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INTRODUCTION
The clinical use of genomic data has the potential to improve 
health care by allowing for more individualized preventive and 
therapeutic strategies. However, applying genetic knowledge clin-
ically raises critical issues regarding the protection of genetic data, 
predictive power, and interpretation as well as delivery of results.

The majority of clinical genetic testing currently consists of tar-
geted genotyping of one or a few markers. However, it is likely 
that future testing will involve the in silico selection of relevant 
markers from a large set of previously genotyped variants (e.g., by 
whole-genome sequencing). Large-scale genetic data will thus be 
stored and analyzed routinely in a clinical context; still, they have 
specificities that differentiate them from the rest of health-related 
information: genomic data have the potential to inform on iden-
tity, ancestry, and risks of multiple diseases in a given patient and 
among their relatives.1 In addition, many of the approaches used 

in research (e.g., anonymization, de-identification) are not appli-
cable to genetic information because the genome is the ultimate 
identifier for each individual. Thus there is a requirement for 
additional strategies that preserve the privacy of genomic data 
while not compromising the accuracy of results.

Clinical genetic tests vary in number of informative mark-
ers and overall predictive power. Some tests are determinis-
tic (or nearly deterministic), and thus are associated with a 
clear interpretation (e.g., HLA-B*57 and severe hypersen-
sitivity reaction to abacavir2,3). However, other variants are 
largely nondeterministic (e.g., multiple variants moderately 
affect risk of metabolic disorders) and are best summarized by 
genetic risk scores, and reported as modifying an individual’s 
basal risk. Thus a real-world framework for genomic testing 
needs to provide a calculation and reporting infrastructure 
that incorporates both classes of results.
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Purpose: The implementation of genomic-based medicine is hin-
dered by unresolved questions regarding data privacy and delivery of 
interpreted results to health-care practitioners. We used DNA-based 
prediction of HIV-related outcomes as a model to explore critical 
issues in clinical genomics.
Methods: We genotyped 4,149 markers in HIV-positive indi-
viduals. Variants allowed for prediction of 17 traits relevant to HIV 
 medical care, inference of patient ancestry, and imputation of human 
leukocyte antigen (HLA) types. Genetic data were processed under a 
privacy-preserving framework using homomorphic encryption, and 
clinical reports describing potentially actionable results were deliv-
ered to health-care providers.
Results: A total of 230 patients were included in the study. We 
demonstrated the feasibility of encrypting a large number of genetic 

markers, inferring patient ancestry, computing monogenic and 
polygenic trait risks, and reporting results under privacy-preserv-
ing conditions. The average execution time of a multimarker test on 
encrypted data was 865 ms on a standard computer. The proportion 
of tests returning potentially actionable genetic results ranged from 
0 to 54%.

Conclusions: The model of implementation presented herein 
informs on strategies to deliver genomic test results for clinical care. 
Data encryption to ensure privacy helps to build patient trust, a key 
requirement on the road to genomic-based medicine.
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Another roadblock to implementing genomic-based medicine 
is the challenge of transmitting clinically useful information to 
health-care practitioners. Most clinicians lack both the time and 
the specialized knowledge that are required for an expert inter-
pretation of genotyping results. Reports of genetic risk should, 
therefore, be formatted similarly to other common laboratory 
tests results and include only actionable, interpreted results.

In this study we chose clinical aspects of HIV care as a model 
setting for an implementation of privacy-preserving genetic 
testing and results reporting in the clinic. Human genetic varia-
tion affects multiple aspects of HIV disease, including rate of 
disease progression off therapy (recently reviewed in ref. 4),  
response to therapy,5 adverse events,6 and susceptibility to meta-
bolic disorders.7–9 Today, decisions for clinical care of HIV are 
based on guidelines, local preferences, clinical and demographic 
data, viral resistance analyses, and, increasingly, cost.10 The fact 
that there are now multiple alternatives for first- and second-line 
treatments sets the stage for more informed treatment decisions.

MATERIALS AND METHODS
System model
The proposed system (Figure 1) involves four parties: (i) the 
patients; (ii) a certified institution (CI) responsible for geno-
typing, management of cryptographic keys, and encryption of 
patients’ genetic data; (iii) a storage and processing unit (SPU) 
where the encrypted genetic variants are stored; and (iv) health-
care practitioners, or medical units (MUs), wishing to perform 
genetic tests on the patients. We note that, since sequencers gen-
erating encrypted data do not exist yet, the CI currently would 
have access to unprotected raw genetic variants and therefore 
must be a trusted entity. In addition, we are assuming a model 

where the encrypted genetic variants are stored in a centralized 
SPU rather than at an MU, which maximizes efficiency and secu-
rity. This is similar to applications used in business and govern-
ment where the trust in the server (SPU) is much higher than 
in the client (MU) and allows access to be provided to several 
different clients (MUs) from a trusted central resource whose key 
task is preserving security.

Threat model
We consider the honest-but-curious adversary model where 
the MU and the SPU are noncolluding parties and are compu-
tationally bounded (i.e., with limited computational power). 
In particular, both the MU and the SPU honestly follow the 
protocols without altering the data—but they might try to 
passively infer sensitive information about the patients. The 
honest-but-curious adversary model is a realistic assumption 
in health care where, on a daily basis, different MUs honestly 
collaborate and share sensitive data about patients based on 
mutual trust and privacy policies. Moreover, as recently dis-
cussed in ref. 11, the honest-but-curious adversary model can 
be extended with negligible computational burden to the case 
of malicious MUs trying to actively infer a patient’s sensitive 
data by tampering with the protocol parameters.

Key generation and encryption of genetic data in the 
model setting
Data processing to infer ancestry and calculate medical test 
results used modified versions of previously devised privacy-
preserving algorithms,12,13 using additively homomorphic 
encryption, deterministic encryption, proxy re-encryption, and 
secure two-party protocols for comparison and multiplication in 

Figure 1 Privacy-preserving architecture for genetic testing. Genotype data and encryption keys are generated at a certified institution (CI). The patient 
is provided the full key, which also is randomly split between the data storage and processing unit (SPU) and the medical unit (MU). The privacy-preserving 
algorithms for ancestry inference and genetic risk test computation take place between the MU and the SPU.
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the ciphertext domain (see Supplementary Text S1 online). The 
algorithm consists of an “offline” phase and an “online” phase. In 
the offline phase, the CI generates a pair of cryptographic keys 
(public and private) for each patient. Each private key is ran-
domly split into two shares, with one share assigned to the SPU 
and the other to the MU such that neither site can individually 
decrypt the data. Given the noncollusion assumption between 
these two parties, such a technique prevents the genomic pri-
vacy of patients from being compromised if one share of the key 
is leaked or stolen. The CI encrypts each genetic variant with 
the public key of its owner and then sends the encrypted data to 
the SPU for secure storage. To encrypt the genetic variants, the 
CI applies a probabilistic encryption scheme that is additively 
homomorphic. Probabilistic encryption provides semantic 
security (also known as the indistinguishability of ciphertexts) 
by using randomness in the encryption algorithm so that 
encrypting the same message several times yields different 
ciphertexts. Homomorphic encryption allows computations to 
be carried out on encrypted messages without decrypting them. 
Note that, despite its critical role of key manager and genotyping 
facility, the CI has no incentive or motivation to directly per-
form the genetic tests on the raw data on behalf of the MU. In 
the online phase, the MU and the SPU collaborate to privately 
infer ancestry information and perform genetic tests such that 
the MU obtains only the final result of the computation without 
directly accessing the raw genetic data.

Ancestry inference
To infer ancestry from encrypted data, we used a secure two-
party protocol between the MU and the SPU. The ancestry 
inference algorithm is performed only once at each MU after 
genetic variant encryption. A reference panel of publicly avail-
able genotypes (HapMap14) was selected as a training data set, 
and a principal components analysis along with a k-means 
clustering were applied to identify the main ancestry groups in 
continental populations. Encrypted principal components for 
each patient were then computed at the SPU using the same set 
of variants through homomorphic operations. A secure simi-
larity protocol was performed to privately compare encrypted 
principal components and cluster means to identify the cor-
rect ancestry group for each individual (for further details see 
Supplementary Text S1 online).

Genetic risk test calculation
Privacy-preserving computation of the genetic risk test on 
encrypted data for patient P is performed as follows. Let SNPj  
represent the unique identifier (ID) of the jth single-nucleo-
tide variant, SNP j

P represent the genotype value of SNP j for 
P, and [SNP j

P] denote its encryption under the homomorphic 
encryption scheme. Let [AP] be the homomorphic encryption 
of P’s ancestry information. To compute a specific genetic test 
for condition X on P, including ancestry information, the MU 
sends the set of encrypted IDs (φ) of the single-nucleotide poly-
morphisms correlated with X to the SPU. The SPU then sends 
P’s corresponding encrypted variants and encrypted ancestry 

information back to the MU. Computation of the genetic risk 
score G(X), generally assuming an additive model, is then per-
formed at the MU using the encrypted data; that is, the MU 
calculates [G(X)] through the homomorphic properties of the 
encryption scheme, as shown in equation (1):
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where βj represents the contribution of SNP j to condition X (i.e., 
the odds ratio), α represents the baseline risk, and  ⊗ represents 
a secure two-party multiplication protocol (see Supplementary 
Text S1 online for more details). Note that to prevent the SPU 
from inferring the nature of the test based on the number of 
requested variants, the MU can include an arbitrary number 
of “dummy” variants with a null contribution to X (although 
at the cost of increased computation time). Finally, after partial 
decryption of [G(X)] at the SPU (with SPU’s share of P’s private 
key), the MU completes the decryption of G(X) with its share of 
P’s private key to generate the final report.

Patient characteristics and drug toxicity assessment
Patients were treatment-naive HIV-infected individuals start-
ing antiretroviral therapy and were enrolled in the Swiss HIV 
Cohort Study.15 Clinical toxicity was assessed at baseline and 1 
month (+15 days) and 1 year (+3 months) after treatment ini-
tiation using an adapted toxicity questionnaire.16,17 In the case 
of a treatment discontinuation, modification, or dose change, a 
stop questionnaire was completed. Plasma drug concentrations 
were measured 1 month after antiretroviral therapy initiation 
by liquid chromatography coupled to tandem mass spectrom-
etry using an adaptation of previous methods.18,19 Measured 
laboratory parameters included total bilirubin, triglycerides, 
low-density lipoprotein cholesterol, high-density lipoprotein 
cholesterol, and glucose and were collected at baseline, 1 month, 
and 1 year. Laboratory measurements below the limit of detec-
tion were set to the lowest detectable value. All patients signed 
consent for genetic testing, and the institutional review boards 
of the Swiss HIV Cohort Study centers approved the study.

Genetic variant selection
We identified from the literature 71 markers that were informa-
tive for 17 traits relevant to HIV outcomes. Clinically informa-
tive markers fell into three categories: (i) HIV/hepatitis C virus 
progression20–24 and response to therapy2,6,25–29; (ii) pharmaco-
kinetics of efavirenz,30–34 nevirapine,30,31 etravirine,35 or lopina-
vir36; and (iii) metabolic traits including vitamin D deficiency,7 
coronary artery disease,8,37 cholesterol and triglyceride levels,38 
and type 2 diabetes.9 Testing included single and multimarker 
deterministic tests, where the presence of a risk variant or com-
bination of variants is highly likely to cause the associated trait, 
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and multimarker risk scores, where several variants combine 
together to moderately affect trait risk. The prediction scheme 
for each reported results is provided in Supplementary Text S2 
online. Additional markers that are predictive of patient ances-
try (n = 111),39 or HLA type (n = 250) also were incorporated. 
Markers capturing variation across a set of absorption metab-
olism distribution and excretion genes (n = 3,717) also were 
included.40 Though these variants were not used for clinical 
prediction, they were used to improve the precision of ancestry 
inference.

Genotyping, quality control, and HLA imputation
The majority of variants were genotyped using a custom array on 
the Illumina Infinium platform. Informative variants that could 
not be included on the genotyping array because of technical 
issues (CCR5Δ32 (rs333), CYP2B6*6 (rs3745274), UGT1A1*28 
(rs8175347)) were genotyped by TaqMan allelic discrimination 
from Applied Biosystems, Foster City, CA or fragment size–
based analysis.41 Samples and variants were filtered out if they 
did not pass quality thresholds for genotyping rate and Hardy-
Weinberg equilibrium. A second method was used to confirm 
genotyping for two individuals per genotype (Supplementary 
Table S1 online). Four-digit classical class I HLA allele genotypes 
were imputed for individuals with inferred European ancestry 
using the SNP2HLA pipeline.42 Since currently it is not feasible 
to perform this operation on encrypted data, this step was per-
formed outside of the privacy-preserving framework, although it 
was included in the text report provided to physicians because of 
the high relevance of HLA types in relation to HIV progression. 
Only alleles with an imputation quality above 0.98 were reported.

Interpretation and reporting
Interpretation was defined a priori and fully documented 
(Supplementary Text S2 online). Results were returned to phy-
sicians as a standardized text report. Predictions were reported 
to indicate increased or decreased risk of the trait due to genetic 
factors, or a result of “no relevant alleles found” was reported. 
Concurrently, physicians were asked to complete a survey 
aimed at gauging their acceptance and interest (Supplementary 
Figure S1 online). Each report included a disclaimer indicating 
the investigational nature of the study. Importantly, the release 
of genetic data to the clinics was delayed and, by design, not 
meant to modify choice of treatment.

Statistics
Statistical analyses were performed using R version 2.15. 
Survival analysis was performed using the R Survival pack-
age version 2.37 (http://cran.r-project.org/web/packages/sur-
vival/). Plasma drug concentrations and laboratory parameters 
were compared using linear regression.

RESULTS
Data encryption and ancestry inference
A total of 230 HIV-infected individuals initiating antiretro-
viral therapy were included in the study and were genotyped 

for 4,149 variants. (Patient characteristics are reported in 
Supplementary Table S2 online.) To assess the feasibility of 
applying genetic testing in the clinical setting, we performed 
all operations (with the exception of HLA allele imputa-
tion) on encrypted data based on the framework outlined in 
Figure 1. We used a modified version of the Paillier crypto-
system43 supporting both additively homomorphic encryp-
tion and proxy re-encryption to encrypt the genetic variants 
of each patient, and we used the CCM mode44 of the advanced 
encryption standard45 to deterministically encrypt their identi-
fiers. We tested the performance on off-the-shelf hardware (an 
Intel Core i7-2620M central processing unit with a 2.70-GHz 
processor running the Windows 7 operating system) by using 
a Paillier’s security parameter 4,096 bits in size. The encryp-
tion time for a single marker was 171 ms with a storage size of 
1 kB. Thus, total encryption time per patient for all genotypes 
took ~12 min, generating a ciphertext size of 4 MB. We note 
that initial encryption is required only once in the “offline” 
phase of the protocol and could be accelerated through paral-
lel computing.

By design, this study incorporated genetic tests where the 
predictive markers have been validated only in European pop-
ulations, necessitating ancestry inference from genetic data to 
establish clinical relevance. We used the HapMap reference 
panel14 as a training data set for the privacy-preserving ances-
try inference algorithm. The total time to privately compute the 
ancestry information was 11.6 s per individual, which could be 
reduced to 3.8 s by precomputing some of the parameters of the 
encryption scheme.

After ancestry inference, a set of 169 individuals predicted 
to be of European ancestry and for whom full results and HLA 
alleles could be reported was identified (Figure 2). For the 
remaining individuals, a result of “prediction not available for 
this population” was reported for the ancestry-limited tests. 
Predicted ancestry was highly similar to self-reported ances-
try (94%) and was incorporated solely to determine which test 
results were valid on an individual basis; this was not reported 
to the clinician or patient.

Genetic test calculation and reporting
Testing and reporting were also implemented in an encrypted 
setting. Such an implementation preserves the privacy of 
genomic data without a loss of testing accuracy or speed. For 
risk test computation, we observed an average time of 865 ms 
for a theoretical test using 50 markers. Thus, after encryption 
and ancestry inference, all tests in this study could be per-
formed and reported in less than 1 s.

To maximize clinical utility, clinicians were provided with 
interpreted test results for each trait, rather than the raw patient 
genotypes. Semantics were adapted to indicate the confidence 
of each test individually. Thus, when significant genetic mark-
ers were observed, an alert specific to the test was returned; 
otherwise a result of “no significant alleles found” was given 
(Supplementary Text S2 online). An example report returned 
to physicians is shown in Figure 3.
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Genetic test characteristics
In total, we tested 17 phenotypes relevant for patients with 
HIV. The number of single-nucleotide polymorphisms 
that are informative for a single trait ranged from 1 to 22 
(Supplementary Text S2 online). The proportion of positive 
results returned for all tests ranged from 0 to 54% (Table 1). 
Considering all tests, 226 patients (98%) had at least 1 positive 
result. Though this study was not designed to assess the pre-
dictive value of the included genetic variants, we did observe 
consistency between their reported effects in the literature 
and drug plasma concentrations (efavirenz; Supplementary 
Figure S2 online) and levels of measured laboratory values 
(bilirubin, high-density lipoprotein, non–high-density lipo-
protein cholesterol, and triglycerides; Supplementary Figure 
S3 online) in this sample. In addition, we observed a shorter 
time to treatment discontinuation for individuals with a 
gene–drug conflict (i.e., on an anti-HIV therapy regimen con-
taining efavirenz, nevirapine, etravirine, or lopinavir with a 
positive genetic test) compared with those without (P = 0.02; 
Supplementary Figure S4 online).

Given the importance of HLA class I alleles in influencing 
HIV disease progression,22 we included 250 variants that were 
specifically selected for their ability to tag HLA types in indi-
viduals of European ancestry. We were able to impute classi-
cal four-digit HLA types for 77% (HLA-A), 65% (HLA-B), and 
96% (HLA-C) of alleles in Europeans with ≥ 98% confidence. 
The relatively low proportion of imputed HLA-B alleles is prob-
ably due to the extreme diversity across this gene.42

Acceptability by clinicians
To address the utility of and interest in the pharmacogenetic 
report, we asked all physicians to respond to an acceptability 
questionnaire (Supplementary Figure S1 online). Although the 
majority (53%) of physicians reported that the test results were 
useful or potentially useful, only a minority (42%) reported that 
they would discuss these results with the patient (Figure 4). In 
addition, when a positive genetic result was returned and the 
patient had been prescribed the contraindicated medication, 
only 10% of physicians reported that they would have pre-
scribed a different first-line regimen if given the genetic results 
in advance.

DISCUSSION
This study assessed the steps required for deployment of pri-
vacy-preserving genetic testing in clinical care. We tested the 
applicability of privacy-preserving techniques for genetic test-
ing with ancestry inference and delivery of interpreted informa-
tion to clinicians. This included protection of the genetic data 
itself and the possibility to conduct various operations (ances-
try analysis, generation of genetic scores and reports) within an 
encrypted environment.

The design of the study included the genotyping of several 
thousand markers and the reporting of a number of potentially 
actionable HIV-related variants. Specifically, the panel of genetic 
tests addresses some recognized issues in HIV care: abnormal 
drug concentrations and toxicity, HIV- and treatment-associ-
ated metabolic disorders, HIV/hepatitis C virus coinfection and 
prediction of disease progression. For example, tests included 
deterministic information (e.g., HLA-B*57 and abacavir hyper-
sensitivity), as well as informative results on particular predis-
positions (e.g., metabolic risk). The language was controlled 
to indicate this difference. Importantly, this framework could 
easily be extended to incorporate demographic, behavioral, and 
laboratory parameters to more precisely estimate a patient’s risk 
of a particular outcome12 (e.g., cardiovascular risk, a significant 
issue in the care of HIV-infected individuals8).

Specific aspects of the predictive value of individual tests 
were assessed, although the study was not designed to formally 
test their validity (which has been confirmed by larger studies). 
A central outcome of this study is the delivery of interpreted 
genetic data. Processes such as correction for ancestry, imputa-
tion of HLA alleles, and calculation of genetic scores were per-
formed in the background, and clinicians received only a fully 
interpreted report rather than raw genetic data. However, the 
testing framework was made available to clinicians so that they 

Figure 2 Inference of patient ancestry based on genetic data. Clustering 
of patient samples (grey diamonds) with populations of different ancestries. 
Principal component (PC) analysis and ancestry inference were performed in 
a privacy-preserving way through a secure two-party protocol between the 
storage and processing unit (SPU) and the medical unit. Encrypted ancestry 
information was generated and stored at the SPU. Sample clustering with the 
HapMap CEU (Utah residents with Northern and Western European ancestry 
collected by the Centre d’Etude du Polymorphisme Humain) and TSI (Tuscans 
in Italy) populations (i.e., those within the circle) were considered European for 
the purposes of report generation. ASW, African ancestry in southwest United 
States; CHB, Han Chinese in Beijing, China; CHD, Chinese in Metropolitan 
Denver, Colorado; GIH, Gujarati Indians in Houston, Texas; JPT, Japanese from 
Tokyo, Japan; LWK, Luhya in Webuye, Kenya; MKK, Massai in Kinyawa, Kenya; 
MXL, Mexican ancestry in Los Angeles, California; SNV, single-nucleotide 
variant; YRI, Yoruba in Ibidan, Nigeria.

0.06

0.04

0.02

0.00

P
C

2

−0.02

−0.04

−0.04 −0.02 0.00

PC1

CEU
TSI
JPT+CHB
CHD

YRI
LWK
MKK
ASW

GIH
MXL
Sample

0.02 0.04

−0.06

Genetics in medicine



6

MCLAREN et al  |  Encrypted clinical genetic testingOriginal research article

could evaluate the evidence for each test based on their inter-
est level. We deployed a real-life clinical application by using a 
privacy-preserving framework in which reports were generated 
from encrypted genetic data without significant additional cost 
in terms of computation and storage overhead.

The security of the system relies on the security of the 
underlying cryptosystem that is based on the quadratic 
residuosity assumption. In our case, the proposed system 
may be susceptible to a brute-force attack (i.e., system-
atically checking all possible keys until the correct one is 
found). The feasibility of this type of attack depends on the 
length of the key used (a cipher with a key length of n bits 

can be broken in an average time of 2n−1). We used a 4,096-
bit key, a size that is compliant with the recommendations of 
the National Institute of Standards and Technology and will 
provide security for the next 30-plus years based on the envi-
sioned improvement in computing power.46 For some test 
results reported, however, there is a strong linkage between 
the results and the underlying causal genotype (e.g., HLA-
B*57:01 and abacavir hypersensitivity). Thus the inclusion 
of a large number of such tests may present its own risk to 
patient privacy. In the case where many such conditions are 
to be included in the same report, other techniques, such as 
result obfuscation, may be desirable.

Figure 3 Example report returned to clinicians. Interpreted test results are shown for each trait. An alert specific to the test was returned when a significant 
test score or genetic marker was observed. Otherwise, a result of “no significant alleles found” was displayed.

These data are exclusively provided in the frame of an investigational project. Do not modify treatment based
on these results.

HIV pharmacogenomic report

Clinically relevant results need to be confirmed by an accredited clinical laboratory.

These data reveal the genetic component of the described traits. Environmental, viral and other factors are to be
considered for the correct interpretation of individual risk.
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By design, this was not a randomized analysis of the impact 
of specific genetic tests on clinical care. In particular, there 
was no opportunity to modify treatment choice and no inter-
vention based on the report. Instead, the study defined proce-
dures and strategies that are informative of the steps leading 
to the clinical use of genetic information. It provides the basis 
for future randomized studies aimed at delivering actionable 
genetic results in real time. Separate clinical trials for every 
single variant will be difficult to conduct because of the inher-
ent cost and complexity, but trials could efficiently evaluate 
the performance of comprehensive panels that include all val-
idated genetic information pertinent to clinical care—with-
out limiting the communication to high-value deterministic 
information.

Upon receipt of the report, physicians were queried about 
their impressions of the information included in the report. 
The overall response was positive, even though many reports 
did not contain actionable information. It was thus surpris-
ing that when the report included information pertinent to 
the prescribed treatment, only 10% of the physicians indicated 
that they would have prescribed a different first-line regimen 
if given the genetic results in advance. Prospective studies are 
needed to more fully gauge the response to genetic information 
in the clinical setting.

The strategy successfully implemented in this pilot study 
allows the secure storage and analysis of large-scale genetic 
data, as well as the targeted delivery of specific subsets of test 
results to the clinic.47 This will become increasingly important as 

Table 1 Summary of patients with a positive genetic test result reported
Category Test (n markers) Positive (n) Tested (n)a Proportion positive

HIV/HCV progression and adverse drug events HIV acquisition (1)b 23 230 10%

HIV progression (3) 45 169 27%

ABC hypersensitivity (1) 18 230 8%

ATV hyperbilirubinemia (1) 32 230 14%

HCV clearance (1) 125 230 54%

HCV interferon response (1) 125 230 54%

HCV anemia on ribavirin (1) 58 169 34%

Pharmacokinetics EFV pharmacokinetics (10) 19 230 8%

NVP pharmacokinetics (7) 19 230 8%

ETV pharmacokinetics (2) 92 230 40%

LPV pharmacokinetics (4) 70 230 30%

Metabolic traits Vitamin D levels (1) 12 230 5%

Coronary artery disease (22) 40 169 24%

Non-HDL cholesterol (10) 27 169 16%

HDL cholesterol (6) 13 169 8%

Triglycerides (7) 32 169 19%

Type 2 diabetes (4) 0 169 0%
aTests with a smaller number of total individuals tested have been validated only for individuals of European ancestry. bAll individuals identified as positive carry one copy of 
CCR5Δ32.

ABC, abacavir; ATV, atazanivir; EFV, efavirenz; ETV, etravirine; HCV, hepatitis C virus; HDL, high-density lipoprotein; LPV, lopinivir; NVP, nevirapine.

Figure 4 Physician response to survey questions. (a) Is the information you received useful? (b) Although this is research (nonaccredited) information, do 
you think it is worth discussing with your patient?

Useful/possibly useful

Interesting but not useful

No clinical
value

53%

38%

9%

58%

Would not discuss

Possibly would discuss

Will discuss
28%

14%

a b

Genetics in medicine



8

MCLAREN et al  |  Encrypted clinical genetic testingOriginal research article

many large-scale sequencing efforts are initiated, with the goal 
of incorporating the resulting genomic data into clinical care. In 
the proposed system, the encryption time of the genotype scales 
linearly with the number of markers. Thus the encryption of 4 
million markers (the approximate number of variant genotypes 
carried by a given individual) would take ~200 h. Importantly, 
this initial encryption is required only once (in the offline phase) 
and could be expedited by precomputation of certain exponents 
that are required for encryption and parallel computation, 
resulting in an encryption time on the order of minutes. Though 
current computational limitations are prohibitive for the per-
formance of certain sophisticated operations, such as genotype 
imputation, fully homomorphic encryption has no theoreti-
cal bounds on possible mathematic operations or on scalabil-
ity. Thus, as computation efficiency continues to increase, the 
scheme presented here will remain directly applicable.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper 
at http://www.nature.com/gim
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