by nO = |O|,
and the number of tables by nQ = |Q|. The function lp(a,b) represents the time for solving a

linear program with matrix dimensions a ×b. An upper bound on the number of plans that

PWL-RRPA generates per table set is given by nG = 2nQ n2
P nO .

Lemma 11. Function ISEMPTY has time complexity

O(nnG
M lp(nM nG ,nX )).

Proof. A cutout is a region in which one plan dominates another; a cutout is therefore defined

by nM linear constraints. Comparing one plan to another one during pruning adds at most

one cutout to its RR. The total number of cutouts per RR is therefore bounded by nG . The time

complexity of ISEMPTY is dominated by the time for checking whether the union of polytopes

is convex; Bemporad et al. [22] provide complexity results for their algorithm, we use them

with nG as bound on the number of polytopes and nM as bound on the number of constraints

per polytope.

We denote the time complexity of ISEMPTY by Temp .

Theorem 20. PWL-RRPA has time complexity

O(3nQ n3
P nOTemp ).

Proof. The time for emptiness checks dominates. Each newly generated plan is compared

against O(nP ) alternative plans which requires O(nP ) emptiness checks. PWL-RRPA iterates

over all subsets of Q. For a subset q ⊆ Q containing i = |q| tables, PWL-RRPA generates

O(2i n2
P nO) plans. Using

∑nQ

i=1

(nQ

i

)
2i = 3nQ yields the total complexity.

4.7 Experimental Evaluation

We experimentally evaluate PWL-RRPA in multiple scenarios. We first describe the experi-

mental setup, then present the results, and finally discuss them.

Experimental Setup. We consider three scenarios. The first one is a Cloud scenario in which

two cost metrics, execution time and monetary fees, are relevant. A parallel hash join and

a single-node hash join are available. The parallel hash join requires to shuffle the input

data in the network. Parallelization therefore increases the total amount of work (which

is proportional to monetary cost) while it can decrease execution time in comparison to a

single-node join if the input relations are sufficiently large. This shows that a tradeoff exists

between execution time and monetary fees and a query plan that minimizes one does not

necessarily minimize the other. Base tables are associated with equality predicates whose

selectivites are represented by parameters; one parameter is required for each table with a

predicate. Indices are available for each column with a predicate. This makes an index seek
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preferable for low selectivity while a complete table scan is better for non-selective predicates;

as predicate selectivity is a parameter, plans must often be kept for both cases which makes

the benchmark even more challenging.

Our second scenario focuses on approximate query processing. This time we consider the two

cost metrics execution time and result precision. We assume that we can reduce execution

time by sampling the input tables instead of processing them entirely. Sampling has however

a negative impact on result precision. More precisely, we assume that we have for each base

table the choice between taking a large and a small sample. Choosing a small sample reduces

the amount of data that needs to be processed and therefore the execution time. We use a

simple precision model where precision is proportional to the fraction of tuples of the true

result (i.e., the result obtained without sampling) that we generate. This model is described

in more detail in Chapter 2. Parameters represent again the selectivity of predicates on base

tables. We consider two join operators: a hash join and a block-nested loop join. We do not

consider indices in the second scenario.

Our third scenario examines tradeoffs between the execution time of a plan and its buffer space

consumption. Execution time can often be reduced by dedicating additional buffer space to

the execution of a plan. In cases where multiple queries execute concurrently and share a

limited amount of memory, it is however crucial to find good tradeoffs between execution

time and memory consumption for each single plan. We assume that two join operators are

available, one of them consumes more buffer space but requires less time for sufficiently large

join operands. Parameters represent again the selectivity of predicates and we do not consider

indices.

We evaluate the performance of PWL-RRPA on randomly generated queries, using the gener-

ation method proposed by Steinbrunn [130] (and used recently in other publications [31]) to

choose table cardinalities and join predicates; we assume that unique values occupy up to

10% of a table column. We separately evaluate the performance for star queries and for chain

queries as the structure of the join graph is known to have significant impact on optimizer

performance [130]. PWL-RRPA considers the full search space of bushy query plans but

postpones Cartesian product joins as much as possible; this heuristic is commonly applied

in state-of-the-art optimizers such as the Postgres optimizer2. Standard formulas are used

to estimate join time, result precision, and buffer space consumption; monetary cost are

calculated according to the pricing system of Amazon EC23 and the properties of the simu-

lated cluster nodes such as main memory size correspond to the ones of the general purpose

medium instance in EC2. PWL-RRPA was implemented in Java 1.7, using Gurobi 5.64 as

linear program solver. All experiments were executed on a commodity iMac equipped with an

i5-3470S processor with 2.9 GhZ and 16 GB of RAM.

Experimental Results. The goal of the following experiments is to show how optimization

2http://www.postgresql.org/
3http://aws.amazon.com/de/ec2/
4http://www.gurobi.com/
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Figure 4.12 – Cloud scenario: optimization time, number of generated plans, and number of
solved linear programs

time depends on query characteristics such as the number of tables, the number of param-

eters, and the join graph structure. We present our results for the Cloud scenario first. We

experimented with up to 12 tables for one parameter and up to 10 tables for two parameters.

Figure 4.12 shows optimization time, the number of generated plans (including partial plans

and plans that were pruned during optimization), and the number of solved linear programs

(LPs). Each data point corresponds to the median of 25 randomly generated test cases. All

three metrics are clearly correlated and increase in the number of tables as well as in the num-

ber of parameters. The number of solved LPs is much higher than the number of generated

plans since operations such as comparing plans during pruning or checking emptiness of a

plan’s RR all require to solve several LPs. As in traditional query optimization, optimizing chain

queries is faster than optimizing star queries when avoiding Cartesian product joins [106].

Figure 4.13 shows our results for the second scenario (approximate processing). Here we

experiment only with up to ten tables in case of one parameter and with up to eight tables in

case of two parameters. Each data point represents the median of ten randomly generated

test cases. We used less test cases than in the last scenario in order to reduce computational

burden. The optimization times are generally higher than in the last scenario. This is explained

by the fact that more plans are generated (which means that more linear programs need to

be solved). We consider a search space of comparable size in both scenarios (we consider

the same join orders and the same number of scan and join operators). The increase in the
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Figure 4.13 – Approximate processing scenario: optimization time, number of generated plans,
and number of solved linear programs

number of generated plans is therefore due to the change of cost metrics. Execution time

and result precision are strongly anti-correlated cost metrics: decreasing the sample size has

always a positive impact on execution time but a negative impact on result precision (in the

Cloud scenario, choosing the parallel join over the single-node join decreases execution time

only if the input set is sufficiently large). Having strongly anti-correlated cost metrics generally

tends to increase the number of optimal cost tradeoffs [120]. In our case, this means that

the number of plans realizing optimal cost tradeoffs increases and so does the number of

generated plans.

Figure 4.14 shows the experimental results for our third scenario. The general tendencies are

similar to the previous scenarios: optimization times are higher for star queries and grow

in the number of tables and parameters. Comparing optimization times between the three

scenarios, we find that optimization times in the bufferspace scenario are situated in between

the corresponding values of the previous scenarios. This can again be explained by the cost

metrics. We first compare to the Cloud computing scenario. Parallelizing a join is only helpful

if the operands are relatively large. In contrast to that, dedicating additional buffer space

can speed up joins even if the input operands are of medium size (while it does not help for

operands that are small enough to fit entirely into the originally dedicated join buffer). This

explains that we obtain more optimal cost tradeoffs in the bufferspace scenario. On the other

side, sampling can reduce execution time even for relatively small operands. For that reason,
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Figure 4.14 – Bufferspace-time tradeoff scenario: optimization time, number of generated
plans, and number of solved linear programs

Table 4.2 – Average number of polytopes per cost function in different scenarios

Chain Star
Scenario 1 Par. 2 Par. 1 Par. 2 Par.

Cloud 2.6 3.3 2.7 3.2
Approximation 4.0 4.6 4.3 5.0
Bufferspace 3.2 3.3 3.1 3.9

the approximate processing scenario is the most difficult one.

Another noticeable difference between the three scenarios is the extent up to which adding

a second parameter increases optimization time. While optimization time increases in all

scenarios, the first scenario seems to be most sensitive to the addition of a second parame-

ter. This is explained by the fact that we consider indices only in the first scenario. Adding

parameters generally increases the number of optimal plans since different join orders can

be optimal for different parameter values. But in the first scenario, adding parameters also

increases the number of optimal scan operator selections: while an index scan is preferable

for low selectivity values, a full scan is preferable for predicates with high selectivity.

We finally compare different scenarios in terms of the complexity of their cost functions. We

measure that complexity as the average number of polytopes that is used to represent a cost
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function in one cost metric. Table 4.2 shows the results. The complexity of the cost functions

correlates with optimization time. The approximate processing scenario has generally the

most complicated cost functions. The Cloud scenario tends to have the simplest cost functions

while their complexity increases the most by adding a second parameter.

Discussion. MPQ is a generalization of MQ and PQ and computationally expensive. MPQ

happens however before run time and it pays off as it avoids run time query optimization

altogether. Optimization times depend on the considered cost metrics and increase for anti-

correlated cost metrics. Optimization time increases in the number of considered parameters.

The growth depends on the scenario again. In the common case that parameters describe

selectivity values, having operator selections that are particularly sensitive to input sizes leads

to a more significant growth.

4.8 Conclusion

We introduced MPQ, a novel variant of query optimization that allows to consider multiple

cost metrics and parameters. We presented a first algorithm for this problem and evaluated

it in multiple scenarios. Our algorithm is exhaustive and guarantees to generate all relevant

query plans. MPQ is a computationally expensive optimization problem. We plan to develop

approximation algorithms for this problem in future work.
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1: // Find a Pareto plan set for query Q
2: function GENERICMPQ(Q)
3: // Initialize plan sets for base tables
4: for 〈q, p〉 : q ∈Q, p is plan for q do
5: PRUNE(P , q, p)
6: end for
7: // Consider table sets of increasing cardinality
8: for k ∈ 2..|Q| do
9: // Iterate over table sets with given cardinality

10: for q ⊆Q : |q| = k do
11: P q ←GENERATEPARETOPLANSET(q)
12: end for
13: end for
14: return P Q

15: end function

16: // Generate Pareto plan set for joining q
17: function GENERATEPARETOPLANSET(q)
18: P ←�
19: // For all possible splits of table set q
20: for q1, q2 ⊂ q : q1∪̇q2 = q do
21: // For all sub-plans and operators
22: for p1 ∈P q1 , p2 ∈P q2 ,o ∈O do
23: // Construct new plan out of sub-plans
24: pN ←COMBINE(p1, p2,o)
25: // Accumulate cost of sub-plans
26: c(pN ) =ACCUMULATECOST(o, p1, p2)
27: // Prune with new plan
28: PRUNE(P , q, pN )
29: end for
30: end for
31: return P

32: end function

33: // Prune plan set P for query q with new plan pN
34: procedure PRUNE(P , q, pN )
35: // Check whether the new plan is relevant
36: Rq (pN ) ←X

37: for p ∈P q do
38: // Update relevance region of new plan
39: Rq (pN ) ←Rq (pN )\DOM(p, pN )
40: // Check if relevance region became empty
41: if Rq (pN ) =� then
42: return // Do not insert new plan
43: end if
44: end for
45: // If we arrive here, the new plan will be inserted
46: // Discard irrelevant old plans
47: for p ∈P q do
48: // Update relevance region of old plan
49: Rq (p) ←Rq (p)\DOM(pN , p)
50: // Check if relevance region became empty
51: if Rq (p) =� then
52: P q ←P q \ {p} // Discard old plan
53: end if
54: end for
55: // Insert new plan into Pareto plan set
56: P q ←P q ∪ {pN }
57: end procedure

Algorithm 7 – The relevance region pruning algorithm for generic multi-objective parametric
query optimization96
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1: // Input: relevance region r r , convex polytopes pol y s
2: // Effect: region r r is reduced by pol y s
3: procedure SUBTRACTPOLYS(r r, pol y s)
4: // Add polytopes to cutouts
5: r r.cutout s ← r r.cutout ∪pol y s
6: end procedure

7: // Input: relevance region r r
8: // Output: true iff r r is empty
9: function ISEMPTY(r r )

10: // Check whether union of cutouts is convex
11: if (∪C∈r r.cutout sC ) is convex then
12: // Calculate convex polytope covered by cutouts
13: CutPol y ← polytope (∪C∈r r.cutout sC )
14: // Check if cutouts cover whole parameter space
15: if X⊆CutPol y then
16: // Relevance region is empty
17: return true
18: end if
19: end if
20: // Cutouts do not cover whole parameter space
21: return false
22: end function

Algorithm 8 – Elementary operations on relevance regions
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1: // Input: a join operator o and two plans p1 and p2
2: // Output: accumulated cost of executing p1 and p2
3: // and joining their results using o
4: function ACCUMULATECOST(o, p1, p2)
5: // Create new cost function
6: acCost ← new multi-obj. PWL cost func.
7: // Iterate over all cost metrics
8: for m ∈M do
9: // Initialize pieces of new cost function

10: newPcs ←�
11: // Iterate over cost function pieces of sub-plans
12: for f p1 ∈ c(p1).comps[m].pi eces do
13: for f p2 ∈ c(p2).comps[m].pi eces do
14: // Intersect regions of the two pieces
15: r ← f p1.r eg ∩ f p2.r eg
16: // Check if intersection is empty
17: if r �= � then
18: // Add weight vectors
19: w ← f p1.w+ f p2.w+o.w
20: // Add base costs
21: b ← f p1.b + f p2.b +o.b
22: // Construct new piece
23: newPc ← new linear cost func. with

base cost b, weight w, and region r
24: // Add new piece
25: newPcs ← newPcs ∪ {newPc}
26: end if
27: end for
28: end for
29: acCost .comps[m].pi eces ← newPcs
30: end for
31: return acCost
32: end function

33: // Input: two plans p1 and p2
34: // Output: a set of convex polytopes in the
35: // parameter space where p1 dominates p2
36: function DOM(p1, p2)
37: // Calculate p1’s dominant region for each metric
38: for m ∈M do
39: // Initialize set of polytopes
40: pol y sm ←�
41: // For all pairs of cost function pieces
42: for f p1 ∈ c(p1).comps[m].pi eces do
43: for f p2 ∈ c(p2).comps[m].pi eces do
44: // Calculate intersection of regions
45: r ← f p1.r eg ∩ f p2.r eg
46: // Calculate part where p1 dominates p2
47: r Dom ← solutions to linear equations

( f p1.w− f p2.w)T x ≤ f p2.b − f p1.b, x ∈ r
48: // Add polytope if not empty
49: if r Dom �= � then
50: pol y sm ← pol y sm ∪ {r Dom}
51: end if
52: end for
53: end for
54: end for
55: // Combine results from different metrics
56: return {∩m∈Mpm |pm ∈ pol y sm }
57: end function

Algorithm 9 – Elementary operations on cost functions
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1: // Input: polytope pol y , linear constraint C
2: // Output: true iff removing C does not change pol y
3: function CANREMOVE(pol y,C )
4: newPol y ← copy of pol y
5: newPol y.constr ← newPol y.constr \ {C }
6: return newPol y ⊆ pol y
7: end function
8: // Input: polytope pol y , linear constraint newC
9: // Effect: add constraint and simplify polytope

10: procedure ADDCONSTRAINTSIMP(pol y,newC )
11: // Verify whether new constraint is redundant
12: pol y.constr ← pol y.constr \ {newC }
13: if CANREMOVE(pol y,newC ) then
14: // New constraint is redundant: remove it
15: pol y.constr ← pol y.constr \ {newC }
16: return
17: end if
18: // Remove old constraints that are implied by newC
19: for all ol dC ∈ pol y.constr \ {newC } do
20: if CANREMOVE(pol y,ol dC ) then
21: pol y ← pol y \ {ol dC }
22: end if
23: end for
24: end procedure

25: // Input: relevance region r r , convex polytope newCut
26: // Effect: reduce r r by newCut and simplify r r
27: procedure SUBTRACTPOLYSIMP(r r,newCut )
28: // Verify whether new cutout is redundant
29: for all ol dCut ∈ r r.cutout s do
30: if newCut ⊆ ol dCut then
31: // No need to add the new cutout
32: return
33: end if
34: end for
35: // The new cut is not redundant and will be added
36: // Remove old cutouts that are covered by newCut
37: for all ol dCut ∈ r r.cutout s do
38: if ol dCut ⊆ newCut then
39: r r.cutout s ← r r.cutout s \ {ol dCut }
40: end if
41: end for
42: // Add new cutout
43: r r.cutout s ← r r.cutout s ∪ {newCut }
44: end procedure

Algorithm 10 – Methods for simplifying the representations of parameter space regions
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The approaches presented in the last chapters work well for medium-sized queries. We need

however different algorithms in order to deal with large queries. In this chapter, we will see a

randomized algorithm that is able to handle queries with hundreds of joins. This algorithm

is the first randomized algorithm for multi-objective query optimization. It combines algo-

rithmic ideas that are typically used in different research branches in query optimization.

The algorithm is tailored to the multi-objective query optimization problem. We will see

that it outperforms randomized general-purpose algorithms for multi-objective optimization

as well as traditional algorithms for query optimization significantly. We will also see that

the randomized algorithm handles query sizes that cannot be treated anymore using the

approximation schemes from the previous chapters.

5.1 Introduction

So far, exhaustive algorithms [60, 139] and several approximation schemes (described in the

previous chapters) have been proposed to solve the generic multi-objective query optimization

problem. The exhaustive algorithms formally guarantee to find the full Pareto frontier while

the approximation schemes formally guarantee to approximate the Pareto frontier with a

certain minimum precision. Those quality guarantees come at a cost in terms of optimizer

performance: all existing algorithms for multi-objective query optimization have at least

exponential time complexity in the number of tables (potentially higher depending on the

number of Pareto plans). This means that they cannot be applied for queries with elevated

number of tables.

For the traditional query optimization problem with one cost metric, there is a rich body of

work proposing heuristics and randomized algorithms [135, 131, 76, 23]. Those algorithms

offer no formal quality guarantees on how far the generated plans are from the theoretical

optimum but often generate good plans in practice. They have polynomial complexity in the

number of tables and can be applied to much larger queries than exhaustive approaches. Up

to date, corresponding approaches for multi-objective query optimization are missing entirely
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(and we will show later that algorithms for traditional query optimization perform poorly for

the multi-objective case). In this chapter we close that gap and present the first randomized

algorithm for multi-objective query optimization with polynomial time complexity.

Existing algorithms for single- or multi-objective query optimization typically exploit only

one out of two fundamental insights about the query optimization problem: Dynamic pro-

gramming based algorithms [116, 91, 137, 138, 139] exploit its decomposability, i.e. the fact

that a query optimization problem can be split into smaller sub-problems such that optimal

solutions (query plans) for the sub-problems can be combined into optimal solutions for the

original problem. Randomized algorithms such as iterative improvement, simulated anneal-

ing, or two-phase optimization exploit a certain near-convexity (also called well shape [75]) of

the standard cost functions when using suitable neighboring relationships in the query plan

space. There is no reason why both insights shouldn’t be exploited within the same algorithm

and we do so: our algorithm improves plans using a multi-objective generalization of hill

climbing, thereby exploiting near-convexity. It also maintains a plan cache storing partial

Pareto-optimal plans generating potentially useful intermediate results. Newly generated

plans are decomposed and dominated sub-plans are replaced by partial plans from the cache.

Therefore we exploit decomposability as well.

Our algorithm is iterative and performs the following steps in each iteration. First, a query

plan is randomly generated. Second, the plan is improved using local search until a local

optimum is reached. Third, based on the locally optimal plan we restrict the plan space to

plans that are similar in certain aspects (we provide details in the following paragraphs). We

approximate the Pareto plan set within that restricted plan space. For that approximation, we

might re-use partial plans that were generated in prior iterations if they realize a better cost

tradeoff than the corresponding sub-plans of the locally optimal plan.

For the second step, we use a multi-objective version of hill climbing that exploits several

properties of the query optimization problem to reduce time complexity significantly com-

pared to a naive version. First, we exploit the multi-objective principle of optimality for query

optimization [60] stating that replacing a sub-plan by another sub-plan whose cost is not

Pareto-optimal cannot improve the cost of the entire plan. This allows to quickly discard local

mutations that will not improve the overall plan. Second, we exploit that query plans can be

recursively decomposed into sub-plans for which local search can be applied independently.

This allows to apply many beneficial mutations simultaneously in different parts of the query

tree and therefore reduces the number of complete query plans that need to be generated

on the path from the random plan to a local optimum. Those optimizations reduce the time

complexity comparing with a naive version and we found them to be critical to achieve good

optimizer performance.

For the third step, we restrict the plan space to plans that generate a similar set of intermediate

results as the locally optimal plan that results from the second step. We consider plans that

use the same join order as the locally optimal plan but different operator combinations. Also,
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we consider the possibility to replace sub-plans by plans from a cache (those plans can use a

different join order than the locally optimal plan). The cache stores non-dominated partial

plans for each potentially useful intermediate result we encountered during optimization

so far. Finding the full Pareto plan set even within the restricted plan space may lead to

prohibitive computational cost (the number of Pareto plans within the restricted space may

grow exponentially in the number of query tables). We therefore approximate the Pareto

plan set by a subset of plans (whose size grows polynomially in the number of query tables)

realizing representative cost tradeoffs. The precision of that approximation is slowly refined

over the iterations. This enables our algorithm to quickly find a coarse-grained approximation

of the full Pareto plan set for the given query; at the same time, as we refine precision, the

approximation converges to the real Pareto set as iterations continue.

The insights underlying the design of our algorithm are the following: on the one hand, we

observe that the same join order can often realize many Pareto-optimal cost tradeoffs when

using different operator configurations. This is why we approximate in the third step a Pareto

frontier based on a restricted set of join orders. On the other hand, the full Pareto frontier

cannot be covered using only one join order. This is why we generate new plans and join

orders in each iteration.

We analyze our randomized algorithm experimentally, using different cost metrics, query

graph structures, and query sizes. We compare against dynamic programming based ap-

proximation schemes that were previously proposed for multi-objective query optimization.

While approximation schemes are preferable for small queries, we show that only randomized

algorithms can handle larger query sizes. We evaluate our algorithm with queries joining up

to 100 tables considering an unconstrained bushy plan space. Even in case of one cost metric,

dynamic programming based approaches do not scale to such search space sizes. We also

compare our algorithm against other randomized algorithms: the non-dominated sort genetic

algorithm 2 (NSGA-II) [49] is a very popular multi-objective optimization algorithm for the

number of plan cost metrics that we consider in our experiments. Genetic algorithms have

been very successful for traditional query optimization [23] so a comparison against NSGA-II

(using the combination and mutation operators proposed for traditional query optimization)

seems interesting. We also compare our algorithm against other multi-objective generaliza-

tions of well known randomized algorithms for traditional query optimization such as iterative

improvement, simulated annealing, and two-phase optimization [131]. Our randomized

algorithm outperforms all competitors significantly, showing that the combination of local

search with plan decomposition is powerful.

We analyze the time complexity of our algorithm and show that each iteration has expected

polynomial complexity. Our analysis includes in particular a study of the expected path length

from a random plan to the nearest local optimum. Based on a simple statistical model of plan

cost distributions, we can show that the expected path length grows at most linearly in the

number of query tables.
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In summary, the original scientific contributions of this chapter are the following:

• We present the first polynomial time algorithm for multi-objective query optimization.

A randomized algorithm that exploits several properties of the query optimization

problem.

• We analyze that algorithm formally, showing that each iteration (resulting in at least one

query plan) has polynomial complexity in the number of query tables.

• We evaluate our algorithm experimentally against previously published approximation

schemes for multi-objective query optimization and several randomized algorithms.

We show that our algorithm outperforms the other algorithms over a wide range of

scenarios.

The remainder of this chapter is organized as follows. We give an overview of related work in

Section 5.2. In Section 5.3, we introduce the formal model used in pseudo-code and formal

analysis. We introduce the first randomized algorithm for multi-objective query optimization

in Section 5.4 and analyze its complexity in Section 5.5. In Section 5.6, we experimentally

evaluate our algorithm in comparison with several baselines. We see additional experimental

results in Section 5.7, showing that the results from Section 5.6 generalize over many scenarios.

5.2 Related Work

Most work in query optimization treats the single-objective case, meaning that query plans

are compared according to only one cost metric (usually execution time) [23, 31, 116, 131, 135,

141]. This problem model is however often insufficient: in a cloud scenario, users might be

able to reduce query execution time when willing to pay more money for renting additional

resources from the cloud provider [88]. On systems that process multiple queries concurrently,

the tradeoff between the amount of dedicated system resources and query execution time

needs to be considered [137]. In those and other scenarios, query optimization becomes a

multi-objective optimization problem.

Query optimization algorithms that have been designed for the case of one cost metric cannot

be applied to the multi-objective case. They return only one optimal plan while the goal

in multi-objective query optimization is usually to find a set of Pareto-optimal plans [107,

139, 138]. This allows in particular to let users choose their preferred cost tradeoff out of

a visualization of the available tradeoffs (see Chapter 3). We will use several variations of

single-objective randomized query optimization algorithms as baselines for our experiments.

Note that mapping multi-objective optimization into a single-objective optimization problem

using a weighted sum over different cost metrics with varying weights will not yield the Pareto

frontier but at most a subset of it (the convex hull).

We have described multiple algorithms for multi-objective query optimization in the previous
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chapters. They are based on dynamic programming and have all exponential complexity

in the number of query tables. This means that they do not scale to large query sizes. In

traditional single-objective optimization, randomized algorithms and heuristics are used for

query sizes that cannot be handled by exhaustive approaches. No equivalent is currently

available for multi-objective query optimization. In this work we close that gap and propose

the first polynomial time heuristic for multi-objective query optimization.

One of the most popular randomized algorithms for single-objective query optimization is the

genetic algorithm [23]. Also, multi-objective genetic algorithm variants are very popular for

multi-objective optimization in general [42]. It seems therefore natural to use the crossover

and mutation operators that have been proposed for traditional query optimization within

a multi-objective genetic algorithm variant. We implemented a version of the widely used

non-dominated sort genetic algorithm II (NSGA-II) [49] for our experiments.

We focus on query optimization in the traditional sense, i.e. the search space is the set of

available join orders and the selection of scan and join operators. This distinguishes our work

for instance from work on multi-objective optimization of workflows [88, 126] which does not

consider alternative join orders. Prior work by Papadimitriou and Yannakakis [107] also aims

at optimizing operator selections for a fixed join order and addresses therefore a different

problem than us. We focus on generic multi-objective query optimization as in the previous

chapters and our algorithm is not bound to specific combinations of cost metrics or scenarios

such as precision-time [12] or energy-time tradeoffs [147].

5.3 Formal Model

Our notation is similar to the ones used in previous chapters. Nevertheless, we introduce

notation from scratch to make the current chapter self-contained.

A query q is modeled as a set of tables that need to be joined. This query model is simplistic but

often used in query optimization [135, 60, 137]; extending a query optimization algorithm that

optimizes queries represented as table sets to more complex query models is standard [116].

A query plan p for a query q specifies how the data described by the query can be generated

by a series of scan and join operations. The plan describes the join order and the operator

implementation used for each scan and join. We write SCANPLAN(q,op) to denote a plan scan-

ning the single table q (|q| = 1) using scan operator op. We write JOINPLAN(outer, i nner,op)

to denote a join plan that joins the results produced by an outer plan outer with the results

produced by an inner plan i nner using join operator op.

We denote by p.r el the set of tables joined by a plan p. It is SCANPLAN(q,op).r el = q and

JOINPLAN(po, pi ,op).r el = po.r el ∪pi .r el . For join plans we denote by p.outer the outer

plan and by p.i nner the inner plan. The property p.i s Joi n yields true for join plans (where

|p.r el | > 1) and false for scan plans (where |p.r el | = 1).
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We compare query plans according to their execution cost. We consider multiple cost metrics

that might for instance include monetary fees (in a cloud scenario [88]), energy consump-

tion [147], or various metrics of system resource consumption such as the number of used

cores or the amount of consumed buffer space [137] in addition to execution time. We consider

cost metrics in the following meaning that a lower value is preferable. It is straight forward to

transform a quality metric on query plans such as result precision [12] into a cost metric (e.g.,

result precision can be transformed into the precision loss cost metric as shown in Chapter 2).

Hence we study only cost metrics in the following without restriction of generality.

We denote by p.cost ∈ Rl the cost vector associated with a query plan. Each vector compo-

nent represents cost according to a different cost metric out of l cost metrics. We focus on

optimization and assume that cost models for all considered cost metrics are available. The

algorithms that we discuss in this chapter are generic and can be applied to a broad set of plan

cost metrics.

In the special case of one cost metric, we say that plan p1 is better than plan p2 if the cost of p1

is lower. Pareto-dominance is the generalization to multiple cost metrics. In case of multiple

cost metrics, we say that plan p1 dominates p2, written p1 � p2 if p1 has lower or equivalent

cost to p2 according to each considered cost metric. We say that p1 strictly dominates p2,

written p1 ≺ p2, if p1 � p2 and p1.cost �= p2.cost , meaning that p1 has lower or equivalent

cost than p2 according to each metric and lower cost in at least one metric. We apply the same

terms and notations to cost vectors in general, e.g. we write c1 � c2 for two cost vectors c1 and

c2 to express that there is no cost metric for which c1 contains a higher cost value than c2.

Considering a set P of alternative plans generating the same results, we call each plan p ∈ P

Pareto-optimal if there is no other plan p̃ ∈ P that strictly dominates p. For a given query, the

Pareto plan set is the set of plans for q that are Pareto-optimal within the set of all possible

query plans for q . The full Pareto plan set is often too large to be calculated in practice. This

is why we rather aim at approximating the Pareto plan set. The following definitions are

necessary to establish a measure of how well a given plan set approximates the real Pareto set.

A plan p1 approximately dominates a plan p2 with approximation factor α≥ 1, written p1 �α

p2, if p1.cost � α ·p2.cost . This means that the cost of p1 is not higher than the cost of p2

by more than factor α according to each cost metric. Considering a set P of plans, an α-

approximate Pareto plan set Pα ⊆ P is a subset of P such that ∀p ∈ P∃p̃ : p̃ � p, i.e. for each

plan p in the full set there is a plan in the subset that approximately dominates p. The Pareto

frontier (or approximate Pareto frontier) are the cost vectors of the plans in the Pareto set (or

approximate Pareto set).

The goal of multi-objective query optimization is to find α-approximate Pareto plan sets for a

given input query q . We compare different incremental optimization algorithms in terms of

the α values (i.e., how well the plan set generated by those algorithms approximates the real

Pareto set) that they produce after certain amounts of optimization time.
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1: // Returns approximate Pareto plan set for query q
2: function RANDOMMOQO(q)
3: // Initialize partial plan cache and iteration counter
4: P ←�
5: i ← 1
6: // Refine frontier approximation until timeout
7: while No Timeout do
8: // Generate random bushy query plan
9: pl an ←RANDOMPLAN(q)

10: // Improve plan via fast local search
11: optPl an ←PARETOCLIMB(pl an)
12: // Approximate Pareto frontier
13: P ←APPROXIMATEFRONTIERS(optPl an,P, i )
14: i ← i +1
15: end while
16: return P [q]
17: end function

Algorithm 11 – Main function.

5.4 Algorithm Description

We describe a randomized algorithm for multi-objective query optimization. Section 5.4.1 de-

scribes the main function, the following two subsections describe sub-functions. Section 5.4.2

describes a multi-objective hill climbing variant that executes multiple plan transformations

in one step for maximal efficiency. Section 5.4.3 describes how we generate a local Pareto

frontier approximation for a given join order, using non-dominated partial plans from a plan

cache and trying out different operator configurations.

5.4.1 Overview

Algorithm 11 is the main function of our optimization algorithm. The input is a query q and

the output a set of query plans that approximate the Pareto plan set for q .

Our algorithm is iterative and refines the approximation of the Pareto frontier in each iteration.

Each iteration consists of three principal steps: a random query plan is generated (local

variable pl an in the pseudo-code), it is improved via a multi-objective version of hill climbing,

and afterwards the improved plan (local variable optPl an) is used as base to generate a

local Pareto frontier approximation. For the latter step, a plan cache (local variable P in the

pseudo-code) is used that stores for each intermediate result (i.e., a subset s ⊆ q of joined

tables) that we encountered so far a set of non-dominated partial plans. For the locally optimal

plan resulting from hill climbing, we consider plans that can be obtained by varying the

operator configurations but not the join order. In addition, we consider replacing sub-plans

by non-dominated partial plans from the plan cache.
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Within that restricted plan space, we do not search for the entire Pareto frontier as its size can

be exponential in the number of query tables. Instead, we search for an approximation that

has guaranteed polynomial size in the number of query tables. The precision of those approxi-

mations is refined with increasing number of iterations: our goal is to obtain a coarse-grained

approximation of the entire Pareto frontier quickly so we start with a coarse approximation

precision to quickly explore a large number of join orders. In later iterations, the precision is

refined to allow to better exploit the set of join orders that was discovered so far. As the frontier

approximation precision depends on the iteration number, Function APPROXIMATEFRONTIERS

obtains the iteration counter i as input parameter in addition to the locally optimal plan and

the plan cache. All non-dominated partial plans generated during the frontier approximation

are inserted into the plan cache P and might be reused in following iterations.

After the timeout, the result plan set is contained in the plan cache and associated with table

set q , the entire query table set (we use the array notation P [q] to denote the set of cached

Pareto plans that join table set q). Note that we can easily use different termination conditions

than a timeout. In particular, in case of interactive query optimization where users choose an

execution plan based on a visualization of available cost tradeoffs (see Chapter 3), optimization

ends once the user selects a query plan for execution from the set of plans generated so far.

Our algorithm exploits two ideas that have been very successful in traditional query opti-

mization but are typically used in separate algorithms: our algorithm exploits a certain near-

convexity of typical plan cost functions [75] by using local search (function PARETOCLIMB)

to improve query plans. It exploits however at the same time that the query optimization

problem can be decomposed into sub-problems, meaning that Pareto-optimal plans joining

table subsets can be combined into Pareto-optimal plans joining larger table sets. It is based

on the insight that the same join order often allows to construct multiple Pareto-optimal cost

tradeoffs by varying operator implementations but takes into account at the same time that

not all optimal cost tradeoffs can be found considering only one join order. We describe the

two principal sub-functions of Algorithm 11, function PARETOCLIMB and function APPROXI-

MATEFRONTIERS, in more detail in the following subsections.

Note finally that the algorithm can easily be adapted to consider different join order spaces

(e.g., left-deep plans) by exchanging the random plan generation method and the set of

considered local transformations.

5.4.2 Pareto Climbing

Algorithm 12 shows the pseudo-code of function PARETOCLIMB (and of several auxiliary

functions) that is used by Algorithm 11 to improve query plans via local search. The input is a

query plan p to improve and the output is a locally optimal query plan that was reached from

the input plan using a series of local transformations.

Hill climbing was already used in traditional query optimization [135] but our hill climbing
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variants differ from the traditional versions in several aspects that are discussed in the fol-

lowing. A first obvious difference is that we consider multiple cost metrics on query plans

while traditional query optimization considers only execution time. In case of one cost metric,

hill climbing moves from one plan to a neighbor plan (i.e., a plan that can be reached via a

local transformation [131]) if the neighbor plan has lower cost than the first one. Our multi-

objective version moves from a first plan to a neighbor if the neighbor strictly dominates the

first one in the Pareto sense, i.e. the second plan has lower or equivalent cost according to all

metrics and lower cost according to at least one.

In principle there can be multiple neighbors that strictly dominate the start plan while different

neighbors do not necessarily dominate each other. In such cases, it cannot be determined

which neighbor is the best one to move to and all neighbors might be required for the full

Pareto frontier. In order to avoid a combinatorial explosion, we still chose to arbitrarily select

one neighbor that strictly dominates the start plan instead of opening different path branches

during the climb. The goal of function PARETOCLIMB within Algorithm 11 is to find one good

plan while function APPROXIMATEFRONTIERS (which is discussed in the next subsection) will

take care of exploring alternative cost tradeoffs.

Unlike most prior hill climbing variants used for traditional query optimization [135, 131],

we chose to exhaustively explore all neighbor plans in each step of the climb instead of

randomly sampling a subset of neighbors. We initially experimented with random sampling

of neighbor plans which led however to poor performance. We believe that this is due to the

fact that dominating neighbors become more and more sparse as the number of considered

cost metrics grows. Using the simple statistical model that we introduce in Section 5.5, the

probability of finding a dominating neighbor decreases exponentially in the number of cost

metrics. Furthermore, sampling introduces overhead and makes it harder if not impossible to

use the techniques for complexity reduction that we describe next.

Reducing the time complexity of local search as much as possible is crucial as function PARETO-

CLIMB is called in each iteration of Algorithm 11. We exploit properties of the multi-objective

query optimization problem in order to make our implementation of local search much more

efficient than a naive implementation. A naive hill climbing algorithm iterates the following

steps until a local optimum is reached: in each step, it traverses all nodes of the current query

plan tree and applies to each node a fixed set of local mutations. For each mutation and plan

node, a new complete neighbor plan is created and its cost is calculated. Based on that cost,

the next plan is selected among the neighbors. This naive approach has per step quadratic

complexity in the number of plan nodes (which is linear in the number of query tables).

For a first improvement, we can exploit the principle of optimality for multi-objective query

optimization [60]. After applying a local transformation to one specific node in the query tree,

it is not always necessary to calculate the cost of the completed plan (at the tree root) in order

to determine whether that mutation reduces the plan cost. Due to the principle of optimality,

improving a sub-plan cannot worsen the entire plan (we assume for the current discussion that
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all alternative plans produce the same data representation, neglecting for instance the impact

of interesting orders [116]). In many cases, reducing the cost of a sub-plan even guarantees

that the cost of the overall plan decreases as well1. This means that we can at least exclude that

a certain mutation reduces the cost of the entire plan if it worsens the cost of the sub-plan to

which it was applied. As the cost of the sub-plan can be recalculated in constant time (we treat

the number of cost metrics as a constant as in the previous chapters), this simple optimization

already reduces the complexity per step from quadratic in the number of tables to linear

whenever the chances that a local cost improvement does not yield a global improvement are

negligible.

While the last optimization reduces the complexity per climbing step, the optimization dis-

cussed next tends to reduce the number of steps required to reach the nearest local optimum.

Query plans are represented as trees and we can simultaneously apply mutations in indepen-

dent sub-trees; it is not necessary to generate complete query trees after each single mutation

which is what the naive hill climbing variant does. If we reduce the cost of several sub-trees

simultaneously then the cost of the entire plan cannot worsen either due to the principle of

optimality. Applying multiple beneficial transformations in different parts of the query tree

simultaneously reduces the number of completed query trees that are created on the way to

the local optimum.

Note that all discussed optimization are also useful to improve the efficiency of local search

for traditional query optimization with one cost metric. Local search has already been used

for traditional query optimization but we were not able to find any discussion of the afore-

mentioned issues in the literature while they have significant impact on the performance (the

second optimization alone reduced the average time for reaching local optima from randomly

selected plans by over one order of magnitude for queries with 50 tables in a preliminary

benchmark).

Algorithm 12 integrates all of the aforementioned optimizations. Function PARETOCLIMB

performs plan transformations until the plan cannot be improved anymore, i.e. there is

no neighbor plan with dominant cost. Function PARETOSTEP realizes one transformation

step. It may return multiple Pareto-optimal plan mutations that produce data in different

representations (e.g., materialized versus non-materialized). We must do so since sub-plans

producing different data representations cannot be compared as the data representation

can influence the cost (or applicability) of other operations higher-up in the plan tree. We

assume that the standard mutations for bushy query plans [131] are considered for each

node in the plan tree. Function PARETOSTEP might however mutate multiple nodes in the

tree during one call: when treating join plans then the outer and the inner sub-plan are

both replaced by dominant mutations via a recursive call. We try out each combination of

potentially improved sub-plans and try all local transformations for each combination. The

1This is guaranteed for cost metrics such as energy consumption, monetary cost, precision loss, and execution
time when considering plans without parallel branches [137] where the cost of a plan is calculated as weighted
sum or product over the cost of its sub-plans. It might not hold in special cases (e.g., when replacing a sub-plan
that is not on the critical path in a parallel execution scenario by a faster one).
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resulting plans are pruned such that only one non-dominated plan is kept for each possible

output data representation. Function BETTER is used during pruning to compare query plans

and returns true if and only if a first plan produces the same output data representation as

a second (tested using function SAMEOUTPUT) and the cost vector of the first plan strictly

dominates the one of the second.

The following example illustrates how Algorithm 12 works.

Example 12. We assume for simplicity that only one plan cost metric is considered, that we

have only one scan and join operator implementation such that only join order matters, and

that the only mutation is the exchange of outer and inner join operands. We invoke func-

tion PARETOCLIMB on an initial query plan (S �� T ) �� (R �� U ). Function PARETOCLIMB

invokes function PARETOSTEP to improve the initial plan. The root of the initial query plan is a

join between (S �� T ) and (R ��U ). Function PARETOSTEP tries to improve the two operands of

that join via recursive calls before considering mutations at the plan root. Hence one instance of

PARETOSTEP is invoked to improve the outer operand (S �� T ) and another instance is invoked

to improve the inner operand (R ��U ). The instance of function PARETOSTEP treating (S �� T )

spawns new instances for improving the two join operands S and T . As we consider no scan op-

erator mutations here, those invocations do not have any effect. After trying to improve S and T ,

the instance treating (S �� T ) tries the mutation (T �� S). Assume that this mutation reduces cost.

Then the improved sub-plan (T �� S) will be returned to the instance of function PARETOSTEP

treating the initial plan. Assume that the sub-plan (R ��U ) cannot be improved by exchanging

outer and inner join operand. Then the top-level instance of function PARETOSTEP will try the

mutation (R ��U )�� (T �� S) and compare its execution cost to the cost of (T �� S)�� (R ��U ).

The cheaper plan is returned to function PARETOCLIMB which detects that the initial plan

has been improved. This function performs another iteration of the main loop as changing

the initial plan can in principle enable new transformations that yield further improvements.

This is not possible in the restricted setting of our example and hence function PARETOCLIMB

terminates after two iterations.

5.4.3 Frontier Approximation

The goal of Pareto climbing is to find one plan that is at least locally Pareto-optimal. Hav-

ing such a plan, it is often possible to obtain alternative optimal cost tradeoffs by varying

the operator implementations while reusing the same join order2. We exploit that fact in

function APPROXIMATEFRONTIERS whose pseudo-code is shown in Algorithm 13.

Function APPROXIMATEFRONTIERS obtains a query plan p whose join order it exploits, the

2More precisely, this is possible when choosing an appropriate formalization of the plan space: when consid-
ering tradeoffs between buffer space consumption and execution time, we can for instance introduce different
versions of the standard join operators that work with different amounts of buffer space. When considering
tradeoffs between result precision and execution time in approximate query processing, we might introduce
different scan operator versions associated with different sample densities. In a cloud scenario, we can introduce
operator versions that are associated with different degrees of parallelism, allowing to trade monetary cost for
execution time.
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plan cache P mapping intermediate results to non-dominated plans generating them, and

the iteration counter i (counting iterations of the main loop in Algorithm 11) as input. The

output is an updated plan cache in which the non-dominated plans generated in the current

invocation have been inserted for the corresponding intermediate results.

Function APPROXIMATEFRONTIERS starts by choosing the approximation factor α which de-

pends on the iteration number i . A higher approximation factor reduces the time required for

approximation but a lower approximation factor yields a more fine-grained approximation.

We will see in Section 5.5 that APPROXIMATEFRONTIERS has dominant time complexity within

each iteration so a careful choice of the approximation factor is crucial. Multi-objective query

optimization can be an interactive process in which alternative cost tradeoffs are visualized to

the user such that he can make his choice (also see Chapter 3). Especially in such scenarios it is

beneficial to rather obtain a coarse-grained approximation of the entire Pareto frontier quickly

than to obtain a very fine-grained approximation of only a small part of it. As approximating

the entire Pareto frontier requires in general considering many join orders (see our remark at

the end of this subsection), we do not want to spend too much time at the beginning exploiting

one single join order. For that reason we start with a coarse-grained approximation factor

that is reduced as iterations progress. We have tried different formulas for choosing α and the

formula given in the pseudo-code worked best for a broad range of scenarios.

Having chosen the approximation precision, the function approximates the Pareto frontier for

scan plans by trying out all available scan operators on the given table. For join plans, a frontier

is first generated for the outer and inner operand using recursive calls (so we traverse the query

plan tree in post-order). After that, we consider each possible pair of a plan from the outer

frontier with a plan from the inner frontier and each applicable join operator and generate

one new plan for each such combination. Newly generated plans are pruned again but the

definition for the pruning function differs from the one we used in Algorithm 12. For the same

output data properties, the pruning function in Algorithm 13 might now keep multiple plans

that realize different optimal cost tradeoffs. However, in contrast to the previous pruning

variant, new plans are only inserted if their cost cannot be approximated by any of the plans

already in the pruned plan set. We will see in Section 5.5 that this pruning function guarantees

that the number of plans stored for a single table set is bounded by a polynomial in the number

of query tables.

Note that function APPROXIMATEFRONTIERS does not only try different operator combinations

for a given join order. Instead, we consider all non-dominated plans that are cached for

the intermediate results generated by the input plan p. The plans we consider might have

been inserted into the plan cache in prior iterations of the main loop and might therefore

use different join orders. The plan cache is our mean of sharing information across different

iterations of the main loop. As iterations continue, the content of the plan cache will more

and more resemble the set of partial plans that is generated by the approximation schemes

presented in Chapter 2 and Chapter 3. However, instead of approximating the frontier for each

possible intermediate result (implying exponential complexity), we only ever treat table sets

112



5.5. Complexity Analysis

that are used by locally Pareto-optimal plans.

Note finally that it is in general not possible to obtain all Pareto optimal query plans by varying

operators for a fixed join order. Considering again the tradeoff between buffer space and

execution time, a left-deep plan using pipelining might for instance minimize execution

time while a non-pipelined bushy plan achieves the lowest buffer footprint. Or in case of

approximate query processing, different tradeoffs between result precision and execution

time can be achieved by varying the sample size generated by scan operators so the output

size for each table and hence the optimal join order depends on the operator configurations.

This means that we need to consider different join orders in order to obtain the full Pareto

set; we cannot decompose query optimization into join order selection followed by operator

selection. Our algorithm respects that fact.

5.5 Complexity Analysis

We analyze the time and space complexity of the algorithm presented in Section 5.4. We call

that algorithm short RMQ for randomized multi-objective query optimizer in the following.

We denote by n the number of query tables to be joined. The number of cost metrics according

to which query plans are compared is specified by l . We assume that n is variable while l is a

constant as in the previous chapters. As in prior work [60], we simplify the following formulas

by assuming only one join operator while the generalization is straight-forward. We also

neglect interesting orders for the following analysis such that query plans joining the same

tables are only compared according to their cost vectors.

We analyze the time complexity of one iteration. Each iteration consists of three steps (random

plan generation, local search, and frontier approximation); we analyze the complexity of

each of those steps in the following. Random plan sampling (function RANDOMPLAN in

Algorithm 11) can be implemented with linear complexity as shown by the following lemma.

Lemma 12. Function RANDOMPLAN executes in O(n) time.

Proof. Query plans are labeled binary trees whose leaf nodes represent input tables. Quiroz

shows how to generate binary trees in O(n) [112]. Labels representing input tables and

operators can be selected in O(n) as well. Estimating the cost of a query plan according

to all cost metrics is in O(ln) =O(n) time (as l is a constant).

Next we analyze the complexity of local search, realized by function PARETOCLIMB in Algo-

rithm 11. We first analyze the complexity of function PARETOSTEP realizing a single step on

the path to the next local optimum.

Lemma 13. Function PARETOSTEP executes in O(n) time.
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Proof. We apply a constant number of mutations at each of the O(n) plan nodes. We assume

that plans are only pruned based on their cost values such that each instance of function PARE-

TOSTEP returns only one non-dominated plan. Plan comparisons take O(l ) =O(1) time which

leads to the postulated complexity.

The expected time complexity of local search depends of course on the number of steps

required to reach the next local Pareto optimum (a plan that is not dominated by any neighbor).

We analyze the expected path length based on a simple statistical model in the following: we

model the cost of a random plan according to one cost metric as random variable and assume

that the random cost variables associated with different metrics are independent from each

other. This assumption is simplifying but standard in the analysis of multi-objective query

optimization algorithms [60].

Lemma 14. The probability that a randomly selected plan dominates another is (1/2)l .

Proof. The probability that a randomly selected plan dominates another plan according to

one single cost metric is 1/2. Assuming independence between different cost metrics, the

probability that a random plan dominates another one according to all l cost metrics is

(1/2)l .

Lemma 15. The probability that none of n plans dominates all plans in a plan set of cardinality

i is (1− (1/2)l i )n.

Proof. The probability that one plan dominates another is (1/2)l according to Lemma 14. The

probability that one plan dominates all of i other plans is (1/2)l i , assuming independence

between the dominance probabilities between different plan pairs. The probability that a

plan does not dominate all of i other plans is 1− (1/2)l i . The probability that none of n plans

dominates all of i plans is (1− (1/2)l i )n .

We denote by u(n, i ) = (1− (1/2)l i )n the probability that none of n plans dominates all i plans.

We simplify in the following assuming that each plan has exactly n neighbors.

Theorem 21. The expected number of plans visited by the hill climbing algorithm until finding

a local Pareto optimum is in
∑

i=1..∞ i ·u(n, i ) ·∏ j=1..i−1(1−u(n, j )).

Proof. Our hill climbing algorithm visits a sequence of plans such that each plan is a neighbor

of its successor and dominates its successor. Pareto dominance is a transitive relation and

hence, as each plan dominates its immediate successor, each plan dominates all its successors.

Then the probability of one additional step corresponds to the probability that at least one

of the neighbors of the current plan dominates all plans encountered on the path so far. The

probability that a local optimum is reached after i plan nodes is the probability that none
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of the n neighbors of the i -th plan dominates all i plans on the path which is u(n, i ). The a-

priori probability for visiting i plans in total is then u(n, i ) ·∏ j=1..i−1(1−u(n, j )). The expected

number of visited plans is
∑

i=1..∞ i ·u(n, i ) ·∏ j=1..i−1(1−u(n, j )).

We bound the formula given by Theorem 21.

Theorem 22. The expected path length from a random plan to the next local Pareto optimum

is in O(n).

Proof. Assume that the hill climbing algorithm encounters at least n plans on its path to the

local Pareto optimum. We can write the expected number of additional steps as
∑

i=0..∞ i ·
u(n,n + i ) ·∏ j=0..i−1(1−u(n, j +n)). Note that each additional step requires that one of the

neighbors dominates at least n plans on the path. Since u(n, j ) ≤ 1, we can upper-bound the

additional steps by
∑

i=0..∞ i ·∏ j=0..i−1(1−u(n, j +n)). Since (1−u(n, j )) is anti-monotone in j ,

we can upper-bound that expression by
∑

i=0..∞ i · (1−u(n,n))i . This expression contains the

first derivative of the infinite geometric series and we obtain (1−u(n,n))/(1− (1−u(n,n)))2 ≤
1/(1− (1−u(n,n)))2 = 1/u(n,n)2 for the additional steps. We study how quickly that expres-

sion grows in n. It is 1/u(n,n)2 = 1/(1− (1/2)ln)2n ≤ 1/(1− (1/2)n)2n ∈ O((1/(1−1/n)n)2) =
O((1/e)2) =O(1). The expected number of additional steps after n steps is a constant.

We finally calculated the expected time complexity of local search. Note that we make the

pessimistic assumption that only one mutation is applied per path step while our algorithm

allows in fact to apply many transformations together in one step.

Theorem 23. Function PARETOCLIMB has expected time complexity in O(n2).

Proof. We combine the expected path length (see Theorem 22) with the complexity per step

(see Lemma 13).

At this point it might be interesting to compare the overhead of hill climbing, calculated before,

with the benefit it provides by reducing the search space. The factor by which the search space

size is reduced when focusing on local optima is given by the following lemma.

Lemma 16. The probability that a randomly selected plan is a local Pareto optimum is in

O((1− (1/2)l )n).

Proof. A plan is a local Pareto optimum if none of its neighbors dominates the plan. The

neighbor plans are created by applying a constant number of mutations at each plan node.

For a plan joining n tables, the number of neighbors is therefore in O(n). We simplify by

assuming that the probability that a plan is dominated by one of its neighbors corresponds to

the probability that it is dominated by a random plan which is (1/2)l according to Lemma 14.

The probability that a plan is not dominated by one of its neighbors is 1− (1/2)l and the

probability that it is not dominated by any of its neighbors is O((1− (1/2)l )n).
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Multi-objective hill climbing leads to an exponential reduction of search space size while the

expected path length to the next local Pareto optimum grows only linearly in the number of

query tables. Next we analyze the complexity of generating a frontier approximation. We

denote by α the precision factor that is used in the analyzed iteration. The next lemma is based

on the proof of Lemma 2 in Chapter 2 bounding the number of query plans such that no plan

approximately dominates another. Following their notation, we denote by m the cardinality of

the largest base table in the current database.

Lemma 17. The plan cache associates O((n logα m)l−1)

plans with a table set of cardinality n.

Proof. New plans are only inserted into the plan cache if they are not approximately domi-

nated by other plans joining the same tables, using approximation factor α. The bound of

O((n logα m)l−1) on the number of plans joining n tables such that no plan approximately

dominates another (see Chapter 2, Lemma 2) applies therefore to the plan cache.

We denote by b(n) the asymptotic bound on the number of plans stored per table set. Note

that b(n) grows monotonically in n.

Theorem 24. Function APPROXIMATEFRONTIER has time complexity O(n ·b(n)3).

Proof. The function treats each plan node in bottom-up order. For each node a set of new

plans is generated and pruned by comparing it with alternative plans from the cache joining

the same tables. We retrieve plans joining at most n tables such that the number of plans

retrieved for each table set is bounded by b(n). Comparing one new plan against b(n) stored

plans is in O(b(n)). The complexity for treating inner nodes of the query plan tree (representing

joins) is higher than the complexity of treating leaf nodes (representing scans). We generate

O(b(n)2) new plans for an inner node which yields a per-node complexity of O(b(n)3) when

taking pruning into account. Summing over all query plan nodes leads to the postulated

complexity.

The operation with dominant time complexity is the generation of the approximate frontier.

This justifies that we start with a coarse-grained precision factor in order to explore a sufficient

number of join orders quickly. The per-iteration complexity of RMQ follows immediately.

Corollary 2. RMQ has time complexity O(n ·b(n)3) per iteration.

We finally analyze the space complexity of RMQ. We analyze the accumulated space consumed

after i iterations. We assume that b(n) designates the bound on the number of plans cached

per table set for the precision factor α that is reached after i iterations.

Theorem 25. RMQ has space complexity O(i ·n ·b(n)).
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Proof. Each plan generates O(n) intermediate results. We approximate the Pareto frontiers

of all intermediate results that are used by one locally optimal plan in each iteration. Each

iteration therefore adds at most O(n) plan sets to the plan cache. The number of plans cached

for each intermediate result is bounded by b(n) and each plan requires O(1) space as justified

before.

Considering multiple operator implementations changes time but not space complexity. We

denote the number of implementations per operator by r . The asymptotic number of neighbor

plans multiplies by r and so does the expected path length to the nearest local optimum (this

can be seen by substituting n by r ·n in Theorems 21 and 22). Hence the time complexity of

local search multiplies by r 2. The time complexity of the frontier approximation multiplies by

r as we iterate over the operators in the innermost loop. The number of plan cost metrics is

treated as constant as justified in Chapter 2.

5.6 Experimental Evaluation

We describe our experimental setup in Section 5.6.1 and discuss the results in Section 5.6.2.

5.6.1 Experimental Setup

We compare our RMQ algorithm against other algorithms for multi-objective query optimiza-

tion. We compare algorithms in terms of how well they approximate the Pareto frontier for a

given query after a certain amount of optimization time. We measure the approximation qual-

ity in regular intervals during optimization to compare algorithms in different time intervals.

This allows to identify algorithms that quickly find reasonable solutions as well as algorithms

that take longer to produce reasonable solutions but yield a better approximation in the end.

We judge the set of query plans produced by a certain algorithm by the lowest approximation

factor α such that the produced plan set is an α-approximate Pareto plan set. A lower α means

a better approximation of the real Pareto frontier. This quality metric is equivalent to the ε

metric that was recommended in a seminal paper by Zitzler and Thiele [150] (setting α= 1+ε).

Choosing that metric also makes our comparison fair since the dynamic programming based

approximation schemes from Chapter 2 against which we compare have been developed

for that metric. As it is common in the area of multi-objective optimization, we often deal

with test cases where finding the full set of Pareto solutions is computationally infeasible. We

therefore compare the output of each algorithm against an approximation of the real Pareto

frontier that is obtained by running all algorithms that we describe in the following for three

seconds and taking the union of the obtained result plans.

We compare RMQ against two classes of algorithms: the dynamic programming based approxi-

mation schemes from Chapter 2 and generalizations of randomized algorithms that have been

proposed for single-objective query optimization [131]. The approximation schemes guaran-
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Figure 5.1 – Median of approximation error for two cost metrics as a function of optimization
time.

tee to produce a Pareto frontier approximation whose α value does not exceed a user-specified

threshold. We denote by DP(α) the approximation scheme with threshold α. Choosing a

higher value for α decreases optimization time but choosing a lower value leads to better

result quality. We report results for different values of α in the following.

We experiment with four randomized algorithms (in addition to RMQ itself). By II we denote

a generalization of iterative improvement [131] in which we iteratively walk towards local

Pareto optima in the search space starting from random query plans. By SA we denote a

generalization of the SAIO variant of simulated annealing, described by Steinbrunn et al. [131].

The original algorithm uses the difference between the scalar cost value of the current plan
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Figure 5.2 – Median of approximation error for three cost metrics as a function of optimization
time.

and the cost of a randomly selected neighbor to decide whether to move towards the neighbor

plan, based additionally on the current temperature. Our generalization uses the average

cost difference between the current plan and its neighbor, averaging over all cost metrics.

By 2P we abbreviate the two phase optimization algorithm for query optimization [131]. It

executes the II algorithm in a first phase and continues with SA in a second phase. We switch

to the second phase after ten iterations of II [131] and choose the initial temperature for SA

as described by Steinbrunn et al. [131]. By NSGA-II we abbreviate the Non-Dominated Sort

Genetic Algorithm II [49], a genetic algorithm for multi-objective query optimization that has

been very successful for scenarios with the same number of cost metrics that we consider.
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All our algorithms that are based on local search use the plan transformations for bushy query

plans that were described by Steinbrunn et al. [131]. All algorithms using hill climbing (II

and 2P) use the same efficient climbing function (see Algorithm 12) as our own algorithm.

NSGA-II uses an ordinal plan encoding and a corresponding single-point crossover [131]. Our

implementation of NSGA-II follows closely the pseudo-code given in the original paper [48]

and we use the same settings for mutation and crossover probabilities. We use populations of

size 200. We experimented with several configurations for each of the randomized algorithms

(e.g., experimenting with different population sizes for NSGA-II and different number of

examined neighbors for II, SA, and 2P) and report for each algorithm only the configuration

that led to optimal performance.

We generate random queries with a given number of tables in the same way as in prior eval-

uations of query optimization algorithms [131, 31]: we experiment with different join graph

structures and use stratified sampling to pick table cardinalities, using the same distribution

as Steinbrunn et al. [131]. We consider up to three cost metrics on query plans that were

already used for the experimental evaluations in the previous chapters: query execution time,

buffer space consumption, and disc space consumption. We report in the following plots

median values from 20 test cases per data point. For less than three cost metrics, we select the

specified number of cost metrics with uniform distribution from the total set of metrics for

each test case.

All algorithms were implemented in Java 1.7 and executed using the Java HotSpot(TM) 64-Bit

Server Virtual Machine version on an iMac with i5-3470S 2.90GHz CPU and 16 GB of DDR3

RAM. We run each algorithm consecutively on all test cases after forcing garbage collection

and after a ten seconds code warmup on randomly selected test cases in order to benchmark

steady state performance3.

5.6.2 Experimental Results

Figure 5.1 reports results for two cost metrics and Figure 5.2 reports our results for three cost

metrics. We report separate results for different query sizes (measured by the number of tables

being joined) and join graph structures (chain, cycle, and star shape). We allow up to three

seconds of optimization time. The experiments for producing the data shown in Figures 5.1

and 5.2 took around eight hours of optimization time.

All algorithms presented in the previous chapters have so far been evaluated only on queries

joining up to around 10 tables. For 10 table queries, DP(2) finds the best frontier approximation

among all evaluated algorithms if two cost metrics are considered. For three cost metrics,

DP(2) cannot finish optimization within the given time frame. For queries joining 25 tables

and more, none of the approximation schemes finishes optimization within the given time

frame. Note that the optimization time required by the approximation schemes we compare

against constitutes a lower bound for the optimization time required by the incremental

3http://www.ibm.com/developerworks/library/j-benchmark1/
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approximation algorithm described in Chapter 3 for reaching the same approximation quality.

As the non-incremental approximation schemes cannot finish optimization within the given

time frame, even when setting α=∞, the incremental versions will not be able to do so either.

This is not surprising as we reach a query size where randomized algorithms would already

be used for single-objective query optimization which is computationally far less expensive

than multi-objective query optimization. This shows the need for randomized algorithms for

multi-objective query optimization such as RMQ.

Among the randomized algorithms that generalize popular randomized algorithms for single-

objective query optimization (II, SA, 2P, and NSGA-II), II and NSGA-II generate the best

approximations with a large gap to SA and 2P (note the logarithmic y axis for approximation

error). It is interesting that II outperforms 2P unlike in traditional query optimization where

the roles are reversed. However, SA and 2P both spend most of their time improving one

single query plan (2P after limited initial sampling) and are therefore intrinsically based on

the assumption that only one very good plan needs to be found as result. Approximating

the Pareto frontier requires however to generate a diverse set of query plans which is better

accomplished by the seemingly naive II which starts each iteration with a new random plan.

NSGA-II usually performs better than II, SA, and 2P. This is not surprising since NSGA-II is a

popular algorithm for multi-objective optimization with a moderate number of cost metrics

and genetic algorithms have been shown to perform well for classical query optimization [23].

Our own algorithm, RMQ, outperforms all other algorithms in the majority of cases. The gap

to the other algorithms increases in the number of query tables and in the number of cost

metrics. For two cost metrics (see Figure 5.1), RMQ is competitive and often significantly

better than all other algorithms over the entire optimization time period starting from more

than 50 join tables. For star-shaped query graphs, RMQ is better than competing algorithms

starting from 25 join tables already. Considering three cost metrics (see Figure 5.2) increases

the gap between RMQ and all other algorithms. Starting from 25 join tables, RMQ dominates

over the entire optimization time period. The gap in terms of approximation error reaches

many orders of magnitude for large queries.

Figures 5.3 shows additional statistics: on the left side we see that the average path length from

a random plan to the nearest Pareto optimum (using function PARETOCLIMB) grows slowly

in the number of query tables as postulated in our formal analysis. On the right side, we see

that the number of Pareto plans grows in the number of query tables which corroborates the

results from Chapter 2. This tendency explains why the approximation error of randomized

algorithms increases in the query size: having more Pareto plans makes it harder to obtain a

good approximation.

We summarize the main results of our experimental evaluation. Dynamic programming

based algorithms for multi-objective query optimization are only applicable for small queries.

Using randomized algorithms, we were able to approximate the Pareto frontier for large

queries joining up to 100 tables. The algorithm proposed in this chapter performs best
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Figure 5.3 – Median path length from random plan to next local Pareto optimum and median
number of Pareto plans found by RMQ for three cost metrics.

among the randomized algorithms over a broad range of scenarios. Among the remaining

randomized algorithms, a general-purpose genetic algorithm for multi-objective optimization

performs best, followed closely by an iterative improvement algorithm that uses the efficient

hill climbing function that was introduced in this chapter as well.

So far we have compared algorithms for a few seconds of optimization time. It is generally

advantageous to minimize optimization time as it adds to execution time. In the context of

multi-objective query optimization, it is even more important as query optimization can be

an interactive process in which users have to wait until optimization finishes (see Chapter 3).

We have however also compared algorithms for up to 30 seconds of optimization time and

present the corresponding results in the next section. Until now we compared algorithms in

terms of how well they approximate an approximated Pareto frontier since calculating the real

Pareto frontier would lead to prohibitive computational costs for many of the query sizes we

consider. We show results for small queries where we calculated the real Pareto frontier in the

next section. Furthermore, the next section contains results for different query generation

methods. The main results of our experiments are stable across all scenarios.

5.7 Additional Experimental Results

The performance of query optimization algorithms may depend on the probability distribution

over predicates selectivity values used during random query generation. For our experiments

in Section 5.6, we used the original method proposed by Steinbrunn et al. [131] to select the

selectivity of join predicates. We performed an additional series of experiments in which we

select predicate selectivity according to the MinMax method proposed by Bruno instead [31].

Using that method, each join has an output cardinality between the cardinalities of the

two input relations. The purpose of those additional experiments is to verify whether our

experimental results from Section 5.6 generalize. We report the results of the second series

of experiments in Figures 5.4 and 5.5. The experimental setup is the same as described in
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Figure 5.4 – Median of approximation error for two cost metrics as a function of optimization
time (MinMax joins).

Section 5.6.1 except for the choice of selectivity values. We focus on queries joining between

25 to 100 tables where randomized algorithms become better than dynamic programming

variants.

The results are largely consistent with the results we obtained in our first series of experiments.

Our own algorithm outperforms all other approaches significantly for large queries and many

cost metrics, in particular during the first second of optimization time. NSGA-II performs well

for smaller queries while its approximation error is by many orders of magnitude sub-optimal

for large queries. II comes close to NSGA-II in certain scenarios while the two randomized

algorithms based on simulated annealing, SA and 2P, perform badly. The approximation

schemes do not scale to queries of 25 tables and more.

Multi-objective query optimization needs to integrate user preferences in order to determine

the optimal query plan. One possibility to integrate user preferences is to present an approxi-

mation of the plan Pareto frontier for a given query to the user such that the user can select

the preferred cost tradeoff (see Chapter 3). This means that users have to wait after submitting

a query until optimization finishes in order to make their selection. In that scenario, an opti-

mization time of only a few seconds is desirable. If users formalize their preferences before

optimization starts (e.g., in the form of cost weights and cost bounds as in Chapter 2) then
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Figure 5.5 – Median of approximation error for three cost metrics as a function of optimization
time (MinMax joins).
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Figure 5.6 – Median of approximation error in the interval [1,1010] for two cost metrics and up
to 30 seconds of optimization time.

longer optimization times can be acceptable. The second scenario motivates us to compare

the query optimization algorithms for longer periods of optimization time.

We executed another series of experiments giving each algorithm 30 seconds of optimization

124



5.7. Additional Experimental Results

102
104
106
108

1010
α

(L
o

g
ax

is
)

102
104
106
108

1010

α
(L

o
g

ax
is

)

102
104
106
108

1010

α
(L

o
g

ax
is

)

0 10 20
102
104
106
108

1010

Time (s)

α
(L

o
g

ax
is

)

0 10 20
102
104
106
108

1010

Time (s)
α

(L
o

g
ax

is
)

0 10 20
102
104
106
108

1010

Time (s)

α
(L

o
g

ax
is

)

Chain, 50 tables

Chain, 100 tables

Cycle, 50 tables

Cycle, 100 tables

Star, 50 tables

Star, 100 tables

DP(Infinity) DP(1000) DP(2) SA 2P NSGA-II II RMQ

Figure 5.7 – Median of approximation error in the interval [1,1010] for three cost metrics and
up to 30 seconds of optimization time.

time. We reduced the number of test cases per scenario from 20 to 10 and only experimented

with two query sizes in order to decrease the time overhead for the experiments. Figures 5.6 and

5.7 report the development of the median approximation error over 30 seconds of optimization

time. We restrict the y domain of the figures and only show errors up to α = 1010. Using

that thresholds allows us to visualize performance difference between the well performing

algorithms that would otherwise become indistinguishable even though they are significant.

Albeit we ran the same algorithms as in the previous plots on all test cases, the plots only

show data points for a subset of those algorithms. For the dynamic programming variants, the

reason for not being represented in the plots is that they did not return any results even within

30 seconds of optimization time. For simulated annealing and two-phase optimization, the

reason for not being represented in the plots is that their approximation error is significantly

above the threshold of 1010 (often more than 10110).

The tendencies remain the same: our randomized algorithm, the genetic algorithm, and

iterative improvement with our fast climbing function are the best randomized algorithms.

RMQ is usually better than iterative improvement. For queries with up to 50 tables, it depends

on the number of cost metrics and the join graph structure whether RMQ or the genetic

algorithm perform better. For more than 50 tables, RMQ outperforms all other algorithms

over most of the optimization time period, the margin increases in the number of plan cost

metrics.

We have finally run an additional test series in which we calculate the approximation error

more precisely than in the previous experiments. For large queries, we have no choice but

to evaluate approximation precision with regards to an approximated Pareto frontier that is

generated by the same randomized algorithms that we evaluate. For small queries, we can

use the dynamic programming based approximation schemes to calculate an approximated

Pareto frontier with formal guarantees on how closely it is approximated. For the last series of
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Figure 5.8 – Median of precise approximation error in the interval [1,2] for small queries and
two cost metrics.
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Figure 5.9 – Median of precise approximation error in the interval [1,2] for small queries and
three cost metrics.

experiments, we calculate the approximated Pareto frontier by the approximation scheme,

setting α = 1.01. This means that the calculated approximation error is guaranteed to be

precise within a very small tolerance. We restrict ourselves to small queries joining between

four and eight tables. Note that the size of the Pareto frontier produced by the approximation

scheme reaches several hundreds of Pareto plans already for such small queries.

Figures 5.8 and 5.9 show the results. We allow again 30 seconds of optimization time and

restrict the plots to the domain [1,2] for the approximation error. This has the same implica-

tions as discussed in the previous paragraphs: algorithms with exceedingly high errors are

not shown in order not to obfuscate the performance differences between the competitive

algorithms. We are primarily interested in whether or not the randomized algorithms converge

to the reference Pareto frontier for small queries; therefore we choose to show a small error
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range above α= 1.

We find that our algorithms converges in average to a perfect approximation with α= 1 while

this is not always the case for the other algorithms. In particular for queries joining eight tables

and three plan cost metrics, our algorithm is the only one among all randomized algorithms

that achieves a perfect approximation. The dynamic programming based approximation

scheme with α= 2 performs well for small queries. It generates output nearly immediately

and the approximation error is much lower than the theoretical worst case bound. The

approximation scheme configuration using α= 1.01, the one generating the reference frontier,

produces its solutions after less than two seconds of optimization time in average, even for

three cost metrics and eight tables. We do not show results for that algorithm in the plots as its

approximation error is minimal by definition. We conclude that approximation schemes often

outperform randomized algorithms for small queries.

5.8 Conclusion

The applicability of multi-objective query optimization has so far been severely restricted

by the fact that all available algorithms have exponential complexity in the number of query

tables. We presented, analyzed, and evaluated the first polynomial time heuristic for multi-

objective query optimization. We have shown that our algorithm scales to queries that are

by one order of magnitude larger than the ones prior multi-objective query optimizers were

so far evaluated on. We envision our algorithm being used in future multi-objective query

optimizers that apply dynamic programming based algorithms for small queries and switch

to randomized algorithms starting from a certain number of query tables, similar to what

single-objective optimizers do today.
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1: // Plan p1 is better than p2 if it produces the same
2: // data format as p2 and has dominant cost.
3: function BETTER(p1, p2)
4: return SAMEOUTPUT(p1, p2)∧(p1 ≺ p2)
5: end function

6: // Keeps one Pareto plan per output format.
7: function PRUNE(pl ans,newPl an)
8: if �p ∈ pl ans :BETTER(p,newPl an) then
9: pl ans ← {p ∈ pl ans|¬BETTER(newPl an, p)}

10: pl ans ← pl ans ∪ {newPl an}
11: end if
12: return pl ans
13: end function

14: // Improve plan p by parallel local transformations
15: function PARETOSTEP(p)
16: // Initialize optimal mutations of this plan
17: pPar eto ←�
18: if p.i s Joi n then
19: // Improve sub-plans by recursive calls
20: outer Par eto ←PARETOSTEP(p.outer )
21: i nner Par eto ←PARETOSTEP(p.i nner )
22: // Iterate over all improved sub-plan pairs
23: for outer ∈ outer Par eto do
24: for i nner ∈ i nner Par eto do
25: p.outer ← outer
26: p.i nner ← i nner
27: // Mutations for specific sub-plan pair
28: for mut ated ∈MUTATIONS(p) do
29: pPar eto ←PRUNE(pPar eto,mut ated)
30: end for
31: end for
32: end for
33: else
34: // p is single-table scan
35: for mut ated ∈MUTATIONS(p) do
36: pPar eto ←PRUNE(pPar eto,mut ated)
37: end for
38: end if
39: return pPar eto
40: end function

41: // Climbs until plan p cannot be improved further.
42: function PARETOCLIMB(p)
43: i mpr ovi ng ←true
44: while i mpr ovi ng do
45: i mpr ovi ng ←false
46: mut ati ons ←PARETOSTEP(p)
47: if pm ∈ mut ati ons : pm ≺ p then
48: p ← pm
49: i mpr ovi ng ←true
50: end if
51: end while
52: return p
53: end function

Algorithm 12 – Fast multi-objective hill climbing performing mutations in independent plan
sub-trees simultaneously.
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1: // Checks if plan p1 is significantly better than p2
2: // using coarsening factor α for cost comparison.
3: function SIGBETTER(p1, p2,α)
4: return SAMEOUTPUT(p1, p2)∧p1 �α p2
5: end function

6: // Returns an α-approximate Pareto frontier
7: function Pr une(pl ans,newP,α)
8: // Can we approximate the cost of the new plan?
9: if �p ∈ pl ans :SIGBETTER(p,newP,α) then

10: pl ans ← {p ∈ pl ans|¬SIGBETTER(newP, p,1)}
11: pl ans ← pl ans ∪ {newP }
12: end if
13: return pl ans
14: end function

15: // Approximates the Pareto frontier for each
16: // intermediate result that appears in plan p,
17: // using partial plans from the plan cache P .
18: // The precision depends on the iteration count i .
19: function APPROXIMATEFRONTIERS(p,P, i )
20: // Calculate target approximation precision
21: α← 25 ·0.99�i /25�
22: if p.i s Joi n then
23: // Approximate outer and inner plan frontiers
24: P ←APPROXIMATEFRONTIERS(p.outer,P, i )
25: P ←APPROXIMATEFRONTIERS(p.i nner,P, i )
26: // Iterate over outer Pareto plans
27: for outer ← P [p.outer.r el ] do
28: // Iterate over inner Pareto plans
29: for i nner ← P [p.i nner.r el ] do
30: // Iterate over applicable join operators
31: for op ∈JOINOPS(outer, i nner ) do
32: // Generate new plan and prune
33: np ←JOINPLAN(outer, i nner,op)
34: P [p.r el ] ←PRUNE(P [p.r el ],np,α)
35: end for
36: end for
37: end for
38: else
39: // Iterate over applicable scan operators
40: for op ∈SCANOPS(p.r el ) do
41: np ←SCANPLAN(p.r el ,op)
42: P [p.r el ] ←PRUNE(P [p.r el ],np,α)
43: end for
44: end if
45: // Return updated plan cache
46: return P
47: end function

Algorithm 13 – Approximating the Pareto frontiers of all intermediate results occuring within
given plan.
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Randomization is a technique that enables us to optimize even large queries with multiple cost

metrics. The drawback of randomization is that we give up any formal worst-case guarantees

on the quality of the resulting query plans. In this chapter, we explore an alternative technique

that allows optimizing large queries while maintaining formal guarantees: massive paralleliza-

tion. We will see a decomposition method that allows parallelizing query optimization over

large clusters with hundreds of nodes in a shared-nothing architecture. This decomposition

method works for classical query optimization, for multi-objective query optimization, for

parametric query optimization, and for multi-objective parametric query optimization. Prior

approaches for parallelizing query optimization have aimed at moderate degrees of parallelism

in shared-memory architectures. We will see that exploiting massive degrees of parallelism

requires a very different decomposition approach.

6.1 Introduction

Moore’s law [102] is breaking and computer systems become more powerful by increasing

their number of processing units (be it cores, CPUs, or cluster nodes) rather than by increasing

clock rates. This means that all stages of query evaluation must exploit parallelism in order

not to become the bottleneck in future systems.

Research on parallelizing query evaluation has so far mainly focused on how to parallelize

the actual query processing stage, i.e. how to parallelize the execution of query plans. This

is however insufficient as noted in prior work [67, 68, 145, 129]: in order to parallelize query

evaluation, we must not only parallelize the execution of query plans but also the generation

of query plans, i.e. we must develop parallel algorithms for the query optimization problem.

Query optimization is an NP-hard problem and even finding guaranteed near-optimal query

plans is NP-hard [33]. The run time of all known algorithms increases exponentially in the

number of joins and novel application scenarios (e.g., SPARQL query processing [45]) motivate

queries with many joins. Furthermore, the complexity of the systems on which query process-
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ing takes place increases: the number of system components keeps increasing (as discussed

before), flexible provisioning models and novel processing operators introduce new parame-

ters by which query processing can be tuned (e.g., the number of machines to rent is such a

parameter in a cloud scenario [88] or the sampling rate of a scan operator in the context of

approximate query processing [12]). All those developments make query optimization harder

since the size of the plan search space increases. In addition, many of the aforementioned

developments motivate new cost metrics for comparing query plans (e.g., monetary fees in a

cloud scenario or result precision in approximate query processing) in addition to execution

time. Having multiple plan cost metrics makes query optimization however harder as demon-

strated in the previous chapters. In summary, there are many ongoing developments that

make query optimization harder and hence increase the need for parallel query optimization

algorithms.

We propose a novel, parallel algorithm for query optimization in this work. Our goal is to obtain

a query optimization algorithm that is future-proof in that it is able to exploit the ever-growing

degree of parallelism forced by the breakdown of Moore’s law. While prior parallel query

optimization algorithms have been primarily designed for shared-memory architectures, we

aim at parallelizing query optimization on shared-nothing architectures as well. Query plans

are often executed on large clusters and, as query optimization must precede query execution,

it is preferable to use all cluster nodes for query optimization rather than leave them idle

until optimization has finished. Even for queries that are executed repeatedly on a single

node, a cluster can be used for optimization before run time if optimization is expensive. The

algorithm that we propose is however not specific to shared-nothing architectures and can be

applied in different scenarios as well.

Prior approaches for parallelizing query optimization assume that worker threads share

common data structures [67, 68, 145, 37, 129], in particular big memotables storing subsets

of query tables optimal join plans. They assume that a central master node distributes fine-

grained optimization tasks to workers and that many interactions between master and worker

threads take place during the optimization of a single query. In a shared-nothing architecture,

sharing data between worker threads results in high communication overhead and each task

assignment incurs setup overhead. We target extremely high degrees of parallelism, at least

several hundreds of cluster nodes (while prior algorithms have not been evaluated on more

than eight cores). Orchestrating that many nodes on the level of micro optimization tasks

results in prohibitive communication and computation overhead on the master node.

Achieving our goals requires a radically different approach compared to prior work: instead of

decomposing the query optimization problem into many small optimization tasks, we realize

the most coarse-grained problem decomposition possible: the optimization of one query is

mapped into exactly one task per worker node.

On a high level, our algorithm works as follows. Given a query to find an optimal plan for,

the master optimizer node sends that query together with a plan space partition ID to each
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worker node. The partition ID is simply an integer between one and the number of workers

such that each worker obtains a different number. Each worker node translates its partition

ID into a set of constraints on join orders and only considers query plans that comply with

those constraints. Each worker node therefore searches for an optimal plan within a plan

space that is smaller than the original plan space. The worker nodes search the optimal plan

within their respective plan space partition in parallel. No communication between workers

or between workers and master node is required during that stage. Afterwards, the workers

send the optimal plans back to the master node. The original plan space is the union over

all plan space partitions. Comparing the plans returned by the workers, which are optimal

within their respective partition and whose number is linear in the number of workers, yields

therefore the globally optimal plan.

Our algorithm is designed to exploit very high degrees of parallelism. The time complexity of

all serial processing steps, executed by the master node, is linear in the number of workers

and in the query size. The amount of data sent over the network is also linear in the number of

workers and in the query size. All plan space partitions have the same size which guarantees

skew-free parallelization. For a fixed query, the run time as well as the consumption of main

memory space per worker node decreases monotonically in the number of worker nodes.

Furthermore, the number of partitions into which the plan space can be divided and therefore

the maximal degree of parallelism grows in the query size and is in principle unlimited.

Our algorithm parallelizes one of the most popular dynamic programming schemes for query

optimization [116]. It treats table sets of increasing cardinality and constructs optimal join

plans for each table set out of optimal plans for table subsets that were previously generated.

As it has been noted in prior work [67], this dynamic programming scheme belongs to the

class of non-serial polyadic algorithms and is therefore difficult to parallelize. Certainly it

is easier to parallelize randomized query optimization algorithms such as iterated improve-

ment or simulated annealing [134, 77]. We nevertheless focus on parallelizing the dynamic

programming approach. There are two reasons. First, unlike randomized algorithms, the

dynamic programming approach formally guarantees to return optimal query plans. Second,

by parallelizing Sellinger’s classical dynamic programming scheme [116] we parallelize at the

same time many query optimization algorithms that have been based on the same scheme and

cover a multitude of scenarios (e.g., multi-objective query optimization and multi-objective

parametric query optimization, the variants discussed in the previous chapters, or parametric

query optimization [74]).

The time and space complexity of the classical dynamic programming algorithm depend on

the number of table sets for which optimal join plans need to be found. We decompose the

query optimization problem by introducing constraints on the join order that ultimately allow

to reduce the number of table sets to consider.

We propose a partitioning scheme for the space of left-deep query plans and one partitioning

method for bushy query plans. Left-deep query plans are characterized by the order in which
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tables are joined. We restrict join orders by constraints of the form x ≺ y where x and y are

query tables: the semantics is that table x needs to be joined before table y . The constraint

excludes any query plan producing an intermediate join result containing table y but not table

x and hence we can neglect table sets containing y without x during dynamic programming.

This reduces the number of table sets to consider by a factor of 3/4. If we assign the constraint

x ≺ y to a first worker node and the complementary constraint y ≺ x to a second worker then

the entire search space is covered. Furthermore, we can recursively decompose the resulting

plan space partitions by applying similar constraints to other (disjoint) table pairs.

Bushy query plans are binary trees and cannot be represented as join orders anymore. How-

ever, if we fix an arbitrary table and follow its way from a leaf node in the plan tree to the

root then we can order the other tables based on when they first appear in the sequence

of intermediate results we encounter. Hence we restrict join orders for bushy plan spaces

by constraints of the form x � y |z with the semantics that x appears no later than y when

following table z to the plan tree root. This excludes join results that contain tables y and z

but not table x.

We formally analyze time and space complexity and the network bandwidth required by our

algorithm. We show that each constraint reduces time complexity by factor 3/4 for linear

and by factor 21/27 for bushy plan spaces. We show that those reduction factors are actually

optimal within a restricted design space of partitioning methods. Prior algorithms achieved

near linear speedups until a low number of threads within a shared-memory architecture.

Our speedups are not linear but very steady up to very high degrees of parallelism and within

a shared-nothing architecture. In our experiments, we demonstrate continuous scaling up

to more than 250 concurrent worker threads on a large cluster over various query sizes and

for single as well as multi-objective query optimization. As our algorithm scales even in this

challenging scenario, we believe that it scales on many other architectures as well.

The original scientific contributions of this chapter are in summary the following:

• We propose a novel algorithm for massively-parallel query optimization on shared-

nothing architectures.

• We formally evaluate that algorithm in terms of time and space complexity and in terms

of the required network traffic.

• We evaluate the algorithm experimentally on a large cluster, demonstrating its scalability

for up to more than 250 concurrent worker threads.

The remainder of this chapter is organized as follows. We compare against related work in

Section 6.2. In Section 6.3, we introduce our formal problem model. We present our algorithms

for parallel query optimization in left-deep and bushy plan spaces in Section 6.4. In Section 6.5,

we analyze time and space complexity as well as the growth in network traffic. In Section 6.6,

we experimentally demonstrate the scalability of our algorithms on a large cluster.
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6.2 Related Work

The term parallel query optimization sometimes refers to serial optimization algorithms

generating plans that are executed in parallel [36]. It is crucial to realize that we use the term

in a very different sense: we propose a parallel algorithm for generating query plans (that may

be executed serially or in parallel).

Our work connects to prior work that parallelizes the classical dynamic programming based

query optimization algorithm [67, 68, 145, 151, 37, 129]. Prior algorithms have however

implicitly been designed for shared-memory architectures that do not scale beyond a certain

degree of parallelism [132]. Prior algorithms have been evaluated on up to maximally eight

cores while we demonstrate scalability of our algorithm on a shared-nothing architecture

using over 250 workers. We outline some of the factors that distinguish prior algorithm from

our algorithm and limit their scalability.

Prior algorithms assume that all threads share common data structures (e.g., the memotable

containing optimal partial plans) and hence can access intermediate results generated by other

threads. This would lead to huge communication overhead on shared-nothing architectures

(e.g., the size of the memotable is exponential in the query size) while our algorithm does not

require any communication between workers. Furthermore, prior algorithms use a central

coordinator which assigns rather fine-grained optimization tasks to worker threads (e.g., the

master thread assigns specific pairs of join operands to generate plans for). This has two

disadvantages. First, a lot of communication is required between master and workers. Second,

the time complexity for managing the workers is high, so the master itself will eventually

become the bottleneck as the degree of parallelism increases.

We assign tasks at the coarsest possible level: each worker receives exactly one task per query.

The time complexity of the algorithm executed on the master is linear in the number of

worker nodes and in the query size and so is the total amount of data that needs to be sent

over the network. Finally, only one round of communication between workers and master

is required per query by our algorithm while prior algorithms usually require many rounds

of communication. Having only one round of communication is advantageous in scenarios

where distributing tasks to workers and receiving the results is associated with overheads. We

compare against a typical representative of prior algorithms in our experimental evaluation.

Our work is generally relevant for all areas of query optimization in which algorithms based on

dynamic programming have been proposed. This includes, for instance, multi-objective query

optimization and multi-objective parametric query optimization, the variants discussed in the

previous chapters, and parametric query optimization [59, 78]. Our method of partitioning

the join order space is generic and can be applied to all of those scenarios.
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6.3 Problem Model

Our notation is similar to the ones used in previous chapters. Nevertheless, we introduce

notation from scratch to make the current chapter self-contained.

As it is standard in query optimization, we use a simplified query and query plan model

to describe our algorithms. Extending the model and the algorithms towards richer query

languages and plan spaces is however straightforward and can be achieved via standard

techniques [116].

A query is a set Q of tables that need to be joined. We denote by SCAN(q) for q ∈Q a query

plan that scans a single table and call such a plan a scan plan. By JOIN(pL , pR ) we designate

a plan that joins the result produced by plan pL with the result produced by pR and uses

pL as outer and pR as inner operand. We use the terms left and right operand as synonyms

for outer and inner operand respectively as the outer operand is usually drawn at the left

side in visual representations of query plans. Note that we do not incorporate alternative

operator implementations for scans and joins into our model to simplify the presented pseudo-

code. The extension is however easy and the implementation of our algorithm used for the

experiments considers all standard operators.

We distinguish two types of query plans. Left-deep plans are plans in which the right operand

of every join is a scan plan. All other plans are bushy plans. Bushy plans can be represented as

labeled binary trees where leaf nodes correspond to single tables and inner nodes correspond

to join results. The tree shape of left-deep plans is fixed and the join order of a left-deep plan

is fully described by the order in which table leaf nodes are encountered in a traversal (e.g.,

in post-order) of the plan tree. This is why we can represent left-deep plans by a sequence of

query tables.

For a fixed query, the set of all bushy plans is the bushy plan space and the set of all left-deep

plans is the left-deep or linear plan space. We assume that a cost model is available that

associates query plans with cost estimates. Our pseudo-code encapsulates that cost model

in a pruning function that discards the plan with higher cost among several compared plans.

The goal of query optimization is to find the cost-optimal plan either in the space of left-deep

or in the space of bushy plans.

6.4 Algorithm

We present an algorithm for massively-parallel query optimization. The algorithm is well

suited for shared-nothing architectures as it minimizes the amount of sychronization and

communication overhead. The same properties are however beneficial in shared-memory

scenarios. Our algorithm is not specific to shared-nothing architectures and can be used to

parallelize query optimization over the nodes of a cluster or over the cores of a single computer

all the same.
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The presented algorithm solves the traditional query optimization problem, meaning that it

compares alternative query plans according to single point cost estimates in one cost metric.

The method by which we partition the plan space is however very generic and it is in fact

straight-forward to extend our algorithm to handle multiple plan cost metrics (as in the

previous chapters) or plan cost functions that depend on unknown parameters [78, 59] or

both together (as in Chapter 4). This is possible since algorithms have been proposed for all of

the aforementioned query optimization variants that use the same dynamic programming

scheme as the classical algorithm by Selinger [116]; only the pruning function, the way in

which different query plans are compared, differs between them. The algorithm presented

next can therefore easily be transformed into an algorithm handling other query optimization

variants by essentially replacing the pruning function.

We present two variants of our algorithm: the first variant finds the optimal left-deep query

plan for a given query while the second variant finds the optimal plan within a bushy plan

space. Before discussing the pseudo-code, we illustrate informally how our algorithm works

by means of a simplified example. This example refers to the algorithm variant searching

left-deep plan spaces.

Example 13. Assume we want to find the optimal left-deep plan for answering the join query

R �� S �� T �� U . Further assume that four worker nodes are available over which query

optimization is parallelized. Upon reception of the query, the master nodes sends the query

together with the total number of plan space partitions (four) and the respective partition ID

(between one and four) to each worker node. Consider the worker node that partition three is

assigned to. Knowing that the total number of partitions is four, the worker node derives that

it should use log2 4 = 2 constraints to restrict the join order space. The two constraints refer to

the order in which the four tables are joined. The first constraint refers to the ordering between

the first pair of tables, R and S, and establishes which of them appears first in the join order.

The second constraint refers to T and U . The binary representation of the partition ID encodes

the concrete set of constraints to use. For the considered worker node, the partition ID is 10 in

binary representation. The first bit of the binary representation is zero so the worker node orders

R before S. As the second bit is one, the worker orders U before T . Note that other workers will

use complementary constraint sets based on their respective partition ID such that the whole

join order space is covered. The worker that we focus on finds the best plan whose join order

complies with the given constraints. It returns that plan to the master which compares the plans

returned by all workers to determine the globally optimal plan.

We present pseudo-code for the high-level algorithm that is executed by the master and the

worker nodes in Section 6.4.1. The code of the sub-functions that the workers use to infer

constraints on the join order from the partition ID and to find join orders that comply with the

constraints are discussed in Section 6.4.2.
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1: // Parallelizes optimization of query Q over m machines.
2: function MASTER(Q,m)
3: // Generate best plan for each partition in parallel
4: parfor par t I D ∈ {1, . . . ,m} do
5: best InPar t [par t I D] ←WORKER(Q, par t I D,m)
6: end parfor
7: // Prune plans and returns best plan
8: bestPl an ← best InPar t [1]
9: for par t I D ∈ {2, . . . ,m} do

10: FINALPRUNE(bestPl an,best InPar t [par t I D])
11: end for
12: return bestPl an
13: end function

Algorithm 14 – Function executed by master node for parallel query optimization on shared-
nothing architectures.

6.4.1 High-Level Algorithm

We present pseudo-code for the high-level algorithms that are executed on the master node

and on the workers. As it is common in the area of query optimization, we simplify the

presented pseudo-code by considering only SPJ queries and by neglecting for instance the

impact of interesting tuple orders [116]. There are however standard methods by which

such algorithms can be extended to support richer query languages [116] (e.g., queries with

aggregates or nested queries). It is straight-forward to extend the presented algorithm to

consider interesting tuple orderings, too.

As announced before, we present two algorithm variants, one treating the space of left-deep

plans, the other one treating the space of bushy plans. The pseudo-code that we discuss in

this subsection is however the same for both variants such that we do not need to distinguish

between them.

Our algorithm consists of two parts: the first part is executed by the master node which

orchestrates the worker nodes. The second part of our algorithm runs on the worker nodes.

Algorithm 14 shows the code that is executed on the master. The input is a query Q, for which

we want to find an optimal query plan, and the number m of available worker nodes. We

assume in the following that m is a power of two (the reason will become apparent in the

following). The output of the MASTER function is the optimal plan for Q.

The master node executes two phases. In the first phase, the master sends the query together

with a unique partition ID to each of the workers. We discuss the pseudo-code of the WORKER

function a bit later. All worker invocations happen in parallel as indicated by the keyword

parfor. The partition ID identifies a partition of the plan search space. The task of each worker

is to find the optimal plan within its respective partition and to return it to the master. The

master collects the returned plans in the array best InPar t (we use the standard notation
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1: // Generate best plan for query Q in partition with
2: // ID par t I D out of m partitions.
3: function WORKER(Q, par t I D,m)
4: // Decode partition ID into a set of constraints
5: constr ←PARTCONSTRAINTS(Q, par t I D,m)
6: // Generate admissible intermediate results
7: j oi nRes ←ADMJOINRESULTS(Q,constr )
8: // Initialize best plans for single tables
9: for q ∈Q do

10: P [q] ←SCAN(q)
11: end for
12: // Iterate over join result cardinality
13: for k ∈ {2, . . . , |Q|} do
14: // Iterate over admissible join results
15: for q ∈ j oi nRes : |q| = k do
16: // Try splits of q into two join operands
17: TRYSPLITS(q,constr,P )
18: end for
19: end for
20: // Return best plan for query Q
21: return P [Q]
22: end function

Algorithm 15 – Generate best query plan within specific partition of either linear or bushy plan
space.

best InPar t [x] to represent an access to the x-th field of that array). In the second phase, the

master node compares all collected plans to identify the globally-optimal plan. Function FI-

NALPRUNE, whose pseudo-code we do not specify, represent a standard pruning function that

replaces bestPl an by the better plan among the two input plans. Having considered all plans

returned by the workers, the best plan must be globally optimal.

Algorithm 15 shows the code of the function that runs on worker nodes and is invoked by the

master. The input is the query Q to optimize, the total number m of plan space partitions, and

the identifier par t I D of the partition that is assigned to the respective worker. The output is

the optimal plan within the corresponding partition. Each worker node executes the following

three steps. First, knowing the total number m of partitions, the specific partition ID par t I D

can be translated into a set of constraints on the join order. Function PARTCONSTRAINTS,

whose code is discussed later, accomplishes the translation. Second, function ADMJOINRE-

SULTS translates the set of constraints into an admissible set of table sets that can appear

as join results within a query plan whose join order respects the constraints. Finally, the

worker node uses a dynamic programming approach to find the optimal query plan among all

plans that produce only admissible join results. We assume, without explicitly writing out the

corresponding code, that the result sets generated by function ADMJOINRESULTS have been

indexed by their cardinality such that Algorithm 15 can efficiently retrieve all sets with a given
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cardinality k.

Variable P is an array storing optimal query plans and P [Q] designates the optimal query plan

for joining the table set Q. We initialize P by inserting the scan plan for each single query

table q ∈Q. We simplify the pseudo-code by assuming only one scan plan per table but the

generalization is straight-forward. After that, the algorithm calculates optimal plans for table

sets of increasing cardinality, using the optimal plans that were stored in prior iterations. The

algorithm considers only table sets that represent admissible join results. For each admissible

join result, function TRYSPLITS tries all ways of splitting the join result into two admissible

operands and stores the best resulting plan in P .

6.4.2 Plan Space Partitioning

We discuss in the following the sub-functions that are invoked by the WORKER function. In

contrast to the previous subsection, we now need to distinguish between the two algorithm

variants that we present. In the following pseudo-code, we use the notation F[LI N E AR] to

indicate that function F is specific to the algorithm searching linear (or left-deep) search spaces.

Analogously, F[BU SHY ] indicates a function that is specific to the algorithm generating bushy

plans. The code of all other functions is the same for both variants.

Algorithm 16 shows the code for translating a partition ID into a set of constraints. Func-

tion PARTCONSTRAINTS obtains as input the query, the number of partitions, and the partition

ID. The output is a set of constraints on the join order that define the plan space partition that

the current worker needs to treat.

When generating constraints, we use the notation Qx with x ∈N to designate the x-th table in

query Q. This notation assumes that query tables have been numbered consecutively from

0 to |Q|−1. The algorithm can use an arbitrary table numbering but it is important that all

workers use the same numbering in order to guarantee that the whole plan space is covered

by the ensemble of workers.

The form of the generated constraints differs depending on whether we search for left-deep

or bushy plans. Constraints for the left-deep plan space are defined on table pairs while

constraints on bushy plans are defined on triples of tables. Constraint restricting the linear

plan space are of the form Qx ≺Qy . This means that the x-th table must appear before the

y-th table in an admissible join order (the join order of a left-deep plan can be represented as

a sequence of tables and the constraints refer to that representation). Constraints restricting

bushy plan spaces are of the form Qx �Qy |Qz with the semantic that when considering the

intermediate join results containing table Qz in ascending order of cardinality, table Qy must

not appear before table Qx . We assume that constraints have been indexed such that all

constraints concerning a given set of tables can be retrieved efficiently.

In case of a left-deep plan space there are two complementary constraints for each pair of

tables, namely Qx ≺ Qy and Qy ≺ Qx . In order to guarantee that the whole plan space is
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1: // Generate constraint on i -th table pair of
2: // query Q using precedence order pr ecOr d .
3: function CONSTRAINT[LINEAR](Q, i , pr ecOr d)
4: if pr ecOr d = 0 then
5: return Q2·i ≺Q2·i+1

6: else
7: return Q2·i+1 ≺Q2·i
8: end if
9: end function

10: // Generate constraint on i -th table tuple of
11: // query Q using precedence order pr ecOr d .
12: function CONSTRAINT[BUSHY ](Q, i , pr ecOr d)
13: if pr ecOr d = 0 then
14: return Q3·i �Q3·i+1|Q3·i+2

15: else
16: return Q3·i+1 �Q3·i |Q3·i+2

17: end if
18: end function

19: // Decode partition ID par t I D into a set of constraints
20: // restricting the plan space for query Q. The total
21: // number of partitions is m and par t I D ≤ m.
22: function PARTCONSTRAINTS(Q, par t I D,m)
23: // Initialize constraint set
24: constr ←�
25: // Iterate over constraints
26: for i ∈ {0, . . . , log2(m)−1} do
27: // i -th bit encodes precedence order
28: pr ecOr d ←BIT(par t I D, i )
29: // Generate constraint on i -th subset of Q
30: c ←CONSTRAINT(Q, i , pr ecOr d)
31: // Add new constraint into set
32: constr ← constr ∪c
33: end for
34: return constr
35: end function

Algorithm 16 – Translate the partition ID into a set of constraints that restrict the plan search
space.

covered by the ensemble of workers, we need to consider complementary constraints by

different workers. All workers use constraints on the same table pairs but the direction of those

constraints (which of the two tables to join first) differs among workers. Each worker uses the

binary representation of the partition ID to derive which of the two possible constraints to

consider for each table pair. We use the notation BIT(par t I D, i ) to represent the i -th bit of

the binary representation (it does not matter whether we start with the lowest order bits or
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with the highest order bits). Each bit determines the direction for one constraint.

The treatment of bushy plan spaces is analogue. Constraints are defined on table triples but for

each triple of tables there are still just two complementary constraints and each worker picks

between them based on the partition ID. We define two variants of the function CONSTRAINT

that generates the actual constraints: one for the linear and one for the bushy plan space. The

high-level algorithm for generating constraint sets does not differ between them.

Note that we have assumed that the number of workers is a power of two and that the number

of query tables is a multiple of two for left-deep plans and a multiple of three for bushy

plans. Those assumptions simplify our pseudo-code while the extension to the general case

(i.e., using only a subset of workers whose cardinality is a power of two) are straight-forward.

The number of workers that can be efficiently exploited by our algorithm is however indeed

restricted to powers of two and the maximal number of workers is additionally restricted as a

function of the query size. We analyze those restrictions in more detail in Section 6.5.

Constraints restrict the admissible join orders and join trees. We are however ultimately

interested in restricting not the number of join orders but rather the number of intermediate

results, i.e. join result table sets, that can appear in admissible plans. We focus on reducing

the number of result table sets as the time and space complexity of the dynamic programming

algorithm executed by the workers depends on it.

We must translate sets of constraints into sets of intermediate results that admissible plans can

use. Algorithm 17, more precisely function ADMJOINRESULTS, accomplishes the translation.

The input is the query and a set of constraints. The output is the set of intermediate results

that can appear in plans that comply with those constraints.

Function ADMJOINRESULTS iterates over all subsets of query tables that constraints can refer

to. For left-deep plans those are all pairs of tables with consecutive numbers. For bushy

plans those are all triples of consecutive tables. In each iteration of the for loop, the function

extends the admissible table sets stored in R by subsets of the table pair (or table triple)

considered in the current iteration using a Cartesian product for the extensions. The auxiliary

function CONSTRAINEDPOWERSET returns for a given pair (respective triple) or tables all

subsets that comply with the constraints. More precisely, if table Qx needs to be joined before

table Qy in case of left-deep plans then (non-singleton) table sets containing Qy but not table

Qx do not need to be considered. Equally for bushy plans, if table Qx must appear before table

Qy when enumerating all table sets containing Qz then table sets containing Qy and Qz but

not Qx are not admissible as join results.

Example 14. Assume that Q = {Q1,Q2,Q3,Q4} and that we have the two constraints C = {Q1 ≺
Q2,Q4 ≺ Q3}, hence we consider left-deep plans. Then the set of admissible join result sets

is generated in function ADMJOINRESULTS as follows. In the first iteration of the for loop,

we extend the elements contained in R (initially this is only the empty set) with the admis-

sible subsets of the first table pair {Q1,Q2}. The admissible subsets are {{}, {Q1}, {Q1,Q2}} and
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1: // Returns pairs of consecutive tables in query Q
2: function SUBSETS[LINEAR](Q)
3: return {{Q2·i ,Q2·i+1}|0 ≤ i ≤ |Q|/2−1}
4: end function

5: // Returns triples of consecutive tables in query Q
6: function SUBSETS[BUSHY ](Q)
7: return {{Q3·i ,Q3·i+1,Q3·i+2}|0 ≤ i ≤ |Q|/3−1}
8: end function

9: // Part of power set of S respecting constraints C
10: function CONSTRAINEDPOWERSET[LINEAR](S,C )
11: return POWER(S)\{{Qy }|(Qx ≺Qy ) ∈C }
12: end function

13: // Part of power set of S respecting constraints C
14: function CONSTRAINEDPOWERSET[BUSHY ](S,C )
15: return POWER(S)\{{Qy ,Qz }|(Qx �Qy |Qz ) ∈C }
16: end function

17: // Returns all potential join results (table subsets
18: // of query Q) that comply with constraints C .
19: function ADMJOINRESULTS(Q,C )
20: // Initialize result sets
21: R ← {�}
22: // Iterate over subsets of Q
23: for S ∈SUBSETS(Q) do
24: // Extend join results using Cartesian product
25: R ← R×CONSTRAINEDPOWERSET(S,C )
26: end for
27: return R
28: end function

Algorithm 17 – Generate all table subsets that comply with the constraints defining a search
space partition.

this is at the same time the content of R after the first iteration. The algorithm considers ad-

missible subsets of {Q3,Q4} in the second iteration (which are the sets {}, {Q4}, {Q3,Q4}) and

extends each element with all of the admissible subsets. Hence R = {{}, {Q1}, {Q1,Q2}, {Q4},

{Q1,Q4}, {Q1,Q2,Q4}, {Q3,Q4}, {Q1,Q3,Q4},

{Q1,Q2,Q3,Q4}} after the second iteration.

Note that the admissible table sets generated by function ADMJOINRESULTS do not include all

singleton table sets. While all singleton sets must be considered to generate any plan (since we

need to select scan plans for each table), singleton sets are treated separately in Algorithm 15

and it does not matter which of them are included in the result of function ADMJOINRESULTS.

Algorithm 18 shows the function trying out different splits and generating corresponding plans

that applies for left-deep plans. This function is called by Algorithm 15 for each admissible
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1: // Try all splits of U ⊆Q into two operands respecting
2: // constraints C , generate associated plans and prune.
3: function TRYSPLITS[LINEAR](Q,U ,C ,P )
4: // Iterate over potential inner operands
5: for u ∈U do
6: // Check if operand choice satisfies constraints
7: if �v ∈U : (u ≺ v) ∈C then
8: p ←JOIN(P [U \ u],P [u])
9: PRUNE(P, p)

10: end if
11: end for
12: end function

13: // Try all splits of U ⊆Q into two operands respecting
14: // constraints C , generate associated plans and prune.
15: function TRYSPLITS[BUSHY ](Q,U ,C ,P )
16: // Determine admissible operands
17: A ← {�}
18: // Iterate over set of table triples
19: for T ∈SUBSETS[BUSHY ](Q) do
20: // Restrict triple to tables in join result
21: S ← T ∩U
22: // Form power set of remaining triples
23: S ←POWER(S)
24: // Take out sets violating constraints
25: S ← S \ {{Qy ,Qz }|(Qx �Qy |Qz ) ∈C }
26: // Remove complement of inadmissible sets
27: S ← S \ {{Qx }|(Qx �Qy |Qz ) ∈C ;Qy ,Qz ∈U }
28: // Extend admissible splits by Cartesian product
29: A ← A×S
30: end for
31: // Full set and empty set do not qualify as operands
32: A ← A \ {�,U }
33: // Iterate over admissible left operands
34: for L ∈ A do
35: // Generate plans associated with splits
36: p ←JOIN(L,U \ L)
37: // Discard suboptimal plans
38: PRUNE(P, p)
39: end for
40: end function

Algorithm 18 – Generate and prune query plans that correspond to different splits of a join
result into two operands.

join result. The function iterates over all tables in the join result set U and tries all of them

as inner join operands as long as none of the constraints is violated. Plans corresponding to
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admissible splits are generated and function PRUNE, whose pseudo-code we do not specify,

compares the newly generated plan against the best plan known so far that produces the same

intermediate result as the new one. Only the better one of those two plans remains in the

result set. Note that the pruning function can store one optimal plan for each interesting tuple

ordering [116]. The pruning function used by the workers might differ from the one used by

the master (called FINALPRUNE in Algorithm 14) as the tuple ordering is for instance only

relevant as long as it can reduce the cost of future operations and does not need to be taken

into account anymore for completed plans.

There are actually two mechanisms by which partitioning reduces the time complexity per

worker. So far we have focused on the first one: partitioning reduces the time complexity per

worker since fewer potential join results need to be considered. An additional advantage of

partitioning is however that it allows to reduce the number of splits of join results into two

join operands, leading to different query plans that need to be generated and compared.

The potential for saving computation time by reducing the number of splits is higher for bushy

plan spaces since the number of possible splits grows exponentially in the size of the join

result. For left-deep plans, the number of splits grows only linearly in the cardinality of the

join result as the right join operand is limited to singleton table sets.

This is why we invest more effort in case of bushy than in case of left-deep plans into properly

exploiting the reduction of admissible splits. For left-deep plans, we basically enumerate all

possible splits and check whether they comply with the constraints. The complexity of that

approach remains linear in the number of possible splits and not in the lower number of

admissible splits. The algorithm for bushy plans is more sophisticated as it avoids generating

non-admissible splits for bushy plans in the first place. Hence its complexity is linear in the

number of admissible rather than possible splits.

Function TRYSPLITS[BUSHY ] generates all admissible splits in a bushy plan space and gen-

erates and prunes the associated query plans. The algorithm first generates all admissible

join operands and stores them in variable A. Each admissible join operand corresponds to

the union of one admissible subset for each table triple (constraints are defined on triples

of tables). This is why we iterate over all table triples, determine all admissible subsets of

the current triple, and combine in each iteration each operand in A with each admissible

subset of the current triple (using a similar approach as in Algorithm 17). For a given triple

of query tables, we only consider the ones that are included in the join result U that needs

to be split. If no constraints are defined on the current triple then the entire power set of the

contained table is admissible. Otherwise, we must remove subsets violating the precedence

constraints (line 25) but we must also remove subsets whose complement (in the contained

triple tables) would violate the precedence constraints (line 27) as the second join operand is

the complement of the first operand.

Having determined all admissible join operands (whose complement is admissible, too), we

iterate over all of them, generate plans and discard sub-optimal plans.
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6.5 Complexity Analysis

We analyze the asymptotic complexity of the algorithm presented in the previous section

according to multiple metrics: we analyze the asymptotic amount of data sent over the network

in Section 6.5.1, the consumed amount of main memory in Section 6.5.2, and the execution

time in Section 6.5.3.

We simplify the following analysis by assuming that only one scan and join operator is used.

We also assume that only one cost metric is considered when comparing query plans and

that no interesting orders are present. In Section 6.5.4, we discuss how the analysis can be

extended. In Section 6.5.5 we discuss the question of whether our partitioning methods can

be improved and show that they are optimal at least within a restricted space of partitioning

methods.

We introduce notations that are used throughout this section. We denote by n = |Q| the

number of query tables to join and by m the number of worker machines. We assume that

m ≤ 2�n/2� for linear plan search spaces and m ≤ 2�n/3� for bushy plan spaces. This is required

as we assume that the table sets that different constraints refer to are mutually disjunct. We

use two tables per constraint for linear plan spaces and three tables for bushy plan spaces.

We denote by l = �log2(m)� the number of constraints per plan space partition. By bq we

designate the byte size of the input query. By bp we denote the byte size of a corresponding

query plan.

6.5.1 Network Communication

We analyze the asymptotic size of the data that is sent over the network during optimization of

one query.

Theorem 26. The amount of data sent over the network is in O(m · (bq +bp )).

Proof. Different workers do not communicate with each other so data is only sent between

master and workers. This happens at two occasions: when assigning each worker to a plan

space partition and when collecting the best plans for each partition. The input for each

worker is the query (with space consumption bq ) and two integer numbers with constant

space consumption. We consider one plan cost metric and no interesting orders (while the

extensions are discussed later). The output of each worker is therefore a single query plan

with space consumption bq .

6.5.2 Main Memory

We analyze the amount of main memory that each worker requires during optimization. Note

that the main memory consumption of the master is negligible as it delegates optimization.

The main memory consumed per worker node depends on the number of admissible join
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results.

Theorem 27. Each linear plan space partition restricted by l constraints has O(2n · (3/4)l )

admissible join results.

Proof. The proof is an induction over the number of constraints l . For l = 0 (induction start),

all subsets of Q are admissible and their number is in O(2n). Assume the induction holds up

to L constraints. We will see that it holds for L+1 constraints as well. All constraints refer to

different tables. Hence the first L constraints do not influence the occurrence frequency of

the two tables x and y that the L+1-th constraint refers to. More precisely, among the table

sets that remain admissible after considering the first L constraints, the fraction of table sets

containing x and y , x but not y , y but not x, and neither x nor y , is always 1/4. Denote by

x ≺ y the L+1-th constraint stating that we must join x before y . Then join results containing

y but not x are inadmissible, the number of admissible table sets is reduced by factor 3/4, and

the induction holds.

Theorem 28. Each bushy plan space partition restricted by l constraints has O(2n · (7/8)l )

admissible join results.

Sketch. The proof follows closely the one of Theorem 27 with the difference that each con-

straint of the form x � y |z excludes all table sets that contain y and z but not x and their

fraction is always 1/8 among the table sets satisfying all other constraints.

We use the number of admissible join results to calculate main memory consumption.

Theorem 29. The main memory consumption per node is in O(2n ·(3/4)l ) for linear plan spaces

and O(2n · (7/8)l ) for bushy plan spaces.

Proof. The main memory consumption per worker dominates the consumption of the master.

The variable with dominant space consumption are the ones storing admissible join results

(variable j oi nRes in Algorithm 15) and the one assigning table sets to optimal plans (variable

P ). We currently assume one plan cost metric and therefore only one plan is optimal per table

set. Storing plans generally takes O(n) space but here each plan can be represented by at most

two pointers to optimal sub-plans stored for table subsets which requires only O(1) space. The

total main memory consumption follows from Theorems 27 and 28.

6.5.3 Execution Time

We analyze time complexity. Note that the pseudo-code presented in Section 6.4 is rather

abstract and does not contain certain steps that are crucial for efficiency: as we mentioned

in Section 6.4, we assume for instance that constraints are indexed such that we can find all

constraints in which a given table appears in constant time. For the following analysis, we
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assume that such commonsense optimizations have been applied (we use them as well in our

implementation that is evaluated in Section 6.6).

We first analyze execution time on the master.

Theorem 30. The master requires O(m · (bq +bp )) time.

Proof. The master distributes the query and the partition ID to all m workers. Assuming that

the required time is proportional to the amount of data being sent, distributing tasks takes

O(mbq ) time and collecting plans from the workers is in O(mbp ). After receiving all plans, the

master iterates over the m plans that were returned from the workers (and whose cost was

already calculated) and determines the one with minimal cost. This has complexity O(m).

Now we analyze the time complexity of processing a linear plan space partition.

Theorem 31. The time complexity for processing a linear plan space partition by one of the

workers is O(n ·2n · (3/4)l ).

Proof. A worker performs three main steps per invocation: translating the partition ID into

constraints, translating constraints into admissible join result sets, and determining the

optimal plan among the plans using only admissible join results. The operation with dominant

time complexity is the determination of the optimal plan. For each admissible join result set,

we iterate over less than n inner join operands. The number of admissible join result sets is in

O(2n · (3/4)l ) according to Theorem 27. Generating a plan from two sub-plans, calculating its

cost via recursive formulas, and comparing it with the best previously generated plan joining

the same tables requires only constant time.

Theorem 32. The time complexity for processing a bushy plan space partition by one of the

workers is O(3n · (21/27)l ).

Proof. Determining the optimal plan in the restricted plan space partition is the operation

with dominant time complexity. The time complexity for finding an optimal plan is lower-

bounded by the number of considered result table sets. It is proportional to the number of

considered join operand pairs.

For each table there are in general three possibilities for how it appears in a pair of join

operands: either it appears in the left operand or in the right operand or it does not appear

(neither in the operands nor in the join result). Join operands are constructed from admissible

subsets of table triples. If no constraint is defined on a given triple then all splits are admissible

which makes 33 = 27 possible pairs. If a constraint is defined on a triple then some of those 27

possibilities are not admissible. If the constraint is x � y |z then the following six splits of triple

{x, y, z} are excluded: all splits whose union contains y and z but not x (this applies to four

splits) and all splits that assign y and z to one operand and x to the other one (this applies to
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two splits). The ratio of admissible to possible splits is therefore 21/27 for each triple with a

constraint on it.

As the time complexity of the worker processes dominates the complexity of the master process

and as all workers execute in parallel, the time complexity of a single worker is the complexity

of the entire optimization process.

6.5.4 Extensions

So far we considered one plan cost metric, no interesting orders, and no alternative operator

implementations. It is however straight-forward to extend the analysis as we sketch out in the

following.

Considering multiple alternative operator implementations for scan and join operations

influences only time complexity. Time complexity grows linearly in the number of operators as

each join operator implementation must be considered for each possible pair of join operands.

Annotating the operations within query plans by an operator ID does neither change the

asymptotic space complexity in main memory nor the asymptotic communication overhead

as storing an integer ID requires constant space.

Considering interesting orders or considering multiple plan cost metrics both have the effect

that multiple plans can be optimal for joining the same set of tables. The number of interesting

orders restricts the number of plans that need to be stored per table set. Assuming that multiple

plan cost metrics are considered while using an approximation factor, the number of Pareto-

optimal plans per table set can be bounded as shown in Chapter 2. The number of plans sent

from workers to master, and therefore the communication overhead, increases linearly in the

number of plans stored per table set. Main memory consumption also increases linearly in

the number of plans. Time complexity increases proportional to the cube of the number of

plans for the following reason: when searching for the optimal plan within each plan space

partition, we need to consider all pairs of optimal plans for each split of a table set into two

join operands. This accounts for a quadratic increase in complexity. Additionally, pruning

takes longer as we need to compare plans not against one but multiple optimal plans. Together

this implies a cubic increase in complexity. Note that plans need to be compared according to

multiple cost metrics but the number of plan cost metrics is usually considered a constant, as

justified in Chapter 2.

6.5.5 Optimality of Partitioning

Execution time and main memory consumption both depend on the number of intermediate

join results that need to be treated by each worker. With our partitioning scheme, the number

of join results per worker reduces by factor 3/4 in case of linear plan spaces and by factor

7/8 for bushy plans, each time that the number of workers doubles. As the ideal factor of 1/2
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is not reached there must be join results that are assigned to multiple workers. This raises

the question of whether we can do better and reduce the number of intermediate results per

worker node by a lower factor.

We answer that question in the following for partitioning methods that are similar to the one

we apply. Similar methods are methods that divide the power set of query tables into subsets

based on which out of two, respective three, fixed tables are present. Each of the resulting

subsets is assigned to part of the workers and each worker generates all plans whose join

results are contained in its assigned subsets (each worker constructs scan plans for all single

tables, independently from the assigned join results). Workers do not exchange partial plans

and hence must generate completed plans and start optimization from scratch.

The following theorems study the best speedup that is achievable by partitioning the plan

space between two workers. The reasoning can however be generalized to higher degrees of

parallelism.

Theorem 33. Doubling the number of workers cannot reduce the maximal number of join

results per worker by less than factor 3/4 in linear plan spaces.

Proof. For a fixed pair of tables {x, y} out of all query tables, we denote by x y the set of table

sets containing y but not x, by x y the sets containing both tables, by x y sets containing neither

x nor y , and by x y the remaining sets. Each worker must obtain subset x y in order to generate

complete plans. The cardinality of the set of joined tables can only increase by one from one

join to the next in a left-deep plan space. Each worker needs therefore either join results from

x y or from x y in order to generate any valid plan. Set x y must be assigned to at least one

worker since the plan space partitioning is otherwise incomplete.

Theorem 34. Doubling the number of workers cannot reduce the maximal number of join

results per worker by less than factor 7/8 in bushy plan spaces.

Sketch. For a triple of tables {x, y, z}, we use a similar notation as before to characterize join

result sets and denote for instance by x y z all sets containing x and z but not y . Both workers

require x y z for the same reason as before. Assume that we do not assign the set x y z to both

workers. The worker to which x y z is assigned is the only worker that can consider plans

joining the other tables besides x, y , and z independently before joining with the triple tables.

This means that this worker needs to cover all possible join orders for x, y , and z. Hence it

requires all join result sets which defeats the purpose of partitioning.

Assume now that we do not assign the set x y z to the first worker. Then the second worker

is the only one that can consider plans of the form (x �� . . .) �� (y �� . . .) and hence requires

x y z and by analogue reasoning also x y z in addition to x y z in order to make sure that the

whole plan space is covered. As the second worker is at the same time the only one that can

consider plans of the form ((x �� . . .) �� y) �� . . ., it requires at the same time x y z and x y z.

Since only the second worker can treat plans of the form (x �� . . .)�� (y �� z), it requires also
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x y z. So the second worker obtains at least 7 sets of join results. The same happens when not

assigning x y z or x y z to the first worker. We have the option of not assigning one of the three

sets containing two out of the three tables {x, y, z} to the first worker in which case we need to

assign the other two to the second worker. The maximal number of intermediate result splits

per worker remains 7/8.

6.6 Experimental Evaluation

We evaluate the scalability of our query optimization algorithm on a large cluster with 100

nodes and parallelize over up to 256 Spark executors. Parallelizing query optimization on

clusters is useful if query plans are also executed on a cluster: it is preferable to use all available

resources for optimization instead of leaving nodes idle until serial optimization finishes.

For queries that are executed regularly, a cluster can be used before run time to calculate

optimal query plans if the search space is too large for optimization on a single node. While

parallelizing query optimization on a cluster is hence a relevant application scenario, we also

selected it specifically because it is a very challenging scenario for parallelization due to high

communication cost and setup overhead. The fact that our algorithm scales even on a cluster

provides in our opinion strong evidence for that it scales in a multitude of other scenarios as

well. Our algorithm is not restricted to shared-nothing architectures but can also be applied in

shared-memory settings.

We evaluate our algorithm, in comparison with a baseline, for traditional query optimization

with one plan cost metric as well as for multi-objective query optimization where query plans

are compared according to multiple cost metrics. We also calculate the speedups that we

obtain by parallelization compared to serial algorithms [116, 137]. Section 6.6.1 describes our

experimental setup and Section 6.6.2 our experimental results.

6.6.1 Experimental Setup

We evaluate our algorithm on a cluster with 100 nodes. Each node is equipped with two

Intel Xeon E5-2630 v2 CPUs featuring six cores each running at 2.60GHz; 128 GB of main

memory and 20 TB of hard disk capacity are available per node. The cluster runs Ubuntu

Linux, version 14.04.

All benchmarked algorithms use Spark 1.5 on Yarn 2.7.1 and are implemented in Java 1.7.

We implemented the algorithm from Section 6.4 and abbreviate it by MPQ (for massively

parallel query optimization) in the following plots. We compare against an algorithm that

is representative for the rather fine-grained approaches to parallelizing query optimization

proposed so far. They were targeted at shared-memory architectures and moderate degrees

of parallelism [67, 68]. We call that algorithm SMA (for shared-memory approach) in the

following plots. In this algorithm, the master node assigns to each worker a set of join results

for which to calculate optimal plans based on the optimal plans that were generated by other
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workers. This means that intermediate results need to be shared between workers and that the

master needs to assign multiple rounds of tasks to the workers. The comparison between MPQ

and SMA is of course unfair as both were developed for different architectures and different

degrees of parallelism. We are however not aware of any other query optimization algorithms

targeted at shared-nothing architectures.

We use up to 256 Spark executors and reserve up to 40 GB of main memory per executor (query

optimization requires large amounts of memory, in particular in case of multiple plan cost

metrics, as shown in Chapter 2). We set the maximum message size to 1 GB (MSA needs to

send large messages).

We compare algorithms in linear and bushy plan spaces. We always consider the full plan

space and do not heuristically restrict the use of cross products as this might miss optimal

plans [106]. As we allow cross products, the number of intermediate results to consider

and hence performance of our optimization algorithms does not critically depend on the

structure of the query join graphs. We generate random star join graphs, table cardinalities,

and predicate selectivity values by the method introduced by Steinbrunn et al. [131] which is

commonly used for query optimization benchmarks [31]. In a first series of experiments, we

consider execution time as only cost metric and use standard cost formulas [131] to estimate

the cost of standard join operators such as block-nested loop join, hash join, and sort-merge

join. In a second series of experiments, we consider two plan cost metrics and the goal is

hence to approximate the set of Pareto-optimal plans (a plan is Pareto-optimal if no other

plan has better cost according to all cost metrics [137]). Our second cost metric (in addition to

execution time) is the buffer space consumption such that we calculate optimal cost tradeoffs

between execution time and buffer space consumption. We already used those cost metrics in

benchmarks in the previous chapters.

For the series of experiments with two plan cost metrics, we replace the standard pruning

function in our algorithms by the pruning function introduced in Chapter 2. That pruning

function is parameterized by an approximation factor α and we set α= 10.

6.6.2 Experimental Results

Due to space restrictions, we show only an extract of our full experimental results. The

presented results are however representative and we observed the same tendencies in our

additional experiments.

We start by discussing the results for traditional query optimization with one plan cost metric.

Figure 6.1 shows a comparison between MPQ and MSA in terms of optimization time and

in terms of the amount of data exchanged between cluster nodes. Each data point in the

plots corresponds to the median of the results for twenty randomly generated queries. We

compare algorithms for different plan spaces (linear and bushy) and for different query sizes

(number of joined tables). We try different degrees of parallelism for each plan space, adapting
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Figure 6.1 – MPQ outperforms MSA by up to four orders of magnitude in terms of optimization
time; scalability of MPQ is limited due to the query sizes.

153



Chapter 6. Massive Parallelization

the maximal parallelism to the search space size (we scaled up to the maximal degree of

parallelism that MPQ can exploit based on the number of disjoint table pairs or triples) up to a

maximum of 128 workers. We try smaller query sizes for the bushy plan space than for the

linear plan space as the size of the bushy search space grows faster in the number of query

tables. Note that we also consider Cartesian product joins in contrast to prior evaluations of

parallel query optimization algorithms. This makes the plan space much larger for the same

number of tables. Still the search spaces treated in Figure 6.1 are of moderate size and we try

larger search spaces in the following.

MPQ outperforms MSA by up to four orders of magnitude in optimization time. The reason is

the large amount of data that MSA has to send over the network, due to the need for sharing

intermediate results between workers, and the overheads on the master node by fine-grained

task management. The amount of data sent by MSA reaches several hundreds of megabytes

while our algorithm sends at most 234 kilobytes and in most cases significantly less than that.

As outlined before, MSA is not designed for shared-nothing scenarios and the performance

gap between the algorithms is to be expected.

The search space sizes in Figure 6.1 represent approximately the limit of what the competitor

algorithm MSA can treat within reasonable amounts of time. For our MPQ algorithm, the

considered search spaces are actually too small to justify parallelization. This is why we see

in most plots in Figure 6.1 no decrease in optimization time for MPQ with growing degree of

parallelism (except for the bushy search space with 15 query tables). The absolute optimization

times are for MPQ already very low even for a single worker so parallelization is not needed yet.

The amount of network traffic and the management overhead increase for both algorithms

once the number of workers increases. MSA can only benefit in few cases from parallelization

and only up to a degree of parallelism of four.

The computation time of MSA increases quickly in the query size and in the degree of paral-

lelism as well (reaching more than 15 minutes per test case for 16-table joins). This is why we

exclude it from the following series of experiments.

Figure 6.2 shows results for larger search spaces and only for MPQ. The figure shows total

optimization time (measured on the master node) as well as the maximal optimization time

measured over all workers (“W-Time” in the figure). The fact that the difference between

both is small indicates that the management overhead on the master node is negligible. We

show network traffic and additionally the maximal main memory consumption over all of the

workers (the master does not perform optimization itself and its main memory consumption

is negligible). We scale for each query size up to the maximal degree of parallelism supported

by our algorithm (determined by the number of table pairs for linear plans and the number of

table triples for bushy plans) and maximally up to 128 workers.

As search space sizes are large enough, we see steady scaling for all degrees of parallelism

that are theoretically supported by our algorithm without diminishing returns for higher

number of workers. The scaling is slightly better for linear plans than for bushy plans which
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Figure 6.2 – MPQ scales steadily for sufficiently large search spaces and one plan cost metric.

matches precisely our theoretical predictions from Section 6.5 (execution time decreases

by factor 3/4 for linear plans but only by factor 21/27 for bushy plans, each time that the

degree of parallelism doubles). Unlike for MSA, the network traffic created by MPQ depends

only marginally on the query size as no intermediate results have to be exchanged between

workers or between workers and master. Only the query itself and the final plan generated by

each worker are sent. The maximal main memory consumption on the workers (measured

by the number of relations for which to store optimal plans) equally decreases steadily with

increasing parallelization. Here the decrease for bushy plans is slower than for linear plans

which again matches our theoretical results.

If we use one worker then no constraints on the join order are defined. Then MPQ is equivalent

to the classical Selinger algorithm [116] as it treats the same table sets in the same order. Hence

we compare the optimization time when executing our algorithm on a single worker (not

measuring master computation time and communication overheads) to the optimization time

of the parallel version (including master computation time and communication overheads) to

obtain the speedup of our algorithm compared to serial query optimization. With 128 workers,

we obtain for left-deep plans a speedup of 8.1 for 24 query tables and a speedup of 7.2 for 20

tables. With 32 workers we have a speedup of 3.2 for 15-table joins and bushy query plans and

a speedup of 4.8 for 18-table joins and 64 workers.

We finally want to point out that our Java-based implementation is not optimized for maximum

efficiency. It is rather optimized for modularity, allowing to “plug-in” different search spaces

and cost metrics. This enables us to execute experiments over a broad range of scenarios

but it also introduces overheads in some of the functions that are most frequently called

during optimization. We believe that optimization efficiency can be significantly improved by

specializing the algorithm to a single scenario.
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Figure 6.3 – MPQ outperforms MSA but its scalability is limited by small query sizes.

We discuss the results for multi-objective query optimization. Figure 6.3 shows a comparison

between multi-objective versions of MSA and MPQ (both algorithms use the same pruning

function that we reconfigured to consider two cost metrics). The tendencies are similar as for

single-objective query optimization. Optimization times and network traffic are significantly

lower for MPQ than for MSA. The network traffic of MPQ has however increased when com-

paring to the results for single-objective query optimization. The reason is that each worker

must now send the set of all Pareto-optimal plans in its respective plan space partition back to

the master instead of only one plan. The median number of complete Pareto-optimal plans

per query was 21 for 12-table joins when considering left-deep plans and 16 for 9-table joins

in a bushy plan space.

Instead of exploiting a high degree of parallelism, MSA suffers significantly once the number

of workers increases due to network traffic and coordination overhead. The maximal degree

of parallelism that was beneficial to MSA is eight. This is also the number of threads that prior

algorithms were maximally evaluated on. MPQ benefits from parallelism up to 32 workers

for 10-table joins and left-deep plans, for up to 64 workers for 12-table joins, and for up to

eight workers for 9-table joins and bushy plan spaces which corresponds to the number of

disjoint table pairs respective triples. The absolute run times of MPQ are however so low that

parallelization is unnecessary.
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Figure 6.4 – MPQ scales steadily using up to 256 workers for linear plan spaces and two plan
cost metrics.

Figure 6.4 shows results for MPQ on queries that are sufficiently large to exploit large degrees

of parallelism. The scaling is steady and without noticeable diminishing returns effects up to

the maximal number of 256 workers. Note that the run times of MPQ in Figure 6.4 are lower

than the run times of MSA in Figure 6.3, even though we consider significantly larger search

spaces in Figure 6.4. We tested scalability for bushy plans and more than 9 query tables and

saw steady scaling up to the number of table triples in the query. We omit those results due to

space restrictions.

Our algorithm is for one worker equivalent to the algorithm from Chapter 2. We calculate

speedups in a similar way as before and obtain a speedup of 5.1 for 16-table joins, 5.5 for

18-table joins, and 9.4 for 20-table joins.

6.7 Conclusion

We presented a generic plan space decomposition method for query optimization that is

applicable for single- and multi-objective query optimization and for other variants. We

demonstrated scalability using up to 256 workers.

157





7 Linearization

All methods presented in the prior chapters are similar in that they address the query opti-

mization problem in its original form. In this chapter, we will transform query optimization

into a different problem, the problem of mixed integer linear programming (MILP). This has

the advantage that we can apply existing software solvers to the transformed problem. We

will see that doing so allows treating significantly larger search spaces in query optimization

than with dynamic programming based approaches. Furthermore, the experimental results

that we see in this chapter represent only snapshots capturing the current state of the art in

MILP solver technology. MILP solvers have steadily improved their performance over the

past decades (hardware independently). By connecting query optimization to MILP, we will

automatically benefit from all future advances in the highly fruitful research area of MILP.

7.1 Introduction

From the developer’s perspective, there are two ways of solving a hard optimization problem on

a computer: either we write optimization code from scratch that is customized for the problem

at hand or we transform the problem into a popular problem formalism and use existing solver

implementations. In principle, the first approach could lead to more efficient code as it allows

to exploit specific problem properties. Also, we do not require a transformation that might

blow up the size of the problem representation. In practice however, our customized code

competes against mature solver implementations for popular problem models that have

been fine-tuned over decades [27], driven by a multitude of application scenarios. Using

an existing solver reduces the amount of code that needs to be written and we might obtain

desirable features such as parallel optimization or anytime behavior (i.e., obtaining solutions of

increasing quality as optimization progresses) automatically from the solver implementation.

It is therefore in general advised to consider and to evaluate both approaches for solving an

optimization problem.

We apply this generic insight to the problem of database query optimization. For the last thirty

years, the problem of exhaustive query optimization, more precisely the core problem of join
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ordering and operator selection [116], has typically been solved by customized code inside the

query optimizer. Query optimizers consist of millions of code lines [145] and are the result of

thousands of man years worth of work [82]. The question arises whether this development

effort is actually necessary or whether we can transform query optimization into another

popular problem formalisms and use existing solvers. We study that question in this chapter.

We transform the join ordering problem into a mixed integer linear program (MILP). We

select that formalism for its popularity. Integer programming approaches are currently the

method of choice to solve thousands of optimization problems from a wide range of areas [94].

Corresponding software solvers have sometimes evolved over decades and reached a high

level of maturity [27]. Commercial solvers such as Cplex1 or Gurobi2 are available for MILP as

well as open source alternatives such as SCIP3.

Those solvers offer several features that are useful for query optimization. First of all, they

possess the anytime property: they produce solutions of increasing quality as optimization

progresses and are able to provide bounds for how far the current solution is from the op-

timum. Chaudhuri recently mentioned the development of anytime algorithms as one of

the relevant research challenges in query optimization [34]. Mapping query optimization to

MILP immediately yields an algorithm with that property (note that the anytime algorithm

from Chapter 3 is not applicable to traditional query optimization). Second, MILP solvers

already offer support for parallel optimization which is an active topic of research in query

optimization as well [67, 145, 129]. Finally, the performance of MILP solvers has improved

(hardware-independently) by more than factor 450,000 over the past twenty years [27]. It

seems entirely likely that those advances can speed up query optimization as well (and an-

ticipating our experimental results, we find indeed classes of query optimization problems

where a MILP based approach treats query sizes that are illusory for prior exhaustive query

optimization algorithms).

In summary, by connecting query optimization to integer programming, we benefit from over

sixty years of theoretical research and decades of implementation efforts. Even better, having

a mapping from query optimization to MILP does not only enable us to benefit from past

research but also from all future research and development advances that originate in the

fruitful area of MILP. Performance improvements have been steady in the past [27] and, as

several major software vendors compete in that market, are likely in the future as well.

Given that integer programming transformations have been proposed for many optimization

problems that connect to query optimization [13, 20, 54, 108, 148], it is actually surprising that

no such mapping has been proposed for the join ordering problem itself so far. There are even

sub-domains of query optimization, notably parametric query optimization [59, 73, 74] and

multi-objective parametric query optimization (this problem was introduced in Chapter 4),

where it is common to approximate the cost of query plans via piecewise-linear functions. The

1http://www.ibm.com/software/products/en/ibmilogcpleoptistud
2http://www.gurobi.com/
3http://scip.zib.de/
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purpose here is however to model the dependency of plan cost on unknown parameters while

traditional approaches such as dynamic programming are used to find the optimal join order.

None of the aforementioned publications transforms the join ordering problem into a MILP

and the same applies for additional related work that we discuss in Section 7.2.

A MILP is specified by a set of variables with either continuous or integer value domain, a

set of linear constraints on those variables, and a linear objective function that needs to be

minimized. An optimal solution to a MILP is an assignment from variables to values that

minimizes the objective function. We sketch out next how we transform the join ordering

problem into a MILP.

Left-deep query plans can be represented as follows (we simplify by not considering alternative

operator implementations while the extensions are discussed later). For a given query, we can

derive the total number of required join operations from the number of query tables. As we

know the number of required joins in advance, we introduce for each join operand and for

each query table a binary variable indicating whether the table is part of that join operand. We

add linear constraints enforcing for instance that single tables are selected for the inner join

operands (a particularity of left-deep query plans), that the outer join operands are the result

of the prior join (except for the first join), or that join operands have no overlap. The result is a

MILP where each solution represents a valid left-deep query plan.

This is not yet useful: we must associate query plans with cost in order to obtain the optimal

plan from the MILP solver. The cost of a query plan depends on the cardinality (or byte size)

of intermediate results. The cardinality of an intermediate result depends on the selected

tables and on the evaluated predicates. We introduce a binary variable for each predicate

and each intermediate result, indicating whether the predicate has been evaluated to reduce

cardinality. Predicate variables are restricted by linear constraints that make it impossible to

evaluate a predicate as long as not all query tables it refers to are present in the corresponding

result. The cardinality of the join of a set of tables on which predicates have been evaluated

is usually estimated by the product of table cardinalities and predicate selectivities. As we

cannot directly represent a product via linear constraints, we focus on the logarithm of the

cardinality: the logarithm of a product is the sum of the logarithms of the factors. Based on

our binary variables representing selected tables and evaluated predicates, we calculate the

logarithm of the cardinality for all intermediate results that appear in a query plan. Based

on the logarithm of the cardinality, we approximate the cost of query plans via sets of linear

constraints and via auxiliary variables.

We must approximate cost functions since the cost of standard operators is usually not linear

in the logarithm of input and output cardinalities. We can however choose the approximation

precision by choosing the number of constraints and auxiliary variables. This allows in

principle arbitrary degrees of precision. Also note that there are entire sub-domains of query

optimization in which it is standard to approximate plan cost functions via linear functions [59,

73, 74, 139]. Approximating plan cost via linear function is therefore a widely-used approach.
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Our goal here was to give a first intuition for how our transformation works and we have

therefore considered join order alone and in a simplified setting. Later we show how to extend

our approach for representing alternative operator implementations, complex cost models

taking into account interesting orders and the evaluation cost of expensive predicates, or

richer query languages.

We formally analyze our transformation in terms of the resulting number of constraints

and variables. In our experimental evaluation, we apply the Gurobi MILP solver to query

optimization problems that have been reformulated as MILP problems. We compare against a

classical dynamic programming based query optimization algorithm on different query sizes

and join graph structures. Our results are encouraging: the MILP approach often generates

guaranteed near-optimal query plans after few seconds where dynamic programming based

optimization does not generate any plans up to the timeout of one minute.

The original scientific contributions of this chapter are the following:

• We show how to reformulate query optimization as MILP problem.

• We analyze the problem mapping and express the number of variables and constraints

as function of the query dimensions.

• We evaluate our approach experimentally and compare against a classical dynamic

programming based query optimizer.

The remainder of this chapter is organized as follows. We discuss related work in Section 7.2. In

Section 7.3, we introduce our formal problem model. Section 7.4 describes how we transform

query optimization into MILP. We analyze how the size of the resulting MILP problem grows

in the dimension of the original query optimization problem in Section 7.6. In Section 7.7,

we experimentally evaluate an implementation of our MILP approach in comparison with a

classical dynamic programming based query optimization algorithm.
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7.2 Related Work

MILP representations have been proposed for many optimization problems in the database

domain, including but not limited to multiple query optimization [54], index selection [108],

materialized view design [148], selection of data samples [13], or partitioning of data for

parallel processing [20]. In the areas of parametric query optimization and multi-objective

parametric query optimization it is common to model the cost of query plans by linear func-

tions that depend on unknown parameters [59, 73, 74, 139]. None of those prior publications

formalizes however the join ordering and operator selection problem as MILP.

Query optimization algorithms can be roughly classified into exhaustive algorithms that

formally guarantee to find optimal query plans and into heuristic algorithms which do not

possess those formal guarantees. Exhaustive query optimization algorithms are often based

on dynamic programming [116, 141, 100, 101]. We compare against such an approach in our

experimental evaluation.

Our MILP-based approach to query optimization can be used as an exhaustive query optimiza-

tion algorithm since we can configure the MILP solver to return a guaranteed-optimal solution.

The MILP solver can however easily be configured to return solutions that are guaranteed

near-optimal (i.e., the cost of the result plan is within a certain factor of the optimum) or to

return the best possible plan within a given amount of time. This makes the MILP approach

more flexible than typical exhaustive query optimization algorithms. Furthermore, MILP

solvers posses the anytime property, meaning that they produce multiple plans of decreasing

cost during optimization. The development of anytime algorithms for query optimization

has recently been identified as a research challenge [34]. Transforming query optimization

into MILP immediately yields anytime query optimization. Note that the anytime algorithms

described in Chapter 3 cannot speed up traditional query optimization with one plan cost

metric.

The parallelization of exhaustive query optimization algorithms (not to be confused with query

optimization for parallel execution) is currently an active research topic [67, 68, 129, 145].

MILP solvers such as Cplex or Gurobi are able to exploit parallelism and transforming query

optimization into MILP hence yields parallel query optimization as well. The development

of parallel query optimizers for new database systems requires generally significant invest-

ments [129]; the amount of code to be written can be significantly reduced by using a generic

solver as optimizer core.

Various heuristic and randomized algorithms have been proposed for query optimization [23,

31, 76, 131, 135, 134]. In contrast to many exhaustive algorithms, most of them possess the

anytime property and generate plans of improving quality as optimization progresses. Those

approaches can however not give any formal guarantees at any point in time about how

far the current solution is from the optimum. MILP solvers provide upper-bounds during

optimization on the cost difference between the cost of the current solution and the theoretical

optimum. Such bounds can for instance be used to stop optimization once the distance
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reaches a threshold. Randomized algorithms do not offer that possibility and the returned

solutions may be arbitrarily far from the optimum.

7.3 Model and Assumptions

Our notation is similar to the ones used in previous chapters. Nevertheless, we introduce

notation from scratch to make the current chapter self-contained.

The goal of query optimization is to find an optimal or near-optimal plan for a given query. It

is common to introduce new query optimization algorithms by means of simplified problem

models. We also use a simple query and query plan model throughout most of the chapter

while we discuss extensions to richer query languages and plan models as well.

In our simplified model, we represent a query as a set Q of tables that need to be joined together

with a set P of binary predicates that connect the tables in Q (extensions to nested queries,

queries with aggregates, queries with projections, and queries with non-binary predicates will

be discussed). For each binary predicate p ∈ P , we designate by T1(p),T2(p) ∈Q the two tables

that the predicate refers to. Predicates can only be evaluated in relations in which both tables

they refer to have been joined.

We assume in the simplified problem model that one scan and one binary join operator are

available. As we consider binary joins, a query with n tables requires n −1 join operations. A

query plan is defined by the operands of those n −1 join operations, more precisely by the

tables that are present in those operands. We consider left-deep plans. For left-deep query

plans, the inner operand is always a single table; the outer operand is the result from the

previous join (except for the outer operand of the first join which is a single table).

Query plans are compared according to their execution cost. The execution cost of a plan

depends on the cardinality of the intermediate results it produces. We write C ar d(t) ≥
1 to designate the cardinality of table t and Sel (p) ∈ (0,1] to designate the selectivity of

predicate p. We assume in the simplified model that the cardinality of the join between

several tables, after having evaluated a set of join predicates, corresponds to the product

of the table cardinalities and the predicate selectivities. We hence assume in the simplified

model uncorrelated predicates while extensions to correlated predicates will be discussed. We

generally assume that the execution cost of a query plan is the sum of the execution cost of all

its operations. We will show how to represent various cost functions.

We translate the problem of finding a cost-minimal plan for a given query into a mixed integer

linear programming problem (MILP). A MILP problem is defined by a set of variables (that can

have either integer or continuous value domains), a set of linear constraints on those variables,

and a linear objective function on those variables that needs to be minimized. A solution to

a MILP is an assignment from variables to values from the respective domain such that all

constraints are satisfied. An optimal solution minimizes the objective function value among
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Table 7.1 – Variables for formalizing join ordering for left-deep query plans as integer linear
program.

Symbol Domain Semantic

t i ot j /t i it j {0,1} If table t is in outer/inner operand of j -th join

paop j {0,1} If p-th predicate can be evaluated on outer operand of j -th join

lco j R Logarithm of cardinality of outer operand of j -th join

ctor j {0,1} If cardinality of outer operand of j -th join reaches r -th threshold

co j /ci j R+ Approximated cardinality of outer/inner operand of j -th join

all solutions.

7.4 Join Ordering Approach

The join ordering problem is usually solved by algorithms that are specialized for that problem

and run inside the query optimizer. We adopt a radically different approach: we translate the

join ordering problem into a MILP problem that we solve by a generic MILP solver.

MILP is an extremely popular formalism that is used to solve a variety of problems inside

and outside the database community. By mapping the join ordering problem into a MILP

formulation, we benefit from decades of theoretical research in the area of MILP as well as

from solver implementations that have reached a high level of maturity. By linking query

optimization to MILP, we make sure that query optimization will from now on indirectly

benefit from all theoretical advances and refined implementations that become available in

the MILP domain.

We explain in the following our mapping from a join ordering problem to a MILP. We describe

the variables and constraints by which we represent valid join orders in Section 7.4.1. We show

how to model the cardinality of join operands in Section 7.4.2. In Section 7.4.3 we associate

plans with cost values based on the operand cardinalities.

Note that we introduce our mapping by means of a basic problem model in this section while

we discuss extensions to the query language, plan space, and cost model in Section 7.5.

7.4.1 Join Order

A MILP program is characterized by variables with associated value domains, a set of linear

constraints on those variables, and a linear objective function on those variables that needs

to be minimized. Table 7.1 summarizes the variables that we require to model join ordering

as MILP problem and Table 7.2 summarizes the associated constraints. We introduce them

step-by-step in the following.
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Table 7.2 – Constraints for join ordering in left-deep plan spaces.

Constraint Semantic
∑

t t i ot0 = 1/∀ j :
∑

t t i it j = 1 Select one table for outer operand of first
join/for all inner operands

∀ j∀t : t i ot j + t i it j ≤ 1 The tables in the join operands cannot over-
lap for the same join

∀ j ≥ 1∀t : t i ot j = t i it , j−1 + t i ot , j−1 Results of prior join are outer operand for
next join

∀p∀ j : paop j ≤ t i oT1(p) j ; paop j ≤ t i oT2(p) j Predicates are applicable if both referenced
tables are in outer operand

∀ j : ci j =∑
t C ar d(t )t i it j Determines cardinality of inner operand

∀ j : lco j =∑
t log(C ar d(t ))t i ot j+ Determines logarithm of outer operand car-

dinality,∑
p log(Sel (p))paop j taking into account selected tables and ap-

plicable predicates

∀ j∀r : l co j −ctor j ·∞≤ log(θr ) Activates threshold flag if cardinality reaches
threshold

∀ j : co j =∑
r ctor jδθr Translates activated thresholds into approxi-

mate cardinality

We start by discussing the variables and constraints that we need in order to represent valid

left-deep query plans. Later we discuss the variables and constraints that are required to

estimate the cost of query plans.

We represent left-deep query plans for a query Q as follows. For the moment, we assume

that only one join operator and one scan operator are available while we discuss extensions

in Section 7.5. Under those assumptions, a query plan is specified by the join operands.

We introduce a set of binary variables t i ot j (short for Table In Outer join operand) with the

semantic that t i ot j is one if and only if query table t ∈Q appears in the outer join operand of

the j -th join. We numerate joins from 0 to jmax where jmax is determined by the number of

query tables. Analogue to that, we introduce a set of binary variables t i it j (short for Table In

Inner join operand) indicating whether the corresponding table is in the inner operand of the

j -th join.

The variables representing left-deep plans have binary value domains. Note that not all

possible value combinations represent a valid left-deep plan. For instance, we could represent

joins with empty join operands. Or we could build plans that join only a subset of the query

tables and are therefore incomplete. We must impose constraints in order to restrict the

considered value combinations to the ones representing valid and complete left-deep plans.
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Left-deep plans are characterized by the particularity that the inner operand consists of

only one table for each join. We capture that fact by the constraint
∑

t t i it j = 1 which we

need to introduce for each join j . A similar constraint restricts the table selections for the

outer operand of the first join (join index j = 0) as only one table can be selected as initial

operand. For the following joins (join index j ≥ 1), the outer join operand is always the result

of the previous join which is another characteristic of left-deep plans. This translates into the

constraints t i ot j = t i it , j−1 + t i ot , j−1.

The latter constraint actually excludes the possibility that the same table appears in both

operands of a join (since the result of the sum between t i it , j−1 + t i ot , j−1 cannot exceed the

maximal value of one for t i ot j ) except for the last join. We add the constraint t i ot jmax +
t i it jmax ≤ 1 for the last join (and optionally for the other joins as well).

The number of joins is one less than the number of query tables. We join two (different) tables

in the first join. After that, each join adds one new table to the set of joined tables since the

outer operand contains all tables that have been joined so far, since the inner operand consists

of one table, and since inner and outer join operands do not overlap. As a result, we can only

represent complete query plans that join all tables.

We could have chosen a different representation of query plans with less variables. The

problem is that we need to be able to approximate the cost of query plans based on that

representation using linear functions. Our representation of query plans might at first seem

unnecessarily redundant but it allows to impose the constraints that we discuss next. Also

note that MILP solvers typically try to eliminate unnecessary variables and constraints in

preprocessing steps. This makes it less important to reduce the number of variables and

constraints at the cost of readability.

Example 15. We illustrate the representation of left-deep query plans for the join query R ��
S �� T . Answering the query requires two join operations. Hence we introduce six variables

t i ot j for t ∈ {R,S,T } and j ∈ {0,1} to represent outer join operands and six variables t i it j to

represent inner join operands. The join order (R �� S)�� T is for instance represented by setting

ti oR0 = t i iS0 = 1 and ti oR1 = t i oS1 = t i iT 1 = 1 and setting the other variables representing join

operands to zero. This assignment satisfies the two constraints that restrict inner operands to

single tables (e.g.,
∑

t∈{R,S,T } t i it1 = 1 for the second join), it satisfies the constraint restricting

the outer operand in the first join to a single table (
∑

t∈{R,S,T } t i ot0 = 1), and it satisfies the

constraints making the outer operand of the second join equal to the union of the operands in

the first join (e.g., t i oR1 = t i oR0 + t i iR0).

7.4.2 Cardinality

Our goal is to find query plans with minimal cost and hence we must associate query plans

with a cost value. The execution cost of a query plan depends heavily on the cardinality of

intermediate results. We need to represent the cardinality of join operands and join results

in order to calculate the cost of query plans. Inner operands consist always of a single table
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and calculating their cardinality is straight-forward: designating by ci j (short for Cardinality

of Inner operand) the cardinality of the inner operand of join number j , we simply set ci j =∑
t t i it j C ar d(t ) where C ar d(t ) is the cardinality of table t .

Calculating cardinality for outer join operands is however non-trivial as we can only use

linear constraints: the cardinality of a join result is usually estimated as the product of the

cardinalities of the join operands times the selectivity of all predicates that are applied during

the join. The product is a non-linear function and does not directly translate into linear

constraints.

We circumvent that problem via the following trick. While cardinality is actually defined as the

product of table cardinality values and predicate selectivity values, we represent the logarithm

of the cardinality instead and the logarithm of a product is the sum of the logarithms of the

factors. More formally, given a set T ⊆Q of query tables such that the set of predicates P is

applicable to T (i.e., for each binary predicate in P the two tables it refers to are included in T )

and designating by C ar d(t ) for t ∈ T the cardinality of table t and by Sel (p) the selectivity of

predicate p ∈ P , a cardinality estimate is given by
∏

t∈T C ar d(t )·∏p∈P Sel (p) and the logarithm

of the cardinality estimate is
∑

t∈T log(C ar d(t ))+∑
p∈P log(Sel (p)) which is a linear function.

We introduce the set of variables lco j (short for Logarithmic Cardinality of Outer operand)

which represents the logarithm of the cardinality of the outer operand of the j -th join. The

aforementioned linear formula for calculating the logarithm of the cardinality depends on the

selected tables as well as on the applicable predicates. The selected tables are directly given

in the variables t i ot j . We introduce additional binary variables to represent the applicable

predicates: variable paop j (short for Predicate Applicable in Outer join operand) captures

whether predicate p is applicable in the outer operand of the j -th join. We currently consider

only binary predicates (we discuss extensions later) and as the inner operands consist of

single tables, we do not need to introduce an analogue set of predicate variables for the inner

operands.

We denote by T1(p) and T2(p) the first and the second table that predicate p refers to. A

predicate is applicable to an operand whose table set T contains T1(p) and T2(p). We make

sure that predicates cannot be applied if one of the two tables is missing by adding for each

predicate p and each join j a pair of constraints of the form paop j ≤ t i oT1(p) and paop j ≤
t i oT2(p). We currently assume that predicate evaluations do not incur any cost while extensions

are discussed later. Under this assumption, applying a predicate has only beneficial effects

as it reduces the cardinality of intermediate results and therefore the cost of the following

joins. This means that we only need to introduce constraints preventing the solver from using

predicates that are inapplicable but we do not need to add constraints forcing the evaluation

of predicates explicitly.

Using the variables capturing the applicability of predicates, we can now write the logarithm
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of the join operand cardinalities. For outer join operands, we set

lco j =
∑

t
log(C ar d(t ))t i ot j +

∑
p

log(Sel (p))paop j

and thereby take into account table cardinalities as well as predicate selectivities.

Unfortunately, the cost of most operations within a query plan is not linear in the logarithm

of the cardinality values. In the following, we show how to transform the logarithm of the

cardinality values into an approximation of the raw cardinality values. This allows to write

cost functions that are linear in the cardinality of their input and output. This is sufficient

for many but not for all standard operations. Similar techniques to the ones we describe in

the following can however be used to represent for instance log-linear cost functions as we

describe in more detail in Section 7.4.3.

We must transform the logarithm of the cardinality into the cardinality itself. This is not a

linear transformation and hence we resort to approximation. We assume that a set Θ= {θr }

of cardinality threshold values has been defined for integer indices r with 0 ≤ r ≤ rmax . In

addition, we introduce a set of binary variables ctor j (short for Cardinality Threshold reached

by Outer operand) that indicate for each join j and each cardinality threshold value θr whether

the cardinality of the outer operand reaches the corresponding threshold value. If threshold θr

is reached then the corresponding threshold variable ctor j must take value one and otherwise

value zero. To guarantee that the previous statement holds, we introduce constraints of the

form l co j −ctor j ·∞≤ log(θr ) for each join j where ∞ is in practice a sufficiently large constant

such that the constraint can be satisfied by setting the threshold variable ctor j to one. We

do not explicitly enforce that the threshold variable is set to zero in case that the threshold is

not reached. The constraints that we introduce next make however sure that the cardinality

estimate and therefore the cost estimate increase with every threshold variable that is set to

one. Hence the solver will set the threshold variables to zero wherever it can.

Based on the threshold variables, we can formulate a linear approximation for the raw cardinal-

ity. We introduce the set of variables co j representing the raw cardinality of the outer operand

of the j -th join and set co j =∑
r ctor jδθr where the values δθr are chosen appropriately such

that if threshold variables cto0 j up to ctom j are set to one for some specific join j then the

cardinality variable co j takes a value between θm and θm+1 (assuming that thresholds are

indexed in ascending order such that ∀r : θr < θr+1). We can for instance set δθr = θr −θr−1

for r ≥ 1 and δθ0 = θ0.

Example 16. We illustrate how to calculate join operand cardinalities and continue the previous

example with join query R �� S �� T . We have two joins and introduce therefore four variables

(ci0, ci1, co0, and co1) representing operand cardinalities. Assume that tables R, S, and T have

cardinalities 10, 1000, and 100 respectively. We calculate the cardinality of the two inner join

operands by summing over the variables indicating the presence of a table in an inner operand,

weighted by the cardinality values (e.g., ci0 = 10t i iR0 +1000t i iS0 +100t i iT 0). The cardinality

of the outer operands can depend on predicates. Assume that one predicate p is defined between
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tables R and S. We introduce two variables, paop0 and paop1, indicating whether the predicate

can be evaluated in the outer operand of the corresponding join. Predicates can be evaluated if

both referenced tables are in the corresponding operand. We introduce four constraints (e.g.,

paop0 ≤ t i oR0 and paop0 ≤ t i oS0) forcing the value of the predicate variable to zero if at

least one of the tables is not present. We introduce two variables storing the logarithm of the

outer operand cardinality: l co0 and lco1. We assume that the selectivity of p is 0.1. Then the

logarithmic cardinality for the first outer join operand is given by l co0 = 1paoR0 +3paoS0 +
2paoT 0 −1paop0, assuming that the logarithm base is 10. To simplify the example, we assume

that only two cardinality thresholds are considered: θ0 = 10, and θ1 = 1000. We introduce four

variables ctor j with r ∈ {0,1} and j ∈ {0,1} indicating whether the cardinality of the outer join

operand reaches each threshold for the first or second join. Each threshold variable is constrained

by one constraint (e.g., lco0 −∞· cto0,0 ≤ 1). Now we define the cardinality of the outer join

operands by constraints such as co0 = 10cto0,0 + (1000−10)cto1,0. This provides a lower bound

for the true cardinality. If we know for instance that cardinality values are upper-bounded by

100000 due to the query properties, we can also set co0 = 100cto0,0 + (10000−100)cto1,0. Then

the difference between true and approximate cardinality is at most one order of magnitude.

7.4.3 Cost

Now we can for instance sum up the cardinalities over all intermediate results (
∑

j≥1 ci o j ) and

thereby obtain a simple cost metric that is equivalent to the Cout cost metric introduced by

Cluet and Moerkotte [41]. Join orders minimizing that cost metric were shown to minimize

cost according to the cost formulas of some of the standard join operators as well [41]. We will

however show in the following how the cost of all standard join operators, namely hash join,

sort-merge join, and block nested loop join, can be modeled directly.

The standard cost formula for a hash join operation is based on the number of pages that

the two input operands consume on disk. We designate by pg o j the number of disk pages

consumed by the outer operand of join number j and pg i j is the analogue value for the inner

operand. If a hash join operator is used for the join then its cost is given by 3 · (pg o j +pg i j ).

This is a linear formula but we must calculate the size of the operands in disc pages.

The byte size of an intermediate result, and therefore the number of consumed disk pages,

depends not only on the cardinality but also on the columns that are present. For the mo-

ment, we make the simplifying assumption that each tuple has a fixed byte size. We show

how to relax that restriction in the next section. Under this simplifying assumption, we can

however express the disk pages of the outer operands as pg o j = �co j · tupSi ze/pag eSi ze�
where tupSi ze is the fixed byte size per tuple and pag eSi ze the number of bytes per disk

page. Factor tupSi ze/pag eSi ze is a constant due to our simplifying assumption and hence

we can set pg o j = co j · tupSi ze/pag eSi ze to obtain the approximate number of disk pages.

Alternatively, we could write pg o j = ∑
r �θr · tupSi ze/pag eSi ze�(cto j r − cto j ,r+1) and ap-

proximate it using the threshold variables (the expression (cto j r − cto j ,r+1) yields value
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one only for the threshold variable with the highest threshold that is still set to one). Note

that the factors of the form �θr · tupSi ze/pag eSi ze� are constants. The second version has

the advantage that we can explicitly control the approximation precision for pg o j by tun-

ing the number of thresholds. The disc pages for the inner operands can be obtained in

a simplified way as each inner operand consists of only one table: we simply set pg i j =∑
t t i it j �C ar d(t ) · tupSi ze/pag eSi ze�.

The cost of sort-merge join operators can be approximated in a similar way. We assume

here that both inputs must be sorted while we generalize in the next subsection. If both

input operands need to be sorted first then the join cost is given by 2pg o j �log(pg o j )� +
2pg i j �log(pg i j )�+pg o j +pg i j . We have already shown how to obtain the number of disc

pages pg o j and pg i j . The log-linear numbers of disc pages, pg o j log(pg o j ) and pg i j log(pg i j ),

can be obtained in a similar way. We use the cardinality thresholds for the outer operand and

simply sum over tables for the inner operand.

The cost function for the block nested loop join is given by �pg o j /bu f f er � · pg i j where

bu f f er is the amount of buffer space dedicated to the outer operand. We assume here that

pipelining is used while the generalization is straightforward. There are several options for

approximating that cost function with linear constraints. We can approximate the join cost

function by omitting the ceiling operator and obtain pg o j /bu f f er ·pg i j . Similar to how we

calculated the cardinality of the outer operands, we can switch to a logarithmic representation

and write the logarithm of the join cost as log(pg o j )+ log(pg i j )− log(bu f f er ). Then we

can transform the logarithm of the join cost into the raw join cost value using a set of newly

introduced threshold variables.

Another idea is to exploit the specific shape of the inner join operands. As only one table is

selected for the inner join operand, we can express join cost by the formula
∑

t t i it j ·pag es(t ) ·
bl ocks j where pag es(t) = �C ar d(t) · tupSi ze/pag eSi ze� designates the disk page size of

table t and bl ocks j = �pg o j /bu f f er � ≈ pg o j /bu f f er is the number of iterations of the

outer loop executed by the block nested loop join. This is a weighted sum over products

between a binary variable (the variables t i it j indicating whether table t was selected for

the inner operand of join number j ) and a continuous variable (the variables blocks j ). This

formula is hence not directly linear but the product between a binary variable and a continuous

variable can be expressed by introducing one auxiliary variable and a set of constraints [26].

The only condition for this transformation is that the continuous variable is non-negative and

upper-bounded by a constant. Both is the case (note that we generally only model a bounded

cardinality range which implies also an upper bound on the number of loop iterations).

The advantage of the second representation is that we only need to introduce a number of

variables and constraints that is linear in the number of tables (instead of linear in the number

of thresholds like for the first possibility).

We have seen that join orders, the cardinality of intermediate results, and the cost of join

operations according to standard cost formulas can all be represented as MILP. In the next
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section we introduce several extensions of the problem model that we used so far.

7.5 Extensions

We introduced our mapping for query plans by means of a basic problem model that focuses

on join order. We discuss extensions of the query language, of the query plan model, and of

the cost model in this section.

Note that not all proposed extensions are necessary in each scenario: the basic model intro-

duced in the last section allows for instance to find join orders which minimize the sum of

intermediate result sizes. Such join orders are optimal according to many standard operator

cost functions [41]. It is therefore in many scenarios possible to obtain good query plans based

on the join order that was calculated using the basic model. To transform a join order into a

query plan, we choose optimal operator implementations based on the cardinality of the join

operands, we evaluate predicates as early as possible (predicate push-down), and we project

out columns as soon as they are not required anymore.

An alternative is to let the MILP solver make some of the decisions related to projection,

predicate evaluation, and join operator selection. We show how this can be accomplished if

desired. In addition, we discuss extensions of the cost and query model.

In Section 7.5.1, we discuss how to represent n-ary predicates, correlated predicates, and

predicates that are expensive to evaluate. We show how to handle projections in Section 7.5.2

and in Section 7.5.3 we show how the MILP solver can choose between different operator

implementations. We show how to handle interesting orders and other intermediate result

properties in Section 7.5.4. In Section 7.5.5, we finally discuss how we can extend our approach

to handle queries with aggregates and nested queries.

We sketch out the following extensions relatively quickly due to space restrictions. They use

however similar ideas as we applied in the last section. Our goal is less to provide a detailed

model for each possible scenario but rather to demonstrate that the MILP formalism is flexible

enough to cover the most relevant aspects of query optimization.

7.5.1 Predicate Extensions

So far we have considered binary predicates. We show how n-ary predicates can be modeled.

Let p be an n-ary predicate. N-ary predicates refer to n tables and we designate by T1(p) to

Tn(p) the tables on which p is evaluated. All tables that p refers to must be present in the

operands in which p is evaluated. If paop j indicates whether predicate p can be evaluated

in the outer operand of the j -th join then we must introduce constraint paop j ≤ t i oTi (p) j for

each join and each i ∈ {1, . . . ,n}. This forces variables paop j to zero if at least one table is not

present. Note that we must introduce analogue predicate variables for the inner operands for

all unary predicates.
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In our basic model, we assume that predicates are uncorrelated. Then the accumulated

selectivity of a predicate group corresponds always to the product of the selectivity values of

the single tables. In reality this is not always the case, even if it is a common simplification to

assume uncorrelated predicates. Assume that there is a correlated group Pcor of predicates

such that the accumulated selectivity of all predicates in Pcor differs significantly from their

selectivity product. Then we introduce a new predicate g that represents the correlated

predicate group. The selectivity Sel (g ) is chosen in a way such that Sel (g )
∏

p∈Pcor
Sel (p)

yields the correct selectivity, taking correlations into account. So the selectivity of g corrects

the erroneous selectivity that is based on the assumption of independent predicates.

Now we just need to make sure that the predicate variable associated with g is set to one in all

operands in which all predicates from Pcor are selected but not otherwise. We force paog j to

one if all correlated predicates are present by requiring paog j ≥ 1−|Pcor |+∑
p∈Pcor

paop j . We

force paog j to zero if at least one of the correlated predicates is not activated by introducing

n constraints of the form paog j ≤ paop j for p ∈ Pcor . No other constraints need to be intro-

duced for paog j but terms including paog j must be included in all expressions representing

cardinality, byte size, etc.

So far we have assumed that predicate evaluation is not associated with cost. We constrained

the variables paop j only to zero if required tables are not in the operand. We did not explicitly

force them to one at any point since, as they reduce cardinality, their evaluation reduces cost

and the MILP solver will generally choose to evaluate them as early as possible.

This model is not always appropriate. If predicate evaluations are expensive then it can be

preferable to postpone their evaluation [35, 70, 84]. The predicate-related variables paop j

influence the cardinality estimates of join operands. They capture whether the corresponding

predicate was already evaluated as otherwise it cannot influence cardinality. We cannot

use those variables directly to incorporate the cost of predicate evaluations. The effect on

cardinality of having evaluated a predicate once will persist for all future operations. The

evaluation cost needs however only to be payed once. We introduce additional variables pcop j

(short for Predicate evaluation Cost for Outer operand) and set pcop j = paop, j+1 − paop, j .

Intuitively, the predicate was evaluated in the current join if it is evaluated in the input

to the next join but not in the input of the current join. The sum
∑

j pcop j co j yields the

evaluation cost associated with predicate p (we can additionally weight by a factor that

represents predicate evaluation cost per tuple). This is not a linear function as we multiply

variables. We have however a product between a binary variable and a continuous variable

again. As before, we can transform such expressions into a set of linear constraints and a new

auxiliary variable [26].

Now that evaluation of predicates is not automatically desirable anymore, we must intro-

duce additional constraints making sure that all predicates are evaluated at the end of query

execution. Designating by jmax the index of the last join, we simply set paop, jmax+1 = 1 by

convention. This means that each predicate that was not evaluated before the last join must be
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evaluated during the last join since pcop jmax = 1−paop jmax . We finally introduce constraints

making sure that no predicate is initially evaluated and we introduce constraints making sure

that an evaluated predicate remains evaluated. The latter constraints are in fact optional since

additional predicate evaluations increase the cost. Depending on the solver implementation,

it can nevertheless be beneficial to add such constraints to reduce the search space size.

7.5.2 Projection

Our cost formulas have so far been based on cardinality alone as we have assumed a constant

byte size per tuple. This is of course a simplification and we must in general take into account

the columns that we project on and their byte sizes. We designate by L the set of columns

over all query tables. By B y te(l ) we denote the number of bytes per tuple that column l ∈ L

requires. We introduce one variable clo j l (short for CoLumn in Outer operand) for each join j

and each column l ∈ L to indicate whether column l is present in the outer operand of join

j (and analogue variables for the inner operands). Then a refined formula for the estimated

number of bytes consumed by the outer operand is co j ·∑l∈L clo j l B y te(l ). This is the sum over

products between a constant (B y te(l )), a binary variable (clo j l ), and a continuous variable

that takes only non-negative values (co j ). This formula can be expressed using only linear

constraints using the same transformations that we used already before [26]. Special rules

apply for the inner operand again: for the inner operand, we can estimate the byte size (or any

derived measure such as the number of disc pages) by summing over the column variables,

weighted by the column byte size as well as by the cardinality of the table that the column

belongs to.

We must still constrain the variables clo j l to make sure that only valid query plans can be

represented. First of all we must connect columns to their respective tables. If the table

associated with a column is not present then the column cannot be present either in a given

operand. If column l is associated with table t then the constraint clo j l ≤ t i ot j forces the

column variable to zero if the associated table is not present. Not selecting any columns

would be the most convenient way for the optimizer to reduce plan costs. To prevent this

from happening, we must enforce that all columns that the query refers to are in the final

result. Also, we must enforce that all columns that predicates refer to are present once they are

evaluated. We introduced variables indicating the immediate evaluation of a predicate during

a specific join. Those are the variables that need to be connected to the columns they require

via corresponding constraints. We must also make sure that a column cannot reappear in later

joins after it has been projected out (otherwise that would be a convenient way of reducing

intermediate result sizes while still satisfying the constraints requiring certain columns in the

final result). Introducing constraints of the form clo j l ≥ clo j+1,l satisfies that requirement.
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7.5.3 Choosing Operator Implementations

We have already discussed the cost functions of different join operator implementations in

the last section. So far we have however assumed that only one of those cost functions is used

to calculate the cost for all joins. This allows to select optimal operator implementations after

a good join order, minimizing intermediate result sizes, has been found. We can however also

task the MILP solver to pick operator implementations as we outline in the following.

Denote by I the set of join operator implementations. We have shown how to calculate join

cost for each of the standard join operators. We can introduce a variable p j c j i (short for

Potential Join Cost) for each join j and for each operator implementation i ∈ I representing

the cost of the join if that operator is used. We use the term potential since whether that cost

is actually counted depends on whether or not the corresponding operator implementation is

selected.

We introduce binary variables j os j i (short for Join Operator Selected) to indicate for each

operator implementation i and join j whether the operator was used to realize the join. We

require that exactly one implementation is selected for each join as expressed by the constraint∑
i j os j i = 1 that we must introduce for each join. Having the potential cost for each join

operator as well as information on which operator is selected, we can for each operator

calculate the actual join cost a j c j i . The actual join cost associated with one specific operator

implementation is zero if that operator is not selected. Otherwise (if that operator is selected)

the actual join cost corresponds to the potential join cost. We have the following relationship

between potential and actual join cost a j c j i = j os j i ·p j c j i . Here we multiply a binary with a

non-negative continuous variable and can apply the same linearization as before [26]. The

sum over the actual join cost variables over all operator implementations yields the cost of

each join operation.

7.5.4 Intermediate Result Properties

Alternative join operator implementations can sometimes produce intermediate results with

different physical properties (while the contained data remains the same over all alternative

implementations). Tuple orderings are perhaps the most famous example [116]. If tuples

are produced in an interesting order then the cost of successive operations can be reduced

(e.g., the sorting stage can be dropped for a sort-merge join). Also, the distinction whether an

intermediate result is written to disc or remains in main memory is a physical property of that

result and influences the cost of successive operations.

Assume that we consider a set X of relevant intermediate result properties. Then we can

introduce a binary variable ohp j x (short for Outer operand Has Property) indicating whether

the outer operand of the j -th join has property x. Property x could for instance represent the

fact that the corresponding result is materialized. Property x could also represent one specific

tuple ordering.
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The properties constrain the operator implementations that can be applied for the next join.

We could for instance introduce one operator implementation representing a pipelined block

nested loop join while another operator implementation represents a block nested loop join

without pipelining. The applicability of the pipelined join would have to be restricted based

on whether or not the corresponding input remains in memory. If implementation i requires

property x in the outer join operand in order to become applicable then we can impose the

constraint j os j i ≤ ohp j x to express that fact.

Operators such as the sort-merge join can be decomposed into different sub-operators (e.g.,

sorting the outer operand, sorting the inner operand, merging). This avoids having to intro-

duce a new variable for each possible combination of situations (e.g., outer operand sorted

and inner operand sorted, outer operand sorted but inner operand not sorted, etc.).

Whether an intermediate result has a certain physical property is determined by the oper-

ator which produces the result (and possibly by properties of the input to the producing

operation). If a subset Ĩ ⊆ I produces results with a certain property x then we can set

ohp j+1,x =∑
i∈Ĩ j osi j . As only one of the operators is selected, the aforementioned constraint

is valid and sets the left expression either to zero or to one. Certain properties such as inter-

esting orders might be provided automatically by certain tables (if the data on disk has that

order). Then we need additional constraints to connect properties to tables.

In summary, we have shown that all of the most important aspects of query optimization can

be represented in the MILP formalism.

7.5.5 Extended Query Languages

We have already implicitly discussed several extensions to the query language in this section.

We discussed how non-binary predicates and projection are supported. This gives us a system

handling select-project-join (SPJ) queries.

It is generally common to introduce query optimization algorithms using SPJ queries for

illustration. There are however standard techniques by which an optimization algorithm

treating SPJ queries can be extended into an algorithm handling richer query languages.

The seminal paper by Selinger [116] describes how a complex SQL statement containing

nested queries can be decomposed into several simple query blocks that use only selection,

projection, and joins; the join order optimization algorithm is applied to each query block

separately. Later, the problem of unnesting a complex SQL statement containing aggregates

and sub-queries into simple SPJ blocks has been treated as a research problem on its own;

corresponding publications focus on the unnesting algorithms and use join order optimization

algorithms as a sub-function (e.g., [103]).
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7.6 Formal Analysis

State-of-the art MILP solvers use a plethora of heuristics and optimization algorithms which

makes it hard to predict the run time for a given MILP instance. It is however a reasonable

assumption that optimization time tends to increase in the number of variables and con-

straints, even if preprocessing steps are sometimes able to eliminate redundant elements. The

assumptions that we make here are supported by the experimental results that we present

in the next section: we see a strong (even if not perfect) correlation between the number of

variables and constraints and the MILP solver performance.

For the aforementioned reasons, we study in the following how the asymptotic number of

variables and constraints in the MILP grows in the dimensions of the query optimization

problem from which it was derived. We denote in the following by n = |Q| the number of query

tables to join and by m = |P | the number of predicates. By l = |Θ| we denote the number of

thresholds that are used to approximate cardinality values. The following theorems refer to

the basic problem model that was presented in Section 7.4.

Theorem 35. The MILP has O(n · (n +m + l )) variables.

Proof. Give n tables to join, each complete query plan has O(n) joins. We require O(n) binary

variables per join to indicate which tables form the join operands, we require O(m) binary

variables per operand to indicate which predicates can be evaluated, and we require O(l )

continuous variables per operand to calculate cardinality estimates.

Theorem 36. The MILP has O(n · (n +m + l )) constraints.

Proof. For each join operand we need O(n) constraints to restrict table selections, O(m)

constraints to restrict predicate applicability, and O(l ) constraints to force the threshold

variables to the right value.

7.7 Experimental Evaluation

Using existing MILP solvers as base for the query optimizer reduces coding overhead and

automatically yields parallelized anytime query optimization due to the features of typical

MILP solvers. In this section, we compare the performance of a MILP based optimizer to a

classical dynamic programming based query optimization algorithm.

We describe and justify our experimental setup in Section 7.7.1 and discuss our results in

Section 7.7.2.

177



Chapter 7. Linearization

102030405060

0
0.5

1
1.5

·104

Nr. query tables

N
r.

V
ar

ia
b

le
s

102030405060

0
0.5

1
1.5

2
·104

Nr. query tables

N
r.

C
o

n
st

ra
in

ts

ILP (Low Precision) ILP (Medium Precision)
ILP (High Precision)

Figure 7.1 – Median number of variables and constraints of a MILP problem representing the
optimization of one query.

7.7.1 Experimental Setup

We implemented a prototype of the MILP based optimizer that was introduced in the last

sections. We transform query optimization problems into MILP problems and use the Gurobi4

solver in version 5.6.3 to find optimal or near-optimal solutions to the resulting MILP problems.

The MILP solution is read out and used to construct a corresponding query plan.

We compare this approach against the classical dynamic programming algorithm by Selinger [116].

Dynamic programming algorithms are very popular for exhaustive query optimization [100,

101] and are for instance used inside the optimizer of the Postgres database system5.

We compare the two aforementioned algorithms on randomly generated queries. We generate

queries according to the method proposed by Steinbrunn et al. [131] which is widely used

to benchmark query optimization algorithms [131, 31, 139]. We generate queries of different

sizes (referring to the number of tables to join) and with different join graph structures (chain

graphs, star graphs, and cycle graphs [131]). We allow cross products which increases the

search space size significantly compared to the case without cross products [106].

We assume that hash joins are used and search the optimal join order. The MILP approach

approximates the byte sizes of the intermediate results and therefore the cost of join operations.

We evaluate three configurations of our algorithm that differ in the precision by which they

approximate cardinality (higher approximation precision requires more MILP variables and

constraints). Our first configuration offers high precision and approximates cardinality with

a tolerance of factor 3. Our second configuration reduces approximation precision and has

a tolerance factor of 10. Our third configuration reduces approximation precision further

and has tolerance factor 100. Our most precise configuration uses 60 threshold variables

per intermediate result up to 40 table joins and 100 threshold variables per result for queries

joining 50 and 60 tables. At the other side of the spectrum is the low-precision configuration

which uses 15 threshold variables per result for up to 40 tables and 25 variables for more than

4http://www.gurobi.com/
5http://www.postgresql.org/
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40 tables.

We compare algorithms by the quality of the plans that they produce after a certain amount of

optimization time. We allow up to 60 seconds of optimization time and compare the output

generated by all algorithms in regular time intervals. The high amount of optimization time

seems justified since we compare the algorithms also on very large queries. All compared algo-

rithms need significantly less time than 60 seconds to produce optimal plans for small queries.

Investing 60 seconds into optimization can however be well justified if queries are executed

on big data where choosing a sub-optimal plan can have devastating consequences [129].

During the 60 seconds of optimization time, we compare optimization algorithms in regular

intervals according to the following criterion. We compare them based on the factor by which

the cost of the best plan found so far is higher than the optimum at most. MILP solvers

calculate such bounds based on the integrality gap. The classical dynamic programming

algorithm is not an anytime algorithm but after its execution finishes, the produced plan is

optimal and hence the optimality factor is one.

We do not compare algorithms based on the cost overhead that the generated plans have

compared to the optimum. Instead, we compare them based on an upper bound on the

relative cost overhead that the algorithm can formally guarantee at a certain point in time. The

actual cost overhead is only known in hindsight after optimization has finished (and for some

of the query sizes we consider, calculating the truly optimal query plans would cause high

computational overheads). The upper bound that we use as criterion is the only value that is

known at optimization time and therefore the only value on which termination decisions can

be based on for instance (e.g., we could terminate optimization once the query optimizer is

certain that the current plan is not more expensive than the optimum by more than factor 2).

The comparison criterion that we use excludes any randomized or heuristic query optimiza-

tion algorithms [23, 31, 76, 131, 135, 134] from our experimental evaluation: such algorithms

cannot give any formal guarantees on the optimality of the produced plans. They cannot even

give upper bounds on the relative cost overhead of the generated plans.

Our algorithms (for the MILP approach: the part that transforms query optimization into MILP)

are implemented in Java 1.7. The experiments were executed using the Java HotSpot(TM)

64-Bit Server Virtual Machine version on an iMac with i5-3470S 2.90GHz CPU and 16 GB of

DDR3 RAM.

7.7.2 Experimental Results

We start by analyzing the size of the generated MILP problems. Figure 7.1 shows the number of

constraints and variables. We show results for queries with a star-shaped join graph structure

while the results for chain and cycle graph structures differ only marginally (the only difference

is that cycle graphs require one additional predicate variable per intermediate result compared

to star graphs). The ILP configuration with higher approximation precision requires in all
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cases more variables and constraints. For all configurations, the number of variables and

constraints increases with increasing number of query tables.

Figure 7.2 shows performance results for left-deep plans. We allow cross product joins. The

experimental setup was explained and justified in Section 7.7.1. The figure shows median

values for 20 randomly generated queries. For 10 query tables, all compared algorithms find

the optimal plan very quickly. For 20 query tables, the dynamic programming approach already

takes more than six seconds in average to find the optimal plan while the MILP approach is

faster. With 20 query tables we are reaching the limit of what is usually considered practical

by dynamic programming algorithms. Also note that we allow cross product joins which

increases the size of the plan space significantly.

For higher numbers of query tables, up to 60, the dynamic programming approach does not

return any plan within one minute of optimization time. Note that increasing the number of

tables by 10 increases the number of table sets that the dynamic programming approach must

consider by factor 210 = 1024. It is therefore not surprising that this algorithm is not able to

optimize queries with 30 tables and more.

All configurations of the MILP approach find optimal or at least guaranteed near-optimal

plans for up to 40 tables, often already after a few seconds. For 50 and 60 table joins, all

MILP configurations are able to find plans quickly for star join graphs. For cycle graphs,

the low-precision configuration finds still optimal plans up to 60 tables while the medium-

precision configuration finds near-optimal plans. Both configurations find optimal plans

for 50 tables and chain graphs while this is not possible for queries with 60 tables and a

chain graph structure. This means that optimization of chain and cycle queries seems to

be more challenging for MILP approaches than optimization of star queries. Note that star

queries are more difficult to optimize when excluding cross products and applying dynamic

programming [106]; for MILP approaches it is apparently the opposite.

We conclude that the MILP approach does not only match but even outperforms traditional

exhaustive query optimization algorithms for left-deep plan spaces by a significant margin.

7.8 Conclusion

Basing newly developed query optimizers on existing MILP solver implementations reduces

the size of the optimizer code base and allows to benefit from features such as parallelization

and anytime behavior that those solvers encapsulate.

We have demonstrated how to transform query optimization into MILP. Our experimental

results show that MILP approaches can outperform traditional dynamic programming ap-

proaches significantly.

Generally it should be noted that the experimental results in this chapter are only snapshots

and not intrinsic to the proposed mapping: as new MILP solver generations appear, the
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performance of our MILP based approach is likely to improve further without having to adapt

the mappings.
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Figure 7.2 – Comparing dynamic programming based optimizer versus integer linear program-
ming for left-deep query plans.
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In the last chapter, we have seen how to solve query optimization by leveraging software

solvers. In this chapter, we will see how to solve a query optimization variant using a very

specific hardware solver: the D-Wave adiabatic quantum annealer. This device uses quantum

effects to solve NP-hard optimization problem. We obtained access to such a device, located at

NASA Ames Research Center in California, by a research grant. In order to use that device, we

must again transform query optimization into a different representation: we must transform

problem instances into strength values of magnetic fields on and between qubits. This is the

input format accepted by the quantum annealer.

In this chapter, we will see a corresponding transformation method. We will analyze that

transformation in terms of how the number of required qubits grows asymptotically in the

problem dimensions. We will also see experimental results comparing optimization time on

the quantum computer against optimization time on a classical computer. Those are the first

experimental results on a quantum annealer that were ever published for an optimization

problem from the database domain.

8.1 Introduction

The database area has motivated a multitude of hard optimization problems that probably

cannot be solved in polynomial time. Those optimization problems become harder as data

processing systems become more complex. This makes it interesting to explore also uncon-

ventional optimization approaches. In this chapter, we explore the potential of quantum

computing for a classical database-related optimization problem, the problem of multiple

query optimization (MQO) [119]. We were granted a limited amount of computation time on

a D-Wave 2X adiabatic quantum annealer, currently hosted at NASA Ames Research Center

in California. This device is claimed to exploit the laws of quantum physics [29] in the hope

to solve NP-hard optimization problems faster than traditional approaches. The machine

supports a very restrictive class of optimization problems while it is for instance not capable
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of running Shor’s algorithm [123] for factoring large numbers1. We will show how instances of

the multiple query optimization problem can be brought into a representation that is suitable

as input to the quantum annealer. We also report results of an experimental evaluation that

compares the time it takes to solve MQO problems on the quantum annealer to the time taken

by algorithms that run on a traditional computer. We believe that this is the first experimental

evaluation on a quantum computer for an optimization problem in the database community.

The quantum annealer, produced by the Canadian company D-Wave2, uses qubits instead

of bits. While bits have a deterministic value (either 0 or 1) at each point in time during

a computation, a qubit may be put into a superposition of states (0 and 1) that would be

considered mutually exclusive according to the laws of classical physics. Working with qubits

instead of bits could in principle allow faster optimization than on a classical computer [9].

Thinking of qubit superposition as a specific form of parallelization is certainly simplifying but

still gives a first intuition for why this is possible. We provide more explanations on quantum

computing and on the quantum annealer in Section 8.2.

The quantum annealer that we were experimenting with has a net worth of around 15 million

US dollars. This price might make main stream adoption seem illusory in the near-term future.

However, the company D-Wave is currently considering flexible provisioning models allowing

users to buy computation time instead of the hardware3. In this scenario, users would use the

machine remotely, in a similar way as we did in our experiments. As near-optimal solutions to

hard problems can usually be found within milliseconds (see Section 8.7), this provisioning

model might allow optimization at an affordable rate per instance. Those are some of the

factors that encourage us to explore the potential of quantum computing already at this point

in time.

The D-Wave adiabatic quantum annealer has been the subject of controversial discussions in

the scientific community. Those discussions have focused on two questions: whether quantum

effects play indeed a significant role during the optimization process [14, 29, 30, 93, 122, 128]

and whether the performance is significantly better than the one of classical computers [71,

86, 85]. Recent publications seem to answer the first question positively [14, 30, 50, 93], as

acknowledged by MIT professor and D-Wave critic Scott Aaronson (“this completely nails

down the case for computationally-relevant collective quantum tunneling in the D-Wave

machine”4) and other experts. The answer to the second question depends apparently on the

specific class of problems considered, leading for instance to different conclusions for range-

limited Ising problems [85] than for Ising problems without weight limits [71]. Solving problem

classes that are not natively supported by the quantum annealer requires transformation steps

which add a problem class-specific overhead in the problem representation size that might

prevent the quantum annealer from solving non-trivial instances due to its limited number

1http://www.dwavesys.com/blog/2014/11/response-worlds-first-quantum-computer-buyers-guide
2http://www.dwavesys.com/
3http://spectrum.ieee.org/podcast/computing/hardware/dwave-aims-to-bring-quantum-computing-to-the-cloud
4http://www.scottaaronson.com/blog/?p=2555
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1: // Solves multiple query optimization problem M
2: function QUANTUMMQO(M)
3: // Map MQO problem to logical energy formula
4: le f ←LOGICALMAPPING(M)
5: // Map logical into physical energy formula
6: pe f ←PHYSICALMAPPING(le f )
7: // Minimize formula on quantum computer
8: bi ←QUANTUMANNEALING(pe f )
9: // Transform physical into logical solution

10: Xp ←PHYSICALMAPPING−1(bi )
11: // Transform logical solution to MQO solution
12: Pe ←LOGICALMAPPING−1(Xp )
13: // Return best set of query plans to execute
14: return Pe

15: end function

Algorithm 19 – How to solve multiple query optimization on an adiabatic quantum annealer.

of qubits. Our work adds to the discussion concerning the second question by providing a

mapping algorithm and experimental results for a specific database-related optimization

problem.

Prior work on MQO [19, 44, 46, 54, 53, 53, 83, 95, 99, 114, 119, 121] did not consider the

potential of quantum computing. Prior publications in the area of quantum computing [25,

58, 63, 96, 111, 143, 127] did not treat the MQO problem.

Algorithm 19 shows the high-level approach by which we obtain solutions to MQO problem

instances from a quantum annealer. The goal of MQO is to select the optimal combination of

query plans to execute in order to minimize execution cost for a batch of queries. Given an

MQO problem instance M , we introduce binary variables Xp for each available query plan

p that indicate whether the corresponding plan is executed. We transform the given MQO

instance into an energy formula (the term derives from the fact that the quantum annealer

translates such formulas into energy levels) on those variables that becomes minimal for a

variable assignment representing an optimal solution to the initial MQO problem M . We call

the variables Xp the logical variables to indicate that they cannot yet be represented by single

qubits within the qubit matrix of the quantum annealer. We call the transformation the logical

mapping and the resulting formula the logical energy formula.

The physical mapping transforms the logical energy formula, defined in the variables Xp , into

a physical energy formula that uses the binary variables bi . Each variable bi is associated

with one specific, physical qubit of the quantum annealer. Finding a value assignment for

the variables bi which minimizes the physical energy formula is an NP-hard problem. We use

the quantum annealer to solve it. All other transformations depicted in Algorithm 19 have

polynomial complexity and are executed on a classical computer.
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Based on the solution returned by the quantum annealer, the value assignment to the variables

bi which minimizes the physical energy formula, we transform the solution to the physical

energy formula into a solution to the logical energy formula. Finally, we transform the solution

to the logical energy formula into a solution to the original MQO problem which is the optimal

set Pe of query plans to execute.

MQO problems cannot be solved with our approach if the number of qubits required by the

physical energy formula exceeds the number of qubits available on the quantum annealer.

Albeit doubling the number of qubits compared to the predecessor model, the number of

qubits is with slightly over one thousand qubits still very limited on the D-Wave 2X that we

experimented with. Correspondingly, the limited number of qubits is in practice the most

important factor restricting the size of the problem instances that can be treated with the

quantum annealer. For that reason, we analyze the “complexity” of our mapping algorithm in

terms of the asymptotic growth rate of the number of required qubits as a function of the MQO

problem dimensions. This approach is common in the area of quantum annealing [96, 127].

We find that the number of qubits in the physical energy formula grows quadratically in the

number of plans per query and at least linearly in the number of queries.

In our experimental evaluation, we compare our approach based on quantum annealing

against classical optimization algorithms executed on traditional computers. We compare

against classes of algorithms that have been proposed for MQO in prior publications and

include integer linear programming, genetic algorithms, and simple greedy heuristics. While

the number of available qubits severely limits the class of non-trivial MQO problems that can

be treated efficiently on the quantum annealer, we also find a class of problems where the

quantum annealer discovers near-optimal solutions at least 1000 times faster than classical

approaches.

In summary, our original scientific contributions in this chapter are the following:

• We map MQO problem instances into a representation that can be solved on a quantum

annealer.

• We analyze the complexity of our mapping method in terms of the asymptotic number

of required qubits as a function of the MQO problem dimensions.

• We experimentally compare the D-Wave 2X quantum annealer against competing ap-

proaches for MQO.

The remainder of this chapter is organized as follows. In Section 8.2, we give a short intro-

duction to quantum computing and the quantum annealer. In Section 8.3, we introduce our

formal problem model for MQO. We describe the logical mapping in Section 8.4 and the physi-

cal mapping in Section 8.5. We formally prove correctness of our mapping and analyze the

asymptotic complexity in Section 8.6. In Section 8.7, we evaluate our approach experimentally.

We discuss related work in Section 8.8 and conclude in Section 8.9.
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8.2 Quantum Computing

We give a short introduction to quantum computing in general and to the specific realiza-

tion inside the D-Wave quantum annealer. Our goal is to provide the reader with a rough

intuition while we simplify many of the details. A detailed introduction to those complex

topics is beyond the scope of this dissertation and we refer interested readers to specialized

publications [9].

Quantum mechanics describes physical processes at extremely small scale. The laws of quan-

tum mechanics do not match our intuition since our intuition is formed by the macroscopic

world. For instance, extremely small particles may at the same time adopt two states that are

mutually exclusive according to our normal intuition.

Quantum computers [9] are machines that harness quantum physics to potentially achieve

speedups over classical computers. Classical computers use bits that are in either one of

two states (1 or 0); quantum computers use qubits that can at the same time be set to 1 and

to 0, a state that we call superposition. This allows quantum computers to explore many

alternative computational branches at the same time and there are problems (e.g., prime

factorization [123]) for which quantum algorithms provide an exponential speedup over the

best currently known classical algorithms.

The first commercially available machine claimed to harness quantum effects to speed up

optimization is the quantum annealer by D-Wave Systems. In order to use the D-Wave quan-

tum annealer, each optimization problem must be represented as a mathematical function

with binary variables. The D-Wave computer aims to find the variable value assignments

minimizing the given function.

More precisely, the D-Wave computer minimizes sums of terms that are either linear or

quadratic in the output variables. This problem model corresponds to the quadratic uncon-

strained binary optimization problem which is NP-hard. The following explanations of the

internal workings of the D-Wave machine show that this choice of input format is intrinsically

imposed by the D-Wave architecture.

The D-Wave machine represents binary variables as qubits. Qubits are realized as tiny electric

circuits. Those circuits are cooled down to a temperature of 13 millikelvin. Quantum effects

appear at this temperature and the current may flow at the same time clockwise and counter-

clockwise within the circuits, thereby representing qubit superposition. The input function

that needs to be minimized is translated into magnetic fields affecting single qubits or qubit

pairs. Fields affecting single qubits represent linear terms while fields affecting qubit pairs

represent quadratic terms. The strength of those magnetic fields is tuned to be proportional

to the weights assigned to the corresponding terms in the input function. Thereby we ob-

tain a physical system that minimizes its total energy for qubit states that represent variable

assignments minimizing the input function.
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Figure 8.1 – Four neighboring unit cells containing eight qubits each, connected in a Chimera
structure.

The goal of minimizing the input function is translated into the goal of minimizing the energy

level within a physical system in which quantum effects are present. In order to reach the

minimal energy level (and thereby solving the input problem), the D-Wave computer executes

a process called quantum annealing.

We introduce quantum annealing informally by contrasting it from the simulated annealing

algorithm (SA) which is a classic heuristic optimization algorithm. SA simulates thermal

annealing in software while D-Wave performs actual quantum annealing in hardware. Both

annealing algorithms process an energy function with the goal to find its global minimum.

The SA algorithm performs a set of moves in the search space, using evaluations of the given

cost function as guidance in the hope to eventually reach a global minimum. The quantum

annealing algorithm starts instead with a simplified cost function whose global minimum can

be easily calculated. During optimization, the quantum annealing algorithm does not perform

moves in the search space but rather transforms the cost function slowly from the initialization

function to the cost function of interest. During that process, the quantum annealer is in a

superposition of possible states, unlike its deterministic counterpart. If this transformation is

executed slowly enough and without disturbances then the quantum annealer is guaranteed

to remain within the global minimum throughout the whole transformation [56] which can be

read out after annealing terminates. In practice, annealing runs are often disturbed despite all

shielding efforts and a multitude of runs must be executed before finding an optimal solution.

We executed our experiments on the D-Wave 2X which was released in August 2015 and is the

most recent model in a series of quantum annealers presented by D-Wave with a net price of

around 15 million dollars. The number of qubits has been roughly doubling from one model

to the next over the past years and the D-Wave 2X features a matrix of 1152 interconnected

qubits. The manufacturing process is currently imperfect and only 1097 out of 1152 qubits

were fully functional on the machine that we used. Connections between qubits are sparse

and form the so called Chimera graph [98]. Figure 8.1 shows an extract of the Chimera graph
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structure as it is available on the qubit matrix of the quantum annealer. Qubits are partitioned

into so called unit cells. Each unit cell contains eight qubits in two colons and connects each

qubit to all four qubits in the opposite colon but not to qubits in the same colon. Qubits in

the left colon are connected to their respective counterpart in the qubit cell above and below

while qubits in the right colon are connected to their counterparts in the cells to the right and

to the left (unless it is the border of the qubit matrix). Each qubit is hence connected to at

most six other qubits. The D-Wave 2X uses 144 unit cells.

8.3 Formal Model

The goal in multiple query optimization (MQO) is to minimize the joint execution cost

for a batch of queries by exploiting possibilities to share computation between different

queries [117]. Our MQO problem model is based on standard assumption [117]: we assume

that a small set of alternative plans has been found for each query prior to MQO and that

execution costs of query plans can be reliably estimated.

An MQO problem instance is characterized by a set Q of queries. Each query either represents a

final result that is requested by the user or an intermediate result that is useful when generating

final results. Each query q ∈Q is associated with a set of alternative generation plans Pq . For

a final result, all associated plans must represent methods of generating that result. The

generation of intermediate results is optional and the plan set of an intermediate result may

contain one plan that represents the possibility of not generating that result.

Set P =∪q Pq denotes the set of all considered plans. Each plan p ∈ P is associated with an

execution cost cp . This is the cost of processing the plan without exploiting any previously

generated intermediate results. Plans for different queries may however share partial results.

It is beneficial to select groups of plans that can share many intermediate results to reduce

processing cost. Given two plans p1 and p2 that can share intermediate results, we denote

by sp1,p2 > 0 the cost reduction that can be achieved by sharing. Note that our model is not

restricted to the case that two plans share an intermediate result. If more than two plans can

share an intermediate result, we introduce pair-wise connections between the result and all

plans that may share it.

A solution to an MQO problem instance is a subset of plans Pe ⊆ P that are selected for

execution. A solution is only valid if exactly one plan is selected for each query and ∀q ∈
Q : |Pq ∩Pe | = 1. As discussed before, selecting a plan does not necessarily mean that the

corresponding result is generated in case of intermediate results. We denote the accumulated

execution cost of a plan set by C (Pe ) =∑
p∈Pe

cp −∑
{p1,p2}⊆Pe

sp1,p2. A solution is optimal if its

execution cost is minimal among all valid solutions.

We selected an MQO problem model that shortens our following descriptions of the transfor-

mation into a quadratic unconstrained binary optimization (QUBO) problem, the formalism

that we introduce next. Our MQO model is however equivalent to MQO problem models that
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were used in prior work5 and the problem remains NP-hard.

A QUBO problem is defined over a set {Xi } of binary variables (with value domain {0,1}). A

solution to a QUBO problem assigns each of the variables to one of the two possible values. The

goal is to minimize the following function that depends on the binary variables:
∑

i≤ j wi j Xi X j .

The weights wi j are problem instance specific. Note that the formula contains linear terms

(for i = j since x2
i = xi for binary variables) as well as quadratic terms (for i �= j ). A solution

to a QUBO problem is optimal if it minimizes the function from above among all possible

solutions.

8.4 Logical Mapping

We show now how to transform an MQO problem instance into a QUBO problem instance.

This step is required since the quantum annealer can only solve QUBO problems.

As discussed in Section 8.3, an MQO problem is defined by a set Q of queries, a set Pq of plans

for each query q ∈Q with P =∪q Pq , execution cost values cp for each plan p ∈ P , and possible

cost savings sp1,p2 for each plan pair p1, p2. A solution is a subset of plans that are selected for

execution such that one plan is selected per query.

Only binary variables may appear in a QUBO problem. We must therefore represent the

solution space of the MQO problem using binary variables. Given a set P of plans, we introduce

a binary variable Xp for each plan p ∈ P . If Xp = 1 then plan p is selected for execution while

p is not executed if Xp = 0.

An MQO solution is only valid if exactly one plan is selected for each query. If our goal was to

transform an MQO problem into an integer linear program, we could introduce constraints of

the form
∑

p∈Pq
Xp = 1 for each q ∈Q to guarantee that all returned solutions are valid. Unfor-

tunately, the QUBO formalism does not allow to express constraints directly. As the optimal

solution to a QUBO problem minimizes a quadratic formula, we can however add terms to

that formula that take high values if constraints are violated. This approach guarantees a valid

solution if those terms are scaled up by sufficiently high weights.

We call the quadratic formula defining the QUBO problem short the energy formula in the

following as it is translated into energy levels by the D-Wave annealer. We decompose the

constraint that exactly one plan is selected per query into two parts: we require that at least

one plan is selected and that at most one plan is selected. In order to assure that at least

one plan is selected for each query, we can simply add the term EL =−∑
p∈P Xp to the energy

formula. As lower values of the energy formula are preferable, this term motivates to set all

variables Xp to one. We can express the constraint that at most one plan is selected by adding

5If each query plan is modeled by a set of tasks [119] then we make in our model the execution cost of the plan
equal to the sum of the execution costs of all tasks and introduce one extra query for each of the tasks with an
execution cost equal to the task cost and a cost savings link between task and plan whose value equals the task
execution cost again.
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the term EM =∑
q∈Q

∑
{p1,p2}⊆Pq

Xp1Xp2 to the energy formula. This term takes value zero if at

most one plan is selected per query and at least value one otherwise. As we will discuss in the

following paragraphs, both terms will have to be scaled by an appropriate factor to make sure

that all constraints are respected.

The terms that we have so far inserted into the energy formula make sure that a valid solution

is preferable compared to an invalid solution. The goal of the MQO problem is however to

minimize execution cost. We must introduce additional energy terms to make a valid solution

with lower execution cost preferable over a valid solution with higher execution cost.

We take into account plan execution cost by introducing the term EC =∑
p∈P cp Xp into the

energy formula. This means that the execution cost of each selected plan p with Xp = 1 is

added. On the other hand, we must introduce the term ES = −∑
{p1,p2}⊆P sp1,p2Xp1Xp2 to

represent the possibility of sharing intermediate results between plans. We finally scale up the

first two terms that we introduced by a factor whose value we discuss in the following. The

resulting energy formula reads

wLEL +wM EM +EC +ES .

We discuss in the following how to choose the weights wL and wM . It is crucial to choose

the weights as low as possible since having high weights seems to increase the chances of

obtaining sub-optimal solutions from the quantum annealer [85]. We will derive inequalities

of the form w > a in the following where w is a weight and a a value that lower-bounds the

admissible weights. Having such an inequality, we prefer for the aforementioned reason

to choose w = a + ε in general where ε is a small value (we typically use ε = 0.25 in our

implementation).

The energy formula contains two terms that motivate valid solutions (EL and EM ) and two

terms that motivate solutions with lower execution cost (EC and ES). The terms motivating

a valid solution should intuitively obtain higher weights than the ones motivating low-cost

solutions. If the terms enforcing valid solutions are not associated with sufficiently high

weights then the optimal QUBO solution might not select any plans to save execution cost.

We must make sure that the motivation of selecting at least one plan is always higher than the

motivation to save execution cost by not selecting any plan. We accomplish this by requiring

wL > maxp∈P cp . Having scaled up EL by that factor, the partial energy formula wLEL +EC +ES

would be minimized by executing each plan for each query. This does clearly not reflect the

original MQO problem and we must add wM EM to restrict the number of plan selections per

query to one.

Clearly we must choose wM > wL to accomplish the aforementioned goal. This is however

insufficient. The generation cost of a query can be lower than the cost reduction achievable by

sharing it among other plans. Hence, even if we have wM > wL , the energy formula might still
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be minimized by executing multiple plans for the same query. This is due to a shortcoming

of the QUBO representation: the QUBO representation leads to believe that it is possible to

accumulate cost savings by generating the same result according to multiple plans. In reality,

this is of course not the case. We circumvent that problem by explicitly enforcing that at most

one plan is selected per query. This is guaranteed if cM > cL +maxp1∈P
∑

p2∈P sp1,p2.

Example 17. We show how to transform a simple MQO problem into the QUBO representation.

Assume that four plans p1, p2, p3, and p4 are considered with execution cost 2, 4, 3, 1 respectively.

The first two plans generate query q1 and the next two plans generate query q2. Assume further

that p2 and p3 can share an intermediate result allowing cost savings of 5 cost units. The QUBO

representation uses the binary variables X1, X2, X3, and X4 that are associated with plans p1 to

p4 and are set to one if the corresponding plan is executed. Then execution cost is represented

by the term EC = 2X1 + 4X2 + 3X3 + 1X4. Potential cost savings are represented by the term

ES =−5X2X3. The term EL =−∑4
i=1 Xi enforces at least one plan selection for each of the two

queries and is weighted by factor wL = 4+ε. Term EM = X1X2 +X3X4 enforces at most one plan

selection if weighted by factor wM = wL +5. The variable assignment X1 = 0, X2 = 1, X3 = 1,

X4 = 0 minimizes the energy formula and represents the optimal solution to the MQO problem

at the same time.

We prove formally in Section 8.6 that the mapping method presented in this section is correct.

8.5 Physical Mapping

We have seen in the previous section how to transform an MQO problem into an energy

formula defined on the variables Xp . We require one more transformation until we can apply

the quantum annealer: we must choose for each logical variable Xp a group of physical

qubits to represent it. Then we must set the weights on single qubits and the strengths of

the couplings between qubits in order to translate the logical energy formula of the form∑
{p1,p2}⊆P wp1,p2Xp1Xp2 into a physical energy formula of the form

∑
i≤ j w̃i j bi b j where bi

represents the state of the i -th qubit of the quantum annealer. We call this transformation the

physical mapping or embedding.

This second transformation is required since it is in general insufficient to represent one QUBO

variable by one qubit. This is due to the sparse connection structure between qubits (see

Section 8.2 for a detailed description of the connection structure). Each qubit is connected to

at most six other qubits. In the physical energy formula, only the weights between connected

qubits can be different from zero. Hence for a fixed i there are at most six values for j such

that w̃i j �= 0. If a QUBO variable interacts with more than six other QUBO variables (meaning

that for a fixed plan p1 there are more than six plans p2 such that wp1,p2 �= 0 in the logical

energy formula) then we must represent that variable by multiple qubits.

The physical mapping consists of three steps. First, for each QUBO variable we must select a

group of physical qubits to represent it. Second, if the energy formula contains a term of the
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(c) TRIAD with 12 chains
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(d) TRIAD with 12 chains and two broken
qubits

Figure 8.2 – TRIAD pattern in different sizes: we show qubits as circles, annotated by the ID of
the logical variable that they represent. The mapping from variables to qubits assures that
each variable shares at least one connection (in black) with each of the other variables.

form wi Xi where wi is a weight and Xi a QUBO variable then we must distribute that weight
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over all qubits representing Xi : if B denotes the set of qubits representing Xi then the weight

wi /|B | is added on each qubit in B . If a term wi j Xi X j appears in the energy formula then we

select one qubit b1 among the qubits representing Xi and another qubit b2 among the qubits

representing X j such that b1 and b2 are connected by a coupling in the qubit matrix and we

increase the strength of that coupling by wi j . In a third step, we must make sure that all qubits

representing the same variable “behave as one bit” and are assigned consistently to the same

value after an annealing run. We accomplish this by adding additional weights on the qubits

and on the couplings between qubits representing the same variable such that the minimum

energy is reached for a consistent assignment. This requires that all qubits representing the

same variable form a chain of connected qubits.

We provide further details on step one and step three in the following, starting with step one.

Mapping variables to qubits is a highly non-trivial problem as the mapping must satisfy

various constraints. First, we must represent variables by groups of qubits that are connected

in a chain. Second, if two logical variables appear together in a quadratic term in the energy

formula then the two groups of qubits representing those variables must be connected, i.e.

at least one qubit from the first group is connected to at least one qubit of the second group.

Third, we must take into account that some of the qubits and inter-qubit connections on the

D-Wave annealer are broken and cannot be used (see Figure 8.1).

Finding for a given QUBO problem the embedding that satisfies all of the aforementioned

constraints while consuming the minimal number of qubits is an NP-hard problem [89]. We

cannot solve it optimally without the risk that the time for finding an optimal embedding

dominates the time of finding the optimal solution to the resulting QUBO problem. For that

reason, we currently use simple embedding schemes that can be generated with negligible

time overhead and are presented in the following.

Figure 8.2 shows the TRIAD pattern proposed by Choi [39] in the graphical representation

introduced by Venturelli et al. [142]. This pattern allows to embed arbitrary QUBO problems.

Figures 8.2a to 8.2c show the pattern in different sizes, supporting 5, 8, and 12 logical variables.

When representing each logical variable by a chain of qubits in this pattern (qubits in the same

chain are labeled by the same number in the figure) then arbitrary energy formulas can be

modeled since the pattern connects each pair of variables.

The method currently used for manufacturing the qubit matrix is imperfect and results in a

certain percentage of broken qubits. If a qubit chain contains broken qubits then the entire

chain becomes unusable since it cannot be guaranteed anymore that all qubits in the chain

are assigned to the same value. Figure 8.2d illustrates the problem, visualizing broken qubits

in black and intact qubits in unusable chains in white.

All chains in the TRIAD pattern are connected by at least one coupling. The downside of

enabling so many connections is that the number of qubits consumed by the TRIAD pattern

grows quadratically in the number of chains and qubits must be considered a scarce resource
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Figure 8.3 – Clustered embedding pattern: qubits representing plans in different clusters
are distinguished by their color (four colors hence four clusters), the qubit label is the plan
identifier (numbers one to eight represent eight alternative plans per cluster).

on current quantum annealers. Analyzing the energy formula from the last section, we find

that we require connections between logical variables representing different plans for the

same query (due do the quadratic sub-terms contained in EM ) and connections between

variables representing plans for different queries with work overlap (due to the terms in ES).

Existing approaches for MQO cluster queries based on structural properties in a preprocessing

step [95] such that queries in different clusters are less likely to share intermediate results. We

can exploit such a clustering in certain cases as illustrated in Figure 8.3: instead of a single

TRIAD pattern, we use multiple TRIAD patterns where each TRIAD represents all variables

associated with the plans for the query in one single cluster. As different plans for the same

query are integrated into the same TRIAD structure, we are sure to realize all connections

required by term EM . As plans for different queries in the same cluster are integrated into the

same TRIAD as well, all connections required by term ES can be realized, too. The connections

between qubits representing plans in different clusters are sparse but so are the opportunities

of work sharing between them and connections between plans in different clusters can only

represent work sharing opportunities. The advantage of using the clustered pattern over the

single TRIAD pattern is that the number of required qubits grows more slowly in the number

of queries and plans as we analyze in more detail in the following section.

The annealing process that is executed by the quantum annealer takes only into account the

physical energy formula. We cannot directly integrate the information that multiple qubits

represent the same logical variable and should be assigned to the same value. Instead, we

must add more terms to the physical energy formula that make groups of qubits “behave as

one bit”. More precisely, we add, for each group of qubits, terms to the energy formula that

take high values if the qubits are assigned to different values. As the goal is to minimize the

energy formula, such terms will drive the annealing process towards solutions that assign

groups of qubits representing the same variable to the same value. Then we can read out one
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single value for the entire qubit group and associate it with the represented variable.

Assume that two connected qubits b1 and b2 represent the same variable. We motivate

assigning the same value to both of them by adding the term b1 +b2 −2b1b2 to the energy

formula. This term takes value one if the qubits are assigned to different values and takes

value zero if both qubits are assigned to the same value.

Assume now that we have a group of qubits with more than two elements that need to be

assigned to the same value. We generally require qubit groups representing the same variable

to form a chain. This means that we can order the qubits into a sequence 〈b1,b2, . . . ,bm〉
such that each qubit bi is connected to its successor bi+1 in the qubit matrix. Under this

assumption, we can add energy terms of the form EB (i ) = bi +bi+1 −2bi bi+1 that motivate

assigning the same value to two consecutive qubits. Adding the terms EB =∑m−1
i=1 EB (i ) to the

energy formula motivates assigning all qubits to the same value.

We assume in the following that the terms from the logical energy formula have already been

integrated into the physical energy formula as described under step two at the beginning

of this section. Hence the physical energy formula contains terms in addition to the terms

EB . This means that we have to scale up the terms EB by a factor that is sufficiently high to

assure that the energy formula becomes minimal for a value assignment where all equality

constraints, represented by EB , are satisfied. As discussed in Section 8.4, we choose the scaling

factors as low as possible to avoid a large range of possible energy values.

The following scaling method is based on ideas by Choi [38]. We treat each group B of

qubits representing the same variable separately and calculate a specific scaling factor for EB .

This scaling factor must make sure that a solution with inconsistent assignments for a qubit

group improves (i.e., the value of the energy formula decreases) once replacing inconsistent

assignments by a consistent one (either all qubits in the group are set to one or all are set

to zero). Consider a group B of qubits representing the same variable that are assigned to

inconsistent values. The term wB EB adds at least wB to the energy formula as the chain must

be broken at least at one position. Replacing the inconsistent assignment by a consistent

assignment lets wB EB take the value zero and reduces the total energy level by wB .

Making the assignment for B consistent must reduce the energy value of wB EB but it might

increase the value of other terms in the energy formula. We calculate in the following the

upper bound U on the increase in the other energy terms. We denote by U0→1(b) the maximal

increase in energy caused by changing the value of b from zero to one. Denote by v the weight

on b and by vi all weights on couplings that connect b to qubits outside of B . Then we have

U0→1(b) = v +∑
i max(vi ,0). We pessimistically assume here that each qubit connected to b

via a positive weight is set to one while qubits connected via a negative weight are set to zero.

This yields an upper bound on the increase in energy. We can calculate an upper bound for

the energy increase when setting the value of b from one to zero in the analogue fashion and

denote the result by U1→0(b).
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We have the choice between setting all qubits in B to one or setting all of them to zero in order

to make the assignment for B consistent. We can select the option that leads to a lower increase

in energy and therefore obtain U = min(
∑

b∈B U1→0(b),
∑

b∈B U0→1(b)) as upper bound for the

increase in all energy terms except for EB when making an inconsistent assignment consistent.

This means that the energy formula must become minimal for a consistent assignment if we

set wB =U +ε.

8.6 Formal Analysis

In this section, we prove that the transformation from MQO to QUBO problems that we

introduced in Section 8.4 is correct, meaning that the optimal solution to the QUBO problem

represents indeed the optimal solution to the MQO problem. Later, we will analyze how

the number of qubits that our mapping requires evolves as a function of the MQO problem

dimensions.

We prove that the energy formula wM EM +wLEL+EC +ES becomes minimal for an assignment

of variables to values representing an optimal solution to the MQO problem from which the

energy formula was derived.

Lemma 18. The energy formula is minimized by selecting at most one plan per query.

Proof. Assume that the energy formula was minimized by setting Xp1 = Xp2 = 1 where p1

and p2 are alternative plans for the same query. If we set Xp1 = 0 (or Xp2) then the value of

term EC decreases by the execution cost of p1 while ES might increase as cost savings enabled

by executing p1 cannot be realized. Term ES increases at most by the accumulated cost

savings enabled by p1 which is
∑

p∈P sp1,p . The value of term wLEL increases by wL . Term EM

contains the sub-term wM Xp1Xp2 so the value of EM decreases by wM . In summary, the energy

increases at most by wL +∑
p∈P sp1,p while it decreases by wM and wM > wL +∑

p∈P sp1,p . The

energy decreases by setting Xp1 = 0 which contradicts our initial assumption.

Lemma 19. The energy formula is minimized by selecting at least one plan per query.

Proof. Assume that the energy formula was minimized by setting Xp = 0 for all p ∈ Pq for a

query q ∈Q. Pick one arbitrary plan p ∈ Pq and set Xp = 1 instead. Then the value of term EC

increases by the execution cost cp of that plan. The value of term ES can only decrease since

executing p might enable possibilities to share work and reduce execution cost. The value

of EM remains constant while the value of wLEL decreases by wL . In summary, the energy

increases at most by cp and decreases by wL and wL > cp . The energy decreases by setting

Xp = 1 which contradicts our initial assumption.

Theorem 37. The energy formula is minimized for a valid solution with minimal execution

cost.
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Proof. The energy formula becomes minimal for a valid solution (meaning that one plan is

selected per query) according to Lemmata 18 and 19. Furthermore, terms EL and EM have

the same value for each valid solution (value −|Q| for EL and value 0 for EM ). This means

that those two terms do not influence the choice between valid solutions. The selection of

an optimal solution is entirely governed by the combined term EC +ES . The theorem follows

since that term represents exactly the execution cost, taking into account cost reductions by

shared work.

It is common to analyze the time complexity of optimization algorithms on traditional (non-

quantum) computers. It would be interesting to analyze the asymptotic run time until the

quantum annealer finds optimal or near-optimal solutions as a function of the MQO problem

dimensions. A theoretical framework for analyzing worst case time complexity on adiabatic

quantum computers is however currently not available [143]. This is why the analysis of

adiabatic quantum approaches usually focuses on the number of required qubits. This metric

is relevant since the number of available qubits imposes most restrictions in practice.

We analyze the required number of qubits as a function of the following variables. We denote

by n the number of query clusters, by m the number of queries per cluster, and by l the number

of alternative plans per query. We generally assume that connections between plans in the

same cluster are relatively dense while connections between different clusters are relatively

sparse. In order to simplify the following analysis, we assume now the extreme case that all

plans in each cluster are connected while no connections exist between different clusters.

This would allow to decompose the problem and treat different clusters separately but the

following results still apply to sparsely connected clusters in which decomposition is not

possible. We first analyze the QUBO representation from Section 8.4 in terms of how many

qubits it minimally requires.

Theorem 38. The QUBO representation introduced in Section 8.4 requires Ω(n · (m · l )2) qubits.

Proof. The total number of considered plans is n ·m · l . This is at the same time the number

of logical variables and hence a lower bound on the number of qubits (as each variable must

be represented at least by one qubit). We must however take into account that each qubit is

connected to at most six other qubits. The number of required connections between logical

variables leads therefore to another lower bound on the required number of qubits.

Only quadratic terms in the energy formula require connected qubits. Terms EL and EC

contain no quadratic sub-terms while EM connects all plans for the same query and term

ES connects plans with work overlap. As mentioned before, we simplify by assuming that

ES connects all plans in the same cluster but no plans in different clusters. Hence plans are

connected to all plans in the same cluster. The number of plans per cluster is m · l so each

plan is connected to Ω(m · l ) other plans. Due to the constant number of connections per

qubit, this means that each plan must be represented by Ω(m · l ) qubits. Multiplying by the

total number of plans, n ·m · l , yields the postulated result.
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The minimal number of qubits is a property of the logical mapping presented in Section 8.4.

Now we analyze the actual (asymptotic) number of qubits required by the clustered mapping

pattern presented in Section 8.5. We assume that all qubits used by the pattern are intact.

Theorem 39. The physical mapping pattern introduced in Section 8.5 requires Θ(n · (m · l )2)

qubits.

Sketch. The plans in each cluster are mapped to a TRIAD pattern. We can prove by induction

that the number of qubits required by a TRIAD grows quadratically in the number of chains.

The number of plans per cluster is m · l so the number of qubits per cluster is in Θ((m · l )2).

Multiplying by the number of clusters yields the result.

We see that the asymptotic number of qubits required by our physical mapping matches

the lower bound. We finally analyze the time complexity of the preprocessing phase that is

executed on a classical computer.

Theorem 40. Calculating the physical energy formula is in O(n · (m · l )2) time.

Proof. We first analyze the time complexity of the logical mapping. The energy formula

consists of the terms EL , EM , EC , and ES . The time complexity for calculating the weights

for those terms is proportional to the number of linear and quadratic sub-terms plus the

complexity of calculating scaling factors. The terms EL and EC contain n ·m · l sub-terms

respectively, term EM contains O(n ·m · l 2) sub-terms, and term ES contains O(n · (m · l )2)

sub-terms. Calculating wL requires to determine the maximum out of n ·m · l cost values,

calculating wM based on wL requires to determine the maximum out of n ·m · l sums over

O(m · l ) cost saving values with complexity O(n · (m · l )2). The total time complexity of the

logical mapping phase is O(n · (m · l )2).

Now we analyze the complexity of the physical mapping. Due to the regularity of the employed

patterns, identifying the qubits associated with a logical variable takes linear time in the

number of qubits. Weights on and between qubits can be added in constant time per weight.

Calculating the scaling factor wB for a group B of qubits requires to examine the connections

of each qubit in B . As each qubit is connected to a constant number of other qubits, the

time for calculating wB is linear in |B |. In summary, we must calculate scaling factors for

O(n · (m · l )2) qubits and assign O(n · (m · l )2) weights. The combined complexity of logical and

physical mapping is O(n · (m · l )2).

We find that the time complexity of the transformation from MQO problems into qubit weight

assignments is a low-order polynomial in the MQO problem dimensions. We have not taken

into account the complexity of clustering queries, generating alternative plans for each query,

and identifying work overlap. This pre-processing step is however required by other MQO

optimization methods as well [95] and its implementation is orthogonal to the selection of
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optimal plan combinations. If it is initially unclear how many clusters are required then

the mapping algorithm can be invoked iteratively for a decreasing number of clusters until

the mapping is successful (which is assured for one cluster). Then the time complexity is

multiplied by the number of iterations.

8.7 Experimental Evaluation

We were granted a limited amount of computation time on a D-Wave 2X adiabatic quantum

annealer with over 1000 qubits that is currently located at NASA Ames Research Center in Cali-

fornia. We evaluated its performance on MQO problem instances that have been transformed

into mathematical formulas as described before.

Our current approach transforms one MQO problem instance into one QUBO problem in-

stance while we might consider approaches mapping one MQO problem into series of QUBO

problems in future work. The size of the problems that can be treated by our current approach

is inherently limited by the number of available qubits. The formulas established in the last

section can be used to calculate the limits on the MQO problem dimensions until which our

approach is applicable. It is clear, without performing any experiments, that there are classes

of MQO problems that can be treated by existing MQO algorithms (e.g., 500 queries with three

plans or more per query [19]) but not on a quantum annealer with 1097 qubits. This is why

we focus our experiments on the opposite question: are there also classes of MQO problems

where finding the optimal solution requires non-negligible optimization time on commodity

computers and where the quantum annealer outperforms existing approaches?

This question is interesting since a positive answer would constitute evidence that future

models of the quantum annealer with more qubits can become an interesting alternative to

classical MQO optimizers and the number of qubits has so far been steadily doubling from

one model to the next. The question is also non-trivial and experiments are required to answer

it: while absolute optimization times are expected to be lower for the quantum annealer than

for commodity computers when optimizing the problem class that is natively supported by

the quantum annealer, the blowup in problem representation size during logical and physical

mapping might in principle offset that advantage.

We answer the aforementioned question in the following. Section 8.7.1 describes our experi-

mental setup while Section 8.7.2 describes and discusses our experimental results.

8.7.1 Experimental Setup

We use a D-Wave 2X quantum annealer as described in Section 8.2. We use the default

time of 129 microseconds per annealing run and 247 microseconds per read-out such that

an annealing run with following readout takes 376 microseconds. For each test case, we

perform 1000 annealing runs that are partitioned into 10 batches of 100 annealing runs
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per gauge transformation. A gauge transformation [29] selects for each qubit the physical

state representing a one randomly between the two available states. Using multiple gauge

transformations reduces the effect of small biases favoring one qubit state over another.

We compare our approach based on quantum annealing against other optimization algo-

rithms that have been recently proposed for MQO: integer linear programming [54], genetic

algorithms [19], and iterated hill climbing [53]. We compare against a commercial integer

linear programming solver that we use in two ways: we use it to solve MQO problems directly

and we use it to minimize the energy formula that the quantum annealer minimizes, too. We

use a linear reformulation of the quadratic energy formula that is more suitable for integer

programming solvers [47]. We do not compare against classical algorithms that are specialized

to the D-Wave hardware, a corresponding benchmark has been released recently [86]. We

focus on a comparison between the quantum annealer and classical algorithms that solve

MQO problem instances without requiring a transformation that increases the number of

problem variables (this puts the quantum annealer at a disadvantage).

Our heuristic algorithms are implemented in Java (while the integer linear programming solver

is implemented in C). We use the Java Genetic Algorithms Package6 in version 3.6.3 with the

default configuration which is a genetic algorithm with single point crossover and a top-n

selection strategy. The crossover rate is 0.35 and the mutation rate 1/12. We try different

population sizes in our experiments. Our hill climbing algorithm iteratively generates plan

selections randomly and improves them via hill climbing until a local optimum is reached. We

follow good practices for benchmarking Java programs7 and execute a code warmup of at least

10 seconds for each algorithm before starting the actual benchmark. All Java-based algorithms

were implemented in Java 1.7 and executed using the Java HotSpot(TM) 64-Bit Server Virtual

Machine version on an iMac with i5-3470S 2.90GHz CPU and 16 GB of DDR3 RAM.

We focus on the core optimization problem and neither perform common sub-expression

identification nor query clustering. We consider test cases that map well to the quantum

annealer for the reasons outlined before. We vary the number of alternative plans per query

and generate test cases for the maximal number of queries that can be represented with

the available number of qubits. Each query forms one cluster. The weights between qubits

representing different plans for the same query are determined by our mapping scheme. The

weights between qubits representing plans of different queries represent cost savings and are

chosen randomly.

8.7.2 Experimental Results

We compare optimization approaches in terms of how solution quality, measured by the

scaled execution cost of the current plan selection, evolves as a function of optimization

time. We measure execution cost at regular time intervals, after 1, 10, 100, 1000, 104, and 105

6http://jgap.sourceforge.net/
7http://www.ibm.com/developerworks/library/j-benchmark1/
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Figure 8.4 – Solution cost as a function of optimization time for 20 MQO problem instances
with 537 queries and 2 plans per query.

milliseconds. For the quantum annealer, we report the execution cost of the best solution

found after each batch of 10 annealing runs in the following figures (this information is

generated by default and using it does not introduce measurement overheads). We consider

pure optimization time in the following and do not include pre-processing times required to

transform MQO problem instances into linear programs (for the integer programming solver)

or quadratic programs (for the quantum annealer). The corresponding pre-processing times,

using an unoptimized implementation, were between 112 and 135 milliseconds per test case

for the quantum annealer.

202



8.7. Experimental Evaluation

0

0.5

C
o

st

0

0.5

1

C
o

st

0

0.5

C
o

st

0

0.5

1

C
o

st

100
101

102
103

104
105

0

0.5

Time (millisec)

C
o

st

100
101

102
103

104
105

Time (millisec)

100
101

102
103

104
105

Time (millisec)

100
101

102
103

104
105

Time (millisec)

LIN-MQO LIN-QUB QA
CLIMB GA(50) GA(200)

Figure 8.5 – Solution cost as a function of optimization time for 20 MQO problem instances
with 253 queries and 3 plans per query.

Figures 8.4 to 8.7 show the performance results for between two and five alternative plans per

query and the associated maximal number of queries that can be treated using the available

qubits (between 537 queries for two plans and 108 queries for five plans). Note that the x-axis,

on which optimization time is represented, is logarithmic. Each figure shows detailed results

for each out of 20 test cases. We chose to represent performance results for single test cases to

give an intuition about how consistent the performance differences between the compared

approaches are. The figure legends use the abbreviations QA for quantum annealer, LIN-MQO

for linear solver applied to MQO problem instances, LIN-QUB for linear solver applied to

QUBO instances, CLIMB for iterated hill climbing, and GEN(50) and GEN(200) for the genetic
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Figure 8.6 – Solution cost as a function of optimization time for 20 MQO problem instances
with 140 queries and 4 plans per query.

algorithm with population size 50 and 200 respectively.

We first discuss the results shown in Figure 8.4. The corresponding class of test cases with 537

queries is the hardest class among the ones we consider if judging hardness by the time it takes

to find the optimal solution using the linear solver directly on the MQO problem instance

(Table 8.1 shows aggregates of the time it takes to find the optimal solution depending on the

number of queries).

Among the approaches executed on a classical computer, the integer linear programming

solver achieves the best results in the optimization time range between 1 and 100 seconds. The
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Figure 8.7 – Solution cost as a function of optimization time for 20 MQO problem instances
with 108 queries and 5 plans per query.

Table 8.1 – Milliseconds until finding the optimal solution via integer linear programming.

# Queries Minimum Median Maximum

537 9261 25205.5 34570

253 129 178.5 206

140 45 128 241

108 47 48 51
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performance is clearly better when solving the MQO problem directly instead of the QUBO

representation that was derived from it. This is to be expected as the MQO representation

leads to a smaller search space than the QUBO representation: only the QUBO representation

allows to represent invalid solutions where multiple or no plans are selected for some queries

which leads to an exponential blowup in search space size in the number of alternative plans

per query.

The solutions produced by the randomized algorithms are clearly inferior to the ones found

by the linear solver after one second of optimization time. Before that time, the hill climbing

algorithm often produces slightly better solutions than the linear solver. Over the long term,

the hill climbing algorithm is however beaten by the genetic algorithm. This is intuitive as the

hill climbing algorithm is the simplest one among all compared approaches.

All classical approaches have in common that solution quality improves significantly over a

time span of several seconds. This is different for the quantum annealer. The execution cost of

the solution found after the first annealing run is relatively close to the best execution cost

found after 1000 runs with an average cost reduction of 1.5% from run one to run 1000. As the

cost of the final solution after 1000 annealing runs is very close to the optimal solution found

by the linear solver (with an average cost overhead of 0.4%), this means that the quantum

annealer produces good solutions very quickly compared to the other approaches.

More precisely, in 13 out of 20 test cases, the quantum annealer finds a solution after one

annealing run (which takes less than half a millisecond) that is better or equivalent to the

solutions found by all other approaches after 10 seconds. The best solution obtained during the

first 10 annealing runs is in 18 out of 20 test cases at least equivalent to the solutions generated

after 10 seconds by the other approaches. The solution returned by the first annealing run is

for all test cases at least equivalent to the solutions generated by the other approaches after

one second. This shows that there is a range of MQO problems in which the quantum annealer

consistently outperforms the other approaches with a speedup of more than factor 1000.

The performance advantage of the quantum annealer over the other approaches gradually

decreases as we increase the number of plans per query which decreases the number of

queries that can be represented with the available number of qubits. Figures 8.5 to 8.7 show

that development. In Figure 8.7, the quantum annealer is superior in the optimization time

range up to 10 milliseconds while the linear solver finds the optimal solution in less than 100

milliseconds.

We attribute this effect to two related reasons: First, as shown by our analysis in Section 8.6,

increasing the number of alternative plans per query increases the number of qubits required

for representing one single logical variable quickly. This means that the search space size

of the problems that can be mapped to the quantum annealer decreases. Experimenting

with easier problems generally tends to decrease the performance gap between optimization

algorithms. On the other side, the ratio between QUBO solutions representing invalid MQO

solutions and QUBO solutions representing valid MQO solutions increases exponentially in
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Figure 8.8 – Average speedup for different classes of test cases: having to use more qubits per
problem variable decreases the speedup.

the number of plans per result. Hence the drawback of having to work with a reformulation of

the original problem becomes more significant as the number of plans increases.

Figure 8.8 shows similar tendencies: it reports the ratio of the time required by the best

classical approach to match the result quality produced by the quantum annealer after one

sample divided by the time required by the quantum annealer to produce that sample. The

figure reports average speedup for each of the four classes of test cases that we generated.

We correlate the speedup with the number of qubits required to represent a single problem

variable. Again, the speedup decreases quickly once more qubits are required to represent a

single problem variable.

In summary, we have identified a class of MQO problems where the quantum annealer in

combination with our mapping method outperforms approaches on classical computers in

finding near-optimal solutions by several orders or magnitude. This performance advantage

decreases however quickly once the problem instances are less convenient to represent as

QUBO problems.

8.8 Related Work

Our work relates to prior work on MQO, to publications showing how to solve specific problems

using a quantum computer, and to experimental evaluations of quantum annealers for specific

problem classes.

The MQO problem [119] is a classical database-related optimization problem. The goal of

MQO is to reduce execution cost by sharing work among queries. This requires preparatory

steps such as identifying common expressions among queries and generating alternative

plans for each query [52, 79]. The optimization problem of selecting an optimal combination

of plans for execution is orthogonal to the problem of identifying common sub-expressions

and generating plans that allow to exploit them. We focus on plan selection.
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Various approaches have been proposed for selecting an optimal combination of plans in MQO.

The first generation of MQO approaches were branch-and-bound algorithms or based on the

A-* algorithm [44, 119, 121]. Such approaches scale only to a limited number of queries [19]

which motivates the use of randomized algorithms such as genetic algorithms [19, 53] or

efficient greedy heuristics such as hill climbing [46, 53, 83, 99, 114]. Approaches based on

integer linear programming [21, 54] have been shown to outperform prior algorithms [54] if the

goal is to find optimal MQO solutions. We selected a representative subset of recently proposed

MQO approaches for our experimental evaluation. We did not consider approaches that target

specific scenarios (e.g., SPARQL processing [95]) or approaches that are based on a different

problem model than the one we consider (e.g., representations based on And-Or-Dags [114]).

Our work connects to other publications showing how to solve specific problems on quantum

computers, including for instance database search [63], classification [104], calculation of

Ramsey numbers [25, 58], some of the classical NP-hard optimization problems [96], fault

detection [111], job shop sheduling [143], or protein folding [110]. Authors affiliated with

NASA have recently studied how to solve several optimization problems that are relevant in

the context of NASA’s future deep space missions on an adiabatic quantum annealer [127].

None of the aforementioned publications treats however the problem of MQO. Furthermore,

not all of the aforementioned publications feature an experimental evaluation.

One of the first performance evaluations that compares an adiabatic quantum annealer

against classical optimizers was published in 2013 by McGeoch et al. [98]. The evaluated

quantum annealer is an earlier version of the one we use in our evaluation; our annealer

increases the number of qubits by roughly one order of magnitude compared to the version

from 2013 which allows to treat significantly larger search spaces. McGeoch et al. compare the

quantum annealer against an integer programming solver in terms of the time it takes to find

optimal solutions. While the quantum annealer outperforms the integer programming solver

by several orders of magnitude, an alternative representation of the integer programming

problem has been shown later to decrease that performance gap significantly [47]. We use the

optimized representation in our experiments.

A quantum annealer with 512 qubits, the predecessor of the one we experimented with, was

recently compared against classical algorithms by multiple groups [71, 85]. The focus of those

evaluations was to compare the asymptotic growth of optimization time until an optimal

solution is found between the quantum annealer and traditional optimization algorithms.

Results by Hen et al. [71] for a class of Ising problems generated without limiting the weights on

and between qubits show slight advantages for the D-Wave annealer only for a very small range

of test parameters and no speedup for others while results on weight-limited instances [85]

show a robust scalability advantage for the quantum annealer.

The focus of our experimental evaluation differs in several ways. First, we focus on the

MQO problem and not on Ising problems which are natively supported by the quantum

annealer. This is a challenging scenario for the quantum annealer since the approaches we
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compare against do not suffer from the blowup in search space size when transforming MQO

problems into Ising problems. Second, while the other evaluations essentially compare the

quantum annealer against hypothetical massively-parallel classical solvers by scaling down

the optimization times of classical solvers, we are interested in the raw optimization times

realized by existing systems. Finally, while prior evaluations mostly focus on the time until

an optimal solution is found, our evaluation is broader as we consider how solution quality

evolves as a function of optimization time.

In addition, our work differs from prior evaluations since we use the newest model of the

quantum annealer with over 1000 qubits that was very recently released. To the best of our

knowledge, the results in this chapter are the first performance results for the D-Wave 2X

besides an initial publication by affiliates of the company D-Wave [86].

8.9 Conclusion and Outlook

We have shown how the problem of multiple query optimization can be solved using an adia-

batic quantum computer. We analyzed our approach formally and evaluated it experimentally,

making this one of the first published experimental evaluations of adiabatic quantum anneal-

ers with over 1000 qubits. The quantum annealer finds near-optimal solutions faster than

various classical optimization approaches in all evaluated scenarios. The speedup reaches up

to three orders of magnitude for a subset of evaluated scenarios. Due to the limited number of

qubits, we were only able to compare on a relatively narrow range of problem instances.

Our current mapping approach transforms one MQO problem instance into one QUBO

problem instance. We will explore approaches that map one MQO problem instance into

a series of QUBO problems in future work which should in principle allow to treat larger

problem instances than the ones we have considered in our experiments. Our experimental

results are specific to MQO. We plan to address other database-specific optimization problems

in future work.
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Query optimization is a key problem in the context of structured data processing. We must

solve the query optimization problem in order to make the execution of declarative queries effi-

cient [64]. In this thesis, we have introduced new query optimization variants (multi-objective

parametric query optimization) and corresponding approaches. Thereby we support scenar-

ios that cannot be addressed by prior query optimization algorithms. For query optimization

with multiple execution cost metrics (multi-objective query optimization), we propose the first

algorithms that handle diverse cost metrics within reasonable amounts of optimization time.

We propose a broad portfolio of algorithms addressing different scenarios in terms of query

size, user-optimizer interaction model, and optimization platform. For the classical query

optimization variants with one execution cost metric, we show how to significantly extend the

size of the problem instances for which we can find optimal or near-optimal solutions.

The techniques by which we extend the scope of query optimization can be classified into three

broad categories: moving query optimization before run time, relaxing optimality guarantees,

and leveraging new optimization software and hardware platforms. We propose one or several

techniques in each of those broad categories. Moving query optimization with multiple cost

metrics before run time leads to a new problem variant that we discuss in Chapter 4. Relaxing

optimality guarantees in multi-objective query optimization leads to approximation schemes

(see Chapter 2), incremental algorithms (see Chapter 3), or randomized algorithms (see Chap-

ter 5). Among the software and hardware platforms that we exploit for query optimization are

integer linear programming solvers (see Chapter 7), massively parallel clusters (see Chapter 6),

and quantum annealers (see Chapter 8).

Note that this list includes approaches that have never been exploited for optimization prob-

lems in the database domain (e.g., adiabatic quantum annealing), for query optimization

(e.g., massive parallelization), or for specific query optimization variants (e.g., we describe

the first randomized algorithm for multi-objective query optimization in this thesis). The

proposed approaches cover different scenarios, some of them can be used in combination.

In Section 9.1, we provide guidelines for choosing the most appropriate combination of opti-

mization methods for a given scenario. In Section 9.2, we outline how the methods proposed
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Figure 9.1 – Decision tree for choosing the right query optimization method out of the ones
proposed in this thesis.

in this thesis can be integrated into future query optimizers and outline directions for future

research.

9.1 Choosing the Right Query Optimization Method

The query optimization approaches proposed in this thesis cover various scenarios. In this

section, we provide some guidance on how to choose between them. Figure 9.1 shows a

decision tree for choosing the right query optimization approach based on the context. In

order to obtain a decision tree of reasonable size, we neglect several criteria (e.g., the structure

of the join graph) that can influence the performance of the proposed approaches significantly.

For that reason, the decision tree in Figure 9.1 should be used with care. It gives a first intuition

about which methods are suitable for which scenarios but it should not be followed blindly.

Figure 9.1 should be read from left to right. The most important criterion for selecting a query

optimization method is the number of execution cost metrics. Several of the approaches

that are proposed in this thesis are specific to the case of multiple execution cost metrics

(multi-objective query optimization). We discuss the case of one single execution cost metric
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first (classical query optimization). In that case, the size of the input query (measured by the

number of joined tables) decides on whether or not the methods proposed in this thesis are

helpful. Algorithms proposed prior to this thesis (e.g., based on dynamic programming) find

optimal query plans for small and medium-sized queries quickly. For large queries, existing

optimizers typically switch to randomized or heuristic algorithms that do not guarantee to

find an optimal query plan (e.g., the optimizer of the Postgres database system switches to a

genetic algorithm starting from 12 joined tables by default1).

The approaches proposed in this thesis increase the size of the queries for which optimal

plans can be found within a reasonable amount of optimization time. In Chapter 6, we have

seen how to exploit large degrees of parallelism to decrease optimization time significantly.

If parallelism is available (which nowadays is often the case) then it should be exploited to

optimize large queries. Alternatively, software solvers for mixed integer linear programming

can be leveraged to solve significantly larger instances than with traditional query optimization

algorithms (see Chapter 7). The disadvantage of that approach is that it generates guaranteed

near-optimal but not guaranteed optimal query plans since cost functions are linearized

(i.e., approximated by linear functions). Using linearization is in each case preferable over

using randomized methods that do not offer any worst-case guarantees on the quality of the

generated query plans.

Now we discuss the case of multiple execution cost metrics (lower part of Figure 9.1). Again,

the query size is an important criterion to select between different optimization methods.

Previously proposed algorithms were only able to optimize small queries when considering

diverse execution cost metrics. We have shown in Chapter 2 that corresponding algorithms

can already consume prohibitive amounts of optimization time for queries joining only six

tables (in case of three execution cost metrics). Optimizing medium-sized and large queries

with multiple cost metrics requires using the algorithms that are proposed in this thesis.

Randomized algorithms are the only choice for large queries joining hundreds of tables. We

have seen a randomized algorithm that is specialized for multi-objective query optimization

in Chapter 5. This algorithm does not provide any formal worst-case guarantees on the

quality of its output. It performs however well in average and outperforms general purpose

algorithms for multi-objective optimization significantly. In the following, we discuss the case

of medium-sized queries. Those are queries that are not sufficiently small to apply exhaustive

optimization algorithms and not sufficiently large to require randomized optimization.

As shown in Chapter 4, run time optimization can be avoided for medium-sized queries by

making query optimization a pre-processing step. This is only possible if queries correspond to

a query template that is known before run time. If this requirement is satisfied, we recommend

using pre-processing as it leads to minimal optimization overhead at run time. Note that the

parallelization method described in Chapter 6 can be used to speed up pre-processing. Similar

to the other methods that we propose for multi-objective query optimization on medium-

1http://www.postgresql.org/docs/9.2/static/runtime-config-query.html
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sized queries, pre-processing does not lead to optimal query plans but to near-optimal query

plans. This is due to the fact that cost functions are approximated by piecewise-linear cost

functions.

If no query templates are available, the choice of an optimization method depends on the

desired interaction between user and optimizer. Interactive optimization is interesting for

optimizing long-running queries (or queries that are frequently executed) as it requires the

user to invest time during optimization. Chapter 3 describes an incremental algorithm that

supports interfaces for interactive query optimization. In principle, the parallelization method

from Chapter 6 could be used in combination with incrementalization. The purpose of

incrementalization is however to achieve high update rates in interactive interfaces. In that

specific context, parallelization might add latency due to communication overhead. For that

reason, parallelization seems less beneficial than in other scenarios.

If users specify their preferences before optimization starts instead of interacting with the

optimizer then incremental optimization is unnecessary (and should be avoided as it causes

overheads). Then the approximation algorithms described in Chapter 2 become the first

choice. The parallelization method described in Chapter 6 can be used in combination.

Figure 9.1 focuses on optimization algorithms that optimize one single query. Therefore,

it does not include the approach for exploiting adiabatic quantum annealing described in

Chapter 8. The latter approach is targeted at scenarios in which a set of queries has to

be answered efficiently by merging computation between different queries. This approach

requires that a small set of query plans has been identified for each query in the query set.

The approaches in Figure 9.1 can be used on each query separately to calculate a small set of

query plans with similar cost tradeoffs. In a second step, the approach from Chapter 8 can

be used to select the optimal combination of plans. Our technique can only be applied if a

quantum annealer is available but corresponding machines are rare. Therefore, in contrast to

the other approaches, we see our work in this direction more as a proof of concept.

9.2 Outlook and Future Work

Query optimization is a key problem in the area of databases. Nearly all relational database

systems employ nowadays cost-based optimizers and the work presented in this dissertation

is therefore relevant to all of them. Beyond traditional database systems, the presented

techniques are relevant to tools such as Hive [4] and Spark SQ [7] offering SQL-like interfaces

on top of frameworks such as Hadoop [3]. Services such as Google’s BigQuery [2] and Amazon’s

RedShift [1] offering SQL processing in the Cloud benefit from the proposed techniques as

well.

The applicability of our optimization methods extends beyond tools with SQL interfaces.

Popular libraries such as MADlib [5] translate machine learning workflows containing linear

algebra expressions into SQL queries. Tools such as Tableau [8] provide visual interfaces
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but use relational queries in the background. Even information extraction systems such as

DeepDive [105] use relational queries during certain extraction stages. All those and other

systems and tools can indirectly benefit from approaches for optimizing SQL queries.

Integrating our optimization methods into future query optimizers allows solving problem

variants for which no prior algorithms exist or for which prior algorithms need prohibitive

amounts of optimization time. Some of our approaches also enable new user-optimizer

interaction methods (interactive query optimization) or reduce implementation overhead (by

replacing the optimizer core by standard solvers). Current query optimizers often implement

a combination of several query optimization algorithms (e.g., the Postgres optimizer uses an

exhaustive and a randomized algorithm and chooses between them based on the query size2).

Future query optimizers might use a combination of the methods described in this thesis.

Which methods are most interesting depends on the scenario. In the last section, we have

discussed guidelines for selecting optimization methods based on the scenario.

For several reasons, the value of the approaches presented in this thesis is likely to increase

further in the future. Growing data sizes motivate flexible provisioning methods such as

Cloud computing and crowdsourcing and approximate processing techniques. Cost and

quality metrics such as monetary fees, result precision, or recall become important in addition

to execution time. Hardware platforms are becoming more heterogeneous which offers

more possibilities to trade between execution time and energy consumption. Multitenancy

models become more attractive with growing data sizes as moving data away from a central

storage location is prohibitively expensive for large data sets. In the context of multitenancy

models, tradeoffs between the amount of system resources dedicated to one user and the

performance perceived by that user need to be considered. In general, growing data sizes and

processing requirements drive advances in processing platforms and processing techniques.

But sophisticated processing platforms and techniques often motivate new execution cost

metrics and offer new possibilities to trade between them. Thereby, the need for multi-

objective query optimization increases.

Data processing systems are nowadays massively parallel and the degree of parallelism keeps

growing. This increases also the benefit of parallel query optimization. The approach pre-

sented in this thesis is aimed at exploiting massive degrees of parallelism for query optimiza-

tion. It guarantees nearly skew-free parallelization, the complexity of all serial steps and

the amount of network traffic grows only polynomially in the query size. For that reason,

this approach seems to be able to exploit the excessive degrees of parallelism that are to be

expected in future data processing systems. Systems nowadays increase rather their degree of

parallelism than the speed of single processors. In the long term, query optimization has to

become massively parallel in order not to become the bottleneck of query evaluation. This

makes it likely that future query optimizers will use parallelization approaches that are similar

to the one presented in this thesis.

2http://www.postgresql.org/docs/9.0/static/planner-optimizer.html
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Mixed integer linear programming (MILP) solvers have steadily improved their performance

(hardware-independently) over the last decades. Mapping a problem into the MILP formalism

is an investment into the future development of MILP solvers, since solver improvements will

automatically increase the value of that transformation. We have seen in this thesis how query

optimization instances can be expressed as MILP problems. Already today, this transformation

allows us to solve larger problem instances than classical query optimization methods. The

value of this transformation will however increase further as MILP solvers become more

efficient.

Quantum computing is another technology whose potential might increase in the future.

Quantum annealers have so far steadily doubled the number of qubits from one machine

model to the next. It is currently expected that this growth will continue in the near and

medium term. The limited number of available qubits on current machines restricts the

applicability of the approach presented in this thesis. As the number of qubits grows, those

restrictions will be more and more relaxed. The development of classical computers has

started to hit certain physical limitations (e.g., the end of Dennard scaling). This makes it

generally interesting to explore new computational paradigms. In this thesis, we made a

first step towards leveraging quantum computing for optimization problems that arise in the

database domain.

This thesis opens up several directions for future work. Moving multi-objective query opti-

mization before run time leads to a novel problem variant (multi-objective parametric query

optimization). We have proposed a first exhaustive algorithm for that variant and analyzed

its properties. The high complexity of our algorithm motivates future work on approximate

and randomized algorithms for the same problem. For multi-objective query optimization,

we have shown that relaxing optimality guarantees is often required to make optimization

practical. We have introduced various novel categories of multi-objective query optimiza-

tion algorithms in terms of their formal guarantees on result quality. In analogy to classical

query optimization, where optimization algorithms in different result quality categories have

been continuously improved over time, we hope that follow-up work will improve our first

algorithms in all those categories as well.

Query optimization algorithms are based on analytical models estimating execution cost of

query plans. Cost estimation is problematic, already since execution cost depends on the sizes

of intermediate results that occur during the execution of a query plan. Estimating the sizes

of those intermediate results is however difficult (e.g., due to correlated query predicates).

Research in the area of query optimization usually either improves the state of the art in

cost estimation or the state of the art in optimization algorithms (assuming that reliable cost

models are available). Most publications in the domain of query optimization fall into one out

of those two categories. We reuse previously proposed and evaluated cost models for various

execution cost metrics in our work. All contributions made in this thesis fall therefore into

the second category (optimization algorithms). The choice of a cost model is however up to a

large extent orthogonal to the choice of an optimization algorithm. All our algorithms should
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9.2. Outlook and Future Work

therefore be able to benefit from future advances in cost estimation.

The context of query optimization is defined by the query interface, the execution platform,

and the optimization platform. Major advances in the state of the art with regards to any of

those components change the context of query optimization. Whenever that happens, new

research opportunities for query optimization are likely to result.

217





Bibliography

[1] Amazon RedShift. http://docs.aws.amazon.com/redshift.

[2] Google BigQuery. https://cloud.google.com/bigquery.

[3] Hadoop. http://hadoop.apache.org/.

[4] Hive. https://hive.apache.org/.

[5] MADlib. http://madlib.net/.

[6] Spark. http://spark.apache.org.

[7] Spark SQL. http://spark.apache.org/docs/latest/sql-programming-guide.html.

[8] Tableau. http://www.tableau.com/.

[9] S. Aaronson. Quantum Computing Since Democritus. 2013.

[10] M. Abhirama, S. Bhaumik, and A. Dey. On the stability of plan costs and the costs of

plan stability. VLDB, 3(1):1137–1148, 2010.

[11] Z. Abul-Basher, Y. Feng, and P. Godfrey. Alternative Query Optimization for Workload

Management. In Database and Expert Systems Applications, 2012.

[12] S. Agarwal, A. Iyer, and A. Panda. Blink and it’s done: interactive queries on very large

data. In VLDB, volume 5, pages 1902–1905, 2012.

[13] S. Agarwal, B. Mozafari, and A. Panda. BlinkDB: queries with bounded errors and

bounded response times on very large data. In European Conf. on Computer Systems,

pages 29–42, 2013.

[14] T. Albash, W. Vinci, A. Mishra, P. a. Warburton, and D. a. Lidar. Consistency tests of

classical and quantum models for a quantum annealer. Physical Review A, 91(4), 2015.

[15] G. Ausiello, G. F. Italiano, A. Marchetti Spaccamela, and U. Nanni. Incremental algo-

rithms for minimal length paths. Journal of Algorithms, 12(4):615–638, 1991.

[16] R. Babbush, P. J. Love, and A. Aspuru-Guzik. Adiabatic quantum simulation of quantum

chemistry. Scientific Reports, 4, 2014.

219



Bibliography

[17] B. Babcock and S. Chaudhuri. Towards a robust query optimizer: a principled and

practical approach. In SIGMOD, pages 119–130, 2005.

[18] S. Babu, P. Bizarro, and D. DeWitt. Proactive Re-Optimization. In SIGMOD, pages

107–118, New York, New York, USA, 2005. ACM Press.

[19] M. A. Bayir, I. H. Toroslu, and A. Cosar. Genetic algorithm for the multiple-query

optimization problem. IEEE Transactions on Systems, Man and Cybernetics, 37(1):147–

153, 2007.

[20] P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. In PODS, pages

212–223, 2014.

[21] L. Bellatreche and S.-a. B. Senouci. SONIC: scalable multi-query optimization. In

Database and Expert Systems Applications, pages 278–292. 2013.

[22] A. Bemporad, K. Fukuda, and F. Torrisi. Convexity recognition of the union of polyhedra.

Computational Geometry, 18(3):141–154, 2001.

[23] K. Bennett, M. Ferris, and Y. Ioannidis. A genetic algorithm for database query optimiza-

tion. 1991.

[24] J. L. Bentley and J. H. Friedman. Data structures for range searching. ACM Computing

Surveys, 11(4):397–409, 1979.

[25] Z. Bian, F. Chudak, W. Macready, L. Clark, and F. Gaitan. Experimental determination of

Ramsey Numbers. Physical Review Letters, 111(13), 2013.

[26] J. Bisschop. Integer Linear Programming Tricks. In AIMMS: Optimization Modeling,

page 75ff. 215.

[27] R. E. Bixby. A Brief History of Linear and Mixed-Integer Programming Computation.

Documenta Mathematica, pages 107–121, 2012.

[28] P. Bizarro, N. Bruno, and D. DeWitt. Progressive parametric query optimization. KDE,

21(4):582–594, 2009.

[29] S. Boixo, T. Albash, F. M. Spedalieri, N. Chancellor, and D. a. Lidar. Experimental

signature of programmable quantum annealing. Nature communications, 4:2067, 2013.

[30] S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M. Martinis, and

M. Troyer. Evidence for quantum annealing with more than one hundred qubits. Nature

Physics, 10(3):218–224, 2014.

[31] N. Bruno. Polynomial heuristics for query optimization. In ICDE, pages 589–600, 2010.

[32] N. Bruno and R. V. Nehme. Configuration-Parametric Query Optimization for Physical

Design Tuning. SIGMOD, 2008.

220



Bibliography

[33] S. Chatterji and S. Evani. On the complexity of approximate query optimization. In

PODS, pages 282–292, 2002.

[34] S. Chaudhuri. Query optimizers: time to rethink the contract? In SIGMOD, pages

961–968, 2009.

[35] S. Chaudhuri and K. Shim. Optimization of queries with user-defined predicates. ACM

Transactions on Database Systems, 24(2):177–228, 1999.

[36] C. Chekuri, W. Hasan, and R. Motwani. Scheduling Problems in Parallel Query Opti-

mization. In PODS, pages 255–265, 1995.

[37] Y. Chen and C. Yin. Graceful Degradation for Top-Down Join Enumeration via similar

sub-queries measure on Chip Multi-Processor. Applied Mathematics and Information

Sciences, 941(3):935–941, 2012.

[38] V. Choi. Minor-embedding in adiabatic quantum computation: I. The parameter setting

problem. Quantum Information Processing, 7(5):193–209, 2008.

[39] V. Choi. Minor-embedding in adiabatic quantum computation: II. Minor-universal

graph design. Quantum Information Processing, 10(3):343–353, 2011.

[40] F. Chu, J. Halpern, and J. Gehrke. Least Expected Cost Query Optimization: What can

we Expect? SIGMOD, 2002.

[41] S. Cluet and G. Moerkotte. On the complexity of generating optimal left-deep processing

trees with cross products. In ICDT, pages 54–67, 1995.

[42] C. a. Coello Coello. Evolutionary multi-objective optimization: a historical view of the

field. Computational Intelligence Magazine, 1(1):28–36, 2006.

[43] R. Cole and G. Graefe. Optimization of dynamic query evaluation plans. In SIGMOD,

pages 150–160, 1994.

[44] A. Cosar, E. Lim, and J. Srivastava. Multiple query optimization with depth-first branch-

and-bound and dynamic query ordering. In Information and Knowledge Management,

pages 433–438, 1993.

[45] O. Cure and G. Blin. RDF Database Systems: Triples Storage and SPARQL Query Processing.

2014.

[46] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan. Pipelining in multi-query optimiza-

tion. Journal of Computer and System Sciences, 66(4):728–762, 2003.

[47] S. Dash. A note on QUBO instances defined on Chimera graphs. arXiv preprint

arXiv:1306.1202, 2013.

221



Bibliography

[48] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting

genetic algorithm for multi-objective optimization: NSGA-II. Parallel Problem Solving

from Nature PPSN VI, pages 849–858, 2000.

[49] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197,

2002.

[50] V. S. Denchev, S. Boixo, S. V. Isakov, N. Ding, R. Babbush, V. Smelyanskiy, J. Martinis, and

H. Neven. What is the computational value of finite range tunneling? arXiv preprint

arXiv:1512.02206, 2015.

[51] A. Dey, S. Bhaumik, and J. Haritsa. Efficiently approximating query optimizer plan

diagrams. In VLDB, pages 1325–1336, 2008.

[52] S. Diego, F.-c. F. Chen, and M. H. Dunham. Common subexpression processing in

multiple-query processing. Knowledge and Data Engineering, 10(3):493–499, 1998.

[53] T. Dokeroglu, M. A. Bayir, and A. Cosar. Robust heuristic algorithms for exploiting the

common tasks of relational cloud database queries. Applied Soft Computing, 30:72–82,

2015.

[54] T. Dokeroglu, M. A. Bayır, and A. Cosar. Integer linear programming solution for the

multiple query optimization problem. In Information Sciences and Systems, pages 51–60.

2014.

[55] T. Erlebach, H. Kellerer, and U. Pferschy. Approximating multiobjective knapsack prob-

lems. Management Science, 48(12), 2002.

[56] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by adiabatic

evolution. arXiv preprint quant-ph/0001106, 2000.

[57] T. Flach. Optimizing Query Execution to Improve the Energy Efficiency of Database

Management Systems. Technical report, 2010.

[58] F. Gaitan and L. Clark. Ramsey numbers and adiabatic quantum computing. Physical

Review Letters, 108(1):010501, 2012.

[59] S. Ganguly. Design and analysis of parametric query optimization algorithms. In VLDB,

pages 228–238, 1998.

[60] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization for parallel execution.

In SIGMOD, pages 9–18, 1992.

[61] M. Garofalakis and Y. Ioannidis. Multi-Dimensional Resource Scheduling for Parallel

Queries. In SIGMOD, 1996.

222



Bibliography

[62] G. Graefe and K. Ward. Dynamic query evaluation plans. In SIGMOD, pages 358–366,

1989.

[63] L. Grover. A fast quantum mechanical algorithm for database search. In Symposium on

the Theory of Computing, pages 212–219, 1996.

[64] A. Gubichev, P. Boncz, A. Kemper, and T. Neumann. How Good Are Query Optimizers,

Really? VLDB, 9(3):204–215, 2015.

[65] S. Guha, D. Gunopoulos, N. Koudas, D. Srivastava, and M. Vlachos. Efficient approx-

imation of optimization queries under parametric aggregation constraints. In VLDB,

2003.

[66] P. Haas. Speeding Up DB2 UDB Using Sampling. The IDUG Solutions Journal, pages

1–10, 2003.

[67] W.-S. Han, W. Kwak, J. Lee, G. M. Lohman, and V. Markl. Parallelizing query optimization.

In VLDB, pages 188–200, 2008.

[68] W.-S. Han and J. Lee. Dependency-aware reordering for parallelizing query optimization

in multi-core CPUs. In SIGMOD, pages 45–58, 2009.

[69] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In SIGMOD, pages

171–182, 1997.

[70] J. M. Hellerstein and M. Stonebraker. Predicate migration: optimizing queries with

expensive predicates. SIGMOD, 22(2):267–276, 1993.

[71] I. Hen, J. Job, J. Job, M. Troyer, and D. Lidar. Probing for quantum speedup in spin glass

problems with planted solutions. arXiv preprint arXiv:1502.01663, 2015.

[72] A. Hulgeri. Parametric Query Optimization. PhD thesis, 2004.

[73] A. Hulgeri and S. Sudarshan. Parametric query optimization for linear and piecewise

linear cost functions. In VLDB, pages 167–178, 2002.

[74] A. Hulgeri and S. Sudarshan. AniPQO: almost non-intrusive parametric query optimiza-

tion for nonlinear cost functions. In VLDB, pages 766–777, 2003.

[75] Y. Ioannidis and Y. Kang. Left-deep vs. bushy trees: An analysis of strategy spaces and

its implications for query optimization. SIGMOD, pages 168–177, 1991.

[76] Y. E. Ioannidis and Y. Kang. Randomized algorithms for optimizing large join queries. In

SIGMOD Record, volume 19, pages 312–321, 1990.

[77] Y. E. Ioannidis and Y. C. Kang. Randomized algorithms for optimizing large join queries.

In SIGMOD, pages 312–321, 1990.

223



Bibliography

[78] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric Query Optimization. VLDBJ,

6(2):132–151, may 1997.

[79] M. Jarke. Common subexpression isolation in multiple query optimization. In Query

Processing in Database Systems, pages 191–205. 1985.

[80] V. Kaibel and M. Pfetsch. Some algorithmic problems in polytope theory. Algebra,

Geometry and Software Systems, 1, 2003.

[81] S. Kambhampati, U. Nambiar, Z. Nie, and S. Vaddi. Havasu: A Multi-Objective, Adaptive

Query Processing Framework for Web Data Integration. ASU CSE, 2002.

[82] R. Kaushik, C. Ré, and D. Suciu. General database statistics using entropy maximization.

In Database Programming Languages, pages 84–99. 2009.

[83] A. Kementsietsidis, A. Kementsietsidis, F. Neven, F. Neven, D. V. D. Craen, D. V. D. Craen,

S. Vansummeren, and S. Vansummeren. Scalable multi-query optimization for ex-

ploratory queries over federated scientific databases. In VLDB, pages 16–27, 2008.

[84] A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn. Optimizing disjunctive queries

with expensive predicates. SIGMOD Record, 23(2):336–347, 1994.

[85] A. D. King. Performance of a quantum annealer on range-limited constraint satisfaction

problems. arXiv preprint arXiv:1502.02098, 2015.

[86] J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton, and C. C. Mcgeoch. Benchmarking a quan-

tum annealing processor with the time-to-target metric. arXiv preprint arXiv:1508.05087,

2015.

[87] P. Klein and N. Young. Approximation algorithms for NP-hard optimization problems.

In Algorithms and Theory of Computation Handbook. 2010.

[88] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. E. Ioannidis. Schedule Optimization for

Data Processing Flows on the Cloud. In SIGMOD, 2011.

[89] C. Klymko, B. D. Sullivan, and T. S. Humble. Adiabatic quantum programming: minor

embedding with hard faults. Quantum Information Processing, 13(3):709–729, 2014.

[90] D. Kossmann, F. Ramsak, S. Rost, and Others. Shooting Stars in the Sky: an Online

Algorithm for Skyline Queries. In VLDB, 2002.

[91] D. Kossmann and K. Stocker. Iterative Dynamic Programming: a New Class of Query

Optimization Algorithms. Trans. on Database Systems, 1(212), 2000.

[92] D. Kossmann and K. Stocker. Iterative dynamic programming: a new class of query

optimization algorithms. ACM TODS, 25(1):43–82, 2000.

224



Bibliography

[93] T. Lanting, a. J. Przybysz, a. Y. Smirnov, F. M. Spedalieri, M. H. Amin, a. J. Berkley, R. Harris,

F. Altomare, S. Boixo, P. Bunyk, N. Dickson, C. Enderud, J. P. Hilton, E. Hoskinson, M. W.

Johnson, E. Ladizinsky, N. Ladizinsky, R. Neufeld, T. Oh, I. Perminov, C. Rich, M. C.

Thom, E. Tolkacheva, S. Uchaikin, a. B. Wilson, and G. Rose. Entanglement in a quantum

annealing processor. Physical Review X, 4(2):021041, 2014.

[94] J. A. Lawrence and B. A. Pasternack. Applied Management Science. 1997.

[95] W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable multi-query optimization for

SPARQL. In ICDE, pages 666–677, 2012.

[96] A. Lucas. Ising formulations of many NP problems. Frontiers in Physics, 2(5), 2014.

[97] R. Marinescu. Efficient approximation algorithms for multi-objective constraint opti-

mization. Algorithmic Decision Theory, 2011.

[98] C. C. Mcgeoch, C. Wang, B. Bc, M. Thom, and D. Walliman. Experimental evaluation

of an adiabiatic quantum system for combinatorial optimization. In International

Conference on Computing Frontiers, 2013.

[99] H. Mistry, P. Roy, K. Ramamritham, and S. Sudarshan. Materialized view selection and

maintenance using multi-query optimization. SIGMOD Record, 30(2):307–318, 2000.

[100] G. Moerkotte and T. Neumann. Analysis of two existing and one new dynamic program-

ming algorithm for the generation of optimal bushy join trees without cross products.

In VLDB, pages 930–941, 2006.

[101] G. Moerkotte and T. Neumann. Dynamic programming strikes back. In SIGMOD, pages

9–12, 2008.

[102] G. E. Moore. Cramming more components onto integrated circuits. Proceedings of the

IEEE, 86(1):82–85, 1998.

[103] M. Muralikrishna. Improved unnesting algorithms for join aggregate SQL queries. VLDB,

pages 91–102, 1992.

[104] H. Neven and V. Denchev. Training a binary classifier with the quantium adiabatic

algorithm. arXiv preprint arXiv:0811.0416, 2008.

[105] F. Niu, C. Zhang, C. Ré, and J. Shavlik. DeepDive: Web-scale knowledge-base construc-

tion using statistical learning and inference. CEUR Workshop Proceedings, 884:25–28,

2012.

[106] K. Ono and G. Lohman. Measuring the complexity of join enumeration in query opti-

mization. In VLDB, pages 314–325, 1990.

[107] C. Papadimitriou and M. Yannakakis. Multiobjective query optimization. In PODS,

pages 52–59, 2001.

225



Bibliography

[108] S. Papadomanolakis and A. Ailamaki. An integer linear programming approach to

database design. In ICDEW, pages 442–449, 2007.

[109] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, and A. Aspuru-Guzik. Finding

low-energy conformations of lattice protein models by quantum annealing. Scientific

reports, 2(1):571, 2012.

[110] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, and A. Aspuru-Guzik. Finding

low-energy conformations of lattice protein models by quantum annealing. Scientific

reports, 2, 2012.

[111] A. Perdomo-Ortiz, J. Fluegemann, S. Narasimhan, R. Biswas, and V. Smelyanskiy. A

quantum annealing approach for fault detection and diagnosis of graph-based systems.

The European Physical Journal Special Topics, 224(1):131–148, 2015.

[112] A. J. Quiroz. Fast random generation of binary, t-ary and other types of trees. Journal of

Classification, 6(1):223–231, 1989.

[113] N. Reddy and J. Haritsa. Analyzing plan diagrams of database query optimizers. VLDB,

pages 1228–1239, 2005.

[114] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms for

multi query optimization. In SIGMOD, pages 249–260, 2000.

[115] H. Samet. The Design And Analysis Of Spatial Data Structures. 1990.

[116] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path

selection in a relational database management system. In SIGMOD, pages 23–34, 1979.

[117] T. Sellis and S. Ghosh. On the multiple-query optimization problem. KDE, 2(2):262–266,

1990.

[118] T. K. Sellis. Multiple Query Optimization, 1988.

[119] T. K. Sellis. Multiple-query optimization. TODS, 13(1):23–52, 1988.

[120] H. Shang and M. Kitsuregawa. Skyline operator on anti-correlated distributions. VLDB,

6(9):649–660, 2013.

[121] K. Shim, T. Sellis, and D. Nau. Improvements on a heuristic algorithm for multiple-query

optimization. DKE, 12(2):197–222, 1994.

[122] S. W. Shin, G. Smith, J. a. Smolin, and U. Vazirani. How “Quantum” is the D-Wave

Machine? arXiv preprint arXiv:1401.7087, 2014.

[123] P. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In

Foundations of Computer Science, pages 124–134, 1994.

226



Bibliography

[124] A. Simitsis, P. Vassiliadis, and T. Sellis. State-Space Optimization of ETL Workflows.

Trans. on KDE, 17(10), 2005.

[125] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal. Optimizing Analytic Data Flows

for Multiple Execution Engines. SIGMOD, 2012.

[126] A. Simitsis, K. Wilkinson, U. Dayal, and M. Castellanos. Optimizing ETL workflows for

fault-tolerance. In ICDE, pages 385–396. Ieee, 2010.

[127] V. Smelyanskiy, E. G. Rieffel, S. I. Knysh, C. P. Williams, M. W. Johnson, M. C. Thom,

W. G. Macready, and K. L. Pudenz. A near-term quantum computing approach for hard

computational problems in space exploration. arXiv preprint arXiv:1204.2821, 2012.

[128] J. Smolin and G. Smith. Classical signature of quantum annealing. arXiv preprint

arXiv:1305.4904, 2013.

[129] M. a. Soliman, M. Petropoulos, F. Waas, S. Narayanan, K. Krikellas, R. Baldwin, L. Antova,

V. Raghavan, A. El-Helw, Z. Gu, E. Shen, G. C. Caragea, C. Garcia-Alvarado, and F. Rahman.

Orca: A modular query optimizer architectur for big data. In SIGMOD, pages 337–348,

2014.

[130] M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized optimization

for the join ordering problem. VLDB J., 6(3):191–208, 1997.

[131] M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized optimization

for the join ordering problem. VLDBJ, 6(3):191–208, 1997.

[132] M. Stonebraker. The Case for Shared Nothing. IEEE Database Engineering Bulletin,

9(1):4–9, 1986.

[133] M. Stonebraker, P. Aoki, R. Devine, W. Litwin, and M. Olson. Mariposa: a new architecture

for distributed data. In ICDE, pages 54–65, 1994.

[134] A. Swami. Optimization of large join queries: combining heuristics and combinatorial

techniques. SIGMOD, pages 367–376, 1989.

[135] A. Swami and A. Gupta. Optimization of large join queries. In SIGMOD, pages 8–17,

1988.

[136] TPC. TPC-H Benchmark, 2013.

[137] I. Trummer and C. Koch. Approximation schemes for many-objective query optimiza-

tion. In SIGMOD, pages 1299–1310, 2014.

[138] I. Trummer and C. Koch. An incremental anytime algorithm for multi-objective query

optimization. In SIGMOD, pages 1941–1953, 2015.

[139] I. Trummer and C. Koch. Multi-objective parametric query optimization. VLDB, 8(3):221–

232, 2015.

227



Bibliography

[140] B. Vance and D. Maier. Rapid Bushy Join-Order Optimization with Cartesian Products.

SIGMOD, 1996.

[141] B. Vance and D. Maier. Rapid bushy join-order optimization with Cartesian products.

SIGMOD, 25(2):35–46, 1996.

[142] D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas, and V. Smelyanskiy. Quantum

optimization of fully-connected spin glasses. arXiv preprint arXiv:1406.7553, 2014.

[143] D. Venturelli, D. J. J. Marchand, and G. Rojo. Quantum annealing implementation of

job-shop scheduling. arXiv preprint arXiv:1506.08479, 2015.

[144] S. Vrbsky and J. Liu. APPROXIMATE-a query processor that produces monotonically

improving approximate answers. KDE, 5(6):1056–1068, 1993.

[145] F. M. Waas and J. M. Hellerstein. Parallelizing extensible query optimizers. In SIGMOD,

page 871, 2009.

[146] R. Willis, CEWillis, C., & Perlack. Multiple objective decision making: generating tech-

niques or goal programming. Journal of the Northeastern Agr. Econ. Council, 9(1):0–5,

1980.

[147] Z. Xu, Y. C. Tu, and X. Wang. PET: Reducing Database Energy Cost via Query Optimiza-

tion. VLDB, 5(12):1954–1957, 2012.

[148] J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design in data

warehousing environment. In VLDB, pages 136–145, 1997.

[149] S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):73–83,

1996.

[150] E. Zitzler and L. Thiele. Performance assessment of multiobjective optimizers: An

analysis and review. Evolutionary Computation, 7(2):117–132, 2003.

[151] W. Zuo, Y. Chen, F. He, and K. Chen. Optimization Strategy of Top-Down Join Enu-

meration on Modern Multi-Core CPUs. Journal of Computers, 6(10):2004–2012, oct

2011.

228



Immanuel Trummer
Chemin de Boston, 9B immanuel.trummer@gmail.com

1004 Lausanne www.itrummer.org

Switzerland Revised 3/2016

INTERESTS My research focuses on optimization problems that arise in the context of big data analytics.
In particular, I have studied various generalizations of the classical Query Optimization
problem. Those generalizations are necessary in order to accurately model the capabilities of
modern query execution platforms. I am also exploring the potential of Quantum Computing
for solving analytics related optimization problems. This research branch is based on a grant
giving me access to a D-Wave 2X adiabatic quantum annealer. Beyond optimization, I am
interested in Text Mining and machine learning.

EDUCATION Ecole Polytechnique Fédérale de Lausanne (EPFL) 2010-2016 (expected)
PhD in Computer Science
Advisor: Christoph Koch

University of Stuttgart & Ecole Centrale de Nantes 2003-2010
Double Diploma in Computer Science & Engineering
Obtained with Distinction - Ranked among top five students

AWARDS &
HONORS

• Selected for ACM SIGMOD Research Highlight Award 2015

• Invitation to publish in “Best of VLDB 2015” (VLDB Journal)

• Google European PhD Fellowship in structured data analysis

• USRA grant for accessing a quantum annealer (machine price: $15 million)

• EPFL IC Teaching Assistant Award 2015

• Scholarship of the German National Academic Foundation

• First graduation prize by the Computer Science Forum Stuttgart

• Scholarship for Academic Excellence by the University of Stuttgart

• Scholarship for the TIME double degree program

• 2nd prize at German national music competition

RESEARCH Graduate Student Researcher 2010-2016
EXPERIENCE EPFL, DATA Lab (until 2013: AI Lab) Lausanne, Switzerland

Traditional query optimization, multi-objective query optimization, multi-objective para-
metric query optimization, and probably approximately optimal query optimization:

• I unified the research branches of parametric query optimization and of multi-objective
query optimization by introducing the multi-objective parametric query optimiza-
tion problem. The corresponding paper was invited for publication as ACM SIGMOD
Research Highlight.

• I developed a decomposition method for the query optimization problem that allows to
solve it by massive parallelization using large clusters with hundreds of nodes.

• I developed approximation schemes for multi-objective query optimization allowing to
gradually trade optimization time for query plan optimality guarantees.

• I developed an incremental algorithm for multi-objective query optimization that
enables users to find their preferred cost tradeoff in an interactive process.

• I developed a reduction from query optimization to mixed integer linear programming
allowing to leverage integer programming solver implementations for query optimization.

• I introduced probably approximately optimal query optimization which models sit-
uations in which query optimizers need to estimate predicate selectivity via sampling.
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• I developed a randomized algorithm for multi-objective query optimization that is
tailored to this problem and handles significantly larger queries than prior approaches.

Machine learning and text mining:

• In collaboration with researchers from Google Mountain View, I have developed a system
that mines subjective entity-property associations from Web text at a very large
scale. This system learns entity type and property specific user behavior models in an
unsupervised manner and exploits them to interpret collected text fragments more reliably.

Quantum computing:

• I am experimenting with a D-Wave 2X adiabatic quantum annealer, located at NASA
Ames Research Center in California. I evaluate the long-term potential of quantum
computing for solving analytics related optimization problems.

• I have shown that the multiple query optimization problem can be solved on the
D-Wave quantum annealer with speedups of up to three orders of magnitude compared
to traditional approaches.

Undergraduate Researcher 2003-2010
University of Stuttgart Stuttgart, Germany

Cloud computing:

• I developed a method for finding optimal provisioning strategies for Cloud applications
using constraint programming.

PUBLICATIONS Journal Articles

• Immanuel Trummer, Christoph Koch.
Multi-objective parametric query optimization.
Published as ACM SIGMOD Research Highlight 2015.

• Immanuel Trummer, Christoph Koch.
Multi-objective parametric query optimization.
“Best of VLDB 2015” (VLDB Journal) – Accepted subject to minor revisions.

• Immanuel Trummer, Boi Faltings, Walter Binder.
Multi-objective quality-driven service selection –
A fully polynomial time approximation scheme.
TSE, 2014,40(2):167-191.

Conference Publications

• Immanuel Trummer, Christoph Koch.
A fast randomized algorithm for multi-objective query optimization.
SIGMOD 2016.

• Immanuel Trummer, Christoph Koch.
Multiple query optimization on the D-Wave 2X adiabatic quantum computer.
VLDB 2016.

• Immanuel Trummer, Christoph Koch.
Parallelizing query optimization on shared-nothing architectures.
VLDB 2016.

• Immanuel Trummer, Christoph Koch.
An incremental anytime algorithm for multi-objective query optimization.
Talk Recording: https://www.youtube.com/watch?v=J54gVIt9UAo
SIGMOD 2015.

• Immanuel Trummer, Alon Halevy, Hongrae Lee, Sunita Sarawagi, Rahul Gupta.
Mining subjective properties on the Web.
Talk Recording: https://www.youtube.com/watch?v=a9RYBydQRXA
SIGMOD 2015.
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• Immanuel Trummer, Christoph Koch.
Multi-objective parametric query optimization.
Talk Recording: https://www.youtube.com/watch?v=hO3IaSfFtJY
VLDB 2015.
Invited to “Best of VLDB 2015” VLDBJ Issue.
Selected as ACM SIGMOD Research Highlight.

• Immanuel Trummer, Christoph Koch.
Approximation schemes for many-objective query optimization.
SIGMOD 2014.

• Mehdi Riahi, Thanasis Papaioannou, Karl Aberer, Immanuel Trummer.
Utility-driven data acquisition in participatory sensing.
EDBT 2013.

• Immanuel Trummer, Boi Faltings.
Optimizing the tradeoff between discovery, composition,
and execution cost in service composition.
ICWS 2011.

• Immanuel Trummer, Boi Faltings.
Dynamically selecting composition algorithms
for economical composition as a service.
ICSOC 2011.

• Immanuel Trummer, Frank Leymann, Ralph Mietzner, Walter Binder.
Cost-optimal outsourcing of applications into the clouds.
CloudCom 2010.

Patents

• Immanuel Trummer, Boi Faltings.
A method for multi-objective quality-driven service selection.
US Patent Application 13/670,864 (US) 2012.

Theses

• Immanuel Trummer.
Cost-optimal provisioning of cloud applications.
Diploma Thesis, 2010.

Technical Reports

• Immanuel Trummer, Christoph Koch.
Solving the join ordering problem via mixed integer linear programming.
http://arxiv.org/pdf/1511.02071v1.pdf, 2015.

• Immanuel Trummer, Christoph Koch.
Probably approximately optimal query optimization.
http://arxiv.org/pdf/1511.01782v1.pdf, 2015.

TEACHING & Teaching Assistant, Big Data Fall 2014
MENTORING I mentored four teams of students (eight to ten students per group) throughout their semester

course projects. The projects I supervised ranged from the design and development of a
system for crowdsourced SQL processing to the computer-based analysis of language shift
in a corpus containing newspaper articles spanning nearly 200 years. One of my teams won
the course-internal competition for the best project.

I received the EPFL Teaching Assistant Award 2015 in appreciation of my work as a teaching
assistant for the Big Data course.

Teaching Assistant, Introduction to Computer Science Spring 2014
My task was to design exercises and exams and to supervise exercise sessions in the context
of a course introducing bachelor students to various fields in computer science.
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Teaching Assistant, Linear Algebra Fall 2013
My task was to supervise exercise sessions in the context of a course introducing basic linear
algebra to bachelor students.

Teaching Assistant, Advanced Databases Spring 2013
My task was to design homeworks and exercises and to supervise exercise sessions in the
context of a master-level course introducing advanced topics in databases.

Teaching Assistant, C++ Programming Fall 2012
My task was to design exams and to supervise exercise sessions in the context of a course
introducing bachelor students to C++ programming.

Teaching Assistant, Artificial Intelligence Spring 2012
My task was to design exams and to supervise exercise sessions in the context of a course
introducing bachelor students to artificial intelligence.

Teacher at Konzept AG, Computer Science Fall 2009-Spring 2010
My task was to coach a small group of IT apprentices who had encountered difficulties
during their apprenticeship, making them eligible for state-sponsored auxiliary lessons. I
had complete freedom in the design of the course. I selected the topics of the course in
agreement with the students and designed the course material as well as the exercises myself.

INDUSTRIAL Google 5/2014-9/2014
EMPLOYMENT Intern, Web Answers & Web Tables Mountain View, USA

I designed and implemented a system for mining subjective property associations from Web
text. The resulting system was successfully used to infer billions of entity-property associa-
tions from a Web snapshot and led to a publication at SIGMOD 2015. I was supervised by
Alon Halevy and Hongrae Lee.

IBM 7/2007-10/2007
Intern, Extreme Blue Program Böblingen, Germany
Within a team of four students, I took part in the design and implementation of a system
for RFID-based temperature tracking during DHL transports.

Agricultural Ministry of Mali 4/2006-6/2007
Software Developer Nantes, France
I designed and implemented an IT system (database, Web interface and standalone client)
for the storage and treatment of agricultural data. This project was commissioned by the
agricultural ministry of Mali to the Junior Enterprise at Ecole Centrale de Nantes.

Alcatel 7/2006-8/2006
Intern, R&D Division Paris, France
I designed and implemented a Web interface for network surveillance.

LANGUAGES German Native speaker.
English Published and taught in English for six years.
French Eight years of studies in francophone countries; taught courses in French.

References are available upon request.
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