
LCAV Bachelor project - year 2016 - report

June 10, 2016

Theme : PostScript in Ipython Notebook
Supervisor : PRANDONI Paolo - Student : FOREL Duncan

1 Description of the project

An IPython Notebook is a “web-based interactive computational environment where you can combine code
execution, text, mathematics, plots and rich media into a single document’‘. IPython notebooks are ex-
tremely versatile: you can run them locally, and all the code samples will execute on your PC; or you
can’‘freeze” them and make them available as HTML pages, so that people can browse them. Finally, a
server can be set up so that viewers can run the notebook remotely and combine the advantages of web-based
browsing with the interactivity of the Python code.

IPython notebooks have become particularly popular because they natively integrate LaTeX and graphics
support, so that they can be used to produce high-quality web pages that include math and figures. In high-
quality scientific publishing, however, the gold standard for figure generation is the PostScript language.
When writing in TeX or LaTeX, many packages exist (such as PsTricks) that help us design beautiful figures
and plots programmatically, ie. as chunks of LaTeX and PostScript code. The document is then compiled
to DVI, converted to PostScript using the dvips program and the code will be interpreted by the PostScript
viewer (or printer) to render the graphics at arbitrary scale with no loss of resolution.

The goal of this project is to add PostScript functionality to IPython notebooks by allowing for PostScript-
generating LaTeX/macros to execute and render within the notebook environment.

2 Workflow of the project

The project was separated in two parts : comprehension and design of the module (mostly at the beginning
of the project) and then development, test and documentation (mostly at the end of the project).

2.1 Comprehension of the problem

This project can be split in two main parts : conversion of a PostScript file to a format accepted by the
notebook and creating the magics with this objective.

The conversion from LaTeX to PostScript is directly handled by the LaTeX distributions, with the
commands “latex” and “dvips”. I had to treat the case of the PostScript files. These ones don’t contain
the pixels of the images, only the commands used by the PS-printer to draw the figure. Meanwhile, the
notebook can natively display the following formats :

• HTML
• JSON
• PNG (the format of the files converted by this module)
• JPEG
• SVG
• LaTeX (the notebook uses MathJax to render LaTeX code, it is consequently incomplet, working

mainly for the mathematical formulas).

1

The conversion format had to be an image, as the goal of the module is to render figures written in
PostScript. I chose the PNG for the compression. Consequently, I needed a way to convert PostScript to
PNG. GhostScript is a great software allowing to read and convert PS files. It contains a command-line
function ps2pdf converting a PS file to a PDF file. However, the PDF aren’t supported by the notebook. I
had then to convert from PDF to PNG.

After some researchs, I found another free software allowing this kind of conversion : ImageMag-
ick (website : http://www.imagemagick.org/script/index.php). Moreover, it allows to directly convert
from PostScript to PNG if GhostScript is installed (ImageMagick delegates the reading of the PS files to
GhostScript). With this basis, I created a script converting a given LaTeX/PostScript file to PNG. Some
API exists for ImageMagick, however the software is designed for a command-line usage and these API need
to be installed in complement of the software himself (in addition of packages in the case of PythonMagick,
the python API for ImageMagick). I consequently chose to stay with the basic version of the software, the
functionnalities provided being sufficient for this module.

To prevent the conflict between a command from the OS on Windows and ImageMagick, the installation
has to be completed with the renaming of a file from the software on this OS. This forced the distinction
between the Linux/MacOS and Windows.

2.2 Interrogations about internal structure

After the first step done, I had to write magic functions for the notebook. I browsed the IPython
and Jupyter documentation in order to find the way to do it. The most useful page found is :
http://ipython.readthedocs.io/en/stable/config/extensions/index.htm , containing almost everything on the
extensions and a link on how to create magics.

The main function is load ipython extension, allowing to modify the behaviour of the notebook by adding
shortcut, magics or variables.

A question was about overriding the file created in memory. Even if the notebook doesn’t need it
permanently, I didn’t know if I should simply replace the files created. I understood then that doing the
work this way would cause easily conflict, as I didn’t delete the files used. As example, a single-page PS file
would generate a single image, and then generating images from a multi-page PS file would display the same
image from the previous compilation forever. This effect is still present for the commands specifying a path
for the PNG files, but it is documented.

2.3 Development

The development went from the most basic functionnalities, packed in the code in “Utility functions” to the
high-level functionnalities, i.e the magics.

Each level requires the lower level to work and is documented both in the code using docstrings and in
the general documentation. The basic module only contained magics to display code or file and an utility
magic used mainly for the help. The error management is present, even if minimal in the case of errors in
the PostScript to PNG conversion. The main usage is supposed to be LaTeX code display.

Then, as suggested by Pr. Prandoni, I added the possibility to specify a path to a PNG file for each
command. If an image is found at this emplacement, it is displayed, otherwise the result of the compilation
is saved here. This functionnaly was accompanied by a command forcing the compilation, even if a file is
present at the given emplacement. The goal was to be able to share a notebook with people who don’t have
LaTeX or the dependencies of this module. To store the command for the forced compilation was the most
complicated part of the development. I wanted to be as simple for the user as possible and didn’t want
to force him to add an option every time he wanted to force the compilation, nor create a variable at the
beginning of the notebook. The problem was finally solved using an option for the %PSViewer magic.

2.4 Documentation

The documentation was built using Sphinx, a tool designed to generate high-quality documentation for
programs. This documentation contains informations about how to install the module, how it works (both
for the user and a programmer wanting to enhance the functionnalities), some examples and common errors.

2

Some of them, notably forcing the compilation of a file multiple times concluding in the display of an
unexpected result, can happen easily. Therefore, it was mandatory to explain what the problem was and
how to avoid it.

The documentation is available both as pdf and as html, allowing to create an online documentation.
Both are joined to this report. The goal is to publish this module on github and make it available for anyone
wanting to use it, contibuting in this way to the development of the ipython notebook.

2.5 Possible enhancements

• Allow the user to specify a resolution for the output file.
• Add a better management of the conversion errors.
• Allow the user to specify an output format.
• Display the options ignored by the magics (actually, an incorrect option is skipped).

3 Code of the module

The following code is included in the file PSViewer.py. A variante exists for Windows, where CON-
VERT CMD as a value of “convert img”.

In []: import sys

import os

import shutil

from IPython.display import (display, display_png, Image, FileLink)

#Constants

VERSION_PATH = "version.txt"

PS_FILE = "postScript.ps"

LATEX_FILE = "LaTeX.tex"

GENERIC_FOLDER = "Figure"

LATEX_CMD = "latex"

DVIPS_CMD = "dvips"

CONVERT_CMD = "convert"

WRAPPER = r"""

\documentclass{minimal}

\begin{document}

@REPLACE@

\end{document}

"""

#Global Variable

forceCompile = False

#--------------------------

Utility functions

#--------------------------

def clearVersion() :

"""Utility function used to clear the documents created by the compilation.

It retrieves the current index for the compilation and remove all the previous folders.

If the value stored for the index is incorrect, nothing is done.

3

It also removes the file containing the current index.

"""

if os.path.exists(VERSION_PATH) :

f = open(VERSION_PATH, "r")

value = str(f.read())

f.close()

if value.isdigit() :

for i in range(int(value)) :

shutil.rmtree("%s%i" % (GENERIC_FOLDER, i), True)

os.remove(VERSION_PATH)

def loadVersion() :

"""Utility function loading the current index for the folder storing a compiled document.

If the document storing the index is missing or the value contained is incorrect

(typically, if it is a string) the index will be set to 0.

Then, the index incremented is stored in the version file and the folder

corresponding to the index is created.

"""

value = ""

if os.path.exists(VERSION_PATH) :

f = open(VERSION_PATH, "r")

value = f.read()

f.close()

else :

f = open(VERSION_PATH, "w")

f.write(str(0))

f.close

version = 0

if value.isdigit() :

version = int(value)

f = open(VERSION_PATH, "w")

f.write("%i" % (version+1))

f.close()

os.makedirs("%s%i" % (GENERIC_FOLDER, version))

return version

def writeTeXFile(data, version=0) :

"""Write the data given in a TeX file corresponding to the current index.

Keyword arguments:

data -- the string containing the text to write in the document.

version -- the index of the folder to store the file in (default 0).

"""

path = os.path.join("%s%i" % (GENERIC_FOLDER, version), LATEX_FILE)

f = open(path, ’w’)

f.write(data)

f.close()

return path

def writePSFile(data, version=0) :

"""Write the data given in a PS file corresponding to the current index.

4

Keyword arguments:

data -- the string containing the text to write in the document.

version -- the index of the folder to store the file in (default 0).

"""

path = os.path.join("%s%i" % (GENERIC_FOLDER, version), PS_FILE)

f = open(path, ’w’)

f.write(data)

f.close()

return path

def convertLaTeXFile(path, doubleCompilation=False) :

"""Convert the TeX file at the specified path to a PS file,

using the latex and dvips commands. If an error is encountered

during the conversion, the process is stopped and an error message

is displayed. Caution : this error message uses IPython functionalities.

The double compilation is supported if needed. The intermediate files

from the conversion are deleted.

The process return the path to the PS file if the compilation was successful

and None otherwise.

Keyword arguments:

path -- the path of the TeX file.

doubleCompilation -- boolean containing if a double compilation should be done

(default False)

"""

here = os.getcwd()

filename = os.path.basename(path)[:-4]

os.chdir(os.path.dirname(path))

ret = os.system("%s -quiet %s" % (LATEX_CMD, filename + ".tex"))

if ret != 0 :

os.chdir(here)

print("An error occurred during the conversion, please check the code."

"Details of the error in the following file :")

display(FileLink(os.path.join(os.path.join(os.path.dirname(path), filename + ".log"))))

return None

if doubleCompilation :

ret += os.system("%s -quiet %s" % (LATEX_CMD, filename + ".tex"))

ret += os.system("%s -q %s -o %s" % (DVIPS_CMD, filename + ".dvi", filename + ".ps"))

os.remove(filename + ".dvi")

os.remove(filename + ".aux")

os.remove(filename + ".log")

os.chdir(here)

if ret == 0 :

return path[:-4] + ".ps"

else :

print("Something failed in the dvips conversion. Unexpected behaviour.")

return None

def convertPSFile(path, pngPath=None) :

"""Convert the PS file at the specified path to one or multiple PNG files,

5

one PNG image per page. The path to save the PNG can be specified, is must

be a file and not a directory. The conversion uses a command from ImageMagick,

convert_img (it is a renamed version of convert). If no PNG path is specified,

the name and the emplacement of the postScript file will be used instead.

If a path different from a PNG file is given, a missing extension will be assumed.

This function returns the path of the PNG image (even if multiple images will have

distinct paths).

Keyword arguments:

path : the path of the PS file.

pngPath : the path where to save the PNG file(s) (default None)

"""

if pngPath is None :

pngPath = path[:-3] + ".png"

else :

if len(pngPath)<4 or (pngPath[-4:] != ".png" and pngPath[-4:] != ".PNG"):

print("The path given was not a png file. Assuming missing extension.")

pngPath = pngPath + ".png"

os.system("%s %s %s" % (CONVERT_CMD, path, pngPath))

return pngPath

def findPNGFiles(pngPath, expectations=False) :

"""Utility function to retrieve one or multiple PNG files from an emplacement.

The given path can design a file or the prefix of multiple PNG files

(in the format prefix-x.png, where x is an integer). If a file is found, the prefix case

won’t be evaluated.

All the path found are stored in a table and returned by the function.

If the table is empty and it was expected to find results, an error message is displayed.

Keyword arguments:

pngPath -- the file’s emplacement or the common prefix.

expectations -- if the function displays an error message in case of empty result

(default False).

"""

result = []

if len(pngPath)<4 or pngPath[-4:] != ".png" :

print("The path given was not a png file. Assuming missing extension.")

pngPath = pngPath + ".png"

if os.path.exists(pngPath) :

result.append(pngPath)

else :

pngPath = pngPath[:-4] + "-"

stillSeeking = True

index = 0

while(stillSeeking) :

currentPath = "%s%i.png" % (pngPath, index)

if os.path.exists(currentPath) :

result.append(currentPath)

index = index + 1

else :

stillSeeking = False

if expectations and len(result)<1 :

print("Conversion in PNG file didn’t work, please check the postScript"

6

"code you provided.")

return result

#--------------------------

Mid-level functions

#--------------------------

def displayPScode(data, pngPath=None) :

"""This function loads and displays the PNG file specified in argument,

unless the forced compilation is enabled. If no PNG file can be displayed

or if the compilation is forced, it writes the given text in an PS file and

calls displayPSFile on it, transmitting the PNG path.

Keyword arguments:

data -- the string containing the PS code.

pngPath -- the path where to fetch/save the PNG file (default None).

"""

if pngPath is not None and not forceCompile :

if checkPNGFiles(pngPath) :

return None

folder = 0

if pngPath is None :

folder = loadVersion()

path = writePSFile(data, folder)

displayPSFile(path, pngPath)

return None

def displayPSFile(path, pngPath=None) :

"""This function loads and displays the PNG file specified in argument,

unless the forced compilation is enabled. If no PNG file can be displayed

or if the compilation is forced, it converts the PS file given in argument

and displays the images resulting of the conversion.

Keyword arguments:

path -- the path of the PS file to convert.

pngPath -- the path where to fetch/save the PNG file (default None).

"""

if pngPath is not None and not forceCompile :

if checkPNGFiles(pngPath) :

return None

result = convertPSFile(path, pngPath)

checkPNGFiles(result, True)

return None

def displayLatexCode(data, pngPath=None, doubleCompilation=False) :

"""This function loads and displays the PNG file specified in argument,

unless the forced compilation is enabled. If no PNG file can be displayed

or if the compilation is forced, it writes the given text in an TeX file and

calls displayLatexFile on it, transmitting the PNG path and the indication for

the double compilation.

7

Keyword arguments:

data -- the string containing the LaTeX code.

pngPath -- the path where to fetch/save the PNG file (default None).

doubleCompilation -- whether the compilation should be executed twice (default False)

"""

if pngPath is not None and not forceCompile :

if checkPNGFiles(pngPath) :

return None

folder = 0

if pngPath is None :

folder = loadVersion()

path = writeTeXFile(data, folder)

displayLatexFile(path, pngPath, doubleCompilation)

return None

def displayLatexFile(path, pngPath=None, doubleCompilation=False) :

"""This function loads and displays the PNG file specified in argument,

unless the forced compilation is enabled. If no PNG file can be displayed

or if the compilation is forced, it converts the LaTeX file given in argument,

using the double compilation if specified, generating a PS file. The result is then

converted and displayed using displayPSFile.

Keyword arguments:

path -- the path of the LaTeX file to convert.

pngPath -- the path where to fetch/save the PNG file (default None).

doubleCompilation -- whether the compilation should be executed twice (default False)

"""

if pngPath is not None and not forceCompile :

if checkPNGFiles(pngPath) :

return None

result = convertLaTeXFile(path, doubleCompilation)

if result is not None :

displayPSFile(result, pngPath)

return None

def checkPNGFiles(path, expectations=False) :

"""Retrieve and display the PNG images corresponding to the specified path.

If no file is found can display an error message.

The algorithm used for retrieving files is given in findPNGFiles.

Keyword arguments:

path -- the path of the PNG file or the common prefix of multiple files.

expectations -- if the function displays an error message in case of empty result

(default False).

"""

result = findPNGFiles(path, expectations)

if len(result) > 0 :

for elem in result :

display_png(Image(filename=elem))

return True

else :

8

return False

#--------------------------

Magics functions

#--------------------------

def PSFile(line) :

"""The function defining the %PSFile magic.

The expected arguments are the path to the PS file to display and optionally

the path of the PNG file corresponding (if not found or compilation forced, it

will be the converted file’s path).

In case of incorrect use, this function displays an error message.

Keyword arguments:

line -- the line of text after the magic’s invocation, of the form path [path]

"""

paths = line.split(" ")

if len(paths) > 2 or len(paths) == 0 :

print("Incorrect use of the magic. Please see ’%PSViewer -help’ for help")

else :

if len(paths) == 1 :

displayPSFile(paths[0])

else :

displayPSFile(paths[0], paths[1])

def LatexFile(line) :

"""The function defining the %LatexFile magic.

The expected arguments (the line) are the path to the Latex file to display and

optionally the path of the PNG file corresponding (if not found or compilation

forced, it will be the converted file’s path).

In case of incorrect use, this function displays an error message.

Keyword arguments:

line -- the line of text after the magic’s invocation, of the form path [path]

"""

paths = line.split(" ")

if len(paths) > 2 or len(paths) == 0 :

print("Incorrect use of the magic. Please see ’%PSViewer -help’ for help")

else :

if len(paths) == 1 :

displayLatexFile(paths[0])

else :

displayLatexFile(paths[0], paths[1])

def PSCode(line, cell) :

"""The function defining the %%PSCode magic.

The line argument contains the options of the magic. If a path is specified as

first option, the magic will try to retrieve PNG images from this emplacement

and display them without any compilation. If the compilation is forced or if no

file are found, the following options will be evaluated and the conversion of the

9

cell’s code will be execute.

The current options are :

-noSave which allow the override of the intermediate files. Caution : this can cause

unexpected behaviour in some cases.

Any other command will be ignored.

Keyword arguments:

line -- the line of text after the magic’s invocation, of the form "path [option*]"

cell -- the content of the cell, expected to be the postScript code.

"""

if len(line) > 1 :

commands = line.split(" ")

path = None

if commands[0][0] != "-" :

path = commands[0]

if "-noSave" in commands and pngPath is None :

path = os.path.join(GENERIC_FOLDER + "0", "display.png")

displayPScode(cell, path)

else :

displayPScode(cell)

def LatexCode(line, cell) :

"""The function defining the %%LatexCode magic.

The line argument contains the options of the magic. If a path is specified as

first option, the magic will try to retrieve PNG images from this emplacement

and display them without any compilation. If the compilation is forced or if no

file are found, the following options will be evaluated and the conversion of the

cell’s code will be execute.

The current options are :

-noSave which allow the override of the intermediate files. Caution : this can cause

unexpected behaviour in some cases.

-noImport generates the documentclass, begin{document} and end{document} of the

file automatically.

-doubleCompilation indicates that a double compilation is required. This option is

useful in case of internal links.

Any other command will be ignored.

Keyword arguments:

line -- the line of text after the magic’s invocation, of the form "path [option*]"

cell -- the content of the cell, expected to be the LaTeX code.

"""

if len(line) < 1 :

displayLatexCode(cell)

else :

commands = line.split(" ")

pngPath = None

if commands[0][0] != "-" :

pngPath = commands[0]

if "-noImport" in commands :

cell = WRAPPER.replace("@REPLACE@", cell)

noSave = None

doubleCompilation = False

if "-noSave" in commands and pngPath is None :

noSave = os.path.join(GENERIC_FOLDER + "0", "display.png")

10

if "-doubleCompilation" in commands :

doubleCompilation = True

if noSave is not None or doubleCompilation :

displayLatexCode(cell, noSave, doubleCompilation)

else :

displayLatexCode(cell)

def PSViewer(line) :

"""The function defining the %PSViewer magic.

It mainly contains utility functionalities in order to modify slightly the

behaviour of the module or retrieve some informations.

The magic is expected to be followed by an option from:

-reset -- delete the files created during the compilations, expect if they have

been stored in a specified path.

-path -- display the path to the folder where the intermediate files are created.

-forceCompile -- toggle the forced compilation of the code/files given.

-compilationState -- display if the compilation is forced or not.

Any other option (even no option) will be interpreted as -help and will display

the help.

Keyword arguments:

line -- the line of text after the magic’s invocation, of the form "option"

"""

import PSViewer

if line == "-reset" :

clearVersion()

print ("Version cleared, all files deleted")

elif line == "-path" :

print (os.getcwd())

elif line == "-forceCompile" :

if PSViewer.forceCompile :

PSViewer.forceCompile = False

print("Toggled behaviour to displaying given image")

else :

PSViewer.forceCompile = True

print("Toggled behaviour to forced compilation")

elif line == "-compilationState" :

if PSViewer.forceCompile :

print("Default behaviour : forced compilation")

else :

print("Default behaviour : displaying given image")

else :

print (r"""

The following magics are defined in this module :

(all the options must be on the same line that the magic)

%%PSCode allows to run postScript code directly in the cell.

Giving a path as first argument will modify the behaviour of the magic.

If one or multiple png images are found at this emplacement, they will

be displayed instead of the compilation. In the other case or if forceCompile

is enabled, the file will be compiled and displayed.

the option -noSave prevent the excessive usage of memory by overriding

the intermediate files in memory.

Caution : this option can have unexpected result if you convert a document

11

with less pages than the previous one.

%PSFile allows to view the content of a ps file in the notebook.

The first argument is always the path to the file. A second path can be given.

With default behaviour, the png images corresponding to the path will be loaded

and displayed. With forceCompile or if the path is empty, the png generated by

the magic will be stored at this emplacement.

The element(s) must be in absolute path or in the notebook’s directory.

%%LatexCode allows to run LaTeX code in the cell. Following options exist :

Giving a path as first argument will modify the behaviour of the magic. If one

or multiple png images are found at this emplacement, they will be displayed

instead of the compilation. In the other case or if forceCompile is enabled,

the file will be compiled and displayed.

-noSave prevent the excessive usage of memory by overriding the intermediate files

created in memory.

Caution : this option can have unexpected result if you convert a document with

less pages than the previous one.

-doubleCompilation is useful if you need to compile a LaTeX document with references

in it. You cannot compile multiple times just by reinterpreting the cell.

-noImport allow to write a basic LaTeX document without import, without specifying

\documentclass, \begin{document} and \end{document}

%LatexFile allows to view the content of a LaTeX file in the notebook.

The first argument is always the path to the file. A second path can be given.

With default behaviour, the png images corresponding to the path will be loaded

and displayed. With forceCompile or if the path is empty, the png generated by

the magic will be stored at this emplacement.

The element(s) must be in absolute path or in the notebook’s directory.

%PSViewer is the set of utility functions. It is mostly for help.

-reset clear all the files created with the other magics. It can’t be undone.

-path show the path to the default folder containing the files created with

the magics.

-forceCompile toggle the forced compilation of the LaTeX/PS code.

-compilationState displays what is the treatment for the path given for

the conversion.

Any other argument will be interpreted as -help and will display this help.""")

#--------------------------

Declaring magics

#--------------------------

def load_ipython_extension(ipython) :

"""The function defining the magics and which is their type."""

ipython.register_magic_function(PSViewer, "line")

ipython.register_magic_function(PSFile, "line")

ipython.register_magic_function(LatexFile, "line")

ipython.register_magic_function(PSCode, "cell")

ipython.register_magic_function(LatexCode, "cell")

12

4 Documentation of the module

In [3]: %LatexFile PSViewer.tex Images\documentation.png

#An higher quality document is joined to this report as ’PSViewer.pdf’.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

	Description of the project
	Workflow of the project
	Comprehension of the problem
	Interrogations about internal structure
	Development
	Documentation
	Possible enhancements

	Code of the module
	Documentation of the module

