LCAV Bachelor project - year 2016 - report

June 10, 2016

Theme : PostScript in Ipython Notebook
Supervisor : PRANDONI Paolo - Student : FOREL Duncan

1 Description of the project

An IPython Notebook is a “web-based interactive computational environment where you can combine code
execution, text, mathematics, plots and rich media into a single document’. IPython notebooks are ex-
tremely versatile: you can run them locally, and all the code samples will execute on your PC; or you
can’‘freeze” them and make them available as HTML pages, so that people can browse them. Finally, a
server can be set up so that viewers can run the notebook remotely and combine the advantages of web-based
browsing with the interactivity of the Python code.

IPython notebooks have become particularly popular because they natively integrate LaTeX and graphics
support, so that they can be used to produce high-quality web pages that include math and figures. In high-
quality scientific publishing, however, the gold standard for figure generation is the PostScript language.
When writing in TeX or LaTeX, many packages exist (such as PsTricks) that help us design beautiful figures
and plots programmatically, ie. as chunks of LaTeX and PostScript code. The document is then compiled
to DVI, converted to PostScript using the dvips program and the code will be interpreted by the PostScript
viewer (or printer) to render the graphics at arbitrary scale with no loss of resolution.

The goal of this project is to add PostScript functionality to IPython notebooks by allowing for PostScript-
generating LaTeX /macros to execute and render within the notebook environment.

2 Workflow of the project

The project was separated in two parts : comprehension and design of the module (mostly at the beginning
of the project) and then development, test and documentation (mostly at the end of the project).

2.1 Comprehension of the problem

This project can be split in two main parts : conversion of a PostScript file to a format accepted by the
notebook and creating the magics with this objective.

The conversion from LaTeX to PostScript is directly handled by the LaTeX distributions, with the
commands “latex” and “dvips”. I had to treat the case of the PostScript files. These ones don’t contain
the pixels of the images, only the commands used by the PS-printer to draw the figure. Meanwhile, the
notebook can natively display the following formats :

HTML

JSON

PNG (the format of the files converted by this module)

JPEG

SVG

LaTeX (the notebook uses MathJax to render LaTeX code, it is consequently incomplet, working
mainly for the mathematical formulas).

The conversion format had to be an image, as the goal of the module is to render figures written in
PostScript. I chose the PNG for the compression. Consequently, I needed a way to convert PostScript to
PNG. GhostScript is a great software allowing to read and convert PS files. It contains a command-line
function ps2pdf converting a PS file to a PDF file. However, the PDF aren’t supported by the notebook. I
had then to convert from PDF to PNG.

After some researchs, I found another free software allowing this kind of conversion : ImageMag-
ick (website : http://www.imagemagick.org/script/index.php). Moreover, it allows to directly convert
from PostScript to PNG if GhostScript is installed (ImageMagick delegates the reading of the PS files to
GhostScript). With this basis, I created a script converting a given LaTeX/PostScript file to PNG. Some
API exists for ImageMagick, however the software is designed for a command-line usage and these API need
to be installed in complement of the software himself (in addition of packages in the case of PythonMagick,
the python API for ImageMagick). I consequently chose to stay with the basic version of the software, the
functionnalities provided being sufficient for this module.

To prevent the conflict between a command from the OS on Windows and ImageMagick, the installation
has to be completed with the renaming of a file from the software on this OS. This forced the distinction
between the Linux/MacOS and Windows.

2.2 Interrogations about internal structure

After the first step done, I had to write magic functions for the notebook. I browsed the IPython
and Jupyter documentation in order to find the way to do it. The most useful page found is :
http://ipython.readthedocs.io/en/stable/config/extensions/index.htm , containing almost everything on the
extensions and a link on how to create magics.

The main function is load_ipython_extension, allowing to modify the behaviour of the notebook by adding
shortcut, magics or variables.

A question was about overriding the file created in memory. Even if the notebook doesn’t need it
permanently, I didn’t know if I should simply replace the files created. I understood then that doing the
work this way would cause easily conflict, as I didn’t delete the files used. As example, a single-page PS file
would generate a single image, and then generating images from a multi-page PS file would display the same
image from the previous compilation forever. This effect is still present for the commands specifying a path
for the PNG files, but it is documented.

2.3 Development

The development went from the most basic functionnalities, packed in the code in “Utility functions” to the
high-level functionnalities, i.e the magics.

Each level requires the lower level to work and is documented both in the code using docstrings and in
the general documentation. The basic module only contained magics to display code or file and an utility
magic used mainly for the help. The error management is present, even if minimal in the case of errors in
the PostScript to PNG conversion. The main usage is supposed to be LaTeX code display.

Then, as suggested by Pr. Prandoni, I added the possibility to specify a path to a PNG file for each
command. If an image is found at this emplacement, it is displayed, otherwise the result of the compilation
is saved here. This functionnaly was accompanied by a command forcing the compilation, even if a file is
present at the given emplacement. The goal was to be able to share a notebook with people who don’t have
LaTeX or the dependencies of this module. To store the command for the forced compilation was the most
complicated part of the development. I wanted to be as simple for the user as possible and didn’t want
to force him to add an option every time he wanted to force the compilation, nor create a variable at the
beginning of the notebook. The problem was finally solved using an option for the %PSViewer magic.

2.4 Documentation

The documentation was built using Sphinx, a tool designed to generate high-quality documentation for
programs. This documentation contains informations about how to install the module, how it works (both
for the user and a programmer wanting to enhance the functionnalities), some examples and common errors.

Some of them, notably forcing the compilation of a file multiple times concluding in the display of an
unexpected result, can happen easily. Therefore, it was mandatory to explain what the problem was and
how to avoid it.

The documentation is available both as pdf and as html, allowing to create an online documentation.
Both are joined to this report. The goal is to publish this module on github and make it available for anyone
wanting to use it, contibuting in this way to the development of the ipython notebook.

2.5 Possible enhancements

Allow the user to specify a resolution for the output file.

Add a better management of the conversion errors.

Allow the user to specify an output format.

Display the options ignored by the magics (actually, an incorrect option is skipped).

3 Code of the module

The following code is included in the file PSViewer.py. A variante exists for Windows, where CON-
VERT_CMD as a value of “convert_img”.

In []: import sys
import os
import shutil

from IPython.display import (display, display_png, Image, FileLink)

#Constants

VERSION_PATH = "version.txt"
PS_FILE = "postScript.ps"
LATEX_FILE = "LaTeX.tex"
GENERIC_FOLDER = "Figure"
LATEX_CMD = "latex"
DVIPS_CMD = "dvips"
CONVERT_CMD = "convert"
WRAPPER = r"""
\documentclass{minimal}
\begin{document}
QREPLACEG®

\end{document}

#Global Variable
forceCompile = False

def clearVersion()
"hgtility function used to clear the documents created by the compilation.
It retrieves the current index for the compilation and remove all the previous folders.
If the wvalue stored for the index is incorrect, nothing ts done.

It also removes the file containing the current indec.
if os.path.exists(VERSION_PATH)
f = open(VERSION_PATH, "r"
value = str(f.read())
f.close()
if value.isdigit()
for i in range(int(value)) :
shutil.rmtree("’s%i" 7% (GENERIC_FOLDER, i), True)
os.remove (VERSION_PATH)

def loadVersion()
"rytility function loading the current index for the folder storing a compiled document.
If the document storing the index is missing or the value contained is incorrect
(typically, tf tt s a string) the index will be set to O.
Then, the index incremented ts stored in the version file and the folder
corresponding to the index is created.
value = ""
if os.path.exists(VERSION_PATH)
f = open(VERSION_PATH, "r"
value = f.read()
f.close()
else
f = open(VERSION_PATH, "w")
f.write(str(0))
f.close
version = 0
if value.isdigit()
version = int(value)
f = open(VERSION_PATH, "w"
f.write("%i" % (version+1))
f.close()
os.makedirs("%s%i" % (GENERIC_FOLDER, version))
return version

def writeTeXFile(data, version=0)
"""yrite the data given in a TeX file corresponding to the current index.

Keyword arguments:

data —— the string containing the text to write in the document.
verston —— the index of the folder to store the file in (default 0).
path = os.path.join("%s%i" % (GENERIC_FOLDER, version), LATEX_FILE)
f = open(path, ’w’)

f.write(data)

f.close()

return path

def writePSFile(data, version=0)
"""Write the data given in a PS file corresponding to the current indezx.

Keyword arguments:

data —— the string containing the text to write in the document.
verston —-—- the index of the folder to store the file in (default 0).
path = os.path.join("s%i" % (GENERIC_FOLDER, version), PS_FILE)

f = open(path, ’w’)

f.write(data)

f.close()

return path

def convertLaTeXFile(path, doubleCompilation=False)
"""Convert the TeX file at the specified path to a PS file,
using the latexr and dvips commands. If an error is encountered
during the conversion, the process ts stopped and an error message
15 displayed. Caution : this error message uses IPython functionalities.
The double compilation is supported if needed. The intermediate files
from the conversion are deleted.

The process return the path to the PS file if the compilation was successful
and None otherwise.

Keyword arguments:

path -- the path of the TeX file.

doubleCompilation —— boolean containing if a double compilation should be done
(default False)

here = os.getcwd()

filename = os.path.basename(path) [:-4]

os.chdir(os.path.dirname (path))

ret = os.system(")s -quiet %s" J (LATEX_CMD, filename + ".tex"))

if ret '= 0 :
os.chdir(here)
print("An error occurred during the conversion, please check the code."

"Details of the error in the following file :")
display(FileLink(os.path. join(os.path. join(os.path.dirname(path), filename + ".log"))))
return None

if doubleCompilation :
ret += os.system("/s -quiet Ys" % (LATEX_CMD, filename + ".tex"))
ret += os.system("%s -q %s -o 7%s" % (DVIPS_CMD, filename + ".dvi", filename + ".ps"))
os.remove(filename + ".dvi")
os.remove(filename + ".aux")
os.remove(filename + ".log")
os.chdir(here)
if ret ==
return path[:-4] + ".ps
else
print("Something failed in the dvips conversion. Unexpected behaviour.")
return None

def convertPSFile(path, pngPath=None)
"""Convert the PS file at the specified path to one or multiple PNG files,

def

one PNG image per page. The path to save the PNG can be spectified, is must

be a file and not a directory. The conversion uses a command from ImageMagick,
convert_img (it is a renamed version of convert). If mo PNG path is specified,

the name and the emplacement of the postScript file will be used instead.

If a path different from a PNG file s given, a missing extension will be assumed.
Thts function returns the path of the PNG image (even if multiple images will have
distinct paths).

Keyword arguments:
path : the path of the PS file.
pngPath : the path where to save the PNG file(s) (default Nonme)
if pngPath is None :
pngPath = path[:-3] + ".png"
else :
if len(pngPath)<4 or (pngPath[-4:] != ".png" and pngPath[-4:] != ".PNG"):
print("The path given was not a png file. Assuming missing extension.")
pngPath = pngPath + ".png"
os.system("/s %s %s" ’ (CONVERT_CMD, path, pngPath))
return pngPath

findPNGFiles(pngPath, expectations=False)

"""ytelity function to retrieve one or multiple PNG files from an emplacement.

The given path can design a file or the prefixz of multiple PNG files

(in the format prefiz-z.png, where z ts an integer). If a file is found, the prefiz case
won’t be evaluated.

All the path found are stored in a table and returned by the function.

If the table is empty and it was expected to find results, an error message ©s displayed.

Keyword arguments:
pngPath -- the file’s emplacement or the common prefic.
expectations —-- if the function displays an error message in case of empty result
(default False).
mmn
result = []
if len(pngPath)<4 or pngPath[-4:] != ".png"
print("The path given was not a png file. Assuming missing extension.")
pngPath = pngPath + ".png"
if os.path.exists(pngPath)
result.append(pngPath)
else :
pngPath = pngPath[:-4] + "-"
stillSeeking = True
index = 0
while(stillSeeking)
currentPath = "/s/i.png" . (pngPath, index)
if os.path.exists(currentPath)
result.append(currentPath)
index = index + 1
else :
stillSeeking = False
if expectations and len(result)<1
print("Conversion in PNG file didn’t work, please check the postScript"

def

def

def

"code you provided.")
return result

displayPScode(data, pngPath=None)

"""This function loads and displays the PNG file specified in argument,
unless the forced compilation ts enabled. If no PNG file can be displayed
or ©f the compilation is forced, it writes the given text in an PS file and
calls displayPSFile on %t, transmitting the PNG path.

Keyword arguments:
data —— the string containing the PS code.
pngPath -- the path where to fetch/save the PNG file (default None).
nimn
if pngPath is not None and not forceCompile
if checkPNGFiles(pngPath)
return None
folder = 0
if pngPath is None
folder = loadVersion()
path = writePSFile(data, folder)
displayPSFile(path, pngPath)
return None

displayPSFile(path, pngPath=None)

"""This function loads and displays the PNG file specified in argument,
unless the forced compilation ts enabled. If no PNG file can be displayed
or ©f the compilation ©s forced, it converts the PS file given in argument
and displays the images resulting of the conversion.

Keyword arguments:
path -- the path of the PS file to convert.
pngPath -- the path where to fetch/save the PNG file (default None).
nimn
if pngPath is not None and not forceCompile

if checkPNGFiles(pngPath)

return None

result = convertPSFile(path, pngPath)
checkPNGFiles(result, True)
return None

displayLatexCode(data, pngPath=None, doubleCompilation=False)

"""This function loads and displays the PNG file specified in argument,
unless the forced compilation is enabled. If mo PNG file can be displayed

or if the compilation ts forced, it writes the given text in an TeX file and

calls displayLatexzFile on 1t, transmitting the PNG path and the indication for

the double compilation.

Keyword arguments:

data —— the string containing the LaTeX code.
pngPath -- the path where to fetch/save the PNG file (default None).
doubleCompilation —- whether the compilation should be exzecuted twice (default False)

mimn

if pngPath is not None and not forceCompile

if checkPNGFiles (pngPath)

return None

folder = 0
if pngPath is None

folder = loadVersion()
path = writeTeXFile(data, folder)
displayLatexFile(path, pngPath, doubleCompilation)
return None

def displaylatexFile(path, pngPath=None, doubleCompilation=False)
"""This function loads and displays the PNG file specified in argument,
unless the forced compilation ts enabled. If mo PNG file can be displayed
or if the compilation ts forced, it converts the LaTeX file given in argument,
using the double compilation tf specified, generating a PS file. The result ts then
converted and displayed using displayPSFile.

Keyword arguments:
path -- the path of the LaTeX file to convert.
pngPath -- the path where to fetch/save the PNG file (default None).
doubleCompilation —- whether the compilation should be exzecuted twice (default False)
if pngPath is not None and not forceCompile

if checkPNGFiles(pngPath)

return None

result = convertLaTeXFile(path, doubleCompilation)
if result is not None :

displayPSFile(result, pngPath)
return None

def checkPNGFiles(path, expectations=False)
"""Retrieve and display the PNG images corresponding to the specified path.
If no file s found can display an error message.
The algorithm used for retrieving files ts given in findPNGFiles.

Keyword arguments:
path —-- the path of the PNG file or the common prefix of multiple files.
expectations —- if the function displays an error message in case of empty result
(default False).
mmn
result = findPNGFiles(path, expectations)
if len(result) > 0 :

for elem in result

display_png(Image(filename=elem))

return True

else

return False

def PSFile(line)
"""The function defining the JPSFile magic.
The expected arguments are the path to the PS file to display and optionally
the path of the PNG file corresponding (if not found or compilation forced, it
will be the converted file’s path).
In case of wncorrect use, this function displays an error message.

Keyword arguments:
line —— the line of text after the magtic’s invocation, of the form path [path]
paths = line.split(" ")
if len(paths) > 2 or len(paths) ==
print ("Incorrect use of the magic. Please see ’JPSViewer -help’ for help")
else :
if len(paths) == 1 :
displayPSFile(paths[0])
else :
displayPSFile(paths[0], paths[1])

def LatexFile(line)
"""The function defining the JLatexFile magic.
The ezpected arguments (the line) are the path to the Latexz file to display and
optionally the path of the PNG file corresponding (if nmot found or compilation
forced, it will be the converted file’s path).
In case of incorrect use, this function displays an error message.

Keyword arguments:
line —-— the line of text after the magtic’s invocation, of the form path [path]
paths = line.split(" ")
if len(paths) > 2 or len(paths) ==
print("Incorrect use of the magic. Please see ’J,PSViewer -help’ for help")
else :
if len(paths) == 1 :
displayLatexFile(paths[0])
else :
displayLatexFile(paths[0], paths[1])

def PSCode(line, cell)
"""The function defining the //,PSCode magic.
The line argument contains the options of the magic. If a path is specified as
first option, the magic will try to retrieve PNG images from this emplacement
and display them without any compilation. If the compilation is forced or if mo
file are found, the following options will be evaluated and the conversion of the

def

cell’s code will be execute.

The current options are :

-noSave which allow the override of the intermediate files. Caution : this can cause
unexpected behaviour in some cases.

Any other command will be ignored.

Keyword arguments:
line -- the line of text after the magic’s invocation, of the form "path [option*]"
cell —-- the content of the cell, expected to be the postScript code.
if len(line) > 1
commands = line.split(" ")
path = None
if commands[0] [0] != "-"
path = commands[0]
if "-noSave" in commands and pngPath is None
path = os.path.join(GENERIC_FOLDER + "0", "display.png")
displayPScode(cell, path)
else
displayPScode(cell)

LatexCode(line, cell)

"""The function defining the //LatexCode magic.

The line argument contains the options of the magic. If a path is specified as
first option, the magic will try to retrieve PNG images from this emplacement

and display them without any compilation. If the compilation is forced or if mo
file are found, the following options will be evaluated and the conversion of the
cell’s code will be execute.

The current options are :

-noSave which allow the override of the intermediate files. Caution : this can cause
unexpected behaviour in some cases.

-noImport generates the documentclass, begin{document} and end{document} of the
file automatically.

-doubleCompilation indicates that a double compilation is required. This option s
useful in case of internal links.

Any other command will be ignored.

Keyword arguments:
line —— the line of text after the magic’s invocation, of the form "path [option*]"
cell -- the content of the cell, expected to be the LaTeX code.
if len(line) < 1
displayLatexCode(cell)
else
commands = line.split(" ")
pngPath = None
if commands[0] [0] != "-"
pngPath = commands[0]
if "-noImport" in commands :
cell = WRAPPER.replace("@REPLACEQ@", cell)
noSave = None
doubleCompilation = False
if "-noSave" in commands and pngPath is None
noSave = os.path.join(GENERIC_FOLDER + "O", "display.png")

10

if "-doubleCompilation" in commands :
doubleCompilation = True

if noSave is not None or doubleCompilation :
displayLatexCode(cell, noSave, doubleCompilation)

else
displayLatexCode(cell)

def PSViewer(line)
"""The function defining the JPSViewer magic.
It mainly contains utility functionalities in order to modify slightly the
behaviour of the module or retrieve some informations.
The magic is expected to be followed by an option from:
-reset —— delete the files created during the compilations, ezxzpect if they have
been stored in a specified path.
-path —— display the path to the folder where the intermediate files are created.
-forceCompile -- toggle the forced compilation of the code/files given.

-compilationState —— display if the compilation ts forced or not.
Any other option (even mo option) will be interpreted as -help and will display
the help.

Keyword arguments:
line —- the line of text after the magic’s invocation, of the form "option"
import PSViewer
if line == "-reset"
clearVersion()
print ("Version cleared, all files deleted")
elif line == "-path"
print (os.getcwd())
elif line == "-forceCompile"
if PSViewer.forceCompile
PSViewer.forceCompile = False
print ("Toggled behaviour to displaying given image")
else
PSViewer.forceCompile = True
print("Toggled behaviour to forced compilation")
elif line == "-compilationState"
if PSViewer.forceCompile
print("Default behaviour : forced compilation")
else
print("Default behaviour : displaying given image")
else
print (z"""
The following magics are defined in this module :
(all the options must be on the same line that the magic)

%/PSCode allows to run postScript code directly in the cell.
Giving a path as first argument will modify the behaviour of the magic.
If one or multiple png images are found at this emplacement, they will
be displayed instead of the compilation. In the other case or if forceCompile
is enabled, the file will be compiled and displayed.
the option -noSave prevent the excessive usage of memory by overriding
the intermediate files in memory.
Caution : this option can have unexpected result if you convert a document

11

with less pages than the previous one.

%PSFile allows to view the content of a ps file in the notebook.
The first argument is always the path to the file. A second path can be given.
With default behaviour, the png images corresponding to the path will be loaded
and displayed. With forceCompile or if the path is empty, the png generated by
the magic will be stored at this emplacement.
The element(s) must be in absolute path or in the notebook’s directory.

%/%LatexCode allows to run LaTeX code in the cell. Following options exist

Giving a path as first argument will modify the behaviour of the magic. If one
or multiple png images are found at this emplacement, they will be displayed
instead of the compilation. In the other case or if forceCompile is enabled,
the file will be compiled and displayed.

-noSave prevent the excessive usage of memory by overriding the intermediate files
created in memory.

Caution : this option can have unexpected result if you convert a document with
less pages than the previous one.

-doubleCompilation is useful if you need to compile a LaTeX document with references
in it. You cannot compile multiple times just by reinterpreting the cell.

-noImport allow to write a basic LaTeX document without import, without specifying
\documentclass, \begin{document} and \end{document}

%LatexFile allows to view the content of a LaTeX file in the notebook.
The first argument is always the path to the file. A second path can be given.
With default behaviour, the png images corresponding to the path will be loaded
and displayed. With forceCompile or if the path is empty, the png generated by
the magic will be stored at this emplacement.
The element(s) must be in absolute path or in the notebook’s directory.

%PSViewer is the set of utility functions. It is mostly for help.

-reset clear all the files created with the other magics. It can’t be undone.
-path show the path to the default folder containing the files created with

the magics.
—-forceCompile toggle the forced compilation of the LaTeX/PS code.
-compilationState displays what is the treatment for the path given for

the conversion.
Any other argument will be interpreted as -help and will display this help.""")

def load_ipython_extension(ipython)
"""The function defining the magics and which ts their type."""
ipython.register_magic_function(PSViewer, "line")
ipython.register_magic_function(PSFile, "line")
ipython.register_magic_function(LatexFile, "line")
ipython.register_magic_function(PSCode, '"cell")
ipython.register_magic_function(LatexCode, "cell")

12

4 Documentation of the module

In [3]: LatexFile PSViewer.tex Images\documentation.png

#An higher quality document ts joined to this report as ’PSViewer.pdf’.

PSViewer Documentation
Release 1.0

Duncan Forel

Jun 09, 2016

13

14

CONTENTS

Runt e v tlaan to PS Viewer
LI T
1.2 Opticnal compllationand PNG L. L L L

[— -

Magles added by PSViewer

e
TLARRFILE . . L L L L e e e e e e e e e e e e e et e e e e e e
e

[
s lae

[A Ay]
L

L b

Monin-Egics functios

3.1 Low-level functions
B e
B O 1

8 -d e bn

Exemples of the msdule
B O I T

E=I

15

16

CHAFPTER

ONE

INTRODUCTION TO PSVIEWER

PSViewer i an Python module designed 1o enhance a Jupyer nodebook. 11 creates multiple magics w deal with the
PomSeriptand Latex code directly in the cells {including files written in these languages).

1.1 Installation

1.1.1 Dependencies

This mosdule use multiple extemal weols wo conven the files wothe comect format.

A the compilation of the codefile is not mandatory, the installation of the follewing dependencies isn't required if
il project b use an aleady generatod noke ook with the sseciaed images.

The dependencies ane :
» phosiScript inorder o read the PeaScrip files (downlosd from the ghosiScripn websie)
+ ImageMagick in ooder o convertithe files {downbead from the lmage Magick websie)

+ latex/dvips if you project o ouse the latex macios of the module (the distribution of yous cheioz);

1.1.2 Configuration of ImageMagick on Windows

Imagehagick provides a lot of wility functions accessible by command-line invocation. However, some of them
override native functionality of the O8 (notably convert on Windows), In erder 1o keep the system clear, it will be
needed i rename this function.

For that, go 1o the installation folder of Image Magick {usually CAProgrammes'Image Magick- [version]) and rename
the executable conventexe by converi_img.exe. 1§ another prog ram neads the conven.exe, copy the file and rename the
OOy &5 oonver_imgexe.

1.1.3 Loading the module

The module can be kaded in a document with the magic

load ext PEViewsr

Muge details on how 1o Joad a medule in a notebook can be fownd hee .

17

PSViewer Documentation, Release 1.0

1.2 Optional compilation and PNG

1.2.1 Compiling or loading ?

Every magic of this module {exceping WPSWiewer) allow w provide a path 1o a PNG file as srgument. The defsul
behaviour is 1o check for the exisence of PNG images a1 this emplacement using the method describod below and
display this image without executing the magic.

In the case of lonced compilation {or ifne file is found), the magic will be executed and the PNG image(s) resulting of
the compilation will be saved atthe given path, then displayed.

1.2.2 Format of the search for PNG files

Asource of unexpecied ermor is the way PSViewer searches For images. Multiple magics allow we specify a pat which
will be used o scan for PMNG file and i found, display thisfthese files.

The precise path 1o a file will display the corresponding image., but if no image is found the module will scan the
folder fora file inthe forman path-x pog (where x is an integer and path is the name of the file witout extension)and
display all the swccessive files increscent value of %, The search stans witha % valoe of 0and ends when no file of the
siearehed Fommaat is found. Take care, files in e fommal path-00.png are not checked.

For example, if you give a path like nylmage pag, but the folder contains only mylmage-0.pag, mylmage- | png and
mylmage-3.pag, the program will display mylmage-0png and mylmage- | png.

It allows o write only one path 1o rewieve multple PMNG, but can induoe unespectod behaviour when the page's numbser
ofa compiled document decrease (as the images from the previous compilation aren't deleted). In the same way, poing
from sing ke-page document to mult-page will cause an apparent emor, even i the compilation is correct.

2 Chapter 1. Introduction to P5Viewer

18

CHAFPTER

WO

MAGICS ADDED BY PSVIEWER

PEViewer adds multiple line and cell magics 1o your notebook. They arca wial of 5, ene of tem is only for configu-
ratken and utiliy.

2.1 %PSViewer

This is the wility/configuration magic. t contains multiple options.

It mainly contains wility functienalities in order s modify slightly the Behaviour of the module or retrieve some
informations. The magic is expocted 1o be Tollowed by an option from:

reset ! delete the files created during the compilations, expect i they have been stered ina specified path.
“path : display the path o the folder where the inermediate files are creased.
forceCompile | 1egele the forced compilation of the code files given.
compilationStie : display if the compilation & forced o nol
Aoy other o pion (even an empry line) will be interpreted as -help and will display the help.
Form of the magic @ “PSYiewer [option)

2.2 %PSFile

The expected arguments ane the path o the PS file wo display and optionally the path of the PNG file comesponding | if
mit Founa or compilatkon foread, it will be the convered file's path).

In case ol inoormect use, this function displays an ersor message.
Form of the magic @ %PSFik path [pog Path]

2.3 %LatexFile

The expected argument ane the path o the Lates file wo display and optionally the path of the PNG file corsesponding
{1 not found or compilation fosced, it will be the converied file's path).

In case of incormect use, this funcion displays an ermos message.
Form of the magic @ %ulatexFile path [pngPath)

19

PSViewer Documentation, Release 1.0

2.4 %%PSCode

The line argument contains the opticons of the magic. IF a path s specified as first option, the mag i will iry © erieve
PG images from this emplacement and display them withouwt any compilation. 1F the compilation is forced or i ne
fike are found, the follew ing optiens will be evaluated and the conversion of he cell's code will be execute.

The cursent options ane

-noSave which allow the override of the imemediae files. Caution @ this can cause uwnexpectad behaviour
insome cases.

Ay other command will be ignoned.
Form of the magic @ %% PSCode [pngPath] [option]*®
Th code should be the content of the cell, ganing the Ine after the magic.

2.5 %:%LatexCode

The line argument contains the options of the magic. IF a path s specified as first option, the mag i will iy o rerieve
PG images from this emplacement and display them withouwt any compilation. 17 the compilation is forced or ifne
fike are found, the folley ing optiens will beevaluated and the comversion of te cells code will be execue.

The cursent oplions ane @

-noSave which allow the override ofthe imemmediaie files. Caution @ this can cause wnexpectad behaviour
inseme cases.

-nolmpon generates the documente lass, beging document | and end | document} of the file amomatically.

<doubleCompilation indicaks that a double compilation is required. This optien s wseful in case of
internal links.

Ay other command will be ignoned.
Form of the magic @ %% LatexCode [pngPath] | option] *
The code should be the content of the cell, ganing the line after the magic.

4 Chapter 2. Magics added by PSViewer

20

CHAFPTER

THREE

NON-MAGICS FUNCTIONS

This section doeean't contain infiormation about hey o use the module. The purpose is 10 deseribe the methods acually
present but not direcily regisiened & magics.

3.1 Low-level functions

311 clearVersion

elearVarsion (|

Liliny function used 1o clear the doecuments created by the compilation. [t retrieves the cumrent index for the compila-
tion and removie all the previous folders. IF te valwe stoned for the index is inocorrect, noting is done. 1 also removes
the file containing the cument index.

The default name of the file containing the index is “version. .

3.1.2 loadVersion

loadVersion (]

Unility function loading the cument index for the Folder storing a compiled documant.

If the decument storing the index (s missing or the valwe contained is inocorrect {typically, if it is a aring) the index
will b sette . Then, the index incrementad is sioned in the version file and the folder comesponding 1o the index is
cread.

The default name of the file containing the index is “version. .

3.1.3 writeTeXFile

writeTeXFile |don, version=)
Wirile the dara ina TeX file corresponding 1o the folder of index vemlon.
Kayword arguments:

+ st — the siring containing the lext o write inthe document

+ version — the index of the folder 10 s1o0e the file in {de fauh 0)

21

PSViewer Documentation, Release 1.0

3.1.4 writePSFile

writeP8File (dane, versionrsll)
Admaost the same function than writeTeXFik, only the extension of the writen fike changes to_ps.
Kayword arguments:

+ st — the siring containing the lext o write inthe document

+ version — the index of the folder 10 s1o0e the file in {de fauh 0)

3.1.5 convertLaTeXFile

convertLaTeXFi le |park, doalds Compilarion s False)

Caomven the TeX file a1 the specified path tooa PS file, using the laex and dvips commands. IF an ernor 15 encounterad
during the conversion, the process is stopped and an ermor message is displayed. This function alse clears the o, aux
and advi files ereated inthe process. The double compilation is supponed ifneeded.

Caution ! this error message uses [Python functionalities.
Thi process retum the path e the PS file i the compilation was suecessful, and None otherwise.
Keyword arguments:

+ paith — the path of the Te X file.

+ doubleCompilation — boolean containing i a double compilation should be done {default False)

3.1.6 convertPSFile

conwertPSFLLe (park, prgParfioNone)

Caonven the P8 file a the spocified path 1o one or multiple PNG files, one PNG image per page. The path o save
the PNG can be specified, is must be a file and not a directory. The conversion uses a command from ImageMagick,
conven {renamed comven_img on Windows), 1T noe PMNG path i specified, the name and the emplacement of the
postSerip file will be usad instesd. I a path diffesent from a PRNG file is given, a missing exiension will be ssumed.

This function retums the path of the PNG image dor the path of the common prefix of the files if muldple images are
creaied).

Kayword arguments:
« paith @ the path ofthe PS file.
+ pangPath @ the path wherne we save the PNG file{s) {de fult None)

3.1.7 findPNGFiles

FindPHGF1les |pigHarh, sgpecfations Fale)

Liliny function 1o retreve one o muliple PRG files from an emplacement. The given pat can design a file or the
prefie of multiphe PNG files {inthe format peefi- € png, where ® isan integer). Ifa file & found, the prefix case won't
b evalusted. Allthe path found ane stoned in atable and retumed by the function. 1F the wable B empty and itwas
expeciod 1o find resulis, an eroor message is displayed.

Eayword arguments:

+ pongPath — the file's emplacement or the commaon prefix.

[Chapter 3. Non-magics functions

22

PSViewer Documentation, Release 1.0

+ expectations — iF the function d splays an eror message in case of empry result {defauh False).

3.2 Intermediate functions

For all this functions, ifa pngPath is provided, the comesponding imageds) will be loaded and displayed {using checkP-
NGFiksy IF the compilation is ferced or il nofile B provided! found, the magic will be executed.

3.21 displayPSCode

displayPSCode (dara, prgParfieNone)
This function writes the given i2xt inan PS file and calls displayPSFike on it tsansminting the PNG path.
Kayword arguments:

+ daita — the siring containing the PS code.

+ pangPath — the path where to fechsave the PNG file {default None).

3.2.2 displayPSFile

displayPSFiLe | park, g Park=None)
This function converts the P8 file given in argumentand displays the images resulting of the conversion.
Keyword arguments:

+ path —the path of the PS file o convert

= pangPath — the path where to fechsave the PNG file {defaul None).

3.2.3 displayLatexCode

displayLatexCode [dare, prgPados None, dosddaCompilatons False)

This function writes the given text in an TeX fil and calls displayLatexFik on i1, transminting the PNG path and the
indication For the double compilation .

Kayword arguments:
+ aita — the siring containing the LaTe X osde.
+ pangPath — the path where to fechsave the PNG file {default None).
» doubleCompilation — whether the compilation should be execwed mwice {de fauli False)

3.2.4 displayLatexFile

displayLatexFile |par, pegPedos Nowe, dosddeCompilatons False)

This function converts the LaTe X filke given in argument, using the double compilation if specified, generating a PS
fike. The result is then convered and displayed using displayPSFike {with the specified pngPah transmined) .

Keyword arguments:
+ path —the path of the LaTeX file 1o comen.

3.2, Intermediate functions T

23

PSViewer Documentation, Release 1.0

= pangPath — the path where to fechsave the PNG file {defaul None).
+ doubleCompilation — whether the compilation should be executed mwice {de fault False)

3.2.5 checkPNGFiles

checkPHGFLlas [park, e fatons = Flse)

Beetrieve and display the PNG images comresponding 1o the specified path. If no file is found can display an emor
mesaage, depending on the value of axpecgmions, The algorithm used for retrieving fikes is given in find PNGFiles
This Function remrns whether files were found.

Kayword arguments:
« paith — the path of the PNG file or the common prefix of muhiple files.

+ expectations — iF the function d Bplays an eror message in case of empry result {defauh False).

3.3 IPython utiliy

load ipython_extension [[pfor)
The function used by the nowkeboek 1o regiser the magics and their topes.

8 Chapter 3. Non-magics functions

24

CHAFPTER

FOUR

EXAMPLES OF THE MODULE

4.1 Displaying files

T display a fike, you can use both

LatexFile <your file

FEFile <your file

dependingon the pope of the file. LPyou want 1o save the resultio a specific emplacement, use the following expressions

LatexFile <your file> <sawve path

PEFile <your file> <sawve path

4.2 Writing code

There & no check in the notebook, however the ermor in compilation will display an emor message.

In the case of LaTeX code, a link 1o the log docoment will appear and you' Il be able o find what error caused the
compilation fail However, for P8 code nooemor log is displayed. 1t is consequendy recommendad 1o use LaTeX
opmpilation 1o create PS code.

Format of writing :

LatexCode <optional sawe path»> <options
smulti-lire code

PECode <optional save path> Zoptions
smultbi-lire code

4.3 Generating notebook for another user

If o weant 1o share your notehook with persons not using latex, youcan ! Firsy enable foroed compilation with

PEViegwer -forceCompile

25

PSViewer Documentation, Release 1.0

Then, write your notehook as usual specifying a save path for each figune using the magics. Take care @ giving
distinet names for each figure !

I you want 10 share, you just have 1o give the notebeok with the PNG images. The receiver just has o execuse the
ozl withoew activating the forced compilation and the figuses will be reirieved from the already generated images.

10 Chapter 4. Examples of the module

26

	Description of the project
	Workflow of the project
	Comprehension of the problem
	Interrogations about internal structure
	Development
	Documentation
	Possible enhancements

	Code of the module
	Documentation of the module

