
constraint
based
graphic
statics
a geometrical support
for computer-aided
structural equilibrium design

Corentin Fivet �· ingénieur civil architecte
LOCI · faculté d'architecture, d'ingénierie architecturale, d'urbanisme
Académie universitaire Louvain · Belgique · décembre 2013

thèse présentée en vue de l’obtention du grade de docteur en sciences de l’ingénieur

thèse financée par les Fonds spéciaux de recherche (FSR) de l'UCLouvain

composition of the jury

Denis Zastavni �· supervisor
Architectural Engineer · Associate Professor
Faculty of Architecture, Architectural Engineering, Urbanism · UCLouvain · Belgium

Jean-François Cap �· member of the accompanying committee
Structural Engineer · SECO · Technical Control Bureau for Construction · Belgium
Lecturer at the Louvain School of Engineering · UCLouvain · Belgium

Aurelio Muttoni �· member of the accompanying committee	
Structural Engineer · Full Professor of Concrete Structures
School of Architecture, Civil and Environmental Engineering · EPFLausanne · Switzerland

John Ochsendorf �· reader
Structural Engineer · Associate Professor
Civil and Environmental Engineering and Architecture · MIT · Boston · USA

Laurent Ney �· reader
Structural Engineer · Head of Ney & Partner sa · Belgium
Lecturer at the Université Libre de Bruxelles · Belgium

Pascal Lambrechts �· reader
Mathematician · Professor
Institute of Mathematics and Physics · UCLouvain · Belgium

André De Herde �· president of the jury
Architectural Engineer · Full Professor
Faculty of Architecture, Architectural Engineering, Urbanism · UCLouvain · Belgium

summary

area of research �· tools and methods for structural design

keywords �· computer-aided structural design · static equilibrium · constraint-based geometric
solver · strut-and-tie models · graphic statics

abstract �· This thesis introduces “constraint-based graphic statics”, a geometrical support for
computer-aided structural design. This support increases the freedom with which the designer
interacts with the plane static equilibriums being shaped.

Constraint-based graphic statics takes full advantage of geometry, both its visual expressive-
ness and its capacity to solve complex problems in simple terms. Accordingly, the approach
builds on the two diagrams of classical graphic statics: a form diagram describing the geometry
of a strut-and-tie network and a force diagram vectorially representing its inner static equilib-
rium. Two new devices improve the control of these diagrams: (1) nodes — considered as the only
variables — are constrained within Boolean combinations of graphical regions; and (2) the user
modifies these diagrams by means of successive operations whose geometric properties do not
at any time jeopardise the static equilibrium of the strut-and-tie network.

These two devices offer useful features, such as the ability to describe, constrain and modify
any static equilibrium using purely geometric grammar, the ability to compute and handle mul-
tiple solutions to a problem at the same time, the ability to switch the hierarchy of constraint
dependencies, the ability to execute dynamic conditional statements graphically, the ability to
compute full interdependency and therefore the ability to remove significantly the limitations
of compass-and-straightedge constructions and, finally the ability to propagate some solution
domains symbolically.

As a result, constraint-based graphic statics encourages the emergence of new structural design
approaches that are highly interactive, precognitive and chronology-free: highly interactive be-
cause forces and geometries are simultaneously and dynamically steered by the designer; pre-
cognitive because the graphical region constraining each points marks out the set of available
solutions before they are even explored by the user; and chronology-free because the deductive
process undertaken by the designer can be switched whenever desired.

Applications cover the design of reticular systems — regardless of whether they are isostatic,
indeterminate, prestressed, self-stressed or mechanisms — regular and irregular beams subject
to bending, compression-only structures described by lines of thrusts, and structures that can
be modelled with discontinuous stress fields.

This thesis is divided into five sections. The first section describes the context and expectations
behind the sought environment. The second section defines the few fundamental axioms charac-
terising graphic statics diagrams geometrically. They are then exploited in the third section to
specify how geometric constraints applied to these diagrams can be maintained when points are
dragged. Operations allowing the user to construct equilibriums are subsequently identified in
the fourth section. The final section discusses the results.

résumé

domaine de recherche �· outils et méthodes de conception structurale

mots-clefs �· conception structurale assistée par ordinateur · équilibre statique · solver géomét-
rique par contraintes · modèles de bielles-et-tirants · statique graphique

abrégé �· Cette thèse présente la “statique graphique par contraintes”, un support géométrique
pour la conception assistée par ordinateur de structures architecturales. Ce support est destiné
à augmenter la liberté et le contrôle avec lesquels le concepteur donne forme aux équilibres
statiqes plans.

La statique graphique par contraintes tire avantage de la géométrie, à la fois pour son expres-
sivité visuelle et pour sa capacité à résoudre des problèmes complexes en termes simples. Elle
s'appuie à cet égard sur les deux diagrammes de la statique graphique classique : le diagramme
de situation décrivant la géométrie du réseau de bielles-et-tirants et le diagramme des forces
représentant vectoriellement son équilibre statique. Deux nouveaux dispositifs enrichissent la
manipulation de ces diagrammes : (1) la contrainte des noeuds, considérés comme uniques vari-
ables, à l'intérieur de combinaisons Booléennes de régions graphiques; (2) la modification suc-
cessive de ces diagrammes au moyen d'opérations dont les propriétés géométriques ne mettent
jamais l'équilibre statique du réseau de bielles-et-tirants en péril.

Ces deux dispositifs permettent de décrire, de contraindre et de modifier tout équilibre statique
à l'aide d'une grammaire purement géométrique, de calculer et de manipuler simultanément
l'ensemble des solutions multiples du problème, d'inverser la hiérarchie de dépendance des con-
traintes, de réaliser des déclarations conditionnelles dynamiques graphiquement, d'exécuter
des interdépendances de contraintes, et par conséquent, de s'affranchir considérablement des
limitations liées aux constructions à la règle et au compas et, enfin, de propager certains do-
maines de solutions de manière symbolique.

Par conséquent, la statique graphique par contraintes encourage l'émergence de nouvelles
approches de conception structurale hautement interactives, précognitives et libres de chro-
nologie: hautement interactives car forces et géométries sont dirigées simultanément et dynam-
iquement par le concepteur; précognitives car la région graphique contraignant chaque point

informe de l'ensemble des solutions possibles avant même que celles-ci ne soient explorées par
l'utilisateur; et libres de chronologie car le processus déductif suivi par le concepteur peut être
renversé à volonté.

Les applications concernées englobent la conception des systèmes réticulés (isostatiques, hyper-
statiques, précontraints, auto-contraints ou mécanismes), des poutres régulières et irrégulières
sujettes à la flexion, des structures en compression pure décrites par lignes de poussées et des
structures pouvant être décrites par champs de contrainte discontinus.

La thèse est divisée en cinq parties. La première décrit le contexte et les attentes liées à
l'environnement recherché. La seconde section définit les quelques axiomes fondamentaux car-
actérisant géométriquement les diagrammes de statique graphique. Ils sont ensuite exploités
dans la troisième section pour spécifier comment les contraintes géométriques appliquées sur
ces diagrammes sont maintenues lors du déplacement de points. Les opérations permettant à
l'utilisateur de construire les équilibres sont ensuite identifiées dans la quatrième section. La
dernière section discute des résultats obtenus.

contents

 introduction · page 1

01	 fact: contemporary structural design practice · page 3
02	 critique: the lack of adequate tools for the initial shaping of structures · page 11
03	 answers: exemplary practices · page 17
04	 proposal: a tool to accompany the construction of static equilibriums · page 29
05	 precedents · page 45
06	 organisation of the content · page 53

 geometric axiomatisation of graphic statics · page 55

07	 positions of points and first-order logic · page 57
08	 relationships of proximity and laterality · page 61
09	 form diagram and force diagram · page 77
10	 geometrical definition of forces · page 81
11	 rods and other objects · page 87
12	 static equilibrium · page 99
13	 uniform reading cycle · page 107
14	 recapitulation · page 133

 dynamic handling of geometric constraints · page 135

15	 graphical regions and dynamic compliance with geometric relationships · page 137
16	 constraint (inter)dependencies · page 155
17	 examples of graphical computations · page 165
18	 switching constraint dependencies · page 195
19	 constraint propagations · page 201
20	 dynamic conditional geometric statements · page 233
21	 constraints for a uniform reading cycle of forces · page 243
22	 facilitating the crossing of rods · page 259

 production rules for computer-aided graphic statics · page 265

23	 objects and native operations · page 267
24	 higher-order procedures · page 273
25	 functional flow · page 281

 discussion · page 285

26	 applications · page 287
27	 future research · page 305
28	 conclusions · page 315

 references · page 319

1

INTRODUCTION

The shaping of structures is an art in itself and the practice of it requires specific tools and
methods.

Sub-section 01 (“fact: contemporary structural design practice”, page 3) of this intro-
ductory section briefly sets out what the shaping of structures is, who does it, how it is
done and what tools are used. Sub-section 02 (“critique: the lack of adequate tools for the
initial shaping of structures”, page 11) then provides a critique of these tools. Exemplary
practices in structural design are then highlighted in sub-section 03 (“answers: exemplary
practices”, page 17) in order to identify alternatives approaches.

The purpose and features of the tool developed in this thesis are then outlined in sub-section
04 (“proposal: a tool to accompany the construction of static equilibriums”, page 29). This
tool is aimed at assisting the structural designer during the early phase of the shaping pro-
cess.

Finally, sub-section 05 (“precedents”, page 45) compares the proposed approach with ex-
isting tools that serve part of its purpose. The precise definition of the proposed tool will be
detailed in the three sections that follow.

introduction · 3

01	 fact: contemporary
structural design practice

the shaping of structures� · Thinking about the structure of an object involves
seeking to understand the way form and material behave when subjected to
forces. Structures can be found everywhere in nature, from the microscopic
arrangement of atoms to gigantic underground caves. However, structures
can also be shaped explicitly in order to meet specific requirements. Other
than ensuring stability under expected loads, these requirements are gener-
ally not related to purely mechanical considerations.

Indeed, form and material affect buildings and industrial and civil engineer-
ing constructions in many other ways. These include their integration within
the spatial context, their architectural quality, their robustness, their sus-
tainability over time, their recyclability, their process of building, their aes-
thetics, their symbolism, their cost and their functional uses.

Shaping a structure means juggling with all these considerations.

In contemporary practice, the two main protagonists of this art are the archi-
tect and the structural engineer.

the architect and the structural engineer� · In ancient times and up until
the Renaissance, building expertise was primarily the concern of craftsmen
— e.g. carpenters and stone-cutters — who at times were directed by an indi-
vidual — i.e. the master builder. As knowledge grew about the strength of
materials, building techniques, stylistic forms and spatial qualities, practi-
tioners became more specialised and a schism occurred in the eighteenth
century to produce two new practitioners: the architect and the engineer
— read Picon·1988, Addis·2007 and Saint·2007 for further insight into this.

Although the architect and the engineer certainly develop different sensi-
bilities and knowledge, it is a fairly crude caricature to associate the former
with the artist and the latter with the pragmatic (Addis·1994, Wells·2008 and

4 · introduction

Flury/…·2012). Another no less caricatured way of differentiating between
them would be to say that the former has responsibility for the spatial form
and the latter has responsibility for the structure’s stability.

This comparison highlights the endless interference between the architect
and the engineer: the former cannot do anything to the spatial form without
challenging its stability and the latter cannot guarantee the stability of the
structure without affecting its spatial form. Owing to this interference, they
are forced to work together in one way or another.

Based on Baumberger·2012, four basic relationships between the architect
and the structural engineer can be identified: monologues from the architect,
monologues from the structural engineer, dialogues and soliloquies.

Monologues result from the total control of the project by the architect or the
engineer, with the other at his service. Monologues from architects generally
lead to formal, demonstrative buildings. Monologues from engineers gener-
ally lead to pragmatic, cost-effective buildings.

In contrast, dialogues occur when “architect and engineer are equal partners
in the discussion” (Baumberger·2012, page 60). This kind of cooperation is
generally hard to maintain because of the opposition between protecting per-
sonal egos and the necessary challenging of the other’s work. However, it
usually tends to produce the most successful outcomes.

Finally, soliloquies occur in rare cases where the architect and the engineer
are one and the same person. As a consequence of both domains being mas-
tered, the work produced occasionally has a tendency to be fairly demonstra-
tive.

These four different relationships are particularly noticeable at the beginning
of the project (figure 1, step a) when the initial ideas and design decisions are
established — in other words during the drafting or concept stage.

figure 1
schematic
illustration of the
contemporary
structural design
process
(characters from
http://architexts.
us).

introduction · 5

the structural design process� · The role of the structural engineer after
the concept stage is relatively similar in every office. Depending on the level
of specificity in the sketched project, in the first instance the engineer adds
to it so that a load-bearing structure can be identified (figure 1, step b).
Consciously or not, it is at this moment that the future behaviour of the struc-
ture is fixed — i.e. the way the structure behaves once loaded.

The engineer then uses tools and methods (figure 1, step c) to ensure that
the proposed structure will resist the stresses effectively to which it may be
subjected, will remain stable and safe in extreme situations and, over time,
will deform very slightly compared to its intended purposes, will be feasible
with available, cost-effective materials and methods of construction and, on
occasion, will represent an optimum of these various objectives.

The results obtained by this step might compel the designer to backtrack
(figure 1, step d) in order to readjust assumptions made in step b, before com-
pleting the computations of step c again. Consequently steps b, c and d form
a cyclical process.

As the project becomes more concrete, the engineer proposes the structural
solution to other design team members (figure 1, step e): the architect, but
also the client, the building contractor and all the other specialists, such as
HVAC consultants, urban planners, fire authorities etc.

Coming away from these meetings, the structural engineer modifies the pro-
posal (figure 1, steps d and b), subsequently re-computes it (figure 1, step c)
and resubmits it to the other members of the design team. This results in a
new cyclical process (steps b, c, e, d) of varying length, ultimately leading to
the completion of every detail (figure 1, step f) regarding geometries, manu-
facturing processes and implementation.

available theories� ·There are three types of theories available to structural
engineers to fulfil their duty:

(1)	 theories concerning the rheological understanding of materials. Re-
search in this field mainly comprises laboratory testing of full-scale
structural elements and the results produced remain relevant over
time. New tests are only necessary when new building materials — e.g.
high-performance concrete or fibre-reinforced polymers — or new im-

6 · introduction

plementations — e.g. interlocking cross-laminated timber (Smith·2011)
or reinforced timbers (Trautz/Koj·2009a and Trautz/Koj·2009b) —
emerge

(2)	 theories concerning the understanding of the behaviour of structures.
The most significant advances in this field date back to the nineteenth
century and the first half of the twentieth century and still constitute
the core of current knowledge (Heyman·1996, Heyman·1999b and
Charlton·2002)

(3)	 theories concerning tools and methods enabling the designer to ap-
proach and predict the effective behaviour of the structure. This has
always been the principal concern of research efforts, and it is still the
case today.

the role of design tools� · The presence of and importance attached to the
development of appropriate tools and methods is directly linked to the essence
of structural design: the shaping of structures is not a science. It is not a
process undertaken to find the unique solution to a given problem through
rational calculations. It is a real project. It is a nonlinear process at the begin-
ning of which the definition of the problem is as unknown as the final result.

“[Structural] art is solving problems which cannot be formulated before
they have been solved. The search goes on, until a solution is found, which
is deemed to be satisfactory. There are always many possible solutions, the
search is for the best — but there is no best — just more or less good.” (Ove
Arup, in Addis·1994, page 7)

“All the great masters of structural design have reminded us repeatedly
that structural design is not a science; it is a craft that relies on judgment
rather than absolute certainty” (Allen·2009, page xiv)

Structural design is indeed a craft and the engineered product will owe more
to the designer’s previous experience and the nature of the tools than the
purely theoretical knowledge acquired. Indeed experience, intuition and tools
greatly influence the final product in a variety of ways: they condition the
conduct of the design process; they determine the set of parameters that can
be acted upon, the set of values that will result and the set of choices that have
to be made beforehand; and they impose the speed of execution, the level of
interactivity, the level of accuracy etc.

introduction · 7

Therefore the choice of tools and methods is dependent not only on the initial
data available — e.g. the material that will be used or the quality of the bear-
ing soil — but also on the desired results — which sometimes lead engineers
and architects to develop their own customised tools and methods in order to
achieve particular results within particular frameworks (Krasny·2008).

available tools and methods� · The range of tools available to the structural
designer is fairly extensive and heterogeneous. It encompasses a huge variety
of tasks and a huge variety of means. Firstly, the designer has all the tools of
the architect at his disposal, either manual instruments or software solutions
created to sketch, depict, reproduce, model and communicate — e.g. pencils,
compasses, straightedges, foam models and computer-aided drawing tools.
A comprehensive list of these tools can be found in Krasny·2008, page 149.
Secondly, there are additional tools specifically related to the shaping of the
structure or its study.

Rather than compiling an extensive and heterogeneous list of past and con-
temporary structural design tools, their common and different properties are
identified here according to four partial but complementary questions:

(1)	 What is the assumed rheological model used by the tool?
(2)	 What is the chosen model of representation of the structure?
(3)	 What are the required inputs and the expected outputs?
(4)	 What is the inner solution method?

The following paragraphs attempt to formulate a list of possible answers to
these four questions — each answer can be looked upon as describing a group
of tools sharing the same property.

(1)	 Since the real rheological behaviours of material are too complex to be
handled efficiently, theoretical simplifying hypotheses are made about them.
As theories are generally founded upon one particular ideal rheological model
and most tools build on one specific theory, these hypotheses consequently
condition the tools’ scope of application. The following rheological models are
possible answers to criterion 1:

 •	non-deformable — which was the only assumption encountered before
the Renaissance and Galileo

 •	brittle elastic — mainly used to compute deflections
 •	rigid plastic — mainly used to check stability
 •	elasto-plastic — see Ruiz/Muttoni·2007 for an example of an application
 •	…

8 · introduction

(2)	 Models of representations of the structure and its behaviour arising from
criterion 2 establish particularly diverse groups of tools:

 •	scaled physical models (Drew·1976, Huerta·2006a, Ney/…·2010a)
 •	elementary geometrical rules (Huerta·2006c)
 •	typical typologies previously encountered or models found in nature
 •	physical equations — the most widely taught models in contemporary

structural design classes
 •	calculators and spreadsheet files
 •	indicators of performance (Samyn·2004)
 •	graphs (Levens·1975)
 •	photoelastic materials (Heywood·1969)
 •	strut-and-tie models
 •	diagrams of graphic statics (Rankine·1858, Maxwell·1864)
 •	load paths (Palmisano/…·2008)
 •	discretisations by finite elements (Frey/Jirousek·2001)
 •	discontinuous stress fields (Marti·1985, Muttoni/…·1997)
 •	continuous stress fields (Muttoni/…·1997)
 •	…

(3)	 Criterion 3 distinguishes tools by grouping together the ones that require
the same input data and produce the same output data. A classification of this
kind produces six major groups:

 •	sketching tools — they begin with a blank page and some predeter-
mined requirements about the structure and its use; they lead to the
primary geometric and/or mechanical establishments of the structure;
they are sometimes referred to as tools for the conceptual stage or
structural morphogenesis

 •	analysis tools — they take loads and the geometries of the structure as
inputs and produce a description of internal stresses and/or deforma-
tions

 •	sizing tools — they take loads and rough geometries (such as the posi-
tion and length of rods in a reticular structure or the bounding contour
of a concrete beam) as initial parameters and provide the remaining
geometries (respectively the cross-sectional geometries of the rods and
the type of reinforcement bars in the beam) required to sustain the
loads occurring in the structure

introduction · 9

 •	checking tools — they take loads, geometries and inner stresses as in-
puts and compute a Boolean value which says whether the structure is
stable or not; nowadays most requirements for stability checks come
from government codes and standards

 •	optimisation tools — they take loads, the geometries of a structure and
an objective performance condition as initial data and provide a modi-
fication of this structure that satisfies the condition or comes as close
as possible to it; tools falling within this category can be distinguished
further by clarifying whether the modification affects the shape of a
continuum structure, the topology of a network of rods or the sizes of
these rods

 •	form-finding tools — they take a consistent set of loads, typological and
boundary conditions as arguments and return a shape that satisfies
these conditions within the laws of equilibrium and strength of materi-
als

 •	…

The distinction between these groups of tools is not always as rigorous in
literature or in practice — e.g. analysis, sizing and checking tools are often
confused and the same applies for sketching tools and form-finding tools. It
should also be noted that some optimisation and form-finding tools may be
seen as iterations of analysis and checking tools.

(4)	 Although criterion 4 is also applicable for recognising hand-guided solving
methods — such as

 •	the method of joint (Fairman/…·1932, page 26)
 •	the method of section (Fairman/…·1932, page 34)
 •	the method of substitution (Fairman/…·1932, page 42)

to identify internal stresses in trusses, for example — it is specifically use-
ful for distinguishing computerised tools from one another. Such tools are
generally made with algorithms that combine and adapt multiple strategies,
including the use of:

 •	force densities
 •	virtual works
 •	dynamic relaxations
 •	particle spring systems
 •	rainflow analogies
 •	solid isotropic material with penalisation strategies

10 · introduction

 •	sequential element rejections and admission strategies (also known as
bi-directional evolutionary structural optimisation)

 •	genetic strategies
 •	…

Surveys on this subject can be found in Christensen/…·2009, Rozvany·2009,
Spillers/…·2009 and Deaton/…·2013. 

popular habits · Among all the tools available, two are used much more in
contemporary practice than any of the others:

(a)	 If the project can be made of basic, well-known and easy-to-build typolo-
gies, engineers generally choose them without any further consideration con-
cerning their shaping. They analyse each structural part directly by entering
the handful of parameters into a spreadsheet — e.g. Microsoft Excel — from
which they then obtain inner stresses and, in the most comprehensive cases,
a building code-compliant sizing.

(b)	 Otherwise — i.e. when complex or less common typologies are encoun-
tered — engineers would generally simply reproduce the architect’s concep-
tual sketch inside a finite-element analysis tool from which they automatically
acquire a depiction of the magnitudes of principal stresses. They would then
modify the initial sketch surgically until the structure meets expected mini-
mum requirements.

As a result, today’s structural design practices are usually isolated in a pro-
cess that determines the size of the structural parts following the analysis of
a predetermined shape. The next sub-section develops a targeted critique of
these practices.

introduction · 11

02	critique: the lack of
adequate tools for the
initial shaping of structures

drawbacks of (most) contemporary structural design tools� · The tools and
methods currently most widely used — i.e. computerised analysis, optimisa-
tion and form-finding tools — have benefited from developments in informat-
ics since the mid-twentieth century. They now allow the designers to achieve
unprecedented results: they approach real behaviour with increasing accu-
racy; they allow the detailed design of daring structures with growing confi-
dence and produce the optimum shapes of increasingly complex structures.
However, most of these tools have serious drawbacks in the context of the
chronological process of contemporary structural design. These drawbacks
can be synthesised as follows:

(1)	 These tools require important choices to be made prior to their use, such
as the choice of the tool used, the nature of the model and/or the simplifying
assumptions. This might force the designer to make these choices too early in
the process, which would be prejudicial because (a) tools are generally highly
specific and time-consuming, (b) the model might not have the desired degree
of accuracy and (c) initial simplifying assumptions might end up being at odds
with the final structural behaviour. Moreover, these tools give no or very lim-
ited help in determining these choices or modifying them afterwards in the
process.

Computerised tools used by architects present the same issue:

“With a computer you arrive at a precise solution very quickly,
a precise rendering that gives you an idea at a very early stage.
One of the things that this tool means which while not dangerous
is somewhat problematic is that you make decisions too fast”	
(Anne Lacaton, in Krasny·2008, page 82)

12 · introduction

(2)	 These tools impose a specific chronology of resolution — i.e. precise inputs
and outputs. Unless the structural designer dedicates sufficient time to writ-
ing his own software, he is forced to resolve the problem in the way imposed
by the tool, make lengthy detours in order to get to a solution that could have
been found directly or, worse still, favour a solution that can be computed by
the software rather than another solution that cannot be computed, but is just
as easy to solve manually.

For example, current undesirable issues of this kind are:
 •	What geometric changes would make a particular rod in a truss be-

come in tension?
 •	What additional weight would enable the reaction stresses on a given

footing to be sufficiently vertical so as to be supported by the ground?

These two questions are not unsolvable, they just require the use of static
equilibrium laws in a different way from that proposed by customary analysis
tools.

(3)	 These tools usually have such precise and limited purposes that the com-
plete, composite structure generally has to be divided into several sub-parts
that are explored in isolation, irrespective of their interactions — i.e. using
separate, independent tools. For reasons of time efficiency, this would either
require the user to make as few changes in each sub-part as possible or would
result in uncoordinated local corrections without a global assessment of any
kind.

(4)	 Inner computations of these tools are hermetic black boxes for most users,
impervious to customised adjustments by the user. This has the potential of
resulting in elegant resolutions being dropped and computational efficiency
being decreased.

(5)	 The lack of interactivity also stems from the fact that users have to answer
very specific questions that are directed by the software’s own algorithmic
reasoning. It follows that users all put their trust in the software and gradu-
ally become unaccustomed to asking questions themselves. This does not en-
courage original contributions and may stifle creativity:

introduction · 13

“Structural analysis and calculation have become increasingly precise
and detailed. Proportioning pushed to its limits has allowed structures to be
even more daring and efficient, but unfortunately all this has had a negative
effect on structural design, leading to a slow and inexorable deterioration of
the creative element involved.” (Muttoni·2005, page v)

(6)	 Black boxes also have the disadvantage of producing results that are dif-
ficult to interpret or even to understand. This does not encourage a direct
return to initial choices in order to fix or improve them. Hence, it does not
favour adequate control of the structural behaviour being shaped:

“Computer programs look only at local stresses and have a flagrant
disregard for the principles of structure.” (Addis·1994, page 12)

(7)	 Owing to this, the results are rarely communicated to the architect who
subsequently becomes distanced from the structural issue:

“For the architect too, the separation of disciplines has not solely
brought benefits. The growing difficulty of understanding how structures
function definitely represents an impoverishment.” (Muttoni·2005, page v)

This general list can be supplemented by the following issues specifically
linked to finite-element models.

(8)	 The creation of adequate finite-element models can be rather complex,
is often poorly mastered and might produce unexpected or misunderstood
results.

(9)	 This creation and its computation can be time-consuming too and can slow
down the design flow considerably, hinder the user’s creativity and discour-
age important cross checks:

“It is usual that the modelling takes so much time and effort that little is
left for verification and validation of results, alternative designs, writing reports
and documentation, backups and reviews by other analysts.” (Rodríguez·2010)

(10)	Analysts might not devote their energy to the right place since they may be
tempted to look for a neat model rather than an efficient mode of construction:

“Analyst can become so involved in FEA [Finite Element Analysis]
that the link between the real structure and the model may be forgotten.”
(Rodríguez·2010)

14 · introduction

(11)	Analysts are required to have a precise idea of how they will conduct the
modelling beforehand, otherwise they would be forced to start again due to
unexpected discoveries:

“The geometry should be defined explicitly and clearly: it is absolutely
impossible to calculate anything without a previous design. [...] On the other
hand, oversimplification can leave out critical load paths.” (Rodríguez·2010)

(12)	Last but not least, tools of this kind offer very few opportunities to influ-
ence one particular structural behaviour over another. If they do, opportuni-
ties consist of detours that might have a significant impact on the structure’s
stability.

In conclusion, current computerised analysis, optimisation and form-finding
tools do not easily allow the designer to be entirely successful in controlling
the process of computation and the shaping of the structure.

associated risks · For most common basic projects developed in contempo-
rary offices, these drawbacks will have little detrimental impact on the struc-
ture’s quality. However, structures that require closer attention might suffer
from weaknesses from various perspectives:

 •	safety — e.g. the structure might suffer from a lack of robustness; in the
worst case scenarios, a misunderstanding of the structural behaviour
might lead the designer to produce a mechanically unsafe construction

 •	the architectural project — e.g. the structure might not fit with initial
design intentions or might not be relevant to other structural intentions

 •	the current economic situation — e.g. structural elements might be
over-dimensioned or superfluous; the structural system might incur
additional costs for costly, better performing materials, maintenance,
repair etc.

 •	new materials being used perhaps — e.g. the designed structural be-
haviour might not fit with the rheological behaviour of the material,
manufacturing processes and methods of construction

 •	environmental concerns — e.g. the structure might require greater use
of raw materials than absolutely necessary or generate more pollution

 •	any other consideration that is non-quantifiable and requires ongoing
and direct input from the designer’s sensitivity and creativity.

introduction · 15

Furthermore, the impact of these dangers is aggravated by the desire to mini-
mise risk and increasingly stringent standards — e.g. those governing fire
resistance, structural robustness and site safety.

the need for new tools� · This observation does not mean in any sense that
contemporary computerised analysis, optimisation and form-finding tools are
unsuitable or dangerous for structural design. Rather it means that (a) they
play a limited, precise role in the design process and (b) it is better not to use
them alone.

In figure 1, page 4, these tools are indeed used during only one step of the
structural design process — step c, after the initial typologies, geometric con-
ditions and assumptions about structural behaviour have been determined
and before their results are interpreted and reworked.

There are different ways to avoid the potential pitfalls set out above. Two
main options emerge. The first enhances current computerised analysis, op-
timisation and form-finding tools until the drawbacks mentioned above are
eliminated. The second improves the accomplishment of steps other than step
c in order to consolidate the shaping process as a whole. This thesis explores
the second option.

In contemporary practice, there is generally no tool to accompany the other
steps — i.e. (step a) when the very first design assumptions are made by the
architect and the engineer, (step b) when the structural behaviour is shaped
for the first time, (step d) when it is amended following more detailed analysis,
and (step e) when it is discussed with other members of the design team. Apart
from a few exceptions, designers have confidence instead in their experience
and intuition.

The few existing tools that might be used during these steps — e.g. explora-
tory physical models and graphical hand calculations — are generally avoided
because (1) (it is thought that) they require more time and energy than is avail-
able and/or (2) it is difficult to implement them in the usual workflow since
they rely on means that are too exotic for the computer.

Some might think that the current structural design situation is entirely sat-
isfactory and that the designer does not need the assistance of computers
during the other process steps. They may be right. However, this thesis is

16 · introduction

rooted in the principle that better results can always be attained and that
the relevance and efficiency of a new tool cannot be judged before it exists or
before it is given in-depth consideration.

These are all the motivations that stress the need for new tools specifically
devised to assist steps a, b, d and e in figure 1, page 4.

The next sub-section seeks to identify what such tools might look like by ex-
amining strategies that have been used by renowned structural designers. In
this respect, it will be demonstrated that some approaches even go so far as to
render analysis tools — step c in figure 1, page 4 — unnecessary.

“There is an old saying which goes something like this: ‘An engineer
is a man who can do for a dollar what any fool can do for two.’ Its emphasis
on ingenuity is praiseworthy, but it has been seen too often as a justification
for much that is cheap and nasty in engineering. It has been taken to mean
that engineering is nothing more than the achievement of clearly specified
technological objectives for the lowest possible cost in cash. This view has
been reinforced for engineering students by the fact that with a few notable
exceptions, text books entitled 'Design of Structures' are predominantly
concerned with the techniques of computational analysis” (Holgate·1986,
page 6)

introduction · 17

03	answers: exemplary
practices

learning from the great masters� · The previous sub-section urged the
search for new tools devised to supplement computerised analysis, optimisa-
tion and form-finding tools. This sub-section highlights strategies developed
by recognised structural engineers who have worked wonders in a context in
which computers were not necessarily available. It is then assumed that these
proven strategies are still relevant today and would be even more effective if
they had the cautious benefit of a computer’s speed.

clarity, speed and interactivity for creativity and intuition · From a gen-
eral point of view, structural designers who care about quality projects seek
to employ tools and methods that maximise the opportunity for their creativ-
ity and intuition to percolate through:

“[...] Creativity is necessary not just for issues around form, but also
for purely technical aspects: processes, materials and static systems. This
creativity is the difference between people who are happy to calculate and real
engineers.” (Jürg Conzett, in Conzett/Solt·2008, page 29)

“There is no method that enables us automatically to discover the most
adequate structural type to fit a specific problem, as it is faced by the designer.
The achievement of the final solution is largely a matter of habit, intuition,
imagination, common sense and personal attitude. Only the accumulation of
experience can shorten the necessary labour or trial and error involved in the
selection of one among the different possible alternatives.” (Eduardo Torroja,
in Addis·1994)

Structural designers consequently prefer tools that are capable of clarity,
speed and interactivity:

(1)	 clarity in order to understand and control the structural project, to be
aware of every design choice and its impact

18 · introduction

(2)	 speed because the process must be carried out in a continuous, fluid
and relatively fast workflow so as not to inhibit the designer’s creative
energy

(3)	 interactive because structural designers must be able to place non-
quantifiable data — from their own experience or sudden intuition —
onto the computation at any time.

Clarity, speed and interactivity are the valued qualities in the process. The
techniques that favour these qualities are many and varied. The paragraphs
below highlight four of them:

 •	prior definition of the structural behaviour
 •	design-oriented use of simplifying assumptions
 •	problem reduction guaranteeing permanent control
 •	extensive use of graphical methods and geometry.

prior definition of the structural behaviour� · Defining the structural
behaviour before analysis is about knowing what role the material will play in
the structural system before the system is even drawn. The intention is there-
fore to set the general course of the design process from the outset in order to
avoid messing about unproductively. How can a designer guide the conception
of his building in a considered and appropriate manner with regards to the
material used if the structure’s behaviour is only discovered after analysis?

This early definition is important because if the shape of the structure is de-
termined independently of the structural behaviour, the resulting behaviour
might be too complex to understand and hence modified after analysis. This
might lead to an inefficient and sometimes unsafe use of the material.

On the other hand, the prior definition of the structural behaviour also allows
the designer to employ design methods that are particularly suited to the
structure and hence simpler and more rapid.

The requirement for this technique is evident when materials have certain
limitations of strength. For example, it was partly due to the compression-
only behaviour of stone being determined beforehand that medieval masters
achieved efficient architectural forms in gothic cathedrals. Likewise, the ar-
chitect and engineer Eladio Dieste (1917-2000) drew efficient forms because
he established the structural behaviour of brick walls from the outset and
designed them taking this into account (Dieste/…·2001, Anderson·2004). A

introduction · 19

similar observation may be made about traditional wood joints, the design
of which must be preceded by considerations about the expected rheological
behaviour of wood and its manufacture.

When materials have fewer restrictions concerning their strength, the re-
quirement for the prior definition of the structural behaviour is unfortunately
less obvious, but just as relevant. As an illustration, Swiss engineer Robert
Maillart (1872-1940) made exemplary use of it (Zastavni·2009). Depending on
the context — e.g. the soil properties, the required span and the required
width of the deck — he selected an appropriate typology for the bridge — e.g.
a three-hinged arch bridge (as for the Salginatobel Bridge in figure 2) or a
deck-stiffened arch bridge. Depending on the typology selected, he chose the
most appropriate design assumptions and subsequently the most direct de-
sign method that allowed him to make as few calculations as possible. These
efficient methods led to efficient structures.

design-oriented use of simplifying assumptions� · It is still impossible
nowadays to predict the real behaviour of structures in its full complexity.
Hopefully this is not a big issue since the goal of the engineer is to ensure the
safety of the structure, not to model reality as accurately as possible.

“A real structure is, in fact, supported externally in a way which is
unknown (and unknowable) to the engineer, who nevertheless is required to
make a design” (Heyman·2008a, page x)

figure 2
the Salginatobel
bridge designed

by Robert
Maillart, picture

by Andrea
Badrutt.

20 · introduction

In order to produce the design, engineers work with idealised representations
that are known, understood and, above all, controllable. Consequently there
is always a gap between the real material behaviour and its theoretical be-
haviour, whichever approach is chosen. These gaps are qualified by so called
simplifying assumptions.

Each simplifying assumption encourages specific methods and tools and
hence has different values of efficiency regarding the design process. Some
suit the analysis of existing structures better, others the initial shaping of
structures. The choice of an appropriate assumption will generally make the
process more straightforward.

Of all the existing simplifying assumptions, those that allow the application
of the lower-bound theorem of plasticity are probably the ones that have
provided the most rapid methods for the initial shaping of structures. The
explicit formulation of the lower-bound theorem has its origin in practical ex-
periments conducted during the first half of the twentieth century. These ex-
periments suggested that yielding of material involves higher inner stresses
than those computed with elastic theory (Heyman·1996 pages 127-153). The
lower-bound theorem, also called the safe theorem or static theorem of plastic
theory, has been expressed as follows:

“A load calculated from an equilibrium state which satisfies the yield
condition is a lower bound on the value of the collapse load.” (A.A. Gvozdev in
1938, translated by Heyman·1996, page 141)

The use of this theorem is subject to two conditions: (1) the set of plastic
hinges produced by the structure cannot cause its cinematic collapse and (2)
the material must present perfect plastic behaviour. Other formulations of
this theorem have since been proposed to accommodate specific materials
— see for example Heyman·1996 (page 144) or Heyman·2008a (appendix B,
page 123) for reticular structures, Heyman·1995 for masonry structures and
Muttoni/…·1997 (page 9) for stress fields in reinforced concrete.

This theorem represents an outstanding design tool (Zastavni·2008a, page 54)
since it does not require the designer to find the actual state of stresses that
will occur in the structure. The identification of one statically admissible
stress field is sufficient to guarantee the stability of the structure, regardless
of the real behaviour of the structure (Frey·2000). The entire dimensioning of
the structure may therefore be based on a single adequate stress field.

introduction · 21

This principle had already been widely employed intuitively before its scien-
tific statement — examples can be found in Ochsendorf·2005. A remarkable
working method is the one used by Robert Maillart for the design of the Salgi-
natobel Bridge. By assuming concrete’s plastic behaviour, Maillart designed
the three-hinged arch bridge by graphically computing a single line of thrust
passing through each hinge in equilibrium with the dead load of each segment
of the discretised arch. By multiplying the load of the thrust by the eccentric-
ity between this line of thrust and the line of centroids of the arch, Maillart
directly computed the bending moments in the arch (figure 3). This single
graphical result allowed him to modify the geometries of the arch efficiently
in order to minimise its bending moments repeatedly.

problem reduction guaranteeing permanent control� · A third technique
of a design process promoting clarity, speed and interactivity is to reduce the
design issue to a small number of critical parameters (or equations, variables
or relationships) that alone control all the major questions of the design issue.
This is achieved by making a set of parameters secondary and dependent on
the controlling set of parameters, such that the complexity of these dependen-
cies can be provisionally forgotten by the designer. This allows a close focus
on a minimum set of data while handling the entire issue as a whole.

Applications of this technique have been accomplished in many different
forms. The following paragraphs illustrate five of them.

figure 3
description of

half of the
Salginatobel

bridge designed
by Robert

Maillart; the line
of thrust is the

continuous curve
and the line of

centroids consists
of two discon-

nected curves.

22 · introduction

(1)	 Antoni Gaudi (1852·1926) used hanging models to control both the shape
of the buildings and their stability under dead loads (Krasny·2008 page 58,
Huerta·2006a); in the design of vaults all that was required was to add and
remove weights and ropes

(2)	 Robert Maillart (1872·1940) drew parabolas in order to correct repeatedly
the apparently free-form bottom and upper chords of the Salginatobel Bridge
(figure 4; the construction method of parabolas he used permitted him to
handle the entire curve easily by moving just two crossing points and rotating
the directrix — the crossing-points and the orientation of the directrix being
the parameters (Fivet/Zastavni·2012)

(3)	 Felix Candela (1910·1997) synthesised the entire structural (and, to some
extent, architectural) problem into a single equation describing hyperbolic pa-
raboloids; the alteration of this single equation enabled him to accommodate
the general shape and its boundary conditions freely (Faber/Candela·1963,
Garlock/…·2008);

figure 4
reconstruction of
some parabolas
that Robert
Maillart drew on
the first
working-draw-
ings for the
Salginatobel
bridge; the
bundle of lines
depict the
construction
process of a
parabola from
two crossing-
points and the
orientation of a
directrix.

introduction · 23

(4)	 The algorithms of contemporary engineers dealing with optimisation is-
sues also formulate the structural problem in a way that reduces to a mini-
mum the number of parameters handled, as well as the number of different
types of parameters. For example, Mutsuro Sasaki only altered the local alti-
tude — i.e. the z coordinate — of each vertex of a triangulated mesh when he
minimised the strain energy of the free-curved surface concrete shell for the
crematorium in Gifu (Sasaki·2007, page 81);

(5)	 Laurent Ney, like others, had a similar concern around the design of the
steel bowstring arch of the Nijmegen City Bridge (Ney/…·2010a, page 166): he
worked on the topology of the arch with the aim of minimising the number of
geometric parameters describing it, which then greatly simplified the control
of the variation of these parameters for the weight minimisation process.

In summary, all these examples support the fact that the use of as few param-
eters as possible — provided that they are crucial to the global definition of
the structure — is a guarantee of better control of the design process.

extensive use of graphical methods and geometry� · The fourth technique
highlighted concerns the extensive use of sketches, drawings, graphical
methods and geometry. Although it appears that these are being used less
and less in contemporary practices, they are still an important technique in
the designer's toolbox:

“[Graphical methods] contribute to intuitive understanding and
visualization of behavior. They greatly facilitate all statical operations. In early
stages of design, they have significant advantages over numerical methods in
their simplicity, speed, transparency, and ability to generate efficient forms for
cables, arches, trusses, and other structural devices. They are also the source
of most of the mathematical expressions used in structural analysis, and give
the same answers.” (Allen·2009, page xii)

Indeed, graphics and graphical methods confer the following benefits on the
design process:

(1)	 sketches provide speed and synthesis
(2)	 drawings are the medium of a comprehensive memory
(3)	 graphics and geometry demonstrate visual expressiveness
(4)	 graphical methods act as open-box processing
(5)	 geometric reasoning allows the problem to be simplified
(6)	 drawings constitute a common ground for engineers and architects.

24 · introduction

These six points are developed briefly as follows:

(1)	 Hand sketches provide speed and synthesis. This is a well-known fact for
architects: the pen, like other precious tools, can act as an extension of the
mind on paper (Clark/Chalmers·1998). First, sketches enable the rapid repre-
sentation of an idea in the best possible way — e.g. regardless of whether it
is abstract or concrete — since the only rules it has to obey are those specifi-
cally set by the mind with regard to the purpose at hand. They can then also
be altered rapidly by the addition and removal of matter, compared rapidly
with other proposals and then forgotten rapidly too.

“I don't just like sketching because of nostalgia about the hand. It is really
about thinking fast, because you can test all sorts of complex relations very,
very quickly. It is just a way […] to think.” (Elizabeth Diller in Krasny·2008,
page 45)

(2)	 Drawings — i.e. the precise description of a projected position — also
provide an excellent means of keeping track of the design process and its
product, at any scale and from any viewpoint. Drawings act as an additional
memory for the designer, a memory that backs up every detail as well as every
intention:

“Drawing is the engineer's language. It translates his thinking with
a clarity that ordinary language would not have. The engineer first draws
everything that he means to have executed. He fixes and therefore keeps the
form sensitive to his ideas, the results of his calculations, all the way to useful
traces of his trials and errors. He does not wait either for his calculations to
be finished before starting to translate them into graphics.” (Favaro·1879,
page xviii)

As opposed to the graphical means mentioned previously, the following ones
may support pure engineering calculations:

(3)	 This is the case for graphics and geometry: they are able to express com-
putations entirely visually. This very convenient feature for the designer
can be illustrated with the following observation: it is far easier — i.e. faster
and more intuitive — to characterise the particular properties of a curve
— e.g. minimum and maximum points, inflexion points, radii of curvature — if
the curve is drawn in a Cartesian coordinate system rather than described by

introduction · 25

an algebraic equation. This is linked to the fact that graphics offer a stronger
focus on topological properties than algebra. Antonio Favaro spelled all this
out very well:

“Analysis excels, it is true, in arranging problems in equations, in
disengaging, by a series of transformations, the combinations of symbols,
which give the key to the question propounded, but its very perfection as a
means of research neutralises its efficacy as a means of intellectual culture.
Leading to the result by a procedure in some manner mechanical, the mind
loses sight of the realities upon which it operates, it advances along a labyrinth
of formulae, intent only that it lose not the conducting thread, obliged to be
more confiding as the darkness becomes more profound, and nearly always
unconscious of the path along which it has travelled. On the other hand, […]
it is not rare that the results to which analysis conducts, remain concealed
under the generality of algebraic symbols, so far as to appear even with less
clearness in the solution than in the enunciation.			
Geometry proceeds wholly otherwise; she presents the propositions under a
sensible form, she removes the train of auxiliaries which hide them from our
view, she puts in evidence the transformations which each problem undergoes,
and when the solution appears we now perceive the truth under a form the
most simple and the most attractive.”				
(Favaro·1879, preface page i, english translation by Chalmers·1881, page viii)

(4)	 Graphical methods, and more specifically graphic statics, are also note-
worthy for their ability to perform open-box processing. It means that data is
not hidden inside intermediate cryptic algorithms. The geometric construc-
tion is simultaneously the resolution process and its own result. Hence, the
understanding of its result is equivalent to the understanding of its resolution
process. Moreover, successive geometric operations form a whole that is im-
possible to untangle. Tiny details and large trends have equal weight in the
drawing. Consequently, graphics essentially take care of accuracy: no one has
to deal with the number of digits after the decimal point in order to check the
observable intersection of two lines:

“[Graphic statics] gives everyone simple and quick processes,
substituting the clever and laborious calculations which our engineers do all the
time. These processes also have the valuable advantage of still containing the
principle of verification, in such a way that they can, like all graphic methods,
leave some doubt about a decimal fraction which does not much matter in this

26 · introduction

kind of application. On the other hand they are free of opportunities for the
kind of stupid mistake found in long arithmetical operations and algebraical
formulae where nothing speaks to the eyes.” (Lévy·1874, page xvi)

This open-box processing is reflected in the way Robert Maillart used graphic
statics to compute the line of thrust shown in figure 3. After segmenting half
the bridge and transposing its weight onto a straight line (figure 5, vertical
line between the two bundles of rays), Maillart drew a first funicular polygon,
the junction of the ends of which provide the position of the half-bridge’s axis of
gravity (figure 5, bottom curve and left bundle of rays). From that, he deduced
the orientation of the thrusts passing through the hinge at the abutment. He
then drew a second funicular polygon passing through that hinge and the one
at the crown (figure 5, top curve and right bundle of rays). This last funicu-
lar polygon corresponds to the line of thrusts of the bridge under dead load.
Comparing this line of thrust with the line of centroids (figure 3, page 21),
he obtained the bending moment distribution and was able to make informed
changes to the geometry and thus minimise bending moments.

Robert Maillart repeated this process three times. Once this had been done,
he (or one of his partners) checked the geometry more precisely, but practi-
cally no changes had to be made and the bridge has been built as it is. In
conclusion, he used graphic statics as a pre-design tool, but this tool was so

figure 5
description of
half of the
Salginatobel
bridge designed
by Robert
Maillart; bottom
curve and left
bundle of rays
present the
funicular polyline
providing the
position of the
half bridge's axis
of gravity; top
curve and right
bundle of rays
construct the line
of thrust of the
bridge.

introduction · 27

powerful that it made further analyses completely superfluous. More details
about Robert Maillart’s drawing methods for the Salginatobel Bridge can be
found in Fivet/Zastavni·2012.

(5)	 Geometric reasoning can also greatly simplify the problem. Not only does
the geometric depiction of the problem allow the identification and execution
of geometric shortcuts that might shorten the resolution process consider-
ably, but efficient geometric syntheses can also simplify the definition of a
structure while increasing and refining its essential capabilities:

“Geometry helps manage the multitude of forms and helps us to find
new forms. It offers us the opportunity to take hold of a complex problem
and then to work on it. Geometry is the basis of parametric design, in which
a simple geometric model is adjusted countless times. The geometric study
is an eternal promise of a better-adapted object, a potential system which
repeatedly culminates in a different optimum solution. In this way, simple
geometry can underlie complex and inconceivable forms, such like as a DNA
helix.” (Laurent Ney, in Ney/…·2010a, page 39)

(6)	 Finally, graphics provide common ground for engineers and architects:

“The qualitative evaluation of the forces using an inductive process
— for example, graphic statics — does not require exact calculation, just
practice and experience. This method is understandable to architects too, and
offers a good basis for working together. […] A common language needs to
be learned — an indispensable prerequisite for a close dialogue between the
architect and the engineer. […] This would be a culture in which the dialogue
between architects and structural engineers can begin to grow — a culture
that would enable the development of designs in which structural and formal
needs merge.” (Joseph Schwartz in Flury/…·2012)

As a result of all these examples, it can be argued that graphics and geom-
etry offer many benefits as regards speed, synthesis, comprehensive memory,
visual expressiveness and open-box processing.

from exemplary practices to the definition of a new tool� · This sub-sec-
tion has shed light on four crucial design techniques that give the structural
designer all the clarity, speed and interactivity needed to exercise creativity
and intuition at their best:

 •	prior definition of the structural behaviour
 •	design-oriented use of simplifying assumptions

28 · introduction

 •	problem reduction guaranteeing permanent control
 •	extensive use of graphical methods and geometry.

The following sub-section uses this inventory to define the main features of
the tool being studied in this thesis. Some identified techniques will be imple-
mented by the tool directly; others provide a more global context in which the
tool is expected to be used.

introduction · 29

04	proposal: a tool
to accompany the
construction of static
equilibriums
defining a new tool� · This sub-section outlines a tool whose theoretical foun-
dations will be developed further in this thesis. It starts with a paragraph pre-
senting the expected purposes of the tool. The next three paragraphs explain
why the tool uses strut-and-tie models as a general structural abstraction and
summarises how this model will be handled by graphic statics and interactive
geometry. Two original concepts lie at the heart of the tool’s main benefits:
graphical regions defining design freedoms and operations altering equilib-
rium states. Introductory descriptions of these concepts are set out in the
final two paragraphs.

general purposes� · This thesis theorises a tool aimed at accompanying the
definition of structural behaviour. More specifically, it would give the struc-
tural designer an opportunity to draw and modify statically equilibrated
force paths interactively. The tool focuses on statically equilibrated force
paths because they are the most elementary, yet most crucial reduction of the
behaviour of almost every structure. Force paths are also directly linked to
structural shape and its efficiency as regards stiffness.

“What, then, do engineers see when they imagine or look at a structure ?
Broadly, they see patterns of loads which the structure must withstand; and
they see load paths which conduct these loads through the structure to the
foundations and the earth. The idea of the load path is very powerful, but it is
perhaps a more nebulous concept than non-engineers might imagine. Sketches
of load paths usually show lines and arrows, yet nothing actually flows.”
(Addis·1994)

30 · introduction

This tool is mainly intended for early design stages — i.e. before any use of
analysis tools (figure 1, page 4, step b) — but it is also suitable for han-
dling the results of previous analysis (figure 1, step d), being a medium of
choice between the architect and the engineer (figure 1, step a and e), or per-
forming certain types of analyses and optimisations (figure 1, step c).

Since this tool would be for preliminary structural explorations, it must be
simple to use and so on purpose has limited capabilities: only static equilibri-
ums are managed; one model suits one load case (although this load case can
be modified at any time and multiple models can be superimposed); and no
kind of deformation — including buckling, seismic responses etc. — is taken
into account, as least in a direct form. The objective is to offer a complement
to classic analysis tools, not to replace them.

Exemplary practices highlighted in the previous sub-section suggest that this
tool’s main characteristic should be to give the user full control over the de-
sign process. Beyond the fact that each structural choice should be dealt with
by the user rather than by the tool, it implies that:

 •	the user must remain in control of the interpretation given to the mod-
el; the computerised model should be as abstract as possible; the struc-
tural reality that it represents must belong to the user

 •	the user must remain in control of the chronology being pursued; the
tool should not, as far as possible, impose a particular procedure or
particular inputs or outputs

 •	the user must remain in control of the hierarchy he gives to design deci-
sions as well as to structural parts

 •	the user must be able to interact with the model very quickly, to modify
it as freely as possible

 •	the user must be informed of the consequences of his decisions as ef-
fectively as possible; this is the tool’s main role.

The success of these objectives would ensure that the tool feeds the structural
designer’s creativity in an effective way and gives him more control over the
structure being shaped, while avoiding being forced to make decisions too
early. The following paragraphs explain how the tool would fulfil these objec-
tives and how exemplary practices highlighted in sub-section 03 (“answers:
exemplary practices”, page 17) guide its definition.

introduction · 31

the strut-and-tie model as high-level structural abstraction� · First it is
proposed that only strut-and-tie models are used. A strut-and-tie network is
the skeleton of a structure’s behaviour. It is a graphical depiction of the force
path inside the structure. And this force path only considers pin-jointed axial
stresses — i.e. free of bending moments. This model is composed of just four
elements: pin joints, point forces applied on nodes, compression rods — i.e.
struts — and traction rods — i.e. ties — linking pin joints together. This very
small number of element types offers the great advantage that it is an abstrac-
tion of many precisely defined elements. For example:

 •	forces can be used as representations of applied loads as well as of re-
actions from the ground, with inner forces describing a load path inside
the structure or pretension loads

 •	pin joints can be used as representations of actual structural hinges but
equally they can describe eccentricities of forces acting on the fixed
end of a beam

 •	struts and ties can be used as representations of axial loads in linear
structural members, but their eccentricities with the line of centroids
of a given beam also provide the bending moments found in this beam.

An example of a strut-and-tie network is given in figure 6 and two possible
structural applications of this network are shown in figure 7. The strut-and-
tie network is meant to be the abstraction of the real structure, while the
actual role of each structural part is only in the designer’s head. As a conse-
quence there will always be a certain gap between the actual structure and
its representation. This gap allows the designer to define and modify the role
of each structural part freely at the precise moment deemed necessary — nei-
ther early nor late. Hence, this gap reduces the number of initial inputs re-
quired from the user and in a way unlocks the chronology inherent in certain
formatted design processes. As long as the structure can be approached by
discretised strut-and-tie networks, the way the design process is conducted
by the user is therefore not predetermined by the tool.

A strut-and-tie model can be used as a generic abstraction for many types of
structures: reticular systems, regardless of whether they are isostatic, inde-
terminate, pre-stressed, self-stressed — e.g. tensegrities — or mechanisms
— i.e. linkages; depictions of bending moments; lines of thrusts in compres-
sion-only structures; and load paths in continuous plastic materials, thanks to

32 · introduction

the safe theorem of plastic theory — see paragraph entitled “design-oriented
use of simplifying assumptions” (page 19), e.g. reinforced concrete struc-
tures.

This covers a large range of materials — e.g. steel (beams and cables), wood,
(reinforced) concrete, glass, ceramics and earth — and a large range of appli-
cations — e.g. roof structures, frameworks, beams, bridges, masonry works,
and shear walls.

The major limitation of strut-and-tie models is their inability to address non-
discrete representations of force paths. Each model must therefore consist
of a finite number of elements. For example, each distributed load must be
discretised into a finite number of point forces.

graphic statics� · A decision is then taken to represent this strut-and-tie
model in a diagram called a “form diagram”, along with another diagram
called a “force diagram”. The role of the force diagram is to express the static
equilibrium of the form diagram graphically. For example, the force diagram
associated with the strut-and-tie network in figure 6 is shown in figure 8.

figure 7
Two possible
structural
applications of
the strut-and-tie
network shown in
figure 6.

figure 6
Example of a
strut-and-tie
network.

introduction · 33

Both diagrams have the same number of rods. A rod in the form diagram al-
ways has a corresponding rod in the force diagram and they both have identi-
cal orientations. Distances in the force diagram are measured in units of force
magnitudes, e.g. Newtons or kilograms, so that the length of a force or a rod
in the force diagram is equal to the magnitude of the corresponding force or
rod in the form diagram.

In order for a network of struts and ties to be in static equilibrium, two con-
ditions must be ensured: (1) translational equilibrium — i.e. the sum of all
the forces applied on the network (including those inside the rods) must be
zero — and (2) rotational equilibrium — i.e. the sum of the moments produced
by all the forces applied on this network, with regard to a given point, must
be zero. The first condition here is observed simply when, placed end-to-end,
the representation of the forces (including those acting inside rods) applied on
this network forms a closed polygon in the force diagram (figure 9). Since this
first condition is observed for any sub-network, including those containing
only one point, the second condition will always be satisfied.

A last rule linking form and force diagrams is finally applied in order to ease
the recognition of corresponding force polygons and to guarantee systemati-
cally that no rod or force is represented twice in the force diagram. This rule
establishes that the forces applied to any sub-network of struts and ties must
be read in the form diagram on a cycle (a) that is always read either clockwise
or anti-clockwise, and (b) that is identical to the order described by the cor-
responding closed polygon in the force diagram (figure 9).

Some properties of form and force diagrams are easier to explain if consid-
ered in the light of projective geometry — i.e. geometry in which two parallels
always intersect at a point at infinity. For example, if point p* in figure 8 is
placed at infinity, the rays it joins would be parallel, meaning that the fu-
nicular polyline supporting the loads would become a straight rod of infinite

figure 8
Force diagram

associated with
the strut-and-tie

network shown in
figure 6.

34 · introduction

magnitude. The choice is made here to focus on Euclidean geometry instead,
since (1) this is the geometry with which non-mathematicians have the great-
est affinity and (2) infinite magnitudes are never attainable in real life.

The second section of this thesis (“geometric axiomatisation of graphic
statics”, page 55) will provide a rigorous geometric description of the rules
linking the form diagram and the force diagram. These rules can also be sum-
marised with the successive alterations shown in figure 10. Starting from a
strut-and-tie network in static equilibrium, the static equilibrium of the four
nodes of this form diagram is represented graphically in the first instance by
four closed polygons. Forces applied on each node are read clockwise in the
form diagram and are represented according to a same order in each closed
polygon. Because two forces related to a unique rod must have equal orienta-
tion and magnitude, the next step assembles the four closed polygons side by
side, matching the pair of forces related to the same rod. Finally, the last step
performs a graphical simplification: each pair of forces related to the same
rod is replaced by the representation of the rod. The resulting figure is the

figure 9
three forces that
are read
clockwise in the
form diagram are
read in the same
order in the force
diagram.

figure 10
Successive
equivalences
between the form
diagram and the
force diagram.

introduction · 35

force diagram of the initial strut-and-tie network. These successive altera-
tions can also be performed starting from the force diagram and building the
form diagram.

When forces and rods superpose in the force diagram, each is drawn distinc-
tively so that it is always visually expressed that “Nothing is lost, nothing is
created, everything is transformed” (Antoine Lavoisier). This way of describ-
ing diagrams is not widespread in the literature. Authors generally tend to
omit forces and rods when they are superimposed in the force diagram.

Form and force diagrams are necessary and adequate containers of graphic
statics. Graphic statics include all the methods of structural computations
that make use of form and force diagrams. The tool being sought makes use
of graphic statics because it has all the benefits that have been highlighted
in the paragraph entitled “extensive use of graphical methods and geometry”
(page 23) of sub-section 03 (“answers: exemplary practices”, page 17).

While, on the one hand, the form diagram depicts the geometry of the strut-
and-tie network and, on the other, the force diagram expresses its inner
stresses, the simultaneous understanding of both diagrams reveals the com-
monly hidden properties that govern the inner distribution of forces — i.e.
their reciprocal influence and their respective role concerning static equi-
librium.

interactive geometry� · Graphic statics is here performed using a computer.
This combination should be a good match both for the user and the computer.
On the one hand, computerised graphic statics enhances the precision of the
drawing, offers more visual expressiveness to the user, allows him to auto-
mate elementary constructions of diagrams and enables him to parameter-
ise diagrams and handle them dynamically. On the other hand, computerised
graphic statics simplifies the computational implementation and increases
the speed of algorithmic resolutions thanks to geometric reasoning.

In order to take account of comments referred in sub-section 03 (“answers:
exemplary practices”, page 17), attention should be given to the interactiv-
ity of the tool so that the designer’s speed of reflexion is not slowed down and
his creativity is not hampered.

In order to benefit fully from the intrinsic geometric simplifications provid-
ed by graphic statics, both diagrams are expressed in an entirely geometric
framework. This means that all the variables are defined geometrically — as

36 · introduction

positions of points — and controlled using geometric tools. It implies that the
set of design freedoms is homogeneous, that their quantity and quality are
well known and, hence, that they are mastered more effectively.

The proposal consequently employs drafting analogies such as straightedges
and compasses. However, instead of constraining points on intersections of
lines (imposed by straightedges) and circles (imposed by compasses), it uses
Boolean combinations — i.e. unions, intersections and negations — of half-
planes (figure 11, left), disc interiors (figure 11, right) and disc exteriors. This
feature removes all the limitations of classical drafting, except that it has
to remain discrete. An extensive review will be conducted in sub-section 17
(“examples of graphical computations”, page 165).

The dynamic handling of these geometric variables is obtained by making
points parameters of others. A current serious drawback of classical param-
eterisation is that the alteration of the hierarchy of dependences between
variables cannot be performed as the process goes along and requires the
complete reconstruction of the parameterisation. Thanks to the entirely geo-
metric nature of the framework, this limitation can largely be overcome — see
sub-section 18 (“switching constraint dependencies”, page 195).

graphical regions of design freedoms� · As a complementary concept to
“geometrically computerised graphic statics” mentioned previously, each var-
iable — i.e. each point — is constrained within a graphical region that is con-
structed so as to be the precise depiction of all the positions it can take and,
hence, of all the design freedoms it symbolises.

This concept was originally introduced with the following successive consid-
erations. Given a set of loads that have to be supported by a simply connected
strut-and-tie network — i.e. a network in which each node joins two rods —,
the geometry of the resulting funicular polyline is defined by the relative posi-
tion of a point called the pole:

figure 11
(left) point p0 is
constrained on
the left of or
along the line
passing through
p1 according to
the direction
going from p2 to
p3; (right) point p0
is constrained on
a distance from
p1 that is smaller
than or equal to
the distance
between p2 and
p3.

introduction · 37

(1)	 if the funicular polyline has to pass through only one given point — pa —
in the form diagram, the pole can be moved anywhere in the force diagram
(figure 12); to move the pole rotates the rays in the force diagram and updates
the geometry of the funicular polyline in the form diagram

(2)	 if the funicular polyline has to pass through two given points — pa and
pb — in the space diagram, the set of available positions of the pole is limited
to a line whose fixed position and orientation is a function of the resultant of
the given loads and of the two points pa and pb (figure 13 and figure 14); this
property can be explained in figure 15 — the reaction force of the funicular
polyline through pa (respectively pb) is divided into two components; the first
one is directed towards pb (respectively pa) the other one is parallel to the
resultant of the applied loads; because the funicular polyline is in equilib-
rium, the first components must be cancelled out; the magnitudes of the other
two components are found by expressing their rotational equilibrium with
the resultant, which depends on the position of this resultant; whatever the
pole of the funicular polyline is, the magnitude of these two components must
remain constant since the funicular polyline always passes through pa and pb
and since the resultant remains equivalent; their representation in the force
diagram consequently constrains the positions of the pole on a single line

(3)	 if the funicular polyline has to pass through two given points — pa and pb —
and between two other points — pc and pd — in the space diagram, the set of
available positions of the pole is limited to a line segment (figure 16); the ends
of the segment are found using the intermediary construction of figure 17
— each segment of a funicular polyline passing through two points (such as pa
and pb) has the property of pivoting around a constant point — p* — positioned
on the line passing through points pa and pb (Mayor·1909, pages 14 and 16;
Pirard·1950, pages 54 to 56); the two extreme orientations of the second rod
are then those passing through p* and pc and through p* and pd; once repro-
duced in the force diagram around px, these orientations delimit the extreme
positions of the pole — py and pz

(4)	 if the funicular polyline has to pass through three given points — pa, pb
and pc — in the space diagram, the set of available positions of the pole is
limited to a single position, which is precisely the intersection of two lines;
for instance one given by the condition ensuring that the funicular polyline
passes through pa and pb, and the other given by the condition ensuring that

38 · introduction

figure 12
the grey area in
the force diagram
shows the
possible positions
of the pole if the
funicular polyline
has to pass
through the point
pa.

figure 13
the grey line in
the force diagram
shows the
possible positions
of the pole if the
funicular polyline
has to pass
through the
points pa and pb.

figure 14
the same
construction as in
figure 13 for
another position
of the pole.

figure 15
explanation of the
properties
leading to the
construction of
the line of the
poles presented
in figure 13
and figure 14.

introduction · 39

figure 16
the grey segment

shows the
possible positions

of the pole if the
funicular polyline

has to pass
through pa and pb

and between pc
and pd.

figure 17
explanation of the

properties
leading to the

construction of
the line of the

pole presented in
figure 16.

figure 18
the pole in the
force diagram

must stand on its
position if the

funicular polyline
has to pass

through the
points pa, pb and

pc.

figure 19
the grey area in

the force diagram
shows the

possible positions
of the pole if the

funicular polyline
has to pass

through the
points pa and

between pb and
pc.

40 · introduction

the funicular polyline passes through pa and pc (figure 18). As a result, the
pole will also pass through the line given by the condition ensuring that the
funicular polyline passes through pb and pc

(5)	 if the funicular polyline has to pass through a given point — pa — and
between two other points — pb and pc — in the space diagram, the set of avail-
able positions of the pole (figure 19) is limited to an area that can be deduced
using the same logic as in figure 15

(6)	 if the funicular polyline has to pass through a given point — pa — and has
to stay inside a certain shape given by new points, the set of available posi-
tions of the pole is harder to find, but is nevertheless still computable and rep-
resentable in a graphical region (figure 20). The same construction in which
the pole is moved to other positions is shown in figure 21 and figure 22.

In conclusion, this pole enjoys different freedoms regarding the conditions
imposed on the funicular polyline, and these freedoms are synthesised inside
a graphical region. Furthermore, not only does a condition on the funicular
polyline constrain the pole, but it also constrains every other point whose
position is used to define the construction. Graphical domains of solutions
exist for any point and for any strut-and-tie network. For example, figure 23
shows the region in which point p* (defining the upper hole) must stay in order
to ensure that the funicular polyline does not cross the hole that point p* de-
fines. This feature is particularly interesting because it removes the common
distinction between initial data and results.

Geometric constraints may be imposed manually in the form diagram to limit
the spatial extent of the structure or in the force diagram to limit the magni-
tude or orientation of the forces. Other geometric constraints are created al-
gorithmically (using more general methods than those presented in figure 15
and figure 17) in order to propagate those applied manually. If propagation is
automated for every constraint, it is then ascertained that every point has a
non-empty region in which it can stay. In other words, it means that there is
at least one solution to the geometric construction. This subject is a matter
of geometric solvers and will be further developed in the third section of this
thesis (“dynamic handling of geometric constraints”, page 135).

Thanks to the force diagram, mainly all of the needed quantifiable param-
eters are expressed by positions of points and are modified by dragging them.
Each graphical domain provides all the solutions that a certain parameter can
have, given the other applied geometric boundaries.

introduction · 41

figure 20
the grey area in

the force diagram
shows the

possible positions
of the pole if the

funicular polyline
has to stay
outside the

shapes drawn in
the form
diagram.

figure 21
reproduction of

the construction
in figure 20 in
which the pole

has been moved
onto a particular

position.

figure 22
reproduction of

the construction
in figure 20 in
which the pole

has been moved
onto another

particular
position.

42 · introduction

operations of equilibrium� · The final new concept makes use of geometric
operations to assemble different strut-and-tie networks in static equilibrium
into a new network in static equilibrium. This concept can be understood by
constructing a reticular network of struts and ties on the basis of two funicu-
lar polylines.

Starting from the previous funicular polyline (figure 24), the user wants, for
example, to retain the geometry of the compression rods but, for one reason
or another, has to decrease the magnitudes of these compression rods to a
certain value given by the distance between points pa and pb. One way of

figure 24
initial situation:
forces are
supported by a
funicular polyline
but the
magnitude of the
compression rods
are too high.

figure 25
new forces are
added in order to
reduce the
magnitude of the
compression rods
to the value given
by the distance
between points pa
and pb.

figure 23
reproduction of
the construction
in figure 20 in
which the region
in which point p*
must stay is
highlighted.

introduction · 43

figure 26
a new strut-and-

tie network is
created to bear

the new
temporary forces

created in
figure 25.

figure 27
diagrams in

figure 25 and
figure 26 are
combined in

order to form a
new strut-and-tie

network.

figure 28
opposite forces of
equal magnitudes

are transformed
in rods and

reaction forces
are summed up.

figure 29
points in the

force diagram are
further

constrained on a
circle centred in

p3 so that tension
rods have
constant

magnitudes.

44 · introduction

doing this, as suggested by the force diagram, is to create new intermedi-
ary forces on each loaded point (figure 25). But these new forces cannot be
directly supported by the ground, they must themselves be directed to the
supports by another network of struts and ties. A possible funicular polyline
suited to bearing these temporary forces is illustrated in figure 26: it is made
of tension rods and passes through the same supports. The sub-networks in
figure 25 and figure 26 are then superimposed in figure 27. The displacement
of the pole may be required for that reason. Since each pair of temporary
forces are aligned in the form diagram, opposed and of equal magnitude in
the force diagram, they act just like a rod. The user can then decide to trans-
form each pair of forces into a new compression rod (figure 28). In addition,
the two forces applied on each support can be summed up easily using the
force diagram (same figure).

As a result, figure 28 shows a new strut-and-tie network that has been built
from two separate funicular polylines. This new network can now be handled
just like any other. For instance, the user may want to keep the tension rods
constant. This can be done by constraining further the points of the force
diagram that define the orientation and amplitude of these rods (figure 29).
For example, point p2 (that was already constrained along a line parallel to
p4p5 and passing through p1) would now also be constrained on a circle cen-
tred in p3 whose radius is equal to p0p3, the consequence being to update the
orientation of the rods p4p6, p5p7 and p6p7. The application of the constraints
is controlled by the user; the update of the diagrams is controlled by the tool.

The fourth section of this thesis (“production rules for computer-aided graphic
statics”, page 265) will show that any operation used to build a strut-and-tie
network in static equilibrium can be defined by a procedure that executes
sequences of native operations.

The process begins with diagrams that have already been equilibrated and
the operations available to the user automatically modify both diagrams us-
ing only geometric rules that never put the static equilibrium of the structure
at risk. Each operation takes an equilibrated network as input and produces
a new equilibrated network. The check for equilibrium is no longer the de-
signer’s duty; his job is just to focus on how forces flow through the structure.

introduction · 45

05	precedents

The tool introduced in the previous sub-section does not have a full equiva-
lent for comparison purposes. However parts of the concepts and theories it
uses have precedents that can be clearly identified. It includes strut-and-tie
models and their use with computers, geometric constructions and their use
with computers, and graphic statics and its use by and with computers. The
following paragraphs provide a recap of these precedents and highlight how
the proposed tool exceeds them.

strut-and-tie networks� · The explicit use of strut-and-tie networks goes back
to the nineteenth century for the structural analysis of pin-jointed trusses
— e.g. wood and steel frameworks — and suspension bridges (Charlton·2002).
Since then, it has been shown that strut-and-tie analogies are also appropriate
for the study of structures that present a plastic behaviour (page 20) — e.g.
for the computation of the line of thrust in masonry (Ungewitter/…·1901) or
for the study of the reinforcement required in concrete beams (Marti·1985).

Although the magnitude of forces within strut-and-tie networks can be com-
puted very quickly by graphical means, many contemporary designers still
compute them using algebraic trigonometry.

computerised strut-and-tie networks� · The last few decades have seen
the development of all kinds of software for building and/or analysing strut-
and-tie networks, whether as part of multi-purpose structural analysis tools
(Autodesk/…·2008, Risa·1987), stand-alone software (Latteur·1998) or plug-
ins of geometric modellers (Piker·2010, Preisinger·2013)

46 · introduction

Nearly all of them either compute the inner forces from a predetermined
shape — i.e. the stresses that are displayed are the results of geometries pre-
viously drawn — or the other way round, but they offer no opportunity for
reversing the deductive approach as it goes along. In other words, these pro-
grams impose a design chronology.

geometric constructions� · Compass-and-straightedge constructions
(figure 30) are as old as the geometry treatises of Ancient Greece (Euclid·2008).
This consistent body of knowledge is able to perform many kinds of geo-
metric, arithmetic and trigonometric constructions by hand (Ozanam·1691,
Mascheroni·1797, Cousinery·1839, Reuleaux·1899 page 22 and Holme·2010
pages 54 and 422), as far as Euclidean geometry is concerned — i.e. the con-
structions are maintained on one plane and the intersection of two parallels
does not exist (Stillwell·2005, Holme·2010).

These constructions have the following disadvantages: they may take a long
time to produce; they require the user to start from scratch as soon as an
initial parameter changes; they require constant accuracy; the drawing can
soon become illegible when numerous lines and circles become overlaid. Com-
puters remove these limitations.

In this thesis, consecutive operations of mechanical compasses and straight-
edges will be replaced by first-order logic (Schöning·2008, Rautenberg·2010,
and Makinson·2012). This means that the geometric rules and constructions
associated with graphic statics can be robustly expressed in rigorous and
logical terms. As such, this approach is informed by the work of Alfred Tarski
(Tarski·1959, Szczerba·1986, Tarski/Givant·1999 Schwabhäuser/…·2011,
Narboux·2007) who axiomatised Euclidean geometry by means of first-order

figure 30
a compass and a
double
straightedge
(figures from
Penther·1749).

introduction · 47

logic. His concern fitted within a broader movement (Peano·1889, Hilbert·1902,
Pieri·1908, Birkhoff·1932, Birkhoff/…·1959 and Marchisotto/…·2007) initiated
in response to the lack of rigorous demonstrations permitted by Euclid’s origi-
nal axioms.

computerised geometric constructions� · Two types of computerised geo-
metric constructions can be distinguished: static constructions and dynamic
constructions. The first type is the subject of all computer-aided drafting soft-
ware. Some of them have recently developed the ability to create dynamic
geometric objects, but these are difficult to parameterise and/or have quite
limited functionalities.

The second type is tools specifically designed to permit parameterised ge-
ometry and its dynamic handling. The best known of these are the ones de-
veloped for educational purposes — e.g. GeoGebra (Hohenwarter/…·2002 and
Hohenwarter/…·2012), Cinderella (Richter-Gebert/…·1998, Kortenkamp·1999,
Richter-Gebert/…·2012 and Kortenkamp·2013) and Cabri II Plus
(Laborde/…·2002, Laborde/…·2007). These software applications are built on
what literature calls constraint-based geometric solvers. This large field of re-
search first appeared in the early 1980s and is still very active today. Reviews
on this subject can be found in Dohmen·1995, Hoffmann/…·2005, Rossi/…·2006
and Bettig/…·2011.

They usually offer little support for geometric constructions allowing multiple
solutions, graphical inequalities, relative directions, switch of dependencies
hierarchy, interdependencies of constraints and union and negations of con-
straints. If they allow Boolean combinations of inequalities to be drawn and
points to be constrained on it — e.g. in Geogebra —, these inequalities must
be defined with algebraic expressions that cannot be dependent on positions
of movable points.

This example highlights the main difference between the approach proposed
in this thesis and classical geometric solvers. Classical solvers analyse sys-
tems of algebraic (in)equations in order to find the solution(s). Here, solutions
are obtained by (1) calculating the smallest distance between orthogonal pro-
jections on lines or circles, and intersections between lines and circles and
(2) checking the membership of points inside Boolean combinations of half-
planes, insides of discs and outsides of discs.

48 · introduction

Another difference is that, these constraints only take positions as param-
eters, whereas other solvers deal with constraints and parameters of vari-
ous kinds (distances, angles, parallelism, tangency, proportionality etc.). This
does not imply any restriction of application since, for instance, the size of
an angle can still be defined by three positions and a tangency can still be
defined by successive intersections of lines and circles.

The closest precedent to the approach proposed in this thesis seems to be that
of Veltkamp·1995. Indeed, both approaches are logic-based and constructive
and solve domains of solutions incrementally in graphical regions. However,
the resemblance stops here since the primitive constraints in this thesis are
modes of relative directions and graphical inequalities (leading to the pos-
sible formulation and handling of infinite domains of solutions).

Constructive constraint-based geometric solvers share many analogies
with mechanical linkages (Schooten·1646, Reuleaux·1876, Kempe·1877 and
McCarthy/…·2011). Indeed, the most used elementary linkages are nothing
more than dynamic strut-and-tie networks. Some constructions developed in
this thesis are direct implementations of linkages presented in Yates·1941,
Yates·1959 and Artobolevski·1964.

hand-drawn graphic statics · Methods of graphic statics are the practi-
cal developments of geometric drawings made by, inter alia, Simon Stevin
(Stevin/Girard·1634), Pierre Varignon (Varignon·1725) and Gaspard Monge
(Monge·1788) for assessing static equilibrium — read Zastavni·2008a
(pages 84 to 86) and Duhem·1905 for deeper review.

According to William John Macquorn Rankine (Rankine·1870), Rankine him-
self was the first to publish the concept of force polygons — i.e. showing “how
to combine in one diagram a system of lines representing the directions and
magnitudes of all the forces acting in a given frame” — in 1856 in a synop-
sis of lectures he gave at the University of Glasgow. Indeed, the first pub-
lished diagrams can be found in Rankine·1858 (figure 31). The same year,
Earnshaw·1858 (figure 76 plate 4) also published explicit force polygons, but
these did not consider trusses. According to Jenkin·1869 (page 441), similar
diagrams were used earlier by a certain draughtsman by the name of Taylor
and, according to Bow·1873 (page 46), similar diagrams has been published
before 1854 in a paper by Mr. C. H. Wild. But there appears to be no remaining
publication of these.

introduction · 49

The first general definition was expressed in 1858 by William John Mac-
quorn Rankine in his manual of applied mechanics (Rankine·1858, entry 150
page 139). James Clerk Maxwell gave it a geometric background, the same
year, in his celebrated paper “On Reciprocal Figures and Diagrams of Forces”
(Maxwell·1864). Both papers consider pure mathematical reciprocal figures
in which forces are not represented in the form diagram (figure 32).

A couple of years later, Carl Culmann (Culmann·1866) and Luigi Cremona
(Cremona·1868) provided the first books entirely devoted to what they called
for the first time “graphic statics”. Although these books include several new
practical methods, they are restricted to the use of form diagrams in which
nodes only connect two rods — i.e. they do not deal with trusses and other
reticular frameworks. Interest in reciprocal figures for the practical computa-
tion of forces inside reticular frameworks was only generated subsequently in
two papers by Maxwell·1867 and Jenkin·1869 (figure 33).

These contributions seem to be the only published premises of graphic stat-
ics. There then followed myriad of books enhancing the range of applica-
tions of graphic statics, increasing the number of methods and simplifying
them: Bauschinger·1871, Cremona·1872, Bow·1873, Bow·1874, Lévy·1874,
DuBois·1875, Eddy·1878, Favaro·1879, Cremona·1885, Lévy·1886, Mohr·1886,
Culmann/Ritter·1888, Herrmann·1892, Daubresse·1904, Fairman/…·1932,
Pirard·1950 etc. Some of them extended graphic statics to the study of spatial
frameworks: Rankine·1864, Daubresse·1904, Henneberg·1911, Mayor·1926,
Foulon·1969, etc.

figure 31
diagram of forces

of a frame in
Rankine·1858,

page 143.

figure 32
reciprocal

diagrams by
Maxwell·1864,

page 253,
figure 2.

50 · introduction

Other historical developments in graphic statics can be found in Jenkin·1869,
Maxwell·1876, Chalmers·1881, Scholz·1994, Charlton·2002 (pages 56 to 66)
and Zastavni·2008a (pages 84 to 98).

The vast majority of methods presented in this literature is essentially aimed
at the analysis of reticular shapes already drawn. Books that use the force
diagram as a structural shaping engine are fairly rare. Zalewski·1997 and
Allen·2009 are perhaps the greatest counterexamples, but also the most re-
cent. Most accounts on graphic design methods should be found in practice,
such as with Robert Maillart for instance.

The main drawback of manual graphic statics is that users build the force
diagram out of nothing, line by line until it becomes complete and closed — i.e.
until the structure is in equilibrium — meaning that the user is only sure of
the correctness of his construction at the very end of the process. The process
can soon become slow and tedious for complex structures, as was the case
reported by Jürg Conzett for the Traversina Bridge design (Mostafavi/…·2003
and personal communication). As for manual geometric constructions, a
change of an initial parameter requires the entire drawing to be recomputed.

Graphic statics had its glory days between the 1870s and the 1950s. Differ-
ent factors brought about its decline, but the main one might be the great
developments in numerical methods, encouraged by electronic calculators
and, later, by computers. Since it was far easier for electronic engineers to

figure 33
uniformly loaded
roof by
Jenkin·1869,
plate XIX,
figure 8.

introduction · 51

design machines that produce numerical calculus than to design machines
capable of drawing, it soon became easier for structural engineers to produce
long and complex calculus with calculators than to do them graphically. As a
result, graphic statics has now unfortunately been relegated to being an old-
fashioned tool solely of educational interest in schools of architecture.

However, computers are nowadays very well suited to graphical design
— e.g. computers are powerful enough to compute real-time complex graphics
and touch-sensitive displays remove the interface between users and their
computed drawing like never before — which suggests that the age for com-
puter-aided graphic statics has come or, at least, that it deserves optimistic
research.

computer-aided graphic statics · Any research about form and force dia-
grams that has been conducted in the past decade is related to their use with
computers. Two types must be recognised. The first builds on the simplifying
properties of reciprocal figures to achieve purposes beyond graphic statics
— e.g. for the form-finding of masonry vaults (Block/…·2007 and Block·2009)
or the shaping of optimal trusses (Beghini·2013, Baker/…·2013).

The second, closer to the purpose of this thesis, follows the objective of mak-
ing form and force diagrams dynamically modifiable, which would enable the
interactive use of a whole host of methods which are just waiting to be re-
used. The only current implementations serve pedagogical purposes through
didactic examples. These contributions have been made in various forms:
ActiveStatics, developed at MIT (Greenwold·2009), is an original web-applet;
eQUILIBRIUM, developed at ETHZ (VanMele/Block·2011, VanMele/…·2012),
is a web-applet built on the dynamic geometry software GeoGebra; other
implementations, as developed in Lachauer/…·2011a and Lachauer/…·2011b,
are components of the parametric modelling software Grasshopper for Rhino
(Khabazi·2010 and Payne/Issa·2009).

Unfortunately, all these implementations are, for the time being, capable of
only dynamic displacements of nodes on preassembled diagrams. In other
words, they do not yet allow the interactive construction of graphic statics
diagrams.

The user who wants to build custom graphic statics diagrams has to establish
beforehand the underlying geometric parameterization of these diagrams.
The main issue of this process — which in addition is extraneous to the origi-

52 · introduction

nal structural concern — is the same as if the reciprocal diagrams were to be
built by hand: the inner geometric properties of the final force diagram are
only known and fully understood once it is completed. This generally involves
numerous attempts and leads to the dependence of the force diagram on the
form diagram, rather than the opposite.

figure 34
minimal material
truss, snapshot of
ActiveStatic;
Greenwold·2009.

introduction · 53

06	organisation of the content

summary of the introduction� · This paragraph concludes the introductory
section. Sub-section 01 (“fact: contemporary structural design practice”,
page 3) has provided insight into the shaping of structures: the role of
designers, their habits, their tools and their methods for structural design.
Sub-section 02 (“critique: the lack of adequate tools for the initial shaping
of structures”, page 11) has then shown that the common process that
gives the dimensions of the structural parts following analysis of a prede-
termined shape suffers from drawbacks that cannot be overcome by current
analysis tools. In response, sub-section 03 (“answers: exemplary practices”,
page 17) has highlighted past structural design approaches that have pro-
duced exemplary structures in the near absence of analysis tools. Inspired
by these approaches, sub-section 04 (“proposal: a tool to accompany the
construction of static equilibriums”, page 29) has defined the purpose and
main features of the tool that will be developed in the sections that follows.
This tool is aimed at assisting the construction of form and force diagrams
interactively and benefits from two original concepts: geometrical domains of
solutions and equilibrium operations. Finally, sub-section 05 (“precedents”,
page 45) looked for precedents, highlighted the theoretical fields it uses,
placed them in a historical context and presented some of their current limi-
tations.

organisation of the following sections � · The main body of this thesis con-
sists of three sections. The first builds an axiomatic definition of immobile
force and form diagrams and of the geometric relations they share. The sec-
ond uses this axiomatisation to develop the inner working of the tool related
to the dynamic displacements of points within these diagrams and to the
automated construction of geometric domains of solutions. The third section
develops the inner rules of the tool related to the dynamic modifications of
diagrams using equilibrium operations.

55

GEOMETRIC
AXIOMATISATION
OF GRAPHIC
STATICS

This section develops a first-order axiomatisation of graphic statics. More than just a theo-
retical grounding on which the sections that follow are built, it proposes a precise vocabulary
with its own grammar capable of characterising graphic statics diagrams in full.

Sub-section 07 (“positions of points and first-order logic”, page 57) recalls the main con-
nections of Boolean logic. The next sub-sections introduce each fundamental relationship one
after the other, together with the axioms defining them:

 •	sub-section 08 (“relationships of proximity and laterality”, page 61) defines one met-
ric and one affine relationship to compare distances and directions

 •	sub-section 09 (“form diagram and force diagram”, page 77) differentiates the form
diagram and the force diagram

 •	sub-section 10 (“geometrical definition of forces”, page 81) proposes an axiomatisa-
tion of the concept of force using only relationships between positions of points

With the help of these fundamental relationships, the concept of rod is defined in sub-section
11 (“rods and other objects”, page 87). The next two sub-sections supplement the set of
axioms in order to compel each strut-and-tie network to be in equilibrium within two recip-
rocal diagrams — see sub-section 12 (“static equilibrium”, page 99) and sub-section 13
(“uniform reading cycle”, page 107). Finally, a summary of all these fundamental relation-
ships and their main axioms is provided in sub-section 14 (“recapitulation”, page 133).

geometric axiomatisation of graphic statics · 57

07	 positions of points
and first-order logic

relationships between positions� · Let p0, p1, p2, p3, … be a set of positions in
the plane. Let φ0, φ1, φ2, φ3, … be a set of geometric relationships that these
positions maintain (figure 35). A geometric relationship is either true or false
— the law of excluded middle — and a geometric relationship can never be
both true and false at the same time — the law of noncontradiction.

These relationships will be characterised and used with first-order logic
(Schöning·2008, Rautenberg·2010 and Makinson·2012). The logical connec-
tives on which first-order logic is based are recalled in the following para-
graphs.

implication� · A relationship φ0 implies a relationship φ1 when φ1 is true or
when φ0 and φ1 are simultaneously false. It is written “φ0 ⟶ φ1”, can be read
“if φ0 then φ1”, and is considered a relationship in itself. The truth table of this
logical connective is as follows:

true	 ⟶ true	 is a true relationship
false	 ⟶ true	 is a true relationship
true	 ⟶ false	 is a false relationship
false	 ⟶ false	 is a true relationship

figure 35
a cloud of points.

58 · geometric axiomatisation of graphic statics

equivalence� · Two relationships φ0 and φ1 are equivalents when φ1 implies φ0
and φ1 implies φ0. It is written “φ0 ⟷ φ1”, can be read “φ0 if and only if φ1” and
is considered as a relationship in itself. The equivalence of φ0 and φ1 does not
mean that φ0 and φ1 have the same meaning, it just means that they are simul-
taneously true or false. The truth table of this logical connective is as follows:

true	 ⟷ true	 is a true relationship
false	 ⟷ true	 is a false relationship
true	 ⟷ false	 is a false relationship
false	 ⟷ false	 is a true relationship

negation� · The negation of a true relationship is false and the negation of a
false relationship is true. The negation of a relationship φ0 is written “¬φ0”, is
considered as a relationship itself and is defined such that the two following
relationships are always observed:

true	 ⟷ ¬false	 is a true relationship
false	 ⟷ ¬true	 is a true relationship

conjunction� · A logical conjunction, i.e. an intersection, synonym of “and”,
between two relationships φ0 and φ1 is only verified when both φ0 and φ1 are
true. This logical connective is written “φ0 ∧ φ1”, is considered as a relation-
ship in itself and is defined by the following truth table:

true	 ∧	 true	 is a true relationship
true	 ∧	 false	 is a false relationship
false	 ∧	 true	 is a false relationship
false	 ∧	 false	 is a false relationship

disjunction� · A logical conjunction, i.e. an union, synonym of “or”, between
two relationships φ0 and φ1 is only verified when either φ0 or φ1 is true. This
logical connective is written “φ0 ∨ φ1”, is considered a relationship in itself and
is defined by the following truth table:

true	 ∨	 true	 is a true relationship
true	 ∨	 false	 is a true relationship
false	 ∨	 true	 is a true relationship
false	 ∨	 false	 is a false relationship

Boolean logic · Conjunction, disjunction and negation constitute a Boolean
algebra (Givant/Halmos·2009). This means that they are ruled so that the fol-
lowing relationships are always true, for any relationships φ0, φ1, φ2 and φ3:

geometric axiomatisation of graphic statics · 59

annihilation:
	 φ0 ∧ false	 ⟷ false
	 φ0 ∨ true	 ⟷ true

identity:
	 φ0 ∧ true	 ⟷ φ0
	 φ0 ∨ false	 ⟷ φ0

complementation:
	 φ0 ∧ ¬φ0 ⟷ false
	 φ0 ∨ ¬φ0 ⟷ true

double negation:
	 ¬¬φ0 ⟷ φ0

idempotence:
	 φ0 ∧ φ0 ⟷ φ0
	 φ0 ∨ φ0 ⟷ φ0

De Morgan:
	 ¬(φ0 ∧ φ1) ⟷ ¬φ0 ∨ ¬φ1
	 ¬(φ0 ∨ φ1) ⟷ ¬φ0 ∧ ¬φ1

commutativity:
	 φ0 ∧ φ1 ⟷ φ1 ∧ φ0
	 φ0 ∨ φ1 ⟷ φ1 ∨ φ0

associativity:
	 φ0∧(φ1∧φ2) ⟷ (φ0∧φ1)∧φ2
	 φ0∨(φ1∨φ2) ⟷ (φ0∨φ1)∨φ2

distributivity:
	 φ0∧(φ1∨φ2) ⟷ (φ0∧φ1)∨(φ0∧φ2)
	 φ0∨(φ1∧φ2) ⟷ (φ0∨φ1)∧(φ0∨φ2)

equivalence between implication and conjunction or disjunction :
	 (φ0 ∨ φ1)	 ⟷ (¬φ0 ⟶ φ1)
				 ⟷ (¬φ1 ⟶ φ0)

	 ¬(φ0 ∧ φ1)	⟷ (φ0 ⟶ ¬φ1)
				 ⟷ (φ1 ⟶ ¬φ0)

if/else equivalences:
		 ((φ0⟶φ1) ∧ (¬φ0⟶φ2)) ⟷ ((φ0 ∧ φ1) ∨ (¬φ0 ∧ φ2))
	 ¬	 ((φ0⟶φ1) ∧ (¬φ0⟶φ2)) ⟷ ((φ0 ∧ ¬ φ1) ∨ (¬φ0 ∧ ¬ φ2))

	 ¬	 ((φ0⟶φ1) ∧ (¬φ0⟶φ2)) ⟷ ((φ0⟶ ¬ φ1) ∧ (¬φ0 ⟶ ¬ φ2))

60 · geometric axiomatisation of graphic statics

other equivalences:
	 ((φ0⟶φ1) ∧ (φ2⟶φ3))	 ⟶ ((φ0∧φ2) ⟶ (φ1∧φ3))
	 ((φ0∨φ1) ⟶ (φ2∨φ3))		 ⟶ ((φ0⟶φ2) ∨ (φ1⟶φ3))
	 ((φ0∧φ1) ⟷ (φ0∧φ2)) ⟷ (φ0 ⟶ (φ1⟷φ2))

existential quantifier� · The existential quantifier means that at least one
position exists that satisfies the given relationship. If p0 is that position and φ0
that relationship, it is written “∃p0: (φ0)”.

general quantifier� · The general quantifier means that a given relationship
is verified whatever the indicated position(s). If φ0 is that relationship and p0
that position, it is written “∀p0: (φ0)”.

When no quantifier is specified with a relationship, it is assumed that this
position is true whatever the indicated positions of this relationship. Conse-
quently, if the relationship φ0 does not engage any existential quantifier on p0,
this relationship is equivalent to the relationship “∀p0: (φ0)”

identities related to quantifiers� · Various identities relating to quantifiers
can be identified :

∃p0: (φ0) ⟷ ¬∀p0: (¬φ0)
∀p0: (φ0) ⟷ ¬∃p0: (¬φ0)

∀p0: (∀p1: (φ0)) ⟷ ∀p1: (∀p0: (φ0))
∃p0: (∃p1: (φ0)) ⟷ ∃p1: (∃p0: (φ0))

∀p0: (φ0) ∧ ∀p0: (φ1) ⟷ ∀p0: (φ0 ∧ φ1)
∀p0: (φ0) ∨ ∀p0: (φ1) ⟷ ∀p0: (φ0 ∨ φ1)

The first two equivalences are very interesting since they help avoid the use
of all existential quantifiers or, if need be, all general quantifiers.

geometric axiomatisation of graphic statics · 61

08	 relationships of proximity
and laterality

definition of geometric relationships� · Having recall the principal notions
of mathematical logic, this sub-section introduces the definition of three
new fundamental relationships between positions: Proximity, Laterality and
UnitDistance. They are called fundamental because they can be admitted as
true without being demonstrated. They will constitute the geometrical base
of the axiomatisation undertaken in the following sub-sections.

This sub-section also shows how Proximity and Laterality are two fundamental
relationships that are sufficient for the axiomatisation of plane elementary
Euclidean geometry and how they extend classical compass and straight-
edges constructions. Some examples of non-fundamental relationships will
ultimately be constructed.

the fundamental relationship of proximity� · The relationship of proximity
depicts the metric nature of geometry. Proximity[p0 p1 p2 p3] can be understood
as a quaternary predicate that is only verified if the distance from p0 to p1 is
less than or equal to the distance from p2 to p3 (figure 36). In other words,
it is only verified if the distance from p2 to p3 is greater than or equal to the
distance from p0 to p1.

The negation ¬Proximity[p0 p1 p2 p3] says that the distance from p0 to p1 is strict-
ly greater than the distance from p2 to p3.

figure 36
four points

holding a
Proximity[p0p1p2p3]

relationship.

62 · geometric axiomatisation of graphic statics

axioms related to proximity� · This fundamental relationship has numerous
properties. The first concerns its symmetry: to exchange the first and second
terms or to exchange the third and fourth terms does not alter the existence
of this relationship at all. In other words, it means that the following equiva-
lences are always true — whatever the positions p0, p1, p2 and p3:

Ax.1 — symmetry of proximity:
	 Proximity[p0 p1 p2 p3]
	 ⟷ Proximity[p1 p0 p2 p3]
	 ⟷ Proximity[p0 p1 p3 p2]
	 ⟷ Proximity[p1 p0 p3 p2]

The Proximity relationship also presents two types of reflexivity. The first is
due to equal distances: the distance between two points is always less than
or equal to itself. The following relationship (and all its symmetries) is conse-
quently always true:

Ax.2 — reflexivity of proximity due to equal distances:
	 Proximity[p0 p1 p0 p1]

The second reflexivity is due to the existence of a zero distance: if the first
two terms are identical positions, the zero distance separating them is always
less than or equal to any two other positions. The following relationship is
consequently always verified:

Ax.3 — reflexivity of proximity due to a zero distance:
	 Proximity[p0 p0 p1 p2]

Because the previous two axioms remain valid when some positions are iden-
tical, the following properties are also always verified:

	 Proximity[p0 p0 p1 p1]

	 Proximity[p0 p0 p0 p0]

A fourth axiom for Proximity relationship can be expressed according to tran-
sitivity, i.e. the following relationship is always true:

Ax.4 — transitivity of proximity:
	 (Proximity[p0 p1 p2 p3] ∧ Proximity[p2 p3 p4 p5]) ⟶ Proximity[p0 p1 p4 p5]

geometric axiomatisation of graphic statics · 63

Finally, the Proximity relationship also develops the following property: if a dis-
tance p0p1 is strictly greater than a distance p2p3, it implies that the distance
p2p3 is less than or equal to the distance p0p1. Strictly speaking, this means
that the following relationship is always verified:

Ax.5 — inclusion of proximity in its negation:
	 ¬Proximity[p0 p1 p2 p3] ⟶ Proximity[p2 p3 p0 p1]

the fundamental relationship of laterality� · The relationship of laterality
depicts the affine nature of geometry. Laterality[p0 p1 p2 p3] can be understood
as a quaternary predicate that is only verified if (1) p2 is coincident with p3
(figure 39) or (2) p2 is not coincident with p3 but p0 is on the left of (figure 37)
or in line with (figure 38) p1 according to the direction from p2 to p3.

As a consequence, the negation ¬Laterality[p0 p1 p2 p3] informs that (1) p2 is not
coincident with p3 and (2) p0 is on the right but not in line with p1 according to
the direction from p2 to p3.

figure 37
four points

holding a
Laterality[p0p1p2p3]

relationship.

figure 38
four points

holding a
Laterality[p0p1p2p3]

relationship.

figure 39
four points

holding a
Laterality[p0p1p2p3]

relationship.

64 · geometric axiomatisation of graphic statics

axioms related to laterality� · This fundamental relationship also has numer-
ous properties. The first concerns its symmetry and is due to the fact that (1)
this relation corresponds to a left/right opposition, (2) the second couple of
positions correspond to a front/back opposition and (3) a direction going from
a first position to a second one is opposed to the direction going from the sec-
ond to the first one. This means that the following equivalences are always
true — whatever the positions p0, p1, p2 and p3 (figure 40, figure 41, figure 42
and figure 43):

Ax.6 — symmetry of laterality:
	 Laterality[p0 p1 p2 p3]
	 ⟷ Laterality[p1 p0 p3 p2]
	 ⟷ Laterality[p3 p2 p0 p1]
	 ⟷ Laterality[p2 p3 p1 p0]

figure 40
four points
holding a
Laterality[p0p1p2p3]
relationship.

figure 41
four points
holding a
Laterality[p1p0p3p2]
relationship.

figure 42
four points
holding a
Laterality[p3p2p0p1]
relationship.

figure 43
four points
holding a
Laterality[p2p3p1p0]
relationship.

geometric axiomatisation of graphic statics · 65

The Laterality relationship also presents two types of reflexivity. The first is
due to parallelism: a position is always in line with another position according
to the direction they give themselves. The following relationship (and all its
symmetries) is consequently always true:

Ax.7 — reflexivity of laterality due to parallelism:
	 Laterality[p0 p1 p0 p1]

The second reflexivity is due to the existence of an undefined direction: if the
last two terms are identical positions, the laterality relationship will always
be true. The following relationship is consequently always verified:

Ax.8 — reflexivity of laterality due to an undefined direction:
	 Laterality[p0 p1 p2 p2]

By symmetry, the following relationship is also true:

	 Laterality[p0 p0 p1 p2]

Because the previous two axioms remain valid when all the positions are iden-
tical, the following properties are also always verified:

	 Laterality[p0 p1 p1 p1]

	 Laterality[p0 p0 p0 p0]

When a position of the first two terms is also a position of the last two terms,
the permutation of one of these two positions is allowed, according to the fol-
lowing equivalence (figure 44):

Ax.9 — permutation of laterality if two equal terms:
	 Laterality[p0 p1 p1 p2] ⟷ Laterality[p0 p2 p1 p2]

Axioms Ax.6 and Ax.9 consequently give:

	 Laterality[p0 p1 p1 p2] ⟷ Laterality[p0 p1 p0 p2]

figure 44
three points
holding the

Laterality[p0p1p1p2]
and

Laterality[p0p2p1p2]
relationships.

66 · geometric axiomatisation of graphic statics

A fifth axiom of the Laterality relationship can be expressed according to tran-
sitivity, i.e. the following relationship is always true (figure 45):

Ax.10 — transitivity of laterality:
	 (Laterality[p0 p1 p2 p3] ∧ Laterality[p4 p0 p2 p3]) ⟶ Laterality[p4 p1 p2 p3]

Finally, the Laterality relationship also develops the following property: if a
position p0 is on the right of but not in line with p1 according to the direction
going from p2 to p3, it implies that p0 is on the left or in line with p1 according
to the same direction. Strictly speaking, this means that the following rela-
tionship is always verified:

Ax.11 — inclusion of laterality in its negation:

	 ¬Laterality[p0 p1 p2 p3] ⟶ Laterality[p0 p1 p3 p2]

two sufficient relationships for the axiomatisation of plane elementary
Euclidean geometry� · The Proximity and Laterality relationships are two suf-
ficient relationships for the axiomatisation of plane elementary Euclidean
geometry. This can easily be demonstrated on the basis of Alfred Tarski’s
first-order axiomatisation. This paragraph provides proof of it.

A geometry is said to be Euclidean if it meets the five postulates of Eu-
clid (Euclid·2008, page 7), rewritten here in contemporary language by
Holme·2010 (page 253):

(1)	 Through two different points there passes one and only one line.
(2)	 If two points on a line are in a plane, then the line lies in the plane.
(3)	 Given two points in a plane. Then there may be drawn a circle with the

first point as centre, passing through the second point.
(4)	 All right angles are equal.
(5)	 Given a straight line and a point outside it. Then there is one and only

one other line passing through the point which does not intersect the
first line.

figure 45
five points
showing the
transitivity of
Laterality.

geometric axiomatisation of graphic statics · 67

This geometry is said to be elementary as long as no absolute value is de-
fined, i.e. as long as no numerical value is said to be equal to a certain dis-
tance between two points. If the fifth postulate — commonly named the paral-
lelism axiom — is omitted, this geometry is no longer Euclidean but absolute.
If, on the contrary, the fifth postulate is replaced by its inverse, this geometry
is non-Euclidean.

A first-order axiomatisation is a system (composed of fundamental relation-
ships, i.e. predicates, and axioms) that is “(1) complete — every assertion is
either provable or refutable, (2) decidable — there is a mechanical procedure
for determining whether or not any given assertion is provable, and (3) there is a
constructive consistency proof for the theory” (Tarski/Givant·1999, page 175).

Tarski built a first-order axiomatisation of elementary Euclidean geometry
by postulating three fundamental relationships: (1) coincidence (or equal-
ity), (2) equidistance (or congruence), and (3) betweenness (Tarski·1959,
Szczerba·1986, Tarski/Givant·1999 and Schwabhäuser/…·2011). These three
relationships are written here as follows:

(1)	 Coincidence[p0 p1] means that p0 and p1 share the same position;
(2)	 Equidistance[p0 p1 p2 p3] means that the distance between p0 and p1 is

equal to the distance between p2 and p3;
(3)	 Betweenness[p0 p1 p2] means that (a) p0, p1 and p2 are collinear and (b) p1

is between p0 and p2, inclusive (figure 46).

The axiomatic system consists of a set of logical sentences that always has
to be verified and that, put together, constitute a sufficient definition of the
three fundamental relationships of Coincidence, Equidistance and Betweenness.
Many versions of Tarski’s axiomatisation have been developed since it was
first stated (Tarski/Givant·1999). The one reproduced here is one of the lat-
est version, provided by Haragauri Narayan Gupta (Tarski/Givant·1999, page
190). Given that, unlike Tarski's set of axioms, the coincidence relationship
is not seen here as a logical connexion — i.e. an equality symbolised by the
sign = — but as a fundamental relationship, two axioms ruling its behaviour

figure 46
three points

holding a
Betweenness

[p0p1p2]
relationship.

68 · geometric axiomatisation of graphic statics

are added at the beginning of that list. Moreover, Tarski’s set of axioms has
the particularity of remaining valid for any dimension n. Since this thesis
only considers the plane, the two axioms that deal with the lower and upper
bounds of this dimension are modified so that the dimension n is 2. The result-
ing set of axioms is as follows:

T.1 — reflexivity axiom for coincidence:
	 Coincidence[p0 p0]

T.2 — substitution axiom for coincidence:
	 Coincidence[p0 p1] ⟶ (φ0 ⟶ φ1)
		 where the relationship φ1 is obtained by replacing in any relationship φ0
		 all the occurrences of p0 by p1

T.3 — inner transitivity for betweenness:
	 Betweenness[p0 p1 p2] ∧ Betweenness[p1 p3 p2]	 ⟶ Betweenness[p0 p1 p3]

T.4 — reflexivity axiom for equidistance:
	 Equidistance[p0 p1 p1 p0]

T.5 — transitivity axiom for equidistance:
	 Equidistance[p0 p1 p2 p3] ∧ Equidistance[p0 p1 p4 p5]
															 ⟶ Equidistance[p2 p3 p4 p5]

T.6 — identity axiom for equidistance:
	 Equidistance[p0 p1 p2 p2] ⟶ Coincidence[p0 p1]

T.7 — segment axiom construction:
	 ∃p0: (Betweenness[p1 p2 p0] ∧ Equidistance[p2 p0 p3 p4])

T.8 — five-segment axiom (similar triangles):
	 (¬ Coincidence[p0 p1]
	 ∧ Betweenness[p0 p1 p2] ∧ Betweenness[p3 p4 p5]
	 ∧ Equidistance[p0 p1 p3 p4] ∧ Equidistance[p1 p2 p4 p5]
	 ∧ Equidistance[p0 p6 p3 p7] ∧ Equidistance[p1 p6 p4 p7])
															 ⟶ Equidistance[p2 p6 p5 p7]

T.9 — outer Pasch axiom:
	 Betweenness[p0 p1 p2] ∧ Betweenness[p3 p2 p4]
					 ⟶ ∃p5: (Betweenness[p0 p5 p3] ∧ Betweenness[p4 p1 p5])

T.10 — lower 2-dimensional axiom:
	 ∃p0: ∃p1: ∃p2: (¬Betweenness[p0 p1 p2]
					 ∧	¬Betweenness[p1 p2 p0]
					 ∧	¬Betweenness[p2 p0 p1])

geometric axiomatisation of graphic statics · 69

figure 47
axiom T.3,

inner transitivity
for Betweenness.

figure 48
axiom T.5,

transitivity for
Equidistance.

figure 49
axiom T.7,

segment
construction.

figure 50
axiom T.8,

five segments.

figure 51
axiom T.9,

outer Pasch (two
examples).

figure 52
axiom T.10,

lower dimension.

70 · geometric axiomatisation of graphic statics

T.11 — upper 2-dimensional axiom:
	 ¬Coincidence[p0 p1]	 ∧	 Equidistance[p0 p2 p1 p2]
							 ∧	 Equidistance[p0 p3 p1 p3]
							 ∧	 Equidistance[p0 p4 p1 p4]
						 ⟶		 Betweenness[p2 p3 p4]
							 ∨	 Betweenness[p3 p4 p2]
							 ∨	 Betweenness[p4 p2 p3]

T.12 — Euclid's axiom:
	 Betweenness[p0 p1 p2] ∧ Betweenness[p3 p1 p4] ∧ ¬Coincidence[p0 p1]
						 ⟶ ∃p5: ∃p6: (Betweenness[p0 p3 p5]
									 ∧	Betweenness[p0 p4 p6]
									 ∧	Betweenness[p6 p2 p5])

T.13 — Axiom schema of continuity:
	 ∃p0: ∀p1: ∀p2: (φ0 ∧ φ1 ⟶ Betweenness[p0 p1 p2])
				 ⟶ ∃p3: ∀p1: ∀p2: (φ0 ∧ φ1 ⟶ Betweenness[p1 p3 p2])
								 where φ0 and φ1 first-order formulas so that
								 there is no free occurrence of p0, p2 or p3 in φ0
								 and there is no free occurrence of p0, p1 or p3 in φ1

In order to prove that Laterality and Proximity relationships are sufficient to be
used as a basis for first-order axiomatisation of plane Euclidean geometry,
Tarski’s Coincidence, Equidistance and Betweenness relationships must be rewrit-
ten in terms of Laterality and Proximity, which can easily be done as follows:

(1)	 Coincidence[p0 p1] :⟷ Proximity[p0 p1 p1 p1]

(2)	 Equidistance[p0 p1 p2 p3] :⟷	Proximity[p0 p1 p2 p3]
								 ∧	Proximity[p2 p3 p0 p1]

figure 53
axiom T.11,
upper dimension.

figure 54
axiom T.12,
Euclid's
parallelism
(two examples).

geometric axiomatisation of graphic statics · 71

(3a) Betweenness[p0 p1 p2] :⟷	 Proximity[p0 p1 p0 p2]
								 ∧	Proximity[p1 p2 p0 p2]
								 ∧	Laterality[p1 p0 p0 p2]
								 ∧	Laterality[p1 p0 p2 p0]

The redefinition of Betweenness can also be performed without using Proximity
(figure 55):

(3b) Betweenness[p0 p1 p2] :⟷ (Coincidence[p0 p2] ∧ Coincidence[p0 p1])
									 ∨ (Laterality[p1 p0 p0 p2] ∧ Laterality[p1 p2 p2 p0]
										 ∧ ∃p3: (¬	 Laterality[p3 p2 p2 p0]
												 ∧	Laterality[p1 p0 p3 p0]
												 ∧	Laterality[p1 p2 p2 p3]))

or without using Laterality (figure 56):

(3c) Betweenness[p0 p1 p2] :⟷ ∀p3: (Proximity[p3 p0 p0 p1] ∧ Proximity[p3 p2 p2 p1]
												 ⟶ Proximity[p3 p1 p3 p3])

The existence of these three equivalences concludes the demonstration since
it proves that Tarski’s entire axiomatisation can be rewritten in terms of
Proximity and Laterality. The corollary of this is that Proximity and Laterality are
two relationships that are sufficient for describing plane elementary Eucli-
dean geometry.

figure 55
redefinition of

Betweenness
without Proximity.

figure 56
redefinition of

Betweenness
without Laterality.

72 · geometric axiomatisation of graphic statics

examples of definitions and demonstrations in plane Euclidean rela-
tionships� · This statement is illustrated here by defining some non-funda-
mental relationships — e.g. Parallelism, Collinearity, MidPoint, Orthogonality and
LineCircleTangency — and by using them to demonstrate a simple theorem of
plane geometry.

The first example checks whether two lines are parallel or not.
Parallelism[p0 p1 p2 p3] is proved to be true when the line passing through p0 and
p1 is parallel to the line passing through p2 and p3; if one or both lines have no
direction, i.e. points p0 and p1 are coincident or points p2 and p3 are coincident,
the relationship remains true. The Parallelism relationship can be defined as
follows (figure 57):

Parallelism[p0 p1 p2 p3] :⟷ Laterality[p0 p1 p2 p3] ∧ Laterality[p0 p1 p3 p2]

Since this definition remains valid when the parallels are superimposed,
three points are collinear if the following statement is verified:

Collinearity[p0 p1 p2] :⟷ Parallelism[p0 p1 p1 p2]

Furthermore, the existence of two distinct parallels can be defined as follows:

DistinctParallelism[p0 p1 p2 p3] :⟷ Parallelism[p0 p1 p2 p3] ∧ ¬Collinearity[p0 p2 p3]

To check whether two points define a real line or not can be done using the
following statement:

ValidLine[p0 p1] :⟷ ¬Coincidence[p0 p1]

The third example uses this Collinearity relationship. It takes three points as
parameters and is proved to be true when the second point is the middle of the
segment joining the first and the last point (figure 58):

figure 57
four points
holding a
Parallelism
[p0p1p2p3]
relationship.

figure 58
three points
holding a
MidPoint[p0p1p2]
relationship.

geometric axiomatisation of graphic statics · 73

MidPoint[p0 p1 p2] :⟷ Collinearity[p0 p1 p2] ∧ Equidistance[p0 p1 p1 p2]

This definition remains valid in the particular case where p0, p1 and p2 are all
coincident.

The fourth example checks whether two lines are orthogonal or not.
Orthogonality[p0 p1 p2 p3] is proved to be true when the line passing through p0
and p1 is perpendicular to the line passing through p2 and p3. If one or both
lines have no direction, i.e. points p0 and p1 are coincident or points p2 and p3
are coincident, the relationship is always true. This definition is illustrated
in figure 59:

Orthogonality[p0 p1 p2 p3] :⟷ ∃p4p5:
							 Equidistance[p0 p4 p0 p1] ∧ Equidistance[p1 p4 p0 p1]
						 ∧	 Equidistance[p0 p5 p0 p1] ∧ Equidistance[p1 p5 p0 p1]
						 ∧	 (¬Coincidence[p4 p5] ∨ Coincidence[p0 p4])
						 ∧	 Parallelism[p2 p3 p4 p5]

The last example is written LineCircleTangency[p0 p1 p2 p3 p4] and is proved to be
true when the line passing through two points p0 and p1 and the circle centred
on p2 and passing through p3 are tangent on a point p4 (figure 60):

LineCircleTangency[p0 p1 p2 p3 p4] :⟷	 Collinearity[p0 p1 p4]
										 ∧	Equidistance[p2 p3 p2 p4]
										 ∧	Orthogonality[p0 p1 p2 p4]

figure 59
four points

holding a
Orthogonality

[p0p1p2p3]
relationship.

figure 60
five points

holding a
LineCircleTangency

[p0p1p2p3p4]
relationship.

74 · geometric axiomatisation of graphic statics

These various definitions can then be employed jointly with the axioms T.1 to
T.13 (once they have been rewritten in terms of Laterality and Proximity) in order
to prove theorems of plane elementary Euclidean geometry.

As a very simple illustration, the following example proves that two tangents
to the same circle are equally distant from the centre of that circle (figure 61).
If this circle is centred on point p0 and passes through p1, if the first line pass-
es through p2 and p3 and is tangent to the circle at point p4, and if the second
line passes through p5 and p6 and is tangent to the circle at point p7, then, it
has to be proved that the distances p0p4 and p0p7 are equal.

In other words, this means the following implication has to be demonstrated:

	 LineCircleTangency[p2 p3 p0 p1 p4]
 ∧	LineCircleTangency[p5 p6 p0 p1 p7]		 ⟶ Equidistance[p0 p4 p0 p7]

Using the definition of the LineCircleTangency relationship, the previous impli-
cation is equivalent to the following one:

	 Collinearity[p2 p3 p4] ∧ Equidistance[p0 p1 p0 p4] ∧ Orthogonality[p2 p3 p0 p4]
 ∧	Collinearity[p5 p6 p7] ∧ Equidistance[p0 p1 p0 p7] ∧ Orthogonality[p5 p6 p0 p7]
		 ⟶ Equidistance[p0 p4 p0 p7]

Thanks to the axiom T.5 (page 68), it is known that

Equidistance[p0 p1 p0 p4] ∧ Equidistance[p0 p1 p0 p7] ⟶ Equidistance[p0 p4 p0 p7]

is always true — which had to be demonstrated.

figure 61
demonstration of
equal distances
between
tangencies.

geometric axiomatisation of graphic statics · 75

beyond classical compass-and-straightedge constructions� · Because the
Proximity relationship brings into play the concept of inequality of distances
and because the Laterality relationship brings into play the concept of relative
direction they allow the precise description of positions of points that do not
necessarily lie on circles and lines. A point can be here defined as being inside
or outside a circle and as being on the left or on the right of a line. This ability
is extraneous to classical compass-and-straightedge constructions.

In the plane, the concept of relative direction relates the front/back opposi-
tion with the left/right opposition. For example, if a point moves from one
position to another one, the infinite line linking these two positions divides
the plane into two distinct parts; the concept of relative direction allows these
two parts to be distinguished by defining one on the left and the other on the
right of the direction of movement.

The existence of this concept in the definition of the Laterality relationship is
of prime importance because it is directly related to the concept of clockwise-
ness which is omnipresent in graphic statics, e.g. for the reading of the forces
acting on a point. A ClockWiseness[p0 p1 p2] relationship is verified if the three
positions p0, p1 and p2, browsed in this particular order, are clockwise or col-
linear (figure 62):

ClockWiseness[p0 p1 p2] :⟷ Laterality[p2 p1 p1 p0]

It might be desirable to have a first-order axiomatisation of this new geometry
capable of inequalities and relative directions. This axiomatisation — which
might be inspired by Tarski’s — would allow the rigorous demonstration of
any theorem that use Proximity and Laterality relationships. Unfortunately, it
is beyond the scope of this thesis and from now on, it will be assumed that it
exists without it being explicitly stated.

figure 62
three points

holding a
ClockWiseness

[p0p1p2]
relationship.

76 · geometric axiomatisation of graphic statics

the fundamental relationship of unit distance� · The numerous construc-
tions that will be undertaken in this thesis — see sub-section 17 (“examples
of graphical computations”, page 165) — assess the need for a new funda-
mental relationship capable of identifying a unit distance, i.e. the need to use
metric geometry instead of elementary geometry. This new fundamental rela-
tionship is written UnitDistance[p0 p1] and is verified if the distance between
p0 and p1 is equal to a given unit distance. The only axiom that defines this
relationship so far is the following one — it prevents the unit distance from
being zero:

Ax.12 — non-zero unit distance:
	 UnitDistance[p0 p1] ⟶ ¬Proximity[p0 p1 p1 p1]

Other fundamental relationships describing a transcendental distance be-
tween two points — e.g. π, e, … — may also be introduced — e.g. PiDistance[p0 p1],
eDistance[p0 p1] — since distances of this kind cannot be obtained precisely
by geometric constructions. However, geometric constructions exist to ap-
proximate most of them to a sufficiently high level of accuracy — equiva-
lent constructions will be given in Sub-section 17 (“examples of graphical
computations”, page 165).

geometric axiomatisation of graphic statics · 77

09	 form diagram and force
diagram

two fundamental relationships to differentiate two diagrams� · Graphic
statics establishes geometric constructions on two distinct planes: the
form diagram and the force diagram. Two new fundamental unary relation-
ships are therefore introduced to reflect the fact that a point can either
belong to the form diagram or to the force diagram. The first is written
FormDiagramMembership[p0] and is proved to be true if p0 belongs to the form
diagram. The second is written ForceDiagramMembership[p0] and is proved to be
true if p0 belongs to the force diagram.

In order to characterise precisely the role of these two new relationships, five
new axioms are added to the existing set. The following paragraphs present
these axioms.

axioms guaranteeing the unicity of both diagrams� · The next two axi-
oms force a point to belong to at least one of the two diagrams — the law of
excluded middle — and at most to only one of the two diagrams — the law of
noncontradiction. These two axioms are always true:

Ax.13 — law of excluded middle for diagram membership:
	 FormDiagramMembership[p0] ∨ ForceDiagramMembership[p0]

Ax.14 — law of noncontradiction for diagram membership:
	 FormDiagramMembership[p0] ⟷ ¬ForceDiagramMemberhsip[p0]

Comparing the membership of two points can then be done by defining the
new non-fundamental relationship SameDiagramMembership as follows:

SameDiagramMembership[p0 p1] :⟷	 (FormDiagramMembership[p0]
											 ∧	 FormDiagramMembership[p1])
										 ∨	(ForceDiagramMembership[p0]
											 ∧	 ForceDiagramMembership[p1])

78 · geometric axiomatisation of graphic statics

The SameDiagramMembership[p0 p1] is consequently true only if p0 and p1 belong
to the same diagram, regardless of whether it is the form diagram or the force
diagram.

three axioms to limit the use of laterality, proximity and unit dis-
tance� · The points taken as arguments for the Laterality, Proximity and
UnitDistance relationships must satisfy some specific rules regarding the dia-
gram in which they are positioned. These rules are encompassed in three
axioms.

(1)	 The first specifies that a Laterality[p0 p1 p2 p3] relationship only exists if p0
and p1 belong to a same diagram and if points p2 and p3 also belong to a same
diagram, which is the consequence of the fact that a direction does not exist
if it is defined by two points that belong to different planes:

Ax.15 — diagram membership for laterality:
	 Laterality[p0 p1 p2 p3] ⟶ (SameDiagramMembership[p0 p1]
								 ∧	SameDiagramMembership[p2 p3])

This rule does not mean the first two points have to be in the same diagram as
the last two points (figure 63). This is another great advantage of the Laterality
relationship regarding its use in graphic statics: it allows parallels to be iden-
tified in different diagrams.

(2)	 The second new axiom specifies that a Proximity[p0 p1 p2 p3] relationship only
exists if p0, p1, p2 and p3 belong to a same diagram, which guarantees that any
Proximity relationship compares two lengths of an equal unit:

Ax.16 — diagram membership for proximity:
	 Proximity[p0 p1 p2 p3] ⟶ (SameDiagramMembership[p0 p1]
								 ∧	SameDiagramMembership[p1 p2]
								 ∧	SameDiagramMembership[p2 p3])

The existence of this axiom therefore allows form and force diagrams to be of
different units of lengths.

figure 63
four points
holding a
Laterality
[p0p1p2p3]
relationships on
two different
diagrams.

geometric axiomatisation of graphic statics · 79

(3)	 The third new axiom specifies that a UnitDistance[p0 p1] relationship only
exists if both p0 and p1 belong to a same diagram:

Ax.17 — diagram membership for unit distance:
	 UnitDistance[p0 p1] ⟶ SameDiagramMembership[p0 p1]

Again, this last axiom does not mean form and force diagrams have to be of
same units of lengths.

geometric axiomatisation of graphic statics · 81

10	 geometrical
definition of forces

the fundamental relationship of force� · Let F0, F1, F2, … be a set of forces.
This sub-section defines two new fundamental relationships: Force and
Equipollence. The first relates the concept of forces with positions of points and
the second inform whether two forces are the same.

A force here is meant to be any expression of action that exerts a pull or a push
onto a point. A force is commonly defined by:

(a)	 a point of application
(b)	 a magnitude
(c)	 a direction
(d)	 a type of application (a pull or a push)

To bring the definition of force into line with the purely geometric framework
identified so far, these four properties are defined here using four positions of
points. The quaternary fundamental relationship Force[F0 p0 p1 p2 p3] is said to
be true only if there is a force F0 that:

(a)	 is applied on the point p0 lying in the form diagram,
(b)	 has an equal magnitude to the distance between p2 and p3 lying in the

force diagram,
(c)	 has the same direction as the one going from p2 to p3, and

figure 64
four points

holding a Force
[f0p0p1p2p3]

relationship.

figure 65
four points

holding a Force
[f0p0p1p2p3]

relationship.

82 · geometric axiomatisation of graphic statics

(d) 	pulls on p0 if the directions going from p0 to p1 and from p2 to p3 are
equal (figure 64) or pushes on p0 if these directions are different
(figure 65), p1 being in the form diagram.

As a result, the negation ¬Force[F0 p0 p1 p2 p3] of this relationship means that
such a force does not exist. The Force[F0 p0 p1 p2 p3] relationship will be defined
in more detail by the next three axioms.

an axiom to relate force and diagrams� · The concept of force is linked to
two different units: on the one hand, a distance between two points of applica-
tion is measured in units of lengths, e.g. metres or feet; on the other hand, the
magnitude of a force is measured in units of force, e.g. Newtons. Therefore,
if the four points p0, p1, p2 and p3 hold a Force[F0 p0 p1 p2 p3] relationship, it is
expected that p0 belongs to the form diagram and that both p2 and p3 belong
to the force diagram. Consequently, the following relationship must be always
satisfied:

Ax.18 — diagram membership for force:
	 Force[F0 p0 p1 p2 p3] ⟶	 FormDiagramMembership[p0]
							 ∧	ForceDiagramMembership[p2]
							 ∧	ForceDiagramMembership[p3]

an axiom to constrain the point that defines the application type of
force� · The points p0, p2 and p3 of a Force[F0 p0 p1 p2 p3] relationship can be
placed anywhere within their respective diagram, but this is not the case for
p1. The main role of p1 is to define the application type of the force F0, i.e. a
pull or a push. The need for this distinction is not common practice in litera-
ture. It is essential here because it allows the geometric characterisation of
the order in which the forces applied on the same point are read — the neces-
sity to characterise this order will be presented in the paragraph entitled
“why imposing a uniform reading cycle locally involves a uniform reading
cycle globally” (page 114) and the paragraph entitled “the need for uniform
reading cycles towards reciprocal diagrams” (page 122).

Since it is proposed that the pull or the push is defined according to whether
or not the direction from p0 to p1 is equal to the direction from p2 to p3, point
p1 should fulfil the following properties:

(1)	 points p0 and p1 should lie in the same diagram in order to define a
direction; the following sentence should be verified:

	 SameDiagramMembership[p0 p1]

geometric axiomatisation of graphic statics · 83

(2)	 it is expected that, for the same reason, the direction from p0 to p1 is not
zero when the magnitude of the force F0 is not zero, i.e. when the direc-
tion from p2 to p3 exists. The following sentence should be verified:

	 Force[F0 p0 p1 p2 p3] ∧ ¬Proximity[p2 p3 p2 p2] ⟶ ¬Proximity[p0 p1 p0 p0]

(3)	 in order to avoid any ambiguity of interpretation, it is also advisable
that the direction p0p1 is zero when the direction p2p3 is zero. The fol-
lowing should be true:

	 Force[F0 p0 p1 p2 p3] ∧ Proximity[p2 p3 p2 p2] ⟶ Proximity[p0 p1 p0 p0]

(4)	 finally, the orientations p0p1 and p2p3 should be equal in order to ex-
press opposite or equal directions clearly. The following should conse-
quently be satisfied:

	 Force[F0 p0 p1 p2 p3] ⟶ Laterality[p0 p1 p2 p3] ∧ Laterality[p0 p1 p3 p2]

The addition of these four conditions are summarised in the following axiom
which is always expected to be satisfied:

Ax.19 — type of force application:
	 Force[F0 p0 p1 p2 p3] ⟶	 (Laterality[p0 p1 p2 p3] ∧ Laterality[p0 p1 p3 p2]
								 ∧	¬Proximity[p2 p3 p2 p2] ∧ ¬Proximity[p0 p1 p0 p0])
							 ∨	(Proximity[p2 p3 p2 p2] ∧ Proximity[p0 p1 p0 p0])

an axiom to ascertain the univocal definition of a force� · Each force should
be defined by only one Force relationship. The following axiom therefore holds:

Ax.20 — univocal definition of a force:
	 (Force[F0 p0 p1 p2 p3] ∧ Force[F0 p4 p5 p6 p7])
		 ⟶ (Proximity[p0 p4 p4 p4]
			 ∧	Proximity[p1 p5 p5 p5]
			 ∧	Proximity[p2 p6 p6 p6]
			 ∧	Proximity[p3 p6 p6 p6])

On the contrary, having equivalent parameters is not a sufficient condition
for two forces to be equivalent. For instance, the following statement does not
ensure that F0 and F1 are a same force:

Force[F0 p0 p1 p2 p3] ∧ Force[F1 p0 p1 p2 p3]

The forces F0 and F1 could for instance be two distinct forces sharing the same
properties.

84 · geometric axiomatisation of graphic statics

two axioms to define equipollence� · In order to describe whether two forces
are distinct or not, the Equipollence relationship is introduced. Two forces F0
and F1 are said equipollent if they actually refer to a same force, meaning that
F0=F1. Comparable to the Coincidence relationship (page 68), the Equipollence
relationship is defined by the following axioms:

Ax.21 — reflexivity axiom for equipollence:
	 Equipollence[F0 F0]

Ax.22 — substitution axiom for equipollence:
	 Equipollence[F0 F1] ⟶ (φ0 ⟶ φ1)
		 where the relationship φ1 is obtained by replacing in any relationship φ0
		 all the occurrences of F0 by F1

the half-line bearing the force� · The opposition between pushing and
pulling forces is related to another concept, the need for which will also be
emphasized later — see the paragraph entitled “why a uniform reading cycle
imposes the absence of almost any intersection of rods in the space diagram”
(page 124). This is the concept of the half-line bearing the force. If a force F0
is represented by the Force[F0 p0 p1 p2 p3] relationship, it is said that this force
is borne by a half-line whose orientation is given by p2 and p3, whose extremity
is given by p0 and whose direction is such that p1 is always on it (figure 66).

A point p4 would belong to the half-line bearing the force F0 represented by
Force[F0 p0 p1 p2 p3] if the following truth exists (figure 67):

Laterality[p4 p0 pA pB]
∧ Equidistance[p0 pA p0 p1] ∧ Equidistance[p1 pA p0 p1]
∧ Equidistance[p0 pB p0 p1] ∧ Equidistance[p1 pB p0 p1]
∧ Laterality[pA p0 p0 p1] ∧ Laterality[pB p0 p1 p0]

figure 67
four points
holding a Force
[f0p0p1p2p3]
relationship.

figure 66
two different
half-lines bearing
a force.

geometric axiomatisation of graphic statics · 85

particular forces� · Some non-fundamental relationships can be defined in
order to characterise particular type of forces: zero forces, pulling forces and
pushing forces.

ZeroForce[F0 p0 p1 p2 p3] :⟷ Force[F0 p0 p1 p2 p3] ∧ Coincidence[p2 p3]

PullingForce[F0 p0 p1 p2 p3] :⟷ ∃pA,pB:
								 Force[F0 p0 p1 p2 p3] ∧ Laterality[p1 p0 pA pB]
							 ∧	 Equidistance[p2 pA p2 p3] ∧ Equidistance[p3 pA p2 p3]
							 ∧	 Equidistance[p2 pB p2 p3] ∧ Equidistance[p3 pB p2 p3]
							 ∧	 Laterality[pA p2 p2 p3] ∧ Laterality[pB p2 p3 p2]

PushingForce[F0 p0 p1 p2 p3] :⟷ ∃pA,pB:
								 Force[F0 p0 p1 p2 p3] ∧ Laterality[p1 p0 pB pA]
							 ∧	 Equidistance[p2 pA p2 p3] ∧ Equidistance[p3 pA p2 p3]
							 ∧	 Equidistance[p2 pB p2 p3] ∧ Equidistance[p3 pB p2 p3]
							 ∧	 Laterality[pA p2 p2 p3] ∧ Laterality[pB p2 p3 p2]

The following theorems are deduced from these definitions:

Force[F0 p0 p1 p2 p3] ⟷ (PullingForce[F0 p0 p1 p2 p3]
						 ∨	PushingForce[F0 p0 p1 p2 p3])

ZeroForce[F0 p0 p1 p2 p3] ⟷ (PullingForce[F0 p0 p1 p2 p3]
								 ∧	PushingForce[F0 p0 p1 p2 p3])

(PullingForce[F0 p0 p1 p2 p3] ∧ ¬ZeroForce[F0 p0 p1 p2 p3])
														 ⟷ ¬PushingForce[F0 p0 p1 p2 p3]

force networks� · Each set of forces {F0, F1, F2, …, Fn} is said to be a “force
network” if, at the same time, no point is a point of application of a force
belonging to this set and a point of application of a force not belonging to this
set. On the basis of this definition, it can be deduced that:

 •	for any point p0, if the two relationships Force[F0 p0 p1 p2 p3] and
Force[F1 p0 p4 p5 p6] are verified, then the two forces F0 and F1 belong to
the same force network

 •	the set of all forces is a network of forces

Some further definitions: a force network is said to be a “sub-network” of
another (different) force network if all the forces inside the former network
are also within the latter one. A force network is said to be “minimum” if it
contains no sub-network other than itself. Consequently, a force network is
minimum if it only contains forces applied on a same unique point. If p0 is that
point, the network is said to be a“force network of p0”.

geometric axiomatisation of graphic statics · 87

11	 rods and other objects

geometric definition of a rod� · A rod is here meant to be a massless recti-
linear element that links two points and exerts two forces on these points;
these forces are (1) aligned on the axis of the rod, (2) of equal magnitude, (3) of
opposite direction and (4) of an identical type of application. A strut is meant
to be a rod that pushes on both points that it links. A tie is meant to be a rod
that pulls on both points that it links. Hence, the rod is entirely defined by:

 •	the two points that it links
 •	the type of force that it exerts on these points
 •	the magnitude of the force that it exerts.

There is a slight difference between this definition and the one usually found
in literature. The rod is indeed traditionally defined as a rectilinear element
exerted on by two axial opposing forces (Frey·2005, point 4.6.1, page 62).
Here, the rod is equal to two opposing forces — the minimum element is a rod
or two forces. This difference will allow interesting conceptual simplifica-
tions in the demonstration held in the following sub-sections.

The logical flow of this thesis requires a fully geometric definition of the
rod, i.e. using only positions of points and Laterality and Proximity relationships.
This definition is constructed here on the basis of two forces and height points
holding the relationships Force[F0 p0 p1 p2 p3] and Force[F1 p4 p5 p6 p7] (figure 68).

figure 68
two random

forces.

88 · geometric axiomatisation of graphic statics

In order to form a rod, these eight points must observe the following five geo-
metrical rules.

(1)	 The two forces must be aligned with the axis of the rod. In other words, the
orientations of the forces must be equal to the orientation given by the points
of application p0 and p4. The following relationship must therefore be satisfied
(figure 69):

Parallelism[p2 p3 p0 P4] ∧ Parallelism[p6 p7 p0 p4]

In view of the above axiom Ax.19 (page 83), points p1 and p5 are conse-
quently expected to be in the axis p0p4.

(2)	 Since both force magnitudes must be equal, the following property must
also hold (figure 70):

Equidistance[p6 p7 p2 p3]

(3)	 The two force directions must be opposite. If points pA and pB are con-
structed such that pA is on the left and pB on the right of the direction going
from p0 to p4, the two directions p2p3 and p6p7 are then distinguished and
constrained as follows (figure 71):

	 (Laterality[p2 p3 pA pB] ∧ Laterality[p6 p7 pB pA])
 ∨	(Laterality[p2 p3 pB pA] ∧ Laterality[p6 p7 pA pB])

figure 69
application of the
first geometric
condition leading
to a rod.

figure 70
application of the
second geometric
condition leading
to a rod.

geometric axiomatisation of graphic statics · 89

where pA and pB are defined as follows:

	 Equidistance[pA p0 p0 p4] ∧ Equidistance[pA p4 p0 p4]
 ∧	Equidistance[pB p0 p0 p4] ∧ Equidistance[pB p4 p0 p4]
 ∧	Laterality[pA p0 p0 p4] ∧ Laterality[pB p4 p4 p0]

This writing remains consistent when p2 and p3 are coincident, since p6 and p7
would be coincident as well because of condition (2).

(4)	 The two forces must be of equal application type. Since the two forces are
opposite — condition (3) — this means that points p1 and p5 are both either
inside or outside the segment p0p4. This condition is written using the same
points pA and pB as in condition (3) (figure 72 and figure 73):

	 (Laterality[p0 p1 pA pB] ∧ Laterality[p4 p5 pB pA])
 ∨	(Laterality[p0 p1 pB pA] ∧ Laterality[p4 p5 pA pB])

As will be seen later in the paragraph entitled “why the definition of rod does
not invalidate reciprocal rules” (page 123), only the second case — where
the half-lines bearing the forces are inside the segment p0p4 — is eligible,
which deletes the first line of this geometric rule. Condition (4) is subsequent-
ly rewritten as:

	 Laterality[p0 p1 pB pA] ∧ Laterality[p4 p5 pA pB]

(5)	 The fifth condition is specific to graphic statics. It stems from the desire
to depict a rod in the same way in both form and force diagrams, i.e. by a
line segment. Geometrically, this means that points p2, p3, p6 and p7 must be
aligned.

The necessity of this condition will be explained later in the paragraph entitled
“why the definition of rod does not invalidate reciprocal rules” (page 123).

figure 71
application of the

third geometric
condition leading

to a rod.

90 · geometric axiomatisation of graphic statics

These four points are now so constrained that moving one of them involves
moving the two points that bound the other force in the force diagram, e.g.
moving p3 leads to the displacement of p6 and p7. For practical reasons, it
seems logical to make p3 and p6 coincident, such that (figure 74):

Proximity[p6 p3 p3 p3]

Combined with conditions (1), (2) and (3), condition (5) implies that p2 and p7
are always coincident:

Proximity[p7 p2 p2 p2]

figure 72
application of the
fourth geometric
condition leading
to a rod; first
case.

figure 73
application of the
fourth geometric
condition leading
to a rod; second
case.

figure 74
application of the
fourth geometric
condition leading
to a rod; first
case.

geometric axiomatisation of graphic statics · 91

As soon as condition (5) is imposed, conditions (2) and (3) become superfluous
and condition (1) can be simplified as follows:

(1)	 (Laterality[p2 p3 p0 p4] ∧ Laterality[p2 p3 p4 p0]
	 ∧	 Laterality[p6 p7 p0 p4] ∧ Laterality[p6 p7 p4 p0])
									 ⟷ Laterality[p2 p3 p0 p4] ∧ Laterality[p2 p3 p4 p0]

(2)	 Proximity[p6 p7 p2 p3] ∧ Proximity[p2 p3 p6 p7] ⟷ TRUE

(3)	 ((Laterality[p2 p3 pA pB] ∧ Laterality[p6 p7 pB pA])
	 ∨ (Laterality[p2 p3 pB pA] ∧ Laterality[p6 p7 pA pB])) ⟷ TRUE

After this simplification and after making p3 equal to p6 and p2 equal to p7,
only two conditions remain: conditions (1) and (4). They define the new non-
fundamental relationship Rod[F0 F1 p0 p1 p2 p3 p4 p5]. It is said to be true when
the relationships Force[F0 p0 p1 p4 p5] and Force[F1 p2 p3 p5 p4] designate two
forces F0 and F1 that are sufficiently compatible to form a rod. Rigorously, the
Rod relationship is defined as follows (figure 75):

Rod[F0 F1 p0 p1 p2 p3 p4 p5] :⟷ ∃pApB:
		 Force[F0 p0 p1 p4 p5] ∧ Force[F1 p2 p3 p5 p4]
	 ∧ Laterality[p4 p5 p0 p2] ∧ Laterality[p4 p5 p2 p0]
	 ∧ Laterality[p0 p1 pB pA] ∧ Laterality[p2 p3 pA pB]
	 ∧ Equidistance[p0 pA p0 p2] ∧ Equidistance[p2 pA p0 p2] ∧ Laterality[pA p0 p0 p2]
	 ∧ Equidistance[p0 pB p0 p2] ∧ Equidistance[p2 pB p0 p2] ∧ Laterality[pB p2 p2 p0]

Hence, the following theorem always holds:

Rod[F0 F1 p0 p1 p2 p3 p4 p5] ⟷ Rod[F1 F0 p2 p3 p0 p1 p5 p4]

The important fact about this definition is that the Rod relationship is non-fun-
damental, i.e. it can be defined entirely using fundamental Laterality, Proximity
and Force relationships. Since graphic statics does not involve objects other

figure 75
two forces

fulfilling all the
prerequisite

conditions in a
way that they can
be considered as

a rod.

92 · geometric axiomatisation of graphic statics

than points, forces and rods, it is here shown that an axiomatisation of graph-
ic statics using only Laterality, Proximity and Force fundamental relationships
is possible.

Moreover, as soon as two forces fulfil sufficient geometric conditions to be
considered a rod, it makes no difference talking about this rod (figure 76 and
figure 77) or about the two forces (figure 75).

For example, the following relationship (figure 78) :

Force[F0 p1 p0 p10 p11] ∧ Force[F1 p6 p8 p12 p10] ∧ Force[F2 p7 p9 p11 p12]

∧ Rod[F3 F4 p1 p2 p6 p4 p12 p10]
∧ Rod[F5 F6 p1 p3 p7 p5 p11 p12]

∧ Laterality[p6 p1 p10 p12] ∧ Laterality[p6 p1 p12 p10]
∧ Laterality[p7 p1 p11 p12] ∧ Laterality[p7 p1 p12 p11]

is completely equivalent to this one (figure 79):

Force[F0 p1 p0 p10 p11] ∧ Force[F1 p6 p8 p12 p10] ∧ Force[F2 p7 p9 p11 p12]

∧ Force[F3 p1 p2 p12 p10] ∧ Force[F4 p6 p4 p10 p12]
∧ Force[F5 p1 p3 p11 p12] ∧ Force[F6 p7 p5 p12 p11]

∧ Laterality[p6 p1 p10 p12] ∧ Laterality[p6 p1 p12 p10]
∧ Laterality[p7 p1 p11 p12] ∧ Laterality[p7 p1 p12 p11]

figure 76
a corresponding
rod in tension.

figure 77
another rod, in
compression.

geometric axiomatisation of graphic statics · 93

particular rods and some theorems� · Some non-fundamental relationships
can be defined in order to characterise particular type of rods: zero rods,
struts and ties.

ZeroRod[F0 F1 p0 p1 p2 p3 p4 p5] :⟷ Rod[F0 F1 p0 p1 p2 p3 p4 p5] ∧ Coincidence[p4p5]

Strut[F0 F1 p0 p1 p2 p3 p4 p5] :⟷	Rod[F0 F1 p0 p1 p2 p3 p4 p5]
								 ∧	 PushingForce[F0 p0 p1 p4 p5]
								 ∧	 PushingForce[F1 p2 p3 p5 p4]

Tie[F0 F1 p0 p1 p2 p3 p4 p5] :⟷	 Rod[F0 F1 p0 p1 p2 p3 p4 p5]
								 ∧	 PullingForce[F0 p0 p1 p4 p5]
								 ∧	 PullingForce[F1 p2 p3 p5 p4]

The following theorems are deduced from these definitions:

Rod[F0 F1 p0 p1 p2 p3 p4 p5] ⟷ (Strut[F0 F1 p0 p1 p2 p3 p4 p5]
								 ∨ 	Tie[F0 F1 p0 p1 p2 p3 p4 p5])

ZeroRod[F0 F1 p0 p1 p2 p3 p4 p5] ⟷ (Strut[F0 F1 p0 p1 p2 p3 p4 p5]
									 ∧	 Tie[F0 F1 p0 p1 p2 p3 p4 p5])

(Strut[F0 F1 p0 p1 p2 p3 p4 p5] ∧ ¬ZeroRod[F0 F1 p0 p1 p2 p3 p4 p5])
														 ⟷ ¬Tie[F0 F1 p0 p1 p2 p3 p4 p5]

figure 78
two rods and
three forces.

figure 79
equivalent seven

forces.

94 · geometric axiomatisation of graphic statics

strut-and-tie networks� · Each set of forces {F0, F1, F2, …, Fn} is said to be a
“strut-and-tie network” if

(a)	 no point is both a point of application of a force belonging to this set and
a point of application of a force not belonging to this set;

(b)	 no rod — i.e. a Rod relationship — is simultaneously formed by a force
that belongs to this set and by another force that does not belong to this
set.

Since the two forces composing a rod exist as soon as this rod exists, these
two forces must also be taken into account in (a). On the basis of this defini-
tion, it can be deduced that:

 •	any strut-and-tie network is a force network
 •	for any point p0, if the relationship Rod[F0 F1 p0 p1 p2 p3 p4 p5] is verified,

then the two relationships Force[F0 p0 p1 p4 p5] and Force[F1 p2 p3 p5 p4]
belong to a same strut-and-tie network

geometric axiomatisation of graphic statics · 95

sub-network hulls� · The identification of particular force sub-networks
inside strut-and-tie networks can easily be performed by listing the set of
application points of the forces concerned. Hence the hull that includes all
these points of application characterise the force sub-network graphically.
The use of sub-network hulls will be of great help in the next sub-section.
Some examples are shown in figure 80.

figure 80
(left) sub-network

hulls and (right)
their correspond-

ing force
sub-networks.

96 · geometric axiomatisation of graphic statics

definition of other physical objects� · Like rods and the Rod relationship,
many structural objects can be defined as non-fundamental relationships
implementing geometric rules of force networks in static equilibrium. Two
examples are shown here: a basic shear-panel and a simple pulley. Once
defined, these relationships can be used directly as objects whose inter-
nal functioning does not have to be known. In other words, these relation-
ships build a layer of abstraction over the elementary Force, Proximity and
Laterality relationships. Moreover, new abstract objects can themselves be
combined into more complex objects, adding an additional layer of abstrac-
tion to the geometric construction.

figure 81
a basic
shear-panel
object ready to be
used.

figure 82
the geometric
pattern of the
BasicShearPanel
relationship.

figure 83
application
example of a
BasicShearPanel
object.

geometric axiomatisation of graphic statics · 97

The basic shear panel (figure 81) here is equivalent to four forces holding the
following geometric properties (figure 82):

BasicShearPanel[F0 F1 F2 F3 p0 p1 p2 p3 p4 p5 p6 p7 p8 p9] :
	 ⟷ ∃pA pB :	 Rod[F0 F1 p0 p6 p1 p8 p4 p3] ∧ Rod[F2 F3 p0 p7 p2 p9 p5 p4]
				 ∧	Laterality[p1 p2 p3 p5] ∧ Laterality[p1 p2 p5 p3]
				 ∧	Laterality[p1 p2 pA pB] ∧ Laterality[p1 p2 pB pA]

				 ∧	Proximity[p0 pA p0 p1] ∧ Proximity[p0 p1 p0 pA]
				 ∧	Proximity[pA p1 p0 p1] ∧ Proximity[p0 p1 pA p1]
				 ∧	Laterality [pA p0 p0 p1]

				 ∧	Proximity[p0 pB p0 p1] ∧ Proximity[p0 p1 p0 pB]
				 ∧	Proximity[pB p1 p0 p1] ∧ Proximity[p0 p1 pB p1]
				 ∧	Laterality [pB p1 p1 p0]

An example of the most direct application of this object is illustrated in
figure 83.

In the same way, a pulley can be defined as three forces that hold particu-
lar geometric conditions. An object pulley is shown in both diagrams in
figure 84 and figure 85 shows the forces equivalent to this geometrical ob-
ject. An example of an application is shown in figure 86. The definition of the
Pulley relationship is as follows:

Pulley[F0 F1 F2 p0 p1 p2 p3 p4 p5 p6 p7 p8] :
	 ⟷ ∃pA pB : Force[F0 p0 p1 p6 p7] ∧ Force[F1 p2 p3 p7 p8] ∧ Force[F2 p4 p5 p8 p6]
				 ∧	Laterality[p0 p2 p2 p4] ∧ Laterality[p0 p2 p4 p2]
				 ∧	Proximity[p0 p2 p0 p4] ∧ Proximity[p0 p4 p0 p2]
				 ∧	Laterality[p8 p6 p6 p7] ∧ Laterality[p8 p6 p7 p6]
				 ∧	Proximity[p6 p8 p7 p8] ∧ Proximity[p7 p8 p6 p8]

				 ∧	Laterality[p6 p7 pA pB] ∧ Laterality[p6 p7 pB pA]

				 ∧	Proximity[p0 pA p0 p2] ∧ Proximity[p0 p2 p0 pA]
				 ∧	Proximity[pA p2 p0 p2] ∧ Proximity[p0 p2 pA p2]
				 ∧	Laterality [pA p0 p0 p2]

				 ∧	Proximity[p0 pB p0 p2] ∧ Proximity[p0 p2 p0 pB]
				 ∧	Proximity[pB p2 p0 p0] ∧ Proximity[p0 p2 pB p2]
				 ∧	Laterality [pB p2 p2 p0]

98 · geometric axiomatisation of graphic statics

figure 84
a basic pulley
object ready to be
used.

figure 85
the geometric
pattern of the
Pulley relation-
ship.

figure 86
application
example of a
Pulley object.

geometric axiomatisation of graphic statics · 99

12	static equilibrium

This sub-section augments the axioms developed in the previous sub-sections
in order to ensure static equilibrium. First it identifies the minimum condition
required to guarantee the static equilibrium of strut-and-tie networks. It then
defines four new axioms that reflect this condition geometrically. Lastly, the
use of these axioms is illustrated using a brief example.

classical definition of static equilibrium� · The concept of static equilib-
rium is usually defined in literature as follows: “a system of coplanar forces
is in equilibrium if, and only if, (a) its resultant is zero, and (b) the algebraic
sum of the moments of all its forces is zero about any point in its plane.”
(Ziwet/Field·1912, page 165). In an abbreviated fashion, it means that a body
is in static equilibrium if the following two conditions are satisfied:

(a)	 translational equilibrium:		 ∑(Forces applied on the body) = 0
(b)	 rotational equilibrium:	 	 ∑(Moments applied on the body) = 0

simplified definition of static equilibrium for strut-and-tie net-
works� · Since bodies are exclusively strut-and-tie networks, the definition
can be simplified as follows:

“A strut-and-tie network is in static equilibrium if the sum of all the
forces applied on each point of this network is zero.”
Using the fact that a sum of forces is zero if its drawing in the force diagram is
a closed polygon, using the definition of “minimum force network” presented
in the paragraph entitled “force networks” (page 85), and using the fact
that rods can be entirely defined with just forces and geometric rules, this
definition can be explained further:

“A strut-and-tie network is in static equilibrium if each minimum force
network it contains produces a closed polygon in the force diagram.”

100 · geometric axiomatisation of graphic statics

It is possible to provide a quick proof of these simplifications by recalling the
following corollary of the classical definition of static equilibrium: “If a body
is in static equilibrium, every part of this body is also in equilibrium”.

Since (1) the only way to modify the equilibrium of a body is to change the
forces applied on it and since (2) a force here is always applied on a point, then,
to guarantee the equilibrium of a strut-and-tie network is tantamount to en-
suring the equilibrium of each point of this network. Considering each point
individually, its rotational equilibrium is systematically satisfied because the
lever arm of applied forces about the point itself is zero. In other words, mo-
ments do not have to be checked. The only condition to satisfy is to ensure
that the vectorial sum of forces applied on each point of the strut-and-tie net-
work, i.e. each minimum force network, is zero.

To secure this condition for any kind of minimum force network, i.e. for any
quantity, magnitude and orientation of forces, the choice has been made to
introduce four complementary axioms: Ax.23 describes the rule guaranteeing
the static equilibrium of a simple minimum force network and Ax.24, Ax.25
and Ax.26 propose a method to transform this simple network into any kind
of minimum force network in static equilibrium iteratively. Forces applied on
various points in the space diagram can then be linked by rods using the Rod
relationship. The resulting strut-and-tie network is guaranteed to be in static
equilibrium.

existence of a force network in equilibrium� · The first axiom (Ax.23)
describes a simple case of equilibrium that is always proved to be true. This
case is chosen to be the zero force (figure 87):

Ax.23 — existence of a zero force:
	 (FormDiagramMembership[p0] ∧ ForceDiagramMembership[p1])
															 ⟶ ∃ F0: Force[F0 p0 p0 p1 p1]

figure 87
axiom Ax.23,
existence of a
zero force.

geometric axiomatisation of graphic statics · 101

Other basic cases of static equilibrium that can be used instead of a zero force
are, for instance, two forces in static equilibrium around a point (figure 88)
or three forces in static equilibrium around a point (figure 89). The following
variants are therefore always true:

Ax.23 (variant a) — existence of two forces in static equilibrium:
	 (FormDiagramMembership[p0]
	 ∧	 ForceDiagramMembership[p2]
	 ∧	 ForceDiagramMembership[p3])
							 ⟶ ∃ F0F1p1p4: Force[F0 p0 p1 p2 p3] ∧ Force[F1 p0 p4 p3 p2]

Ax.23 (variant b) — existence of three forces in static equilibrium:
	 (FormDiagramMembership[p0]
	 ∧	 ForceDiagramMembership[p2]
	 ∧	 ForceDiagramMembership[p3]
	 ∧	 ForceDiagramMembership[p5])
		 ⟶ ∃ F0F1F2p1p4p6 :
				 Force[F0 p0 p1 p2 p3] ∧ Force[F1 p0 p4 p3 p5] ∧ Force[F2 p0 p6 p5 p2]

parallelogram of forces� · The second axiom (Ax.24) describes how to resolve
a force (figure 90) into two components (figure 91) with the help of the paral-
lelogram rule (Benvenuto·1985):

Ax.24 — parallelogram of forces:
	 Force[F0 p0 p1 p2 p3] ⟷ Force[F1 p0 p4 p2 p5] ∧ Force[F2 p0 p6 p5 p3]

This axiom is the only device that allows a force network to be transformed
into a new one. The force F0 is the resultant and the forces F1 and F2 are the
two force components.

figure 88
two forces in

static equilibrium
around a point
— axiom Ax.23

variant a.

figure 89
three forces in

static equilibrium
around a

point— axiom
Ax.23 variant b.

102 · geometric axiomatisation of graphic statics

Ax.24 could have been defined more generally. However, a more general defi-
nition would not be compatible with the axiom Ax.27 (page 109) developed in
the next sub-section.

The transformation rule defined by Ax.24 has to be channelled by two new
axioms in order to be used properly. Firstly, a force cannot be regarded as two
different resultants, or in other words, a force cannot be the resultant of two
different pairs of forces:

Ax.25 — univocal definition of resultants:
	 ((Force[F0 p0 p1 p2 p3] ⟷ Force[F1 p0 p4 p2 p5] ∧ Force[F2 p0 p6 p5 p3])
	 ∧	 (Force[F0 p0 p1 p2 p3] ⟷ Force[F3 p0 p7 p2 p8] ∧ Force[F4 p0 p9 p8 p3]))

			 ⟶ (Equipollence[F1 F3] ∧ Equipollence[F2 F4])

Secondly, a component cannot be used two form two different resultants, or in
other words, two forces cannot be resolved into a same force:

Ax.26 — univocal definition of force components:
	 ((Force[F0 p0 p1 p2 p3] ⟷ Force[F1 p0 p4 p2 p5] ∧ Force[F2 p0 p6 p5 p3])
	 ∧	 (Force[F3 p0 p7 p2 p8] ⟷ Force[F1 p0 p4 p2 p5] ∧ Force[F4 p0 p9 p5 p8]))

			 ⟶ Equipollence[F0 F3]

Equivalence of Ax.23 and its variants� · The equivalence of axiom Ax.23 with
its two variants can now be proved by applying Ax.24 once (figure 92) or twice
(figure 93) on Ax.23 (figure 87):

Force[F0 p0 p1 p2 p2]
⟷ Force[F1 p0 p3 p2 p4] ∧ Force[F2 p0 p5 p4 p2]
⟷ Force[F1 p0 p3 p2 p4] ∧ Force[F3 p0 p6 p4 p7] ∧ Force[F4 p0 p8 p7 p2]

figure 90
a force before
being resolved
into two
components.

figure 91
two components
of the force in
figure 90.

geometric axiomatisation of graphic statics · 103

To apply axiom Ax.24 again would increase the number of forces acting on p0
without ever affecting the closed nature of the force polygon.

proof of static equilibrium� · If all the n forces in a given network are unique
— i.e. if for all i and j that belong to [0,n[such that i≠j, ¬Equipollence[Fi Fj] is
verified — unless explicitly stated by a Equipollence[FA FB] relationship, then
any logical sentence satisfying the previous axioms is expected to describe a
force network in static equilibrium.

As an illustration, the following lines initially describe a strut-and-tie net-
work and then proves it to be in static equilibrium by using Ax.23 and Ax.24
(figure 94):

describing the strut-and-tie network:
	 Force[F0 p0 p1 p6 p7] ∧ Force[F1 p2 p3 p7 p8] ∧ Force[F2 p4 p5 p8 p6]
 ∧	Rod[F3 F4 p0 p10 p2 p11 p7 p9]
 ∧	Rod[F5 F6 p2 p12 p4 p13 p8 p9]
 ∧	Rod[F7 F8 p4 p14 p0 p15 p6 p9]

using the definition of the Rod relationship:
 ⟶	Force[F0 p0 p1 p6 p7] ∧ Force[F1 p2 p3 p7 p8] ∧ Force[F2 p4 p5 p8 p6]
 ∧	Force[F3 p0 p10 p7 p9] ∧ Force[F4 p2 p11 p9 p7]
 ∧	Force[F5 p2 p12 p8 p9] ∧ Force[F6 p4 p13 p9 p8]
 ∧	Force[F7 p4 p14 p6 p9] ∧ Force[F8 p0 p15 p9 p6]

grouping forces by points of applications:
 ⟶	Force[F0 p0 p1 p6 p7]	 ∧ Force[F3 p0 p10 p7 p9]	 ∧ Force[F8 p0 p15 p9 p6]
 ∧	Force[F1 p2 p3 p7 p8]	 ∧ Force[F4 p2 p11 p9 p7]	 ∧ Force[F5 p2 p12 p8 p9]
 ∧	Force[F2 p4 p5 p8 p6]	 ∧ Force[F6 p4 p13 p9 p8]	 ∧ Force[F7 p4 p14 p6 p9]

figure 92
first application

of Ax.24 upon
Ax.23.

figure 93
second

application of
Ax.24 upon Ax.23.

104 · geometric axiomatisation of graphic statics

applying Ax.24:
 ⟶	Force[FA p0 pA p6 p9]	 ∧ Force[F8 p0 p15 p9 p6]
 ∧	Force[FB p2 pB p9 p8]	 ∧ Force[F5 p2 p12 p8 p9]
 ∧	Force[FC p4 pC p9 p6]	 ∧ Force[F7 p4 p14 p6 p9]

applying Ax.24 again:
 ⟶	Force[FD p0 pD p6 p6] ∧ Force[FE p2 pE p8 p8] ∧ Force[FF p4 pF p9 p9]

applying Ax.23:
 ⟶	true

The following lines use the same proof technique to identify one of the suf-
ficient conditions for the network of figure 95 to be in static equilibrium:

describing the force network:
	 Force[F0 p0 p1 p2 p3] ∧ Force[F1 p0 p4 p3 p5]
 ∧	Force[F2 p0 p6 p3 p2] ∧ Force[F3 p0 p7 p5 p2]

applying Ax.24 such that F1+F3=F4:
	 Force[F0 p0 p1 p2 p3] ∧ Force[F2 p0 p6 p3 p2] ∧ Force[F4 p0 p6 p3 p2]

It is worth noting that F2 and F4 cannot be amalgamated because no relation-
ship explicitly states it, in other words: F2≠F4 or ¬Equipollence[F2 F4]. Also, F0
cannot be duplicated — i.e. it cannot be added to F2 and added again to F4 —
because (1) Ax.26 would imply that F0+F2=FA and that F0+F4=FA and (2) it would
force Ax.25 to be false since F2≠F4. Consequently, one way to continue the dem-
onstration is to apply Ax.24 again. For instance:

applying Ax.24 such that F0+F2=F5:
	 Force[F5 p0 p5 p2 p2] ∧ Force[F4 p0 p6 p3 p2]

applying Ax.19 (page 83):
	 Force[F5 p0 p0 p2 p2] ∧ Force[F4 p0 p6 p3 p2]

applying Ax.23 (page 100)::
	 Force[F4 p0 p6 p3 p2]

figure 94
a strut-and-tie
network in static
equilibrium.

geometric axiomatisation of graphic statics · 105

This last relationship is only satisfied if Coincidence[p2 p3] is true, meaning that
axioms Ax.19 and Ax.23 can then be used again and prove that the original sen-
tence is true. In other words, points p2 and p3 must be coincident if the force
network has to be in static equilibrium.

As a final note about static equilibrium, it is acknowledged that Ax.23 to Ax.26
are independent of whether forces exert a pull or a push on the application
point.

figure 95
a force network

that is not in
static equilib-

rium.

¦-)

geometric axiomatisation of graphic statics · 107

13	uniform reading cycle

This sub-section introduces the last axiom, firstly providing a definition of it
and then presenting its direct implications. The need for this axiom is subse-
quently explained. This explanation leads to the identification of an equiva-
lent axiom. Lastly, further consequences of this axiom are developed.

clockwise reading cycle of minimum force networks� · This new axiom
takes three successive forces in the force diagram and describes the geo-
metric condition that p2, i.e. the point defining the type of application of the
second force, must satisfy in the form diagram so that the three forces are
read clockwise in the form diagram, in the same order as described in the
force diagram.

First, the axiom defines three forces that are applied on the same point p0
in the form diagram and that are consecutive in the force diagram, without
thereby forming a closed polygon, i.e. other forces might be applied on p0 as
well:

Force[F0 p0 p1 p4 p5] ∧ Force[F1 p0 p2 p5 p6] ∧ Force[F2 p0 p3 p6 p7]

The axiom then says that p2 must be within the graphical region bordered
by the previous and the next forces (figure 96 and figure 97). Given that the
angle between these two forces is acute or obtuse, the corresponding region
is either the intersection or the union of two half-planes. These two cases are
taken into account in a generic manner by defining points p8 and p9 such that
they are coincident to p1 and p3 when the angle is acute (figure 97) and such
that they divide the angle into three sections when it is obtuse (figure 96).
Point p8 is consequently defined by the following sentence:

Laterality[p8 p0 p0 p1] ∧ Laterality[p8 p0 p1 p0]
	 ∧ Proximity[p8 p0 p0 p1] ∧ Proximity[p0 p1 p8 p0]
	 ∧(¬Proximity[p3 p0 p0 p0] ∨ ¬Proximity[p8 p1 p1 p1] ∨ Proximity[p8 p0 p0 p0])
	 ∧(Proximity[p3 p0 p0 p0] ∨ ¬Laterality[p8 p0 p3 p0] ∨ Proximity[p8 p0 p0 p0])

108 · geometric axiomatisation of graphic statics

and point p9 by:

Laterality[p9 p0 p0 p3] ∧ Laterality[p9 p0 p3 p0]
	 ∧ Proximity[p9 p0 p0 p3] ∧ Proximity[p0 p3 p9 p0]
	 ∧(¬Proximity[p1 p0 p0 p0] ∨ ¬Proximity[p9 p3 p3 p3] ∨ Proximity[p9 p0 p0 p0])
	 ∧(Proximity[p1 p0 p0 p0] ∨ ¬Laterality[p9 p0 p0 p1] ∨ Proximity[p9 p0 p0 p0])

The need for the last two lines of both definitions will be explained in the
paragraph entitled “particular cases” (page 110).

Given p8 and p9, p2 must hold the following disjunction of conjunctions in order
for the three forces to be read clockwise:

	 (Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p9])
 ∨	 (Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p3])
 ∨	 (Laterality[p2 p0 p8 p0] ∧ Laterality[p2 p0 p0 p3])

figure 96
Ax.27: the grey
area is the obtuse
section in which
point p2 must stay
in order to ensure
a clockwise
reading of the
forces in the form
diagram.

figure 97
Ax.27: the grey
area is the acute
section in which
point p2 must stay
in order to ensure
a clockwise
reading of the
forces in the form
diagram.

geometric axiomatisation of graphic statics · 109

As a result, the entire axiom is written as follows:

Ax.27 — local reading cycle of forces:
	 (Force[F0 p0 p1 p4 p5] ∧ Force[F1 p0 p2 p5 p6] ∧ Force[F2 p0 p3 p6 p7])
	 ⟶ ∃pApB:
		 ((Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 pB])
		 ∨	(Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p3])
		 ∨	(Laterality[p2 p0 pA p0] ∧ Laterality[p2 p0 p0 p3]))

		 ∧ Laterality[pA p0 p0 p1] ∧ Laterality[p8 p0 p1 p0]
		 ∧ Proximity[pA p0 p0 p1] ∧ Proximity[p0 p1 pA p0]
		 ∧(¬Proximity[p3 p0 p0 p0] ∨ ¬Proximity[pA p1 p1 p1] ∨ Proximity[pA p0 p0 p0])
		 ∧(Proximity[p3 p0 p0 p0] ∨ ¬Laterality[pA p0 p3 p0] ∨ Proximity[pA p0 p0 p0])

		 ∧ Laterality[pB p0 p0 p3] ∧ Laterality[pB p0 p3 p0]
		 ∧ Proximity[pB p0 p0 p3] ∧ Proximity[p0 p3 pB p0]
		 ∧(¬Proximity[p1 p0 p0 p0] ∨ ¬Proximity[pB p3 p3 p3] ∨ Proximity[pB p0 p0 p0])
		 ∧(Proximity[p1 p0 p0 p0] ∨ ¬Laterality[pB p0 p0 p1] ∨ Proximity[pB p0 p0 p0])

This axiom does not explicitly prevent a fourth force in the form diagram
from being between the first and the third forces as well. However, this case
is impossible since the axiom rules every triplet of consecutive forces in the
form diagram. For example, figure 98 shows five forces applied on a point p0.

According to the force polygon in the force diagram, the reading cycle in the
form diagram is {F0 F1 F2 F3 F4}.

The axiom therefore holds five times:
(a)	 F1 must be clockwise after F0 and before F2

(b)	 F2 must be clockwise after F1 and before F3

(c)	 F3 must be clockwise after F2 and before F4

(d)	 F4 must be clockwise after F3 and before F0

(e)	 F0 must be clockwise after F4 and before F1

figure 98
five consecutive

forces read
clockwise.

110 · geometric axiomatisation of graphic statics

Consequently, force F3, for instance, will never be between F0 and F1 or be-
tween F1 and F2 since condition (b) means F3 has to be clockwise after F2 and
condition (c) means F3 has to be clockwise before F4. This comment is appli-
cable to all the forces applied on the same point, regardless of their quantity.

particular cases� · This paragraph examines five particular behaviours of
axiom Ax.27: (1) when it does not constrain the type of application of the force,
(2) when the previous force is zero, (3) when the previous and the next force
are zero, (4) when all the forces applied are zero forces, and (5) when there are
only two forces applied.

(1)	 In some cases, the second of three consecutive forces remains after the
first and before the third regardless of whether it exerts a pull (figure 99) or a
push (figure 100). As a consequence, the point defining the type of application
of the second force, i.e. p2, has two possible positions. The definition of Ax.27
intrinsically takes this possibility into account.

figure 99
in grey, the
region in which
p2 must stay in
order to ensure a
clockwise
reading cycle; the
force defined by
p2 exerts a pull.

figure 100
in grey, the
region in which
p2 must stay in
order to ensure a
clockwise
reading cycle; the
force defined by
p2 exerts a push.

geometric axiomatisation of graphic statics · 111

(2)	 Axiom Ax.27 remains sufficient to guarantee a clockwise reading cycle
when the preceding force (or the following one) is zero. The following illustra-
tion is based on the cycle {F0 F1 F2 F3 F4} consisting of the following forces:

Force[F0 p0 p1 p6 p7]
Force[F1 p0 p2 p7 p8]
Force[F2 p0 p3 p8 p9]
Force[F3 p0 p4 p9 p10]
Force[F4 p0 p5 p10 p6]

When F0 is a zero force, points p6 and p7 are coincident and, according to Ax.19
(page 83), p0 and p1 are also coincident. It follows that the application of
Ax.27 for the series {F0 F1 F2} does not condition p2 at all and is consequently
superfluous (figure 101):

Ax.27

⟶ (Force[F0 p0 p0 p6 p6] ∧ Force[F1 p0 p2 p6 p8] ∧ Force[F2 p0 p3 p8 p9]
		 ⟶ ∃p11p12: ((Laterality[p2 p0 p0 p0] ∧ Laterality[p2 p0 p0 p12])
					 ∨	(Laterality[p2 p0 p0 p0] ∧ Laterality[p2 p0 p0 p3])
					 ∨	(Laterality[p2 p0 p11 p0] ∧ Laterality[p2 p0 p0 p3]))

		 ∧ Laterality[p11 p0 p0 p0] ∧ Laterality[p8 p0 p0 p0]
		 ∧ Proximity[p11 p0 p0 p0] ∧ Proximity[p0 p0 p11 p0]
		 ∧(¬Proximity[p3 p0 p0 p0] ∨¬Proximity[p11 p0 p0 p0]∨ Proximity[p11 p0 p0 p0])
		 ∧(Proximity[p3 p0 p0 p0] ∨¬Laterality[p11 p0 p3 p0]∨ Proximity[p11 p0 p0 p0])

		 ∧ Laterality[p12 p0 p0 p3] ∧ Laterality[p12 p0 p3 p0]
		 ∧ Proximity[p12 p0 p0 p3] ∧ Proximity[p0 p3 p12 p0]
		 ∧(¬Proximity[p0 p0 p0 p0] ∨¬Proximity[p12 p3 p3 p3]∨ Proximity[p12 p0 p0 p0])
		 ∧(Proximity[p0 p0 p0 p0] ∨ ¬Laterality[p12 p0 p0 p0] ∨ Proximity[p12 p0 p0 p0])

⟷ (Force[F1 p0 p2 p6 p8] ∧ Force[F2 p0 p3 p8 p9]
		 ⟶ ∃p11 p12: (Laterality[p2 p0 p0 p12] ∨ Laterality[p2 p0 p0 p3])
					 ∧ Proximity[p11 p0 p0 p0]
					 ∧ Laterality[p12 p0 p0 p3] ∧ Laterality[p12 p0 p3 p0]
					 ∧ Proximity[p12 p0 p0 p3] ∧ Proximity[p0 p3 p12 p0]
					 ∧ ¬Proximity[p12 p3 p3 p3])

figure 101
behaviour of

Ax.27 when the
first of the three

consecutive
forces is a zero

force.

112 · geometric axiomatisation of graphic statics

⟷ (Force[F1 p0 p2 p6 p8] ∧ Force[F2 p0 p3 p8 p9]
		 ⟶ ∃p11 p12: Proximity[p11 p0 p0 p0]
					 ∧ Laterality[p12 p0 p0 p3] ∧ Laterality[p12 p0 p3 p0]
					 ∧ Proximity[p12 p0 p0 p3] ∧ Proximity[p0 p3 p12 p0]
					 ∧ ¬Proximity[p12 p3 p3 p3])

⟷ (Force[F1 p0 p2 p6 p8] ∧ Force[F2 p0 p3 p8 p9] ⟶ true)

⟷ true

However, since p6 and p7 are coincident, axiom Ax.27 also holds for the series
{F4 F1 F2} which in turn constrains the position of p2 (figure 101):

Force[F4 p0 p5 p10 p6] ∧ Force[F1 p0 p2 p6 p8] ∧ Force[F2 p0 p3 p8 p9]
	 ⟶ ∃p11p12: ((Laterality[p2 p0 p5 p0] ∧ Laterality[p2 p0 p0 p12])
				 ∨	(Laterality[p2 p0 p5 p0] ∧ Laterality[p2 p0 p0 p3])
				 ∨	(Laterality[p2 p0 p13 p0] ∧ Laterality[p2 p0 p0 p3]))
			 ∧ …

(3)	 Axiom Ax.27 still remains sufficient to guarantee a clockwise reading cycle
when the preceding and following forces are zero. If F0 and F2 are two zero
forces, then points p6 and p7 are coincident and points p8 and p9 are coincident.
According to Ax.19, p0 and p1 are consequently coincident, as are p0 and p3.
This means that the application of Ax.27 for the series {F0 F1 F2} does not condi-
tion p2 at all and is superfluous. But since points p6 and p7 are coincident and
points p8 and p9 are coincident, axiom Ax.27 also holds for the series {F4 F1 F3}
which in turn constrains the position of p2 (figure 102).

figure 102
behaviour of
Ax.27 when the
first and the third
of the three
consecutive
forces are a zero
force.

geometric axiomatisation of graphic statics · 113

(4)	 Axiom Ax.27 also remains consistent when all the forces applied on a point
are zero forces. Indeed, Ax.27 is totally superfluous in that case since it is
always satisfied:

Ax.27

⟶ (Force[F0 p0 p0 p1 p1] ∧ Force[F1 p0 p0 p1 p1] ∧ Force[F2 p0 p0 p1 p1]
		 ⟶ ∃p2p3: ((Laterality[p0 p0 p0 p0] ∧ Laterality[p0 p0 p0 p2])
					 ∨	(Laterality[p0 p0 p0 p0] ∧ Laterality[p0 p0 p0 p0])
					 ∨	(Laterality[p0 p0 p3 p0] ∧ Laterality[p0 p0 p0 p0]))

				 ∧ Laterality[p2 p0 p0 p0] ∧ Laterality[p2 p0 p0 p0]
				 ∧ Proximity[p0 p2 p0 p0] ∧ Proximity[p0 p0 p0 p2]
				 ∧ (¬Proximity[p0 p0 p0 p0] ∨ ¬Proximity[p2 p0 p0 p0]
															 ∨ Proximity[p2 p0 p0 p0])
				 ∧ (Proximity[p0 p0 p0 p0] ∨ ¬Laterality[p2 p0 p0 p0]
															 ∨ Proximity[p2 p0 p0 p0])

				 ∧ Laterality[p3 p0 p0 p0] ∧ Laterality[p3 p0 p0 p0]
				 ∧ Proximity[p0 p3 p0 p0] ∧ Proximity[p0 p0 p0 p3]
				 ∧ (¬Proximity[p0 p0 p0 p0] ∨ ¬Proximity[p3 p0 p0 p0]
															 ∨ Proximity[p3 p0 p0 p0])
				 ∧ (Proximity[p0 p0 p0 p0] ∨ ¬Laterality[p3 p0 p0 p0]
															 ∨ Proximity[p3 p0 p0 p0]))

⟷ (true ⟶ ∃p2p3: (Laterality[p0 p0 p0 p2] ∨ Laterality[p0 p0 p3 p0])
					 ∧ Proximity[p0 p2 p0 p0] ∧ Proximity[p0 p3 p0 p0])

⟷ (true ⟶ Laterality[p0 p0 p0 p0] ∨ Laterality[p0 p0 p0 p0])

⟷ true

(5)	 When only two forces are applied on a point, the concept of a reading cycle
is meaningless and axiom Ax.27 must always be verified. The following state-
ments prove it (figure 103):

Ax.27

⟶ (Force[F0 p0 p1 p3 p4] ∧ Force[F1 p0 p2 p4 p3] ∧ Force[F0 p0 p1 p3 p4]
			 ⟶ ∃p5p6: ((Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p5])
						 ∨	(Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p1])
						 ∨	(Laterality[p2 p0 p6 p0] ∧ Laterality[p2 p0 p0 p1]))
					 ∧ Laterality[p5 p0 p0 p1] ∧ Laterality[p5 p0 p1 p0]
					 ∧ Proximity[p0 p5 p0 p1] ∧ Proximity[p0 p1 p0 p5]
					 ∧ (¬Proximity[p1 p0 p0 p0] ∨ ¬Proximity[p5 p1 p1 p1]
															 ∨ Proximity[p5 p0 p0 p0])
					 ∧ (Proximity[p1 p0 p0 p0] ∨ ¬Laterality[p5 p0 p1 p0]
															 ∨ Proximity[p5 p0 p0 p0])

114 · geometric axiomatisation of graphic statics

					 ∧ Laterality[p6 p0 p0 p1] ∧ Laterality[p6 p0 p1 p0]
					 ∧ Proximity[p0 p6 p0 p1] ∧ Proximity[p0 p1 p0 p6]
					 ∧ (¬Proximity[p1 p0 p0 p0] ∨ ¬Proximity[p6 p1 p1 p1]
															 ∨ Proximity[p6 p0 p0 p0])
					 ∧ (Proximity[p1 p0 p0 p0] ∨ ¬Laterality[p6 p0 p0 p1]
															 ∨ Proximity[p6 p0 p0 p0]))

⟷ (Force[F0 p0 p1 p3 p4] ∧ Force[F1 p0 p2 p4 p3]
			 ⟶ ∃p5p6: ((Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p5])
						 ∨	(Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p1])
						 ∨	(Laterality[p2 p0 p6 p0] ∧ Laterality[p2 p0 p0 p1]))
					 ∧ Proximity[p5 p2 p2 p2] ∧ Proximity[p6 p2 p2 p2])

⟷ (Force[F0 p0 p1 p3 p4] ∧ Force[F1 p0 p2 p4 p3]
			 ⟶ 	(Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p2])
			 ∨	(Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p1])
			 ∨	(Laterality[p2 p0 p2 p0] ∧ Laterality[p2 p0 p0 p1]))

⟷ (Force[F0 p0 p1 p3 p4] ∧ Force[F1 p0 p2 p4 p3])
			 ⟶ (Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p1])

⟶ true

In short, these five particular cases shed light on the internal geometric rea-
sons of axiom Ax.27. The following paragraph shows that the local reading
cycles expressed in Ax.27 involve global reading cycles and the paragraph
after that identifies the extent to which uniform global reading cycles are
mandatory.

why imposing a uniform reading cycle locally involves a uniform read-
ing cycle globally� · This paragraph explains how Ax.27 compels the forces
applied on any strut-and-tie sub-network to be read clockwise in the form
diagram, according to the sequence in which they follow one another in the
force diagram. Hence, it shows how a reading cycle condition applied on every
minimum force sub-network influences any non-minimum strut-and-tie sub-
network containing them.

figure 103
behaviour of
Ax.27 when there
are only two
forces applied on
a point.

geometric axiomatisation of graphic statics · 115

Given two points pA and pB and given two forces Fi and Fj respectively applied
on pA and pB such that they are sufficiently compatible to form a rod, two
cases might arise. Either (1) points pA and pB belong to two different strut-and-
tie networks (figure 104) or (2) they belong to a unique strut-and-tie network
(figure 106, page 117). The following considerations show that, in both cas-
es, if the reading cycle of the forces applied on the sub-network(s) is clockwise
when Fi and Fj are considered as two independent forces, then the reading
cycle of the forces applied on the new network, obtained by assimilating Fi and
Fj as a rod, is also clockwise.

(1)	 First case (figure 104). If the forces applied on the force sub-network con-
taining Fi are read clockwise in the form diagram, the previous force Fi-1 and
the next force Fi+1 can be identified in both diagrams. Likewise, if the forces
applied on the force sub-network containing Fj are read clockwise in the form

figure 104
first case before
treating forces Fi

and Fj as a rod.

figure 105
first case after

transforming
forces Fi and Fj

into a rod.

116 · geometric axiomatisation of graphic statics

diagram, the previous force Fj-1 and the next force Fj+1 can be identified in both
diagrams. The sequence of forces from Fi+1 to Fi-1 is named S1 and the sequence
of forces from Fj+1 to Fj-1 is named S2.

As forces Fi and Fj are aligned in the form diagram and are of equal orienta-
tion and magnitude, they can be identified as a rod (figure 105). Whatever the
sequences S1 and S2, the following properties still hold in the force diagram
once the forces Fi and Fj are identified as a rod:

(a)	 sequence S1 spans from Fi+1 to Fi-1

(b)	 sequence S2 spans from Fj+1 to Fj-1

(c)	 force Fj-1 is read just before Fi+1

(d)	 force Fi-1 is read just before Fj+1

Since the same four properties can also be identified in the form diagram,
the reading cycle of the forces acting on the global force network is indeed
clockwise.

(2)	 Second case (figure 106). If the forces applied on the force sub-network
containing Fi and Fj are read clockwise in the form diagram, forces Fi-1, Fi+1, Fj-1
and Fj+1 can be identified such that Fi succeeds Fi-1 and precedes Fi+1 and such
that Fj succeeds Fj-1 and precedes Fj+1. The sequence of forces from Fi+1 to Fj-1 is
named S3 and the sequence of forces from Fj+1 to Fi-1 is named S4.

As forces Fi and Fj are aligned in the form diagram and are of equal orienta-
tion and magnitude, they can be identified as a rod (figure 107). Whatever the
sequences S3 and S4, the following properties still hold in the force diagram
once the forces Fi and Fj are identified as a rod:

(a)	 sequence S3 spans from Fi+1 to Fj-1

(b)	 sequence S4 spans from Fj+1 to Fi-1

(c)	 force Fj-1 is read just before Fi+1

(d)	 force Fi-1 is read just before Fj+1

Since the same four properties can also be identified in the form diagram,
the reading cycle of the forces acting on the global force network is indeed
clockwise.

In conclusion, the following two facts jointly prove that any global strut-and-
tie network always presents a clockwise reading cycle when each minimum-
force network presents a clockwise reading cycle:

geometric axiomatisation of graphic statics · 117

(a)	 any strut-and-tie network can be seen as a combination of all the mini-
mum force networks it contains (thanks to the definition of the Rod re-
lationship)

(b)	 when compatible forces are identified as rods, each of these minimum
force networks reacts exactly as the initial sub-networks containing pA
and pB shown in the two cases above.

Consequently, as soon as Ax.27 is verified for each minimum force network, a
clockwise global reading cycle is ensured for any strut-and-tie network.

A practical example is shown in figure 109, figure 110 and figure 111. They are
three possible strut-and-tie sub-networks of the truss depicted in figure 108.
Each reading cycle is clockwise, regardless of the sub-network considered.

figure 106
second case

before consider-
ing forces Fi and

Fj as a rod.

figure 107
second case after

transforming
forces Fi and Fj

into a rod.

118 · geometric axiomatisation of graphic statics

figure 108
form and force
diagrams of a
truss; hulls
correspond to the
strut-and-tie
sub-networks
detailed in the
three following
figures.

figure 109
clockwise
reading cycle of
the first
strut-and-tie
sub-network.

figure 110
clockwise
reading cycle of
the second
strut-and-tie
sub-network.

figure 111
clockwise
reading cycle of
the third
strut-and-tie
sub-network.

geometric axiomatisation of graphic statics · 119

historical review of reciprocity in graphic statics� · Prior to expressing the
need for Ax.27, a historical review of what reciprocity means in graphic statics
is given here. The reciprocal nature of form and force diagrams has under-
gone subtle developments over the years.

The first identifications of reciprocity were the ones stated by Wil-
liam John Macquorn Rankine in 1858 and James Clerk Maxwell in 1864
(figure 32, page 49 and figure 112):

“Two plane figures are reciprocal when they consist of an equal
number of lines, so that corresponding lines in the two figures are parallel,
and corresponding lines which converge to a point in one figure form a closed
polygon in the other.” (Maxwell·1864, page 251)

Studying a strut-and-tie network and its inner forces with two reciprocal
closed diagrams, such as those defined by Maxwell soon becomes tedious
since external forces applied to the strut-and-tie are not drawn. This short-
coming was corrected immediately by Karl Culmann (Culmann·1866), Luigi
Cremona (Cremona·1868) and James Clerk Maxwell himself (Maxwell·1867) by
adding the representation of forces within both diagrams (figure 113).

This inclusion has the consequence of opening the form diagram. Indeed,
each force in the form diagram is borne by an infinite half-line. If each poly-
gon in the force diagram is to be linked to a continuous set of rods and forces
in the form diagram, then this set is sometimes a closed polygon, sometimes
a region open to infinity. This is the reason why the definition of reciprocity

figure 112
illustration of the

reciprocal rule
for two different

polygons
(reworked figure

from
Maxwell·1864,

page 253,
figure 2).

figure 113
two reciprocal

diagrams
according to

Maxwell·1867
(figure copied

from
Maxwell/…·1995

pages 315 and
316).

120 · geometric axiomatisation of graphic statics

given by Rankine and Maxwell was soon replaced by new conditions. For in-
stance, the following set of conditions for reciprocity is due to Robert Henry
Bow (Bow·1873, page 52):

(1)	 “Corresponding lines, whether representing constituent parts of the
frame, or external forces, which meet at a point in the frame, form a
closed polygon in the [force] diagram.

(2)	 Corresponding lines which represent constituent parts of the frame, and
form a closed polygon in it, meet in a point in the [force] diagram.

(3)	 The lines representing all the external forces acting on the frame should
form a closed polygon in the [force] diagram.

(4)	 Lines — some of which represent external forces — which meet in a
point in the [force] diagram, have the corresponding lines contiguous in
the frame; but these may form a partial boundary to an infinite area [...].”

In other words, these four conditions define reciprocity as a bijection between
polygons or open areas and intersections of forces and rods (figure 114 and
figure 115). However, they do not prevent a rod from being represented by
more than one line in the force diagram or, in other words, they do not prevent
opposite forces forming a rod from being nonadjacent in the force diagram.

figure 114
classical nature
of reciprocity;
intersection in
the form diagram
and correspond-
ing closed
polygon in the
force diagram.

figure 115
classical nature
of reciprocity;
intersection in
the force diagram
and correspond-
ing open area in
the form
diagram.

geometric axiomatisation of graphic statics · 121

Bow consequently inserted a fifth condition to this list:
(5)	 “There should be only one line in the diagram of forces to represent any

one force acting on the frame or in a part of it.”

Unlike the first four conditions, the fifth condition is not required for static
equilibrium. It is just added for convenience: (a) corresponding force polygons
are identified more easily, (b) diagrams are more compact and confusion be-
tween lines is avoided, and (c) the identification of rods in the force polygon is
univocal since it is always equivalent to two opposite forces.

As clarified by Albert Pirard in 1950 (Pirard·1950, page 91), preventing forces
from being drawn more than once in the force diagram, i.e. to guarantee Bow's
fifth condition, can only be achieved if the following rule is observed: every
polygon constituted of forces and rods in the force diagram must be read in
an order that is identical to the order obtained when those forces and rods are
read in the form diagram, either always clockwise or always anti-clockwise.
The choice of clockwise or anti-clockwise order is a convention. What matters
here is that it is always the same for every minimum force network.

The need for this additional rule can be illustrated with the figure 116 from
Pirard·1950. Diagrams (II), (III) and (IV) are the force polygons corresponding
to points A, D and E, respectively in the form diagram (I). Since these three
sets of forces are read clockwise in the form diagram, their combination pro-

figure 116
obligation to have

a uniform
reading cycle for

each force
polygon in order

to prevent
duplication of

force in the force
diagram; figure

from Pirard·1950,
page 91.

122 · geometric axiomatisation of graphic statics

duces a force diagram (V) where each pair of forces corresponding to one rod
is superimposed. If, however, one set of forces (VI) is read anti-clockwise in
the form diagram, the combination of multiple force polygons (VII) duplicates
some lines representing one rod, e.g. F1, the force acting on rod 1, is repre-
sented twice in (VII).

the need for uniform reading cycles towards reciprocal diagrams� · As
far as the axiomatisation undergone in this section is concerned, the choice
is made to make form and force diagrams fulfil the classical conditions for
reciprocity, as for instance those stated by Bow·1873 (page 52). Axioms Ax.23
and Ax.24 actually already ensure static equilibrium and bidirectional rela-
tionships between the intersection of forces and corresponding open areas
or closed polygons, i.e. they are equivalent to the first four conditions of
Bow·1873, page 52. Axiom Ax.27 is therefore only meant to guarantee the
uniqueness of forces in the force diagram, i.e. the fifth condition of Bow·1873.

In other words, Ax.27 is meant to ensure that if two opposite forces are of
equal magnitudes and are aligned in the form diagram, they are then super-
imposed in the force diagram. So, if two forces are compatible enough to be
assimilated into a rod in the form diagram, they are also compatible for being
assimilated into a rod in the force diagram. Therefore Ax.27 guarantees that
the definition of the non-fundamental Rod relationship (page 91) contrib-
utes to the reciprocity of diagrams.

Without Ax.22, the visual expressiveness of pairs of forces capable of forming
a rod would be less direct since it would imply the variation of the order in
which forces succeed one another in each force polygon until one order means
that all the compatible forces are superimposed.

Moreover, Ax.27 also makes the uniform reading cycle clockwise rather than
anti-clockwise.

As previously noted, the existence of Ax.27 expresses the need to make use of
the points that define the application type of forces — the second parameter
of each Force[p0 p1 p2 p3] relationship. See the paragraph entitled “an axiom to
constrain the point that defines the application type of force” (page 82).

geometric axiomatisation of graphic statics · 123

why the definition of rod does not invalidate reciprocal rules� · When the
Rod relationship is defined in the paragraph entitled “geometric definition
of a rod” (page 87), a choice has been made to compel the two opposite
forces in the form diagram to be placed between the two points of applications
(figure 72, page 90) rather than outside them (figure 73, page 90) — see
condition (5) page 89 . The reason for this choice is due to the need for a
global uniform reading cycle as imposed by Ax.27 — see the paragraph enti-
tled “why imposing a uniform reading cycle locally involves a uniform reading
cycle globally” (page 114).

This can be shown by comparing two general networks involving a rod. Fi
and Fj are the two forces that form that rod. In figure 117 the points defining
their type of application, i.e. p1 and p5, are placed outside the extreme points
of the rods, i.e. p0 and p4. In figure 118 they are placed between them. Owing
to Ax.27, local uniform reading cycles must be clockwise and forces Fi-1, Fi+1,
Fj-1 and Fj+1 can be localised in both diagrams so that they are respectively
before and after Fi and Fj. However Ax.27 also leads to global uniform read-
ing cycles. As far as the global strut-and-tie network (including p0 and p4) is
concerned, the force diagram shows that in both cases, Fj-1 comes before Fi+1
and Fi-1 comes before Fj+1. However, only the case in figure 118 verifies this or-
der when reading the forces clockwise in the form diagram. This proves that

figure 117
two forces Fi and
Fj unable to form

a rod without
breaking the

reading cycle.

figure 118
two forces Fi and
Fj able to form a

rod without
breaking the

reading cycle.

124 · geometric axiomatisation of graphic statics

the points defining the type of application of two forces forming a rod must
always be placed between their application points, regardless of whether the
forces exert a pull or a push.

why a uniform reading cycle imposes the absence of almost any inter-
section of rods in the space diagram� · As a result of axioms Ax.19, Ax.24
and Ax.27, it is impossible to have a strut-and-tie network that presents (1) the
crossing of two rods in the form diagram, or (2) the crossing of a rod with a
half-line of force in the form diagram, unless it is possible to move the points
in the form diagram so that (a) the altered strut-and-tie network no longer
contains an intersection of this kind, and (b) the reading cycles of the altered
strut-and-tie network remain unchanged. However, the crossing of two half-
lines of force inside a unique strut-and-tie network does not endanger the
reciprocity of both diagrams.

The only way to build these crossings is to divide the rod concerned in two
— the parallelism of the two parts of the rod being ensured by appropriate
geometric relationships — or to duplicate the forces concerned.

The six following examples outline these various scenarios and define means
of rectification:

(1)	 an impossible strut-and-tie network due to the crossing of two rods in
the form diagram

(2)	 an impossible strut-and-tie network due to the crossing of a rod with a
half-line of force in the form diagram

(3)	 a possible strut-and-tie network where two rods cross without being
divided

(4)	 a possible strut-and-tie network where one rod crosses one half-line of
force without being duplicated

(5)	 a possible strut-and-tie network where half-lines of force cross one an-
other

(6)	 two possible strut-and-tie network where their rods cross without be-
ing divided.

(1)	 The strut-and-tie network in figure 119 does not satisfy the axiomatic
set. Evidence of this is that it is impossible to move the force polygons in
figure 120 in order to superimpose pairs of forces aimed at being replaced by
rods. The solution is to divide the crossing rods into two. This has the effect
of adding a new point in the form diagram — pA — and a new force polygon in
the force diagram (figure 121).

geometric axiomatisation of graphic statics · 125

figure 119
a strut-and-tie

network that do
not satisfy the
axiomatic set.

figure 120
these force

polygons cannot
be joined to form

rods.

figure 121
adding a point at
the intersection
of crossing rods

makes the
network

compatible with
the axiomatic set.

126 · geometric axiomatisation of graphic statics

In order to ensure that the four rods b0, b1, b2 and b3 act as two crossing rods,
the following geometric statement must hold:

Collinearity[p1 p3 pA] ∧ Collinearity[p0 p2 pA]

which means that:

Parallelism[p4 p5 p6 p7] ∧ Parallelism[p4 p7 p5 p6]

and that:

Equidistance[p4 p5 p6 p7] ∧ Equidistance[p4 p7 p5 p6]

(2)	 The strut-and-tie network in figure 122 does not satisfy the axiomatic set
either. The minimum force networks in figure 123 cannot be repositioned in
order to allow the superposition of the pairs of forces aimed to act as rods.
The solution shown in figure 124 consists of adding a force polygon by dupli-
cating force F0 and by dividing the rod crossed by its half-line.

figure 122
a strut-and-tie
network that do
not satisfy the
axiomatic set.

figure 123
these force
polygons cannot
be joined to form
rods.

figure 124
adding a point at
the intersection
of the rod with
the half-line of
force makes the
network
compatible with
the axiomatic set.

geometric axiomatisation of graphic statics · 127

figure 125
a strut-and-tie

network with two
intersecting rods

that does not
have to be

divided.

figure 126
other positions of
pA and pB: rods do
not cross and the

force diagram
remains identical.

Again, the new point pA should satisfy the following geometric statement:

Collinearity[p0 p1 pA] ∧ Collinearity[p2 p3 pA]

which means that:

Parallelism[p4 p5 p6 p7] ∧ Parallelism[p4 p7 p5 p6]

and that:

Equidistance[p4 p5 p6 p7] ∧ Equidistance[p4 p7 p5 p6]

(3)	 The strut-and-tie network in figure 125 satisfies the axiomatic set although
two rods cross. The reason for this is explained in figure 126 and is due to
the fact that points pA and pB can be moved in the form diagram such that (a)
the rods no longer cross and (b) the force diagram remains unchanged, i.e. the
magnitudes and orientations of forces remain equal.

(4)	 The example in figure 127 is similar to the previous one. Two pairs of rods
cross and a half-line of force crosses a rod. However, points pA and pB can be
moved in the form diagram such that these crossings vanish without altering
the force diagram. The strut-and-tie network in figure 128 and its force dia-
gram consequently satisfy the axiomatic set.

128 · geometric axiomatisation of graphic statics

(5)	 The example in figure 129 shows that the intersection of half-lines of forc-
es with half-lines of forces does not prevent either diagram being in compli-
ance with the axiomatic set.

figure 129
a strut-and-tie
network with
intersections of
half-lines of
forces.

figure 127

figure 128

geometric axiomatisation of graphic statics · 129

(6)	 Two rods intersect in the form diagram in figure 130. However, this is not
an issue since they belong to two separate strut-and-tie networks, each with
its own force diagram.

how a uniform reading cycle allows multiple form and force diagrams
to have the same structural configuration� · Cases (3) and (4) have shown
that some intersections of rods and forces did not prevent the satisfaction
of the axiomatic set, and did not require rods to be divided and forces to be
duplicated (figure 125 and figure 127). However, it is still possible to divide
these rods and duplicate these forces. This means that the same structural
configuration sometimes allows different form and force diagrams (figure 131
and figure 132).

figure 130
two strut-and-tie
networks with an

intersection of
rods.

figure 131
copy of the

strut-and-tie
network from

figure 125 after
dividing the

crossing rods.

figure 132
copy of the

strut-and-tie
network from

figure 127 after
duplicating

crossing rods and
forces.

130 · geometric axiomatisation of graphic statics

how a uniform reading cycle implies the distinction between pulls and
pushes� · A direct corollary of not being able to cross rods and half-line of
forces is that a strut-and-tie network might present a different force diagram
depending on a force is pulling or pushing. The distinction between pulls and
pushes is therefore fundamental to the proposed axiomatic set. An example is
shown in figure 133 and figure 134.

how the studied hull influences the uniform reading cycle� · Reading
cycles concern the forces that are applied on a given sub-network. It has been
seen that these sub-networks can be identified using hulls whose definition
is given by the set of points contained in the sub-network — see the “sub-
network hulls” (page 95). Hulls can actually be distinguished further by the
hidden intersections of forces they encompass or not.

For example, figure 136, figure 137 and figure 138 show various hulls that all
concern the entire global network in figure 135. However, as a consequence of
the fact that the external forces intersecting these hulls must be read clock-
wise in the form diagram, they lead to different force diagrams.

figure 133
a strut-and-tie
network on which
force F1 exerts a
pull.

figure 134
a strut-and-tie
network on which
the same force F1
exerts a push.

geometric axiomatisation of graphic statics · 131

figure 135
a strut-and-tie

network.

figure 136
minimum hull

containing the
entire strut-and-
tie network from

figure 135.

figure 137
intermediate hull

containing the
entire strut-and-
tie network from

figure 135.

132 · geometric axiomatisation of graphic statics

figure 138
maximal hull
containing the
entire strut-and-
tie network from
figure 135.

geometric axiomatisation of graphic statics · 133

14	 recapitulation

This sub-section briefly summarises the series of axioms that have been intro-
duced throughout this section.

geometric support� · The axiomatisation exclusively concerns fundamental
relationships between positions of points and forces in the plane. The geo-
metric support on which it is based uses Laterality and Proximity relationships
as (incompletely) defined by axioms Ax.1 to Ax.11 (page 62 to page 66).
These relationships natively enable the definition of inequalities of distances
and relative directions.

Points may belong to the form diagram or the force diagram depend-
ing on whether they verify the FormDiagramMembership relationship or the
ForceDiagramMembership relationship. Distances in these diagrams may be
compared with a unit distance equal to the one that satisfies the UnitDistance
relationship. These three fundamental relationships are defined by axioms
Ax.12 to Ax.17 (page 76 to page 79).

forces, equilibrium and reciprocity� · Forces are represented by Force
relationships, defined by axioms Ax.18 to Ax.20 (page 82 to page 83).
Two forces are said equivalent if they satisfy the fundamental relationship
Equipollence, defined by axioms Ax.21 and Ax.22 (page 84). Unless explicitly
tated by an Equipollence relationship, all the forces are different.

Any logical sentence that satisfies the five axioms Ax.23 to Ax.26 (page 100 to
page 102) describes, by means of two diagrams, a strut-and-tie network that
is in static equilibrium. The last axiom Ax.27 (page 109) guarantees that the
form and the force diagrams are reciprocal.

134 · geometric axiomatisation of graphic statics

non-fundamental relationships� · Using the seven fundamental rela-
tionships Laterality, Proximity, UnitDistance, FormDiagramMembership,
ForceDiagramMembership, Force and Equipollence, more complex non-fundamen-
tal relationships can be defined. They might be used to determine new geo-
metric concepts, but also new structural concepts such as, for example, the
rod (figure 75, page 91):

Rod[F0 F1 p0 p1 p2 p3 p4 p5] :⟷ ∃pApB:
		 Force[F0 p0 p1 p4 p5] ∧ Force[F1 p2 p3 p5 p4]
	 ∧ Laterality[p4 p5 p0 p2] ∧ Laterality[p4 p5 p2 p0]
	 ∧ Laterality[p0 p1 pB pA] ∧ Laterality[p2 p3 pA pB]
	 ∧ Equidistance[p0 pA p0 p2] ∧ Equidistance[p2 pA p0 p2] ∧ Laterality[pA p0 p0 p2]
	 ∧ Equidistance[p0 pB p0 p2] ∧ Equidistance[p2 pB p0 p2] ∧ Laterality[pB p2 p2 p0]

135

DYNAMIC
HANDLING OF
GEOMETRIC
CONSTRAINTS

This section establishes how the graphic static rules developed in the previous section can
be observed when points in their diagram move.

Sub-section 15 (“graphical regions and dynamic compliance with geometric relationships”,
page 137) defines three fundamental graphical constraints, relates their application onto
points with the verification of geometric relationships, and introduces a mechanism that al-
lows the displacement of constrained positions.

Sub-section 16 (“constraint (inter)dependencies”, page 155) clarifies how this mechanism
also handles interdependent constraints. Constraints intended for graphical computation
are exemplified in sub-section 17 (“examples of graphical computations”, page 165). Sub-
section 18 (“switching constraint dependencies”, page 195) exhibits a systematic method
to switch dependencies between constrained points symbolically, i.e. without the need to
reconsider the entire geometric construction. Sub-section 19 (“constraint propagations”,
page 201) develops methods that construct new constraints symbolically in order to ensure
that a solution always exists. The advantages and limitations of these methods are discussed
in the same sub-section.

Sub-section 21 (“constraints for a uniform reading cycle of forces”, page 243) defines the
constraints that are required in order for diagrams to display a uniform reading cycle of
forces and sub-section 22 (“facilitating the crossing of rods”, page 259) discusses auto-
mated mechanisms that allow crossing rods in the form diagram.

Sub-section 20 (“dynamic conditional geometric statements”, page 233) finally describes
constraints that allow the graphical execution of dynamic logic with the only aforementioned
devices.

dynamic handling of geometric constraints · 137

15	graphical regions and
dynamic compliance with
geometric relationships

The role of this section is to characterise the set of values that a certain pa-
rameter can hold in order to satisfy a given geometric statement with other
given parameters. Since all these parameters are chosen to be only positions
of points, the set of values can be described entirely with graphical regions
in the plane.

fundamental graphical regions� · It has been decided that these graphical
regions will be described using three fundamental shapes: the half-plane, the
inside of a disc and the outside of a disc. They are defined as follows.

(1)	 a half-plane, denoted HalfPlane[pA pB pC], is defined as the closed region, i.e.
with the boundary included, to the left of pA according to the direction go-
ing from pB to pC (figure 139, left). The inversion of a half-plane, denoted
\HalfPlane[pA pB pC], is logically the open region, i.e. with the boundary exclud-
ed, to the right of pA according to the direction going from pB to pC (figure 139,
right);

(2)	 the inside of a disc, denoted DiscInside[pA pB pC], is defined as the closed
region, i.e. with the boundary included, inside the circle of centre pA and
radius pBpC (figure 140, left). The inversion of the inside of a disc, denoted
\DiscInside[pA pB pC], is logically the open region, i.e. with the boundary ex-
cluded, outside the circle of centre pA and radius pBpC (figure 140, right).

figure 139
a HalfPlane

[pA pB pC] region
(left) and its

inverse (right).

138 · dynamic handling of geometric constraints

(3)	 the outside of a disc, denoted DiscOutside[pA pB pC], is defined as the closed
region, i.e. with the boundary included, outside the circle of centre pA and
radius pBpC (figure 141, left). The inversion of the outside of a disc, denoted
\DiscOutside[pA pB pC], is logically the open region, i.e. with the boundary ex-
cluded, inside the circle of centre pA and radius pBpC (figure 141, right).

Particular cases of DiscInside and DiscOutside regions occur when points pB
and pC are coincident. The DiscInside[pA pB pB] region is the single position pA
(figure 142, left) and its inverse is the entire plane minus the position of pA
(figure 142, right). The DiscOutside[pA pB pB] region is the entire plane and its
inverse does not exist.

Boolean combinations of graphical regions� · More complex graphical
regions can be obtained by Boolean combinations, e.g. unions (∪), intersec-
tions (∩), inversions (\), differences (− or \∩), of these three fundamental
regions. For example, figure 143 shows the following region:

	 (\(HalfPlane[p0 p0 p1] ∪ HalfPlane[p0 p2 p0]) ∪ HalfPlane[p0 p3 p4])
 ∩	 DiscOutside[p0 p0 p1] ∩ DiscInside[p0 p0 p2]

figure 140
a DiscInside
[pA pB pC] region
(left) and its
inverse (right).

figure 141
a DiscOutside
[pA pB pC] region
(left) and its
inverse (right).

figure 142
a DiscOutside
[pA pB pB] region
(left) and its
inverse (right).

dynamic handling of geometric constraints · 139

Combined regions can be defined as new non-fundamental regions in order to
make them easier to use. The following definitions illustrate two non-funda-
mental regions corresponding to a line and a circle respectively:

Straightedge[p0 p1 p2] := HalfPlane[p0 p1 p2] ∩ HalfPlane[p0 p2 p1]
Compass[p0 p1 p2] := DiscInside[p0 p1 p2] ∩ DiscOutside[p0 p1 p2]

The line given by two points of passage and the circle given by its centre and
a point of passage can be defined has follows:

VeeringStraightedge[p0 p1] := HalfPlane[p0 p0 p1] ∩ HalfPlane[p0 p1 p0]
CollapsibleCompass[p0 p1] := DiscInside[p0 p0 p1] ∩ DiscOutside[p0 p0 p1]

The region corresponding to a single position p0 and the entire plane on which
p0 is positioned can also be defined by new non-fundamental constraints:

Position[p0] := DiscInside[p0 p0 p0]
Ω := Plane[p0] := DiscOutside[p0 p0 p0]

pure equivalent unions and intersections� · A Boolean combination can be
written in many equivalent ways. Two types of equivalent writings are of par-
ticular interest: pure equivalent intersections and pure equivalent unions.

 •	a pure equivalent union of a given Boolean combination is an equivalent
Boolean combination in which (1) intersections only group fundamental
regions or inverses of fundamental regions and (2) unions do not group
other unions

•	 a pure equivalent intersection of a given Boolean combination is an
equivalent Boolean combination in which (1) unions only group funda-
mental regions or inverses of fundamental regions and (2) intersections
do not group other intersections

The transformation of a given Boolean combination into one of its pure equiv-
alent can easily be made by using distributivity and De Morgan’s laws. If R0,
R1 and R2 are three graphical regions, these laws are as follows:

figure 143
example of

Boolean
combination.

140 · dynamic handling of geometric constraints

R0 ∪ (R1 ∩ R2) = (R0 ∪ R1) ∩ (R0 ∪ R2)
R0 ∩ (R1 ∪ R2) = (R0 ∩ R1) ∪ (R0 ∩ R2)

\(R0 ∩ R1) = \R0 ∪ \R1)
\(R0 ∪ R1) = \R0 ∩ \R1)

As a practical example, the pure equivalent Boolean combinations of the re-
gion illustrated in figure 143, page 139 is as follows:

pure equivalent union:
	 (\HalfPlane[p0 p0 p1] ∩ \HalfPlane[p0 p2 p0]
	 ∩ DiscOutside[p0 p0 p1] ∩ DiscInside[p0 p0 p2])
 ∪	 (HalfPlane[p0 p3 p4] ∩ DiscOutside[p0 p0 p1] ∩ DiscInside[p0 p0 p2])

pure equivalent intersection:
	 (\HalfPlane[p0 p0 p1] ∪ HalfPlane[p0 p3 p4])
 ∩	 (\HalfPlane[p0 p2 p0] ∪ HalfPlane[p0 p3 p4])
 ∩	 DiscOutside[p0 p0 p1]
 ∩	 DiscInside[p0 p0 p2]

constraining points in graphical regions� · The three fundamental shapes
HalfPlane, DiscInside and DiscOutside are actually closely linked to the two funda-
mental relationships Laterality and Proximity, defined previously in sub-section
08 (“relationships of proximity and laterality”, page 61). HalfPlane regions
share the ability to describe relative direction with Laterality relationships and
DiscInside and DiscOutside regions share the ability to describe inequalities of
distances with Proximity relationships — see the paragraph entitled “beyond
classical compass-and-straightedge constructions” (page 75). Moreover,
the following statements hold

 •	if four points hold a Laterality[p0 p1 p2 p3] relationship, they each have to
remain within a half-plane, whose position and orientation are defined
by the three other points (figure 144)

 •	if four points hold a Proximity[p0 p1 p2 p3] relationship, they each have to
remain either inside or outside a disc, whose position and radius are
defined by the three other points (figure 145).

More precisely, a Laterality[p0 p1 p2 p3] relationship is always true when, for any
positions p0, p1, p2 and p3, the following statements are verified:

 •	p0 is in the HalfPlane[p1 p2 p3] region (figure 144, top left)
 •	p1 is in the HalfPlane[p0 p3 p2] region (figure 144, top right)
 •	p2 is in the HalfPlane[p3 p1 p0] region (figure 144, bottom left)
 •	p3 is in the HalfPlane[p2 p0 p1] region (figure 144, bottom right).

dynamic handling of geometric constraints · 141

Likewise, a Proximity[p0 p1 p2 p3] relationship is always true when, for any posi-
tions p0, p1, p2 and p3, the following statements are verified:

 •	p0 is in the DiscInside[p1 p2 p3] region (figure 145, top left)
 •	p1 is in the DiscInside[p0 p2 p3] region (figure 145, top right)
 •	p2 is in the DiscOutside[p3 p0 p1] region (figure 145, bottom left)
 •	p3 is in the DiscOutside[p2 p0 p1] region (figure 145, bottom right).

Hence, compelling a point to remain on the Boolean combination of HalfPlane,
DiscInside and DiscOutside regions is equivalent to ensuring that the corre-
sponding logical combination of Laterality and Proximity is verified.

figure 144
four points

holding a
Laterality

[p0 p1 p2 p3]
relationship, each

of them belongs
to a HalfPlane

region.

figure 145
four points

holding a
Proximity

[p0 p1 p2 p3]
relationship, each

of them belongs
to a DiscInside

region or a
DiscOutside

region.

142 · dynamic handling of geometric constraints

For instance, if a point px remains in the region of figure 143, page 139
(figure 146), the following statement is always true:

	 (¬(Laterality[px p0 p0 p1] ∨ Laterality[px p0 p2 p0]) ∨ Laterality[px p0 p3 p4])
 ∧	 Proximity[p0 p1 px p0] ∩ Proximity[p0 px p0 p2]

It is subsequently decided that geometric statements are, from now on, de-
scribed as logical conjunctions of a point’s membership of a region. This is the
reason why each region will be called a “constraint”. The symbol ∈ will stand
for the point’s membership of constraint.

For example, the following memberships describe three point’s memberships
of constraints. Points p3 and p4 bisect the line p0p1 and p5 is constrained on the
orthogonal projection of p2 onto the line p0p1 (figure 147):

p3 ∈ Compass[p0 p0 p1] ∩ Compass[p1 p0 p1] ∩ HalfPlane[p0 p0 p1]
p4 ∈ Compass[p0 p0 p1] ∩ Compass[p1 p0 p1] ∩ HalfPlane[p0 p1 p0]
p5 ∈ Straightedge[p0 p0 p1] ∩ Straightedge[p2 p3 p4]

This series of memberships is equivalent to the satisfaction of the following
geometric relationships:

	 (Equidistance[p3 p0 p0 p1] ∧ Equidistance[p3 p1 p0 p1] ∧ Laterality [p3 p0 p0 p1])
 ∧	 (Equidistance[p4 p0 p0 p1] ∧ Equidistance[p4 p1 p0 p1] ∧ Laterality [p4 p0 p1 p0])
 ∧	 (Parallelism[p5 p0 p0 p1] ∧ Parallelism[p5 p2 p3 p4])

It may be noted that the order in which constraints are applied has no influ-
ence on the geometric result.

figure 146
point px must stay
within the grey
region.

figure 147
point p5 is
constrained on
the orthogonal
projection of p2
onto the line p0p1.

dynamic handling of geometric constraints · 143

restriction on the scope of available geometric statements� · The choice of
describing geometric statements by means of logical conjunctions of member-
ships reduces the scope of available geometric statements (compared to those
studied in the previous section). Although graphical constraints can be made
of unions, intersections and inverses of fundamental regions, conditions of
membership must be joined by logical conjunctions only, i.e. no logical impli-
cation, bijection, disjunction, negation and quantifier is allowed.

In terms of logical relationships, this means that the only available geometric
relationships allowed are those meeting the following requirement: given the
geometric relationship written such that (1) conjunctions only join disjunc-
tions, fundamental relationships, i.e. Laterality and Proximity relationships, or
their inverses and (2) disjunctions only join fundamental relationships or their
inverses; if a point p0 is used in one of the fundamental relationships that is in
disjunction with other fundamental relationships φj, then this point must also
be used in all fundamental relationships φj.

For example, the following relationship is allowed, where φ0 to φ6 are funda-
mental relationships:

φ0[…p0…] ∧ (φ1[…p0…] ∨ φ2[…p0…] ∨ φ3[…p0…]) ∧ φ4[…] ∧ (φ5[…] ∨ φ6[…])

But this one is prohibited:

φ0[…p0…] ∨ φ2[…] where p0 is not a parameter of φ2

This restriction of scope has no technical or practical rationale except that
it makes the current research easier. Hopefully, it has a limited impact on
the purpose of common graphic statics constructions. This is mostly due to
the fact that geometric statements can generally be expressed in many dif-
ferent ways. A brief overview of capabilities will be given in sub-section 17
(“examples of graphical computations”, page 165). Moreover, sub-section 20
(“dynamic conditional geometric statements”, page 233) will later show that
conditional constructions are still available despite this restriction.

allowing dynamic displacements of points� · Only static geometric state-
ments have been considered so far, i.e. each point occupies a fixed given posi-
tion that satisfies the relationships to which it is subjected. The ability to
move points in their plane is now introduced and studied. It follows that each
logical geometric relationship (obtained by conjunction of memberships) must

144 · dynamic handling of geometric constraints

be satisfied for any new change of position. This paragraph compares two
options for guaranteeing the permanent verification of a relationship when
points are moving and selects the latter.

As recalled in the paragraph entitled “constraining points in graphical
regions” (page 140), Laterality and Proximity relationships are symmetrical
— see Ax.1 (page 62) and Ax.6 (page 64). As a consequence, guaranteeing
the application of a HalfPlane[p1 p2 p3] constraint onto a point p0 would ensure
that the Laterality[p0 p1 p2 p3] relationship is satisfied, and would therefore be
equivalent to compelling p1 within the HalfPlane[p0 p3 p2] region, p2 within the
HalfPlane[p3 p1 p0] region and p3 within the HalfPlane[p2 p0 p1] region. The same
is true for DiscInside and DiscOutside constraints. Combinations of fundamental
constraints present similar properties as well, i.e. the application of a non-
fundamental constraint onto a point remains true as long as all the parameter
points of that constraint stay within certain graphical regions.

A first option would be to constrain each point within the corresponding
graphical region, i.e. they cannot be dragged outside that region. This option
is not adopted for practical reasons. The four following examples explain why:

(1)	 Given four points p0, p1, p2, p3 holding a Laterality[p0 p1 p2 p3] relationship, p1
is asked to be moved onto a fifth point p4. Since they hold a Laterality relation-
ship, points p0, p1, p2 and p3 would each be constrained in a HalfPlane region.
If C0, C1, C2 and C3 are those constraints, this means that p0 ∈ C0, p1 ∈ C1,
p2 ∈ C2 and p3 ∈ C3. As a consequence, point p1 would not be able to move
onto p4 (figure 148), it would be stopped on the boundary of C1 (figure 149).
In order for p1 to reach p4, p0, p2 or p3 must first be moved further than p4
(figure 150). This means that two movements are required for one desired
move (figure 151).

The movement of p0, p2 or p3 can be automated but this would require choos-
ing what point to move first. When a point is constrained by more complex
Boolean combinations, it could become necessary to move multiple points
after having selected them from a larger set. This selection should not be
left to the computer since it may modify input data without the user being
aware of it, which might be confusing — e.g. controlling the position of a line
is different from controlling is orientation. On the other hand, this selection
should not be left to the user either since it may represent a long and labori-
ous process.

dynamic handling of geometric constraints · 145

figure 148
initial situation,

point p1 has to be
moved upon point

p4.

figure 149
first attempt to

move of p1.

figure 150
required move of

p0.

figure 151
final move of p1.

146 · dynamic handling of geometric constraints

(2)	 A similar drawback is obtained with four points p0, p1, p2, p3 holding a
Proximity[p0 p1 p2 p3] relationship, p1 is asked to be moved onto a fifth point p4.
Since they hold a Proximity relationship, points p0 and p1 would each be con-
strained in a DiscInside region and points p2 and p3 would each be constrained
in a DiscOutside region. If C0, C1, C2 and C3 are those constraints, this means
that p0 ∈ C0, p1 ∈ C1, p2 ∈ C2 and p3 ∈ C3. As a consequence, point p1 would not
be able to move onto p4 (figure 152), it would be stopped on the boundary of
C1 (figure 153). In order for p1 to reach p4, p0 must first be moved closer to p4
(figure 154 and figure 155) or p3 and p4 must be moved far apart from each
other. In the event that p4 is far further away from p1 (figure 156) and where
the distance p2p3 cannot be changed, p0 and p1 would need to be dragged a
number of times by small increments. This means that multiple movements
are required for one desired move.

(3)	 The third example is even more worrying. Given four points p0, p1, p2, p3
holding a Parallelism[p0 p1 p2 p3] relationship, i.e. the conjunction of two Laterality
relationships, they would each be constrained on a Straightedge, i.e. the in-
tersection of two HalfPlane regions, the position and orientation of which are
given by the three other points (figure 157). This means that it is impossible
to move these four points anywhere except on their Straightedge constraint. In
other words, the orientation of and the space between the two parallels are
unchangeable.

(4)	 The final example is similar. Given four points p0, p1, p2, p3 holding an
Equidistance[p0 p1 p2 p3] relationship, i.e. the conjunction of two Proximity rela-
tionships, they would each be constrained on a Compass, i.e. the intersection
of a DiscInside region with a DiscOutside region, the position and radius of which
are given by the three other points (figure 158). This means that it is impos-
sible to move these four points anywhere except on their Compass constraint.
In other words, it is impossible to modify the distances p0p1 and p2p3.

For all these reasons, the second option is adopted. It constrains just one
of the concerned points in its graphical region. Since this allows the other
points to be moved outside their own graphical region, they might take the
constrained point outside its own graphical region as well. To avoid this, the
constrained point is automatically moved to the closest suitable position as
soon as it is taken outside its region.

dynamic handling of geometric constraints · 147

figure 152
initial situation,

point p1 has to be
moved upon point

p4.

figure 153
first attempt to

move p1.

figure 154
required move of

p0.

figure 155
final move of p1.

148 · dynamic handling of geometric constraints

For example, given four points and the membership p0 ∈ HalfPlane[p1 p2 p3]
(figure 159), moving p2 clockwise around p3 would rotate the half-plane around
p1 and would change no other position until p2p3 becomes parallel to p0p1
(figure 160). However, if p2 keeps moving further, it would cause the posi-
tion of p0 to be updated on its closest position within the HalfPlane[p1 p2 p3]
constraint (figure 161).

As a result of this new rule, the nature of the point on which the constraint is
applied differs from the other points. This point must be chosen and known.
That is the reason why the logical grammar using geometric relationships for
describing the geometric state in full is no longer used and the description of
point memberships in graphical regions is used instead.

The closest position of a point is actually either its orthogonal projection onto
the given border or an inflexion point of that boundary. Thanks to the nature
of the three fundamental regions, this new position is fairly quick to compute
because it is either an orthogonal projection on a line or a circle, or the in-

figure 156
same situation as
in figure 152
except that the
distance p1p4 is
greater.

figure 157
four points
constrained on
parallels.

figure 158
four points
constrained on
similar circles.

dynamic handling of geometric constraints · 149

tersection between two lines, two circles or a line with a circle. One simple
method to find the closest point is to find all the candidates, i.e. orthogonal
projections on fundamental regions and intersections between fundamental
regions, and to compare their distance from the point that has to be moved
(figure 162).

figure 159
a point p0

constrained on a
half-plane.

figure 160
move of p2, it

rotates the
half-plane.

figure 161
move of p2, it

forces the update
of p0 on its closest

position within
the half-plane.

figure 162
search for the

closest candidate
points; point p0 is

not within its
applied region

and must
therefore be
moved to its

closest point p*.

150 · dynamic handling of geometric constraints

figure 163
if the region
(grey area) is not
empty, every
position has a
closest point.

If the region is not empty, every point always has a closest point belonging
to that region (figure 163). For some positions, a point might have multiple
closest positions inside its region. The set of all these positions (figure 161)
is known has the topological skeleton and shares similarities with Voronoi
skeletons and medial axis (Blum·1967, Ogniewicz/Ilg·1992 and Siddiqi/…·2008).

If the candidate closest position is on a border that is not included in the re-
gion, i.e. because of an inverse constraint, the closest position is assumed to
be infinitesimally just beyond that border.

When a constraint consists of multiple non-continuous convex regions, it can
be noticed that in most cases this action minimises the disturbance of the
model when a point jumps from one region to another.

dynamic handling of geometric constraints · 151

domains of solutions� · Since a point might belong to many graphical con-
straints, it is useful to describe the global intersection of these constraints.
This global intersection is called the domain. By default, the domain of a point
is full, i.e. the point is not constrained and can be moved anywhere in the
plane.

Constraints applied to a point may have different purposes and roles. As a
result, it is possible to distinguish between different kinds of domains:

(1)	 The “input domain” of a point is the intersection of all the constraints
that are specifically applied by the user to the point. This is the initial
set of positions outside of which the point can not go.

(2)	 The “strict domain” of a point is the intersection of the initial domain
with all the constraints obtained by the symmetry of constraints ap-
plied on other points. In other words, the strict domain is the set of po-
sitions in which a point can move without changing the position of any
other point, i.e. no update to closest positions would be required but
available geometric modifications would be seriously limited, as dis-
cussed in the first option of the previous paragraph entitled “allowing
dynamic displacements of points” (page 143)

(3)	 The “propagation domain” of a point is the set of positions that the point
can have so that every point related to it is guaranteed to have at least
one position in the plane. This domain is generally more restrictive
than the input domain and requires the computation of specific solver
algorithms. Sub-section 19 (“constraint propagations”, page 201) dis-
cusses some of them.

(4)	 The “domain of solutions” of a point is the set of positions that solves
the initial geometric statement. It is the domain that satisfies the con-
straints applied by the user and for which every point as a non-empty
domain. It is consequently equivalent to the intersection of the input
domain with the propagation domain.

These four domains can be illustrated using the following construction
(figure 165):

p0 ∈ VeeringHalfplane[p1 p2] ∩ CollapsibleDiscOutside[p1 p2]
p6 ∈ VeeringHalfplane[p3 p0] ∩ VeeringHalfplane[p4 p5] ∩ VeeringHalfplane[p1 p2]

figure 164
sometimes, it

might be multiple
closest points;

the bold line
groups all the
positions that
have multiple
solutions. The

bold line is known
as the topological

skeleton of the
inverse of the

region.

152 · dynamic handling of geometric constraints

figure 166
the input domain
of p0.

figure 167
the strict domain
of p0.

figure 168
the propagation
domain of p0.

figure 169
the domain of
solutions of p0.

figure 165
the input domain
of p6 is the
shaded area;.

dynamic handling of geometric constraints · 153

The various domains of p0 are (figure 166, figure 167, figure 168 and
figure 169):

inputDom[p0] = VeeringHalfplane[p1 p2] ∩ CollapsibleCompass[p1 p2]

strictDom[p0] = VeeringHalfplane[p6 p3] — p6 does not move

propagationDom[p0] = VeeringHalfplane[pA p3] ∪ \HalfPlane[p3 p1 p2]
	 where pA ∈ Straightedge[p1 p2] ∩ Straightedge[p4 p5]						
											 — p6 has a non-empty domain

solutionDom[p0] = VeeringHalfplane[p1 p2] ∩ CollapsibleCompass[p1 p2]
							 ∩ (VeeringHalfplane[pA p3] ∪ \HalfPlane[p3 p1 p2])

constraining forces� · The Force[F0 p0 p1 p2 p3] relationship is no exception to
the new rule of point displacement. To verify a Force[F0 p0 p1 p2 p3] relationship
means that one of the four points must be constrained by the others in order
to satisfy Ax.19 (page 83). The second point, i.e. p1, the point that defines
whether the force exerts a pull or a push, is chosen to be constrained rather
than the others because this favours a direct control of the force diagram
and choosing p0 instead does not make any sense. Sub-section 18 (“switching
constraint dependencies”, page 195) will show that this choice may actually
be changed at any time.

As a consequence of this choice, p1 must belong to the following domain in or-
der to verify Ax.19 when the relationship Force[F0 p0 p1 p2 p3] exists (page 83):

forceDom[p1] ∈ Straightedge[p0 p2 p3] ∩ CoincidenceCondition[p0 p2 p3]

The constraint CoincidenceCondition[p2 p3 p0] returns the position of p0 if p2 and
p3 are coincident and returns the inverse of the position of p0 — i.e. the entire
plane minus the position of p0 — if not. The definition of this non-fundamental
constraint will be held in sub-section 20 (“dynamic conditional geometric
statements”, page 233).

The satisfaction of Ax.27 (page 83) will also be guaranteed by a specific do-
main called ReadingCycleDom. Its construction will be developed in sub-section
21 (“constraints for a uniform reading cycle of forces”, page 243).

154 · dynamic handling of geometric constraints

other fundamental constraints� · Corresponding to each fundamental rela-
tionship introduced in the previous section is a new fundamental constraint.
Thereby, the points can be constrained as follows:

p0 ∈ ForceDiagram		 meaning that ForceDiagramMembership[p0] ⟷ true
p0 ∈ FormDiagram		 meaning that FormDiagramMembership[p0] ⟷ true
p0 ∈ UnitCompass[p1]	 meaning that Equidistance[p0 p1] ⟷ true
p0 ∈ PiCompass[p1]		 meaning that PiDistance[p0 p1] ⟷ true

And similarly for each transcendental number — see paragraph entitled “the
fundamental relationship of unit distance” (page 76).

dynamic handling of geometric constraints · 155

16	 constraint (inter)
dependencies

directed graphs of dependencies� · When a constraint is applied to a point,
the point is dependent on the points that define the constraint. These points
can in turn be dependent on other points, and so on. Being able to know this
genealogy is of great importance since it allows the identification of a chronol-
ogy for updating positions when a point is dragged.

The analysis of constraint dependencies is usually performed using a directed
graph. Nodes correspond to points and each arrow going from a point pA to a
point pB represents a constraint dependent on pA and applied to pB.

For example, figure 171 shows the graph of dependencies of the following
memberships (figure 170):

p3 ∈ C1
p5 ∈ C2
p6 ∈ C4
p7 ∈ C3 ∩ C2

where :
C0 = HalfPlane[p0 p2 p1]
C1 = DiscInside[p0 p1 p2]
C2 = HalfPlane[p3 p4 p1]
C3 = DiscInside[p5 p1 p4] ∩ DiscOutside[p5 p1 p4]
C4 = ((C0 ∪ C1) − C2) ∪ C3

figure 170
the input domain

of p6.

156 · dynamic handling of geometric constraints

The graph in figure 171 shows only the combined constraints. The graph in
figure 172 details the dependencies for all the fundamental constraints.

This directed graph allows the identification of particular points:
 •	“father points” of a given point pA are all the points that define the con-

straints directly applied on pA

 •	“grandfather points” of a given point pA include all the father points of
pA as well as all the father points of its grandfather points, i.e. all its
ancestors.

 •	“child points” of a given point pA are all the points that directly depend
on pA

 •	“grandchild points” of a given point pA include all the child points of pA
as well as all the child points of its grandchild points, i.e. all its progeny.

In the example in figure 172, the following sets can be distinguished:

children[p5] = {p6 p7}
grandchildren[p5] = {p6 p7}
fathers[p5] = {p1 p3 p4}
grandfathers[p5] = {p0 p1 p2 p3 p4}

figure 171
the directed
graph of
dependencies
associated with
the construction
of figure 170.

figure 172
the directed
graph of
fundamental
dependencies
associated with
the construction
of figure 170.

dynamic handling of geometric constraints · 157

figure 173
detail of

figure 170.

Other particular points are orphans and childless points. The former have no
father point, i.e. they depend on no other point — and the latter have no child
point. For instance, figure 173 is a detail of figure 170 and shows that p1 is an
orphan and p6 a childless point.

movement updating� · As previously mentioned, the graph of fundamental
dependencies provides a straightforward method for updating the positions
of points when one of them — pA — is moved. Firstly, the subset of grandchild
points of pA provides all the points whose position has to be checked — other
points do not need any update since they are not dependent on pA. Secondly,
these grandchildren can be checked from father to child paying attention so
that, for each generation, a child point is only checked if all its grandfathers
are either already checked or are grandfathers of pA as well. Thirdly, check-
ing a point will only involve an update of position if it no longer satisfies the
constraints that are applied on it.

For example, if point p3 is moved, it means that points p0, p1, p2 and p4 do not
have to be checked since they are not the grandchildren of p3 (figure 172). Out
all p3’s grandchildren {p5 p6 p7}, it is deduced that p6 and p7 can not be checked
before p5 since p5 is the father of p6 and p7. As a consequence, after having up-
dated the position of p3, the position of p5 must be checked. If the position of p5
is moved, both positions of p6 and p7 must be checked — whether p6 is checked
before or after p7 is a matter of choice as they do not depend on one other.

interdependency� · Interdependency occurs when the directed graph pre-
sents a cycle, meaning that each point in that cycle is constrained by itself,
directly or through in-between parameters. For example, the previous geo-
metric construction becomes interdependent when the following constraint is
applied on it (figure 174 and figure 175):

C5 = DiscInside[p5 p1 p4]
p0 ∈ C5

This cycle concerns the three points p0, p3 and p5 all linked together by the
following constraints:

158 · dynamic handling of geometric constraints

p3 ∈ DiscInside[p0 p1 p2]
p5 ∈ HalfPlane[p3 p1 p4]
p0 ∈ DiscInside[p5 p1 p4]

When one of them is moved, the update of its children might cause its own
update and hence might result in a loop. After a sufficiently high number of
iterations, it is envisaged that this loop will stop in one of three ways:

(1)	 the loop stops by itself because one of the self-constrained points is
within its applied region, meaning that its position does not have to
be updated anymore and consequently, neither do the positions of its
children

(2)	 the loop produces smaller and smaller displacements — each position
of self-constrained points converges to a single position without ever
reaching it exactly — meaning that an additional mechanism has to
stop the loop as soon as a displacement caused by the “ClosestPoint”
update becomes smaller than a given value

(3)	 the loop does not converge, meaning that the geometric construction
which caused it should be prevented.

These are the only mechanisms that have to be implemented in order to deal
with interdependency. The following examples illustrate these three cases.

figure 174
the input domain
of p5 after the
application of C5.

figure 175
the directed
graph of
fundamental
dependencies
associated with
the construction
of figure 174.

dynamic handling of geometric constraints · 159

(1)	 Given the following construction, p2 is moved onto a position p2' (figure 176):

p2 ∈ HalfPlane[p0 p1 p0]
p1 ∈ HalfPlane[p0 p2 p0]

Although p1 and p2 are two interdependent points, moving p2 will update the
position of p1 onto p1' (its closest position within the region C1) and this will not
cause a loop since p2' already belongs to the constraint applied on it. The same
behaviour for two other new positions of p2 is shown in figure 177.

The following example shows the same behaviour for a construction involv-
ing four interdependent points, constrained on four perpendicular lines
(figure 178):

p4 ∈ HalfPlane[p3 p0 p1] ∩ HalfPlane[p3 p1 p0]
p5 ∈ HalfPlane[p4 p0 p2] ∩ HalfPlane[p4 p2 p0]
p6 ∈ HalfPlane[p5 p0 p1] ∩ HalfPlane[p5 p1 p0]
p7 ∈ HalfPlane[p6 p0 p1] ∩ HalfPlane[p6 p1 p0]

Moving p3 onto the position p3' will update the position of p4 onto its closest
position p4', but no update of p5 will be required. Once again, the loop will
stop by itself.

figure 176
graph of

dependencies and
example of

movement of
interdependent

points, whose
positions

converge directly.

figure 177
two other

displacements.

160 · dynamic handling of geometric constraints

(2)	 The second kind of stop occurs when one of the three following interde-
pendent points p3, p4 or p5 is moved (figure 179):

p4 ∈ HalfPlane[p3 p0 p1] ∩ HalfPlane[p3 p1 p0]
p5 ∈ HalfPlane[p4 p0 p2] ∩ HalfPlane[p4 p2 p0]
p3 ∈ HalfPlane[p5 p1 p2] ∩ HalfPlane[p5 p2 p1]

The successive updates of these three points subsequent to the move of p3
is shown in figure 180: moving p3 onto p3' implies that p4 is updated onto p4',
implying that p5 is updated onto p5', p3' onto p3'', p4' onto p4'', etc. This will
continue and may be stopped when the distance between a point and its previ-
ously updated position is smaller than a predetermined value.

figure 178
example of
movement and
graph of
dependencies of
interdependent
points, whose
positions
converge directly.

figure 179
initial situation
and graph of
dependencies of
interdependent
points.

figure 180
example of
movements of
interdependent
points, whose
positions
converge.

dynamic handling of geometric constraints · 161

Practical uses of convergent interdependencies are the definition of a con-
straint with the shape of any algebraic curve. Some of them are detailed in
sub-section 17 (“examples of graphical computations”, page 165).

(3)	 The non-convergent case can be exemplified using the following applica-
tions of constraints (figure 181):

p2 ∈ \DiscInside[p0 p0 p1]
p1 ∈ \DiscInside[p0 p0 p2]

Points p1 and p2 will never reach a stable position; they will take each other
away from p0 ad infinitum. This construction must therefore be avoided. How-
ever, with additional proper constraints, these ongoing displacements might
be controlled and used for specific purposes involving dynamic loops.

static anchorage due to interdependency� · Some interdependencies of
constraints have the effect of anchoring points on a domain that cannot be
changed by any movement of other points. Constructions of this kind should
consequently be avoided. Following are three examples.

(1)	 This construction constrains two points on a line whose orientation can no
longer be altered (figure 182):

p3 ∈ HalfPlane[p2 p0 p1] ∩ HalfPlane[p2 p1 p0]
p2 ∈ HalfPlane[p3 p0 p1] ∩ HalfPlane[p3 p1 p0]

figure 181
graph of

dependencies and
example of

movement of
interdependent

points, whose
positions does not

converge.

figure 182
graph of

dependencies and
situation of the
first example of

static anchorage.

162 · dynamic handling of geometric constraints

(2)	 This construction constrains two points on two circles whose radius can no
longer be altered (figure 183):

p3 ∈ DiscInside[p2 p0 p1] ∩ DiscOutside[p2 p0 p1]
p2 ∈ DiscInside[p3 p0 p1] ∩ DiscOutside[p3 p0 p1]

(3)	 This construction constrains two points on positions that can no longer be
altered (figure 184):

p0 ∈ DiscInside[p1 p1 p1]
p1 ∈ DiscInside[p0 p0 p0]

inner self-constraining� · Interdependencies might also occur when a point
is constrained by a fundamental constraint that is directly dependent of it.
Interdependent fundamental constraints might have different behaviours:

 •	they may be useless — i.e. they constrain nothing at all, they are al-
ways satisfied naturally —, this is the case for p0 ∈ HalfPlane[p1 p0 p0],
p0 ∈ DiscInside[p0 p1 p2], p0 ∈ DiscOutside[p1 p0 p0] and p0 ∈ DiscOutside[p1 p0 p0]
(figure 185)

•	 they may be never satisfied, e.g. p0 ∈ DiscOutside[p0 p1 p2]
•	 they may produce static anchorage, e.g. p0 ∈ DiscInside[p0 p0 p0]
•	 they may produce particular conditions, for instance:
	 p0 ∈ HalfPlane[p1 p0 p2] is strictly equivalent to p0 ∈ HalfPlane[p1 p1 p2]

(figure 186)

figure 183
situation and
graph of
dependencies of
the second
example of static
anchorage.

figure 184
situation and
graph of
dependencies of
the third example
of static
anchorage.

dynamic handling of geometric constraints · 163

	 p0 ∈ DiscInside[p1 p0 p2] compels p0 to stay on the side of p1 given by the
line segment bisector of p1p2 (figure 187)

	 p0 ∈ DiscOutside[p1 p0 p2] compels p0 to stay on the side of p2 given by the

line segment bisector of p1p2 (figure 188)
	 p0 ∈ DiscInside[p1 p0 p0] compels p0 to stay upon p1 and is therefore equiv-

alent to p0 ∈ DiscInside[p1 p1 p1].

figure 185
graph of

dependencies and
situation of p0 ∈

HalfPlane[p0 p1 p2].

figure 186
graph of

dependencies and
situation of p0 ∈

HalfPlane[p1 p0 p2].

figure 187
graph of

dependencies and
situation of p0 ∈

DiscInside[p1 p0 p2].

figure 188
graph of

dependencies and
situation of p0 ∈

DiscOutside
[p1 p0 p2].

figure 189
situation and

graph of
dependencies of

p0 ∈ DiscInside
[p0 p1 p2] ∩
DiscOutside

[p0 p1 p2].

164 · dynamic handling of geometric constraints

Combinations of constraints of this kind may also produce specific results.
For instance, p0 ∈ DiscInside[p0 p1 p2] ∩ DiscOutside[p0 p1 p2] constrains p1 on the
bisector of the segment p0p2 (figure 189).

locus of positions� · The previous example highlights one difficulty that may
arise with interdependencies: the displayed domain of a point may be differ-
ent from the entire set of positions it can hold. This difference only concerns
what is displayed and not what is allowed to move.

For example, figure 189 shows that p1 is constrained on a circle although it
can move all along the bisector. This does not mean that p1 cannot be dragged
all along the bisector: dragging p1 outside is current position would first fix
the radius of the circle and than update the position of p1 onto its closest
position belonging to the circle, which in turn would alter the radius of circle
again and would update p1 onto its newest closed position, resulting in a loop
that will make p1 converging to the bisector. Other examples using this device
are presented in the following sub-section.

Since it might be preferable for the user to visualise the entire available locus
of positions properly, a “locus domain” may be introduced. The locus domain
of a point pA given by a point pB, where pB is a father point of pA, is the set of
all the positions that pA can hold when pB travels around its own domain of
solution. The locus domain of an interdependent point is therefore defined
by pA=pB.

Thanks to the property explained in the paragraph entitled “similarity
between the locus and the propagation domain” (page 230), some locus do-
mains may be produced using accurate, symbolic algorithms similar to those
developed in sub-section 19 (“constraint propagations”, page 201). However,
other locus domains, e.g. those produced by interdependency, such as the
curves put forward in the next sub-section, may only be approached by nu-
merical analytical or trial-and-error techniques performed on a discretised
sample region.

dynamic handling of geometric constraints · 165

17	 examples of graphical
computations

This sub-section exhibits a series of geometric constraints capable of per-
forming advanced computations. Rather than listing them all, the purpose is
to illustrate the means by which they are achieved and their practical inter-
ests.

The first five paragraphs show how classical compass-and-straightedge opera-
tions can be automated with non-fundamental graphical constraints. The next
paragraph explains how the classical limitations of compass-and-straightedge
constructions can be overcome using interdependencies of constraints. The
final two paragraphs point out two approaches to constrain points on curves
other than on the circle.

To make it more concise, the following abbreviations of constraints are used:

HP[p0 p1 p2]	 := HalfPlane[p0 p1 p2]
VHP[p0 p1] 	 := VeeringHalfplane[p0 p1] = HalfPlane[p0 p0 p1]

SE[p0 p1 p2]	 := Straightedge[p0 p1 p2] = HalfPlane[p0 p1 p2] ∩ HalfPlane[p0 p2 p1]
VSE[p0 p1]		 := VeeringStraightedge[p0 p1] = Straightedge[p0 p0 p1]

DI[p0 p1 p2]	 := DiscInside[p0 p1 p2]
CDI[p0 p1] 		 := CollapsibleDiscInside[p0 p1] = DiscInside[p0 p0 p1]

DO[p0 p1 p2]	 := DiscOutside[p0 p1 p2]
CDO[p0 p1] 	 := CollapsibleDiscOutside[p0 p1] = DiscOutside[p0 p0 p1]

C[p0 p1 p2]		 := Compass[p0 p1 p2] = DiscInside[p0 p1 p2] ∩ DiscOutside[p0 p1 p2]
CC[p0 p1] 		 := CollapsibleCompass[p0 p1] = Compass[p0 p0 p1]

[p0]			 :=	 Position[p0] = DiscInside[p0 p0 p0]

dynamic compass-and-straightedge constructions� · Successive applica-
tions of fundamental constraints can be stored to handle more abstract geo-
metric concepts, e.g. constraining lengths and angles rather than positions.
The following list describes some of them:

166 · dynamic handling of geometric constraints

•	 The MidPoint[p1 p2] constraint is the middle position of the line segment p1p2:

MidPoint[p1 p2] := VSE[p1 p2] ∩ VSE[pA pB] ∩ CC[p1 p2]
	 where: 	 pA ∈ CC[p1 p2] ∩ CC[p2 p1] ∩ VHP[p1 p2]
				 pB ∈ CC[p1 p2] ∩ CC[p2 p1] ∩ VHP[p2 p1]

The application p0 ∈ MidPoint[p1 p2] is illustrated in figure 190. This constraint
remains valid in the particular case where p1 and p2 are coincident.

•	 A line passing through p0 and p1 is always perpendicular to a line pass-
ing through p2 and p3 if p0 ∈ LinePerpendicularToLine[p1 p2 p3] (figure 191) or if
p2 ∈ LinePerpendicularToLine[p3 p0 p1]:

LinePerpendicularLine[p1 p2 p3] := Straightedge[p1 pA pB]
	 where: 	 pA ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p2 p3]
				 pB ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p3 p2]

For instance, if p2 or p3 moves, the position of p0 is updated to its closest posi-
tion and the lines remain perpendicular. If p2 and p3 are coincident, p0 can be
anywhere in the plane. The following constraints ensure that p2p3 and p0p1
are real lines:

p2 ∈ \[p3]
p0 ∈ \[p1]

figure 190
construction and
domain of p0 ∈
MidPoint [p1 p2].

figure 191
construction and
domain of p0 ∈
LinePerpendicular
ToLine[p1 p2 p3].

dynamic handling of geometric constraints · 167

•	 The TranslatedPosition[p0 p1 p2] constraint gives the position that p2 would
have if it was translated according to the orientation going from p0 to p1 and
to the distance p0p1 (figure 192):

TranslatedPosition[p0 p1 p2] := C4 ∩ C5 ∩ C6
	 where:		 C0 = VeeringHalfplane[p1 p2]
				 C1 = VeeringHalfplane[p2 p1]
				 C2 = CollapsibleCompass[p1 p2]
				 C3 = CollapsibleCompass[p2 p1]
				 C4 = Compass[p0 p1 p2]
				 C5 = Straightedge[p0 p1 p2]
				 C6 = HalfPlane[p0 pA pB]
				 pA ∈ C0 ∩ C2 ∩ C3
				 pB ∈ C1 ∩ C2 ∩ C3

This constraint remains correct when p1 and p2 are coincident.

•	 If an angle α is defined by three points p0, p1 and p2 as being the angle read
clockwise between the line p0p1 and the line p0p2, then a line p3p4 always forms
an angle α with a line p5p6 if p4 ∈ OrientedLine[p3 p5 p6 p0 p1 p2] (figure 193) such
that:

OrientedLine[p3 p5 p6 p0 p1 p2] := (VSE[p3 pB] ∪ VSE[p3 pC]) − [p3]
	 where:		 pA ∈ SE[p3 p5 p6] ∩ C[p3 p0 p1]
								 — two allowable positions but one unique final result
				 pB ∈ C[p3 p0 p2] ∩ C[p7 p1 p2] ∩ VHP[p3 pA]
				 pC ∈ C[p3 p0 p2] ∩ C[pA p1 p2] ∩ VHP[pA p3]

figure 192
construction and

domain of
TranslatedPosition

[p0 p1 p2] is
highlighted in

grey.

168 · dynamic handling of geometric constraints

The result remains valid for any value of α, as long as the following conditions
hold:

p1 ∈ \[p0]
p2 ∈ \[p0]
p3 ∈ \[p4]
p5 ∈ \[p6]

•	 A line passing through p2p3 is always tangential to a circle of centre p0 and
passing through p1 if p3 ∈ LineTangentToCircle[p0 p1 p2] (figure 194):

LineTangentToCircle[p0 p1 p2] := (SE[pD pF pG] ∪ SE[pE pH pI]) − [p2]
	 where:
		 — line pApB is perpendicular to line p0p2 :
				 C0 = CollapsibleCompass[p0 p2]
				 C1 = CollapsibleCompass[p2 p0]
				 pA ∈ C0 ∩ C1
				 pB ∈ C0 ∩ C1 − [pA]

	 	 — pC is midpoint of p0p2 :
				 C2 = VeeringHalfplane[p0 p2]
				 C3 = VeeringHalfplane[p2 p0]
				 C4 = VeeringStraightedge[pA pB]
				 pC ∈ C2 ∩ C3 ∩ C4

		 — pD and pE are two points of tangency (they may be coincident with p2) :
				 C5 = CollapsibleCompass[pC p2]
				 C6 = CollapsibleCompass[p0 p1]
				 pD ∈ C2 ∩ C5 ∩ C6
				 pE ∈ C3 ∩ C5 ∩ C6

		 — line pFpG is perpendicular to line p0pD :
				 C7 = CollapsibleCompass[pD p0]
				 pF ∈ C6 ∩ C7
				 pG ∈ C6 ∩ C7 − [pF]

figure 193
construction and
domain of p4 ∈
OrientedLine
[p3 p5 p6 p0 p1 p2].

dynamic handling of geometric constraints · 169

		 — line pHpI is perpendicular to p0pE :
				 C8 = CollapsibleCompass[pE p0]
				 pH ∈ C6 ∩ C8
				 pI ∈ C6 ∩ C8 − [pH]

To be defined effectively, the problem should constrain p2 such that it is not
inside the circle: p2 ∈ CDO[p0 p1].

When p2 is not superimposed onto the circle, lines p2pD and p2pE already
provide the two tangents and the search for pF, pG, pH and p11 is superflu-
ous — i.e. SE[pDpFpG] is equivalent to VSE[p2pD] and SE[pDpHpI] is equivalent to
VSE[p2pE]. However, points pF, pG, pH and pI are useful for finding the unique
tangent when p2 is superimposed onto the circle — in that case, SE[pD pF pG]
and SE[pEpHpI] are equivalent.

•	 The distance between a point p4 and a line p0p1 is equal to the distance
between p2 and p3 if p4 ∈ OrthogonalDistanceToLine[p0 p1 p2 p3] (figure 195):

OrthogonalDistanceToLine[p0 p1 p2 p3] := SE[pD p0 p1] ∪ SE[pE p0 p1]
	 where:		 C0 = CC[p0 p1]
				 C1 = CC[p1 p0]
				 pA ∈ C0 ∩ C1 ∩ VHP[p0 p1]
				 pB ∈ C0 ∩ C1 ∩ VHP[p1 p0]

figure 194
construction and

domain of p3 ∈
LineTangentToLine

[p0 p1 p2].

170 · dynamic handling of geometric constraints

				 C2 = VSE[pA pB]
				 C3 = VSE[p0 p1]
				 pC ∈ C2 ∩ C3

				 C4 = C[p7 p3 p4]
				 C5 = VHP[p0 p1]
				 C6 = VHP[p1 p0]
				 pD ∈ C2 ∩ C4
				 pE ∈ C2 ∩ C4 − [pD]

arithmetic operations� · This paragraph shows how new distances can be
achieved through the addition, subtraction, division and multiplication of dis-
tances. Each of these new lengths is stored using a Compass constraint:

•	 the SumCompass[p0 p1 p2 p3 p4] constraint returns a Compass constraint that
is centred on p0 and whose radius is the sum of the distances p1p2 and p3p4
(figure 196):

SumCompass[p0 p1 p2 p3 p4] := Compass[p0 pB pE]
	 where:		 C0 = Compass[pA p1 p2]
				 pB ∈ C0

				 C1 = Compass[pB p1 p2]
				 C2 = VeeringHalfplane[pA pB]
				 C3 = VeeringHalfplane[pB pA]
				 pC ∈ C0 ∩ C1 ∩ C2
				 pD ∈ C0 ∩ C1 ∩ C3

				 C4 = Compass[pA p3 p4]
				 C5 = HalfPlane[pA pD pC]
				 pE ∈ C2 ∩ C3 ∩ C4 ∩ C5

figure 195
construction and
domain of p4 ∈
OrthogonalDistance
ToLine [p0 p1 p2 p3].

dynamic handling of geometric constraints · 171

•	 the DifferenceCompass[p0 p1 p2 p3 p4] constraint returns a Compass constraint
that is centred on p0 and whose radius is the difference between the distances
p1p2 and p3p4 (figure 197):

DifferenceCompass[p0 p1 p2 p3 p4] := Compass[p0 pB pE]
	 where:		 C0 = Compass[pA p1 p2]
				 pB ∈ C0

				 C1 = Compass[pB p1 p2]
				 C2 = VeeringHalfplane[pA pB]
				 C3 = VeeringHalfplane[pB pA]
				 pC ∈ C0 ∩ C1 ∩ C2
				 pD ∈ C0 ∩ C1 ∩ C3

				 C4 = Compass[pA p3 p4]
				 C5 = HalfPlane[pA pC pD]
				 pE ∈ C2 ∩ C3 ∩ C4 ∩ C5

With distances always positive, the following property always holds:

DifferenceCompass[p0 p1 p2 p3 p4] = DifferenceCompass[p0 p3 p4 p1 p2]

figure 196
construction of a

SumCompass
[p0 p1 p2 p3 p4]

constraint.

figure 197
construction of a
DifferenceCompass

[p0 p1 p2 p3 p4]
constraint.

172 · dynamic handling of geometric constraints

•	 The ProductCompass[p0 p1 p2 p3 p4] constraint returns a Compass constraint
that is centred on p0 and whose radius is the product of the distances p1p2 and
p3p4 (figure 198):

ProductCompass[p0 p1 p2 p3 p4] := Compass[p0 pA pE]
	 where:		 C0 = UnitCompass[pA]
				 pB ∈ C0

				 C1 = VeeringStraightedge[pA pB]
				 C2 = Compass[pA p1 p2]
				 pC ∈ C2 ∩ (\C1 ∪ [pA])

				 C3 = Compass[pA p3 p4]
				 pD ∈ C1 ∩ C3 — two available positions

				 C4 = VeeringStraightedge[pA pC]
				 C5 = Straightedge[pD pB pC]
				 pE ∈ (C4 ∩ C5 − C1) ∪ [pA]

This construction is a direct implementation of similar triangles. Two similar
triangles have proportional sides. If the first triangle has sides of lengths a,b
and e, and if the second triangle have sides of lengths c, d and f (figure 199),
then the equality a/b=c/d holds. This can be written as a×d=b×c, which means
that if one of these lengths is set to be equal to the unit length — given by
the UnitCompass constraint, see the paragraph entitled “other fundamental
constraints” (page 154) —, the other lengths consequently describe the mul-
tiplication of two lengths and its product.

figure 199
two similar
triangles.

figure 198
construction of a
ProductCompass
[p0 p1 p2 p3 p4]
constraint.

dynamic handling of geometric constraints · 173

The ProductCompass constraint remains valid when one length is set equal to
zero. For example, if the length p3p4 is multiplied by a zero length, the radius
of the ProductCompass[p0 p1 p2 p3 p4] constraint will be zero as well:

p1 ∈ [p2]	 ⟶ C2 = [pA]
			 ⟶ pC ∈ [pA]
			 ⟶ C4 = Ω — the entire plane
			 ⟶ C5 = C1
			 ⟶ pE ∈ [pA]

The ProductCompass constraint multiplies lengths together. If, on the other
hand, a given length has to be multiplied by a given amount, i.e. by an integer,
the SumCompass constraint should be used instead and applied as many times
as desired.

•	 The QuotientCompass[p0 p1 p2 p3 p4] constraint returns a Compass constraint
that is centred on p0 and whose radius is the division of the distance p1p2 by
the distance p3p4 (figure 200):

QuotientCompass[p0 p1 p2 p3 p4] := Compass[p0 pA pE]
	 where:		 C0 = Compass[pA p3 p4]
				 pB ∈ C0

				 C1 = VeeringStraightedge[pA pB]
				 C2 = Compass[pA p1 p2]
				 pC ∈ C1 ∩ C2

				 C3 = UnitCompass[pA]
				 C4 = VeeringStraightedge[pA pC]
				 pD ∈ C3 ∩ (\C4 ∪ [pA])

				 C5 = VeeringStraightedge[pA pD]
				 C6 = Straightedge[pC pB pD]
				 pE ∈ C5 ∩ C6

figure 200
construction of a

QuotientCompass
[p0 p1 p2 p3 p4]

constraint.

174 · dynamic handling of geometric constraints

Again, this constraint remains valid for particular divisions: (1) 0/x, (2) x/0,
and (3) 0/0:

(1) when p0 and p1 are coincident:	
				 C2 = [pA]
			 ⟶	pC ∈ [pA]
			 ⟶	pE ∈ [pA]
			 ⟶	the radius pAp9 is zero.

(2) when p3 and p4 are coincident:
				 C0 = [pA]
			 ⟶	p6 ∈ [pA]
			 ⟶	C1 = Ω
			 ⟶	pC ∈ C2
			 ⟶	C6 and C5 are parallel
			 ⟶	pE ∈ ∅ and the construction is not allowed

(3) when couples p0p1 and p3p4 are simultaneously coincident:
				 C0 = [pA]
			 ⟶	pB ∈ [pA]
			 ⟶	C1 = Ω
			 ⟶	C2 = [pA]
			 ⟶	pC ∈ [pA]
			 ⟶	C4 = Ω
			 ⟶	pD ∈ [pA]
			 ⟶	C5 = Ω
			 ⟶	C6 = Ω
			 ⟶	pE ∈ Ω
			 ⟶	the distance pApE can be any desired length

trigonometric operations� · Trigonometric operations can be performed
using similar non-fundamental Compass constraints.

•	 The CosineCompass[p0 p1 p2 p3 p4] constraint returns a Compass constraint
that is centred on p0 and whose radius is the cosine of the angle that is read
clockwise from orientation p1p2 to orientation p3p4 (figure 201):

CosineCompass[p0 p1 p2 p3 p4] := Compass[p0 pA pE]
	 where:		 C0 = Straightedge[pA p1 p2]
				 C1 = Straightedge[pA p3 p4]
				 C2 = UnitCompass[pA]
				 pB ∈ C1 ∩ C2 — two available positions but one unique final result

dynamic handling of geometric constraints · 175

				 C3 = CollapsibleCompass[p1 p2]
				 C4 = CollapsibleCompass[p2 p1]
				 pC ∈ C3 ∩ C4
				 pD ∈ C3 ∩ C4 − [pC]

				 C5 = Straightedge[pB pC pD]
				 pE ∈ C0 ∩ C5

The computed cosine remains correct when both orientations are distinct par-
allels — i.e. cos[0]=1.

•	 The SineCompass[p0 p1 p2 p3 p4] constraint returns a Compass constraint that
is centred on p0 and whose radius is the sine of the angle that is read clock-
wise from orientation p1p2 to orientation p3p4 (figure 202):

SineCompass[p0 p1 p2 p3 p4] := Compass[p0 pA pE]
	 where:		 C0 = Straightedge[pA p3 p4]
				 C1 = UnitCompass[pA]
				 pB ∈ C1 ∩ C2 — two allowable positions but one unique final result

				 C2 = CollapsibleCompass[p1 p2]
				 C3 = CollapsibleCompass[p2 p1]
				 pC ∈ C2 ∩ C3

				 pD ∈ C2 ∩ C3 − [pC]
				 C4 = Straightedge[pA pC pD]
				 C5 = Straightedge[pB p1 p2]
				 pE ∈ C4 ∩ C5

figure 201
construction of a

CosineCompass
[p0 p1 p2 p3 p4]

constraint.

176 · dynamic handling of geometric constraints

figure 203
Scheiner’s
pantograph (in
Scheiner·1631,
page 29).

isometric transformations of constraints using mechanical instrument
analogies� · Applying the TranslatedPosition constraint (page 167) on each
point defining another constraint C* is equivalent to copying and translat-
ing that constraint C*. In order to perform other isometric transformations of
constraints, non-fundamental constraints can be constructed by analogy with
linkages having similar purposes (Reuleaux·1876, Kempe·1877, Barr·1899 and
Hinkle·1953). For example, the implementation of a pantograph (figure 203)
would build a constraint that copies and scales constraints.

The following lines implement a plagiograph (figure 204, figure 205). The pur-
pose of this instrument is to reproduce the rotation of a given drawing. The
Plagiograph[p0 p1 p2 p3 p4 p5 p6 p7] constraint is a position obtained by rotating
p7 (hinge E) around p6 (hinge I). The angle of rotation α is defined by the angle
between p2p3 and p4p5. The distance p0p1 is half the greatest radius p6p7 — e.g.
p0p1 defines the length of rods O-A, B-C, O-B, A-D and B-E.

figure 202
construction of a
SineCompass
[p0 p1 p2 p3 p4]
constraint.

dynamic handling of geometric constraints · 177

That constraint is shown in figure 206:

Plagiograph[p0 p1 p2 p3 p4 p5 p6 p7] := C11 ∩ C12 ∩ C13
	 where:	— measure of the rotation angle :
				 C0 = VeeringStraightedge[p2 p3]
				 C1 = VeeringStraightedge[p4 p5]
				 pA ∈ C0 ∩ C1

				 C2 = Compass[pA p0 p1]
				 pB ∈ C0 ∩ C2 — two allowable positions but one unique final result

				 C3 = VeeringHalfplane[pB pA]
				 pC ∈ C1 ∩ C2 ∩ C3

		 	 — search for pD = hinge B
				 C4 = Compass[p6 p0 p1]
				 C5 = Compass[p7 p0 p1]
				 C6 = VeeringHalfplane[p7 p6]
				 pD ∈ C4 ∩ C5 ∩ C6

figure 204
Sylvester’s

plagiograph (in
Bartolini/…·2006,

page 132).

figure 205
mechanism of

Sylvester’s
plagiograph.

178 · dynamic handling of geometric constraints

		 	 — search for pE = hinge C
				 C7 = Compass[pD p0 p1]
				 C8 = Compass[p7 pB pC]
				 C9 = VeeringHalfplane[p6 p7]
				 pE ∈ C7 ∩ C8 ∩ C9

		 	 — search for pF = hinge A
				 C10 = Compass[pE p0 p1]
				 pF ∈ C4 ∩ C10 − [pD]

		 	 — search for the constraint that defines hinge D
				 C11 = Compass[pF p0 p1]
				 C12 = Compass[pE p10 p11]
				 C13 = VeeringHalfplane[p6 pE]

figure 206
construction of p8
∈ Plagiograph [p0
p1 p2 p3 p4 p5 p6
p7] constraint; the
domain of p7 is
highlighted.

dynamic handling of geometric constraints · 179

approximations of transcendental numbers by finite construc-
tions� · Some numbers (called transcendental numbers) cannot accurately
be obtained by classical compass-and-straightedge constructions. However
they can be approximate. For instance, the following constraint calculates the
value of π to four decimal places. It is based on a construction of Kochanski
(Kochanski·1685 and Kochanski/Fuks·2011, figure 207) that computes the
square root of 22+(3-1/√3)2 (figure 208):

KochanskiPiCompass[p0] := Compass[p0 pG pI]
	 where:		 pB ∈ UnitCompass[pA]

			 — search for pCpD = perpendicular to pApB:
				 C0 = VeeringHalfplane[pA pB]
				 C1 = VeeringHalfplane[pB pA]
				 C2 = CollapsibleCompass[pA pB]
				 C3 = CollapsibleCompass[pB pA]
				 pC ∈ C0 ∩ C2 ∩ C3
				 pD ∈ C1 ∩ C2 ∩ C3

			 — search for pE = intersection between circles C2 and C6:
				 C4 = HalfPlane[pA pD pC]
				 C5 = HalfPlane[pA pC pD]
				 C6 = Compass[pC pA pB]
				 pE ∈ C2 ∩ C4 ∩ C6

			 — search for pF = intersection between line pBpE
											 and its perpendicular passing through pA :
				 C7 = VeeringStraightedge[pB pE]
				 pF ∈ C4 ∩ C5 ∩ C7

	 		 — search for pGpH = 3 units of length:
				 pG ∈ C0 ∩ C1 ∩ C3 ∩ \C4
				 pH ∈ C0 ∩ C1 ∩ C2 ∩ C4

			 — search for pGpI = 3 units of length - distance pApF:
				 C8 = Compass[pF pG pH]
				 pI ∈ C8 ∩ C4 ∩ C5 ∩ C1

figure 207
approximation of
Pi by Kochanski

(in
Kochanski·1685,

page 397).

180 · dynamic handling of geometric constraints

Other constructions of π are more accurate but also longer, e.g. the approxi-
mation provided by Srivanasa Ramanujan (Ramanujan·1914) calculates the
value of π to eight decimal places, but requires 28 fundamental constraints.

constraints that go beyond the limitations of compass-and-straightedge
constructions · Classical compass-and-straightedge constructions are una-
ble to perform the following problems:

 •	quadrature of the circle, i.e. defining the value of π (Klein/Tägert·1897
page 78)

 •	doubling the cube, i.e. defining the cubic root of 2
 •	trisecting any angle (Holme·2010, page 420)
 •	drawing any regular polygons (Eeckhoff·1999)
 •	constructing transcendental lengths
 •	…

However, these problems can all be constructed with interdependent HalfPlane,
DiscInside and DiscOutside constraints. The following examples closely mimic
traditional linkages, e.g. Neusis constructions, Philo lines and Laisant’s mech-
anism, in order to calculate the cubic root of 2 and to divide an angle into n
equivalent parts.

•	 A Neusis construction rotates a given marked ruler around a fixed point
until the distance between two curves equals a given length (measured on the
marked ruler) (figure 209). Constructions of this kind are useful for doubling
the cube, trisecting angles and constructing regular polygons with, for in-

figure 208
construction of a
PiCompass [p0]
constraint.

dynamic handling of geometric constraints · 181

stance, 7, 9 or 13 sides. It is implemented here with the Neusis[p0 p1 p2 p3 p4 p5 p6]
constraint. This constraint is a Straightedge passing through p4 and crossing
the lines p0p1 and p2p3 by a distance p5p6 (figure 210).

By successive displacements to their closest position, points pA and pB con-
verge to the expected orientation of the Neusis line:

Neusis[p0 p1 p2 p3 p4 p5 p6] := C2
	 where:		 C0 = VeeringStraightedge[p0 p1]
				 C1 = VeeringStraightedge[p2 p3]
				 C2 = VeeringStraightedge[p4 pA]

figure 209
a traditional

Neusis
construction.

figure 210
construction of a
Neusis [p0 p1 p2 p3

p4 p5 p6]
constraint and its

graph of
dependencies.

182 · dynamic handling of geometric constraints

				 C3 = Compass[pB p5 p6]
				 p4 ∈ \(C0 ∩ C1)
				 pA ∈ C0 ∩ C3
				 pB ∈ C1 ∩ C2

If pA and pB are two given points that belong to non-regular curves, e.g. unions
of arcs of circles instead of straight lines, the Neusis is obtained by constrain-
ing pA onto C3 and p8 onto C2.

The following construction uses the Neusis constraint in order to calculate the
cubic root of 2 (figure 211):

CubicRootOf2Compass[p0] := Compass[p0 pC pE]
	 where:		 C0 = UnitCompass[pA]
				 pB ∈ C0

	 		 — search for the equilateral triangle pApBpC:
				 C1 = CollapsibleCompass[pB pA]
				 pC ∈ C0 ∩ C1 — two available positions

			 — search for pCpD = two units of lengths and parallel to pBpC:
				 C4 = VeeringStraightedge[pB pC]
				 pD ∈ C1 ∩ C2 ∩ \(pC)

figure 211
construction of a
CubicRootOfTwo
Compass[p5]
constraint and its
graph of
dependencies.

dynamic handling of geometric constraints · 183

			 — search for a unit segment between lines pApB and pApD:
				 C3 = Neusis[pA pB pA pD pC pA pB]

			 — search for pCpE = ∛2 units of length:
				 C4 = VeeringStraightedge[pA pD]
				 pE ∈ C3 ∩ C4

The proof of this construction can be found in Hartshorne·2000.

•	 A Philo line is the closest segment between two given lines — p0p1 and p0p2
in figure 212 — and passing through a given point — p3. If p4 is defined as the
base of the altitude of triangle p0p1p2 passing through p0, then the distance
p2p4 is one third of the distance p1p2.

A Philo line joining two lines p0p1 and p2p3 and passing through p4 can be im-
plemented as follows (figure 213):

Philo[p0 p1 p2 p3 p4] := C2
	 where:		 C0 = VeeringStraightedge[p0 p1]
				 C1 = VeeringStraightedge[p2 p3]
				 C2 = VeeringStraightedge[p4 pA]
				 pA ∈ C0 ∩ CollapsibleOutsideDisc[pB p4]
				 pB ∈ C1 ∩ C2 ∩ CollapsibleOutsideDisc[pA p4]

				 C3 = CollapsibleCompass[p4 pB]
				 C4 = CollapsibleCompass[pB p4]
				 pC ∈ C3 ∩ C4
				 pD ∈ C3 ∩ C4 − [pC]

				 pE = C0 ∩ C1
				 C5 = Straightedge[pE pC pD]
				 pF ∈ C2 ∩ C5

				 C6 = Compass[p4 pB pF]
				 pA ∈ C6

figure 212
rotation of a Philo

line around p3.

184 · dynamic handling of geometric constraints

Philo of Byzantium (ca. 280 BC – ca. 220 BC) used this line in order to produce
the cubic root of 2 on the basis of three similar triangles (figure 214).

Its construction can be implemented as follows (figure 215):

CubicRootOfTwoCompass[p0] := Compass[p0 pE pH]
	 where:		 C0 = UnitCompass[pA]
				 pB ∈ C0

figure 214
proof of the
construction of
the cubic root of 2
using a Philo line.

figure 213
construction of a
PhiloLine[p0 p1 p2
p3 p4] constraint
and its graph of
dependencies.

dynamic handling of geometric constraints · 185

				 C1 = CollapsibleCompass[pB pA]
				 C2 = VeeringStraightedge[pA pB]
				 pC ∈ C0 ∩ C1
				 pD ∈ C0 ∩ C1 − [pC]
				 C3 = Straightedge[pA pC pD]

				 pE ∈ C0 ∩ C2 − [pA]
				 C4 = Straightedge[pE pC pD]
				 pF ∈ C1 ∩ C3
				 C5 = Straightedge[pF pA pB]
				 pG ∈ C4 ∩ C5

				 C6 = Philo[pA pB pA pF pG]
				 pH ∈ C0 ∩ C6

•	 The original purpose of a Laisant’s mechanism (Brocard·1875 and
Yates·1941) is to divide an angle into three equal sectors (figure 216) but it
can be generalised to divide an angle into any number of sectors (figure 217).

figure 215
construction of a

CubicRootOfTwo
Compass[p8]
constraint.

figure 216
 a Laisant’s

mechanism (from
Yates·1941).

figure 217
 generalisation of

Laisant’s
mechanism.

186 · dynamic handling of geometric constraints

If the angle to be divided is given by lines p0p1 and p2p3, the constraint
LaisantTrisector[p0 p1 p2 p3] returns the union of the two straightedges that di-
vide that angle into three equal parts (figure 218):

LaisantTrisector[p0 p1 p2 p3] := C6 ∪ C8
	 where:		 C0 = VeeringStraightedge[p0 p1]
				 C1 = VeeringStraightedge[p2 p3]
				 pA ∈ C0 ∩ C1

				 pB ∈ C1 − [pA]
				 C2 = VeeringHalfplane[pA pB]
				 C3 = CollapsibleCompass[pA pB]
				 pC ∈ C0 ∩ C2 ∩ C3
				 C4 = CollapsibleCompass[pC pA]

				 pD ∈ C0 ∩ C4 − [pA]
				 C5 = CollapsibleCompass[pA pD]

figure 218
construction of a
LaisantTrisector [p0
p1 p2 p3]
constraint and its
graph of
dependencies.

dynamic handling of geometric constraints · 187

			 — first trisector:
				 pE ∈ C3
				 C6 = VeeringStraightedge[pA pE]
				 pF ∈ C5 ∩ C6 ∩ C2

			 — second trisector:
				 C7 = CollapsibleCompass[pF pC]
				 pG ∈ C2 ∩ C3 ∩ C7
				 C8 = VeeringStraightedge[pA pG]
				 pH ∈ C2 ∩ C5 ∩ C8

			 — final adjustment:
				 C9 = Compass[pD pB pH]
				 pE ∈ C9

Other methods are available for trisecting an angle. These include Pascal’s
marked ruler (Archimedes/…·1808, page 396, Yates·1941 and Loy·2003) or the
tomahawk.

constraining points on curves using geometric properties� · The interde-
pendencies of fundamental constraints can also be used to constrain points on
curves other than the circle. Either the construction of the curves is based on
particular geometric properties or they perform polynomial functions graphi-
cally. This paragraph develops three conic curves based on their geometric
properties. Examples of polynomial functions will be given subsequently.

•	 The Ellipse[p0 p1 p2 p3 p4] constraint compels a point to be along the ellipse
defined by these properties: (1) the ellipse is centred on p0; (2) the distance
between focal points is twice the distance p0p1; (3) the major radius is of orien-
tation p0p1; and (4) the major radius is of length p2p3. p4 is the point that will be
constrained, such that p4 ∈ Ellipse[p0 p1 p2 p3 p4]. The construction makes use
of the fact that the sum of distances p1p4 and pBp4 is always equal to twice the
distance p2p3 (figure 219):

Ellipse[p0 p1 p2 p3 p4] := C2 ∩ C8
	 where:	— p2pA is the length of the major radius:
				 C0 = VeeringStraightedge[p2 p3]
				 C1 = CollapsibleCompass[p3 p2]
				 pA ∈ (C0 ∩ C1) − [p2]

			 — the distance between the focal points is lower than or equal to
				 the length of the major radius:
				 C2 = InsideDisc[p0 p2 p3]
				 p1 ∈ C2

188 · dynamic handling of geometric constraints

			 — p1 and pB are the two focal points:
				 C3 = VeeringStraightedge[p0 p1]
				 C4 = CollapsibleCompass[p0 p1]
				 pB ∈ C3 ∩ C4 − [p1]

		 	 — pC is constrained by the distance p1p4
				 and constrains the distance p4pB:
				 C5 = CollapsibleInsideDisc[p2 p3]
				 C6 = CollapsibleInsideDisc[p3 p2]
				 C7 = Compass[p2 p1 p4]
				 pC ∈ C0 ∩ C5 ∩ C6 ∩ C7

			 — constraining the distance p4pB:
				 C8 = Compass[pB pA pC]

p4 ∈ Ellipse[p0 p1 p2 p3 p4]

figure 219
construction of
p4 ∈ Ellipse [p0 p1
p2 p3 p4]
constraint and its
graph of
dependencies.

dynamic handling of geometric constraints · 189

•	 Constraining a point p3 on a Parabola[p0 p1 p2 p3] constraint would force it
to stay on a parabola such that: (1) the focus is p0; (2) the axis of symmetry is
parallel to p1p2; and (3) the distance between the focus and the directrix is
equal to p1p2. The construction uses the fact that the distance between a point
p3 and the directrix is always equal to the distance between that point and the
focus (figure 220):

Parabola[p0 p1 p2 p3] := C9
	 where:		 C0 = VeeringHalfplane[p1 p2]
				 C1 = VeeringHalfplane[p2 p1]
				 C2 = CollapsibleCompass[p1 p2]
				 C3 = CollapsibleCompass[p2 p1]
				 pA ∈ C0 ∩ C2 ∩ C3
				 pB ∈ C1 ∩ C2 ∩ C3

figure 220
construction of
p3 ∈ Parabola [p0

p1 p2 p3]
constraint and its

graph of
dependencies.

190 · dynamic handling of geometric constraints

				 C4 = Straightedge[p0 p1 p2]
				 C5 = Compass[p0 p1 p2]
				 C6 = HalfPlane[p0 pA pB]
				 pC ∈ C4 ∩ C5 ∩ C6
				 C7 = Straightedge[pC pA pB]

				 C8 = Straightedge[p3 p1 p2]
				 pD ∈ C7 ∩ C8
				 C9 = Compass[p0 p3 pD]

p3 ∈ Parabola[p0 p1 p2 p3]

•	 Constraining points on curves may also be done using properties of me-
chanical instruments. The Hyperbola[p0 p1 p2 p3 p4] constraint is constructed
here using the mechanism in figure 221. Points p0 and p1 are the focus and the
magnitude of the hyperbola is given by the distance p2p3. Point p4 is the point
to be constrained on the hyperbola (figure 222):

Hyperbola[p0 p1 p2 p3 p4] := VeeringStraightedge[p1 pB]
	 where:		 C0 = VeeringStraightedge[p0 p4]
				 C1 = Compass[p0 p2 p3]
				 C2 = Compass[pA p0 p1]
				 C3 = Compass[p1 p2 p3]
				 C4 = Straightedge[p1 p0 pA]
				 pA ∈ C0 ∩ C1
				 pB ∈ C2 ∩ C3 − C4

p4 ∈ Hyperbola[p0 p1 p2 p3 p4]

figure 221
mechanism used
to draw a
hyperbola (from
Yates·1959, page
183, figure 168b).

dynamic handling of geometric constraints · 191

constraining points on curves using analogies of polynomial func-
tions� · Finally, curves can be constructed using polynomial functions — i.e.
by applying multiple arithmetic and trigonometric constraints. See the par-
agraphs entitled “arithmetic operations” (page 170) and “trigonometric
operations” (page 174).

As an illustration, Hankinson’s curve (Hankinson·1921) is constructed.
This curve is used to describe the variation of the oblique strength in an
orthotropic material according to its two principal (orthogonal) allowable
strengths. This strength is calculated for an angle α and is given by equation
(f1f2) / (f1sin2[α] + f2cos2[α]) where F1 and F2 are the two principal stresses.

figure 222
construction of

p4 ∈ Hyperbola [p0
p1 p2 p3 p4]

constraint and its
graph of

dependencies.

192 · dynamic handling of geometric constraints

Hankinson[p0 p1 p2 p3 p4 p5 p6] is a constraint that compels p6 to be within the
polar representation of Hankinson’s curve. Point p0 is the centre of this shape
— moving this point means moving the entire shape. Points p0 and p1 give
the orientation of the principal stress. The distance p2p3 is equal to F1 and
the distance p4p5 is equal to F2. This construction is illustrated in figure 223:

Hankinson[p0 p1 p2 p3 p4 p5 p6] := CollapsibleInsideDisc[p0 pI]
	 where:	— distance p0pA = cos[α] and distance p0pB = sin[α]:
				 C0 = CosineCompass[p0 p0 p1 p0 p6]
				 C1 = SineCompass[p0 p0 p1 p0 p6]
				 pA ∈ C0
				 pB ∈ C1

		 	 — distance p0pC = cos2[α] and distance p0pD = sin2[α]:
				 C2 = ProductCompass[p0 p0 pA p0 pA]
				 C3 = ProductCompass[p0 p0 pB p0 pB]
				 pC ∈ C2
				 pD ∈ C3

	 		 — distance p0pE = f2×cos2[α] and distance p0pF = f1×sin2[α]:
				 C4 = ProductCompass[p0 p0 pC p4 p5]
				 C5 = ProductCompass[p0 p0 pD p2 p3]
				 pE ∈ C4
				 pF ∈ C5

			 — distance p0pG = f2×cos2[α] + f1×sin2[α]:
				 C6 = SumCompass[p0 p0 pE p0 pF]
				 pG ∈ C6

			 — distance p0pH + f1×f2:
				 C7 = ProductCompass[p0 p2 p3 p4 p5]
				 pH ∈ C7

			 — distance p0pI = f1×f2 / (f2×cos2[α] + f1×sin2[α]):
				 C8 = QuotientCompass[p0 p0 pH p0 pG]
				 pI ∈ C8

p6 ∈ Hankinson[p0 p1 p2 p3 p4 p5 p6]

The same method can be used to constrain points on transcendental
curves, e.g. cycloids and spirals, or on curves that are generated by other
curves, e.g. cissoids.

dynamic handling of geometric constraints · 193

The last example solves the following system of inequations:

r ≤ f1f2 / (f1sin2[α] + f2cos2[α]
r > F3
sin[α] ≥ (F4 - cos[α]) / F5
cos[α] ≥ 0

If r is the distance p0p2, if α is given by p0p1 and p0p2, and if the values {F1, F2, F3,
F4, F5} are given by the distances {pApB, pCpD, pEpF, pGpH, pIpJ}, then the system
of inequations can be described by the following constraints:

figure 223
construction of

p6 ∈ Hankinson [p0
p1 p2 p3 p4 p5 p6]

constraint and its
graph of

dependencies.

194 · dynamic handling of geometric constraints

p2 ∈ Hankinson[p0 p1 pA pB pC pD p2] ∩ \DI[p0 pE pF]
		 ∩ VHP[p4 p3] ∩ VHP[p0 p4]
p3 ∈ VSE[p0 p1] ∩ HP[p0 p5 p6] ∩ C[p0 pG pH]
p4 ∈ QuotientCompass[p0 pG pH pI pJ] ∩ SE[p0 p5 p6] ∩ VHP[p1 p0]
p5 ∈ CC[p0 p1] ∩ CC[p1 p0] ∩ VHP[p0 p1]
p6 ∈ CC[p0 p1] ∩ CC[p1 p0] ∩ VHP[p1 p0]

As a result, the set of positions that p2 can hold is equivalent to the entire set
of values that r and α can hold (figure 224).

This last example also highlights the analogy that exists between the appli-
cation of multiple geometric constraints and solving systems of non-linear
inequations graphically. Only full implementation of constraint propagation
— see sub-section 19 (“constraint propagations”, page 201) — would guaran-
tee that a solution always exists and would allow the solving of more complex
systems of non-linear inequations, e.g. involving more than two variables or
differentiations.

figure 224
construction of a
system of
inequations, the
solution domain
of p2 is
highlighted.

dynamic handling of geometric constraints · 195

18	 switching constraint
dependencies

This subsection explains how to switch the hierarchy of dependencies be-
tween points — i.e. to make a child point its father's father and vice versa —
without having to rebuild the entire construction. The consequence of this
feature is that the user does not have to predict the parametric hierarchy in
advance or rebuild the model whenever the parametric hierarchy has to be
changed. If the user first analyses the behaviour of a certain result by varying
the terms of the problem, this technique allows the user to alter this result
explicitly and see how the terms of the problem would behave. The solution of
a problem can become the statement of the inverse problem and vice versa.

using symmetry to switch dependencies� · This technique takes advantage
(1) of the fact that the only variables of the problem are positions of points in a
plane and (2) of properties of symmetry in Proximity and Laterality relationships
— see Ax.1 (page 62) and Ax.6 (page 64). As explained in sub-section 15
(“graphical regions and dynamic compliance with geometric relationships”,
page 137), HalfPlane, DiscInside and DiscOutside constraints are directly linked
to that symmetry. For instance, the following applications of constraints are
all equivalent:

p0 ∈ HalfPlane[p1 p2 p3]	 ⟷ p1 ∈ HalfPlane[p0 p3 p2]
							 ⟷ p2 ∈ HalfPlane[p3 p1 p0]
							 ⟷ p3 ∈ HalfPlane[p2 p0 p1]

p0 ∈ DiscInside[p1 p2 p3]	⟷ p1 ∈ DiscInside[p0 p2 p3]
							 ⟷ p2 ∈ DiscOutside[p3 p0 p1]
							 ⟷ p3 ∈ DiscOutside[p2 p0 p1]

To replace a fundamental constraint with its symmetry means that the de-
pendency between a child point and its father point are switched. Since any
combined constraint is made of a symmetrical fundamental constraint, the
dependencies of any pair of points that are relatives can consequently be
switched by the domino effect of this symmetrical property.

196 · dynamic handling of geometric constraints

As soon as two given points are relatives, the switch can be automated by an
algorithm that (1) searches the set of fundamental constraints that link the de-
pendencies between the two points and (2) replaces each of those constraints
with its symmetrical counterpart.

example of switches� · The following example shows how the process of this
technique is made easier by analysing the graph of dependencies. The geo-
metric construction of this example can be seen as the geometric skeleton
of a funicular polyline passing through p6 and bearing two forces that are
applied on p7 and p8 and that have magnitudes equal to the distances p1p2
and p2p3 respectively. The initial dependencies are as follows (figure 225 and
figure 226):

p7 ∈ Straightedge[p4 p1 p2] ∩ Straightedge[p6 p0 p1]
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p7 p0 p2]
p9 ∈ Straightedge[p8 p0 p3]

From this construction, it is deduced that the domain of p7 is equal to a single
position that is controlled by five points on the intersection of two secant
straightedges. For this reason p7 cannot be moved directly.

The first example of switching considers two direct relatives and consists in
offering a degree of freedom to p7. This would mean removing one of the two
constraints applied to it and adding the symmetrical constraint to one of its

figure 225
prior to
permutation; (left)
the domain of p7
is the shaded
position; (right)
the domain of p0
is the shaded
area.

figure 226
directed graph of
dependencies
before permuta-
tion.

dynamic handling of geometric constraints · 197

parents. The set of its parents is {p0 p1 p2 p4 p6}. All these points are good can-
didates since they can all still move within their domain. Point p0 is chosen. It
is a direct father of p7 due to the Straightedge[p6 p0 p1] constraint.

The Straightedge[p6 p0 p1] constraint is actually the intersection of two funda-
mental constraints:

Straightedge[p6 p0 p1] = HalfPlane[p6 p0 p1] ∩ HalfPlane[p6 p1 p0]

To apply this constraint on p7 is therefore equivalent to the following sym-
metrical application:

	 p0 ∈ HalfPlane[p1 p6 p7] ∩ HalfPlane[p1 p7 p6]
⟷ p0 ∈ Straightedge[p1 p6 p7]

After permutation, the resulting geometric construction is as follows
(figure 227 and figure 228):

p0 ∈ Straightedge[p1 p6 p7]
p7 ∈ Straightedge[p4 p1 p2]
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p7 p0 p2]
p9 ∈ Straightedge[p8 p0 p3]

Point p7 gained a degree of freedom and p0 lost one of its degrees of freedom.

figure 227
after permuta-

tion; (left) the
domain of p7 is

the shaded line;
(right) the domain

of p0 is the
shaded line.

figure 228
directed graph of

dependencies
before permuta-

tion.

198 · dynamic handling of geometric constraints

The second example of switching concerns the indirect relatives p6 and p9. On
the initial construction (figure 225 and figure 226, page 196), point p6 can
be moved anywhere in the plane while point p9 must stay on a Straightedge
constraint:

p7 ∈ Straightedge[p4 p1 p2] ∩ Straightedge[p6 p0 p1]
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p7 p0 p2]
p9 ∈ Straightedge[p8 p0 p3]

It is decided to switch between these two degrees of freedom. Since p9 is a
great-grandson of p6, three successive permutations have to be performed on
the graph in figure 226, page 196: the first between p9 and p8, the second
between p8 and p7 and the third between p7 and p6.

After the first switch of symmetrical applications, the construction is:

p7 ∈ Straightedge[p4 p1 p2] ∩ Straightedge[p6 p0 p1]
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p7 p0 p2] ∩ Straightedge[p9 p0 p3]

After the second switch of symmetrical applications, the construction is:

p7 ∈ Straightedge[p4 p1 p2] ∩ Straightedge[p6 p0 p1] ∩ Straightedge[p8 p0 p2]
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p9 p0 p3]

After the third switch of symmetrical applications, the final construction is
(figure 229):

p6 ∈ Straightedge[p7 p0 p1]
p7 ∈ Straightedge[p4 p1 p2] ∩ Straightedge[p8 p0 p2]
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p9 p0 p3]

Point p9 is now the one that controls the geometry of the funicular polyline. It
is important to note that all these intermediate operations are fully systema-
tised. The user only needs to specify the two points that have to switch their
degrees of freedom.

figure 229
directed graph of
dependencies
after three
permutations.

dynamic handling of geometric constraints · 199

Furthermore, no computation of solutions is required by these permutations
because the positions remain unchanged.

generation of interdependency by switching dependencies� · Multiple
genealogical paths sometimes exist between two relatives. If these paths are
not all switched at the same time, a cycle of dependencies would occur and
both points would become interdependent.

For example, if only one of the two dependences between p1 and p7 is
chosen to be switched from the initial construction of figure 225 and
figure 226, page 196, e.g. if only the first Straightedge constraint is replaced
by its symmetrical counterpart —, the construction would become:

p1 ∈ Straightedge[p2 p4 p7]
p7 ∈ Straightedge[p6 p0 p1]
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p7 p0 p2]
p9 ∈ Straightedge[p8 p0 p3]

The corresponding directed graph of dependencies (figure 230) clearly shows
that p1 and p7 are now interdependent. The interdependency is avoided if the
application of p7 ∈ Straightedge[p6 p0 p1] is also replaced by its symmetry.

For another example, the dependencies between p0 and p9 are chosen for
switching from the initial construction of figure 225 and figure 226, page 196.
Three genealogical paths link p0 and p9: (1) a direct path {p0→p9}; (2) an indi-
rect path {p0→p8→p9}; (3) another indirect path {p0→p7→p8→p9}. If these paths
are not all switched at the same time, cycles of interdependencies would oc-
cur. The directed graph of dependencies resulting from the permutation of
the third path only is shown in figure 231.

figure 230
directed graph of

dependencies
showing the

emergence of
interdependency.

200 · dynamic handling of geometric constraints

automatic deletion of superfluous interdependencies� · The beneficial con-
sequence of this is that the switching of interdependencies can be automa-
tised in order to delete all the superfluous interdependencies, i.e. all interde-
pendent constraints that can be replaced by symmetrical non-interdependent
equivalents, e.g. the interdependencies found in sub-section 17 (“examples of
graphical computations”, page 165) are not superfluous.

As a result, the user does not have to worry about whether or not the construc-
tion being carried out will induce superfluous interdependency. Algorithms
can be performed afterwards in order to remove any superfluous interde-
pendency.

switching the dependencies of veering and collapsible fundamental
constraints · Switching the dependencies of two points that are linked by
a VeeringHalfplane, a CollapsibleDiscOutside or a CollapsibleDiscInside constraint
may either provoke interdependency or not. It depends on the chosen point of
application of these constraints.

For instance, if p0 ∈ VeeringHalfplane[p1 p2], either p0 ∈ HalfPlane[p1 p1 p2] or
p0 ∈ HalfPlane[p2 p1 p2] are equivalent constraints.

(1)	 If p0 ∈ HalfPlane[p1 p1 p2], then the switch between p0 and p1 would pro-
duce either the application p1 ∈ HalfPlane[p0 p2 p1] or the application
p1 ∈ HalfPlane[p2 p1 p0]; in both case, the switch creates the interdepend-
ency of p1 by itself — see paragraph entitled “inner self-constraining”
(page 162).

(2)	 If p0 ∈ HalfPlane[p2 p1 p2], then the switch between p0 and p1 would pro-
duce the application p1 ∈ HalfPlane[p2 p2 p0]. This does not create a new
interdependency.

figure 231
directed graph of
dependencies
after permutation
of the third path
only.

dynamic handling of geometric constraints · 201

19	 constraint propagations

the role of constraint propagation� · Generally speaking, the role of con-
straint propagation is to restrict the number of values that variables of a
given problem can hold. If the remaining set of values is a solution to the
problem, this set is said to be consistent. A set of positions is consistent here
if every point has a non-empty graphical region of solutions. Because of the
constraint dependencies, this means that every father point must have a posi-
tion that does not force the domain of its child points to be empty. Therefore,
the role of constraint propagation is to restrict the domain of solutions of
each father point so that it can never be placed in a position that empties the
domain of one of its child points.

For instance, the following construction has to be made consistent
(figure 165, page 152):

p0 ∈ VeeringHalfplane[p1 p2] ∩ CollapsibleCompass[p1 p2]
p6 ∈ VeeringHalfplane[p1 p2] ∩ VeeringHalfplane[p4 p5] ∩ VeeringHalfplane[p3 p0]

Because points p1, p2, p3, p4 and p5 are orphans, their domain will never be
made empty. However, points p0 and p6 may have empty domains. The role of
constraint propagation is consequently to ensure (1) that p1 and p2 cannot be
placed on positions that empty the domain of p0 and (2) that p0, p1, p2, p3, p4 and
p5 cannot be placed on positions that empty the domain of p6.

Because of the nature of the constraints applied on p0, it is actually impos-
sible for p1 and p2 to empty the domain of p0. There is consequently no do-
main of p0 to propagate on p1 or p2. However, the constraints applied on p6
might form an empty region for some particular positions of its father points,
meaning that their domain must be restricted. For example, the domain of p0
must be restricted so that there is always an intersection between the con-
straint VeeringHalfplane[p3 p0], i.e. the constraint that links p0 with its child

202 · dynamic handling of geometric constraints

p6, and the constraint VeeringHalfplane[p1 p2] ∩ VeeringHalfplane[p4 p5], i.e. the
other constraints applied on p6. The propagation domain of p0 is illustrated in
figure 168, page 152.

The constraint that links the child point to the father point is called “the
constraint that propagates”, and the other constraint applied on the child is
called “the constraint to be propagated”.

Constraint propagation is not the only way to prevent empty domains. Since
(1) geometric statements are expected to be constructed constraint by con-
straint, (2) points are expected to be dragged one by one, and (3) the initial
set of positions is expected to be consistent, then any operation, either the
application of a new constraint or the movement of a point, that would emp-
ty a domain can indeed be cancelled systematically. The role of constraint
propagation is therefore mostly to display consistent domains, i.e. to ensure
that all the positions inside a displayed domain are solutions of the geometric
construction.

In the case of interdependent constructions, constraint propagation only
makes sense if the child point and the father point are not identical. If they
are, the point would actually always converge somewhere in its domain.

approaches to constraint propagation� · Literature provides numer-
ous generic methods to reduce the field of solutions to a problem
(Bouma/Fudos/…·1995, Hoffmann/…·2005, Rossi/…·2006, Joan-Arinyo·2009,
Mathis/Thierry·2010 and Bettig/…·2011). However, although some of them
discuss parameters that can vary according to one degree of freedom
(Hoffmann/Kim·2001, vanderMeiden/·2006 and Hidalgo/…·2012), no method
exists as yet to handle parameters that have two degrees of freedom, i.e. to
consider constraints that are, in the plane, as general as HalfPlane, DiscInside
and DiscOutside.

Hopefully, this drawback is mitigated by the fact that there is only one type
of variable here, i.e. only positions of points — there are no length or angle —
and all the constraints are expressed by means of graphical regions, i.e. no ex-
ternal algebraic (in)equation. Initial attempts at constraint propagation might
consequently be as follows:

(1)	 The first approach is mainly numerical and maybe the most straightfor-
ward. It would first generate a discretisation of all the potential positions that
the father point could hold in the plane. It would then examine the resulting

dynamic handling of geometric constraints · 203

domain of the child point for each position of the father point, perhaps through
converging loops. It would finally display the entire finite set of positions (or
a smooth approximation of it) that did not involve an empty domain of the
child point. The main advantage of this approach is that a unique method fits
all cases. One drawback is that the boundaries of the created domain are not
accurate and small entities of this domain, e.g. isolated positions, may remain
completely unknown. Another drawback is that the created domain has to be
recalculated from scratch whenever a child point has moved, which might be
slow and detrimental to the interactive handling of the geometric construc-
tions.

(2)	 Another approach, also numerical but taking advantage of geometric rea-
soning, would first identify each mechanism produced by the constraints.
This would then associate each mechanism with a known locus of positions
already studied in literature, e.g. Artobolevski·1964. Together these loci form
the boundaries of the propagation domain. The computation of well chosen
positions would then determine which regions are inside the propagation do-
main and which regions are not. The advantage of this approach is that the
locus can be parameterised and does not have to be recalculated from scratch
whenever a child point has moved. The main drawback is that there is no gen-
eral method: only known loci can be propagated.

(3)	 A third approach would construct the propagation domain symbolically,
by means of Boolean combinations of HalfPlane, DiscInside and DiscOutside
constraints. This approach presents two great advantages. Firstly, it uses a
similar grammar to that already developed, meaning that any technique de-
veloped in the previous sub-sections can be directly applied to it: graphs of
dependencies, automatic displacements to closest positions, permutations of
constraints, etc. Secondly, propagation domains can be defined by combina-
tions of constraints in such a way that their geometrical behaviour, i.e. the
resulting region, remains valid for any position. Therefore they do not have
to be recalculated at each move. Their update is only required when new
constraints are applied or old ones deleted. However, the benefits of this ap-
proach also reduce its scope of application: it only handles domains that can
be described by HalfPlane, DiscInside and DiscOutside constraints. As a conse-
quence, it is restricted to propagations where the path of paternal filiation be-
tween the child point and the father point is unique, e.g. if a point is the father
of another point, it can be its father several times (by several constraints) but
it cannot be its grandfather or its child.

204 · dynamic handling of geometric constraints

For instance, this last approach cannot perform the propagation domain of p0
within the following construction (figure 232):

p10	∈ Straightedge[p3 p0 p1] ∩ Straightedge[p4 p4 p5]
p11	∈ Straightedge[p10 p0 p2] ∩ Straightedge[p6 p6 p7]
			 ∩ HalfPlane[p6 p8 p9] ∩ HalfPlane[p7 p9 p8]
p8	 ∈ Compass[p6 p6 p7] ∩ Compass[p7 p7 p6] ∩ HalfPlane[p6 p6 p7]
p9	 ∈ Compass[p6 p6 p7] ∩ Compass[p7 p7 p6] ∩ HalfPlane[p7 p7 p6]

The shaded area in figure 232 is the propagation domain that p0 must hold
in order to ensure that the domain of p11 is not empty. Since p11 is its child
and its grandchild at the same time, two paths of paternal filiation exist and
the propagation domain of p0 cannot be expressed in terms of fundamental
constraints.

This field of study still requires further research. The best approach would
probably be a mix of those mentioned above.

By way of introduction, the paragraphs that follow develop a general pro-
cedure and a sub-procedure of it for the symbolic propagation of particular
dependencies (third approach).

figure 232
point p11 will
remain on the
line segment p6p7
as long as p0
moves inside the
grey area; (below)
corresponding
directed graph of
dependencies.

dynamic handling of geometric constraints · 205

general method for symbolic propagation� · Graphs of dependencies are
usually more complex than what has been explained for figure 165, page 152.
The point whose propagation domain is sought might have many children that
are not direct relatives — p0 in figure 233 —, meaning that domains must be
propagated from child to father incrementally.

figure 233
a fictitious

directed graph of
dependencies.

206 · dynamic handling of geometric constraints

Since the domain of a child cannot be propagated if it does not reflect the do-
main propagation of its own children, the following general procedure should
be used to obtain the propagation domain of a point p0:

(1)	 create Pchild = the set of all child points and grandchild points of p0, plus
p0 itself

(2)	 rewrite the constraints applied on each point of Pchild in terms of funda-
mental constraints.

(3)	 for each point p* of Pchild (p0 excluded) and whose domain has not yet
been propagated onto its parents that are also in Pchild:

	 (3.1)	 if p* is childless, its “propagation domain” is equal to the entire
		 plane and is considered “completed”.

	 (3.2)	 if the constraints applied on all the children and grandchildren
		 of p* have been propagated on it, the propagation domain of p* is
		 “completed”

	 (3.3)	 when the propagation domain of p* becomes completed, its “do
		 main of solutions” can be propagated on all its parents that also
		 belong to Pchild, like this:

		 (3.3.1)	 get the “domain of solutions” of p*, i.e. the intersection of its
			 “propagation domain” and its “input domain”

		 (3.3.2)	 get the pure equivalent union of the domain of solutions of
			 p* — see paragraph entitled “pure equivalent unions and
intersections” (page 139)

		 (3.3.3)	 get all the parent points of p* that also belong to Pchild

		 (3.3.4)	 for every parent of p* that also belongs to Pchild:
			 (3.3.4.1)	 for each sub-domain of the pure equivalent union of the

					 domain of solutions of p*:
				 (3.3.4.1.1)	 get the constraints that propagate and the

						 constraint(s) to be propagated
				 (3.3.4.1.2)	 split up the sub-domain into as many intersections

						 as propagating constraints, so that each new inter-
						 section only includes one propagating constraint

				 (3.3.4.1.3)	 for each new intersection:
					 (3.3.4.1.3.1) 	 given the nature of the constraint that

								 propagates and the constraints to be
								 propagated, identify the pattern of
								 propagation to be applied — see next
								 paragraphs

dynamic handling of geometric constraints · 207

					 (3.3.4.1.3.2)	 if a pattern exists, construct the local
								 propagation domain associated with this
								 intersection

				 (3.3.4.1.4)	 get the intersection of all the generated propagation
						 domains

			 (3.3.4.2)	 get the union of the propagation of each sub-domain
			 (3.3.4.3)	 apply this union onto the uncompleted propagation do-

main of the current parent of p*

(4)	 Once the “propagation domain” of p0 is completed, get its “domain of
solutions” by intersecting its “propagation domain” with its “input do-
main”.

As stated above, this procedure assumes that there is only one way of pa-
ternal filiation between the child point and the father point. The following
example meets this condition.

On the other hand, the quality of the propagation procedure depends on the
chronology in which the domains of the child points are propagated. In the
worst case scenario, it is probable that the resulting propagation domain or
that the resulting domain of solutions becomes empty after this procedure,
meaning that there is no position on which a point can go without emptying
the domain of one of its children. It is also likely that the domain of a child
point remains empty after the propagation of its domain onto its father points.
However, this does not mean that there are no sets of positions for which
no domain is empty. The solution is to wait for the domains of other child
points to be propagated before updating the propagation domain that cause
the problem.

Given a new geometric construction, the goal of the following example is to
obtain the propagation domain of p0 (figure 234) using the aforementioned
procedure. The construction is as follows:

p5 ∈ CollapsibleCompass[p1 p2] ∩ CollapsibleCompass[p2 p1]
																 ∩ VeeringHalfPlane[p1 p2]
p6 ∈ CollapsibleCompass[p1 p2] ∩ CollapsibleCompass[p2 p1]
																 ∩ VeeringHalfPlane[p2 p1]
p7 ∈ Straightedge[p0 p1 p2] ∩ CollapsibleCompass[p3 p4] ∩ HalfPlane[p3 p6 p5]
p13 ∈ ((VeeringHalfPlane[p10 p11] ∩ VeeringHalfPlane[p9 p8]) ∪ Compass[p12 p1 p2])
																 ∩ VeeringHalfPlane[p3 p7]

208 · dynamic handling of geometric constraints

(1) On the basis of the directed graph of dependencies (figure 235), the Pchild set
of p0 is equivalent to {p0 p7 p13}.

(2) Their domain expressed in terms of fundamental constraints is:

p5 ∈ C2 ∩ C3 ∩ C4 ∩ C5 ∩ C6
p7 ∈ C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10
p13 ∈ ((C11 ∩ C12) ∪ C13) ∩ C14

where:	C0 = HalfPlane[p0 p1 p2]
		 C1 = HalfPlane[p0 p2 p1]

figure 234
the solution
domain of p13.

figure 235
directed graph of
dependencies for
the construction
of figure 234.

dynamic handling of geometric constraints · 209

		 C2 = InsideDisc[p1 p1 p2]
		 C3 = OutsideDisc[p1 p1 p2]
		 C4 = InsideDisc[p2 p1 p2]
		 C5 = OutsideDisc[p2 p1 p2]
		 C6 = HalfPlane[p1 p1 p2]
		 C7 = HalfPlane[p1 p2 p1]

		 C8 = InsideDisc[p3 p3 p4]

		 C9 = OutsideDisc[p3 p3 p4]
		 C10 = HalfPlane[p3 p6 p5]

		 C11 = HalfPlane[p10 p10 p11]
		 C12 = \HalfPlane[p8 p8 p9]
		 C13 = InsideDisc[p12 p1 p2]
		 C14 = HalfPlane[p3 p3 p7]

(3) The next instructions consider each point of Pchild (p0 excluded) individually:
 a	p13

 b	p7

a (3.1) Since p13 is childless, its domain of solutions is equal to the entire plane
Ω.

a (3.3) Since the domain of solutions of p13 is completed, it can consequently be
propagated on all its parents that are also in Pchild — i.e. point p7.

a (3.3.1) The domain of solutions of p13 is therefore computed as follows:

SolutionDom[p13]	= InputDom[p13] ∩ PropagationDom[p13]
					 = InputDom[p13] ∩ Ω
					 = ((C11 ∩ C12) ∪ C13) ∩ C14

a (3.3.2) The pure equivalent union of this domain is:

PureEquivalentUnion of SolutionDom[p13] = (C11 ∩ C12 ∩ C14) ∪ (C13 ∩ C14)

a (3.3.3) The only parent point of p13 that is also in Pchild is p7.

a (3.3.4.1) The various sub-domains of the pure equivalent union of the domain
of solutions of p13 are:

a.a	 (C11 ∩ C12 ∩ C14)
a.b	(C13 ∩ C14)

a.a (3.3.4.1.1) The constraint that propagates the first sub-domain of p13 onto p7
is C14 since p7 is a parameter of C14.

210 · dynamic handling of geometric constraints

a.a (3.3.4.1.2) There is only one constraint that propagates the first sub-domain
of p13.

a.a (3.3.4.1.3.1) The pattern of propagation is the one that will be presented
in next paragraph entitled “first symbolic pattern: propagation of convex
intersections” (page 217).

a.a (3.3.4.1.3.2) The result of this local propagation is (figure 236, left):

(Dom[p13 ∈ C11 ∩ C12 ∩ C14] propagated onto p7 by C14) = C15 ∪ C16
	 where :	 C15 = \HalfPlane[p3 p3 pA]
				 C16 = \Halfplane[p3 p11 p10]

	 with:	 	 pA = VeeringStraightedge[p10 p11] ∩ VeeringStraightedge[p8 p9]

a.b (3.3.4.1.1) The constraint that propagates the second sub-domain of p13 onto
p7 is also C14 since p7 is a parameter of C14.

a.b (3.3.4.1.2) There is only one constraint that propagates the second sub-do-
main of p13.

a.b (3.3.4.1.3.1) The pattern of propagation is the one that will be presented
in next paragraph entitled “first symbolic pattern: propagation of convex
intersections” (page 217).

figure 236
(left) first
propagation of
the sub-domain of
p13 onto p7;
(right) second
propagation of
the sub-domain of
p13 onto p7.

dynamic handling of geometric constraints · 211

a.b (3.3.4.1.3.2) The result of this local propagation is (figure 236, right):

(Dom[p13 ∈ C11 ∩ C12 ∩ C14] propagated onto p7 by C14) = C17 ∪ C18

	 where :	 C17 = HalfPlane[pE pG pH]
				 C18 = HalfPlane[pF pJ pI]

	 with:	 pB = Compass[p3 p3 p12] ∩ Compass[p12 p12 p3] ∩ HalfPlane[p3 p3 p12]
			 pC = Compass[p3 p3 p12] ∩ Compass[p12 p12 p3] ∩ HalfPlane[p12 p12 p3]
			 pD = Straightedge[p3 p3 p12] ∩ Straightedge[pB pB pC]
			 pE = Compass[p12 p1 p2] ∩ Compass[pD pD p3] ∩ HalfPlane[p12 p12 p3]
			 pF = Compass[p12 p1 p2] ∩ Compass[pD pD p3] ∩ HalfPlane[p3 p3 p12]
			 pG = Compass[p12 p12 pE] ∩ Compass[pE pE p12] ∩ HalfPlane[p12 p12 pE]
			 pH = Compass[p12 p12 pE] ∩ Compass[pE pE p12] ∩ HalfPlane[pE pE p12]
			 pI = Compass[p12 p12 pF] ∩ Compass[pF pF p12] ∩ HalfPlane[p12 p12 pF]
			 pJ = Compass[p12 p12 pF] ∩ Compass[pF pF p12] ∩ HalfPlane[pF pF p12]

a (3.3.4.2) PropagationDom[p7] = (C15 ∪ C16) ∪ (C17 ∪ C18).

b (3.2) The propagation domain of p7 is now completed.

b (3.3) Since the domain of solutions of p7 is completed, it can consequently be
propagated on all its parents that also belong to Pchild, i.e. point p0.

b (3.3.1) The domain of solutions of p7 is computed as follows:

SolutionDom[p7]	 = InputDom[p7] ∩ PropagationDom[p7]
					 = InputDom[p7] ∩ ((C15∪C16) ∪ (C17∪C18))
					 = C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ (C15∪C16 ∪ C17∪C18)

b (3.3.2) The pure equivalent union of this domain is:

PureEquivalentUnion of SolutionDom[p7] =	(C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C15)
											 ∪	 (C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16)
											 ∪	 (C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C17)
											 ∪	 (C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C18)

b (3.3.3) The only parent point of p7 that also belongs to Pchild is p0.

b (3.3.4.1) The various sub-domains of the pure equivalent union of the domain
of solutions of p13 are:

b.a	(C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C15)
b.b	(C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16)
b.c	 (C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16)
b.d	(C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16)

212 · dynamic handling of geometric constraints

b.a, b.b, b.c and b.d (3.3.4.1.1) The constraints that propagate each sub-domain of p7
onto p0 are always C0 and C1 — i.e. p0 is a parameter of C0 and C1.

b.a (3.3.4.1.2) The propagations concerning the first sub-domain are as follows:
b.a.a	 (C0 ∩ C8 ∩ C9 ∩ C10 ∩ C15)
b.a.b	 (C1 ∩ C8 ∩ C9 ∩ C10 ∩ C15)

b.b (3.3.4.1.2) The propagations concerning the second sub-domain are as fol-
lows:

b.b.a	 (C0 ∩ C8 ∩ C9 ∩ C10 ∩ C16)
b.b.b	 (C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16)

b.c (3.3.4.1.2) The propagations concerning the third sub-domain are as follows:
b.c.a	 (C0 ∩ C8 ∩ C9 ∩ C10 ∩ C17)
b.c.b	 (C1 ∩ C8 ∩ C9 ∩ C10 ∩ C17)

b.d (3.3.4.1.2) The propagations concerning the fourth sub-domain are as fol-
lows:

b.d.a	 (C0 ∩ C8 ∩ C9 ∩ C10 ∩ C18)
b.d.b	 (C1 ∩ C8 ∩ C9 ∩ C10 ∩ C18)

figure 237
(left) the
propagation
constraint C19;
(right) the
propagation
constraint C20.

dynamic handling of geometric constraints · 213

b.a, b.b, b.c and b.d (3.3.4.1.3.1) The pattern of propagation is in all cases the one
that will be presented in next paragraph entitled “first symbolic pattern:
propagation of convex intersections” (page 217).

b.a.a (3.3.4.1.3.2) The result of the first local propagation is (figure 237, left):

(Dom[p7 ∈ C0 ∩ C8 ∩ C9 ∩ C10 ∩ C15] propagated onto p0 by C0) = C19
	 where :	 C19 = Halfplane[pK p2 p1]
	 with:	 	 pK = Compass[p3 p3 p4] ∩ Straightedge[p3 p5 p6] ∩ Halfplane[p3 p1 p2]

b.a.b (3.3.4.1.3.2) The result of the second local propagation is (figure 237, right):

(Dom[p7 ∈ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C15] propagated onto p0 by C1) = C20
	 where :	 C20 = \Halfplane[pL p2 p1]
	 with:	 	 pL = Compass[p3 p3 p4] ∩ Straightedge[p3 p3 pA] ∩ Halfplane[p3 p6 p5]

b.b.a (3.3.4.1.3.2) The result of the third local propagation is (figure 238, left):

(Dom[p7 ∈ C0 ∩ C8 ∩ C9 ∩ C10 ∩ C16] propagated onto p0 by C0) = C21
	 where :	 C21 = Halfplane[pK p2 p1]
	 with:	 	 pM = Compass[p3 p3 p4] ∩ Straightedge[p3 p10 p11] ∩ Hp[p3 p6 p6]

b.b.b (3.3.4.1.3.2) The result of the fourth local propagation is (figure 238, right):

figure 238
(left) the

propagation
constraint C21;

(right) the
propagation

constraint C22.

214 · dynamic handling of geometric constraints

(Dom[p7 ∈ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16] propagated onto p0 by C1) = C22
	 where :	 C22 = Halfplane[pK p2 p1]
	 with:	 	 pN = Compass[p3 p3 p4] ∩ Straightedge[p3 p5 p6] ∩ Hp[p3 p2 p1]

b.c.a (3.3.4.1.3.2) The result of the fifth local propagation is (figure 237, left):

(Dom[p7 ∈ C0 ∩ C8 ∩ C9 ∩ C10 ∩ C17] propagated onto p0 by C0) = C19

b.c.b (3.3.4.1.3.2) The result of the sixth local propagation is (figure 239, left):

(Dom[p7 ∈ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C17] propagated onto p0 by C1) = C23
	 where :	 C23 = Halfplane[pK p2 p1]
	 with:	 	 pQ = Compass[p3 p3 p4] ∩ Straightedge[pE pG pH] ∩ Hp[p3 p6 p5]

b.d.a (3.3.4.1.3.2) The result of the seventh local propagation is (figure 237, left):

(Dom[p7 ∈ C0 ∩ C8 ∩ C9 ∩ C10 ∩ C18] propagated onto p0 by C0) = C19

b.d.b (3.3.4.1.3.2) The result of the eighth local propagation is (figure 239, right):

(Dom[p7 ∈ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C18] propagated onto p0 by C1) = C24
	 where :	 C24 = Halfplane[pR p1 p2]
	 with:	 	 pR = Compass[p3 p3 p4] ∩ Straightedge[pF pJ pI] ∩ Hp[p3 p6 p5]

figure 239
(left) the
propagation
constraint C23;
(right) the
propagation
constraint C24.

dynamic handling of geometric constraints · 215

b.a (3.3.4.1.4) The intersection resulting from the propagation of the first sub-
domain is:

(Dom[p7 ∈ C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C15] propagated onto p0) = C19 ∩ C20

b.b (3.3.4.1.4) The intersection resulting from the propagation of the second sub-
domain is:

(Dom[p7 ∈ C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16] propagated onto p0) = C21 ∩ C22

b.c (3.3.4.1.4) The intersection resulting from the propagation of the third sub-
domain is:

(Dom[p7 ∈ C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C17] propagated onto p0) = C19 ∩ C23

b.d (3.3.4.1.4) The intersection resulting from the propagation of the fourth sub-
domain is:

(Dom[p7 ∈ C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C18] propagated onto p0) = C19 ∩ C24

b (3.3.4.2) The union of all these intersections is:

(Dom[p7] propagated onto p0) =	(C19 ∩ C20)
								 ∪	(C21 ∩ C22)
								 ∪	(C19 ∩ C23)
								 ∪	(C19 ∩ C24)

(4) The propagation domain of p0 is now completed since p7 was its only child.
Its domain of solution is the following one:

SolutionDomain[p0]	 = InputDomain[p0] ∩ PropagationDomain[p0]
						 = Ω ∩ (C19 ∩ C20) ∪ (C21 ∩ C22) ∪ (C19 ∩ C23) ∪ (C19 ∩ C24)

	 where:	 C19 = HalfPlane[pK p2 p1]
				 C20 = \HalfPlane[pL p2 p1]
				 C21 = \HalfPlane[pM p1 p2]
				 C22 = HalfPlane[pN p1 p2]
				 C23 = HalfPlane[pQ p1 p2]
				 C24 = HalfPlane[pR p1 p2])

	 with:	 pA = Straightedge[p10 p10 p11] ∩ Straightedge[p8 p8 p9]
			 pB = Compass[p3 p3 p12] ∩ Compass[p12 p12 p3] ∩ HalfPlane[p3 p3 p12]
			 pC = Compass[p3 p3 p12] ∩ Compass[p12 p12 p3] ∩ HalfPlane[p12 p12 p3]
			 pD = Straightedge[p3 p3 p12] ∩ Straightedge[pB pB pC]
			 pE = Compass[p12 p1 p2] ∩ Compass[pD pD p3] ∩ HalfPlane[p12 p12 p3]
			 pF = Compass[p12 p1 p2] ∩ Compass[pD pD p3] ∩ HalfPlane[p3 p3 p12]
			 pG = Compass[p12 p12 pE] ∩ Compass[pE pE p12] ∩ HalfPlane[p12 p12 pE]
			 pH = Compass[p12 p12 pE] ∩ Compass[pE pE p12] ∩ HalfPlane[pE pE p12]

216 · dynamic handling of geometric constraints

			 pI = Compass[p12 p12 pF] ∩ Compass[pF pF p12] ∩ HalfPlane[p12 p12 pF]
			 pJ = Compass[p12 p12 pF] ∩ Compass[pF pF p12] ∩ HalfPlane[pF pF p12]
			 pK = Compass[p3 p3 p4] ∩ Straightedge[p3 p5 p6] ∩ Halfplane[p3 p1 p2]
			 pL = Compass[p3 p3 p4] ∩ Straightedge[p3 p3 pA] ∩ Halfplane[p3 p6 p5]
			 pM = Compass[p3 p3 p4] ∩ Straightedge[p3 p10 p11] ∩ Hp[p3 p6 p6]
			 pN = Compass[p3 p3 p4] ∩ Straightedge[p3 p5 p6] ∩ Hp[p3 p2 p1]
			 pQ = Compass[p3 p3 p4] ∩ Straightedge[pE pG pH] ∩ Hp[p3 p6 p5]
			 pR = Compass[p3 p3 p4] ∩ Straightedge[pF pJ pI] ∩ Hp[p3 p6 p5]

This domain is illustrated in figure 240. As this will be explained in the
next paragraph entitled “first symbolic pattern: propagation of convex
intersections” (page 217), this solution domain remains valid for any posi-
tion of p0, p1, …, p13. If one of these points moves, the domain of solution of p0
remains described by (C19 ∩ C20) ∪ (C21 ∩ C22) ∪ (C19 ∩ C23) ∪ (C19 ∩ C24) but will
have a different geometry.

figure 240
the solution
domain of p0 (so
that the domain
of p13 is never
empty).

dynamic handling of geometric constraints · 217

first symbolic pattern: propagation of convex intersections� · The core
part of the procedure described in the previous paragraph is the local propa-
gation of a pure intersection (⋂*) of fundamental constraints (C0, C1, …, Cn)
onto the domain of a given father point (p0) — see step (3.3.4.1.3.1), page
206. This local (symbolic) propagation uses here different methods accord-
ing to the pattern of the constraints to be propagated and the constraint that
propagates (Ci where i∈[0,n]). This paragraph describes a first method and the
beginnings of other methods are introduced in the next one.

The required pattern for the first method of local propagation is as follows:
every constraint included in the set {C0, C1, …, Cn} must be either a HalfPlane,
\Halfplane, DiscInside or \DiscOutside constraint. These four constraints have the
property of being convex — i.e. if two points are included in their region, the
line joining them is totally included in that region. Since the intersection of
convex subsets is also a convex set, the pure intersection ⋂* is therefore also
convex.

Among all the properties of convex shapes, there is one proven by Eduard
Helly in 1914 (Radon·1921) that is of particular interest for the purpose of
propagation (figure 241):

“Suppose that C0, C1, …, Cn is a finite collection of convex subsets of ℜd,
where n>d, if the intersection of every d+1 of these sets is non-empty, then the
whole collection has a nonempty intersection, that is : ⋂0≤j≤n Cj ≠ ∅.”

figure 241
basic illustration

of Helly's
theorem.

218 · dynamic handling of geometric constraints

Since only the plane is considered here, d is equal to 2. The theorem conse-
quently means that if there are more than two constraints in the intersection
⋂* and if every sub-intersection made of three constraints of {C0, C1, …, Cn}
is not empty, then the intersection ⋂* is not empty. Therefore, each of these
sub-intersections can be propagated on an individual basis. The propagated
domain resulting from the intersection ⋂* is equal to the intersection of the
propagated domains resulting from each sub-intersection.

The great advantage of this property is that the propagation of only sixty
typical intersections have to be known by the method, whatever the number
n of fundamental constraints included in the intersection ⋂*. And these sixty
intersections are made by a maximum of 3 fundamental constraints. They are
all listed in the following table.

For example, if a point p0 has to stay on the following intersection:

p0 ∈ C0 ∩ C1
	 where :	 C0 = Straightedge[p1 p3 p4]
				 C1 = Straightedge[p2 p3 p4]

this will have an empty domain when the two straightedges are not super-
imposed (figure 242). Although the domain of p0 includes four HalfPlane con-
straints, the propagation domain of its father p1 can actually be obtained sys-
tematically by intersecting the propagation domain of typical intersections
that include a maximum of three HalfPlane constraints:

constraints to be propagated

no
ne Hp \H
p DI \D
O

Hp
 ∩

 H
p

\H
p ∩

 \H
p

DI
 ∩

 D
I

\D
O

∩
\D

O

Hp
 ∩

 \H
p

Hp
 ∩

 D
I

Hp
 ∩

 \D
O

\H
p ∩

 D
I

\H
p ∩

 \D
O

DI
 ∩

 \D
O

co
ns

tr
ai

nt

th
at

 p
ro

pa
ga

te
s Hp 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

\Hp 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58

DI 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59

\DO 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

figure 242
Point p0 is
constrained on
the intersection
of two parallels.

dynamic handling of geometric constraints · 219

PropagationDomain[p1] = Dom[p0 ∈ C2∩C3∩C4∩C5] propagated on p1 by C2 and C3
								 where:	C2 = HalfPlane[p1 p3 p4]
										 C3 = HalfPlane[p1 p4 p3]
										 C4 = HalfPlane[p2 p3 p4]
										 C5 = HalfPlane[p2 p4 p3]

						 =	 Dom[p0 ∈ C2∩C4∩C5] propagated on p1 by C2
						 ∩	Dom[p0 ∈ C3∩C4∩C5] propagated on p1 by C3

						 =	 TypicalDom#1 [p0 ∈ C2] propagated on p1 by C2
						 ∩	TypicalDom#5 [p0 ∈ C2∩C4] propagated on p1 by C2
						 ∩	TypicalDom#5 [p0 ∈ C2∩C5] propagated on p1 by C2
						 ∩	TypicalDom#21 [p0 ∈ C2∩C4∩C5] propagated on p1 by C2
						 ∩	TypicalDom#1 [p0 ∈ C3] propagated on p1 by C3
						 ∩	TypicalDom#5 [p0 ∈ C3∩C4] propagated on p1 by C3
						 ∩	TypicalDom#5 [p0 ∈ C3∩C5] propagated on p1 by C3
						 ∩	TypicalDom#21 [p0 ∈ C3∩C4∩C5] propagated on p1 by C3

The three typical propagations #1, #5 and #21 are defined later. They produce
the following domains:

TypicalDom#1 [p0 ∈ C2] propagated on p1 by C2			 = Ω	
TypicalDom#5 [p0 ∈ C2∩C4] propagated on p1 by C2		 = Ω	 figure 243, left
TypicalDom#5 [p0 ∈ C2∩C5] propagated on p1 by C2		 = C5	 figure 243, right
TypicalDom#21 [p0 ∈ C2∩C4∩C5] propagated on p1 by C2	 = C5	 figure 244, left
TypicalDom#1 [p0 ∈ C3] propagated on p1 by C3			 = Ω
TypicalDom#5 [p0 ∈ C3∩C4] propagated on p1 by C3		 = C4	 figure 244, right
TypicalDom#5 [p0 ∈ C3∩C5] propagated on p1 by C3		 = Ω	 figure 245, left
TypicalDom#21 [p0 ∈ C3∩C4∩C5] propagated on p1 by C3	 = C4	 figure 245, right

This means that the propagation domain of p1 is C4 ∩ C5, which compels the two
straightedges to be superimposed.

The construction of the sixty typical propagations is mainly made complex
by the fact that they must remain true for every positions of points. In other
words, the graphical region that they produce must remain correct when the
constraints of the sub-intersection have particular positions, orientations and
radii. These special cases are usually due to coincidence of parameters, paral-
lelism and tangencies.

Moreover, it is expected that typical propagations do not create interdepend-
ency. And if typical propagations create empty domains, these are assumed to
have no effect and are therefore automatically changed by the entire plane do-
main Ω. This special device is helpful for some typical propagation — e.g. typi-
cal propagation #13b.

220 · dynamic handling of geometric constraints

Because each parameter of a fundamental constraint has a different role, it
is finally expected that the propagation of each typical intersection returns a
different domain depending on the place of the father parameter point in the
typical intersection. For example, the typical intersection #5 involving two
HalfPlane constraints should return a different domain for each of these cases:

#5a: PropagationDomain[p1] if p0 ∈ HalfPlane[p1 p2 p3] ∩ HalfPlane[p4 p5 p6]
#5b: PropagationDomain[p2] if p0 ∈ HalfPlane[p1 p2 p3] ∩ HalfPlane[p4 p5 p6]
#5c: PropagationDomain[p3] if p0 ∈ HalfPlane[p1 p2 p3] ∩ HalfPlane[p4 p5 p6]
#5d: PropagationDomain[p1] if p0 ∈ HalfPlane[p1 p1 p2] ∩ HalfPlane[p4 p5 p6]
#5e: PropagationDomain[p1] if p0 ∈ HalfPlane[p0 p1 p1] ∩ HalfPlane[p4 p5 p6]
#5f: PropagationDomain[p1] if p0 ∈ HalfPlane[p1 p1 p1] ∩ HalfPlane[p4 p5 p6]

Some of the sixty typical propagations are presented in the following lines.

#1 a, b, c • If a point p0 must belong to the only constraint HalfPlane[p1 p2 p3], its
domain will always be non-empty. Therefore:

PropagationDomain[p1]=Ω
PropagationDomain[p2]=Ω
PropagationDomain[p3]=Ω

#2 a, b, c • If a point p0 must belong to the only constraint \HalfPlane[p1 p2 p3], its
domain is empty if p2 and p3 are coincident. Therefore:

figure 243
(left) p0∈(C2∩C4)
propagated on p1;
(right) p0∈(C2∩C5)
propagated on p1.

figure 244
(left)
p0∈(C2∩C4∩C5)
propagated on p1;
(right) p0∈(C3∩C4)
propagated on p1.

figure 245
(left) p0∈(C3∩C5)
propagated on p1;
(right)
p0∈(C3∩C4∩C5)
propagated on p1.

dynamic handling of geometric constraints · 221

PropagationDomain[p1]=Ω
PropagationDomain[p2]=\DiscInside[p3 p3 p3]
PropagationDomain[p3]=\DiscInside[p2 p2 p2]

#3 a, b, c • If a point p0 must belong to the only constraint DiscInside[p1 p2 p3], its
domain will always be non-empty. Therefore:

PropagationDomain[p1]=Ω
PropagationDomain[p2]=Ω
PropagationDomain[p3]=Ω

#4 a, b, c • If a point p0 must belong to the only constraint \DiscOutside[p1 p2 p3],
its domain is non-empty if p2 and p3 are coincident. Therefore:

PropagationDomain[p1]=Ω
PropagationDomain[p2]=\DiscInside[p3 p3 p3]
PropagationDomain[p3]=\DiscInside[p2 p2 p2]

#5a • If a point p0 must belong to the only constraint HalfPlane[p1 p2 p3] ∩
HalfPlane[p4 p5 p6] (figure 246), its domain will be non-empty if the constraints
are not parallel and opposed. Therefore, its propagation on p1 is:

PropagationDomain[p1] = VHP[pG p4] ∪ VHP[pH p4] ∪ SE[p4 p5 p6]
	 	 where:	pA ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p2 p3]
				 pB ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p3 p2]
				 pC ∈ CC[p5 p6] ∩ CC[p6 p5] ∩ VHP[p5 p6]
				 pD ∈ CC[p5 p6] ∩ CC[p6 p5] ∩ VHP[p6 p5]
				 pE ∈ C[p4 p2 p3] ∩ SE[p4 p5 p6] ∩ HP[p4 pC pD]
				 pF ∈ C[p4 p2 p3] ∩ SE[p4 p5 p6] ∩ HP[p4 pD pC]
				 pG ∈ C[p4 p2 p3] ∩ SE[p4 p2 p3] ∩ HP[p4 pA pB]
				 pH ∈ C[p4 p2 p3] ∩ SE[p4 p2 p3] ∩ \[pE] ∩ (HP[p4 pB pA] ∪ [pF])

Different regions resulting from this domain are illustrated in figure 247,
figure 248, and figure 249. When p2 and p3 are coincident, p4, pE, pF, pG and
pH are all coincident, which means that VHP[pG p4] ∪ VHP[pH p4] is equal to the
entire plane — what is expected. When p5 and p6 are coincident, SE[p4 p5 p6] is
equal to the entire plane — what is expected.

figure 246
the domain

HalfPlane [p1 p2 p3]
∩ HalfPlane
[p4 p5 p6].

222 · dynamic handling of geometric constraints

figure 247
the domain of p1
so that HalfPlane
[p1 p2 p3] ∩
HalfPlane [p4 p5 p6]
is not empty.

figure 248
the domain of p1
so that HalfPlane
[p1 p2 p3] ∩
HalfPlane [p4 p5 p6]
is not empty.

figure 249
the domain of p1
so that HalfPlane
[p1 p2 p3] ∩
HalfPlane [p4 p5 p6]
is not empty.

dynamic handling of geometric constraints · 223

#5b • If a point p0 must belong to the same constraint HalfPlane[p1 p2 p3] ∩
HalfPlane[p4 p5 p6], its propagation on p2 is:

PropagationDomain[p2] = \SE[p3 p5 p6] ∪ HP[p3 p1 p4] ∪ HP[p3 p4 pA]
		 where:	pA ∈ C[p4 p5 p6] ∩ VSE[p1 p4] ∩ HP[p4 p5 p6]

Different regions resulting from this domain are illustrated in figure 250 and
figure 251. The resulting regions remain valid when p2 and p3 are coincident
and/or when p5 and p6 are coincident.

#5d • If a point p0 must belong to the constraint HalfPlane[p1 p1 p3] ∩
HalfPlane[p4 p5 p6], its propagation on p1 is:

PropagationDomain[p1] = \SE[p3 p5 p6] ∪ VHP[p3 p4] ∪ HP[p3 p4 pA]
		 where:	pA ∈ C[p4 p5 p6] ∩ VSE[p3 p4] ∩ HP[p4 p5 p6]

Different regions resulting from this domain are illustrated in figure 252 and
figure 253. The resulting regions remain valid when p1 and p3 are coincident
and/or when p5 and p6 are coincident.

figure 250
the domain of p2
so that HalfPlane

[p1 p2 p3] ∩
HalfPlane [p4 p5 p6]

is not empty.

figure 251
the domain of p2
so that HalfPlane

[p1 p2 p3] ∩
HalfPlane [p4 p5 p6]

is not empty.

figure 252
the domain of p1
so that HalfPlane

[p1 p1 p3] ∩
HalfPlane [p4 p5 p6]

is not empty.

224 · dynamic handling of geometric constraints

#9a • If a point p0 must belong to the constraint HalfPlane[p1 p2 p3] ∩
\HalfPlane[p4 p5 p6], its propagation on p1 is:

PropagationDomain[p1] = \VHP[p4 pG] ∪ \VHP[p4 pH] ∪ \HP[pI pG pH] ∪ SE[pI p2 p3]
		 where:	pA ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p2 p3]
				 pB ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p3 p2]
				 pC ∈ CC[p5 p6] ∩ CC[p6 p5] ∩ VHP[p6 p5]
				 pD ∈ CC[p5 p6] ∩ CC[p6 p5] ∩ VHP[p5 p6]
				 pE ∈ C[p4 p2 p3] ∩ SE[p4 p5 p6] ∩ HP[p4 pC pD]
				 pF ∈ C[p4 p2 p3] ∩ SE[p4 p5 p6] ∩ HP[p4 pD pC]
				 pG ∈ C[p4 p2 p3] ∩ SE[p4 p2 p3] ∩ HP[p4 pA pB]
				 pH ∈ C[p4 p2 p3] ∩ SE[p4 p2 p3] ∩ \[pE] ∩ (HP[p4 pB pA] ∪ [pF])
				 pI ∈ CC[p4 p5 p6] ∩ SE[p4 pA pB] ∩ HP[p4 p3 p2]

Different regions resulting from this domain are illustrated in figure 254 and
figure 255. The resulting regions remain valid when p1 and p3 are coincident.
Since the typical propagations #2b and #2c already deal with the same con-
straint, p5 and p6 will never be coincident.

figure 253
the domain of p1
so that HalfPlane
[p1 p1 p3] ∩
HalfPlane [p4 p5 p6]
is not empty.

figure 254
the domain of p1
so that HalfPlane
[p1 p2 p3] ∩
\HalfPlane [p4 p5 p6]
is not empty.

dynamic handling of geometric constraints · 225

#13a • If a point p0 must belong to the constraint HalfPlane[p1 p2 p3] ∩
DiscInside[p4 p5 p6], its propagation on p1 is:

PropagationDomain[p1] = HP[pC p3 p2]
		 where:	pA ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p2 p3]
				 pB ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p3 p2]
				 pC ∈ C[p4 p5 p6] ∩ SE[p4 pA pB] ∩ HP[p4 p2 p3]

A region resulting from this domain is illustrated in figure 256. The resulting
regions remain valid when p1 and p3 are coincident and/or when p5 and p6 are
coincident.

#13b • If a point p0 must belong to the constraint HalfPlane[p1 p2 p3] ∩
DiscInside[p4 p5 p6], its propagation on p2 is:

PropagationDomain[p2] = HP[p3 pF pG] ∪ HP[p3 pI pH]
		 where:	pA ∈ CC[p1 p4] ∩ CC[p4 p1] ∩ VHP[p1 p4]
				 pB ∈ CC[p1 p4] ∩ CC[p4 p1] ∩ VHP[p4 p1]
				 pC ∈ VSE[p1 p4] ∩ VSE[pA pB] ∩ CC[p1 p4]
				 pD ∈ CC[pC p4] ∩ C[p4 p5 p6] ∩ VHP[pC p4]
				 pE ∈ CC[pC p4] ∩ C[p4 p5 p6] ∩ VHP[p4 pC]

figure 255
the domain of p1
so that HalfPlane

[p1 p2 p3] ∩
\HalfPlane [p4 p5 p6]

is not empty.

figure 256
the domain of p1
so that HalfPlane

[p1 p2 p3] ∩
DiscInside [p4 p5 p6]

is not empty.

226 · dynamic handling of geometric constraints

				 pF ∈ CC[p4 pD] ∩ CC[pD p4] ∩ VHP[p4 pD]
				 pG ∈ CC[p4 pD] ∩ CC[pD p4] ∩ VHP[pD p4]
				 pH ∈ CC[p4 pE] ∩ CC[pE p4] ∩ VHP[p4 pE]
				 pI ∈ CC[p4 pE] ∩ CC[pE p4] ∩ VHP[pD pE]

Different regions resulting from this domain are illustrated in figure 257 and
figure 258. The resulting regions remain valid when p1 and p3 are coincident
and/or when p5 and p6 are coincident.

#15a • If a point p0 must belong to the constraint DiscInside[p1 p2 p3] ∩
DiscInside[p4 p5 p6] (figure 259), its propagation on p1 is:

PropagationDomain[p1] = CDI[p4 pD]
		 where:	pA ∈ C[p4 p5 p6]
				 pB ∈ CC[p4 pA] ∩ CC[pA p4] ∩ VHP[p4 pA]
				 pC ∈ CC[p4 pA] ∩ CC[pA p4] ∩ VHP[pA p4]
				 pD ∈ CC[pA p2 p3] ∩ VSE[p4 pA] ∩ VHP[pB pC] ∩ DO[p4 p5 p6]

A region resulting from this domain is illustrated in figure 260. The resulting
regions remain valid when p1 and p3 are coincident and/or when p5 and p6 are
coincident.

figure 257
the domain of p2
so that HalfPlane
[p1 p2 p3] ∩
DiscInside [p4 p5 p6]
is not empty.

figure 258
the domain of p2
so that HalfPlane
[p1 p2 p3] ∩
DiscInside [p4 p5 p6]
is not empty.

dynamic handling of geometric constraints · 227

#37a • If a point p0 must belong to the constraint HalfPlane[p1 p2 p3] ∩
HalfPlane[p4 p5 p6] ∩ HalfPlane[p7 p8 p9] (figure 261), its propagation on p1 is:

PropagatedDomain[p1] = VHP[pF pA] ∪ VHP[pG pA] ∪ VSE[pA pH] ∪ VSE[pA pI]
		 where:	pA ∈ SE[p4 p5 p6] ∩ SE[p7 p8 p9]
				 pB ∈ C[pA p5 p6] ∩ SE[p4 p5 p6] ∩ HP[p7 p8 p9]
				 pC ∈ C[pA p8 p9] ∩ SE[p7 p8 p9] ∩ HP[p4 p5 p6] ∩ \[pB]
				 pD ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p2 p3]
				 pE ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p3 p2]
				 pF ∈ C[pA p2 p3] ∩ SE[pA p2 p3] ∩ HP[pA pD pE]
				 pG ∈ C[pA p2 p3] ∩ VSE[pA pF] ∩ (\VHP[pB pA] ∪ \VHP[pC pA])
											 ∩ (\[pF] ∪ (VHP[pA pB] ∩ VHP[pA pC]))
				 pH ∈ C[pA p5 p6] ∩ VSE[pA pF]
				 pI ∈ C[pA p8 p9] ∩ VSE[pA pF]

figure 259
the domain

DiscInside [p1 p2 p3]
∩ DiscInside

[p4 p5 p6].

figure 260
the domain of p1
so that DiscInside

[p1 p2 p3] ∩
DiscInside [p4 p5 p6]

is not empty.

figure 261
the domain

HalfPlane [p1 p2 p3]
∩ HalfPlane
[p4 p5 p6] ∩

HalfPlane [p7 p8 p9].

228 · dynamic handling of geometric constraints

Different regions resulting from this domain are illustrated in the following
figures (figure 262, figure 263 and figure 264). The resulting regions remain
valid when p1 and p3 are coincident and/or when p5 and p6 are coincident.

figure 262
the domain of p1
so that HalfPlane
[p1 p2 p3] ∩
HalfPlane [p4 p5 p6]
∩ HalfPlane
[p7 p8 p9] is not
empty.

figure 263
the domain of p1
so that HalfPlane
[p1 p2 p3] ∩
HalfPlane [p4 p5 p6]
∩ HalfPlane
[p7 p8 p9] is not
empty.

figure 264
the domain of p1
so that HalfPlane
[p1 p2 p3] ∩
HalfPlane [p4 p5 p6]
∩ HalfPlane
[p7 p8 p9] is not
empty.

dynamic handling of geometric constraints · 229

second symbolic pattern: propagation by outsides of discs� · Other sym-
bolic propagations appear to be feasible. Some of them are illustrated in this
paragraph.

A first pattern that is very easily automated comprises no more than one
Halfplane and an undetermined number of DiscOutside or \DiscInside constraints.
Since the intersection of these constraints always include points at infinity,
the propagation domain resulting from this pattern is the entire plane Ω.

Another pattern that may be propagated with symbolic algorithms is the one
for which the constraint that propagates is a DiscOutside or a \DiscInside con-
straint and the intersection to be propagated includes only HalfPlane, DiscInside
and \DiscOutside constraints. This means that the intersection to be propa-
gated is a convex shape whose border is made of segments of lines and arc
of circles. The resulting domain is a union of (1) DiscOutside and \DiscInside
constraints that are centred on each vertex and that have a radius equal to
the radius of the constraint that propagates and (2) intersections of DiscOutside
and \DiscInside constraints with sectors — i.e. intersection of two secant half-
planes — that are centred on each arc of circle, that have a radius equal to
the subtraction of the radius of the constraint that propagates by the radius of
the arc of circle — if the difference is negative, the radius is equal to zero —,
and that are oriented opposite to the arc of circle, with respect of its centre.

Since the number of vertices can vary depending on the orientation of the
half-planes, the propagation domain must use dynamic conditional statements
developed in sub-section 20 (“dynamic conditional geometric statements”,
page 233), which complicates its construction.

A propagation domain that matches this pattern is illustrated in figure 265.
The constraint that propagates is a DiscOutside[p1 p2 p3] constraint and all the
constraints are applied onto point p0.

figure 265
(left) the domain
of p0 and (right)

the propagation
domain of p1 (so
that the domain

of p0 is not
empty).

230 · dynamic handling of geometric constraints

similarity between the locus and the propagation domain� · There is a
noteworthy property between the locus of points — see paragraph entitled
“locus of positions” (page 164) —, the permutation of dependencies and the
propagation domain (when the geometric construction is not interdepend-
ent): the locus of a point p0 resulting from the displacement of its father point
p1 is identical to the PropagationDomain[p0] once all required permutations of
dependencies have been done in order to make p1 the child or grandchild of p0.

This property can be understood with the geometric construction of a piston
(figure 266):

p1 ∈ C1
p2 ∈ C0 ∩ C2
	 where:	C0 = Straightedge[p0 p3 p4]
			 C1 = Compass[p0 p5 p6]
			 C2 = Compass[p1 p7 p8]

The goal is to describe the locus of the centre of the piston — i.e. p2 — when
the crankpin — i.e. p1 — rotates around the crankshaft — i.e. p0. The directed
graph of dependencies in figure 267 shows that p2 is effectively the child of p1.

figure 266
(left) schematic
functioning of a
piston and (right)
its geometrical
construction with
the locus domain
of p2 when p1
moves.

dynamic handling of geometric constraints · 231

The first step is to switch the dependencies between p1 and p2 (figure 268):

p1 ∈ C1 ∩ C3
p2 ∈ C0
	 where:	C0 = Straightedge[p0 p3 p4]
			 C1 = Compass[p0 p5 p6]
			 C3 = Compass[p2 p7 p8]

The second step calculates the propagation domain of p2, which is equivalent
to:

PropDomain[p2] = Domain[p1 ∈ C4∩C5∩C6∩C7) propagated on p2 by C6 and C7
	 where :	 C4 = DiscInside[p0 p5 p6]
				 C5 = DiscOutside[p0 p5 p6]
				 C6 = DiscInside[p2 p7 p8]
				 C7 = DiscOutside[p2 p7 p8]

PropDomain[p2] =	 Domain[p1 ∈ C4∩C5∩C6) propagated on p2 by C6
					 ∩	 Domain[p1 ∈ C4∩C5∩C7) propagated on p2 by C7

PropDomain[p2] =	 Domain[p1 ∈ C4∩C6) propagated on p2 by C6
					 ∩	 Domain[p1 ∈ C4∩C7) propagated on p2 by C7
					 ∩	 Domain[p1 ∈ C5∩C6) propagated on p2 by C6
					 ∩	 Domain[p1 ∈ C4∩C5∩C6) propagated on p2 by C6
					 ∩	 Domain[p1 ∈ C4∩C5∩C7) propagated on p2 by C7

PropDomain[p2] =	 CollapsibleDiscInside[p0 pA] ∩ CollapsibleDiscOutside[p0 pB]

figure 267
directed graph of

dependencies
prior to

permutation.

figure 268
directed graph of

dependencies
after permuta-

tion.

232 · dynamic handling of geometric constraints

The propagation domain is illustrated in figure 269. Its intersection with the
input domain of p2 gives the locus of p2 when p1 moves:

SolutionDomain[p2] = CollapsibleDiscInside[p0 pA] ∩ CollapsibleDiscOutside[p0 pB]
										 ∩ Straightedge[p0 p3 p4]

This purely symbolic resolution clearly differs from other methods pro-
posed in constraint-based geometry literature — see Freixas/…·2008 and
Hidalgo/…·2012 for comparison.

figure 269
the propagation
domain of p2.

dynamic handling of geometric constraints · 233

20	dynamic conditional
geometric statements

This section shows how conditional statements such as If/Else conditions
can be replaced graphically by combinations of HalfPlane and DiscInside con-
straints. Although these constraints are constructed symbolically as usual,
their inner behaviour gives conditional results that are dynamically updated
when points are moving.

In other words, the role of a constraint of this kind is to tell whether a point
presently meets a certain geometric relationship or not. If the answer is true,
the domain of the constraint is a single position. If the answer is false, the
domain of the constraint is the inverse of the position — i.e. the entire plane
without the position. These constraints are constructed in such a way that
the answer is always correct whatever the position of the parameter points.

The following paragraphs presents five conditional constraints that can be
combined together in order to construct more complex conditions. They pro-
duce the following results:

CoincidenceCondition[p0 p1 p2]
	 = [p0] IF p1 and p2 are coincident
	 = \[p0] otherwise

LateralityCondition[p0 p1 p2 p3 p4]
	 = [p0] IF p1 is on the left of or in line with p2 according to the direction p3p4
	 = \[p0] otherwise

ProximityCondition[p0 p1 p2 p3 p4]
	 = [p0] IF the distance p1p2 is smaller than or equal to the distance p3p4
	 = \[p0] otherwise

ConjunctiveCondition[p0 p1 p2 p3 p4]
	 = [p0] IF (p1 and p2 are coincident) AND (p3 and p4 are coincident)
	 = \[p0] otherwise

234 · dynamic handling of geometric constraints

DisjunctiveCondition[p0 p1 p2 p3 p4]
	 = [p0] IF (p1 and p2 are coincident) OR (p3 and p4 are coincident)
	 = \[p0] otherwise

the CoincidenceCondition constraint� · The construction of the
CoincidenceCondition constraint is drawn from the TranslatedPosition constraint
— see paragraph entitled “dynamic compass-and-straightedge constructions”
(page 165) — and takes advantage of the fact that the domain of a
Straightedge[pA pB pC] constraint is the entire plane when pB and pC are coinci-
dent. The two possible cases are shown in figure 270 and figure 271:

CoincidenceCondition[p0 p1 p2] :=
			 \(SE[p0 p1 p2] ∩ SE[p0 pA pB]) ∪ (C[p1 p2 p0] ∩ SE[p1 p2 p0] ∩ HP[p1 pC pD])

		 where:	pA ∈ (CC[p1 p2] ∩ CC[p2 p1] ∩ VHP[p1 p2])
				 pB ∈ (CC[p1 p2] ∩ CC[p2 p1] ∩ VHP[p2 p1])
				 pC ∈ (CC[p2 p0] ∩ CC[p0 p2] ∩ VHP[p2 p0])
				 pD ∈ (CC[p2 p0] ∩ CC[p0 p2] ∩ VHP[p0 p2])

figure 270
the domain of
Coincidence
Condition [p0 p1 p2]
when p1 and p2
are coincident.

figure 271
the domain of
Coincidence
Condition [p0 p1 p2]
when p1 and p2
are not
coincident.

dynamic handling of geometric constraints · 235

When p1 and p2 are coincident, the domain of CoincidenceCondition[p0 p1 p2] is
equal to the position of p0. When p1 and p2 are not coincident, the domain is
equal to the inverse of the position p0.

the LateralityCondition constraint� · The LateralityCondition[p0 p1 p2 p3 p4] con-
straint should present the following domains:

· if Laterality[p1 p2 p3 p4]:	 LateralityCondition[p0 p1 p2 p3 p4] = [p0]
· if not: 						 LateralityCondition[p0 p1 p2 p3 p4] = \[p0]

As a result, this constraint can be constructed as follows (figure 272 and
figure 273):

LateralityCondition[p0 p1 p2 p3 p4] := CoincidenceCondition[p0 pA p1]
		 where:	pA ∈ ([p1] ∪ [p2]) ∩ (\HP[p1 p4 p3] ∪ [p1]) ∩ HP[p2 p3 p4]

The domain of this constraint remains relevant when the direction p3p4 does
not exist:

(p3 = p4) ⟶ (\HP[p1 p4 p3] = ∅) ⟶ (pA ∈ [p0]) ⟶ the condition is verified

The domain remains valid when p1, p2, p3 or p4 change position.

figure 272
the domain of the
Laterality Condition

[p0 p1 p2 p3 p4]
constraint when

the Laterality
[p1 p2 p3 p4]

relationship is
true.

figure 273
the domain of

the Laterality
Condition

[p0 p1 p2 p3 p4]
constraint when

the Laterality
[p1 p2 p3 p4]

relationship is
false.

236 · dynamic handling of geometric constraints

the ProximityCondition constraint� · The ProximityCondition[p0 p1 p2 p3 p4] con-
straint should present the following domains:

· if Proximity[p1 p2 p3 p4]:	 ProximityCondition[p0 p1 p2 p3 p4] = [p0]
· if not: 						 ProximityCondition[p0 p1 p2 p3 p4] = \[p0]

The construction of this constraint first copies the two distances onto circles
that are centred on the same point p5. Point p7 is defined in order to be posi-
tioned on the expected greatest distance — i.e. the distance p3p4. Another point
(p8) is then defined in order to be positioned on the actual greatest distance.
The positions of p7 and p8 are finally compared with the CoincidenceCondition
constraint (figure 274 and figure 275):

ProximityCondition[p0 p1 p2 p3 p4] := CoincidenceCondition[p0 pD pC]
		 where:	pB ∈ C[pA p1 p2]
				 pC ∈ C[pA p3 p4]
				 pD ∈ ([pB] ∪ [pC]) ∩ DO[pA p1 p2] ∩ (\DI[pA p3 p4] ∪ [pC])

This constraint remains valid when (a) p1 and p2 are coincident, (b) p3 and p4
are coincident and (c) p1, p2, p3 and p4 are all coincident. It also remains valid
when a greatest distance decreases progressively and becomes smaller than
the other distance.

figure 274
the domain of the
Proximity Condition
[p0 p1 p2 p3 p4]
constraint when
the Proximity
[p1 p2 p3 p4]
relationship is
true.

figure 275
the domain of the
Proximity Condition
[p0 p1 p2 p3 p4]
constraint when
the Proximity
[p1 p2 p3 p4]
relationship is
false.

dynamic handling of geometric constraints · 237

It can be noted that the same construction can be used to find the greatest
of two given distances. If the constraint MaxDistanceCompass[p0 p1 p2 p3 p4] is
applied to a point p5, then the distance p0p5 will always be the greatest of the
two distances p1p2 and p3p4, whatever they are or are becoming (figure 276):

MaxDistanceCompass[p0 p1 p2 p3 p4] := Compass[p0 pA pD]
		 where:	pB ∈ C[pA p1 p2]
				 pC ∈ C[pA p3 p4]
				 pD ∈ ([pB] ∪ [pC]) ∩ DO[pA p1 p2] ∩ (\DI[pA p3 p4] ∪ [pC])

the ConjunctiveCondition constraint� · The domain of a ConjunctiveCondition
[p0 p1 p2 p3 p4] constraint is directly deduced from the logical conjunction ∧:

· if Coincidence[p1p2] ∧ Coincidence[p3p4]:		 ConjunctiveCond[p0p1p2p3p4] = [p0]
· if Coincidence[p1p2] ∧ ¬Coincidence[p3p4]:	 ConjunctiveCond[p0p1p2p3p4] = \[p0]
· if ¬Coincidence[p1p2] ∧ Coincidence[p3p4]:	 ConjunctiveCond[p0p1p2p3p4] = \[p0]
· if ¬Coincidence[p1p2] ∧ ¬Coincidence[p3p4]:	 ConjunctiveCond[p0p1p2p3p4] = \[p0]

The construction of this constraint is as follows (figure 277 and figure 278):

ConjunctiveCondition[p0 p1 p2 p3 p4] := CoincidenceCondition[pB pC p0]
		 where:	pB ∈ C[pA p1 p2]
				 pC ∈ C[pA p3 p4] ∩ CC[pB pA]

figure 276
application of a

MaxDistance
Compass

[p0p1p2p3p4]
constraint onto

p5.

238 · dynamic handling of geometric constraints

the DisjunctiveCondition constraint� · The domain of a DisjunctiveCondition
[p0 p1 p2 p3 p4] constraint is directly deduced from the logical disjunction ∨:

· if Coincidence[p1p2] ∨ Coincidence[p3p4]:		 DisjunctiveCond[p0p1p2p3p4] = [p0]
· if Coincidence[p1p2] ∨ ¬Coincidence[p3p4]:	 DisjunctiveCond[p0p1p2p3p4] = [p0]
· if ¬Coincidence[p1p2] ∨ Coincidence[p3p4]:	 DisjunctiveCond[p0p1p2p3p4] = [p0]
· if ¬Coincidence[p1p2] ∨ ¬Coincidence[p3p4]:	 DisjunctiveCond[p0p1p2p3p4] = \[p0]

The construction of this constraint is as follows (figure 279 and figure 280):

DisjunctiveCondition[p0 p1 p2 p3 p4] := \CoincidenceCondition[pB pE p0]
		 where:	pB ∈ \[pA]
				 pC ∈ CoincidenceCondition[p1 p2 pA] ∩ ([pA] ∪ [pB])
				 pD ∈ CoincidenceCondition[p3 p4 pA] ∩ ([pA] ∪ [pB])
				 pE ∈ MidPoint[pC pD]

The MidPoint constraint as been defined in the paragraph entitled “dynamic
compass-and-straightedge constructions” (page 165).

figure 277
the domain of the
Conjunctive
Condition
constraint (left)
when Coincidence
[p1 p2] ∧
Coincidence [p3 p4]
and (right) when
Coincidence [p1 p2]
∧ ¬Coincidence
[p3 p4].

figure 278
the domain of the
Conjunctive
Condition
constraint (left)
when ¬Coincidence
[p1 p2] ∧
Coincidence [p3 p4]
and (right) when
¬Coincidence
[p1 p2] ∧
¬Coincidence
[p3 p4].

dynamic handling of geometric constraints · 239

logical conditions that return other results� · The previous five constraints
can be combined with other constraints in order to match other behaviours.
This paragraph shows three different uses of the resulting domains of condi-
tional constraints.

(1)	 The previous five constraints act like logical bijective equivalence — i.e.
the domain is a position if the condition is true and the domain is the inverse
of a position if the condition is false. In other words, its application onto a
point p* induces a change of p*’s domain when the “IF” condition is observed
and another change of p*’s domain when the “ELSE” condition is observed. In
order to make a NewCondition constraint act like a logical implication — i.e. the
application of this constraint is superfluous if the condition is false, there is no
change of p*'s domain for any “ELSE” condition —, the NewCondition constraint
can be constructed as follows:

NewCondition[p0 …] := OriginalCondition[p0 …] ∪ [p0]

As a consequence, the domain of the NewCondition is the entire plane when the
OriginalCondition is not observed, meaning that, in this case, the application of
the NewCondition constraint is superfluous.

figure 279
the domain of the

Disjunctive
Condition

constraint (left)
when Coincidence

[p1 p2] ∨
Coincidence [p3 p4]

and (right) when
Coincidence [p1 p2]

∨ ¬Coincidence
[p3 p4].

figure 280
the domain of the

Disjunctive
Condition

constraint (left)
when ¬Coincidence

[p1 p2] ∨
Coincidence [p3 p4]

and (right) when
¬Coincidence

[p1 p2] ∨
¬Coincidence

[p3 p4].

240 · dynamic handling of geometric constraints

(2)	 The resulting domain of a condition constraint can be changed in order to
make it equivalent to a position (pA) when the condition is true and equivalent
to another position (pB) when the condition is false (figure 281):

NewCondition[pA pB …] := OriginalCondition[pA …] ∩ ([pA] ∪ [pB])
		 where:	pB ∈ \[pA]

(3)	 If three points pA, pB and pC define two perpendicular directions, the do-
main of the following NewCondition constraint can be a line parallel to pApB
when the OriginalCondition constraint is satisfied and can be a line parallel to
pApC when the OriginalCondition constraint is not satisfied (figure 282):

NewCondition[pA pB pC …] = VeeringStraightedge[pA pD]
	 where:	pD ∈ OriginalCondition[pB …] ∩ ([pB] ∪ [pC])

figure 282
(left) the domain
of the
NewCondition
constraint when
the condition is
met and (right)
the domain of the
NewCondition
constraint when
the condition is
not met.

figure 281
(left) the domains
of the OldCondition
constraint and
(right) the
corresponding
domains of the
NewCondition
constraint.

dynamic handling of geometric constraints · 241

figure 283
a rectangle

whose longest
side is always

horizontal.

example of conditional construction� · The following construction presents
a simple application using dynamic conditional statements. Given to dis-
tances p2p3 and p4p5, a rectangle is defined in such a way that its longer side
is always parallel to p0p1, regardless of whether p2p3 is greater than p4p5 or
not (figure 283):

C0 = VeeringHalfplane[p0 p1]
C1 = VeeringHalfplane[p1 p0]
C2 = CollapsibleCompass[p0 p1]
C3 = CollapsibleCompass[p1 p0]
p6 ∈ C0 ∩ C2 ∩ C3
p7 ∈ C1 ∩ C2 ∩ C3
C4 = Halfplane[p0 p6 p7]
C5 = Halfplane[p0 p7 p6]

C6 = Compass[p0 p2 p3]
C7 = Compass[p0 p4 p5]
p8 ∈ C0 ∩ C1 ∩ C6
p9 ∈ C0 ∩ C1 ∩ C7
p10 ∈ C4 ∩ C5 ∩ C6
p11 ∈ C4 ∩ C5 ∩ C7

p12 ∈ ProximityCondition[p9 p2 p3 p4 p5] ∩ ([p8] ∪ [p9])
p13 ∈ ProximityCondition[p10 p2 p3 p4 p5] ∩ ([p10] ∪ [p11])

C8 = Halfplane[p12 p7 p6]
C9 = Halfplane[p13 p1 p0]
p14 ∈ C0 ∩ C4 ∩ C8 ∩ C9

dynamic handling of geometric constraints · 243

21	 constraints for a uniform
reading cycle of forces

This sub-section details which constraints should be applied on each point
defining a force in order to ensure that forces applied clockwise on the same
point in the form diagram are always read in the same order in the corre-
sponding force polygon in the force diagram. These constraints consequently
guarantee the verification of axiom Ax.27 (page 109) — see sub-section 13
(“uniform reading cycle”, page 107).

avoiding interdependency� · Axiom Ax.27 can be implemented in different
manners. The most straightforward is to constrain the point that defines the
type of the force — i.e. the point p2 of a Force[F0 p0 p2 p4 p5] relationship — and
let the propagation apply equivalent constraints onto the points that define
the force in the force diagram — i.e. points p4 and p5 of a Force[F0 p0 p2 p4 p5]
relationship. However, this implementation always involves interdependency.

This can be understood with the basic example in figure 284. Forces F0, F1 and
F2 are all applied on point p0. According to Ax.27, forces F0, F1 and F2 must be
read clockwise in this order in the form diagram — i.e. p2 must stay in the
wedge defined by the half-lines p0p1 and p0p3. In terms of constraints, Ax.27 is
written as follows when F0 and F2 are not zero forces:

ReadingCycleDom[p2]=	 (VeeringHalfplane[p1 p0] ∩ VeeringHalfplane[p0 pB])
						 ∪	(VeeringHalfplane[p1 p0] ∩ VeeringHalfplane[p0 p3])
						 ∪	(VeeringHalfplane[pA p0] ∩ VeeringHalfplane[p0 p3])
	 where:	pA ∈	 VeeringStraightedge[p0 p1] ∩ CollapsibleCompass[p0 p1]
				 ∩	\VeeringHalfPlane[p3 p0]
			 pB ∈	 VeeringStraightedge[p0 p3] ∩ CollapsibleCompass[p0 p3]
				 ∩	\VeeringHalfPlane[p0 p1]

Using automated methods of constraint propagation, this sector would be
propagated onto the domains of p4 and p5 since the orientations p0p2 and p4p5
are linked by Ax.19 (page 83):

ForceDom[p2] = Straightedge[p0 p4 p5] ∩ CoincidenceCondition[p4 p5 p0]

244 · dynamic handling of geometric constraints

This propagation would make p4 and p5 dependent of p2. However, in order to
rotate F1, either p4 or p5 must move. This means that, in most cases, F0 or F2
would rotate as well. As a result, either p1 or p3 — i.e. the points that define
the type of application of F0 and F2 — would be moved, which would modify the
constraints applied on p2. A loop of dependencies consequently occurs.

This interdependency can be avoided if the uniform reading cycle requirement
is defined specifically for each point that defines the force. This approach is
chosen. For each Force[Fi pA pB pC pD] relationship, four ReadingCycleDom domains
have to be constructed. The one concerning pA is actually equal to the entire
plane Ω and is therefore superfluous. The second — i.e. ReadingCycleDom[pB] —
is the direct application of Ax.27 already encountered — see figure 284. The
third — i.e. ReadingCycleDom[p2] — is obtained by describing the geometric
conditions that pC fulfils when Ax.27 is simultaneously applied on the previ-
ous and the next force that pC links in the force diagram. The fourth— i.e.
ReadingCycleDom[pD] — is equivalent to the third regarding the subsequent
force. As a consequence, the reading cycle domain of pC is actually the only
one that requires study.

It should be noted that, since Ax.27 is applied explicitly on the four points
defining the force, their reading cycle domain should not be propagated onto
themselves. It must only be propagated onto father points others than pA, pB,
pC and pD.

construction of the reading cycle domain� · Given four subsequent forces
F0, F1, F2, F3:

Force[F0 p0 p1 p5 p6]
Force[F1 p0 p2 p6 p7]
Force[F2 p0 p3 p7 p8]
Force[F3 p0 p4 p8 p9]

and an undefined resultant R between F3 and F0 (figure 285 or figure 286), this
paragraph defines the symbolic construction of the reading cycle domain of
point p7 in such a way that it remains valid whatever the positions of points

figure 284
the domain that
p2 must hold in
order to
guarantee Ax.27.

dynamic handling of geometric constraints · 245

— i.e. whatever the new orientations, types of application, and magnitudes
of forces. Therefore, the ReadingCycleDom does not have to be rebuilt when a
point moves. It only has to be rebuilt when one of the four forces — F0, F1, F2 or
F3 — is resolved or cancelled.

•	 When point p7 moves, the orientations and magnitudes of F1 and F2 vary,
meaning that Ax.27 must be satisfied for F1 and F2. But, instead of guarantee-
ing the cycles ⟳[F0 F1 F2] ∧ ⟳[F1 F2 F3] separately (because it produces interde-
pendency), Ax.27 is here satisfied with guaranteeing the cycles ⟳[F0 F1 F3] ∧
⟳[F0 F2 F3] ∧ ⟳[F1 F2], in other words, F1 and F2 are both read clockwise after F0
and before F3 and F1 is read clockwise before F2. These three conditions are
developed individually and the resulting constraints are finally intersected.

•	 A constant that is of great help for this development is the axis of the re-
sultant F1+F2. It only depends on p6 and p8 and is hence independent of p7.

•	 In order to characterise the orientation of F0 and F3 with respect to the
resultant F1+F2, points pA and pB are constructed as follows:

pA ∈ SE[p0 p6 p8]					 ∩ VHP[p0 p4]	 ∩ CC[p0 p1] ∩ (\[p1] ∪ [p0])
pB ∈ (SE[p0 p6 p8] ∩ VSE[p0 pA])	∩ VHP[p1 p0]	 ∩ CC[p0 p4] ∩ (\[p4] ∪ [p0])

The role of these constraints is as follows.

figure 285
(right) the domain
that p7 must hold

in order to ensure
that the cycle {F0,

F1, F2, F3, R} is
read clockwise in

the form
diagram.

figure 286
five other forces;

(right) the domain
that p7 must hold

in order to ensure
that the cycle {F0,

F1, F2, F3, R} is
read clockwise in

the form
diagram.

246 · dynamic handling of geometric constraints

Because of SE[p0 p6 p8] and (SE[p0 p6 p8]∩VSE[p0 pA]), pA and pB are always posi-
tioned on the axis of the resultant F1+F2 (passing through p0). And pA and pB
always form on a line passing through p0, even if p6 and p8 are coincident — i.e.
if the resultant F1+F2 is zero.

Because of VHP[p1 p0], F0 is always on the left of the direction going from p0 to
pB. Because of VHP[p0 p4], F3 is always on the left of the direction going from
pA to p0.

Because of CC[p0 p1]∩(\[p1]∪[p0]), pA and p0 are coincident when F0 is a zero force.
Because of CC[p0 p4]∩(\[p4]∪[p0]), pB and p0 are coincident when F3 is a zero force.

Because of \[p1], pA is on the opposite side of p1 with respect to p0 when F0 is
parallel with the axis of F1+F2. Because of \[p4], pB is on the opposite side of p4
with respect to p0 when F3 is parallel with the axis of F1+F2.

There may be more than one position available for both pA and pB. The choice
for one or another does not have any effect on the final result.

•	 The angle ∢[F0 F3] may be acute or obtuse, meaning that it would be some-
times described by an intersection of two half-planes and sometimes by a
union of two half-planes. This would cause an issue since different Boolean
combinations would be required by different positions of points. In order to
describe it always with the same Boolean combination, the angle ∢[F0 F3] is
here divided as a sum of two angles that are always either acute or straight.
This is done by constructing points pC and pD as follows:

pC ∈ (VHP[p1 p0] ∩ VHP[p0 p4])	 ∩ VSE[p0 p1]	 ∩ CC[p0 p1]	 ∩ (\VSE[p0 pA] ∪ [pA])
pD ∈ (VHP[p1 p0] ∩ VHP[p0 p4])	 ∩ VSE[p0 p4]	 ∩ CC[p0 p4]	 ∩ (\VSE[p0 pB] ∪ [pB])

The role of these constraints is as follows.

Because of (VHP[p1 p0] ∩ VHP[p0 p4]), pC and pD always belong to the angle ∢{F0 F3}.

Because of VSE[p0 p1], pC is on the axis of F0. Because of VSE[p0 p4], pD is on the
axis of F3.

Because of CC[p0 p1], pC and p0 are coincident when F0 is a zero force. Because
of CC[p0 p4], pC and pD are coincident when F3 is a zero force.

Because of (\VSE[p0 pA] ∪ [pA]), pC is on the opposite side of p1 with respect to
p0 when F0 is parallel with the axis of F1+F2. Because of (\VSE[p0 pB] ∪ [pB]), pD is
on the opposite side of p4 with respect to p0 when F3 is parallel with the axis
of F1+F2.

dynamic handling of geometric constraints · 247

As a result, the angle ∢[F0 F3] is always equivalent to ∢[F0 p0pC]+∢[p0pC F3] and
to ∢[F0 p0pD]+∢[p0pD F3], whatever the positions of p1 and p4.

•	 As a consequence, ⟳{F0 F1 F3} is verified — i.e. F0, F1 and F3 are read clock-
wise in that order — if F1 either belongs to ∢[F0 p0pC] or to ∢[p0pC F3]. If F1 exerts
a pull, this means that:

p7 ∈ (HP[p6 p1 p0] ∩ HP[p6 p0 pC]) ∪ (HP[p6 pC p0] ∩ HP[p6 p0 p4])

If F1 exerts a push, this means that:

p7 ∈ (HP[p6 p0 p1] ∩ HP[p6 pC p0]) ∪ (HP[p6 p0 pC] ∩ HP[p6 p4 p0])

•	 Also, ⟳[F0 F2 F3] is verified — i.e. F0, F2 and F3 are read clockwise in that
order — if F2 either belongs to ∢[F0 p0pD] or to ∢[p0pD F3]. If F2 exerts a pull, this
means that:

p7 ∈ (HP[p8 p0 p1] ∩ HP[p8 pD p0]) ∪ (HP[p8 p0 pD] ∩ HP[p8 p4 p0])

If F2 exerts a push, this means that:

p7 ∈ (HP[p8 p1 p0] ∩ HP[p8 p0 pD]) ∪ (HP[p8 pD p0] ∩ HP[p8 p0 p4])

•	 Finally, in order to verify ⟳[F1 F2] — i.e. F1 is read clockwise before F2 —,
two cases must be distinguished: (a) the types of application of F1 and F2 are
equivalent — i.e. F1 and F2 both exert either a push or a pull —; or (b) the types
of application of F1 and F2 are different — i.e. either F1 exerts a pull while F2
exerts a push or vice versa.

(a)	 If F1 and F2 both have the same type of application, they have the geometric
property to be always on opposite sides of the axis F1+F2 in the form diagram
(figure 287 and figure 288).

figure 287
Both F1 and F2

exert a pull.

figure 288
Both F1 and F2
exert a push.

248 · dynamic handling of geometric constraints

Therefore, if the angle ∢[F0 F3] is divided in three acute angles ∢[F0 p0pB] +
∢[p0pB p0pA] + ∢[p0pA F3], F1 is clockwise before F2 only if:

	 ((F1 ∈ ∢[F0 p0pB]) ∧ (F2 ∈ ∢[p0pB p0pA]))
 ∨	((F1 ∈ ∢[p0pB p0pA]) ∧ (F2 ∈ ∢[p0pA F3]))

And this is equivalent to the following check:

(F1 ∉ ∢]p0pA F3]) ∧ (F2 ∉ ∢[F0 p0pB[)

where F1 may be parallel to p0pA but not to F3, and F2 may be parallel to p0pB
but not to F0. As a result, if F1 and F2 exert a pull, point p7 must satisfy the fol-
lowing constraint:

	 p7 ∈ \(\HP[p6 p0 pA] ∩ HP[p6 p0 p4]) ∩ \(HP[p8 p0 p1] ∩ \HP[p8 p0 pB])

⟷	p7 ∈ (HP[p6 p0 pA] ∪ \HP[p6 p0 p4]) ∩ (\HP[p8 p0 p1] ∪ HP[p8 p0 pB])

And if F1 and F2 exert a push, point p7 must satisfy the following constraint:

	 p7 ∈ \(\HP[p6 pA p0] ∩ HP[p6 p4 p0]) ∩ \(HP[p8 p1 p0] ∩ \HP[p8 pB p0])

⟷	p7 ∈ (HP[p6 pA p0] ∪ \HP[p6 p4 p0]) ∩ (\HP[p8 p1 p0] ∪ HP[p8 pB p0])

(b)	 If, on the other hand, F1 and F2 both have a different type of application,
they have the geometric property to be always on the same side of the axis
F1+F2 in the form diagram (figure 289 and figure 290).

figure 289
F1 exerts a pull
and F2 a push.

figure 290
F1 exerts a push
and F2 a pull.

dynamic handling of geometric constraints · 249

Consequently, if F1 exerts a pull and F2 exerts a push, F1 is always clockwise
before F2 if:

  ·	p7 ∈ VHP[p8 p6] except in the case where the cycles ⟳[p0pA F1 F3[∧ ⟳]F0 F2 p0pB]
exist (figure 291) — i.e. except when p7 ∈ (Hp[p6 pA p0] ∩ \Hp[p6 p4 p0]) ∩
(\Hp[p8 p0 p1] ∩ Hp[p8 p0 pB])

or ·	p7 ∈ VHP[p6 p8] and the cycles ⟳[p0pA F2 F3] ∧ ⟳[F0 F1 p0pB] exist (figure 292)
— i.e. p7 ∈ (Hp[p8 pA p0] ∩ Hp[p8 p0 p4]) ∩ (Hp[p6 p1 p0] ∩ Hp[p6 p0 pB]).

Putting it all together, if F1 exerts a pull and F2 exerts a push, F1 is always
clockwise before F2 if:

	 p7 ∈	 (VHP[p8 p6] ∩\(Hp[p6 pA p0] ∩\Hp[p6 p4 p0] ∩\Hp[p8 p0 p1] ∩Hp[p8 p0 pB]))
		 ∪	 (VHP[p6 p8] ∩ (Hp[p6 p1 p0] ∩ Hp[p6 p0 pB] ∩ Hp[p8 pA p0] ∩Hp[p8 p0 p4]))

⟷	p7 ∈	 (VHP[p8 p6] ∩(\Hp[p6 pA p0] ∪Hp[p6 p4 p0] ∪Hp[p8 p0 p1] ∪\Hp[p8 p0 pB]))
		 ∪	 (VHP[p6 p8] ∩(Hp[p6 p1 p0] ∩ Hp[p6 p0 pB] ∩ Hp[p8 pA p0] ∩Hp[p8 p0 p4]))

Similarly, if F1 exerts a push and F2 exerts a pull, F1 is always clockwise before
F2 if:

	 p7 ∈	 (VHP[p6 p8] ∩(\Hp[p6 p0 pA] ∪Hp[p6 p0 p4] ∪Hp[p8 p1 p0] ∪\Hp[p8 pB p0]))
		 ∪	 (VHP[p8 p6] ∩(Hp[p6 p0 p1] ∩ Hp[p6 pB p0] ∩ Hp[p8 p0 pA] ∩Hp[p8 p4 p0]))

The two particular cases are illustrated in figure 293 and figure 294.

figure 291
Impossible case

when F1 pulls and
F2 pushes.

figure 292
Additional case

when F1 pulls and
F2 pushes.

250 · dynamic handling of geometric constraints

•	 In order for the main condition ⟳[F0 F1 F2 F3] to remain true regardless of
whether F1 and F2 exert a pull or a push, there are four sub-conditions:

	 ⟳[F0 F1 F3] ∧ ⟳[F0 F2 F3] ∧ ⟳[F1 F2]

⟷	(⟳[F0 F1 F3] ∧ ⟳[F0 F2 F3] ∧ ⟳[F1 F2] when both F1 and F2 exert a pull)
 ∨	(⟳[F0 F1 F3] ∧ ⟳[F0 F2 F3] ∧ ⟳[F1 F2] when both F1 and F2 exert a push)
 ∨	(⟳[F0 F1 F3] ∧ ⟳[F0 F2 F3] ∧ ⟳[F1 F2] when F1 exerts a pull and F2 exerts a push)
 ∨	(⟳[F0 F1 F3] ∧ ⟳[F0 F2 F3] ∧ ⟳[F1 F2] when F1 exerts a push and F2 exerts a pull)

This is equivalent to apply a constraint of the following type onto p7:

⟷	p7 ∈	 (C1,pull	 ∩ C2,pull	 ∩ Cpull-pull)
		 ∪	 (C1,push	∩ C2,push	 ∩ Cpush-push)
		 ∪	 (C1,pull	 ∩ C2,push	 ∩ Cpull-push)
		 ∪	 (C1,push	∩ C2,pull	 ∩ Cpush-pull)

•	 The recapitulation of all the constraints to be applied on p7 is consequently
the following one. If F0, F1, F2, F3 are four subsequent forces in the force dia-
gram such that:

F0 = Force[p0 p1 p5 p6]
F1 = Force[p0 p2 p6 p7]
F2 = Force[p0 p3 p7 p8]
F3 = Force[p0 p4 p8 p9]

than, point p7 must belong to the following constraint in order to guarantee
Ax.27 — i.e. in order to ensure that F0, F1, F2 and F3 are read clockwise in that
order in the form diagram —:

figure 293
Impossible case
when F1 pushes
and F2 pulls.

figure 294
Additional case
when F1 pushes
and F2 pulls.

dynamic handling of geometric constraints · 251

ReadingCycleDom[p7] =	 (C1,pull 	 ∩ C2,pull	 ∩ Cpull-pull)
						 ∪	 (C1,push	 ∩ C2,push	 ∩ Cpush-push)
						 ∪	 (C1,pull 	 ∩ C2,push	 ∩ Cpull-push)
						 ∪	 (C1,push	 ∩ C2,pull	 ∩ Cpush-pull)

where:	
	 pA ∈ SE[p0 p6 p8]					 ∩ VHP[p0 p4] ∩ CC[p0 p1] ∩ (\[p1] ∪ [p0])
	 pB ∈ (SE[p0 p6 p8] ∩ VSE[p0 pA])	∩ VHP[p1 p0] ∩ CC[p0 p4] ∩ (\[p4] ∪ [p0])
	 pC ∈ (VHP[p1 p0] ∩ VHP[p0 p4])	 ∩ VSE[p0 p1] ∩ CC[p0 p1] ∩ (\VSE[p0 pA] ∪ [pA])
	 pD ∈ (VHP[p1 p0] ∩ VHP[p0 p4])	 ∩ VSE[p0 p4] ∩ CC[p0 p4] ∩ (\VSE[p0 pB] ∪ [pB])

	 C1,pull	 = (HP[p6 p1 p0] ∩ HP[p6 p0 pC]) ∪ (HP[p6 pC p0] ∩ HP[p6 p0 p4])
	 C1,push	= (HP[p6 p0 p1] ∩ HP[p6 pC p0]) ∪ (HP[p6 p0 pC] ∩ HP[p6 p4 p0])

	 C2,pull	 = (HP[p8 p0 p1] ∩ HP[p8 pD p0]) ∪ (HP[p8 p0 pD] ∩ HP[p8 p4 p0])
	 C2,push	= (HP[p8 p1 p0] ∩ HP[p8 p0 pD]) ∪ (HP[p8 pD p0] ∩ HP[p8 p0 p4])

	 Cpull,pull	 = (HP[p6 p0 pA] ∪ \HP[p6 p0 p4]) ∩ (\HP[p8 p0 p1] ∪ HP[p8 p0 pB])
	 Cpush,push	 = (HP[p6 pA p0] ∪ \HP[p6 p4 p0]) ∩ (\HP[p8 p1 p0] ∪ HP[p8 pB p0])

	 Cpull,push	 =	 (VHP[p8 p6]
					 ∩	 (\Hp[p6 pA p0] ∪ Hp[p6 p4 p0] ∪ Hp[p8 p0 p1] ∪ \Hp[p8 p0 pB]))
				 ∪	 (VHP[p6 p8]
					 ∩	 (Hp[p6 p1 p0] ∩ Hp[p6 p0 pB] ∩ Hp[p8 pA p0] ∩Hp[p8 p0 p4]))

	 Cpush,pull	 =	 (VHP[p6 p8]
					 ∩	 (\Hp[p6 p0 pA] ∪ Hp[p6 p0 p4] ∪ Hp[p8 p1 p0] ∪ \Hp[p8 pB p0]))
				 ∪	 (VHP[p8 p6]
					 ∩	 (Hp[p6 p0 p1] ∩ Hp[p6 pB p0] ∩ Hp[p8 p0 pA] ∩ Hp[p8 p4 p0]))

Synthesized diagrams of p7’s resulting domains are shown figure 295 for vari-
ous positions of p1, p4, p6 and p8. Regions in the force diagram are divided in
the four following sub-regions:

I	 F1 pulls and F2 pulls
II	 F1 pushes and F2 pushes
III	 F1 pulls and F2 pushes
IV	 F1 pushes and F2 pulls

In certain positions, F1 or F2 is allowed to push or pull. The choice for one type
of application or another depends on the position of p2, respectively p3.

252 · dynamic handling of geometric constraints

figure 295
domain of p7 for
various positions
of p1, p4, p6 and
p8, such that F1
and F2 are read
clockwise in the
right order
between F0 and
F4.

dynamic handling of geometric constraints · 253

constraints for pushing forces or pulling forces� · Similar constructions
can be used to compel a force to be pushing or pulling. For instance, if the
force F0 in figure 296 must remain pushing, the point p0 (instead of point p7)
must be constrained so that either {F4 pushes and F0 pushes} or {F4 pulls and
F0 pushes} and the point p1 (instead of point p7) must be constrained so that
either {F4 pushes and F0 pushes} or {F4 pulls and F0 pushes}. In other words:

p0 ∈	 (C4,push	 ∩ C0,push	 ∩ Cpush-push)
	 ∪	 (C4,pull 	 ∩ C0,push	 ∩ Cpull-push)

p1 ∈	 (C0,push	 ∩ C1,push	 ∩ Cpush-push)
	 ∪	 (C0,push 	 ∩ C1,pull	 ∩ Cpush-pull)

These constraints are identical to those constructed in the previous para-
graph except that all the references to the points are shifted so that p7 is
replaced by p0 and p1 successively. The intersection of these constraints with
the reading cycle domains are shown in figure 296 and figure 297.

254 · dynamic handling of geometric constraints

constraints for compression rods or traction rods� · A rod always in com-
pression or in traction is simply obtained by compelling the two forces defin-
ing it to be either pushing or pulling. For instance, figure 298 shows the
domain that p1 must hold in order for the rod R0 to remain in compression.

particular behaviours of the reading cycle domain� · The ReadingCycleDom
mentioned above remains valid for any number of forces applied on p0 as long
as zero forces are not taken into account, meaning that the ReadingCycleDom
must be recalculated when a force becomes a zero force.

However, the construction of the domain remains valid when only two forces
are applied on p0 for the following reason. If F1 and F2 are the only two forces
applied on p0, it means that F0 and F3 are zero forces and hence, that p5, p6, p8,
p9 are all coincident and that p0, p1, p4 are also coincident. As a result, pA, p0,
pB, pC and pD are coincident, meaning that the constraints C1,pull, C1,push, C2,pull,
C2,push, Cpull,pull, Cpush,push, Cpush,pull and Cpull,push are all equal to the entire plane
Ω. The ReadingCycleDomain of p7 is consequently equal to the entire plane Ω,
which is correct.

figure 296
the domain that
p0 must hold in
order for F0 to be
pushing.

figure 297
the domain that
p1 must hold in
order for F0 to be
pushing.

figure 298
the domain that
p1 must hold in
order for R0 to be
in compression.

dynamic handling of geometric constraints · 255

The same is true when only three forces are applied on p0. If, for instance,
F3 is a zero force, points p5, p8 and p9 are coincident and p0 and p4 are also
coincident (figure 299). As a consequence, pA, pB, pC and pD are constrained
as follows:

pA ∈ SE[p0 p6 p8] ∩ CC[p0 p1] ∩ (\[p1] ∪ [p0])
pB ∈ [p0]
pC ∈ VSE[p0 p1] ∩ CC[p0 p1] ∩ (\VSE[p0 pA] ∪ [pA]
pD ∈ [p0]

C1,pull	 = HP[p6 p1 p0] ∪ HP[p6 pC p0]
C1,push	= HP[p6 p0 p1] ∪ HP[p6 p0 pC]
C2,pull	 = Ω
C2,push	= Ω

Cpull,pull	 = HP[p6 p0 pA]
Cpush,push	 = HP[p6 pA p0]
Cpull,push	 = VHP[p5 p6] ∪ (VHP[p6 p5] ∩ HP[p6 p1 p0] ∩ HP[p6 pA p0]
			 = VHP[p5 p6]
Cpush,pull	 = VHP[p5 p6] ∪ (VHP[p6 p5] ∩ HP[p6 p0 p1] ∩ HP[p6 p0 pA]
			 = VHP[p5 p6]

As a result p7 can be anywhere in the plane, which is correct:

ReadingCycleDom[p7]	 = HP[p6 p0 pA] ∪ HP[p6 pA p0] ∪ VHP[p5 p6] ∪ VHP[p5 p6]
							 = Ω

when a point belongs to multiple force polygons� · When a point p7 belongs
to multiple force polygons in the force diagram, the global ReadingCycleDom[p7]
is the intersection of all the local ReadingCycleDom[p7] associated with each
force polygon. This is mostly due to the fact that, if there is no application
of geometric constraint other than those defining forces and rods, a point in
the force diagram modifies the orientation and magnitude of only two forces
for each point of application in the space diagram (figure 300). When other

figure 299
the domain that

p7 must hold
when only three

forces are applied
on p0.

256 · dynamic handling of geometric constraints

geometric constraints are applied on the points in the force diagram, they
would take Ax.27 into account by propagation of each concerned reading cycle
domain — see sub-section 19 (“constraint propagations”, page 201).

allowing the modification of reading cycle domains� · To compel each point
of the force diagram inside its ReadingCycleDom results in preventing any mod-
ification of reading cycle. However, changing the reading cycles of forces may
be useful for the user. Two approaches are available to change the reading
cycles of forces.

(1)	 The first approach prevents any point from being outside its
ReadingCycleDom. If the user wants to modify the current reading cycle of
forces, he has to modify the equilibrium explicitly: he has to (a) move points in
the force diagram in order to cancel the force whose order in the cycle must
be changed and (b) make it reappear at the desired position. This approach is
detrimental to the fluidity with which users handle strut-and-tie networks.
The following approach is better in this respect.

(2)	 The second approach allows each point to be outside its ReadingCycleDom.
As soon as one point is dragged outside its ReadingCycleDom, the network is au-
tomatically modified so that the new reading cycle matches the new position.
f the point that is dragged is in the form diagram, the change only concerns
the force whose type of application is defined by the point. If the point that is
dragged is in the force diagram, the change concerns the two forces that it
links.

In both cases, the change of order in the force polygon requires the coinci-
dence of two points and the duplication of another. An example is shown in
figure 301 and figure 303 : p2 and p3 become coincident and p5 is duplicated
into p5 and p7.

figure 300
a point p0 that
belong to multiple
force polygons.

dynamic handling of geometric constraints · 257

figure 301
the force polygon

prior to the
change of reading

cycle.

figure 302
the force polygon

“during” the
change of reading

cycle.

figure 303
the force polygon
after the change
of reading cycle.

It may be that other constraints were applied explicitly onto p2 and p3 before
the change of order. A choice will therefore have to be made as to whether
these constraints must be deleted, kept or copied. Since there is no reason to
delete them or to apply them all (with parameters p5 and p7 in place of p2 and
p3), the most natural choice seems to be the following one:

 •	if the constraint is always verified because of the coincidence p2=p3, if
it is always identical to another because of the coincidence p2=p3 or if p2
and p3 are two parameters of the constraint, the constraint is applied
after changing p2 by p5 and p3 by p7

 •	if not, the constraint is kept with the original parameters p2 and p3.

For instance, if a constraint DiscInside[pB p2 p3] was applied onto a point pA
prior to the change of order in the force polygon, it would be replaced by a
constraint DiscInside[pB p5 p7] applied onto pA.

dynamic handling of geometric constraints · 259

22	 facilitating the crossing of
rods

It has been shown in the paragraph entitled “why a uniform reading cycle
imposes the absence of almost any intersection of rods in the space diagram”
(page 124) that each crossing of two rods and each crossing of a rod with a
half-line of force in the form diagram should be replaced by a new point after
dividing the concerned rods and duplicating the concerned force.

Since moving a point (in the form diagram or in the force diagram) can change
the orientation of rods and forces in the form diagram, it may happen that this
move requires the division of a rod (or its cancellation) or the duplication of
a force (or its cancellation). This sub-section describes a systematic method
to update rods and forces when a point moves and changes their orientation
and position.

the topological domain� · First, the topological domain is defined such that
any move of a point p0 inside its TopologicalDomain[p0] does not create new
crossing of rods and forces and does not cancel other crossings of rods and
forces in the form diagram. Accordingly, if a point in the form diagram or in
the force diagram is dragged and causes the move of other points in the form
diagram, it is known that, if each of these points is not moved outside its cor-
responding topological domain, no update of crossing of rods and forces must
be performed. As a result, it is sufficient to construct the topological domain
in the form diagram only.

If a point p0 in the form diagram links n rods {R0, R1, …, Rn-1}, its TopologicalDomain
is the intersection of n sub-domains, each of these sub-domains being equal
to the reading cycle domain of the point that defines the type of application of
the force that is at the other extreme of the rod Ri (i∈[0,n-1]) — see sub-section
21 (“constraints for a uniform reading cycle of forces”, page 243). For in-
stance, the topological domain of p0 in figure 304 is equal to the intersection
of the three reading cycle domains that are shown in figure 305.

260 · dynamic handling of geometric constraints

Another example of topological domain is shown in figure 306.

Because the points at the other extreme of the rods may be dependent of the
point p0 whose topological domain is sought, the construction of the topologi-
cal domain of p0 may include interdependency. This means that the displayed
topological domain is not equivalent to the actual set of allowed positions.
Hopefully this disadvantage is acceptable for two reasons.

Firstly, most of these interdependencies are superfluous — i.e. the constraints
that cause an interdependency belong to the same geometric relationships —
and can be avoided using permutations of constraints — see the paragraph
entitled “automatic deletion of superfluous interdependencies” (page 200).

figure 304
in grey, the
topological
domain of p0.

figure 305
in grey, the three
topological
sub-domains of
p0; each
sub-domain
corresponds to
the reading cycle
domain of p0
around an
opposite point
that is connected
to p0 by a rod or a
half-line of force.

dynamic handling of geometric constraints · 261

Secondly, the topological domain is not aimed to be displayed or intersected
with other domains. Its unique role is to alert when a point is dragged outside
its topological domain. As long as a point p0 belongs to its TopologicalDomain[p0],
it does not matter whether the boundaries of the TopologicalDomain[p0] move si-
multaneously along with p0 or not.

change of the reading cycle of rods� · When a point p0 is dragged outside
its topological domain onto a position p*, the following operations must be
performed:

 •	transform each rod pointing on p0 into a couple of opposite forces and
temporarily cancel the constraints that compel each couple of forces to
be parallel and of equal magnitude

 •	move p0 and the forces applied on it onto the position p*
 •	rotate each force that was part of a rod and, when appropriate, up-

date the force polygon in order to satisfy each reading cycle of forces,
using the recommendations of the paragraph entitled “allowing the
modification of reading cycle domains” (page 256)

 •	for each couple of forces: move points in the force diagram so that, if
two forces of a same couple do not cross other forces, they can be trans-
formed into a rod;

 •	for each intersection of forces, add a point at the intersection and apply
new forces on it. These forces have the same magnitude as the inter-
secting forces. New and old opposite forces form new couples of oppo-
site forces

 •	transform each couple of forces into a rod

A simple application of this process is illustrated on the following figures.

Since no input from the user is required in this sequence, it can be performed
automatically as soon as a point p0 is dragged onto a position p* beyond its
topological domain. This sequence updates the form diagram in such a way
that no constraint of the input domain is cancelled or added.

figure 306
another example

of topological
domain.

262 · dynamic handling of geometric constraints

If the update of the reading cycles is not allowed because of some constraints
of the input domain, the move of p0 onto p* must be prevented.

figure 307
point p0 is
dragged onto p*;
description of
eight successive
steps that can be
automated in
order to update
each reading
cycle of forces
and each crossing
of rods.

dynamic handling of geometric constraints · 263

265

PRODUCTION
RULES FOR
COMPUTER-AIDED
GRAPHIC STATICS

This section develops specifications for the dynamic construction and modification of any
strut-and-tie networks in static equilibrium within two reciprocal diagrams.

Sub-section 23 (“objects and native operations”, page 267) defines the minimum set of op-
erations required allow the user to build or modify a strut-and-tie network. As summarized
in sub-section 24 (“higher-order procedures”, page 273), these native operations can be as-
sembled in a procedural manner in order to execute more complex geometric and structural
routines.

Sub-section 25 (“functional flow”, page 281) recapitulates the functional flow of the pro-
posed computer-aided environment and briefly describes some user-interfaces.

production rules for computer-aided graphic statics · 267

23	objects and native
operations

imperative coding� · The goal of this sub-section is to identify a minimum set
of operations capable of transforming any strut-and-tie network in equilib-
rium into another one. If algorithms exist to process these basic operations,
they can be assembled in sequence in order to define and hence perform more
complex operations. Some of these more complex operations will be presented
in sub-section 24 (“higher-order procedures”, page 273).

The entire sequence of operations forms the “construction plan”. A construc-
tion plan is therefore a sufficient description of the strut-and-tie network and
its geometric description.

Before presenting the minimum set of native operations, data types are listed
in the following paragraph.

data types� · Besides the set of data types natively supported in usual pro-
gramming languages — e.g. numbers, Booleans and arrays —, the following
data types should exist:

•	 Point — it is defined, at a minimum, by the following parameters:
 ·	 the diagram to which it belongs
 ·	 its current position in that diagram
 ·	 the global intersection of constraints that are applied on it by the user

•	 Constraint — it is defined, at a minimum, by
 ·	 its type: HalfPlane, DiscInside, DiscOutside, Union, Intersection or Inversion
 ·	 if it is a fundamental constraint: the three points that define the region

of the constraint
 ·	 if it is not: the set of constraints to be unite, intersect or invert

•	 Force — it is defined, at a minimum, by

268 · production rules for computer-aided graphic statics

 ·	 the four points defining it: the point of application in the form diagram,
the point defining its type of application in the form diagram and two
points defining its magnitude in the force diagram

•	 Rod — it is defined, at a minimum, by
 ·	 the two opposite forces that are equivalent to it

Moreover, a form diagram and a force diagram should be identified. The read-
ing cycle of forces in the form diagram must be set either clockwise or anti-
clockwise.

minimum set of native operations� · In order to ease the implementation
of the native operations, their function is limited as far as possible and the
objects to be processed must comply with strict requirements. Unlike the
higher-order procedures that will be describe in the next sub-section, they
are not aimed to be intuitive for the practitioner.

Besides the common native operations supported in programming languages
— e.g. assignments, arithmetic, comparisons, definitions and execution of
subroutines, loops and static conditional statements (not to be confused with
the dynamic conditional statements, page 233) — the following native opera-
tions should exist:

•	 CreatePointInTheFormDiagram[]
 ·	 creates a new point that belongs to the form diagram; no constraint is

applied on the point.
 ·	 returns the point

•	 CreatePointInTheForceDiagram[]
 ·	 creates a new point that belongs to the force diagram; no constraint is

applied on the point
 ·	 returns the point.

•	 DeletePoint[pA]
 ·	 removes the point pA from the diagram
 ·	 pA must be a point on which no constraint and no force are applied.

•	 MovePoint[pA coord]
 ·	 moves the point pA as close as possible to the position defined by the

coordinates coord — see the paragraph entitled “allowing dynamic
displacements of points” (page 143).

production rules for computer-aided graphic statics · 269

•	 MergePoint[pA pB]
 ·	 replaces every occurrence of pB by pA

 ·	 points pA and pB must be coincident
 ·	 if pB belongs to the form diagram, no force and no rod should be applied

onto it.

•	 Halfplane[pA pB pC]
 ·	 creates a HalfPlane[pA pB pC] constraint
 ·	 returns the constraint.

•	 DiscInside[pA pB pC]
 ·	 creates a DiscInside[pA pB pC] constraint
 ·	 returns the constraint.

•	 DiscOutside[pA pB pC]
 ·	 creates a DiscOutside[pA pB pC] constraint
 ·	 returns the constraint.

•	 UnitCompass[pA pB pC]
 ·	 creates a DiscOutside[pA pB pC] constraint
 ·	 returns the constraint.

•	 Intersection[CA CB]
 ·	 creates a constraint equivalent to the intersection of the constraint CA

with the constraint CB

 ·	 returns the intersection constraint.

•	 Union[CA CB]
 ·	 creates a constraint equivalent to the union of the constraint CA with

the constraint CB

 ·	 returns the union constraint.

•	 Inversion[CA]
 ·	 creates a constraint equivalent to the inversion of the constraint CA

 ·	 returns the inversion constraint.

•	 DeleteConstraint[CA]
 ·	 deletes the constraint CA

 ·	 CA can be any type of constraint
 ·	 CA should not be applied on any point and should not be part of any

intersection, union or inversion constraint

270 · production rules for computer-aided graphic statics

•	 ApplyConstraint[pA CA]
 ·	 intersects the constraint CA with all the constraints already applied on

point pA;
 ·	 if necessary, pA is moved in order to belong to the region of CA

 ·	 if the application of CA empties the domain of pA, the application is not
performed.

•	 CancelConstraint[pA CA]
 ·	 removes the constraint CA from all the constraints applied on point pA;
 ·	 CA should be applied directly (not as part of a sub-intersection or union

of constraint).

•	 SwitchDependencies[pA pB CA]
 ·	 switch the dependencies between pA and pB throughout the constraint

CA

 ·	 the constraint CA must be applied on pA and pB must be a direct param-
eter defining CA

 ·	 returns the newly created symmetrical constraint

•	 CreateZeroForce[pA pB]
 ·	 creates a zero force that is applied on pA in the form diagram and that

is defined by pB in the force diagram
 ·	 pA must belong to the form diagram and pB to the force diagram
 ·	 returns the force.

•	 DeleteZeroForce[FA]
 ·	 removes the zero force FA

 ·	 FA must be a zero force — i.e. the two points defining its magnitude in
the force diagram must coincide

•	 ResolveForce[FA pA pB pC]
 ·	 resolves the force FA into two forces; they are applied on the same point

of application as FA

 ·	 pA and pB become the points defining the type of application of the two
forces in the form diagram and are constrained as such — see the para-
graph entitled “constraining forces” (page 153).

 ·	 pC is the point linking the two forces in the force diagram
 ·	 the force FA no longer exists after its resolution
 ·	 returns the two forces in their order of presentation in the force dia-

gram.

production rules for computer-aided graphic statics · 271

•	 SwapForceCycle[FA FB]
 ·	 swap the order in which forces FA and FB are read in the form diagram

and in the corresponding force polygon
 ·	 FA and FB must be applied on the same point in the form diagram and

they must be consecutive in the force diagram
 ·	 FA must be read before FB in the form diagram and in the corresponding

force polygon
 ·	 no constraint should already be applied on any point that define FA and

FB

•	 CreateRod[FA FB]
 ·	 replaces the two forces FA and FB by a rod
·	 the forces FA and FB should not be already part of a rod
 ·	 the points defining FA and FB must be constrained in such a way that FA

and FB are compatible for any position of points: FA and FB must always
be parallel, of equal magnitude and opposite, and their point of applica-
tion in the form diagram must be aligned with the forces

 ·	 returns the rod.

•	 CancelRod[RA]
 ·	 replaces the rod RA by the two forces that defines it

In addition to these, there should be operations:
 •	to get informations — e.g. to get the set of constraints applied on a

certain point or to get the parameter points defining a certain funda-
mental constraint

 •	to perform checks — e.g. to check if a certain constraint is applied on a
point or if a certain point is a child of another certain point

 •	to select objects — e.g. to select a set of points, strut-and-tie sub-net-
work or force networks with the mouse

 •	to alter the appearance of objects — e.g. to hide or show a certain point.

production rules for computer-aided graphic statics · 273

24	 higher-order procedures

developing intuitive and efficient routines� · High-order procedures are
meant to automate sequences of native operations. The amount of operations
to be performed by these procedures is not limited and they are developed in
order to be as intuitive and efficient for the user as possible.

Routines can serve purely geometric purposes — e.g. the computations de-
tailed in sub-section 17 (“examples of graphical computations”, page 165) —
vectorial purposes — e.g. the computation of the resultant of a set of forces —
or structural purposes — e.g. the modification of the cross sections of a beam
in order to minimise inner bending moments. Some routines are broad and
others are specific to the structural model type being use.

Key general procedures to develop are those directly extending the scope of
the native operations:

 •	to apply a Compass or a Straightedge constraint
 •	to apply a constraint on several points simultaneously
 •	to delete a constraint although it is applied on point
 •	to switch constraint dependencies between points that are not direct

relatives
 •	to merge two points on which forces are applied
 •	to move points so that two forces are sufficiently compatible to be re-

placed by a rod
 •	to swap forces that are not direct neighbours in the force polygon
 •	…

Other procedures to develop are those implementing classical graphic statics
methods:

 •	the construction of a funicular polyline passing through one, two or
three given points

274 · production rules for computer-aided graphic statics

 •	the identification of the order in which intersecting forces shall be
taken into considerations in order to produce a compression-only or a
tension-only funicular polyline

 •	the computation of the centre of gravity of n given forces
 •	the computation of the resultant of n given forces
 •	…

Some procedures to develop are especially relevant for constraint-based
graphic statics, they help the construction of the diagrams:

 •	the displacement of points so that two strut-and-tie sub-networks can
be merged together

 •	the application of geometric boundaries to points and rods — i.e. to
compel a rod to remain inside a given area, see next paragraph

 •	the imposition of conditions on inner stresses — i.e. to compel a set of
rods to remain in compression, see the paragraphs entitled “constraints
for pushing forces or pulling forces” (page 253) and “constraints for
compression rods or traction rods” (page 254)

 •	the application of affine transformations — e.g. translation, scal-
ing, rotation, shear mapping — to a given strut-and-tie network (see
Huerta·2010 for practical applications)

 •	the creation of a symmetric copy of a strut-and-tie network
•	 the displacement of a point so that a rod in a strut-and-tie network

passes through a given point
 •	…

The following paragraphs illustrate how to create two of these routines.

example: adding a constraint to prevent two line segments from inter-
secting each other · Many practical applications are strut-and-tie net-
works that are asked to remain a inside given area (figure 20, page 41 for
instance). These applications greatly benefits from constraint-based graphic
statics since these boundaries are automatically propagated on every domain
of solutions associated to the strut-and-tie network.

figure 308
a rod that is not
totally inside a
given region.

production rules for computer-aided graphic statics · 275

Though it is easy to constrain a point inside a given region by direct applica-
tion of constraints, to constrain an entire rod inside a given region is less
straightforward. For instance, figure 308 shows a rod that is not entirely in-
side a region although its extreme points are constrained inside that region.
This issue can here be settled by applying constraints on both extreme points
in order to prevent each rod from crossing each line segment that form the
boundary of the given region.

Concretely, two line segments p0p1 and p2p3 (one of which can be a rod) never
cross if the point p0 is constrained as follows (figure 309):

p0 ∈ VeeringHalfPlane[p1 pA] ∪ VeeringHalfPlane[pB p1] ∪ VeeringHalfPlane[pB pA]
	 where:	pM ∈ MidPoint[p2 p3]
			 pA ∈ ([p2] ∪ [p3]) ∩ VeeringHalfPlane[p1 pM]
			 pB ∈ ([p2] ∪ [p3]) ∩ VeeringHalfPlane[pM p1]
												 ∩ (\VeeringStraightedge[p1 pA] ∪ [pA])

If p1, p2 and p3 are aligned — regardless of whether p1 is between p2 and p3 or
not —, pA and pB would then be coincident and p0 would belong to the entire
plane, as expected. The same is true when p2 and p3 are coincident.

Similar constraints are automatically applied on points p1, p2 and p3 by sym-
metry.

As a result, rods will never cross boundaries if the following procedure is
performed for each potentially crossing pairs of line segments:

•	 NoLineSegmentsCross[p0 p1 p2 p3]
 ·	 applies a constraint on p0 so that the line segments p0p1 and p2p3 never

cross
 ·	 the four points p0, p1, p2 and p3 must belong to the same diagram
 ·	 returns the constraint that has been applied on p0

NoLineSegmentsCross[p0 p1 p2 p3] = {

figure 309
the domain that
p0 must hold in

order to prevent
the intersection

of the two line
segments; two

examples.

276 · production rules for computer-aided graphic statics

	 if ¬((GetDiagram[p1] = GetDiagram[p2])
		 ∧	 (GetDiagram[p2] = GetDiagram[p3])
		 ∧	 (GetDiagram[p3] = GetDiagram[p4]))
		 {throw error “Points p1, p2, p3 and p4 do not belong to the same diagram”}

	 else {
		 current_diagram := GetDiagram[p0]

		 pM := CreatePointInDiagram[current_diagram]
		 ApplyConstraint[pM MidPoint[p2 p3]]

		 pA := CreatePointInDiagram[current_diagram]
		 pB := CreatePointInDiagram[current_diagram]

		 cA := Union[Position[p2] Position[p3]]
		 cB := Intersection[VeeringHalfPlane[p1 pM] cA]
		 cC := Intersection[VeeringHalfPlane[pM p1] cA]
		 ApplyConstraint[pA cB]
		 ApplyConstraint[pB cC]

		 cD := Union[VeeringHalfPlane[p1 pA]
						 VeeringHalfPlane[pB p1]
						 VeeringHalfPlane[pB pA]]
		 ApplyConstraint[p0 cD]

		 return cD
	 }
}

example: creating a funicular polyline passing through one given
point� · The following procedure creates a simple funicular polyline that sup-
ports any number of forces and whose first rod has to pass through a given
point. Since a load is generally free of moving along a given line of action,
the point of application of a load in the form diagram is usually already con-
strained on a straightedge. For instance, the point p1 in figure 310 belong to a
Straightedge[p4 p2 p3] constraint. As a consequence, the creation of a funicular
polyline is equivalent to constraining each point of force application so that
its position is fixed on the corresponding line of action.

figure 310
initial situation
before the
execution of the
CreateCatenary
procedure; the
domain of p1 is
highlighted.

production rules for computer-aided graphic statics · 277

The procedure uses the GetParam[object i] native operation that returns the
point that is the ith parameter (starting from 0) of the given object — where the
object is a constraint, a force or a rod.

The procedure can be defined as follows:

•	 CreateSimplyConnectedNetwork[p0 forces]
 ·	 creates a funicular polyline that supports the forces listed in the ar-

ray Forces and whose first rod passes through p0

 ·	 the forces are supported in the order in which they are referenced in
the array Forces

 ·	 the forces are assumed to be already consecutive in the force diagram
 ·	 returns an array containing the rods that have been created

CreateCatenary[p0 forces] = {
	 numberOfForces := ArrayLength[forces]

	 — check whether the forces are consecutive in the force diagram or not:
	 i := 0
	 while i<numberOfForces-1 {
		 if ¬(GetParam[forces[i] 2] = GetParam[forces[i+1] 3])
			 {throw error “Forces ”+i+“ and ”+(i+1)+“ are not consecutive
																 in the force diagram”}
		 i := i+1
	 }

	 — creation of the pole:
	 pole := CreatePointInForceDiagram[]

	 — arrays that will contains the new rays and the new rods:
	 rays:= CreateArray[numberOfForces*2]
	 rods:= CreateArray[numberOfForces-1]
	 i := 0
	 while i<numberOfForces {
		 — resolution of the forces in order to form the rays (figure 311):
		 tempRays := ResolveForce[forces[i] CreatePointInFormDiagram[]
													 CreatePointInFormDiagram[] pole]
		 rays[i*2] := tempRays[0]
		 rays[i*2+1] := tempRays[1]

		 — alignment of the points of application (figure 312):
		 if (i=0) ∨ (i=1) {
			 se := CreateStraightedge[p0 pA GetParam[rays[0] 2]]
			 ApplyConstraint[GetParam[rays[i*2] 0] se]
		 }
		 else {

278 · production rules for computer-aided graphic statics

			 se := CreateStraightedge[GetParam[rays[(i-1)*2] 0] pA
														 GetParam[rays[(i-1)*2] 2]]
			 ApplyConstraint[GetParam[rays[i*2] 0] se]
		 }

		 — creation of the rods (figure 313):
		 if i>0 {
			 rods[i-1] := CreateRod[rays[(i-1)*2] rays[(i*2)+1]]
		 }

		 i := i+1
	 }
	 return rods
}

In the example in figure 313, the force diagram has been automatically rear-
ranged after the execution of the operation ResolveForce[forces[3]] because the
newly resolved forces crossed the rod that has been created by the operation
CreateRod[rays[2] rays[5]].

figure 311
creation of the
pole and
resolution of
forces.

figure 312
alignment of the
points of
application.

figure 313
creation of the
rods.

production rules for computer-aided graphic statics · 279

The CreateSimplyConnectedNetwork procedure should be flanked by similar oth-
ers, e.g. to let the user select the rod through which the funicular polyline has
to pass or to create funicular polylines that pass through two or three points.

production rules for computer-aided graphic statics · 281

25	 functional flow

the symbolic solver and the numerical solver� · Because the structural
designer modifies his or her design step by step, the resolution of the geomet-
ric constraints is performed in a similar sequential manner — i.e. each new
operation builds on the previous results. A rough functional flow diagram of
the approach is presented in the following figure: boxes are computed data
and arrows are algorithms or user’s commands.

The construction plan holds a declarative list of all the operations applied
by the designer to the strut-and-tie network. This plan is first analysed by a
symbolic solver. It performs all the operations that can be made regardless
of the actual positions of points. For instance, it identifies each constraint de-
pendency and produces a symbolic description of each input and strict domain
(page 151), each force domain (page 153), each reading cycle domain (page
243), each topological domain (page 259) and all the propagation domains
that can be handled symbolically (page 201).

This first solver offers the advantage of not being executed after most point
displacements.

figure 314
functional flow

diagram.

282 · production rules for computer-aided graphic statics

The constraints created by this symbolic solver do not have the same ser-
vice life as the constraints created by the user. The former become inefficient
when there is a modification of the constraints applied on one of their parent
points or one of the points on which their are applied. The latter remain ef-
ficient as long as the user does not delete them explicitly.

The update of these positions and hence of the actual shape of the domains
of solutions is then undertaken by a numerical solver whose job is mainly
to compute orthogonal projections on lines or circles — see sub-section 15
(“graphical regions and dynamic compliance with geometric relationships”,
page 137). The eventual numerical propagation domains should be per-
formed by this solver too.

The geometric construction is displayed once the numerical solver has found
the solution — i.e. once each point is inside a non-empty region. The user can
then modify this result by moving points or applying new operations on the
strut-and-tie network.

locale computations� · If the operation modifies the construction plan the
solving process must be rerun. Thanks to the fact that the positions of
points are the only variables, their dependencies is fully expressed with
directed graphs of dependencies — see sub-section 16 (“constraint (inter)
dependencies”, page 155). This means that the minimum set of points con-
cerned by a given operation can be easily identified and that a local treatment
of the data is sufficient for processing modifications in both the symbolic and
numerical solvers.

automatic routines� ·If a point is moved outside its reading cycle domain
or outside its topological domain, routines can be executed automatically
in order to update the reading cycle of forces and hence the force polygons
— see the paragraph entitled “allowing the modification of reading cycle
domains” (page 256) and the sub-section 22 (“facilitating the crossing of
rods”, page 259). These automatic routines apply operations that modify the
construction plan and must therefore be computed by the symbolic solver
again.

production rules for computer-aided graphic statics · 283

user-interfaces� · Three types of user-interfaces can already be identified.
The first type is the one that has been used in the previous sub-section. It
consists of successive written declarations assembled into a script.

The second type is the one common to contemporary cad drawing: points are
represented and dragged in a plane — here in a form diagram and in a force
diagram — and operations on the construction plan are executed directly af-
ter they have been selected on button panels or entered in a command prompt.

The third type displays constraints and points as boxes in an interactive di-
rected graph of dependencies. Connecting these boxes together allows the
creation and application of geometric constraints, in a similar way to grass-
hopper components (Payne/Issa·2009 and Khabazi·2010).

The first type seems to be better suited to the definition of new higher-order
procedures while the second and the third types appear more adequate to
jointly build strut-and-tie networks interactively.

285

DISCUSSION

This final section discusses the results of the tool that has been developed throughout the
previous sections. First sub-section 26 (“applications”, page 287) produces an overview of
the large set of expected applications and exemplifies some of them. Future research ap-
proaches are then proposed in sub-section 27 (“future research”, page 305). A general con-
clusion concerning this thesis is finally drawn in sub-section 28 (“conclusions”, page 315).

discussion · 287

26	applications

The tool is expected to aid many different approaches to structural design
and analysis. The following paragraphs present a general overview of all the
intended applications. Examples of practical applications are subsequently
explained.

who ? · Generally speaking, constraint-based graphic statics are intended to
assist structural designers, be they structural or civil engineers, architects,
industrial designers, preservation engineers, students and others.

when? · As outlined in sub-section 04 (“proposal: a tool to accompany the
construction of static equilibriums”, page 29), constraint-based graphic
statics seem adequate for use in the following contexts:

 •	initial design explorations of structural shapes, especially when new
typologies are sought (to suit new materials or new ways of production)

 •	cross-professional design team meetings, since drawings — and, for
instance, graphical depictions of shapes and forces — constitute a com-
mon medium for architects, engineers and clients; it is not only suited
to passive exchanges of information between remote design teams, but
also to direct dialogues thanks to the generalisation of new portable
computing devices such as touchpads

 •	amendments of structural geometries following advanced structural
analysis, since strut-and-tie models are appropriate for efficiently mod-
ifying structural behaviours (Zastavni·2010)

 •	preservation assessments when the stability of existing structures is
better understood in a graphical environment — i.e. for structures with
a plastic behaviour (such as reinforced concrete) in which identified
defects can be considered as new geometric requirements (Fivet·2012)
and for masonry structures where stability is essentially a geometric
matter (Huerta·2006b and Loits·2010).

288 · discussion

 •	the teaching of architecture students and civil engineering students,
since graphic statics have always been a fruitful pedagogic tool
(Allen·2009):

“[Using graphic statics], we should have a course of Engineering
Mechanics, so invigorating to the mind, that our students, having undergone
its discipline, would feel themselves men, well prepared for work, capable
of appreciating the conditions, and reasoning upon the data, of large class
of practical questions to which they might require to address themselves”.
(Chalmers·1881, preface page vii)

what ? · Strut-and-tie networks are very well suited for use as abstractions of
the stability of a very wide range of structures, as long as their utilisation can
be described in the plane (which does not impede the design of most spatial
structures):

 •	statically determinate and indeterminate reticular structures, includ-
ing pre/post-stressed structures and self-stressed structures — e.g.
roof structures, frames, bridges, tensegrities, reciprocal frames

 •	mechanisms, linkages (Herrmann·1892, Kempe·1877 and
McCarthy/…·2011) — e.g. movable bridges

 •	thrust lines within compression-only structures — e.g. masonry arches
 •	load paths within materials showing a plastic behaviour

(Ochsendorf·2005) — e.g. reinforced concrete bridges
 •	Euler-Bernoulli beams subjected to bending — e.g. hyperstatic beams,

pre-stressed beams — and columns, including graphical computations
of deformations, second-order effects and studies using Mohr’s circle
for controlling moments of inertia (Pirard·1950, page 157) and for con-
trolling basic deflections (Heyman·2008b, page 28)

 •	discontinuous stress-fields within plastic materials — e.g. reinforced
concrete shear-walls — including studies using Mohr’s circle for
controlling stress states (Fivet·2012) — see sub-section 27 (“future
research”, page 305) for more details

 •	stabilising slopes, retaining walls and foundations — i.e. soil mechanics
(Terzaghi·1966).

These applications therefore consider almost any building material — e.g.
steel, wood, concrete, glass, ceramics, polymers, including their com-
binations into composites, e.g. reinforced wood (Trautz/Koj·2009a and
Trautz/Koj·2009b). Moreover, although the original subject of this research

discussion · 289

deals solely with architectural structures, constraint-based graphic statics
also appears convenient for the design of naval structures, biomechanics, ro-
botics, furniture and industrial design.

how ? · The following paragraphs exemplify some applications. The first
example uses constraint-based graphic statics to reconstruct the reticular
shed built in Chiasso by Robert Maillart in 1924. The second example shows
how geometrical constraints can be used to control bending moments explic-
itly. The third example explains how static indeterminacy in reticular struc-
tures can be managed graphically. The final example assesses the stability of
a masonry arch.

(1) constructing a reticular structure · In order to illustrate how a reticu-
lar structure can be shaped with constraint-based graphic statics, this para-
graph recreates the Chiasso sheds designed by Robert Maillart in 1924.

The initial settings considered here are those identified in Zastavni·2008a
(page 290 and following) and Zastavni·2008b: the symmetrical peaked roof
consists of a 10 centimetres wide concrete slab; its slope and its position is
mainly given by the size of trains and the openings and slabs of the adjoining
building (figure 315); the axial distance between vertical members is deter-
mined at 260 centimetres (half the distance between columns of the building
adjacent to the shed); and the buildable volume is mainly given by storage
requirements and the geometry of the adjoining building.

The following reconstruction is quite different from the one described in
Zastavni·2008a and Zastavni·2008b and from Maillart's original design pro-
cess. The main reason is that the diagrams will be here in static equilibrium
at each single step. The goal here is not to find a way to “close” the force
polygon — i.e. to ensure that the final shape of the shed is in equilibrium. The
goal here is to modify an initial force polygon already closed — i.e. to alter a
shape already in equilibrium — until:

 •	the only remaining forces are the loads applied on the structure or the
reactions at the supports

 •	the stresses in each element are less than their maximum strengths
 •	the overall structural system is sufficiently stable.

First, the buildable volume is defined as a Boolean combination of HalfPlane
constraints that are dependent on a set of free points, a Straightedge constraint
symbolizes the roof (figure 316). A first load case is then deduced from the

290 · discussion

initial properties of the roof and is discretized with equilibrated pairs of forc-
es (figure 317). These pairs of forces are constrained on the axes given on
figure 316.

This system is already in equilibrium. The role of the designer is now to focus
on what operations should be applied to transform these initial internal forces
into rods.

For instance, he can apply new equilibrated pairs of forces on each point of
the roof. These new forces being of equal magnitudes and parallel to the axis
of the roof, they can be transformed into rods in which new axial stresses can
flow (figure 318). In order to get rid of forces FA, FB and FC, the designer cre-
ates a new simply connected strut-and-tie network, i.e. a funicular polyline,
that takes up equal but opposite forces (figure 319). This polyline can then be
merged with the original network while transforming corresponding forces
into rods (figure 320).

figure 315
influence of the
adjoining
building on the
geometry of the
shed, from
Zastavni·2008a.

discussion · 291

figure 316
reconstruction of

Maillart's
Chiasso sheds

(snapshot 0);
initial buildable

volume.

figure 317
reconstruction of

Maillart's
Chiasso sheds

(snapshot 1);
initial set of

loads.

figure 318
reconstruction of

Maillart's
Chiasso sheds

(snapshot 2); the
linear domain of

pA is highlighted.

figure 319
reconstruction of

Maillart's
Chiasso sheds

(snapshot 3); the
linear domain of

pB is highlighted.

292 · discussion

figure 320
reconstruction of
Maillart's
Chiasso sheds
(snapshot 4); the
linear domain of
pB is highlighted.

figure 321
reconstruction of
Maillart's
Chiasso sheds
(snapshot 5); the
linear domain of
pB is highlighted.

In figure 319, pC has been constrained so that the force FD becomes symmetri-
cal to the rod rA. On the opposite side, point pG' has been moved onto pG in
order to add the forces FR and FS and to work with FT instead. Forces FD and
FT have currently no real structural meaning so far. Their purpose is to pro-
vide “grips” on which other strut-and-tie sub-networks can be attached. For
instance, FD will be used to link the current strut-and-tie network with the
symmetrical network.

For the same reason, the pole pB is dragged along its domain in figure 321
until the force FE and the rod rB become perfectly symmetrical in both form
and force diagrams. This position coincides with the axis of symmetry in the
force diagram. Point pB is consequently constrained at the intersection of this
line of symmetry with the line of the poles of the funicular polyline. That
ensures that the forces applied onto the position pY (in the form diagram) are
symmetrical and in static equilibrium.

discussion · 293

From figure 321 to figure 322, points pH, pI, pJ and pK are moved along their
domain in order to minimize the stresses in the funicular polyline: if they
move, the geometry of the funicular line updates and the domain of pB updates
since the funicular polyline has to pass through points pX and pY in the form
diagram (figure 321).

figure 322
reconstruction of

Maillart's
Chiasso sheds

(snapshot 6); the
linear domain of

pH, pI, pJ and pK
are highlighted.

figure 323
reconstruction of

Maillart's
Chiasso sheds

(snapshot 7); the
linear domain of

pG is highlighted.

294 · discussion

A new point (pL) is added in figure 323. This point is equilibrated with three
forces that are constrained in such a way that the new force FJ is in equilib-
rium with the forces FG and FH. As soon as the new rods are formed, point pG is
automatically moved in order to stay inside its new propagation domain — this
propagation domain ensures that pL remains inside the buildable volume de-
fined in figure 316.

The presence of this point pL explains why both forces applied on pD in
figure 321 have been divided into two equals parts and moved on pE and pF in
figure 322. Indeed, only three rods are connected by pL thanks to this division
and there is absolutely no node connecting more than three rods in the entire
structure.

Finally, a new point pM and two equilibrated forces are added in figure 324.
In order to ensure that the new rod stays inside the available area for the
column, the geometry of the funicular polyline has to be altered. The depend-
encies between pB and the set {pH, pI, pJ, pK} are consequently switched to
facilitate the control of the funicular polyline. As a result, pB can be dragged
again. Its domain, i.e. a tiny horizontal line segment in figure 324, ensures
that every rod remains inside the buildable volume.

The shaping process can now be stopped since all the remaining forces are
either applied loads or reaction forces. All the movable points — e.g. pG, pB
and pL — and their domains of solutions synthesize the remaining degrees of
freedoms with which this structural shape can be deformed. For instance, an

figure 324
reconstruction of
Maillart's
Chiasso sheds
(snapshot 8); the
linear domain of
pB is highlighted.

discussion · 295

alternative structural shape can be obtained by moving the point pG further
(figure 325). Thanks to the nature of the reciprocal diagrams, the impact of
this alternative can be studied simultaneously in two ways: (1) according to
spatial considerations — e.g. the increase of free space for storage in the form
diagram — and (2) according to mechanical considerations — e.g. the material
needed to resist the increasing magnitudes of forces described in the force
diagram.

If desired, this strut-and-tie network can also be used as a basis to obtain a
new strut-and-tie typology by dividing and recombine rods. The design ap-
proach that has been given here is essentially a bottom-up process: small
parts are first built and the structure is obtained by assembling sub-parts
together. The opposite, top-down, process could have been followed as well:
a global rough network, e.g. a simply connected strut-and-tie network, would
have been constructed initially and then modified by successive steps.

Sometimes rods, e.g. rC, directly define the orientation and width of struc-
tural members and can be sized directly according to the magnitudes rep-
resented in the force diagram. Sometimes rods define the eccentricity of the
axial and transverse forces acting on structural members. For instance, the
eccentricity of rD defines the bending moments occurring inside the column
(figure 326). Also, the applied loads can be further discretized in order to de-

figure 325
reconstruction of

Maillart's
Chiasso sheds

(snapshot 9);
alternative shape

obtained by
moving pG, its

linear domain is
highlighted.

296 · discussion

figure 326
reconstruction of
Maillart's
Chiasso sheds
(snapshot 10);
study of the
impact of another
load case by
moving pQ, its
domain is
highlighted.

scribe the bending moments in the roof. The visual and numerical description
of the bending moments is given by other constraint-based routines that are
at the disposal of the user.

The study of the structure under other load cases can also be performed on
the same diagrams. The basic example of figure 326, shows the variation of
the bending moments in the column when an additional load is hung on the
roof edge. The magnitude of this additional load is actually defined by the
position of pQ in the force diagram — FY being the resultant of the initial load
and the additional one. Moving pQ modifies the load case and directly displays
its impact on the stresses in the column. Moreover, the domain of pQ already
bounds the admissible additional load on the roof edge. If the structure has
to sustain a bigger load on the roof edge, other positions of points in the form
diagram or in the force diagram have to be changed by the user. More com-
plex load cases can be obtained by moving multiple points at the same time.

discussion · 297

(2) controlling bending moments with geometrical constraints · This
paragraph highlights how bending moments can be controlled by purely
geometric means with constraint-based graphic statics and what benefits it
can bring. Given two loads, a clamped beam with uniform inertia throughout
(figure 327) is to be sized using graphical methods — this example is from
Muttoni/…·1997 page 7 point 1.2.2 and from Zastavni·2008a, appendix 4.

Thanks to the force diagram, the bending moments are given by a simply con-
nected strut-and-tie network (i.e. a funicular polyline) whose moving pole is p*
(figure 329). This pole is constrained in such a way that the funicular polyline
passes through p1 and a point p2.

Using the lower-bound theorem of plastic theory (page 19), this beam can
be designed for a desired magnitude of bending moments. Given the bending
moment distribution of figure 329, it is understood that two plastic hinges
must develop in order for a mechanism to exist and the beam to collapse
(figure 328). The first plastic hinge is situated on p0 and the other on p5 or p6
(figure 330).

figure 327
initial settings for

the clamped
beam.

figure 328
two possible

collapse
mechanisms.

figure 329
bending moment

distribution.

298 · discussion

The smallest bending moments for which this beam has to be designed are
consequently those occurring when the moment on p0 is equivalent to the
maximum between the moments on p5 and p6 — i.e. when the distance p0p2
is equal to the maximum between the distances p3p5 and p4p6. These values
are here simply obtained by applying a MaxDistanceCompass[p0 p3 p5 p6 p4] con-
straint on p2 — see the paragraph entitled “the ProximityCondition constraint”
(page 236). This compass is centred in p0 and its radius is equal to the great-
est distance between p3p5 and p4p6.

Because the pole p* is dependent on p2 and because p3 and p4 are dependent
on the position of p*, interdependency occurs between p* and p2. Concretely,
when the position of p2 is updated such that it belongs to the compass, the line
of the poles on which p* is constrained rotates. This updates the position of p*,
which in turn updates the altitude of p3 and p4, and subsequently the position
of p2 (due to the compass). These automatic updates eventually converge to a
solution every time p* is dragged.

As a result, a point of zero bending moment is identified on p9 and the funicu-
lar polyline provides the smallest bending moment distribution for which this
beam has to be designed. The required section of the beam can subsequently
be obtained.

The above process is clearly faster and more interactive than any equivalent
algebraic resolution.

For another example, figure 330 shows the same beam in which the point of
application (p7) of the load L0 is not a given value but an unknown factor and in
which the position of the zero bending moment p9 is a free parameter. If point
p3 is constrained as follows, it defines the position of L0 for which bending mo-
ments on p0 and p6 are equal:

p3 ∈ Straightedge[p4 p* pB] ∩ Straightedge[p2 p2 p9]
	 where:	p* ∈ Straightedge[pA p2 p9] ∩ Straightedge[pC p1 p4]
			 p4 ∈ Straightedge[p8 pA pB] ∩ Compass[p6 p0 p2] ∩ HalfPlane[p0 p0 p1]
			 p6 ∈ Straightedge[p8 pA pB] ∩ Straightedge[p0 p0 p1]
			 p7 ∈ Straightedge[p3 pB pC]

figure 330
bending moment
distribution.

discussion · 299

(3) designing with indeterminacy · Structural indeterminacy can be
defined as the ability of a strut-and-tie network to present different inner
equilibria under constant external loads, meaning that multiple force dia-
grams can describe the same form diagram. This is encountered when at least
one point can be moved in the force diagram without changing the orientation
of any rod or force. The frame of figure 331 describes a simple structure of
this kind.

The final step of its construction is shown in figure 332. It presents the follow-
ing geometric properties:

p4 ∈ Straightedge[p0 p0 p2] ∩ Straightedge[p1 p1 p3]
p8 ∈ Straightedge[p12 p2 p3]
p9 ∈ Straightedge[p5 p0 p3]
p10 ∈ Straightedge[p9 p0 p4] ∩ Straightedge[p6 p0 p1]
p11 ∈ Straightedge[p10 p1 p4] ∩ Straightedge[p7 p1 p2]
p12 ∈ Straightedge[p11 p2 p4] ∩ Straightedge[p9 p3 p4]

The point p4 is added and constrained by the software itself in order to pre-
vent the crossing of the rods — see sub-section 22 (“facilitating the crossing
of rods”, page 259). The resulting four rods act exactly as if they were two
crossing rods. Indeed, the network is constrained such that both rods in a
pair have always equal magnitude, equal orientation and are aligned in the
form diagram.

Moving p9 on its own domain — i.e. on a line — changes magnitudes without
modifying any orientation (figure 332, figure 333, figure 334 and figure 335).
It follows that the domain of p9 is a comprehensive graphical representation
of the indeterminacy of the frame. In most cases, the degree of indeterminacy
of a structure is equal to the number of rectilinear domains inside which
points can be moved without modifying any orientation of force or rod — a
two-dimensional domain is said equivalent to two linear domains.

figure 331
an indeterminate

frame.

300 · discussion

figure 332
the domain of p9
is a representa-
tion of the
indeterminacy of
this frame.

figure 333
p9 moves and
cause another
force distribu-
tion.

figure 334
another possible
force distribution
in which rod R0 is
superfluous.

figure 335
another possible
force distribution
in which rod R0 is
in compression.

discussion · 301

The compactness of the force diagram provides a direct insight about the ef-
ficiency of the chosen force distribution.

Moreover, the current position of p9 consequently defines whether rods are in
traction or in compression. For instance, the rod R0 is in traction in figure 332
when p9 belongs to HalfPlane[p6 p0 p2], is unnecessary in figure 334 when p9
belongs to Straightedge[p6 p0 p2] and is in compression in figure 335 when p9 be-
longs to HalfPlane[p6 p2 p0]. Cross-sections can then be deduced from the force
diagram so that the inertias impose the desired stress distribution.

The graphical handling of structural indeterminacy allows unprecedented
control over the structure being shaped. For instance, it is asked which orien-
tation of the load F0 would ensure rod R0 remains compressed without chang-
ing stresses inside the ties of figure 335. The first step to solving this issue
is to fix the inner tension forces by switching the dependencies between p6
and p8 so that p8 becomes completely free of constraint and p6 becomes con-
strained on Straightedge[p10 p0 p1] (figure 336). Dependencies can then be fur-
ther switched between p6 and p13 so that p13 becomes free of constraint and
point p6 must then be further constrained on Straightedge[p5 p0 p13] so that the
orientation of F0 is given by point p13 in the form diagram. The resulting propa-
gation domain of p13 ultimately describes all the orientations that the load F0
can have in order to ensure that the rod R0 remains compressed.

figure 336
the domain of p13

reflects all the
orientations the
load F0 can have

so the R0 remains
compressed.

302 · discussion

(4) assessing the stability of a masonry complex · The final example is
analytical rather than design-oriented: the stability of a given geometry of
compressed voussoirs has to be checked. This means that a thrust line bal-
anced with the dead loads of the voussoirs must exist inside the arch geom-
etry.

The set of possible thrust lines inside the arch of figure 337 can be fully
characterised with graphical domains of solutions. The first stage is to build
a Boolean combination of HalfPlane constraints that corresponds to the geom-
etry of the arch and to apply it to each node of the generated thrust line. The
generality of this description method allows local specificities — e.g. irregu-
larities detected in situ — to be taken into account without additional device.

The propagation of this set of constraints onto p0 provides the near-triangular
region in which p0. This domain reflects the entire set of valid geometries that
the thrust line can have. Moreover, the edges of the near-triangular region
provide the extreme positions of p0 for which rays are of minimum and maxi-
mum magnitudes.

figure 337
A masonry arch
and its inner
thrust line;
highlighted
regions represent
the domain of
stability of this
arch.

discussion · 303

The domain of p1 — a linear segment —, also reflects the set of possible thrust
lines, this time in the form diagram.

Since point p2 is also a parameter of the thrust line, its domain is affected by
the propagation of the constraints that define the geometry of the arch. As a
result, its domain covers all the domain of stability of the arch too. Its domain
therefore synthesises all the possible values of the weight w*, and in particu-
lar its minimum value, for which the stability of the arch is guaranteed.

Furthermore if the forces corresponding to the actual dead load of the vous-
soirs are calculated with graphical constraints based on the geometry of
these voussoirs and if the position of each load is constrained to be in line
with the centre of gravity of the voussoir, the process then becomes design-
oriented: moving a point that defines a voussoir would lead to the update of
its dead load, to the update of the position of the pole p0 and eventually to the
update of the thrust line. That means that an interactive optimisation of the
geometry of the voussoirs can be carried out in a fully graphical way.

discussion · 305

27	 future research

The framework, as presented here, still exposes significant limitations that
prevent its full operational use. However, there is no reason to rule out the
possibility of filling in and extending the existing framework in a manner
that respects the objectives outlined in sub-section 03 (“answers: exemplary
practices”, page 17) and sub-section 04 (“proposal: a tool to accompany the
construction of static equilibriums”, page 29). Moreover, the full graphical
approach taken in this research has already provided results that suggest
fruitful new advances in the design and understanding of structural equilib-
rium. The paragraphs below discuss these perspectives of research.

defining additional algorithms for constraint propagation · It has been
shown in sub-section 19 (“constraint propagations”, page 201) that addi-
tional algorithms are still required to ensure the complete propagation of
constraints, and hence the precise description of every domain of solutions.
Although this current lack of completeness does not jeopardise the dynamic
handling of strut-and-tie networks — e.g. empty domains can be avoided with-
out that device — and the other techniques developed in this thesis, it forces
the user to be careful in interpreting domains. Developments in this field
should therefore be a priority.

assessing the tool and enhancing its usability · As the environment is
intended to be extremely intuitive and easy to use, in-situ practical assess-
ments are mandatory in order to measure and improve the actual speed of
software processing, the relevance and extent of the tool’s capabilities and its
ergonomics. These assessments should lead to a definition of an appropriate
graphical user interface — GUI — a rewriting of the inner algorithms and the
definition of new simplifying routines — i.e. new and more intuitive geomet-
ric constraints. Prior to the coding of these routines, a specific study of their

306 · discussion

geometric properties must be undertaken in order to define them robustly
— i.e. to ensure that any change of position of a point will not jeopardise the
sought behaviour of the constraint.

On the other hand, it would be beneficial to identify a number of best prac-
tices that may guide the designer towards a productive process. These are
all the more welcome as the user is the sole master of each design choice and
the only person responsible for the proper course of the graphical operations.

developing specific fields of applications · Another part of the research to
be continued is the development of libraries of routines aimed at constructing
specific abstraction models: thrust lines and stereotomy for masonry design
and analysis (Heyman·1995); discontinuous stress fields in reinforced con-
crete (Kostic·2009, Muttoni/…·2011) or in reinforced wood (Trautz/Koj·2009a,
Trautz/Koj·2009b), graphical methods for soil mechanics (Chalmers·1881,
Terzaghi·1966) etc. Again, the definition of these routines must be preceded
by a complete study of the geometric properties — concerning both the shape
and the forces — on which they are to be built.

By way of illustration, the library dedicated to the design of discontinuous
stress fields can be regarded as a plug-in that replaces the set of equilibrium
operations by adding an additional layer of abstraction. For example, the op-
eration transforming two well-suited forces into a new rod is superseded by
an operation transforming two well-suited forces into a new rectilinear stress
field (figure 338). The latter operation executes the former but also applies
new geometric constraints that guarantee the specific properties of discon-
tinuous stress fields — e.g. stress fields cannot be superimposed, their width
(in the form diagram) can vary but must be greater than the one allowed by
the strength of the material (regarding the actual resultant stress and the
thickness of the beam) and nodal stress fields must present a geometry capa-
ble of uniform stress distribution.

figure 338
construction of a
rectilinear stress
field (right) from
two opposite
forces (left):
dragging p0 will
change the width
of this stress field
and automatically
update the
geometry of the
nodes.

discussion · 307

figure 339
a rectilinear
stress field:

dragging p0 will
cause the

rectilinear stress
field to be rotated

around p3 or to
switch from

traction to
compression; as

long as p0
remains within

its graphical
domain of

solution (the
shaded area in

the force
diagram), the

strength of this
stress field is
ensured to be

below the plastic
limit of the wood;
the asymmetrical

curvy shape of
this domain of

solution is due to
the anisotropic
nature of wood.

The details of this library have already been partially developed by the author
(Fivet·2012). It has been reported that, assuming some particular conditions
guaranteeing its plastic behaviour, discontinuous stress fields inside wood-
joints can be modelled in full with geometric constraints related to the form
diagram and the force diagram. One interesting feature of this development is
the ability to represent graphically the range of force magnitudes and orienta-
tions that ensure a certain stress field remains below the plastic limit of this
anisotropic material (figure 339). Another feature is the ability to control and
handle the state of stress acting on a particular cut plane by way of a Mohr’s
circle constructed in the force diagram (figure 340).

308 · discussion

figure 340
study of the state of the stress acting on a particular position and cut plane: the Mohr's circle is
constructed in the force diagram in full; τ represents the tangential component of the constraint and σ
the normal component; for example, point pτ reflects the state of the stress acting on the plane
parallel to the fibre orientation; as a result, constraining pτ further will affect the domain of solutions
of point ei and hence, the width of the corresponding rectilinear stress field.

discussion · 309

enhancing the geometric understanding of structures · This thesis has
explored how (and the extent to which) any static equilibrium may be condi-
tioned by purely geometric properties — e.g. geometric conditions for a rod to
remain in traction or compression and the geometric description of variables
of indeterminacy. Indeed, it seems that constraint-based graphic statics is
rather conducive to an entirely geometry-based reconstruction of the clas-
sical theory of structures. Given the unique nature of such a reconstruction
— i.e. at the crossroads of graph theory and (graphical) set theory — it can
be hoped that research in this direction will result in the discovery of origi-
nal theorems of mechanics of structures. Not only would such results benefit
from the computational simplification offered by the force diagram and the
graphical domains of freedoms, but also from the visual expressiveness they
give the designer.

Two specific fields of study can already be tackled:

(1)	the study of the close correlation that exists between the topology of the
graphical domains of freedom and the rigidity of the structure. This study
would lead to the definition of new geometrical criteria for structural robust-
ness as well as to their dynamic control for design purposes.

Structural robustness is defined as “the property of systems that enables them
to survive unforeseen or unusual circumstances” (Knoll/Vogel·2009) — e.g.
excessive loads or the collapse of part of the structure. Robustness can be
obtained from various strategies, including sizing for a strength above the
minimum theoretically required and the design of multiple load paths. In this
case, the former and the latter are dealt with by graphical domains of freedom
and their behaviour after the elimination of rods.

(2)	the study of the ability to execute algorithmic structural optimisations
through the application of geometrical constraints. Structural optimisation is
defined as “the subject of making an assemblage of materials sustain loads in
the best way” (Christensen/…·2009) and commonly refers to specific comput-
erised algorithms. It is achieved by automatically varying the topology of the
structure, its geometries and the stiffness of its members automatically. The
use of reciprocal diagrams for discrete topology optimisation has already un-
veiled very interesting computational benefits in Micheletti·2008, Block·2009,
Beghini·2013 and Baker/…·2013. Constraint-based graphic statics offers a
fairly original theoretical basis on which the power of optimisation methods

310 · discussion

is yet to be discovered. This is mostly due to the geometric simplifications of-
fered by the force diagram and the transcription of complex equational prob-
lems into symbolic geometric shapes.

extending the environment to the third dimension · Although great mas-
ters of the past have built spatial structures for millennia with the aid of work-
ing drawings which were only plane, the environment presented in this thesis
would be of narrow interest if its extension to the third dimension was incon-
ceivable or simply not sought. Indeed, the interactive construction of spatial
static equilibrium would certainly promote the emergence of new structural
typologies and the mastering of problems that, today, are difficult to solve.

This extension can be envisioned in three ways:
(1)	 the projective approach: the form diagram is defined in a three-dimen-

sional space but the force diagram is not; the force diagram is dynami-
cally adjusted based on the current axonometric projection of the form
diagram; geometric constraints are planar and applied either on the
planar force diagram or on particular axonometric projections of the
form diagram

(2)	 the full 3D approach: the form diagram, the force diagram and geo-
metric constraints are all defined and handled in a three-dimensional
space

(3)	 the composite approach: the form diagram, the force diagram and geo-
metric constraints are defined in a three-dimensional space, but repre-
sented and handled on axonometric projections.

The first approach is apparently the only one that has received extensive de-
velopment in the literature so far — e.g. Daubresse·1904, Henneberg·1911,
Mayor·1926, Foulon·1969 and, to a certain extent, Block/…·2007. It actu-
ally takes advantage of the following properties: “If forces in space are in
equilibrium, their projections on any plane are also in equilibrium. […] For
a system of forces in space to be in equilibrium, it is both necessary and
sufficient for the orthogonal projections on three rectangular planes to be in
equilibrium.” (Daubresse·1904, page 43, free translation). Another beneficial
consequence of orthogonal projections is the conservation of parallelism be-
tween reciprocal rods.

This approach is the fastest way to implement tri-dimensional constraint-
based graphic statics since there are no conceptual differences between the
planar constraint-based reciprocal diagrams and the parallel projections.

discussion · 311

Preventing rods and forces from being intersected into the projected form
diagram — see sub-section 21 (“constraints for a uniform reading cycle of
forces”, page 243) — is one of the few additional mechanisms that must be
carried out. However, being unable to apply spatial geometric constraints se-
riously limits the benefits of this approach.

The second approach is probably the most natural, but requires new theo-
retical research regarding the properties of tridimensional graphic statics
based on premises that are completely different from those already devel-
oped in the literature. One basis may be the paper of Rankine (Rankine·1864)
in which magnitudes are represented by volumes of polyhedral frames
(Akbarzadeh/…·2013). Another would represent magnitudes by rods in a
three-dimensional diagram. Both diagrams will be correct according to new
3D rules — e.g. rules governing the reading cycle of forces in space — but the
2D representations of these diagrams may not be reciprocal in the classical
point of view. The merits of this approach cannot be evaluated without an
adapted user interface.

The third approach is halfway between the first and the second approach. It
is distinguished from the first approach by allowing the application of spatial
geometric constraints and distinguished from the second approach by secur-
ing the reciprocity — i.e. parallelism and reading cycles — of the displayed
2D diagrams. In other words, the third approach allows the control of pure
3D treatments through a reciprocal 2D display. These preliminary remarks
motivate the development of this last approach.

The extension of the Proximity2D and Laterality2D relationships to the third di-
mension is direct:

 •	four points p0, p1, p2 and p3 satisfy the Proximity3D[p0 p1 p2 p3] relationship
only if the distance from p0 to p1 is less than or equal to the distance
from p2 to p3;

 •	five points p0, p1, p2, p3 and p4 satisfy the Laterality3D[p0 p1 p2 p3 p4] rela-
tionship only if (a) p2, p3 and p4 are collinear or (b) point p0 is on the left of
or in line with any observer positioned on p1, standing up according to
the direction from p2 to p3 — i.e. feet on p2 and head on p3 — and looking
towards the direction from p2 to p4. The Laterality3D relationship can also
be defined using the right-hand rule shown in figure 341.

312 · discussion

figure 342
representation of
a HalfSpace
[p0p1p2p3]
fundamental
constraint.

figure 343
representation of
a SphereInside
[p0p1p2]
fundamental
constraint.

figure 344
representation of
a SphereOutside
[p0p1p2]
fundamental
constraint

figure 341
mnemonic
description of the
Laterality3D
relationship.

discussion · 313

The three corresponding fundamental constraints HalfSpace[p0 p1 p2 p3],
SphereInside[p0 p1 p2] and SphereOutside[p0 p1 p2] are illustrated in figure 342,
figure 343 and figure 344 respectively.

Planar fundamental constraints can easily be deduced from these three tri-
dimensional constraints by intersecting the latter with a plane defined as the
intersection HalfSpace[p0 p1 p2 p3] ∩ HalfSpace[p0 p1 p3 p2].

As a beneficial consequence of the affine/metric distinction, these three con-
straints are sufficient for describing any geometric problem in space — in
other words, the extension to the third dimension does not require the crea-
tion of new fundamental constraints. However, two new non-fundamental con-
straints mixing affine and metric considerations can be added to this set for
practical reasons: they are expected to be used abundantly but they cannot
be defined without interdependency. These two constraints — ConeInside and
ConeOutside — are defined as follows:

 •	the ConeInside[p0 p1 p2 p3 p4 p5] constraint corresponds to the closed solid
of revolution obtained by rotating a line passing through p3 and parallel
to the orientation p4p5 around the straight line passing through p0 and
parallel to the orientation p1p2. This solid is of a different geometric
nature depending on whether these two lines are skew (figure 345),
secant (figure 346) or parallel (figure 347).

 •	the ConeOutside[p0 p1 p2 p3 p4 p5] constraint corresponds to inver-
sion of the open solid of revolution obtained in an analogous manner
(figure 348).

These basic considerations highlight the direct analogy that exists between
the planar constraint-based geometric environment described in this thesis
and its tri-dimensional equivalent. Most mechanisms of planar constraint-
based graphic statics — including the resolution of graphical inequalities
through symbolic propagation of constraints, the management of interdepend-
ent constraints, the switching of constraint dependencies and the creation of
dynamic conditional statements — have the same computational complexity in
both 2D and 3D environments. The main subjects that still require special at-
tention are (1) the adaptation of the propagation methods, (2) the identification
of the 3D geometric constraints capable of ensuring the reciprocity of spatial
diagrams of graphic statics — if it does exist — and (3) the dynamic graphical
user interface allowing the intuitive control of these diagrams.

314 · discussion

figure 345
representation of
a ConeInside[p0 p1
p2 p3 p4 p5]
constraint
generated by two
skew lines;

figure 346
representation of
a ConeInside[p0 p1
p2 p3 p4 p5]
constraint
generated by two
secant lines;

figure 347
representation of
a ConeInside[p0 p1
p2 p3 p4 p5]
constraint
generated by two
parallel lines;

figure 348
representation of
a ConeOutside[p0
p1 p2 p3 p4 p5]
constraint
generated by two
secant lines;

discussion · 315

28	 conclusions

recapitulation · This thesis has defined rules and techniques for a computer-
aided tool aimed at interactively assisting the definition of structural equi-
libriums.

The first section (“introduction”, page 1) contrasted the lack of appro-
priate tools for the initial shaping of structures with their significance for
meeting consistency and efficiency requirements. It then briefly identified
the expected capabilities of a tool that would be a useful complement to the
existing set of structural design tools. In response to that, the main features
of the proposal were finally presented and contextualized.

The second section (“geometric axiomatisation of graphic statics”, page 55)
built an axiomatic set of geometric rules to define strut-and-tie networks in
static equilibrium while the third section (“dynamic handling of geometric
constraints”, page 135) presented original techniques to fulfil these rules
when parameter positions vary dynamically. The fourth section (“production
rules for computer-aided graphic statics”, page 265) subsequently set out
the means by which the designer can produce plane constraint-based graphic
statics using this environment.

Finally, the last section (“discussion”, page 285) argued the effectiveness of
the proposed environment through various design applications and opened up
new perspectives of research.

original contributions · The contributions made by this thesis are mainly
theoretical. Two concepts have been outlined initially. They can both be
regarded as an extension of classical graphic statics: the first links a graphi-
cal region with the admissible positions of each point that controls the geom-
etry of graphic statics diagrams; the second prevents each temporary con-
structed diagram from being incomplete, i.e. not in static equilibrium. While
the former lay behind the search for automated techniques for constructing

316 · discussion

graphical regions of solutions, the latter did this for equilibrium operations on
diagrams. They consequently led to seek out a constraint-based graphic stat-
ics framework through various original statements, including:

 •	a renewed definition of the force diagram and its reciprocal rules with
the form diagram

 •	a fully geometric axiomatisation of graphic statics and a new geometric
grammar to describe it

 •	computer-aided rules capable of interactively assisting the construc-
tion and modification of reciprocal diagrams

 •	a dynamic geometry environment able to handle multiple solutions to a
problem at the same time, switch the parametric hierarchy on demand,
compute complete interdependency — e.g. allowing the geometric con-
struction of algebraically curved constraints — and execute dynamic
conditional statements geometrically

 •	some symbolic techniques of constraint propagation to ensure consist-
ency between certain graphical domains of solutions.

As a result and from a broader standpoint, this thesis highlights a little more
the significance of geometric reasoning in structural design: whether a struc-
ture is in static equilibrium is only a matter of geometry; whether a rod is in
tension or compression is only a matter of geometry; whether a thrust line
in equilibrium remains inside a given shape is only a matter of geometry
— constraint-based graphic statics is an appropriate instrument for finding,
expressing and handling all these geometric rules synthetically.

“The designs of an Engineer are geometric conceptions, his structures
are geometric forms, within which forces statically combined act along
geometric lines, so that it is natural that he strive to follow a train of geometric
thought.” (Chalmers·1881, preface page viii)

figure 349
three forces in
equilibrium
(Stevin/…·1634,
page 505);

discussion · 317

reservations · This praise of geometry also highlights the fact that the tool
only deals with static equilibriums and with what can somehow be expressed
through geometry. As such, the tool has specific possibilities and should be
used alongside the many tools available. It is designed to support structural
designers before and after analysis tools. Sometimes, in the best cases, it can
make analysis and optimisation tools superfluous but it is not supposed to
replace them.

However, numerous purposes can be achieved with this tool, using only ge-
ometry and static equilibrium. Sub-section 26 (“applications”, page 287) has
established a preliminary list and has detailed some examples. Most of them
may seem unexpected and currently require more research. For instance,
Mohr's circles can be used with constraint-based graphic statics in order to
study the state of stresses of a discontinuous stress field inside anisotropic
material. Also, permutation of hierarchy of constraint-based graphic statics
can be used to control beam deflections directly.

Applications of graphic statics are many and form a treasure which cannot
be perceived by a beginner. The daily use of graphic statics is rare nowadays.
Computerized interfaces of graphic statics have no future if their advantages
are not advertised to current and future practitioners.

This is all the more the case as graphic statics compel designers to be proper-
ly responsible for the outcome of the process. The same is true for constraint-
based graphic statics. The proposed tool cannot be viewed as a software that
provides an high-performance output on the basis of a series of inputs chosen
by the user. The proposed tool is rather a drafting table equipped with various
implements. The user has to know how to use these implements in order to
succeed, even if they are very intuitive.

expected outcomes · Although further developments and field assessments
are still needed, substantial benefits can reasonably be anticipated. What
constraint-based graphic statics would add most is better control of the struc-
tural typology being shaped.

This control would allow the designer to give more coherence to the structur-
al shape in light of conditions that may and may not be objectivised and which
might arise only during the course of the design process, and/or that are just
a product of the designer's unpredictable sensitivity and creativity — as long
as those conditions are somehow connected to the geometrical shaping of the

318 · discussion

structure, directly or indirectly. For example, these conditions might concern
its integration with the spatial context, its architectural quality, its robust-
ness, its durability, the economy of material, the process of building, its aes-
thetics, its functional uses etc. They are intended to improve the architectur-
al, economic and ecological qualities of the structure and its surroundings.

This is a new kind of control. Indeed, constraint-based graphic statics encour-
ages the emergence of new design approaches that are highly interactive,
pre-cognitive and chronology-free:

 •	highly interactive because (1) equilibrium and force magnitudes are
visually expressed through the force diagram, (2) forces and structural
geometries are bound together in a dynamic and homogeneous envi-
ronment and (3) routines and parameterised dragging give the user
ongoing ease for modifying and constraining the equilibrium being
shaped

 •	pre-cognitive because (1) the user continuously knows that the struc-
ture is in equilibrium before it is even checked and (2) every graphical
region of solutions marks out the range of design possibilities before
they are even explored

 •	chronology-free because (1) equilibrium operations are bijective and
hence allow the user to alternate between bottom-up approaches
— e.g. the assembly of pre-existing smaller structural parts — and top-
down approaches — e.g. the refinement of existing structural parts —
at any time, (2) switching constraint dependencies frees the user from
the traditional parametric hierarchy, (3) any stored set of operations
applied to construct a custom static equilibrium can instantaneously
be rerun with new initial conditions and (4) the design of the rod geom-
etries, their inner stresses, their sections and inertias, their static in-
determinacy, their boundary conditions and the material strength can
be performed independently and simultaneously.

In other words, constraint-based graphic statics offers more control over the
structural shape and its inner stresses along with more freedom of composi-
tion. This has the potential of supporting new, more efficient and more appro-
priate structural design methods as well as encouraging the user to achieve
new, more efficient and more appropriate structural typologies.

319

◈ engineering practices

○ geometry
◎ mechanical geometry
◍ computational geometry

■ graphic statics
◪ other tools, methods and theories

◬ computer programming

REFERENCES

references · 321

A
Bruno Abdank-Abakanowicz

Les intégraphes, la courbe intégrale et ses applications,
étude sur un nouveau système d'intégrateurs mécaniques.

Gauthier-Villars · Paris · 1886

Harold Abelson / Gerald Jay Sussman
Structure and Interpretation of Computer Programs.

second edition · MIT Press · Cambridge, Massachusetts · 1996

Bill Addis
The Art of the Strutural Engineer.

Artemis · London · isbn 1874056412 · first published in 1994

Bill Addis
Creativity and Innovation

The structural engineer's contribution to design.
Architectural Press · Oxford · isbn 0750642106 · 2001

Bill Addis
Building: 3000 Years of Design Engineering and Construction.

Phaidon · London NewYork · isbn 978-0714841465 · first published in 2007 ·
reprinted in 2008

Bill Addis
The Relationship between Geometry and Statics in Structural Design.

Geometry and Proportion in Structural Design, essays in Ricardo Aroca's Honour ·
edited by Pepa Cassinello, Santiago Huerta, José Miguel de Prada Poole & Ricardo

Sánchez Lampreave · Universidad Politecnica de Madrid · Escuela Tecnica
Superior de Arquitectura · Madrid · 2010

Masoud Akbarzadeh / Tom Van Mele / Philippe Block
Equilibrium of Spatial Structures using 3-d Reciprocal Diagrams.

 Proceedings of IASS Symposium · Beyond the limits of man ·
Wroclaw University of Technology · Poland · 2013

Edward Allen / Waclaw Zalewski
Form and Forces: Designing Efficient, Expressive Structures.

Wiley & Sons · isbn 978-0470174654 · 2009

Stanford Anderson
Eladio Dieste: Innovation in Structural Art.

Princeton Architectural Press · 2004

Archimedes of Syracuse / François Peyrard
Œuvres d'Archimède, traduites littéralement avec un commentaire.

second edition · Fr. Buisson Libraire-Editeur · Paris · 1808.

I.I. Artobolevskii
Mechanisms for the generation of plane curves.

translated by R.D. Wills · translation edited by W. Johnson · Pergamon Press · 1964

Autodesk
Robot Structural Analysis.

software · www.autodesk.com/robot · available from 2008

Abakanowicz·1886◎

◬ Abelson/Sussman·1996

Addis·1994◈

◈ Addis·2001

Addis·2007◈

Addis·2010◪

Akbarzadeh/…·2013■

Allen·2009■

Anderson·2004◈

Archimedes/…·1808○

◎ Artobolevski·1964

Autodesk/…·2008◪

322 · references

B
William F. Baker / Lauren L. Beghini / Arkadiusz Mazurek / Juan Carrion /
Alessandro Beghini
Maxwell’s reciprocal diagrams and discrete Michell frames.
Struct Multidisc Optim · Springer · Published online : 16 March 2013

Cecil Balmond
Informal.
Prestel · 2007

John H. Barr
Kinematics of Machinery,
A brief treatise on constrained motions of machine elements.
first Edition · John Wiley and Son · New York · 1899

Roman Barták
Constraint Programming: In Pursuit of the Holy Grail.
Proceedings of the Week of Doctoral Students (WDS99) · part IV · MatFyzPress ·
Prague · pages 555-564 · June, 1999

Maria G. Bartolini Bussi / Annalisa Martinez / Marcello Pergola / Carla Zanoli /
Marco Turrini / Daniela Nasi / Andrea Ricchetti / Stefano Malagoli / Maurizio Vacca /
Paola Dinelli / Stefano Greco
Museo Universitario di Storia Naturale e della Strumentazione Scientifica.
http://museo.unimo.it/theatrum/inizio.htm · Università degli studi di Modena e
Reggio Emilia · visited on July 12, 2012 · 1999

Maria G. Bartolini Bussi / Michela Maschietto
Macchine matematiche: dalla storia alla scuola.
Convergenze · a cura di F. Arzarello, L.Giacardi, B. Lazzari · Springer ·
isbn: 978-8847004023 · 2006

Christoph Baumberger
Structural Concepts and Spatial Design:
On the Relationship Between Architect and Engineer.
in Cooperation: the Engineer and the Architect · page 57 · edited by Aita Flury ·
Birkhäuser · Basel · 2012

J. Bauschinger
Elemente der Graphischen Statik.
R. Oldenbourg · München · 1871

Lauren Lynne Beghini
Structural optimization using Maxwell's reciprocal diagrams and graphic statics.
in Phd Thesis 'Building Science through topology optimization' · directed by Prof.
Glaucio H. Paulino · University of Illinois at Urbana-Champaign · 2013

Corinne Bélier / Barry Bergdoll / Marc Le Coeur
Labrouste (1801-1875), architecte
La structure mise en lumière.
Éditions Nicolas Chaudun · Cité de l'architecture & du patrimoine ·
isbn 978-2350391380 · 2012

Eduardo Benvenuto
The Parallelogram of Forces.
Meccanica · issue 20 · pages 99-109 · 1985

Christian Bessiere
Constraint Propagation.
Technical Report LIRMM 06020 · University of Montpellier · 2006

Baker/…·2013 ◪

Balmond·2007 ◈

Barr·1899 ◎

Barták·1999 ◍

Bartolini/…·1999 ◎

Bartolini/…·2006 ◎

Baumberger·2012 ◈

■Bauschinger·1871

Beghini·2013 ◪

Bélier/…·2012 ◈

Benvenuto·1985 ◪

Bessiere·2006 ◍

references · 323

Bernhard Bettig / Jami Shah
Solution Selectors:

A User-Oriented Answer to the Multiple Solution Problem in Constraint Solving.
Journal of Mechanical Design · volume 125 · pages 443-451 · September, 2003

Bernhard Bettig / Chirstoph M. Hoffmann
Geometric Constraint Solving in CAD.

JCISE 021001 · 9 pages · March 9, 2011

Max Bill
Robert Maillart, Ponts et Constructions.

Girsberger · 1955

George David Birkhoff
A Set of Postulates for Plane Geometry, Based on Scale and Protractor.

The Annals of Mathematics · second series · volume 33 · number 2 ·
pages 329‑345 · April, 1932

George David Birkhoff / Ralph Beatley
Basic Geometry.

third edition · Scott, Foresman & Company · USA · 1959

Philippe Block / John Ochsendorf
Thrust Network Analysis: A New Methodology for Three-Dimensional Equilibrium.

Journal of the International Association for shell and spatial structures · issue 48 ·
pages 167-173 · 2007

Philippe Block
Thrust Network Analysis, Exploring Three-dimensional Equilibrium.

PhD Thesis directed by Prof. John Ochsendorf ·
Massachusetts Institute of Technology · Cambridge · 2009

Harry Blum
A Transformation for extracting new descriptors of shape.

Models for the Perception of Speech and Visual Form · edited by W. Wathen-Dunn ·
pages 362–380 · M.I.T. Press · Cambridge · Massachussetts · USA · 1967

J.A. Bondy / U.S.R. Murty
Graph Theory.

Graduate Texts in Mathematics · edited by S. Axler & K.A. Ribet
Springer · isbn 978-1-84628-969-9 · 2008

William Bouma / Ioannis Fudos / Christoph Hoffmann / Jiazhen Cai / Robert Paige
A Geometric Constraint Solver.

in "Computer-aided Design" · volume 27 · number 6 · pages 487-501 · 1995

Robert Henry Bow
Economics of construction in relation to framed structures.

E. & F. N. Spon · London NewYork Edinburgh · 1873

Robert Henry Bow
A treatise on bracing

with its application to bridges and other structures of wood or iron.
D. Van Nostrand · New-York · 1874

H. Brocard
Note sur un compas trisecteur proposé par M Laisant.

Bulletin de la Société Mathématique de France · volume 3 · pages 47-48 · 1875

Bettig/Shah·2003◍

Bettig/…·2011◍

◈ Bill·1955

○ Birkhoff·1932

○ Birkhoff/…·1959

◪ Block/…·2007

◪ Block·2009

◍ Blum·1967

Bondy/Murty·2008◪

◍ Bouma/Fudos/…·1995

Bow·1873■

■ Bow·1874

◎ Brocard·1875

324 · references

C
William D. Jr. Callister
Materials Science and Engineering – An Introduction.
Seventh Edition · John Wiley & Sons · isbn 978-0471736967 · 2007

François Cardarelli
Materials Handbook - A Concise Desktop Reference.
Springer · isbn 978-1846286681 · 2008

James B. Chalmers
Graphical Determination of Forces in Engineering Structures.
Macmillan & Co · London · 1881

T.M. Charlton
A History of the Theory of Structures in the Nineteenth Century.
Cambridge University Press · isbn 978-0521524827 · 2002

Peter W. Christensen / Anders Klarbring
An Introduction to Structural Optimization.
Solids Mechanics and its Applications · volume 153 · edited by G.M.L. Gladwell ·
Springer · 2009

Andy Clark / David J. Chalmers
The Extended Mind.
Analysis · volume 58 · pages 10-23 · 1998

George R. Collins
Antonio Gaudi: Structure and Form.
Perspecta · volume 8 · MIT Press · pages 63-90 · 1963

Jürg Conzett / Judit Solt
Soigner le savoir-faire.
Tracés · volume 134 · 2008

Jürg Conzett / Gianfranco Bronzini / Patrick Gartmann / Michel Carlana /
Andrea Iorio / Francesco Dal Co
Jürg Conzett, Gianfranco Bronzini, Patrick Gartmann : forms of structures.
Milano · Electa · 2011

Barthélémy-Édouard Cousinery
Le calcul par le trait,
ses éléments et ses applications, à la mesure des lignes, des surfaces et des cubes, à
l'interpolation graphique et à la détermination, sur l'épure, de l'épaisseur des murs
de soutènement et des murs de culée des voûtes.
Carilian-Goeury & Vr Dalmont · Paris · 1839

Henry Crapo
Structural Rigidity.
Structural Topology · issue 19 · page 26 · 1979

Luigi Cremona
Corso di statica grafica.
Regio Istituto Tecnico Superiore · Milano · 1868-1869

Luigi Cremona
Le Figure Reciproche Nella Statica Grafica.
edited by R.A.d. Lincei · Opera Matematiche di Luigi Cremona · Hoepli · Milano ·
pages 336-364 · 1872

Callister·2007 ◪

◪Cardarelli·2008

Chalmers·1881 ■

Charlton·2002 ◈

Christensen/…·2009 ◪

◪Clark/Chalmers·1998

Collins·1963 ◈

Conzett/Solt·2008 ◈

Conzett/…·2011 ◈

■Cousinery·1839

Crapo·1979 ◪

■Cremona·1868

Cremona·1872 ■

references · 325

Luigi Cremona
Les figures réciproques en statique graphique.

Gauthier-Villars · Paris · 1885

Carl Culmann
Die graphische Statik.

Zürich · Meyer und Zeller · 1866

Carl Culmann
Traité de Statique Graphique.

Dunod · Paris · 1880

Carl Culmann / Karl Wilhelm Ritter
Anwendungen der Graphischen Statik.

4 tomes · Meyer & Zeller · Zürich · 1888-1900

D
Paul Daubresse

Notes du cours de Statique Graphique
professé aux écoles spéciales de l'Université catholique de Louvain.

H. Ghysebrechts · Louvain · 1904-1905

Carl Dea
JavaFX 2․0: Introduction by Example.
APress · isbn 978-1430242574 · 2011

Joshua D. Deaton / Ramana V. Grandhi
A survey of structural and multidisciplinary continuum topology optimization:

post 2000.
Struct Multidisc Optim · published online: 04 july 2013

Mark de Berg / Otfried Cheong / Marc van Kreveld / Mark Overmars
Computational Geometry - Algorithms and Applications.

third edition · Springer-Verlag · Berlin Heidelberg · isbn: 978-3540779735 · 2008

Eladio Dieste / Antonio Jiménez Torrecillas / Magdalena Torres Hidalgo /
Nicolás Ramírez Moreno

Eladio Dieste, 1943-1996.
Sevilla · Junta de Andalucía · Consejería de Obras Públicas y Transportes · 2001

Maurice Dohmen
A survey of constraint satisfaction techniques for geometric modeling.

Computers & Graphics · volume 19 · issue 6 · pages 831-845 · 1995

Philip Drew
Frei Otto - Form and Structure.

Crosby Lockwood Staples · London · isbn 0258970537 · 1976

A. Jay Du Bois
The elements of graphical statics and their application to framed structures.

John Wiley & son · New-York · 1875

Pierre Duhem
Les origines de la statique.

Hermann · Paris · 1905-1906

■ Cremona·1885

Culmann·1866■

Culmann·1880■

■ Culmann/Ritter·1888

■ Daubresse·1904

◬ Dea·2011

Deaton/…·2013◪

◍ deBerg/…·2008

Dieste/…·2001◈

Dohmen·1995◍

◈ Drew·1976

DuBois·1875■

Duhem·1905◪

326 · references

E
Samuel Earnshaw
A treatise on Statics
containing the theory of equilibrium of forces and numerous examples.
fourth edition · London · Deighton, Bell and Co. · 1858

Henry T. Eddy
On the Two General Reciprocal Methods in Graphical Statics.
American Journal of Mathematics, pure and applied · issue 1 · pages 322-335 &
plates IV-V · 1878

Eric T. Eeckhoff
Contractibility of Regular Polygons.
Iowa State University · MATH 599 · Creative Component · 1999

Euclid / Johan Ludvig Heiberg / Richard Fitzpatrick
Euclid's Elements of Geometry.
The Greek text of "Euclidis Elementa, edidit et Latine interpretatus est I.L.
Heiberg, in aedibus B.G. Teubneri, 1883–1885" · edited, and provided with a
modern English translation by Richard Fitzpatrick · isbn 978-0615179841 · 2008

F
Colin Faber / Félix Candela
Candela : The Shell Builder.
London · The architectural Press · 1963

Seibert Fairman / Chester S. Cutshall
Graphic Statics.
McGraw-Hill Book Company · New York and London · 1932

Antonio Favaro,
Leçons de statique graphique.
 traduites de l'italien par Paul Terrier · Gauthier-Villars · Paris · 1879

Corentin Fivet / Denis Zastavni
The Salginatobel bridge design process by Robert Maillart (1929).
Journal of the International Association for shell and spatial structures · issue 53 ·
pages 39-48 · 2012

Corentin Fivet
Recherche des modalités permettant l'étude des assemblages en bois par
manipulation graphique de champs de contraintes discontinus.
certification thesis "Le Bois dans la construction" · UCLouvain · Belgium ·
May 2012

Aita Flury / C. Baumberger / E. Boesch / M. Boesch / R. Boltshauser / J. Conzett /
C. Galmarini / A. Hagmann / P. Kahlfeldt / A. Krischanitz / M. Monotti / A. Muttoni /
C. Penzel / M. Peter / M. Pogacnik / S. Polonyi / U.B. Roth / M. Schlaich / R. Salvi /
H. Schnetzer / J. Schwartz / J. Solt / Y. Weinand / A. Wiegelmann / C. Wieser
Cooperation: The Engineer and the Architect.
edited by Aïta Flury · Birkhäuser · Basel · 2012

Émile Foulon
Les polygones funiculaires gauches et leurs applications au calcul des constructions
à trois dimensions.
Université de Liège · Faculté des sciences appliquées ULg · 1969

◪Earnshaw·1858

Eddy·1878 ■

○Eeckhoff·1999

○Euclid·2008

Faber/Candela·1963 ◈

■Fairman/…·1932

Favaro·1879 ■

Fivet/Zastavni·2012 ◈

Fivet·2012 ■

◈Flury/…·2012

■Foulon·1969

references · 327

Marc Freixas / Robert Joan-Arinyo / Antoni Soto-Riera
A Constraint-Based Dynamic Geometry System.

Journal of Computer-Aided Design · volume 42 · issue 2 · pages 151-161 ·
February 2010

François Frey
Analyse des structures et milieux continus - Mécanique des Structures.

Traité de Génie Civil de l’Ecole polytechnique fédérale de Lausanne · volume 2 ·
presses polytechniques et universitaires romandes · deuxième édition ·

isbn: 978-2880744342 · 2000

François Frey / Jaroslav Jirousek
Analyse des structures et milieux continus - Mécanique des Solides.

Traité de Génie Civil de l’Ecole polytechnique fédérale de Lausanne · volume 6 ·
presses polytechniques et universitaires romandes ·

isbn: 2880744636 · 2012

François Frey
Analyse des structures et milieux continus - Statique appliquée.

Traité de Génie Civil de l’Ecole polytechnique fédérale de Lausanne · volume 1 ·
presses polytechniques et universitaires romandes · deuxième édition · 2005

François Frey
Analyse des structures et milieux continus - Mécanique des Solides.

Traité de Génie Civil de l’Ecole polytechnique fédérale de Lausanne · volume 3 ·
presses polytechniques et universitaires romandes · deuxième édition ·

isbn: 978-2889150090 · 2012

Ioannis Fudos
Constraint Solving for Computer-Aided Design.

doctoral thesis · directed by Christoph M. Hoffmann · Purdue University ·
August 1995

G
Maria E. Moreyra Garlock / David P.Billington

Felix Candela: Engineer, Builder, Structural Artist.
Yale University Press · 2008

W. Gellert / H. Küstner / M. Hellwich / H. Kästner
Petite encyclopédie des mathématiques.

second french edition · translation directed by J.L. Lions · éditions K.Pagoulatos ·
Paris London Athens · 1986

Rolf Gerhardt / Karl-Eugen Kurrer / Gerhard Pichler
The methods of graphical statics and their relation to the structural form.

First International Congress on Construction History · edited by S. Huerta
Fernandez & I. Juan de Herrera · SEdHC · ETSAM · Madrid · 2003

Sherif Ghali
Introduction to Geometric Computing.

Springer-Verlag · London · isbn 978-1848001145 · 2008

Steven Givant / Paul Halmos
Introduction to Boolean Algebras.

Undergraduate Texts in Mathematics · Springer · 2009

Simon Greenwold / Edward Allen
Active Statics.

http://acg.media.mit.edu/people/simong/statics/data/ · visited in 2013

Freixas/…·2008◍

◪ Frey·2000

◪ Frey/Jirousek·2001

◪ Frey·2005

◪ Frey·2012

Fudos·1995◍

Garlock/…·2008◈

Gellert/…·1986○

■ Gerhardt/…·2003

Ghali·2008◍

Givant/Halmos·2009○

◪ Greenwold·2009

328 · references

H
R. L. Hankinson
Investigation of Crushing Strength of Spruce at Varying Angles of Grain.
Air Service Information Circular No.259 · U.S. Air Service · 1921

Ross Harmes / Dustin Diaz
Pro JavaScript Design Patterns.
Apress · isbn 978-1430204954 · 2008

John M. Harris / Jeffry L. Hirst / Michael J. Mossinghoff
Combinatorics and Graph Theory.
Undergraduate Texts in Mathematics · edited by S. Axler & K.A. Ribet
second edition · Springer · isbn 978-0-387-797710-6 · 2008

Robin Hartshorne
Geometry: Euclid and Beyond.
Undergraduate texts in Mathematics · edited by S. Axler, F.W. Gehring &
K.A. Ribet · Springer · NewYork Berlin Heidelberg · isbn 0387986502 · 2000

W.S. Hemp
Optimum Structures.
Oxford University Press · isbn 978-0198561101 · 1973

Lebrecht Henneberg
Die Graphische statik der starren systeme.
B.G. Teubner · Leipzig Berlin · 1911

Gustav Herrmann
The Graphical Statics of Mechanism.
second edition · D. Van Nostrand Company · NewYork · 1892

David Hestenes / Garret Sobczyk
Clifford Algebra to Geometric Calculus:
A Unified Language for Mathematics and Physics.
Fundamental Theories of Physics · D.Reidel Publishing Company ·
Dordrecht Boston Lancaster Tokyo · isbn 9027716736 · 1987

Jacques Heyman
The Stone Skeleton: Structural Engineering of Masonry Architecture.
Cambridge University Press · 1995

Jacques Heyman
Structural Analysis, A historical approach.
Cambridge University Press · 1996

Jacques Heyman
Navier's straitjacket.
Architectural Science Review · volume 42 · issue 2 · pages 91-95 · 1999

Jacques Heyman
The Science of Structural Engineering.
Londres : Imperial College Press · 1999

Jacques Heyman
Basic Structural Theory.
Cambridge University Press · Cambridge · 2008.

Jacques Heyman
Elements of stress Analysis.
Cambridge University Press · Cambridge · 2008

Hankinson·1921 ◪

Harmes/Diaz·2008 ◬

Harris/…·2008 ◪

Hartshorne·2000 ○

Hemp·1973 ◪

Henneberg·1911 ■

Herrmann·1892 ■

Hestenes/…·1987 ○

Heyman·1995 ◪

Heyman·1996 ◪

Heyman·1999a ◪

Heyman·1999b ◪

Heyman·2008a ◪

Heyman·2008b ◪

references · 329

R. B. Heywood
Photoelasticity for designers.

Pergamon Press · Oxford London Edinburgh NewYork Toronto Sydney Paris
Braunschweig · 1969

Marta Hidalgo / Robert Joan-Arinyo
Computing Parameter Ranges in Constructive Geometric Constraint Solving:

Implementation and Correctness Proof.
Journal of Computer-Aided Design · volume 44 · issue 7 · pages 709-72 · June 2012

David Hilbert
The Foundations of Geometry.

translated by E.J.Townsend · The Open Court Publishing Company · Chicago · 1902

Rolland T. Hinkle
Kinematics of Machines.

Englewood Cliffs · N.J. Prentice-Hall, Inc. · 1953

C.M. Hoffmann / K.-J. Kim
Towards valid parametric CAD models.

Journal of Computer-Aided Design · issue 33 · pages 81-90 · 2001

Christoph M. Hoffmann / Robert Joan-Arinyo
A Brief on Constraint Solving.

Computer-Aided Design and Applications · volume 2 · number 5 · pages 655-663 ·
2005

Andrée Corvol-Dessert / Patrick Hoffsummer / David Houbrechts / Georges-Noël
Lambert / Catherine Lavier / Christine Locatelli / Jannie Mayer / Jean-Daiel Pariset /

Alain Prévet / Jean-Louis Taupin / Yvonne Trenard
Les charpents du XI° au XIX° siècle,

typologie et évolution en France du Nord et en Belgique.
Centre des monuments nationaux · Monum · éditions du patrimoine · Paris ·

isbn 2858223033 · 2002

Markus Hohenwarter / Michael Borcherds
Geogebra, free mathematics software for learning and teaching.

http://www.geogebra.org · visited on July 25, 2012 · first released in 2002

Judith Hohenwarter / Markus Hohenwarter
Introduction to Geogebra4 - Geogebra workshop handout.

available on http://www.geogebra.org/book/intro-en.pdf · April 12, 2012.

Alan Holgate
The art in Structural Design.

Oxford University Press · 1986 ·
available on http://home.vicnet.net.au/~aholgate/structdes/taisd_anchor.html · last

visited on june 2013

Alan Holgate
Structural Design as an Academic Discipline.

first published in Structural Engineering Review · volume 3 · issue 3 · pages
147-156 · september 1991 ·

available on http://home.vicnet.net.au/~aholgate/structdes/papers/design_
discipline.html · last visited on june 2013

Alan Holgate
The Art of Structural Engineering: The Work of Jorg Schlaich and His Team.

Axel Menges · 1997

◪ Heywood·1969

Hidalgo/…·2012◍

Hilbert·1902○

Hinkle·1953◎

Hoffmann/Kim·2001◍

Hoffmann/…·2005◍

Hoffsummer/…·2002◈

Hohenwarter/…·2002◍

◍ Hohenwarter/…·2012

Holgate·1986◈

Holgate·1991◈

Holgate·1997◈

330 · references

Audun Holme
Geometry, Our Cultural Heritage.
second edition · Springer · isbn 978-3642144400 · 2010

Cay S. Horstmann & Gary Cornell
Au cœur de Java 2: volume 2, Fonctions avancées.
Collection Référence · CampusPress · isbn 2744008818 · 2000

Cay S. Horstmann & Gary Cornell
Au cœur de Java 2: volume 1, Notions fondamentales.
second edition · Collection Référence · CampusPress · isbn 2744011185 · 2001

Santiago Huerta Fernandez
Structural design in the work of Gaudí.
Architectural Science Review · volume 49 · issue 4 · pages 324-339 · 2006

Santiago Huerta Fernandez
Galileo was Wrong : The Geometrical Design of Masonry Arches.
Nexus Network Journal · volume 8 · issue 2 · pages 25-52 · 2006

Santiago Huerta Fernandez
Geometry and equilibrium: The gothic theory of structural design.
Structural Engineer · 84 · pages 23-28 · 2006

Santiago Huerta Fernandez
Designing by Geometry: Rankine's Theorems of Transformation of Structures.
Geometria and Proportion in Structural Design - Essays in Ricardo Aroca's Honour
· edited by Pepa Cassinello, Santiago Huerta Fernandez, José Miguel de Prada
Poole & Ricardo Sanchez Lampreave · Madrid · 2010

I
Tullia Iori
Pier Luigi Nervi.
Motta Architettura · Milan · 2009

J
L. Jacob / Maurice d'Ocagne
Le calcul mécanique,
appareils arithmétiques et algébriques, intégrateurs.
encyclopédie scientifique publiée sous la direction du Dr Toulouse ·
Bibliothèque de Mathématiques Appliquées · Octave Doin & Fils · Paris · 1911

Fleeming Jenkin
On the practical application of reciprocal figures
to the calculation of strains of frameworks.
transactions of the Royal society of Edinburgh · volume XXV · pages 441-447 &
plates XVII-XXI · 1869

Robert Joan-Arinyo
Basics on Geometric Constraint Solving.
EGC'09: XIII Encuentros de Geometria Computacional · Zaragoza · Spain · 2009

Philip Jodidio
Santiago Calatrava.
Taschen · isbn 978-3822848739 · 2007

○Holme·2010

◬Horstmann/…·2000

◬Horstmann/…·2001

◈Huerta·2006a

◪Huerta·2006b

Huerta·2006c ◪

Huerta·2010 ◪

◈Iori·2009

◎Jacob/dOcagne·1911

■Jenkin·1869

Joan-Arinyo·2009 ◍

◈Jodidio·2007

references · 331

K
Alfred Bray Kempe

How to draw a straight line, a lecture on linkages.
Nature Series · Macmillan & Co · London · 1877

Zubin Khabazi
Generative algortihms using Grasshopper.

2010

F. Klein / F. Tägert
Famous Problems of Elementary Geometry:

the duplication of the cube, the trisection of an angle, the quadrature of the circle.
an authorized translation of "Vorträge über ausgewählte fragen der

elementargeometrie" · by Wooster Woodruff Beman & David Eugene Smith · Ginn
and Company · Boston New-York Chicago London Atlanta Dallas Columbus

SanFrancisco · 1897

Franz Knoll / Thomas Vogel
Design for Robustness.

Structural Engineering Documents · number 11 · published by IABSE
(International Association for Bridge and Structural Engineering) · 2009

Don Koberg / Jim Bagnall
The Universal Traveller, a Soft-Systems Guide to Creativity, Problem-Solving, and

the Process of Reaching Goals.
revised edition · New Horizons Edition · California · isbn 1560520450 · 1991

Adam Adamandi Kochanski
Observationes Cyclometricae ad facilitandam Praxin accomodatae.

Acta Eruditorum · number 4 · pages 394-398 · 1685

Adam Adamandi Kochanski / Henryk Fuks
Observationes Cyclometricae, latin text with annotated English translation.

arXiv:1106.1808v1 · 2011

August E. Komendant
Dix-huit années avec Louis I Kahn.

translated by Mathilde Bellaigue · preface by Louis Kahn · introduction by
Bernard Marrey · Éditions du Linteau · Paris · 2006

Ulrich Kortenkamp
Foundations of Dynamic Geometry.

PhD Thesis · directed by Prof. Jürgen Richter-Gebert & Prof. Günter M. Ziegler ·
ETH Zürich · 1999

Ulrich Kortenkamp
Cinderella.

software · http://www.cinderella.de · visited in 2013

Neven Kostic
Topologie des champs de contraintes

pour le dimensionnement des structures en béton armé.
PhD thesis directed by Aurelio Muttoni ·

Ecole Polytechnique Fédérale de Lausanne · 2009

Elke Karsny
The Force Is in the Mind,

The Making of Architecture.
Architekturzentrum Wien · Birkhäuser · Basel Boston Berlin ·

isbn 978-3764389802 · 2008

◎ Kempe·1877

◪ Khabazi·2010

○ Klein/Tägert·1897

Knoll/Vogel·2009◪

Koberg/Bagnall·1991◪

○ Kochanski·1685

○ Kochanski/Fuks·2011

◈ Komendant·2006

◍ Kortenkamp·1999

◪ Kortenkamp·2013

◪ Kostic·2009

Krasny·2008◈

332 · references

L
Lorenz Lachauer / Hauke Jungjohann / Toni Kotnik
Interactive parametric tools for structural design.
IABSE-IASS symposium · “Taller, Longer, Lighter” · London · 2011

Lorenz Lachauer / Toni Kotnik
Curved Bridge Design.
Design Modeling Symposium · pages 145-152 · Springer · Berlin · 2011

Pierre Latteur
Calculer une structure - de la théorie à l'exemple.
3ème édition · Academia Bruylant · 1997

Pierre Latteur
ISSD : An Interactive Software for Structural Design.
http://www.issd.be · available since 1998

Jean-Marie Laborde / Max Marcadet
Cabri Geometry II Plus.
Cabrilog Company · http://www.cabri.com/ · visited on July 25, 2012 ·
first released in 2002

Jean-Marie Laborde / Max Marcadet
Cabri II Plus — User Manual, Advanced & Reference.
downloaded from http://www.cabri.com/download-cabri-2-plus.html ·
last visited on July 25, 2012 · 2007

Emile Michel Hyacinthe Lemoine
De la mesure de la simplicité dans les constructions géométriques.
Comptes rendus hebdomadaires des séances de l'académie des sciences ·
book 107 · pages 169-171 · July/December, 1888

Emile Michel Hyacinthe Lemoine
Géométrographie ou art des constructions géométriques.
Scientia - Physique/Mathématique · number 18 · Paris · february, 1902

A.S. Levens
Graphical methods in Research.
R. E. Krieger · isbn 978-0882753164 · 1975

Maurice Lévy
La Statique graphique et ses applications aux constructions.
Texte & Atlas · Gauthiers-Villars · Paris · 1874

Maurice Lévy
La Statique graphique et ses applications aux constructions.
4 books · Gauthier-Villars · Paris · 1886-1888

Ferdinand von Lindemann
Ueber die Zahl p.
Mathematische Annalen · volume 20 · number 2 · pages 213-225 · 1882

Jen Y. Liu
Strength Criteria For Orthotropic Materials.
ICCE/8 : 8th Annual International Conference on Composite Engineering ·
Augustus 5-11, 2001

André Loits
Architecture civile (rénovation, restauration et technologie de l'architecture).
lesson notes · 2010

■Lachauer/…·2011a

Lachauer/…·2011b ■

◪Latteur·1997

Latteur·1998 ◪

Laborde/…·2002 ◍

◍Laborde/…·2007

○Lemoine·1888

Lemoine·1902 ○

◪Levens·1975

■Lévy·1874

Lévy·1886 ■

vonLindemann·1882 ○

Liu·2001 ◪

Loits·2010 ◪

references · 333

Jim Loy
Geometry: Collapsible Compasses.

website http://www.jimloy.com/geometry/collapse.html · visited on June 19th, 2012 ·
first published in 2000

Jim Loy
Trisection of an Angle.

http://www.jimloy.com/geometry/trisect.htm · visited on July 5th, 2012 · edited in
1997 & 2003.

M
David Makinson

Sets, Logic, and Maths for Computing.
Undergraduate Topics in Computer Science · series edited by Ian Mackie ·

second edition · Springer · London Dordrecht Heidelberg NewYork · isbn 978-
1447124993 · 2012

Elena Anne Marchisotto / James T. Smith
The Legacy of Mario Pieri in Geometry and Arithmetic.

Birkhäuser · Boston Basel Berlin · isbn 978-0817632106 · 2007

Peter Marti
Basic tools of reinforced concrete beam design.

ACI Journal · number 82-4 · January-February 1985

Lorenzo Mascheroni
La Geometria del Compasso.

Pavia · presso gli Eredi di Pietro Galeazzi · 1797

Pascal Mathis / Simon E.B. Thierry
A formalization of geometric constraint systems and their decomposition.

Formal Aspects of Computing · number 22 · pages 129-151 · 2010

James Clerk Maxwell
On Reciprocal Figures and Diagrams of Forces.

Philosophical Magazine · volume 27 · number 4 · pages 250-261 · 1864

James Clerk Maxwell
On the application of the theory of reciprocal polar figures to the construction of

diagrams of forces.
The Engineer · issue 24 · 1867

James Clerk Maxwell
On Bow's method of drawing diagrams in graphical statics.

Proceedings of the Cambridge Philosophical Society · issue 2 · pages 407-414 ·
1876

James Clerk Maxwell / Peter Michael Harman
The scientific letters and papers of James Clerk Maxwell.

edited by Peter Michael Harman · two volumes · Cambridge University Press ·
1995

Benjamin Mayor
Cours de Statique Graphique.

École polytechnique fédérale de Lausanne · 1906-1909

Benjamin Mayor
Introduction à la statique graphique des systèmes de l'espace.

Librairie Payot & Cie · Lausanne Genève Neuchatel Vevey Montreux Berne · 1926

Loy·2012○

Loy·2003○

Makinson·2012◪

Marchisotto/…·2007○

Marti·1985◪

Mascheroni·1797○

Mathis/Thierry·2010◍

Maxwell·1864■

Maxwell·1867■

Maxwell·1876■

Maxwell/…·1995◪

■ Mayor·1909

Mayor·1926■

334 · references

J. Michael McCarthy / Gim Song Soh
Geometric Design of Linkages.
Interdisciplinary Applied Mathematics · edited by S.S. Antman, J.E. Marsden &
L. Slrovich · Springer · isbn 978-1441978912 · 2011

Jack C. McCormac / James K. Nelson, Jr.
Structural Steel Design, LRFD Method.
third edition · Pearson Education · New Jersey · isbn 0130479594 · 2003

James A. McHugh
Algorithmic Graph Theory.
Prentice Hall · 013236152 · 1990

Andrea Micheletti
On generalized reciprocal diagrams for self-stressed frameworks.
International Journal of Space Structures · volume 23 · issue 3 · pages 153-166 ·
2008

Christian Otto Mohr
Eine Aufgabe der graphischen Statik.
Der Civilingenieur · pages 535-538 · 1886

Gaspard Monge
Traité élémentaire de statique à l'usage des écoles de la marine.
chez Baudouin · Paris · 1788

Mohsen Mostafavi / Jürg Conzett / Bruno Reichlin
Structure as Space - Engineering and Architecture in the Works of Jürg Conzett.
Architectural Association Publications · 2003.

Aurelio Muttoni / Joseph Schwartz / Bruno Thürlimann
Design of concrete structures with stress fields.
Birkhäuser · 1997

Aurelio Muttoni
L'art des structures,
une introduction au fonctionnement des structures en architecture.
Presses polytechniques et universitaires romandes · 2005

Aurelio Muttoni / Miguel Fernandez Ruiz / Neven Kostic
Champs de contraintes et méthode des bielles-et-tirants : Applications dans la
conception et le dimensionnement des structures en béton armé.
Syllabus · Laboratoire de construction en béton IBETON · Faculté de
l’environnement naturel, architectural et construit ENAC · Ecole polytechnique
fédérale de Laussane EPFL · January 2011

N
Julien Narboux
Mechanical Theorem Proving in Tarski's Geometry.
Conference on Automated Deduction in Geometry 2006 · edited by F. Botana &
T. Recio · Springer-Verlag · Berlin Heidelberg · pages 139-156 · 2007

Julius Natterer / Jean-Luc Sandoz / Martial Rey
Construction en bois: Matériau, technologie et dimensionnement.
Traités de Génie Civil de l’Ecole Polytechnique fédérale de Lausanne · volume 13
(W-0021) · isbn: 978-2880744008 · 2000

◪McCarthy/…·2011

McCormac/…·2003 ◪

◪McHugh·1990

◪Micheletti·2008

■Mohr·1886

Monge·1788 ◪

Mostafavi/…·2003 ◈

Muttoni/…·1997 ◪

Muttoni·2005 ◪

Muttoni/…·2011 ◪

Narboux·2007 ○

◪Natterer/…·2000

references · 335

Pier Luigi Nervi
Savoir construire.

2° edition · traduction de l'italien par Muriel Gallot · éditions du Linteau · Paris ·
isbn 2910342069 · 1997

Laurent Ney / Sigrid Adriaenssens / Stefan Devoldere / Iwan Strauven
Laurent Ney - Shaping Forces.

Bozar Books · A+ Editions · 2010

Laurent Ney
Interview.

Les cahiers de l'architecture · ISA St-Luc Tournai · 2010

Paul Nicholas
Approaches to Interdependency:

early design exploration across architectural and engineering domains.
PhD Thesis · School of Architecture and Design · Design and Social Context

Portfolio · RMIT University · 2008

Manfredi Nicoletti
Sergio Musmeci: Organicità di forme e forze nello spazio.

Testo & Immagine · isbn 978-8886498647 · 1999

Arthur H. Nilson / David Darwin / Charles W. Dolan
Design of Concrete Structures.

thirteenth edition · McGraw-Hill · isbn 0072483059 · 2004

C. B. Norris
Strength of Orthotropic Materials Subjected to Combined Stresses.

U.S. Forest Products Lab. Rep.1816 · FPL · Madison, WI · USA · 1955

O
John Ochsendorf

Practice before theory:
the use of the lower bound theorem in structural design from 1850-1950.

Essays: the history of the theory of structures · pages 353-366 · 2005

R. Ogniewicz / M. Ilg
Voronoi Skeletons: Theory and Applications.

Conference on Computer Vision and Pattern Recognition · Champaign · Illinois ·
USA · 1992

Jacques Ozanam
L'usage du Compas de Proportion.

Henry van Bulderen · La Haye · 1691

P
Fabrizio Palmisano / Amedeo Vitone / Claudia Vitone

A first approach to optimum design of cable-supported bridges
using load path method.

Structural Engineering International · issue 4 · pages 412-420 · 2008.

Andrew Payne / Rajaa Issa
Grasshopper Primer.

second edition · 2009

◈ Nervi·1997

Ney/…·2010a◈

Ney·2010b◈

◈ Nicholas·2008

Nicoletti·1999◈

Nilson/…·2004◪

Norris·1955◪

◈ Ochsendorf·2005

Ogniewicz/Ilg·1992○

Ozanam·1691○

◪ Palmisano/…·2008

Payne/Issa·2009◪

336 · references

Giuseppe (Ioseph) Peano
Arithmetices principia, nova methodo exposita.
Augustae Taurinorum Ediderunt Fratres Bocca · Roma Florentiae · pages 83–97 ·
1889

Johann Friedrich Penther
Praxis Geometriae.
Berlegt von Johann Balthazar Probst · Augspurg · 1749

David Peyceré / Gilles Ragot / Guy Lambert / Joseph Abraham / Maurice Culot /
Réjean Legault / Simon Texier
Les Frères Perret - L’œuvre complète.
Editions Norma · isbn 978-2909283333 · 2000

Styliane Philippou
Oscar Niemeyer, curves of irreverence.
Yale University Press · NewHaven London · isbn 978-0300120387 · 2008

Antoine Picon
Architectes et ingénieurs au Siècle des lumières.
Parenthèses · isbn 978-2863640494 · 1988

Antoine Picon / A. Chassagnoux / A.C. Webster / A. Föhl / A. Guiheux /
A.G. Davenport / A.-L. Carré / A. Quénelle / A. Slaton / A.W. Skempton / B. Addis /
B. Burkhardt / B. Forster / L.B. Lemoine / B.L. Hurst / B. Marrey / B.Shapiro Comte /
B. Vaudeville / C.A. Jones / C. Journet / C. Maniaque / C.R. Blackwell / C. Schädlich /
C. Simonnet / C. Wamsler / D. Bernstein / D. de Haan / D.P. Billington / D. Rastorfer /
D. Rouillard / D. Sugden / D. Van Zanten / E. Benvenuto / E. Campagnac /
E.C. English / E. Gallo /E. Kranakis / E.L. Kemp / E.N. DeLony / E. Perez Belda /
F. Fromonot / F. Newby / F. Otto / F. Périé / F. Seitz / G. Auer / G. Chanvillard /
G. Delhumeau / G. Fenske / G. K. Dreicer / G. Morel Journel / G. Ribeill /
G.R. Larson / H. Vérin / J.A. Fernández Ordóñez / J. Delannoy / J.-F. Blassel /
J.J. Arenas de Pablo / J. Kerisel / J.-M. Delarue / J. Natterer / J. Ramón Navarro Vera /
J. Schlaich / K. Bowie / K. Chatzis / K. Ishii / L. Bruneel / M. Casciato / M. Chrimes /
M. Cotte / M.E. Pawley / M. Fordham / M. Kutterer / M.K. Deming / M. Levy /
M. Melaragno / M.N. Bussell / M.S. Buenaventura / M. Talamona / M. Virlogeux /
N. Montel / N. Nogue / N. Okabe / O. Cinqualbre / P.C. Papademetriou / P. McCleary /
P. Pinon / P. Potié / R.A. Paxton / R. Graefe / R. Guidot / R.J. Mackay Sutherland /
R. Legault / R. Motro / R.M. Vogel / R.N. Dent / R. Rouyer / R. Thorne /
S.E. Wermiel / S. GaspériniCoiffet / S.G. Fedorov / S.W. Ksiazek / T. Day / T.F. Peters /
T. Ruddock / V.L. Roberts / V. PiconLefebvre / W.C. Brown / W.I. Liddell /
W. Meighörner / Z.S. Makowski
L'art de l'ingénieur, constructeur, entrepreneur, inventeur.
sous la direction d'Antoine Picon · Centre Georges Pompidou · Le Moniteur · Paris ·
1997

Mario Pieri
La Geometria Elementare istituita sulle nozioni di 'punto' e 'sfera'.
1908

Daniel Piker
Kangaroo Physics.
software · www.food4rhino.com · available since 2010

Albert Pirard
La Statique Graphique - Science introductive à l’art de construire.
Imprimerie H. Vaillant-Carmanne · S.A. · Liège · 1950

Albert Pirard
Traité d'hyperstatique analytique et graphique.
Dunod · 1960

Peano·1889 ○

○Penther·1749

Peyceré/…·2000 ◈

◈Philippou·2008

Picon·1988 ◈

◈Picon/…·1997

○Pieri·1908

◪Piker·2010

Pirard·1950 ■

◪Pirard·1960

references · 337

Jean-Victor Poncelet
Traité des propriétés projectives des figures : ouvrage utile à ceux qui s’occupent
des applications de la géométrie descriptive et d’opérations géométriques sur le

terrain.
Bachelier · Paris · 1822

Christoph Pourtois
Pier Luigi Nervi: Architecture as Challenge.

edited by Cristiana Chiorino & Carlo Olmo · CIVA - Silvana Editoriale · 2011

Clemens Preisinger
Karamba.

software · http://www.karamba3d.com · visited in 2013

R
Johann Radon

Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten.
Mathematische Annalen · volume 83 · issues 1-2 · pages 113-115 · 1921

Srinivasa Ramanujan
Squaring the Circle.

Journal of the Indian Mathematical Society · number 5 · page 132 · 1913

Srinivasa Ramanujan
Modular Equations and Approximations to Pi.

quarterly Journal of Mathematics · number 45 · pages 350-372 · 1914

William John Macquorn Rankine
A manual of applied mechanics.

Richard Griffin · London Glasgow · 1858

William John Macquorn Rankine
Principle of the Equilibrium of Polyhedral Frames.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science · Fourth Series · volume XXVII · issue 1 · page 92 · 1864

William John Macquorn Rankine
Diagrams of Forces in Frameworks.

Proceedings of the Royal Society of Edinburgh · issue 7 · pages 171-172 · 1870

Wolfgang Rautenberg
A Concise Introduction to Mathematical Logic.

third Edition · Springer · New York Dordrecht Heidelberg London · 2010

Casey Reas / Ben Fry
Processing, A Programming Handbook for Visual Designers and Artists.

The MIT Press · Cambridge, Massachusetts · isbn 978-0262182621 · 2007

C.J. Recordon
Solutions approchées de la trisection de l'angle et de la quadrature du cercle.
chez Gauthier-Villars à Paris · chez Delafontaine et Rouge à Lausanne · 1865

R.H.S. Reiser / A.C.R. Costa / G.P. Dimuro
First Steps in the Construction of the Geometric Machine Model.

Tendencias em Matemàtica Aplicada e Computacional · volume 3 · number 1 ·
pages 183-192 · 2002

○ Poncelet·1822

Pourtois·2011◈

◪ Preisinger·2013

Radon·1921○

○ Ramanujan·1913

Ramanujan·1914○

Rankine·1858◪

Rankine·1864■

■ Rankine·1870

○ Rautenberg·2010

Reas/Fry·2007◬

Recordon·1865○

◍ Reiser/…·2002

338 · references

Aristides A.G. Requicha
Representations for Rigid Solids: Theory, Methods, and Systems.
Association for Computing Machinery · Computing Surveys · volume 12 ·
number 14 · December, 1980

John Resig
Pro JavaScript Techniques.
Apress · isbn 978-1590597279 · 2006

Franz Reuleaux
The Kinematics of Machinery - Outlines of a Theory of Machines.
translated and edited by Alex. B. W. Kennedy · Macmillan & Co. · London · 1876

Franz Reuleaux
The Constructor, a hand-book of machine design.
translated by Henry Harrison Suplee · published by H.H. Suplee · NewYork · 1899

Peter Rice
An engineer imagines.
Artemis · London · 1994

Jürgen Richter-Gebert / Henry Crapo / Ulrich H. Kortenkamp
Cinderella - The Interactive Geometry Software.
http://www.cinderella.de · visited on July 25, 2012 · first released in 1998

Jürgen Richter-Gebert
Perspectives on Projective Geometry, a Guided Tour Through Real and Complex
Geometry.
Springer · Heidelberg Dordrecht London New York · isbn 978-3642172854 · 2011

Jürgen Richter-Gebert / Ulrich H. Kortenkamp
The Cinderella2 Manual — Working with the Interactive Geometry Software.
Springer · Heidelberg Dordrecht London NewYork · isbn 978-3540349242 · 2012

Matthias Rippmann / Lorenz Lachauer / Philippe Block
Interactive Vault Design.
International Journal of Space Structures · volume 27 · number 4 · pages 219-230 ·
2012

RISA Technologies
RISA2D.
software · www.risa.com/p_risa2d.html · since 1987

Xosé Manuel Carreira Rodríguez
The 7 main causes of numerical rubbish.
http://notonlybridges.blogspot.be/2010/01/7-main-causes-of-numerical-rubbish.
html · published on January 16, 2010

Francesca Rossi / Peter van Beek / Toby Walsh
Handbook of Constraint Programming.
Foundations of Artificial Intelligence · series edited by J.Hendler, H.Kitano & B.
Nebel ·Elsevier · Amsterdam Boston Heidelberg London NewYork Oxford Paris
SanDiego SanFrancisco Singapore Sydney Tokyo · isbn 978-0444527264 · 2006

George I. N. Rozvany
A critical review of established methods of structural topology optimization.
Struct Multidisc Optim · issue 37 · pages 217–237 · 2009

Miguel Fernández Ruiz / Aurelio Muttoni
On Development of Suitable Stress Fields for Structural Concrete.
ACI Structural Journal · issue 104 · pages 495-502 · 2007

Requicha·1980 ◍

◬Resig·2006

◎Reuleaux·1876

◎Reuleaux·1899

Rice·1994 ◈

◍Richter-Gebert/…·1998

Richter-Gebert/…·2011 ○

Richter-Gebert/…·2012 ◍

◪Rippmann/…·2012

◪Risa·1987

Rodríguez·2010 ◈

Rossi/…·2006 ◍

◪Rozvany·2009

Ruiz/Muttoni·2007 ◪

references · 339

S
Andrew Saint

Architect and Engineer, a study in sibling rivalry.
Yale University Press · New Haven & London · isbn 978-0300124439 · 2007

Philippe Samyn
Étude de la morphologie des structures

à l'aide des indicateurs de volume et de déplacement.
Académie royale de Belgique · Classe des Sciences · 3rd serie · tome V · 2004

Tomoko Sakamoto / Albert Ferré / Michael Meredith / AGU / Mutsuro Sasaki /
Adams Kara Taylor / designtoproduction / Aranda-Lasch

From control to design,
parametric/algorithmic architecture.

Actar-D · isbn 978-8496540798 · 2008

Mutsuro Sasaki
Morphogenesis of Flux Structure.

Architectural Association Publications · London · isbn 978-1902902579 · 2007

Anupa m Saxena / Birendra Sahay
Computer Aided Engineering Design.

Springer · isbn 1402025556 · 2005

Christoph Scheiner
Pantographice, seu ars delineandi res quaslibet per parallelogrammum lineare seu

cavum, mechanicum, mobile : libellis duobus explicata, & demonstrationibus
geometricis illustrata quorum prior epipedographicen, sive planorum, posterior

stereographicen, seu solidorum aspectabilium vivam imitationem atque
proiectionem edocet.

Romae · Ex typographia Ludouici Grignani, sumptibus Hermanni Scheus · 1631

E. Scholz
Graphical Statics.

in Companion Encyclopedia of the History and Philosophy of the Mathematical
Sciences · volume 2 · edited by I. Gratton-Guinness · Routledge · London ·

pages 978-993 · 1994

Uwe Schöning
Logic for Computer Scientists.

Birkhäuser · Boston Basel Berlin · isbn 978-0817647629 · 2008

Franciscus à Schooten
De Organica Conicarum Sectionum.

Lugd. Batavor · ex Officina Elzeviriorum · 1646

Joseph Schwartz
Structural Theory and Structural Design.

Cooperation: The Engineer and the Architect.
edited by Aïta Flury · Birkhäuser · Basel · 2012

Pierluigi Serraino
Eero Saarinen (1910-1961), un expressioniste structurel.

Taschen · Köln ·isbn 978-3822836446 · 2006

Philippe Serré / Nabil Anwer / JianXin Yang
On the Use of Conformal Geometric Algebra in Geometric Constraint Solving.

Guide to Geometric Algebra in Practice · 11th chapter · edited by Leo Dorst &
Joan Lasenby · Springer · London Dordrecht Heidelberg New York

· isbn 978-0857298102 · 2010

Saint·2007◈

◪ Samyn·2004

Sakamoto/…·2008◪

Sasaki·2007◈

Saxena/Sahay·2005◪

Scheiner·1631◎

■ Scholz·1994

◪ Schöning·2008

Schooten·1646◎

◈ Schwartz·2012

◈ Serraino·2006

Serré/…·2010◍

340 · references

Kaleem Siddiqi / S. M. Pizer / J. N. Damon / P. J. Giblin / N. Amenta / G. Borgefors /
S. Bouix / R. Broadhurst / E. Chaney / S. Choi / S. Dickinson / P. T. Fletcher / Q. Han /
S. Joshi / B. B. Kimia / F. F. Leymarie / D. Macrini / I. Nyström / J. Shah /
G. Sanniti di Baja / A. Shokoufandeh / G. Székely / M. Styner / T. Terriberry / A. Thall /
P. Yushkevich / J. Zhang
Medial Representations: Mathematics, Algorithms and Applications.
edited by Kaleem Siddiqi & Stephen M. Pizer · Computational Imaging and Vision
Series · series edited by Max Viergever · volume 37 · Springer · 2008

Cyrille Simonnet
Le béton, histoire d'un matériau.
Editions Parenthèses · isbn 978-2863640913 · 2005

Károly Simonyi
A Cultural History of Physics.
A.K. Peters/CRC Press · isbn 978-1568813295 · 2012

William R. Spillers / Keith M. MacBain
Structural Optimization.
Springer · Dordrecht Heidelberg London New York · 2009

STEP (Structural Timber Education Program): Patrick Racher / Jean-Pierre Biger /
Frédéric Rouger / Gérard Sagot / Gilbert Vidon / Lucien Andriamitantsoa /
Henri Teyssandier / Jean Trinh
Structures en Bois aux Etats Limites - Introduction à l’Eurocode 5.
Step 1 Matériaux et bases de Calcul · SEDIBOIS · Union nationale française de
charpente, menuiserie, parquets · isbn 978-2212118325 · 1996.

Simon Stevin / Albert Girard
Les œuvres mathématiques de Simon Stevin de Bruges.
le tout revu, corrigé et augmenté par Albert Girard · Leyde ·
chez Bonaventure et Abraham Elsevier · 1634

John Stillwell
The Four Pillars of Geometry.
Undergraduate Texts in Mathematics · Springer · isbn 978-0387255309 · 2005

Wolfram Schwabhäuser / Wanda Szmielew / Alfred Tarski
Metamathematische Methoden in der Geometrie.
Berlin Heidelberg · Germany · 1983
Reprinted in New-York & Tokyo · Ishi Press International · isbn 978-4871877077 ·
November, 2011

Ryan E. Smith
Interlocking Cross-Laminated Timber:
alternative use of waste wood in design and construction.
BTES Conference · Convergen and Confluence · 2011

James Joseph Sylvester
On the plagiograph aliter the Skew pantigraph.
Nature · page 168 · July 1st, 1875

James Joseph Sylvester
History of the Plagiograph.
Nature · pages 214-216 · July 25, 1875

Leslaw W. Szczerba
Tarski and Geometry.
The Journal of Symbolic Logic · volume 51 · number 4 · pages 907-912 ·
December, 1986

Siddiqi/…·2008 ◍

◪Simonnet·2005

◪Simonyi·2012

Spillers/…·2009 ◪

◪STEP·1996

Stevin/…·1634 ◪

Stillwell·2005 ○

Schwabhäuser/…·2011 ○

◪Smith·2011

Sylvester·1875a ◎

Sylvester·1875b ◎

○Szczerba·1986

references · 341

T
Daina Taimina

Historical Mechanisms for Drawing Curves.
Hands On History, edited by Amy Shell-Gellasch · MAA Notes · volume 72 ·

pages 89-104 · 2007

Alfred Tarski
What is Elementary Geometry.

Symposium on the axiomatic method · 1959

Alfred Tarski / Steven Givant
Tarski's System of Geometry.

The Bulletin of Symbolic Logic · volume 5 · number 2 · pages 175-214 · June, 1999

Karl Terzaghi
Theoretical soil mechanics.

John Wiley and Sons · NewYork London Sydney · 1943 · fourteenth printing, 1966

Dominique Tournès
Du compas aux intégraphes : les instruments du calcul graphique.

Repères · IREM · number 50 · pages 63-84 · January, 2003

Martin Trautz / Christophe Koj
Self-tapping screws as reinforcement for timber structures.

Evolution and Trends in Design, Analysis and Construction of Shell and Spatial
Structures · Proceedings of the International Association for Shell and Spatial

Structures (IASS) Symposium · Valencia · 2009

Martin Trautz / Christophe Koj
Mit Schrauben Bewheren 2.

Forschungsbericht 01 · TragKonstruktionen · RWTH Aachen University · 2009

Edward Tsang
Foundations of Constraint Satisfaction.

first published by Academic Press Limited in 1993 ·
available on http://www.bracil.net/edward/FCS.html#FCS%20Download · 1995

U
G. Ungewitter / K. Mohrmann

Lehrbuch der Gotischen Konstruktionen.
two volumes · Chr. Herm. Tauchnitz · Leipzig · 1901

V
Hilderick A. van der Meiden / Willem F. Bronsvoort

An efficient method to determine the intended solution
for a system of geometric constraints.

International Journal of Computational Geometry and Applications · volume 15 ·
issue 3 · pages 279-298 · June 2005

Hilderick A. van der Meiden / Willem F. Bronsvoort
A constructive approach to calculate parameter ranges

for systems of geometric constraints.
Journal of Computer-Aided Design · volume 38 · issue 4 · pages 275-283 ·

April, 2006

◎ Taimina·2007

○ Tarski·1959

○ Tarski/Givant·1999

Terzaghi·1966◪

◎ Tournès·2003

Trautz/Koj·2009a◪

Trautz/Koj·2009b◪

Tsang·1995◍

◪ Ungewitter/…·1901

vanderMeiden/…·2005◍

◍ vanderMeiden/…·2006

342 · references

Tom Van Mele / Matthias Rippmann / Lorenz Lachauer / Philippe Block
Geometry-based Understanding of Structures.
Journal of the International Association of Shell and Spatial Structures · volume 53
· issue 4 · pages 285-295 · 2012

Tom Van Mele / Philippe Block
eQUILIBRIUM.
http://block.arch.ethz.ch · available since 2011

Pierre Varignon
Nouvelle mécanique ou statique, dont le projet fut donné en 1687.
Ouvrage posthume de M. Varignon · 2 tomes · chez Claude Jombert · Paris · 1725

Remco C. Veltkamp
A Quantum Approach to Geometric Constraint Satisfaction.
Object-Oriented Programming for Graphics, Eurographics ·
edited by C. Laffra et al. · The European Association for Computer Graphics · 1995

Chiara Vernizzi
Il disegno in Pier Luigi Nervi,
dal dettaglio della materia alla percezione dello spazio.
Ricerche di Rappresentazione e Rilievo dell'architecttura, della città e del
territorio · Università degli Studi di Parma · Mattioli 1885 · Fidenza ·
isbn 978-8862612357 · 2011

W
Pierre Wantzel
Recherches sur les moyens de reconnaître si un problème de géométrie peut se
résoudre à la règle et au compas.
Journal de Mathématiques Pures et Appliquées · volume 1 · issue 2 ·
pages 366–372 · 1837

Matthew Wells
Engineers: A History of Engineering and Structural Design.
Routledge · isbn 978-0415325264 · 2008

Douglas Brent West
Introduction to Graph Theory.
Prentice-Hall · isbn 0132278286 · 1996

Y
Robert C. Yates
Tools, A Mathematical Sketch and Model Book.
Louisana State University · Baton Rouge · 1941

Robert C. Yates
A Handbook of Curves and Their Properties.
J.W. Edwards & Ann Arbor · revised edition · 1959

■VanMele/…·2012

■VanMele/Block·2011

◪Varignon·1725

◍Veltkamp·1995

Vernizzi·2011 ◈

Wantzel·1837 ○

Wells·2008 ◈

West·1996 ◪

◎Yates·1941

◎Yates·1959

references · 343

Z
Waclaw Zalewski / Edward Allen

Shaping Structures: Statics.
Wiley & Sons · isbn 978-0471169680 · 1997

Denis Zastavni
La conception chez Robert Maillart : morphogenèse des structures architecturales.
doctoral thesis · directed by Jean-François & Pascal De Beck · Ecole Polytechnique

de Louvain · UCLouvain · June 3, 2008

Denis Zastavni
The structural design of Maillart’s Chiasso Shed (1924): A graphic procedure.

Structural Engineering International · volume 18 · number 3 · pages 247-252 ·
2008

Denis Zastavni
Maillart’s design methods and sustainable design.

33rd IABSE International Symposium Bangkok · Sustainable Infrastructure:
Environment Friendly, Safe and Resource Efficient · Bangkok · 2009

Denis Zastavni
An equilibrium approach on a structural scale to structural design.

International Conference on Structures and Architecture · edited by P. Cruz ·
Guimarães · Portugal · 2010

Alexander Ziwet / Peter Field
Introduction to Analytical Mechanics.

MacMillan Company · New-York · 1912

Klaus Zwerger
Wood and wood Joints.

Birkhauser · 2012

And, more widely, all contributions visited on www.wikipedia.org, a valuable tool.

Zalewski·1997■

Zastavni·2008a◈

Zastavni·2008b◈

Zastavni·2009◈

◪ Zastavni·2010

Ziwet/Field·1912◪

Zwerger·2012◪

www.wikipedia.org

remerciements

Denis, je tiens à te remercier, chaleureusement, pour l'invitation à effectuer cette thèse, pour
ta confiance et ton aide permanentes. Je te remercie également pour tous les enseignements
reçus, en ce compris les compétences satellites qui font le quotidien du chercheur. Ton regard
critique sur les méthodes de conception structurale restera pour moi l'enseignement majeur
retenu durant ces quatre ans.

Jean-François, je te remercie pour tes commentaires précis et clairvoyants apportés à chaque
entrevue.

Merci aux membres du jury et d'une manière générale, à tous les académiques et praticiens qui,
à un moment ou un autre, ont manifesté leur intérêt pour cette recherche. Je pense notamment
aux professeurs Aurelio Muttoni, John Ochsendorf, Laurent Ney, Pascal Lambrechts, Tullia Iori,
à André Jasienski et Jean-François Denoël de la Febelcem, au jury de sélection du Hangai Prize
de l'IASS, à Philippe Block, à Jurg Conzett, à Olivier Burdet et à Albert Mahy. Tous ces encour-
agements, même les plus succincts et les plus nuancés, me furent d'un grand soutien.

Je remercie le jury des Fonds Spéciaux de la Recherche de l'UCLouvain pour l'octroi et le renou-
vellement du financement de cette recherche.

Enfin, je souhaite citer dans ces lignes toutes celles et ceux qui ont composé mon environnement
de travail: les chercheurs du bureau A.106 (Jean-Philippe, Gérald, Lee et J-P) et ses visiteurs ré-
guliers; Olivier M. pour nos nombreuses excursions; le corps enseignant de la faculté LOCI pour
les charges d'enseignement qui me furent confiées; le personnel administratif du Vinci pour
leur soutien logistique; tous les ponctuels inclassables (Amandine, Vincent, etc.); et, last but not
least, Claire pour toute l'énergie donnée à la relecture de mon anglais.

Ça y est Séréna, c'est fait !

The space diagram above represents a rod equilibrated by six forces.
The force diagram on the front cover represents their corresponding magnitudes.

Dragging the magenta point (on the front cover) updates the orientation of the cyan rod and its
adjacent forces above, without affecting its static equilibrium.

This rod will also remain in compression provided the magenta point stays within the grey area,
the boundaries of which are fixed by geometric rules relying solely on the positions of points.

	 introduction
	01	fact: contemporary structural design practice
	02	critique: the lack of adequate tools for the initial shaping of structures
	03	answers: exemplary practices
	04	proposal: a tool to accompany the construction of static equilibriums
	05	precedents
	06	organisation of the content

	 geometric axiomatisation of graphic statics
	07	positions of points and first-order logic
	08	relationships of proximity and laterality
	09	form diagram and force diagram
	10	geometrical definition of forces
	11	rods and other objects
	12	static equilibrium
	13	uniform reading cycle
	14	recapitulation

	 dynamic handling of geometric constraints
	15	graphical regions and dynamic compliance with geometric relationships
	16	constraint (inter)dependencies
	17	examples of graphical computations
	18	switching constraint dependencies
	19	constraint propagations
	20	dynamic conditional geometric statements
	21	constraints for a uniform reading cycle of forces
	22	facilitating the crossing of rods

	 production rules for computer-aided graphic statics
	23	objects and native operations
	24	higher-order procedures
	25	functional flow

	 discussion
	26	applications
	27	future research
	28	conclusions

	 references

