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summary

area of research �· tools and methods for structural design

keywords �· computer-aided structural design · static equilibrium · constraint-based geometric 
solver · strut-and-tie models · graphic statics

abstract �· This thesis introduces “constraint-based graphic statics”, a geometrical support for 
computer-aided structural design. This support increases the freedom with which the designer 
interacts with the plane static equilibriums being shaped.

Constraint-based graphic statics takes full advantage of geometry, both its visual expressive-
ness and its capacity to solve complex problems in simple terms. Accordingly, the approach 
builds on the two diagrams of classical graphic statics: a form diagram describing the geometry 
of a strut-and-tie network and a force diagram vectorially representing its inner static equilib-
rium. Two new devices improve the control of these diagrams: (1) nodes — considered as the only 
variables — are constrained within Boolean combinations of graphical regions; and (2) the user 
modifies these diagrams by means of successive operations whose geometric properties do not 
at any time jeopardise the static equilibrium of the strut-and-tie network.

These two devices offer useful features, such as the ability to describe, constrain and modify 
any static equilibrium using purely geometric grammar, the ability to compute and handle mul-
tiple solutions to a problem at the same time, the ability to switch the hierarchy of constraint 
dependencies, the ability to execute dynamic conditional statements graphically, the ability to 
compute full interdependency and therefore the ability to remove significantly the limitations 
of compass-and-straightedge constructions and, finally the ability to propagate some solution 
domains symbolically.

As a result, constraint-based graphic statics encourages the emergence of new structural design 
approaches that are highly interactive, precognitive and chronology-free: highly interactive be-
cause forces and geometries are simultaneously and dynamically steered by the designer; pre-
cognitive because the graphical region constraining each points marks out the set of available 
solutions before they are even explored by the user; and chronology-free because the deductive 
process undertaken by the designer can be switched whenever desired.



Applications cover the design of reticular systems — regardless of whether they are isostatic, 
indeterminate, prestressed, self-stressed or mechanisms — regular and irregular beams subject 
to bending, compression-only structures described by lines of thrusts, and structures that can 
be modelled with discontinuous stress fields.

This thesis is divided into five sections. The first section describes the context and expectations 
behind the sought environment. The second section defines the few fundamental axioms charac-
terising graphic statics diagrams geometrically. They are then exploited in the third section to 
specify how geometric constraints applied to these diagrams can be maintained when points are 
dragged. Operations allowing the user to construct equilibriums are subsequently identified in 
the fourth section. The final section discusses the results. 



résumé

domaine de recherche �· outils et méthodes de conception structurale

mots-clefs �· conception structurale assistée par ordinateur · équilibre statique · solver géomét-
rique par contraintes · modèles de bielles-et-tirants · statique graphique

abrégé �· Cette thèse présente la “statique graphique par contraintes”, un support géométrique 
pour la conception assistée par ordinateur de structures architecturales. Ce support est destiné 
à augmenter la liberté et le contrôle avec lesquels le concepteur donne forme aux équilibres 
statiqes plans.

La statique graphique par contraintes tire avantage de la géométrie, à la fois pour son expres-
sivité visuelle et pour sa capacité à résoudre des problèmes complexes en termes simples. Elle 
s'appuie à cet égard sur les deux diagrammes de la statique graphique classique : le diagramme 
de situation décrivant la géométrie du réseau de bielles-et-tirants et le diagramme des forces 
représentant vectoriellement son équilibre statique. Deux nouveaux dispositifs enrichissent la 
manipulation de ces diagrammes : (1) la contrainte des noeuds, considérés comme uniques vari-
ables, à l'intérieur de combinaisons Booléennes de régions graphiques; (2) la modification suc-
cessive de ces diagrammes au moyen d'opérations dont les propriétés géométriques ne mettent 
jamais l'équilibre statique du réseau de bielles-et-tirants en péril.

Ces deux dispositifs permettent de décrire, de contraindre et de modifier tout équilibre statique 
à l'aide d'une grammaire purement géométrique, de calculer et de manipuler simultanément 
l'ensemble des solutions multiples du problème, d'inverser la hiérarchie de dépendance des con-
traintes, de réaliser des déclarations conditionnelles dynamiques graphiquement, d'exécuter 
des interdépendances de contraintes, et par conséquent, de s'affranchir considérablement des 
limitations liées aux constructions à la règle et au compas et, enfin, de propager certains do-
maines de solutions de manière symbolique.

Par conséquent, la statique graphique par contraintes encourage l'émergence de nouvelles 
approches de conception structurale hautement interactives, précognitives et libres de chro-
nologie: hautement interactives car forces et géométries sont dirigées simultanément et dynam-
iquement par le concepteur; précognitives car la région graphique contraignant chaque point 



informe de l'ensemble des solutions possibles avant même que celles-ci ne soient explorées par 
l'utilisateur; et libres de chronologie car le processus déductif suivi par le concepteur peut être 
renversé à volonté.

Les applications concernées englobent la conception des systèmes réticulés (isostatiques, hyper-
statiques, précontraints, auto-contraints ou mécanismes), des poutres régulières et irrégulières 
sujettes à la flexion, des structures en compression pure décrites par lignes de poussées et des 
structures pouvant être décrites par champs de contrainte discontinus.

La thèse est divisée en cinq parties. La première décrit le contexte et les attentes liées à 
l'environnement recherché. La seconde section définit les quelques axiomes fondamentaux car-
actérisant géométriquement les diagrammes de statique graphique. Ils sont ensuite exploités 
dans la troisième section pour spécifier comment les contraintes géométriques appliquées sur 
ces diagrammes sont maintenues lors du déplacement de points. Les opérations permettant à 
l'utilisateur de construire les équilibres sont ensuite identifiées dans la quatrième section. La 
dernière section discute des résultats obtenus.
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1

INTRODUCTION 

The shaping of structures is an art in itself and the practice of it requires specific tools and 
methods.

Sub-section 01 (“fact: contemporary structural design practice”, page  3) of this intro-
ductory section briefly sets out what the shaping of structures is, who does it, how it is 
done and what tools are used. Sub-section 02 (“critique: the lack of adequate tools for the 
initial shaping of structures”, page 11) then provides a critique of these tools. Exemplary 
practices in structural design are then highlighted in sub-section 03 (“answers: exemplary 
practices”, page 17) in order to identify alternatives approaches. 

The purpose and features of the tool developed in this thesis are then outlined in sub-section 
04 (“proposal: a tool to accompany the construction of static equilibriums”, page 29). This 
tool is aimed at assisting the structural designer during the early phase of the shaping pro-
cess.

Finally, sub-section 05 (“precedents”, page  45) compares the proposed approach with ex-
isting tools that serve part of its purpose. The precise definition of the proposed tool will be 
detailed in the three sections that follow.
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01	 fact: contemporary 
structural design practice

the shaping of structures� · Thinking about the structure of an object involves 
seeking to understand the way form and material behave when subjected to 
forces. Structures can be found everywhere in nature, from the microscopic 
arrangement of atoms to gigantic underground caves. However, structures 
can also be shaped explicitly in order to meet specific requirements. Other 
than ensuring stability under expected loads, these requirements are gener-
ally not related to purely mechanical considerations.

Indeed, form and material affect buildings and industrial and civil engineer-
ing constructions in many other ways. These include their integration within 
the spatial context, their architectural quality, their robustness, their sus-
tainability over time, their recyclability, their process of building, their aes-
thetics, their symbolism, their cost and their functional uses. 

Shaping a structure means juggling with all these considerations. 

In contemporary practice, the two main protagonists of this art are the archi-
tect and the structural engineer.

the architect and the structural engineer� · In ancient times and up until 
the Renaissance, building expertise was primarily the concern of craftsmen 
— e.g. carpenters and stone-cutters — who at times were directed by an indi-
vidual —  i.e. the master builder. As knowledge grew about the strength of 
materials, building techniques, stylistic forms and spatial qualities, practi-
tioners became more specialised and a schism occurred in the eighteenth 
century to produce two new practitioners: the architect and the engineer 
— read Picon·1988, Addis·2007 and Saint·2007 for further insight into this.

Although the architect and the engineer certainly develop different sensi-
bilities and knowledge, it is a fairly crude caricature to associate the former 
with the artist and the latter with the pragmatic (Addis·1994, Wells·2008 and 
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Flury/…·2012). Another no less caricatured way of differentiating between 
them would be to say that the former has responsibility for the spatial form 
and the latter has responsibility for the structure’s stability.

This comparison highlights the endless interference between the architect 
and the engineer: the former cannot do anything to the spatial form without 
challenging its stability and the latter cannot guarantee the stability of the 
structure without affecting its spatial form. Owing to this interference, they 
are forced to work together in one way or another.

Based on Baumberger·2012, four basic relationships between the architect 
and the structural engineer can be identified: monologues from the architect, 
monologues from the structural engineer, dialogues and soliloquies.

Monologues result from the total control of the project by the architect or the 
engineer, with the other at his service. Monologues from architects generally 
lead to formal, demonstrative buildings. Monologues from engineers gener-
ally lead to pragmatic, cost-effective buildings.

In contrast, dialogues occur when “architect and engineer are equal partners 
in the discussion” (Baumberger·2012, page 60). This kind of cooperation is 
generally hard to maintain because of the opposition between protecting per-
sonal egos and the necessary challenging of the other’s work. However, it 
usually tends to produce the most successful outcomes.

Finally, soliloquies occur in rare cases where the architect and the engineer 
are one and the same person. As a consequence of both domains being mas-
tered, the work produced occasionally has a tendency to be fairly demonstra-
tive.

These four different relationships are particularly noticeable at the beginning 
of the project (figure 1, step a) when the initial ideas and design decisions are 
established — in other words during the drafting or concept stage.

figure 1 
schematic 
illustration of the 
contemporary 
structural design 
process 
(characters from 
http://architexts.
us).
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the structural design process�  ·  The role of the structural engineer after 
the concept stage is relatively similar in every office. Depending on the level 
of specificity in the sketched project, in the first instance the engineer adds 
to it so that a load-bearing structure can be identified (figure 1, step b). 
Consciously or not, it is at this moment that the future behaviour of the struc-
ture is fixed — i.e. the way the structure behaves once loaded.

The engineer then uses tools and methods (figure 1, step c) to ensure that 
the proposed structure will resist the stresses effectively to which it may be 
subjected, will remain stable and safe in extreme situations and, over time, 
will deform very slightly compared to its intended purposes, will be feasible 
with available, cost-effective materials and methods of construction and, on 
occasion, will represent an optimum of these various objectives.

The results obtained by this step might compel the designer to backtrack 
(figure 1, step d) in order to readjust assumptions made in step b, before com-
pleting the computations of step c again. Consequently steps b, c and d form 
a cyclical process.

As the project becomes more concrete, the engineer proposes the structural 
solution to other design team members (figure 1, step e): the architect, but 
also the client, the building contractor and all the other specialists, such as 
HVAC consultants, urban planners, fire authorities etc.

Coming away from these meetings, the structural engineer modifies the pro-
posal (figure 1, steps d and b), subsequently re-computes it (figure 1, step c) 
and resubmits it to the other members of the design team. This results in a 
new cyclical process (steps b, c, e, d) of varying length, ultimately leading to 
the completion of every detail (figure 1, step f) regarding geometries, manu-
facturing processes and implementation.

available theories� ·There are three types of theories available to structural 
engineers to fulfil their duty:

(1)	 theories concerning the rheological understanding of materials. Re-
search in this field mainly comprises laboratory testing of full-scale 
structural elements and the results produced remain relevant over 
time. New tests are only necessary when new building materials — e.g. 
high-performance concrete or fibre-reinforced polymers — or new im-
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plementations — e.g. interlocking cross-laminated timber (Smith·2011) 
or reinforced timbers (Trautz/Koj·2009a and Trautz/Koj·2009b) — 
emerge

(2)	 theories concerning the understanding of the behaviour of structures. 
The most significant advances in this field date back to the nineteenth 
century and the first half of the twentieth century and still constitute 
the core of current knowledge (Heyman·1996, Heyman·1999b and 
Charlton·2002)

(3)	 theories concerning tools and methods enabling the designer to ap-
proach and predict the effective behaviour of the structure. This has 
always been the principal concern of research efforts, and it is still the 
case today.

the role of design tools�  · The presence of and importance attached to the 
development of appropriate tools and methods is directly linked to the essence 
of structural design: the shaping of structures is not a science. It is not a 
process undertaken to find the unique solution to a given problem through 
rational calculations. It is a real project. It is a nonlinear process at the begin-
ning of which the definition of the problem is as unknown as the final result.

“[Structural] art is solving problems which cannot be formulated before 
they have been solved. The search goes on, until a solution is found, which 
is deemed to be satisfactory. There are always many possible solutions, the 
search is for the best — but there is no best — just more or less good.” (Ove 
Arup, in Addis·1994, page 7)

“All the great masters of structural design have reminded us repeatedly 
that structural design is not a science; it is a craft that relies on judgment 
rather than absolute certainty” (Allen·2009, page xiv)

Structural design is indeed a craft and the engineered product will owe more 
to the designer’s previous experience and the nature of the tools than the 
purely theoretical knowledge acquired. Indeed experience, intuition and tools 
greatly influence the final product in a variety of ways: they condition the 
conduct of the design process; they determine the set of parameters that can 
be acted upon, the set of values that will result and the set of choices that have 
to be made beforehand; and they impose the speed of execution, the level of 
interactivity, the level of accuracy etc.
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Therefore the choice of tools and methods is dependent not only on the initial 
data available — e.g. the material that will be used or the quality of the bear-
ing soil — but also on the desired results — which sometimes lead engineers 
and architects to develop their own customised tools and methods in order to 
achieve particular results within particular frameworks (Krasny·2008).

available tools and methods� · The range of tools available to the structural 
designer is fairly extensive and heterogeneous. It encompasses a huge variety 
of tasks and a huge variety of means. Firstly, the designer has all the tools of 
the architect at his disposal, either manual instruments or software solutions 
created to sketch, depict, reproduce, model and communicate — e.g. pencils, 
compasses, straightedges, foam models and computer-aided drawing tools. 
A comprehensive list of these tools can be found in Krasny·2008, page 149. 
Secondly, there are additional tools specifically related to the shaping of the 
structure or its study.

Rather than compiling an extensive and heterogeneous list of past and con-
temporary structural design tools, their common and different properties are 
identified here according to four partial but complementary questions:

(1)	 What is the assumed rheological model used by the tool? 
(2)	 What is the chosen model of representation of the structure?
(3)	 What are the required inputs and the expected outputs?
(4)	 What is the inner solution method? 

The following paragraphs attempt to formulate a list of possible answers to 
these four questions — each answer can be looked upon as describing a group 
of tools sharing the same property.

(1)	 Since the real rheological behaviours of material are too complex to be 
handled efficiently, theoretical simplifying hypotheses are made about them. 
As theories are generally founded upon one particular ideal rheological model 
and most tools build on one specific theory, these hypotheses consequently 
condition the tools’ scope of application. The following rheological models are 
possible answers to criterion 1:

 •	non-deformable — which was the only assumption encountered before 
the Renaissance and Galileo

 •	brittle elastic — mainly used to compute deflections
 •	rigid plastic — mainly used to check stability
 •	elasto-plastic — see Ruiz/Muttoni·2007 for an example of an application
 •	…
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(2)	 Models of representations of the structure and its behaviour arising from 
criterion 2 establish particularly diverse groups of tools:

 •	scaled physical models (Drew·1976, Huerta·2006a, Ney/…·2010a)
 •	elementary geometrical rules (Huerta·2006c)
 •	typical typologies previously encountered or models found in nature
 •	physical equations — the most widely taught models in contemporary 

structural design classes
 •	calculators and spreadsheet files
 •	indicators of performance (Samyn·2004)
 •	graphs (Levens·1975)
 •	photoelastic materials (Heywood·1969)
 •	strut-and-tie models
 •	diagrams of graphic statics (Rankine·1858, Maxwell·1864)
 •	load paths (Palmisano/…·2008)
 •	discretisations by finite elements (Frey/Jirousek·2001)
 •	discontinuous stress fields (Marti·1985, Muttoni/…·1997)
 •	continuous stress fields (Muttoni/…·1997)
 •	…

(3)	 Criterion 3 distinguishes tools by grouping together the ones that require 
the same input data and produce the same output data. A classification of this 
kind produces six major groups:

 •	sketching tools —  they begin with a blank page and some predeter-
mined requirements about the structure and its use; they lead to the 
primary geometric and/or mechanical establishments of the structure; 
they are sometimes referred to as tools for the conceptual stage or 
structural morphogenesis

 •	analysis tools — they take loads and the geometries of the structure as 
inputs and produce a description of internal stresses and/or deforma-
tions

 •	sizing tools — they take loads and rough geometries (such as the posi-
tion and length of rods in a reticular structure or the bounding contour 
of a concrete beam) as initial parameters and provide the remaining 
geometries (respectively the cross-sectional geometries of the rods and 
the type of reinforcement bars in the beam) required to sustain the 
loads occurring in the structure
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 •	checking tools — they take loads, geometries and inner stresses as in-
puts and compute a Boolean value which says whether the structure is 
stable or not; nowadays most requirements for stability checks come 
from government codes and standards

 •	optimisation tools — they take loads, the geometries of a structure and 
an objective performance condition as initial data and provide a modi-
fication of this structure that satisfies the condition or comes as close 
as possible to it; tools falling within this category can be distinguished 
further by clarifying whether the modification affects the shape of a 
continuum structure, the topology of a network of rods or the sizes of 
these rods

 •	form-finding tools — they take a consistent set of loads, typological and 
boundary conditions as arguments and return a shape that satisfies 
these conditions within the laws of equilibrium and strength of materi-
als

 •	…

The distinction between these groups of tools is not always as rigorous in 
literature or in practice — e.g. analysis, sizing and checking tools are often 
confused and the same applies for sketching tools and form-finding tools. It 
should also be noted that some optimisation and form-finding tools may be 
seen as iterations of analysis and checking tools.

(4)	 Although criterion 4 is also applicable for recognising hand-guided solving 
methods — such as 

 •	the method of joint (Fairman/…·1932, page 26)
 •	the method of section (Fairman/…·1932, page 34)
 •	the method of substitution (Fairman/…·1932, page 42)

to identify internal stresses in trusses, for example — it is specifically use-
ful for distinguishing computerised tools from one another. Such tools are 
generally made with algorithms that combine and adapt multiple strategies, 
including the use of:

 •	force densities
 •	virtual works
 •	dynamic relaxations
 •	particle spring systems
 •	rainflow analogies
 •	solid isotropic material with penalisation strategies
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 •	sequential element rejections and admission strategies (also known as 
bi-directional evolutionary structural optimisation)

 •	genetic strategies
 •	…

Surveys on this subject can be found in Christensen/…·2009, Rozvany·2009, 
Spillers/…·2009 and Deaton/…·2013. 

popular habits · Among all the tools available, two are used much more in 
contemporary practice than any of the others:

(a)	 If the project can be made of basic, well-known and easy-to-build typolo-
gies, engineers generally choose them without any further consideration con-
cerning their shaping. They analyse each structural part directly by entering 
the handful of parameters into a spreadsheet — e.g. Microsoft Excel — from 
which they then obtain inner stresses and, in the most comprehensive cases, 
a building code-compliant sizing.

(b)	 Otherwise —  i.e. when complex or less common typologies are encoun-
tered — engineers would generally simply reproduce the architect’s concep-
tual sketch inside a finite-element analysis tool from which they automatically 
acquire a depiction of the magnitudes of principal stresses. They would then 
modify the initial sketch surgically until the structure meets expected mini-
mum requirements.

As a result, today’s structural design practices are usually isolated in a pro-
cess that determines the size of the structural parts following the analysis of 
a predetermined shape. The next sub-section develops a targeted critique of 
these practices.
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02	critique: the lack of 
adequate tools for the 
initial shaping of structures

drawbacks of (most) contemporary structural design tools� · The tools and 
methods currently most widely used — i.e. computerised analysis, optimisa-
tion and form-finding tools — have benefited from developments in informat-
ics since the mid-twentieth century. They now allow the designers to achieve 
unprecedented results: they approach real behaviour with increasing accu-
racy; they allow the detailed design of daring structures with growing confi-
dence and produce the optimum shapes of increasingly complex structures. 
However, most of these tools have serious drawbacks in the context of the 
chronological process of contemporary structural design. These drawbacks 
can be synthesised as follows:

(1)	 These tools require important choices to be made prior to their use, such 
as the choice of the tool used, the nature of the model and/or the simplifying 
assumptions. This might force the designer to make these choices too early in 
the process, which would be prejudicial because (a) tools are generally highly 
specific and time-consuming, (b) the model might not have the desired degree 
of accuracy and (c) initial simplifying assumptions might end up being at odds 
with the final structural behaviour. Moreover, these tools give no or very lim-
ited help in determining these choices or modifying them afterwards in the 
process.

Computerised tools used by architects present the same issue:

“With a computer you arrive at a precise solution very quickly, 
a precise rendering that gives you an idea at a very early stage. 
One of the things that this tool means which while not dangerous 
is somewhat problematic is that you make decisions too fast”	  
(Anne Lacaton, in Krasny·2008, page 82)
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(2)	 These tools impose a specific chronology of resolution — i.e. precise inputs 
and outputs. Unless the structural designer dedicates sufficient time to writ-
ing his own software, he is forced to resolve the problem in the way imposed 
by the tool, make lengthy detours in order to get to a solution that could have 
been found directly or, worse still, favour a solution that can be computed by 
the software rather than another solution that cannot be computed, but is just 
as easy to solve manually.

For example, current undesirable issues of this kind are: 
 •	What geometric changes would make a particular rod in a truss be-

come in tension?
 •	What additional weight would enable the reaction stresses on a given 

footing to be sufficiently vertical so as to be supported by the ground?

These two questions are not unsolvable, they just require the use of static 
equilibrium laws in a different way from that proposed by customary analysis 
tools.

(3)	 These tools usually have such precise and limited purposes that the com-
plete, composite structure generally has to be divided into several sub-parts 
that are explored in isolation, irrespective of their interactions —  i.e. using 
separate, independent tools. For reasons of time efficiency, this would either 
require the user to make as few changes in each sub-part as possible or would 
result in uncoordinated local corrections without a global assessment of any 
kind.

(4)	 Inner computations of these tools are hermetic black boxes for most users, 
impervious to customised adjustments by the user. This has the potential of 
resulting in elegant resolutions being dropped and computational efficiency 
being decreased.

(5)	 The lack of interactivity also stems from the fact that users have to answer 
very specific questions that are directed by the software’s own algorithmic 
reasoning. It follows that users all put their trust in the software and gradu-
ally become unaccustomed to asking questions themselves. This does not en-
courage original contributions and may stifle creativity:
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“Structural analysis and calculation have become increasingly precise 
and detailed. Proportioning pushed to its limits has allowed structures to be 
even more daring and efficient, but unfortunately all this has had a negative 
effect on structural design, leading to a slow and inexorable deterioration of 
the creative element involved.” (Muttoni·2005, page v)

(6)	 Black boxes also have the disadvantage of producing results that are dif-
ficult to interpret or even to understand. This does not encourage a direct 
return to initial choices in order to fix or improve them. Hence, it does not 
favour adequate control of the structural behaviour being shaped:

“Computer programs look only at local stresses and have a flagrant 
disregard for the principles of structure.” (Addis·1994, page 12)

(7)	 Owing to this, the results are rarely communicated to the architect who 
subsequently becomes distanced from the structural issue:

“For the architect too, the separation of disciplines has not solely 
brought benefits. The growing difficulty of understanding how structures 
function definitely represents an impoverishment.” (Muttoni·2005, page v)

This general list can be supplemented by the following issues specifically 
linked to finite-element models.

(8)	 The creation of adequate finite-element models can be rather complex, 
is often poorly mastered and might produce unexpected or misunderstood 
results.

(9)	 This creation and its computation can be time-consuming too and can slow 
down the design flow considerably, hinder the user’s creativity and discour-
age important cross checks:

“It is usual that the modelling takes so much time and effort that little is 
left for verification and validation of results, alternative designs, writing reports 
and documentation, backups and reviews by other analysts.” (Rodríguez·2010)

(10)	Analysts might not devote their energy to the right place since they may be 
tempted to look for a neat model rather than an efficient mode of construction:

“Analyst can become so involved in FEA [Finite Element Analysis] 
that the link between the real structure and the model may be forgotten.” 
(Rodríguez·2010)
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(11)	Analysts are required to have a precise idea of how they will conduct the 
modelling beforehand, otherwise they would be forced to start again due to 
unexpected discoveries:

“The geometry should be defined explicitly and clearly: it is absolutely 
impossible to calculate anything without a previous design. [...] On the other 
hand, oversimplification can leave out critical load paths.” (Rodríguez·2010)

(12)	Last but not least, tools of this kind offer very few opportunities to influ-
ence one particular structural behaviour over another. If they do, opportuni-
ties consist of detours that might have a significant impact on the structure’s 
stability.

In conclusion, current computerised analysis, optimisation and form-finding 
tools do not easily allow the designer to be entirely successful in controlling 
the process of computation and the shaping of the structure.

associated risks · For most common basic projects developed in contempo-
rary offices, these drawbacks will have little detrimental impact on the struc-
ture’s quality. However, structures that require closer attention might suffer 
from weaknesses from various perspectives:

 •	safety — e.g. the structure might suffer from a lack of robustness; in the 
worst case scenarios, a misunderstanding of the structural behaviour 
might lead the designer to produce a mechanically unsafe construction

 •	the architectural project — e.g. the structure might not fit with initial 
design intentions or might not be relevant to other structural intentions

 •	the current economic situation —  e.g. structural elements might be 
over-dimensioned or superfluous; the structural system might incur 
additional costs for costly, better performing materials, maintenance, 
repair etc.

 •	new materials being used perhaps — e.g. the designed structural be-
haviour might not fit with the rheological behaviour of the material, 
manufacturing processes and methods of construction

 •	environmental concerns — e.g. the structure might require greater use 
of raw materials than absolutely necessary or generate more pollution

 •	any other consideration that is non-quantifiable and requires ongoing 
and direct input from the designer’s sensitivity and creativity.
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Furthermore, the impact of these dangers is aggravated by the desire to mini-
mise risk and increasingly stringent standards — e.g. those governing fire 
resistance, structural robustness and site safety.

the need for new tools� · This observation does not mean in any sense that 
contemporary computerised analysis, optimisation and form-finding tools are 
unsuitable or dangerous for structural design. Rather it means that (a) they 
play a limited, precise role in the design process and (b) it is better not to use 
them alone.

In figure 1, page 4, these tools are indeed used during only one step of the 
structural design process — step c, after the initial typologies, geometric con-
ditions and assumptions about structural behaviour have been determined 
and before their results are interpreted and reworked.

There are different ways to avoid the potential pitfalls set out above. Two 
main options emerge. The first enhances current computerised analysis, op-
timisation and form-finding tools until the drawbacks mentioned above are 
eliminated. The second improves the accomplishment of steps other than step 
c in order to consolidate the shaping process as a whole. This thesis explores 
the second option.

In contemporary practice, there is generally no tool to accompany the other 
steps —  i.e. (step a) when the very first design assumptions are made by the 
architect and the engineer, (step b) when the structural behaviour is shaped 
for the first time, (step d) when it is amended following more detailed analysis, 
and (step e) when it is discussed with other members of the design team. Apart 
from a few exceptions, designers have confidence instead in their experience 
and intuition.

The few existing tools that might be used during these steps — e.g. explora-
tory physical models and graphical hand calculations — are generally avoided 
because (1) (it is thought that) they require more time and energy than is avail-
able and/or (2) it is difficult to implement them in the usual workflow since 
they rely on means that are too exotic for the computer. 

Some might think that the current structural design situation is entirely sat-
isfactory and that the designer does not need the assistance of computers 
during the other process steps. They may be right. However, this thesis is 
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rooted in the principle that better results can always be attained and that 
the relevance and efficiency of a new tool cannot be judged before it exists or 
before it is given in-depth consideration.

These are all the motivations that stress the need for new tools specifically 
devised to assist steps a, b, d and e in figure 1, page 4.

The next sub-section seeks to identify what such tools might look like by ex-
amining strategies that have been used by renowned structural designers. In 
this respect, it will be demonstrated that some approaches even go so far as to 
render analysis tools — step c in figure 1, page 4 — unnecessary.

“There is an old saying which goes something like this: ‘An engineer 
is a man who can do for a dollar what any fool can do for two.’ Its emphasis 
on ingenuity is praiseworthy, but it has been seen too often as a justification 
for much that is cheap and nasty in engineering. It has been taken to mean 
that engineering is nothing more than the achievement of clearly specified 
technological objectives for the lowest possible cost in cash. This view has 
been reinforced for engineering students by the fact that with a few notable 
exceptions, text books entitled 'Design of Structures' are predominantly 
concerned with the techniques of computational analysis” (Holgate·1986, 
page 6)
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03	answers: exemplary 
practices

learning from the great masters�  ·  The previous sub-section urged the 
search for new tools devised to supplement computerised analysis, optimisa-
tion and form-finding tools. This sub-section highlights strategies developed 
by recognised structural engineers who have worked wonders in a context in 
which computers were not necessarily available. It is then assumed that these 
proven strategies are still relevant today and would be even more effective if 
they had the cautious benefit of a computer’s speed.

clarity, speed and interactivity for creativity and intuition · From a gen-
eral point of view, structural designers who care about quality projects seek 
to employ tools and methods that maximise the opportunity for their creativ-
ity and intuition to percolate through:

“[...] Creativity is necessary not just for issues around form, but also 
for purely technical aspects: processes, materials and static systems. This 
creativity is the difference between people who are happy to calculate and real 
engineers.” (Jürg Conzett, in Conzett/Solt·2008, page 29)

“There is no method that enables us automatically to discover the most 
adequate structural type to fit a specific problem, as it is faced by the designer. 
The achievement of the final solution is largely a matter of habit, intuition, 
imagination, common sense and personal attitude. Only the accumulation of 
experience can shorten the necessary labour or trial and error involved in the 
selection of one among the different possible alternatives.” (Eduardo Torroja, 
in Addis·1994)

Structural designers consequently prefer tools that are capable of clarity, 
speed and interactivity:

(1)	 clarity in order to understand and control the structural project, to be 
aware of every design choice and its impact
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(2)	 speed because the process must be carried out in a continuous, fluid 
and relatively fast workflow so as not to inhibit the designer’s creative 
energy

(3)	 interactive because structural designers must be able to place non-
quantifiable data — from their own experience or sudden intuition — 
onto the computation at any time.

Clarity, speed and interactivity are the valued qualities in the process. The 
techniques that favour these qualities are many and varied. The paragraphs 
below highlight four of them:

 •	prior definition of the structural behaviour
 •	design-oriented use of simplifying assumptions
 •	problem reduction guaranteeing permanent control
 •	extensive use of graphical methods and geometry.

prior definition of the structural behaviour�  ·  Defining the structural 
behaviour before analysis is about knowing what role the material will play in 
the structural system before the system is even drawn. The intention is there-
fore to set the general course of the design process from the outset in order to 
avoid messing about unproductively. How can a designer guide the conception 
of his building in a considered and appropriate manner with regards to the 
material used if the structure’s behaviour is only discovered after analysis?

This early definition is important because if the shape of the structure is de-
termined independently of the structural behaviour, the resulting behaviour 
might be too complex to understand and hence modified after analysis. This 
might lead to an inefficient and sometimes unsafe use of the material.

On the other hand, the prior definition of the structural behaviour also allows 
the designer to employ design methods that are particularly suited to the 
structure and hence simpler and more rapid.

The requirement for this technique is evident when materials have certain 
limitations of strength. For example, it was partly due to the compression-
only behaviour of stone being determined beforehand that medieval masters 
achieved efficient architectural forms in gothic cathedrals. Likewise, the ar-
chitect and engineer Eladio Dieste (1917-2000) drew efficient forms because 
he established the structural behaviour of brick walls from the outset and 
designed them taking this into account (Dieste/…·2001, Anderson·2004). A 
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similar observation may be made about traditional wood joints, the design 
of which must be preceded by considerations about the expected rheological 
behaviour of wood and its manufacture.

When materials have fewer restrictions concerning their strength, the re-
quirement for the prior definition of the structural behaviour is unfortunately 
less obvious, but just as relevant. As an illustration, Swiss engineer Robert 
Maillart (1872-1940) made exemplary use of it (Zastavni·2009). Depending on 
the context — e.g. the soil properties, the required span and the required 
width of the deck — he selected an appropriate typology for the bridge — e.g. 
a three-hinged arch bridge (as for the Salginatobel Bridge in figure 2) or a 
deck-stiffened arch bridge. Depending on the typology selected, he chose the 
most appropriate design assumptions and subsequently the most direct de-
sign method that allowed him to make as few calculations as possible. These 
efficient methods led to efficient structures.

design-oriented use of simplifying assumptions�  ·  It is still impossible 
nowadays to predict the real behaviour of structures in its full complexity. 
Hopefully this is not a big issue since the goal of the engineer is to ensure the 
safety of the structure, not to model reality as accurately as possible.

“A real structure is, in fact, supported externally in a way which is 
unknown (and unknowable) to the engineer, who nevertheless is required to 
make a design” (Heyman·2008a, page x)

figure 2 
the Salginatobel 
bridge designed 

by Robert 
Maillart, picture 

by Andrea 
Badrutt.
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In order to produce the design, engineers work with idealised representations 
that are known, understood and, above all, controllable. Consequently there 
is always a gap between the real material behaviour and its theoretical be-
haviour, whichever approach is chosen. These gaps are qualified by so called 
simplifying assumptions.

Each simplifying assumption encourages specific methods and tools and 
hence has different values of efficiency regarding the design process. Some 
suit the analysis of existing structures better, others the initial shaping of 
structures. The choice of an appropriate assumption will generally make the 
process more straightforward.

Of all the existing simplifying assumptions, those that allow the application 
of the lower-bound theorem of plasticity are probably the ones that have 
provided the most rapid methods for the initial shaping of structures. The 
explicit formulation of the lower-bound theorem has its origin in practical ex-
periments conducted during the first half of the twentieth century. These ex-
periments suggested that yielding of material involves higher inner stresses 
than those computed with elastic theory (Heyman·1996 pages 127-153). The 
lower-bound theorem, also called the safe theorem or static theorem of plastic 
theory, has been expressed as follows:

“A load calculated from an equilibrium state which satisfies the yield 
condition is a lower bound on the value of the collapse load.” (A.A. Gvozdev in 
1938, translated by Heyman·1996, page 141)

The use of this theorem is subject to two conditions: (1) the set of plastic 
hinges produced by the structure cannot cause its cinematic collapse and (2) 
the material must present perfect plastic behaviour. Other formulations of 
this theorem have since been proposed to accommodate specific materials 
— see for example Heyman·1996 (page 144) or Heyman·2008a (appendix B, 
page 123) for reticular structures, Heyman·1995 for masonry structures and 
Muttoni/…·1997 (page 9) for stress fields in reinforced concrete.

This theorem represents an outstanding design tool (Zastavni·2008a, page 54) 
since it does not require the designer to find the actual state of stresses that 
will occur in the structure. The identification of one statically admissible 
stress field is sufficient to guarantee the stability of the structure, regardless 
of the real behaviour of the structure (Frey·2000). The entire dimensioning of 
the structure may therefore be based on a single adequate stress field.
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This principle had already been widely employed intuitively before its scien-
tific statement — examples can be found in Ochsendorf·2005. A remarkable 
working method is the one used by Robert Maillart for the design of the Salgi-
natobel Bridge. By assuming concrete’s plastic behaviour, Maillart designed 
the three-hinged arch bridge by graphically computing a single line of thrust 
passing through each hinge in equilibrium with the dead load of each segment 
of the discretised arch. By multiplying the load of the thrust by the eccentric-
ity between this line of thrust and the line of centroids of the arch, Maillart 
directly computed the bending moments in the arch (figure 3). This single 
graphical result allowed him to modify the geometries of the arch efficiently 
in order to minimise its bending moments repeatedly.

problem reduction guaranteeing permanent control�  · A third technique 
of a design process promoting clarity, speed and interactivity is to reduce the 
design issue to a small number of critical parameters (or equations, variables 
or relationships) that alone control all the major questions of the design issue. 
This is achieved by making a set of parameters secondary and dependent on 
the controlling set of parameters, such that the complexity of these dependen-
cies can be provisionally forgotten by the designer. This allows a close focus 
on a minimum set of data while handling the entire issue as a whole.

Applications of this technique have been accomplished in many different 
forms. The following paragraphs illustrate five of them.

figure 3 
description of 

half of the 
Salginatobel 

bridge designed 
by Robert 

Maillart; the line 
of thrust is the 

continuous curve 
and the line of 

centroids consists 
of two discon-

nected curves.
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(1)	 Antoni Gaudi (1852·1926) used hanging models to control both the shape 
of the buildings and their stability under dead loads (Krasny·2008 page 58, 
Huerta·2006a); in the design of vaults all that was required was to add and 
remove weights and ropes

(2)	 Robert Maillart (1872·1940) drew parabolas in order to correct repeatedly 
the apparently free-form bottom and upper chords of the Salginatobel Bridge 
(figure 4; the construction method of parabolas he used permitted him to 
handle the entire curve easily by moving just two crossing points and rotating 
the directrix — the crossing-points and the orientation of the directrix being 
the parameters  (Fivet/Zastavni·2012)

(3)	 Felix Candela (1910·1997) synthesised the entire structural (and, to some 
extent, architectural) problem into a single equation describing hyperbolic pa-
raboloids; the alteration of this single equation enabled him to accommodate 
the general shape and its boundary conditions freely (Faber/Candela·1963, 
Garlock/…·2008);

figure 4 
reconstruction of 
some parabolas 
that Robert 
Maillart drew on 
the first 
working-draw-
ings for the 
Salginatobel 
bridge; the 
bundle of lines 
depict the 
construction 
process of a 
parabola from 
two crossing-
points and the 
orientation of a 
directrix.
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(4)	 The algorithms of contemporary engineers dealing with optimisation is-
sues also formulate the structural problem in a way that reduces to a mini-
mum the number of parameters handled, as well as the number of different 
types of parameters. For example, Mutsuro Sasaki only altered the local alti-
tude — i.e. the z coordinate — of each vertex of a triangulated mesh when he 
minimised the strain energy of the free-curved surface concrete shell for the 
crematorium in Gifu (Sasaki·2007, page 81);

(5)	 Laurent Ney, like others, had a similar concern around the design of the 
steel bowstring arch of the Nijmegen City Bridge (Ney/…·2010a, page 166): he 
worked on the topology of the arch with the aim of minimising the number of 
geometric parameters describing it, which then greatly simplified the control 
of the variation of these parameters for the weight minimisation process.

In summary, all these examples support the fact that the use of as few param-
eters as possible — provided that they are crucial to the global definition of 
the structure — is a guarantee of better control of the design process.

extensive use of graphical methods and geometry� · The fourth technique 
highlighted concerns the extensive use of sketches, drawings, graphical 
methods and geometry. Although it appears that these are being used less 
and less in contemporary practices, they are still an important technique in 
the designer's toolbox:

“[Graphical methods] contribute to intuitive understanding and 
visualization of behavior. They greatly facilitate all statical operations. In early 
stages of design, they have significant advantages over numerical methods in 
their simplicity, speed, transparency, and ability to generate efficient forms for 
cables, arches, trusses, and other structural devices. They are also the source 
of most of the mathematical expressions used in structural analysis, and give 
the same answers.” (Allen·2009, page xii)

Indeed, graphics and graphical methods confer the following benefits on the 
design process:

(1)	 sketches provide speed and synthesis
(2)	 drawings are the medium of a comprehensive memory
(3)	 graphics and geometry demonstrate visual expressiveness
(4)	 graphical methods act as open-box processing
(5)	 geometric reasoning allows the problem to be simplified
(6)	 drawings constitute a common ground for engineers and architects.
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These six points are developed briefly as follows:

(1)	 Hand sketches provide speed and synthesis. This is a well-known fact for 
architects: the pen, like other precious tools, can act as an extension of the 
mind on paper (Clark/Chalmers·1998). First, sketches enable the rapid repre-
sentation of an idea in the best possible way — e.g. regardless of whether it 
is abstract or concrete — since the only rules it has to obey are those specifi-
cally set by the mind with regard to the purpose at hand. They can then also 
be altered rapidly by the addition and removal of matter, compared rapidly 
with other proposals and then forgotten rapidly too.

“I don't just like sketching because of nostalgia about the hand. It is really 
about thinking fast, because you can test all sorts of complex relations very, 
very quickly. It is just a way […] to think.” (Elizabeth Diller in Krasny·2008, 
page 45) 

(2)	 Drawings —  i.e. the precise description of a projected position  — also 
provide an excellent means of keeping track of the design process and its 
product, at any scale and from any viewpoint. Drawings act as an additional 
memory for the designer, a memory that backs up every detail as well as every 
intention:

“Drawing is the engineer's language. It translates his thinking with 
a clarity that ordinary language would not have. The engineer first draws 
everything that he means to have executed. He fixes and therefore keeps the 
form sensitive to his ideas, the results of his calculations, all the way to useful 
traces of his trials and errors. He does not wait either for his calculations to 
be finished before starting to translate them into graphics.” (Favaro·1879, 
page xviii)

As opposed to the graphical means mentioned previously, the following ones 
may support pure engineering calculations:

(3)	 This is the case for graphics and geometry: they are able to express com-
putations entirely visually. This very convenient feature for the designer 
can be illustrated with the following observation: it is far easier — i.e. faster 
and more intuitive  — to characterise the particular properties of a curve 
— e.g. minimum and maximum points, inflexion points, radii of curvature — if 
the curve is drawn in a Cartesian coordinate system rather than described by 
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an algebraic equation. This is linked to the fact that graphics offer a stronger 
focus on topological properties than algebra. Antonio Favaro spelled all this 
out very well:

“Analysis excels, it is true, in arranging problems in equations, in 
disengaging, by a series of transformations, the combinations of symbols, 
which give the key to the question propounded, but its very perfection as a 
means of research neutralises its efficacy as a means of intellectual culture. 
Leading to the result by a procedure in some manner mechanical, the mind 
loses sight of the realities upon which it operates, it advances along a labyrinth 
of formulae, intent only that it lose not the conducting thread, obliged to be 
more confiding as the darkness becomes more profound, and nearly always 
unconscious of the path along which it has travelled. On the other hand, […] 
it is not rare that the results to which analysis conducts, remain concealed 
under the generality of algebraic symbols, so far as to appear even with less 
clearness in the solution than in the enunciation.			    
Geometry proceeds wholly otherwise; she presents the propositions under a 
sensible form, she removes the train of auxiliaries which hide them from our 
view, she puts in evidence the transformations which each problem undergoes, 
and when the solution appears we now perceive the truth under a form the 
most simple and the most attractive.”				     
(Favaro·1879, preface page i, english translation by Chalmers·1881, page viii)

(4)	 Graphical methods, and more specifically graphic statics, are also note-
worthy for their ability to perform open-box processing. It means that data is 
not hidden inside intermediate cryptic algorithms. The geometric construc-
tion is simultaneously the resolution process and its own result. Hence, the 
understanding of its result is equivalent to the understanding of its resolution 
process. Moreover, successive geometric operations form a whole that is im-
possible to untangle. Tiny details and large trends have equal weight in the 
drawing. Consequently, graphics essentially take care of accuracy: no one has 
to deal with the number of digits after the decimal point in order to check the 
observable intersection of two lines:

“[Graphic statics] gives everyone simple and quick processes, 
substituting the clever and laborious calculations which our engineers do all the 
time. These processes also have the valuable advantage of still containing the 
principle of verification, in such a way that they can, like all graphic methods, 
leave some doubt about a decimal fraction which does not much matter in this 
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kind of application. On the other hand they are free of opportunities for the 
kind of stupid mistake found in long arithmetical operations and algebraical 
formulae where nothing speaks to the eyes.” (Lévy·1874, page xvi)

This open-box processing is reflected in the way Robert Maillart used graphic 
statics to compute the line of thrust shown in figure 3. After segmenting half 
the bridge and transposing its weight onto a straight line (figure 5, vertical 
line between the two bundles of rays), Maillart drew a first funicular polygon, 
the junction of the ends of which provide the position of the half-bridge’s axis of 
gravity (figure 5, bottom curve and left bundle of rays). From that, he deduced 
the orientation of the thrusts passing through the hinge at the abutment. He 
then drew a second funicular polygon passing through that hinge and the one 
at the crown (figure 5, top curve and right bundle of rays). This last funicu-
lar polygon corresponds to the line of thrusts of the bridge under dead load. 
Comparing this line of thrust with the line of centroids (figure 3, page 21), 
he obtained the bending moment distribution and was able to make informed 
changes to the geometry and thus minimise bending moments.

Robert Maillart repeated this process three times. Once this had been done, 
he (or one of his partners) checked the geometry more precisely, but practi-
cally no changes had to be made and the bridge has been built as it is. In 
conclusion, he used graphic statics as a pre-design tool, but this tool was so 

figure 5 
description of 
half of the 
Salginatobel 
bridge designed 
by Robert 
Maillart; bottom 
curve and left 
bundle of rays 
present the 
funicular polyline 
providing the 
position of the 
half bridge's axis 
of gravity; top 
curve and right 
bundle of rays 
construct the line 
of thrust of the 
bridge.
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powerful that it made further analyses completely superfluous. More details 
about Robert Maillart’s drawing methods for the Salginatobel Bridge can be 
found in Fivet/Zastavni·2012.

(5)	 Geometric reasoning can also greatly simplify the problem. Not only does 
the geometric depiction of the problem allow the identification and execution 
of geometric shortcuts that might shorten the resolution process consider-
ably, but efficient geometric syntheses can also simplify the definition of a 
structure while increasing and refining its essential capabilities:

“Geometry helps manage the multitude of forms and helps us to find 
new forms. It offers us the opportunity to take hold of a complex problem 
and then to work on it. Geometry is the basis of parametric design, in which 
a simple geometric model is adjusted countless times. The geometric study 
is an eternal promise of a better-adapted object, a potential system which 
repeatedly culminates in a different optimum solution. In this way, simple 
geometry can underlie complex and inconceivable forms, such like as a DNA 
helix.” (Laurent Ney, in Ney/…·2010a, page 39)

(6)	 Finally, graphics provide common ground for engineers and architects:

“The qualitative evaluation of the forces using an inductive process 
—  for example, graphic statics  — does not require exact calculation, just 
practice and experience. This method is understandable to architects too, and 
offers a good basis for working together. […] A common language needs to 
be learned — an indispensable prerequisite for a close dialogue between the 
architect and the engineer. […] This would be a culture in which the dialogue 
between architects and structural engineers can begin to grow — a culture 
that would enable the development of designs in which structural and formal 
needs merge.” (Joseph Schwartz in Flury/…·2012)

As a result of all these examples, it can be argued that graphics and geom-
etry offer many benefits as regards speed, synthesis, comprehensive memory, 
visual expressiveness and open-box processing.

from exemplary practices to the definition of a new tool� · This sub-sec-
tion has shed light on four crucial design techniques that give the structural 
designer all the clarity, speed and interactivity needed to exercise creativity 
and intuition at their best:

 •	prior definition of the structural behaviour
 •	design-oriented use of simplifying assumptions
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 •	problem reduction guaranteeing permanent control
 •	extensive use of graphical methods and geometry.

The following sub-section uses this inventory to define the main features of 
the tool being studied in this thesis. Some identified techniques will be imple-
mented by the tool directly; others provide a more global context in which the 
tool is expected to be used.
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04	proposal: a tool 
to accompany the 
construction of static 
equilibriums
defining a new tool� · This sub-section outlines a tool whose theoretical foun-
dations will be developed further in this thesis. It starts with a paragraph pre-
senting the expected purposes of the tool. The next three paragraphs explain 
why the tool uses strut-and-tie models as a general structural abstraction and 
summarises how this model will be handled by graphic statics and interactive 
geometry. Two original concepts lie at the heart of the tool’s main benefits: 
graphical regions defining design freedoms and operations altering equilib-
rium states. Introductory descriptions of these concepts are set out in the 
final two paragraphs.

general purposes� · This thesis theorises a tool aimed at accompanying the 
definition of structural behaviour. More specifically, it would give the struc-
tural designer an opportunity to draw and modify statically equilibrated 
force paths interactively. The tool focuses on statically equilibrated force 
paths because they are the most elementary, yet most crucial reduction of the 
behaviour of almost every structure. Force paths are also directly linked to 
structural shape and its efficiency as regards stiffness.

“What, then, do engineers see when they imagine or look at a structure ? 
Broadly, they see patterns of loads which the structure must withstand; and 
they see load paths which conduct these loads through the structure to the 
foundations and the earth. The idea of the load path is very powerful, but it is 
perhaps a more nebulous concept than non-engineers might imagine. Sketches 
of load paths usually show lines and arrows, yet nothing actually flows.” 
(Addis·1994)
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This tool is mainly intended for early design stages — i.e. before any use of 
analysis tools (figure 1, page 4, step b)  — but it is also suitable for han-
dling the results of previous analysis (figure 1, step d), being a medium of 
choice between the architect and the engineer (figure 1, step a and e), or per-
forming certain types of analyses and optimisations (figure 1, step c).

Since this tool would be for preliminary structural explorations, it must be 
simple to use and so on purpose has limited capabilities: only static equilibri-
ums are managed; one model suits one load case (although this load case can 
be modified at any time and multiple models can be superimposed); and no 
kind of deformation — including buckling, seismic responses etc. — is taken 
into account, as least in a direct form. The objective is to offer a complement 
to classic analysis tools, not to replace them.

Exemplary practices highlighted in the previous sub-section suggest that this 
tool’s main characteristic should be to give the user full control over the de-
sign process. Beyond the fact that each structural choice should be dealt with 
by the user rather than by the tool, it implies that:

 •	the user must remain in control of the interpretation given to the mod-
el; the computerised model should be as abstract as possible; the struc-
tural reality that it represents must belong to the user

 •	the user must remain in control of the chronology being pursued; the 
tool should not, as far as possible, impose a particular procedure or 
particular inputs or outputs

 •	the user must remain in control of the hierarchy he gives to design deci-
sions as well as to structural parts

 •	the user must be able to interact with the model very quickly, to modify 
it as freely as possible

 •	the user must be informed of the consequences of his decisions as ef-
fectively as possible; this is the tool’s main role.

The success of these objectives would ensure that the tool feeds the structural 
designer’s creativity in an effective way and gives him more control over the 
structure being shaped, while avoiding being forced to make decisions too 
early. The following paragraphs explain how the tool would fulfil these objec-
tives and how exemplary practices highlighted in sub-section 03 (“answers: 
exemplary practices”, page 17) guide its definition.
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the strut-and-tie model as high-level structural abstraction�  · First it is 
proposed that only strut-and-tie models are used. A strut-and-tie network is 
the skeleton of a structure’s behaviour. It is a graphical depiction of the force 
path inside the structure. And this force path only considers pin-jointed axial 
stresses — i.e. free of bending moments. This model is composed of just four 
elements: pin joints, point forces applied on nodes, compression rods —  i.e. 
struts — and traction rods — i.e. ties — linking pin joints together. This very 
small number of element types offers the great advantage that it is an abstrac-
tion of many precisely defined elements. For example:

 •	forces can be used as representations of applied loads as well as of re-
actions from the ground, with inner forces describing a load path inside 
the structure or pretension loads

 •	pin joints can be used as representations of actual structural hinges but 
equally they can describe eccentricities of forces acting on the fixed 
end of a beam

 •	struts and ties can be used as representations of axial loads in linear 
structural members, but their eccentricities with the line of centroids 
of a given beam also provide the bending moments found in this beam. 

An example of a strut-and-tie network is given in figure 6 and two possible 
structural applications of this network are shown in figure 7. The strut-and-
tie network is meant to be the abstraction of the real structure, while the 
actual role of each structural part is only in the designer’s head. As a conse-
quence there will always be a certain gap between the actual structure and 
its representation. This gap allows the designer to define and modify the role 
of each structural part freely at the precise moment deemed necessary — nei-
ther early nor late. Hence, this gap reduces the number of initial inputs re-
quired from the user and in a way unlocks the chronology inherent in certain 
formatted design processes. As long as the structure can be approached by 
discretised strut-and-tie networks, the way the design process is conducted 
by the user is therefore not predetermined by the tool.

A strut-and-tie model can be used as a generic abstraction for many types of 
structures: reticular systems, regardless of whether they are isostatic, inde-
terminate, pre-stressed, self-stressed — e.g. tensegrities — or mechanisms 
— i.e. linkages; depictions of bending moments; lines of thrusts in compres-
sion-only structures; and load paths in continuous plastic materials, thanks to 
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the safe theorem of plastic theory — see paragraph entitled “design-oriented 
use of simplifying assumptions” (page  19),  e.g. reinforced concrete struc-
tures.

This covers a large range of materials — e.g. steel (beams and cables), wood, 
(reinforced) concrete, glass, ceramics and earth — and a large range of appli-
cations — e.g. roof structures, frameworks, beams, bridges, masonry works, 
and shear walls.

The major limitation of strut-and-tie models is their inability to address non-
discrete representations of force paths. Each model must therefore consist 
of a finite number of elements. For example, each distributed load must be 
discretised into a finite number of point forces.

graphic statics�  ·  A decision is then taken to represent this strut-and-tie 
model in a diagram called a “form diagram”, along with another diagram 
called a “force diagram”. The role of the force diagram is to express the static 
equilibrium of the form diagram graphically. For example, the force diagram 
associated with the strut-and-tie network in figure 6 is shown in figure 8.

figure 7 
Two possible 
structural 
applications of 
the strut-and-tie 
network shown in 
figure 6.

figure 6 
Example of a 
strut-and-tie 
network.
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Both diagrams have the same number of rods. A rod in the form diagram al-
ways has a corresponding rod in the force diagram and they both have identi-
cal orientations. Distances in the force diagram are measured in units of force 
magnitudes, e.g. Newtons or kilograms, so that the length of a force or a rod 
in the force diagram is equal to the magnitude of the corresponding force or 
rod in the form diagram.

In order for a network of struts and ties to be in static equilibrium, two con-
ditions must be ensured: (1) translational equilibrium —  i.e. the sum of all 
the forces applied on the network (including those inside the rods) must be 
zero — and (2) rotational equilibrium — i.e. the sum of the moments produced 
by all the forces applied on this network, with regard to a given point, must 
be zero. The first condition here is observed simply when, placed end-to-end, 
the representation of the forces (including those acting inside rods) applied on 
this network forms a closed polygon in the force diagram (figure 9). Since this 
first condition is observed for any sub-network, including those containing 
only one point, the second condition will always be satisfied.

A last rule linking form and force diagrams is finally applied in order to ease 
the recognition of corresponding force polygons and to guarantee systemati-
cally that no rod or force is represented twice in the force diagram. This rule 
establishes that the forces applied to any sub-network of struts and ties must 
be read in the form diagram on a cycle (a) that is always read either clockwise 
or anti-clockwise, and (b) that is identical to the order described by the cor-
responding closed polygon in the force diagram (figure 9). 

Some properties of form and force diagrams are easier to explain if consid-
ered in the light of projective geometry — i.e. geometry in which two parallels 
always intersect at a point at infinity. For example, if point p* in figure 8 is 
placed at infinity, the rays it joins would be parallel, meaning that the fu-
nicular polyline supporting the loads would become a straight rod of infinite 

figure 8 
Force diagram 

associated with 
the strut-and-tie 

network shown in 
figure 6.



34 · introduction 

magnitude. The choice is made here to focus on Euclidean geometry instead, 
since (1) this is the geometry with which non-mathematicians have the great-
est affinity and (2) infinite magnitudes are never attainable in real life.

The second section of this thesis (“geometric axiomatisation of graphic 
statics”, page 55) will provide a rigorous geometric description of the rules 
linking the form diagram and the force diagram. These rules can also be sum-
marised with the successive alterations shown in figure 10. Starting from a 
strut-and-tie network in static equilibrium, the static equilibrium of the four 
nodes of this form diagram is represented graphically in the first instance by 
four closed polygons. Forces applied on each node are read clockwise in the 
form diagram and are represented according to a same order in each closed 
polygon. Because two forces related to a unique rod must have equal orienta-
tion and magnitude, the next step assembles the four closed polygons side by 
side, matching the pair of forces related to the same rod. Finally, the last step 
performs a graphical simplification: each pair of forces related to the same 
rod is replaced by the representation of the rod. The resulting figure is the 

figure 9 
three forces that 
are read 
clockwise in the 
form diagram are 
read in the same 
order in the force 
diagram.

figure 10 
Successive 
equivalences 
between the form 
diagram and the 
force diagram.
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force diagram of the initial strut-and-tie network. These successive altera-
tions can also be performed starting from the force diagram and building the 
form diagram.

When forces and rods superpose in the force diagram, each is drawn distinc-
tively so that it is always visually expressed that “Nothing is lost, nothing is 
created, everything is transformed” (Antoine Lavoisier). This way of describ-
ing diagrams is not widespread in the literature. Authors generally tend to 
omit forces and rods when they are superimposed in the force diagram.

Form and force diagrams are necessary and adequate containers of graphic 
statics. Graphic statics include all the methods of structural computations 
that make use of form and force diagrams. The tool being sought makes use 
of graphic statics because it has all the benefits that have been highlighted 
in the paragraph entitled “extensive use of graphical methods and geometry” 
(page 23) of sub-section 03 (“answers: exemplary practices”, page 17).

While, on the one hand, the form diagram depicts the geometry of the strut-
and-tie network and, on the other, the force diagram expresses its inner 
stresses, the simultaneous understanding of both diagrams reveals the com-
monly hidden properties that govern the inner distribution of forces —  i.e. 
their reciprocal influence and their respective role concerning static equi-
librium.

interactive geometry� · Graphic statics is here performed using a computer. 
This combination should be a good match both for the user and the computer. 
On the one hand, computerised graphic statics enhances the precision of the 
drawing, offers more visual expressiveness to the user, allows him to auto-
mate elementary constructions of diagrams and enables him to parameter-
ise diagrams and handle them dynamically. On the other hand, computerised 
graphic statics simplifies the computational implementation and increases 
the speed of algorithmic resolutions thanks to geometric reasoning.

In order to take account of comments referred in sub-section 03 (“answers: 
exemplary practices”, page 17), attention should be given to the interactiv-
ity of the tool so that the designer’s speed of reflexion is not slowed down and 
his creativity is not hampered.

In order to benefit fully from the intrinsic geometric simplifications provid-
ed by graphic statics, both diagrams are expressed in an entirely geometric 
framework. This means that all the variables are defined geometrically — as 
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positions of points — and controlled using geometric tools. It implies that the 
set of design freedoms is homogeneous, that their quantity and quality are 
well known and, hence, that they are mastered more effectively.

The proposal consequently employs drafting analogies such as straightedges 
and compasses. However, instead of constraining points on intersections of 
lines (imposed by straightedges) and circles (imposed by compasses), it uses 
Boolean combinations —  i.e. unions, intersections and negations — of half-
planes (figure 11, left), disc interiors (figure 11, right) and disc exteriors. This 
feature removes all the limitations of classical drafting, except that it has 
to remain discrete. An extensive review will be conducted in sub-section 17 
(“examples of graphical computations”, page 165).

The dynamic handling of these geometric variables is obtained by making 
points parameters of others. A current serious drawback of classical param-
eterisation is that the alteration of the hierarchy of dependences between 
variables cannot be performed as the process goes along and requires the 
complete reconstruction of the parameterisation. Thanks to the entirely geo-
metric nature of the framework, this limitation can largely be overcome — see 
sub-section 18 (“switching constraint dependencies”, page 195).

graphical regions of design freedoms�  ·  As a complementary concept to 
“geometrically computerised graphic statics” mentioned previously, each var-
iable — i.e. each point — is constrained within a graphical region that is con-
structed so as to be the precise depiction of all the positions it can take and, 
hence, of all the design freedoms it symbolises.

This concept was originally introduced with the following successive consid-
erations. Given a set of loads that have to be supported by a simply connected 
strut-and-tie network — i.e. a network in which each node joins two rods —, 
the geometry of the resulting funicular polyline is defined by the relative posi-
tion of a point called the pole:

figure 11 
(left) point p0 is 
constrained on 
the left of or 
along the line 
passing through 
p1 according to 
the direction 
going from p2 to 
p3; (right) point p0 
is constrained on 
a distance from 
p1 that is smaller 
than or equal to 
the distance 
between p2 and 
p3.
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(1)	 if the funicular polyline has to pass through only one given point — pa — 
in the form diagram, the pole can be moved anywhere in the force diagram 
(figure 12); to move the pole rotates the rays in the force diagram and updates 
the geometry of the funicular polyline in the form diagram

(2)	 if the funicular polyline has to pass through two given points — pa and 
pb — in the space diagram, the set of available positions of the pole is limited 
to a line whose fixed position and orientation is a function of the resultant of 
the given loads and of the two points pa and pb (figure 13 and figure 14); this 
property can be explained in figure 15 — the reaction force of the funicular 
polyline through pa (respectively pb) is divided into two components; the first 
one is directed towards pb (respectively pa) the other one is parallel to the 
resultant of the applied loads; because the funicular polyline is in equilib-
rium, the first components must be cancelled out; the magnitudes of the other 
two components are found by expressing their rotational equilibrium with 
the resultant, which depends on the position of this resultant; whatever the 
pole of the funicular polyline is, the magnitude of these two components must 
remain constant since the funicular polyline always passes through pa and pb 
and since the resultant remains equivalent; their representation in the force 
diagram consequently constrains the positions of the pole on a single line

(3)	 if the funicular polyline has to pass through two given points — pa and pb — 
and between two other points — pc and pd — in the space diagram, the set of 
available positions of the pole is limited to a line segment (figure 16); the ends 
of the segment are found using the intermediary construction of figure 17 
— each segment of a funicular polyline passing through two points (such as pa 
and pb) has the property of pivoting around a constant point — p* — positioned 
on the line passing through points pa and pb (Mayor·1909, pages 14 and 16; 
Pirard·1950, pages 54 to 56); the two extreme orientations of the second rod 
are then those passing through p* and pc and through p* and pd; once repro-
duced in the force diagram around px, these orientations delimit the extreme 
positions of the pole — py and pz

(4)	 if the funicular polyline has to pass through three given points — pa, pb 
and pc — in the space diagram, the set of available positions of the pole is 
limited to a single position, which is precisely the intersection of two lines; 
for instance one given by the condition ensuring that the funicular polyline 
passes through pa and pb, and the other given by the condition ensuring that 
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figure 12 
the grey area in 
the force diagram 
shows the 
possible positions 
of the pole if the 
funicular polyline 
has to pass 
through the point 
pa.

figure 13 
the grey line in 
the force diagram 
shows the 
possible positions 
of the pole if the 
funicular polyline 
has to pass 
through the 
points pa and pb.

figure 14 
the same 
construction as in 
figure 13 for 
another position 
of the pole.

figure 15 
explanation of the 
properties 
leading to the 
construction of 
the line of the 
poles presented 
in figure 13 
and figure 14.
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figure 16 
the grey segment 

shows the 
possible positions 

of the pole if the 
funicular polyline 

has to pass 
through pa and pb 

and between pc 
and pd.

figure 17 
explanation of the 

properties 
leading to the 

construction of 
the line of the 

pole presented in 
figure 16.

figure 18 
the pole in the 
force diagram 

must stand on its 
position if the 

funicular polyline 
has to pass 

through the 
points pa, pb and 

pc.

figure 19 
the grey area in 

the force diagram 
shows the 

possible positions 
of the pole if the 

funicular polyline 
has to pass 

through the 
points pa and 

between pb and 
pc.
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the funicular polyline passes through pa and pc (figure 18). As a result, the 
pole will also pass through the line given by the condition ensuring that the 
funicular polyline passes through pb and pc

(5)	 if the funicular polyline has to pass through a given point —  pa  — and 
between two other points — pb and pc — in the space diagram, the set of avail-
able positions of the pole (figure 19) is limited to an area that can be deduced 
using the same logic as in figure 15

(6)	 if the funicular polyline has to pass through a given point — pa — and has 
to stay inside a certain shape given by new points, the set of available posi-
tions of the pole is harder to find, but is nevertheless still computable and rep-
resentable in a graphical region (figure 20). The same construction in which 
the pole is moved to other positions is shown in figure 21 and figure 22.

In conclusion, this pole enjoys different freedoms regarding the conditions 
imposed on the funicular polyline, and these freedoms are synthesised inside 
a graphical region. Furthermore, not only does a condition on the funicular 
polyline constrain the pole, but it also constrains every other point whose 
position is used to define the construction. Graphical domains of solutions 
exist for any point and for any strut-and-tie network. For example, figure 23 
shows the region in which point p* (defining the upper hole) must stay in order 
to ensure that the funicular polyline does not cross the hole that point p* de-
fines. This feature is particularly interesting because it removes the common 
distinction between initial data and results.

Geometric constraints may be imposed manually in the form diagram to limit 
the spatial extent of the structure or in the force diagram to limit the magni-
tude or orientation of the forces. Other geometric constraints are created al-
gorithmically (using more general methods than those presented in figure 15 
and figure 17) in order to propagate those applied manually. If propagation is 
automated for every constraint, it is then ascertained that every point has a 
non-empty region in which it can stay. In other words, it means that there is 
at least one solution to the geometric construction. This subject is a matter 
of geometric solvers and will be further developed in the third section of this 
thesis (“dynamic handling of geometric constraints”, page 135).

Thanks to the force diagram, mainly all of the needed quantifiable param-
eters are expressed by positions of points and are modified by dragging them. 
Each graphical domain provides all the solutions that a certain parameter can 
have, given the other applied geometric boundaries.
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figure 20 
the grey area in 

the force diagram 
shows the 

possible positions 
of the pole if the 

funicular polyline 
has to stay 
outside the 

shapes drawn in 
the form 
diagram.

figure 21 
reproduction of 

the construction 
in figure 20 in 
which the pole 

has been moved 
onto a particular 

position.

figure 22 
reproduction of 

the construction 
in figure 20 in 
which the pole 

has been moved 
onto another 

particular 
position.
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operations of equilibrium� · The final new concept makes use of geometric 
operations to assemble different strut-and-tie networks in static equilibrium 
into a new network in static equilibrium. This concept can be understood by 
constructing a reticular network of struts and ties on the basis of two funicu-
lar polylines.

Starting from the previous funicular polyline (figure 24), the user wants, for 
example, to retain the geometry of the compression rods but, for one reason 
or another, has to decrease the magnitudes of these compression rods to a 
certain value given by the distance between points pa and pb. One way of 

figure 24 
initial situation: 
forces are 
supported by a 
funicular polyline 
but the 
magnitude of the 
compression rods 
are too high.

figure 25 
new forces are 
added in order to 
reduce the 
magnitude of the 
compression rods 
to the value given 
by the distance 
between points pa 
and pb.

figure 23 
reproduction of 
the construction 
in figure 20 in 
which the region 
in which point p* 
must stay is 
highlighted.
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figure 26 
a new strut-and-

tie network is 
created to bear 

the new 
temporary forces 

created in 
figure 25.

figure 27 
diagrams in 

figure 25 and 
figure 26 are 
combined in 

order to form a 
new strut-and-tie 

network.

figure 28 
opposite forces of 
equal magnitudes 

are transformed 
in rods and 

reaction forces 
are summed up.

figure 29 
points in the 

force diagram are 
further 

constrained on a 
circle centred in 

p3 so that tension 
rods have 
constant 

magnitudes.
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doing this, as suggested by the force diagram, is to create new intermedi-
ary forces on each loaded point (figure 25). But these new forces cannot be 
directly supported by the ground, they must themselves be directed to the 
supports by another network of struts and ties. A possible funicular polyline 
suited to bearing these temporary forces is illustrated in figure 26: it is made 
of tension rods and passes through the same supports. The sub-networks in 
figure 25 and figure 26 are then superimposed in figure 27. The displacement 
of the pole may be required for that reason. Since each pair of temporary 
forces are aligned in the form diagram, opposed and of equal magnitude in 
the force diagram, they act just like a rod. The user can then decide to trans-
form each pair of forces into a new compression rod (figure 28). In addition, 
the two forces applied on each support can be summed up easily using the 
force diagram (same figure).

As a result, figure 28 shows a new strut-and-tie network that has been built 
from two separate funicular polylines. This new network can now be handled 
just like any other. For instance, the user may want to keep the tension rods 
constant. This can be done by constraining further the points of the force 
diagram that define the orientation and amplitude of these rods (figure 29). 
For example, point p2 (that was already constrained along a line parallel to 
p4p5 and passing through p1) would now also be constrained on a circle cen-
tred in p3 whose radius is equal to p0p3, the consequence being to update the 
orientation of the rods p4p6, p5p7 and p6p7. The application of the constraints 
is controlled by the user; the update of the diagrams is controlled by the tool.

The fourth section of this thesis (“production rules for computer-aided graphic 
statics”, page 265) will show that any operation used to build a strut-and-tie 
network in static equilibrium can be defined by a procedure that executes 
sequences of native operations.

The process begins with diagrams that have already been equilibrated and 
the operations available to the user automatically modify both diagrams us-
ing only geometric rules that never put the static equilibrium of the structure 
at risk. Each operation takes an equilibrated network as input and produces 
a new equilibrated network. The check for equilibrium is no longer the de-
signer’s duty; his job is just to focus on how forces flow through the structure.
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05	precedents

The tool introduced in the previous sub-section does not have a full equiva-
lent for comparison purposes. However parts of the concepts and theories it 
uses have precedents that can be clearly identified. It includes strut-and-tie 
models and their use with computers, geometric constructions and their use 
with computers, and graphic statics and its use by and with computers. The 
following paragraphs provide a recap of these precedents and highlight how 
the proposed tool exceeds them.

strut-and-tie networks� · The explicit use of strut-and-tie networks goes back 
to the nineteenth century for the structural analysis of pin-jointed trusses 
— e.g. wood and steel frameworks — and suspension bridges (Charlton·2002). 
Since then, it has been shown that strut-and-tie analogies are also appropriate 
for the study of structures that present a plastic behaviour (page 20) — e.g. 
for the computation of the line of thrust in masonry (Ungewitter/…·1901) or 
for the study of the reinforcement required in concrete beams (Marti·1985).

Although the magnitude of forces within strut-and-tie networks can be com-
puted very quickly by graphical means, many contemporary designers still 
compute them using algebraic trigonometry.

computerised strut-and-tie networks�  ·  The last few decades have seen 
the development of all kinds of software for building and/or analysing strut-
and-tie networks, whether as part of multi-purpose structural analysis tools 
(Autodesk/…·2008, Risa·1987), stand-alone software (Latteur·1998) or plug-
ins of geometric modellers (Piker·2010, Preisinger·2013)
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Nearly all of them either compute the inner forces from a predetermined 
shape — i.e. the stresses that are displayed are the results of geometries pre-
viously drawn — or the other way round, but they offer no opportunity for 
reversing the deductive approach as it goes along. In other words, these pro-
grams impose a design chronology.

geometric constructions�  ·  Compass-and-straightedge constructions 
(figure 30) are as old as the geometry treatises of Ancient Greece (Euclid·2008). 
This consistent body of knowledge is able to perform many kinds of geo-
metric, arithmetic and trigonometric constructions by hand (Ozanam·1691, 
Mascheroni·1797, Cousinery·1839, Reuleaux·1899 page 22 and Holme·2010 
pages 54 and 422), as far as Euclidean geometry is concerned — i.e. the con-
structions are maintained on one plane and the intersection of two parallels 
does not exist (Stillwell·2005, Holme·2010).

These constructions have the following disadvantages: they may take a long 
time to produce; they require the user to start from scratch as soon as an 
initial parameter changes; they require constant accuracy; the drawing can 
soon become illegible when numerous lines and circles become overlaid. Com-
puters remove these limitations.

In this thesis, consecutive operations of mechanical compasses and straight-
edges will be replaced by first-order logic (Schöning·2008, Rautenberg·2010, 
and Makinson·2012). This means that the geometric rules and constructions 
associated with graphic statics can be robustly expressed in rigorous and 
logical terms. As such, this approach is informed by the work of Alfred Tarski 
(Tarski·1959, Szczerba·1986, Tarski/Givant·1999 Schwabhäuser/…·2011, 
Narboux·2007) who axiomatised Euclidean geometry by means of first-order 

figure 30 
a compass and a 
double 
straightedge 
(figures from 
Penther·1749).
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logic. His concern fitted within a broader movement (Peano·1889, Hilbert·1902, 
Pieri·1908, Birkhoff·1932, Birkhoff/…·1959 and Marchisotto/…·2007) initiated 
in response to the lack of rigorous demonstrations permitted by Euclid’s origi-
nal axioms.

computerised geometric constructions�  · Two types of computerised geo-
metric constructions can be distinguished: static constructions and dynamic 
constructions. The first type is the subject of all computer-aided drafting soft-
ware. Some of them have recently developed the ability to create dynamic 
geometric objects, but these are difficult to parameterise and/or have quite 
limited functionalities.

The second type is tools specifically designed to permit parameterised ge-
ometry and its dynamic handling. The best known of these are the ones de-
veloped for educational purposes — e.g. GeoGebra (Hohenwarter/…·2002 and 
Hohenwarter/…·2012), Cinderella (Richter-Gebert/…·1998, Kortenkamp·1999, 
Richter-Gebert/…·2012 and Kortenkamp·2013) and Cabri II Plus 
(Laborde/…·2002, Laborde/…·2007). These software applications are built on 
what literature calls constraint-based geometric solvers. This large field of re-
search first appeared in the early 1980s and is still very active today. Reviews 
on this subject can be found in Dohmen·1995, Hoffmann/…·2005, Rossi/…·2006 
and Bettig/…·2011.

They usually offer little support for geometric constructions allowing multiple 
solutions, graphical inequalities, relative directions, switch of dependencies 
hierarchy, interdependencies of constraints and union and negations of con-
straints. If they allow Boolean combinations of inequalities to be drawn and 
points to be constrained on it — e.g. in Geogebra —, these inequalities must 
be defined with algebraic expressions that cannot be dependent on positions 
of movable points.

This example highlights the main difference between the approach proposed 
in this thesis and classical geometric solvers. Classical solvers analyse sys-
tems of algebraic (in)equations in order to find the solution(s). Here, solutions 
are obtained by (1) calculating the smallest distance between orthogonal pro-
jections on lines or circles, and intersections between lines and circles and 
(2) checking the membership of points inside Boolean combinations of half-
planes, insides of discs and outsides of discs.
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Another difference is that, these constraints only take positions as param-
eters, whereas other solvers deal with constraints and parameters of vari-
ous kinds (distances, angles, parallelism, tangency, proportionality etc.). This 
does not imply any restriction of application since, for instance, the size of 
an angle can still be defined by three positions and a tangency can still be 
defined by successive intersections of lines and circles.

The closest precedent to the approach proposed in this thesis seems to be that 
of Veltkamp·1995. Indeed, both approaches are logic-based and constructive 
and solve domains of solutions incrementally in graphical regions. However, 
the resemblance stops here since the primitive constraints in this thesis are 
modes of relative directions and graphical inequalities (leading to the pos-
sible formulation and handling of infinite domains of solutions).

Constructive constraint-based geometric solvers share many analogies 
with mechanical linkages (Schooten·1646, Reuleaux·1876, Kempe·1877 and 
McCarthy/…·2011). Indeed, the most used elementary linkages are nothing 
more than dynamic strut-and-tie networks. Some constructions developed in 
this thesis are direct implementations of linkages presented in Yates·1941, 
Yates·1959 and Artobolevski·1964.

hand-drawn graphic statics  ·  Methods of graphic statics are the practi-
cal developments of geometric drawings made by, inter alia, Simon Stevin 
(Stevin/Girard·1634), Pierre Varignon (Varignon·1725) and Gaspard Monge 
(Monge·1788) for assessing static equilibrium —  read Zastavni·2008a 
(pages 84 to 86) and Duhem·1905 for deeper review. 

According to William John Macquorn Rankine (Rankine·1870), Rankine him-
self was the first to publish the concept of force polygons — i.e. showing “how 
to combine in one diagram a system of lines representing the directions and 
magnitudes of all the forces acting in a given frame” — in 1856 in a synop-
sis of lectures he gave at the University of Glasgow. Indeed, the first pub-
lished diagrams can be found in Rankine·1858 (figure 31). The same year, 
Earnshaw·1858 (figure 76 plate 4) also published explicit force polygons, but 
these did not consider trusses. According to Jenkin·1869 (page 441), similar 
diagrams were used earlier by a certain draughtsman by the name of Taylor 
and, according to Bow·1873 (page 46), similar diagrams has been published 
before 1854 in a paper by Mr. C. H. Wild. But there appears to be no remaining 
publication of these.
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The first general definition was expressed in 1858 by William John Mac-
quorn Rankine in his manual of applied mechanics (Rankine·1858, entry 150 
page 139). James Clerk Maxwell gave it a geometric background, the same 
year, in his celebrated paper “On Reciprocal Figures and Diagrams of Forces” 
(Maxwell·1864). Both papers consider pure mathematical reciprocal figures 
in which forces are not represented in the form diagram (figure 32).

A couple of years later, Carl Culmann (Culmann·1866) and Luigi Cremona 
(Cremona·1868) provided the first books entirely devoted to what they called 
for the first time “graphic statics”. Although these books include several new 
practical methods, they are restricted to the use of form diagrams in which 
nodes only connect two rods —  i.e. they do not deal with trusses and other 
reticular frameworks. Interest in reciprocal figures for the practical computa-
tion of forces inside reticular frameworks was only generated subsequently in 
two papers by Maxwell·1867 and Jenkin·1869 (figure 33). 

These contributions seem to be the only published premises of graphic stat-
ics. There then followed myriad of books enhancing the range of applica-
tions of graphic statics, increasing the number of methods and simplifying 
them: Bauschinger·1871, Cremona·1872, Bow·1873, Bow·1874, Lévy·1874, 
DuBois·1875, Eddy·1878, Favaro·1879, Cremona·1885, Lévy·1886, Mohr·1886, 
Culmann/Ritter·1888, Herrmann·1892, Daubresse·1904, Fairman/…·1932, 
Pirard·1950 etc. Some of them extended graphic statics to the study of spatial 
frameworks: Rankine·1864, Daubresse·1904, Henneberg·1911, Mayor·1926, 
Foulon·1969, etc.

figure 31 
diagram of forces 

of a frame in 
Rankine·1858, 

page 143.

figure 32 
reciprocal 

diagrams by 
Maxwell·1864, 

page 253, 
figure 2.
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Other historical developments in graphic statics can be found in Jenkin·1869, 
Maxwell·1876, Chalmers·1881, Scholz·1994, Charlton·2002 (pages 56 to 66) 
and Zastavni·2008a (pages 84 to 98).

The vast majority of methods presented in this literature is essentially aimed 
at the analysis of reticular shapes already drawn. Books that use the force 
diagram as a structural shaping engine are fairly rare. Zalewski·1997 and 
Allen·2009 are perhaps the greatest counterexamples, but also the most re-
cent. Most accounts on graphic design methods should be found in practice, 
such as with Robert Maillart for instance.

The main drawback of manual graphic statics is that users build the force 
diagram out of nothing, line by line until it becomes complete and closed — i.e. 
until the structure is in equilibrium — meaning that the user is only sure of 
the correctness of his construction at the very end of the process. The process 
can soon become slow and tedious for complex structures, as was the case 
reported by Jürg Conzett for the Traversina Bridge design (Mostafavi/…·2003 
and personal communication). As for manual geometric constructions, a 
change of an initial parameter requires the entire drawing to be recomputed.

Graphic statics had its glory days between the 1870s and the 1950s. Differ-
ent factors brought about its decline, but the main one might be the great 
developments in numerical methods, encouraged by electronic calculators 
and, later, by computers. Since it was far easier for electronic engineers to 

figure 33 
uniformly loaded 
roof by 
Jenkin·1869, 
plate XIX, 
figure 8.
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design machines that produce numerical calculus than to design machines 
capable of drawing, it soon became easier for structural engineers to produce 
long and complex calculus with calculators than to do them graphically. As a 
result, graphic statics has now unfortunately been relegated to being an old-
fashioned tool solely of educational interest in schools of architecture.

However, computers are nowadays very well suited to graphical design 
— e.g. computers are powerful enough to compute real-time complex graphics 
and touch-sensitive displays remove the interface between users and their 
computed drawing like never before — which suggests that the age for com-
puter-aided graphic statics has come or, at least, that it deserves optimistic 
research.

computer-aided graphic statics  · Any research about form and force dia-
grams that has been conducted in the past decade is related to their use with 
computers. Two types must be recognised. The first builds on the simplifying 
properties of reciprocal figures to achieve purposes beyond graphic statics 
— e.g. for the form-finding of masonry vaults (Block/…·2007 and Block·2009) 
or the shaping of optimal trusses (Beghini·2013, Baker/…·2013). 

The second, closer to the purpose of this thesis, follows the objective of mak-
ing form and force diagrams dynamically modifiable, which would enable the 
interactive use of a whole host of methods which are just waiting to be re-
used. The only current implementations serve pedagogical purposes through 
didactic examples. These contributions have been made in various forms: 
ActiveStatics, developed at MIT (Greenwold·2009), is an original web-applet; 
eQUILIBRIUM, developed at ETHZ (VanMele/Block·2011, VanMele/…·2012), 
is a web-applet built on the dynamic geometry software GeoGebra; other 
implementations, as developed in Lachauer/…·2011a and Lachauer/…·2011b, 
are components of the parametric modelling software Grasshopper for Rhino 
(Khabazi·2010 and Payne/Issa·2009). 

Unfortunately, all these implementations are, for the time being, capable of 
only dynamic displacements of nodes on preassembled diagrams. In other 
words, they do not yet allow the interactive construction of graphic statics 
diagrams.

The user who wants to build custom graphic statics diagrams has to establish 
beforehand the underlying geometric parameterization of these diagrams. 
The main issue of this process — which in addition is extraneous to the origi-
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nal structural concern — is the same as if the reciprocal diagrams were to be 
built by hand: the inner geometric properties of the final force diagram are 
only known and fully understood once it is completed. This generally involves 
numerous attempts and leads to the dependence of the force diagram on the 
form diagram, rather than the opposite.

figure 34 
minimal material 
truss, snapshot of 
ActiveStatic; 
Greenwold·2009.
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06	organisation of the content

summary of the introduction� · This paragraph concludes the introductory 
section. Sub-section 01 (“fact: contemporary structural design practice”, 
page  3) has provided insight into the shaping of structures: the role of 
designers, their habits, their tools and their methods for structural design. 
Sub-section 02 (“critique: the lack of adequate tools for the initial shaping 
of structures”, page  11) has then shown that the common process that 
gives the dimensions of the structural parts following analysis of a prede-
termined shape suffers from drawbacks that cannot be overcome by current 
analysis tools. In response, sub-section 03 (“answers: exemplary practices”, 
page  17) has highlighted past structural design approaches that have pro-
duced exemplary structures in the near absence of analysis tools. Inspired 
by these approaches, sub-section 04 (“proposal: a tool to accompany the 
construction of static equilibriums”, page 29) has defined the purpose and 
main features of the tool that will be developed in the sections that follows. 
This tool is aimed at assisting the construction of form and force diagrams 
interactively and benefits from two original concepts: geometrical domains of 
solutions and equilibrium operations. Finally, sub-section 05 (“precedents”, 
page  45) looked for precedents, highlighted the theoretical fields it uses, 
placed them in a historical context and presented some of their current limi-
tations.

organisation of the following sections � · The main body of this thesis con-
sists of three sections. The first builds an axiomatic definition of immobile 
force and form diagrams and of the geometric relations they share. The sec-
ond uses this axiomatisation to develop the inner working of the tool related 
to the dynamic displacements of points within these diagrams and to the 
automated construction of geometric domains of solutions. The third section 
develops the inner rules of the tool related to the dynamic modifications of 
diagrams using equilibrium operations.
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GEOMETRIC 
AXIOMATISATION 
OF GRAPHIC 
STATICS 

This section develops a first-order axiomatisation of graphic statics. More than just a theo-
retical grounding on which the sections that follow are built, it proposes a precise vocabulary 
with its own grammar capable of characterising graphic statics diagrams in full.

Sub-section 07 (“positions of points and first-order logic”, page  57) recalls the main con-
nections of Boolean logic. The next sub-sections introduce each fundamental relationship one 
after the other, together with the axioms defining them:

 •	sub-section 08 (“relationships of proximity and laterality”, page 61) defines one met-
ric and one affine relationship to compare distances and directions

 •	sub-section 09 (“form diagram and force diagram”, page 77) differentiates the form 
diagram and the force diagram

 •	sub-section 10 (“geometrical definition of forces”, page 81) proposes an axiomatisa-
tion of the concept of force using only relationships between positions of points

With the help of these fundamental relationships, the concept of rod is defined in sub-section 
11 (“rods and other objects”, page  87). The next two sub-sections supplement the set of 
axioms in order to compel each strut-and-tie network to be in equilibrium within two recip-
rocal diagrams —  see sub-section 12 (“static equilibrium”, page  99) and sub-section 13 
(“uniform reading cycle”, page 107). Finally, a summary of all these fundamental relation-
ships and their main axioms is provided in sub-section 14 (“recapitulation”, page 133).
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07	 positions of points 
and first-order logic

relationships between positions� · Let p0, p1, p2, p3, … be a set of positions in 
the plane. Let φ0, φ1, φ2, φ3, … be a set of geometric relationships that these 
positions maintain (figure 35). A geometric relationship is either true or false 
— the law of excluded middle — and a geometric relationship can never be 
both true and false at the same time — the law of noncontradiction.

These relationships will be characterised and used with first-order logic 
(Schöning·2008, Rautenberg·2010 and Makinson·2012). The logical connec-
tives on which first-order logic is based are recalled in the following para-
graphs.

implication�  · A relationship φ0 implies a relationship φ1 when φ1 is true or 
when φ0 and φ1 are simultaneously false. It is written “φ0 ⟶ φ1”, can be read 
“if φ0 then φ1”, and is considered a relationship in itself. The truth table of this 
logical connective is as follows:

true	 ⟶ true	 is a true relationship 
false	 ⟶ true	 is a true relationship 
true	 ⟶ false	 is a false relationship 
false	 ⟶ false	 is a true relationship

figure 35 
a cloud of points.



58 · geometric axiomatisation of graphic statics 

equivalence� · Two relationships φ0 and φ1 are equivalents when φ1 implies φ0 
and φ1 implies φ0. It is written “φ0 ⟷ φ1”, can be read “φ0 if and only if φ1” and 
is considered as a relationship in itself. The equivalence of φ0 and φ1 does not 
mean that φ0 and φ1 have the same meaning, it just means that they are simul-
taneously true or false. The truth table of this logical connective is as follows:

true	 ⟷ true	 is a true relationship 
false	 ⟷ true	 is a false relationship 
true	 ⟷ false	 is a false relationship 
false	 ⟷ false	 is a true relationship

negation� · The negation of a true relationship is false and the negation of a 
false relationship is true. The negation of a relationship φ0 is written “¬φ0”, is 
considered as a relationship itself and is defined such that the two following 
relationships are always observed:

true	 ⟷ ¬false	 is a true relationship 
false	 ⟷ ¬true	 is a true relationship

conjunction�  · A logical conjunction, i.e. an intersection, synonym of “and”, 
between two relationships φ0 and φ1 is only verified when both φ0 and φ1 are 
true. This logical connective is written “φ0 ∧ φ1”, is considered as a relation-
ship in itself and is defined by the following truth table:

true	 ∧	 true	 is a true relationship 
true	 ∧	 false	 is a false relationship 
false	 ∧	 true	 is a false relationship 
false	 ∧	 false	 is a false relationship

disjunction�  · A logical conjunction,  i.e. an union, synonym of “or”, between 
two relationships φ0 and φ1 is only verified when either φ0 or φ1 is true. This 
logical connective is written “φ0 ∨ φ1”, is considered a relationship in itself and 
is defined by the following truth table:

true	 ∨	 true	 is a true relationship 
true	 ∨	 false	 is a true relationship 
false	 ∨	 true	 is a true relationship 
false	 ∨	 false	 is a false relationship

Boolean logic  · Conjunction, disjunction and negation constitute a Boolean 
algebra (Givant/Halmos·2009). This means that they are ruled so that the fol-
lowing relationships are always true, for any relationships φ0, φ1, φ2 and φ3:
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annihilation: 
	 φ0 ∧ false	 ⟷ false 
	 φ0 ∨ true	 ⟷ true

identity: 
	 φ0 ∧ true	 ⟷ φ0 
	 φ0 ∨ false	 ⟷ φ0

complementation: 
	 φ0 ∧ ¬φ0 ⟷ false 
	 φ0 ∨ ¬φ0 ⟷ true

double negation: 
	 ¬¬φ0 ⟷ φ0

idempotence: 
	 φ0 ∧ φ0 ⟷ φ0 
	 φ0 ∨ φ0 ⟷ φ0

De Morgan: 
	 ¬(φ0 ∧ φ1) ⟷ ¬φ0 ∨ ¬φ1 
	 ¬(φ0 ∨ φ1) ⟷ ¬φ0 ∧ ¬φ1

commutativity: 
	 φ0 ∧ φ1 ⟷ φ1 ∧ φ0 
	 φ0 ∨ φ1 ⟷ φ1 ∨ φ0

associativity: 
	 φ0∧(φ1∧φ2) ⟷ (φ0∧φ1)∧φ2 
	 φ0∨(φ1∨φ2) ⟷ (φ0∨φ1)∨φ2

distributivity: 
	 φ0∧(φ1∨φ2) ⟷ (φ0∧φ1)∨(φ0∧φ2) 
	 φ0∨(φ1∧φ2) ⟷ (φ0∨φ1)∧(φ0∨φ2)

equivalence between implication and conjunction or disjunction : 
	 (φ0 ∨ φ1)	 ⟷ (¬φ0 ⟶ φ1) 
				    ⟷ (¬φ1 ⟶ φ0)

	 ¬(φ0 ∧ φ1)	⟷ (φ0 ⟶ ¬φ1) 
				    ⟷ (φ1 ⟶ ¬φ0)

if/else equivalences: 
		  ( (φ0⟶φ1) ∧ (¬φ0⟶φ2) ) ⟷ ( (φ0 ∧ φ1) ∨ (¬φ0 ∧ φ2) ) 
	 ¬	 ( (φ0⟶φ1) ∧ (¬φ0⟶φ2) ) ⟷ ( (φ0 ∧ ¬ φ1) ∨ (¬φ0 ∧ ¬ φ2) )

	 ¬	 ( (φ0⟶φ1) ∧ (¬φ0⟶φ2) ) ⟷ ( (φ0⟶ ¬ φ1) ∧ (¬φ0 ⟶ ¬ φ2) )
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other equivalences: 
	 ( (φ0⟶φ1) ∧ (φ2⟶φ3) )	 ⟶ ( (φ0∧φ2) ⟶ (φ1∧φ3) ) 
	 ( (φ0∨φ1) ⟶ (φ2∨φ3) )		 ⟶ ( (φ0⟶φ2) ∨ (φ1⟶φ3) ) 
	 ( (φ0∧φ1) ⟷ (φ0∧φ2) ) ⟷ ( φ0 ⟶ (φ1⟷φ2) )

existential quantifier�  ·  The existential quantifier means that at least one 
position exists that satisfies the given relationship. If p0 is that position and φ0 
that relationship, it is written “∃p0: (φ0)”.

general quantifier� · The general quantifier means that a given relationship 
is verified whatever the indicated position(s). If φ0 is that relationship and p0 
that position, it is written “∀p0: (φ0)”. 

When no quantifier is specified with a relationship, it is assumed that this 
position is true whatever the indicated positions of this relationship. Conse-
quently, if the relationship φ0 does not engage any existential quantifier on p0, 
this relationship is equivalent to the relationship “∀p0: (φ0)”

identities related to quantifiers� · Various identities relating to quantifiers 
can be identified :

∃p0: (φ0) ⟷ ¬∀p0: (¬φ0) 
∀p0: (φ0) ⟷ ¬∃p0: (¬φ0)

∀p0: (∀p1: (φ0)) ⟷ ∀p1: (∀p0: (φ0)) 
∃p0: (∃p1: (φ0)) ⟷ ∃p1: (∃p0: (φ0))

∀p0: (φ0) ∧ ∀p0: (φ1) ⟷ ∀p0: (φ0 ∧ φ1) 
∀p0: (φ0) ∨ ∀p0: (φ1) ⟷ ∀p0: (φ0 ∨ φ1)

The first two equivalences are very interesting since they help avoid the use 
of all existential quantifiers or, if need be, all general quantifiers.
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08	 relationships of proximity 
and laterality

definition of geometric relationships� · Having recall the principal notions 
of mathematical logic, this sub-section introduces the definition of three 
new fundamental relationships between positions: Proximity, Laterality and 
UnitDistance. They are called fundamental because they can be admitted as 
true without being demonstrated. They will constitute the geometrical base 
of the axiomatisation undertaken in the following sub-sections.

This sub-section also shows how Proximity and Laterality are two fundamental 
relationships that are sufficient for the axiomatisation of plane elementary 
Euclidean geometry and how they extend classical compass and straight-
edges constructions. Some examples of non-fundamental relationships will 
ultimately be constructed.

the fundamental relationship of proximity� · The relationship of proximity 
depicts the metric nature of geometry. Proximity[p0 p1 p2 p3] can be understood 
as a quaternary predicate that is only verified if the distance from p0 to p1 is 
less than or equal to the distance from p2 to p3 (figure 36). In other words, 
it is only verified if the distance from p2 to p3 is greater than or equal to the 
distance from p0 to p1.

The negation ¬Proximity[p0 p1 p2 p3] says that the distance from p0 to p1 is strict-
ly greater than the distance from p2 to p3.

figure 36 
four points 

holding a 
Proximity[p0p1p2p3] 

relationship.
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axioms related to proximity� · This fundamental relationship has numerous 
properties. The first concerns its symmetry: to exchange the first and second 
terms or to exchange the third and fourth terms does not alter the existence 
of this relationship at all. In other words, it means that the following equiva-
lences are always true — whatever the positions p0, p1, p2 and p3:

Ax.1 — symmetry of proximity: 
	 Proximity[p0 p1 p2 p3] 
	 ⟷ Proximity[p1 p0 p2 p3] 
	 ⟷ Proximity[p0 p1 p3 p2] 
	 ⟷ Proximity[p1 p0 p3 p2]

The Proximity relationship also presents two types of reflexivity. The first is 
due to equal distances: the distance between two points is always less than 
or equal to itself. The following relationship (and all its symmetries) is conse-
quently always true:

Ax.2 — reflexivity of proximity due to equal distances: 
	 Proximity[p0 p1 p0 p1]

The second reflexivity is due to the existence of a zero distance: if the first 
two terms are identical positions, the zero distance separating them is always 
less than or equal to any two other positions. The following relationship is 
consequently always verified:

Ax.3 — reflexivity of proximity due to a zero distance: 
	 Proximity[p0 p0 p1 p2]

Because the previous two axioms remain valid when some positions are iden-
tical, the following properties are also always verified:

	 Proximity[p0 p0 p1 p1]

	 Proximity[p0 p0 p0 p0]

A fourth axiom for Proximity relationship can be expressed according to tran-
sitivity, i.e. the following relationship is always true:

Ax.4 — transitivity of proximity: 
	 ( Proximity[p0 p1 p2 p3] ∧ Proximity[p2 p3 p4 p5] ) ⟶ Proximity[p0 p1 p4 p5]
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Finally, the Proximity relationship also develops the following property: if a dis-
tance p0p1 is strictly greater than a distance p2p3, it implies that the distance 
p2p3 is less than or equal to the distance p0p1. Strictly speaking, this means 
that the following relationship is always verified:

Ax.5 — inclusion of proximity in its negation: 
	 ¬Proximity[p0 p1 p2 p3] ⟶ Proximity[p2 p3 p0 p1]

the fundamental relationship of laterality�  · The relationship of laterality 
depicts the affine nature of geometry. Laterality[p0 p1 p2 p3] can be understood 
as a quaternary predicate that is only verified if (1) p2 is coincident with p3 
(figure 39) or (2) p2 is not coincident with p3 but p0 is on the left of (figure 37) 
or in line with (figure 38) p1 according to the direction from p2 to p3.

As a consequence, the negation ¬Laterality[p0 p1 p2 p3] informs that (1) p2 is not 
coincident with p3 and (2) p0 is on the right but not in line with p1 according to 
the direction from p2 to p3.

figure 37 
four points 

holding a 
Laterality[p0p1p2p3] 

relationship.

figure 38 
four points 

holding a 
Laterality[p0p1p2p3] 

relationship.

figure 39 
four points 

holding a 
Laterality[p0p1p2p3] 

relationship.
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axioms related to laterality� · This fundamental relationship also has numer-
ous properties. The first concerns its symmetry and is due to the fact that (1) 
this relation corresponds to a left/right opposition, (2) the second couple of 
positions correspond to a front/back opposition and (3) a direction going from 
a first position to a second one is opposed to the direction going from the sec-
ond to the first one. This means that the following equivalences are always 
true — whatever the positions p0, p1, p2 and p3 (figure 40, figure 41, figure 42 
and figure 43):

Ax.6 — symmetry of laterality: 
	 Laterality[p0 p1 p2 p3] 
	 ⟷ Laterality[p1 p0 p3 p2] 
	 ⟷ Laterality[p3 p2 p0 p1] 
	 ⟷ Laterality[p2 p3 p1 p0]

figure 40 
four points 
holding a 
Laterality[p0p1p2p3] 
relationship.

figure 41 
four points 
holding a 
Laterality[p1p0p3p2] 
relationship.

figure 42 
four points 
holding a 
Laterality[p3p2p0p1] 
relationship.

figure 43 
four points 
holding a 
Laterality[p2p3p1p0] 
relationship.
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The Laterality relationship also presents two types of reflexivity. The first is 
due to parallelism: a position is always in line with another position according 
to the direction they give themselves. The following relationship (and all its 
symmetries) is consequently always true:

Ax.7 — reflexivity of laterality due to parallelism: 
	 Laterality[p0 p1 p0 p1]

The second reflexivity is due to the existence of an undefined direction: if the 
last two terms are identical positions, the laterality relationship will always 
be true. The following relationship is consequently always verified:

Ax.8 — reflexivity of laterality due to an undefined direction: 
	 Laterality[p0 p1 p2 p2]

By symmetry, the following relationship is also true:

	 Laterality[p0 p0 p1 p2]

Because the previous two axioms remain valid when all the positions are iden-
tical, the following properties are also always verified:

	 Laterality[p0 p1 p1 p1]

	 Laterality[p0 p0 p0 p0]

When a position of the first two terms is also a position of the last two terms, 
the permutation of one of these two positions is allowed, according to the fol-
lowing equivalence (figure 44):

Ax.9 — permutation of laterality if two equal terms: 
	 Laterality[p0 p1 p1 p2] ⟷ Laterality[p0 p2 p1 p2]

Axioms Ax.6 and Ax.9 consequently give:

	 Laterality[p0 p1 p1 p2] ⟷ Laterality[p0 p1 p0 p2]

figure 44 
three points 
holding the 

Laterality[p0p1p1p2] 
and 

Laterality[p0p2p1p2] 
relationships.
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A fifth axiom of the Laterality relationship can be expressed according to tran-
sitivity, i.e. the following relationship is always true (figure 45):

Ax.10 — transitivity of laterality: 
	 ( Laterality[p0 p1 p2 p3] ∧ Laterality[p4 p0 p2 p3] ) ⟶ Laterality[p4 p1 p2 p3]

Finally, the Laterality relationship also develops the following property: if a 
position p0 is on the right of but not in line with p1 according to the direction 
going from p2 to p3, it implies that p0 is on the left or in line with p1 according 
to the same direction. Strictly speaking, this means that the following rela-
tionship is always verified:

Ax.11 — inclusion of laterality in its negation: 

	 ¬Laterality[p0 p1 p2 p3] ⟶ Laterality[p0 p1 p3 p2]

two sufficient relationships for the axiomatisation of plane elementary 
Euclidean geometry� · The Proximity and Laterality relationships are two suf-
ficient relationships for the axiomatisation of plane elementary Euclidean 
geometry. This can easily be demonstrated on the basis of Alfred Tarski’s 
first-order axiomatisation. This paragraph provides proof of it.

A geometry is said to be Euclidean if it meets the five postulates of Eu-
clid (Euclid·2008, page 7), rewritten here in contemporary language by 
Holme·2010 (page 253):

(1)	 Through two different points there passes one and only one line.
(2)	 If two points on a line are in a plane, then the line lies in the plane.
(3)	 Given two points in a plane. Then there may be drawn a circle with the 

first point as centre, passing through the second point.
(4)	 All right angles are equal. 
(5)	 Given a straight line and a point outside it. Then there is one and only 

one other line passing through the point which does not intersect the 
first line.

figure 45 
five points 
showing the 
transitivity of 
Laterality.
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This geometry is said to be elementary as long as no absolute value is de-
fined, i.e. as long as no numerical value is said to be equal to a certain dis-
tance between two points. If the fifth postulate — commonly named the paral-
lelism axiom — is omitted, this geometry is no longer Euclidean but absolute. 
If, on the contrary, the fifth postulate is replaced by its inverse, this geometry 
is non-Euclidean.

A first-order axiomatisation is a system (composed of fundamental relation-
ships,  i.e. predicates, and axioms) that is “(1) complete — every assertion is 
either provable or refutable, (2) decidable — there is a mechanical procedure 
for determining whether or not any given assertion is provable, and (3) there is a 
constructive consistency proof for the theory” (Tarski/Givant·1999, page 175).

Tarski built a first-order axiomatisation of elementary Euclidean geometry 
by postulating three fundamental relationships: (1) coincidence (or equal-
ity), (2) equidistance (or congruence), and (3) betweenness (Tarski·1959, 
Szczerba·1986, Tarski/Givant·1999 and Schwabhäuser/…·2011). These three 
relationships are written here as follows:

(1)	 Coincidence[p0 p1] means that p0 and p1 share the same position;
(2)	 Equidistance[p0 p1 p2 p3] means that the distance between p0 and p1 is 

equal to the distance between p2 and p3;
(3)	 Betweenness[p0 p1 p2] means that (a) p0, p1 and p2 are collinear and (b) p1 

is between p0 and p2, inclusive (figure 46).

The axiomatic system consists of a set of logical sentences that always has 
to be verified and that, put together, constitute a sufficient definition of the 
three fundamental relationships of Coincidence, Equidistance and Betweenness. 
Many versions of Tarski’s axiomatisation have been developed since it was 
first stated (Tarski/Givant·1999). The one reproduced here is one of the lat-
est version, provided by Haragauri Narayan Gupta (Tarski/Givant·1999, page 
190). Given that, unlike Tarski's set of axioms, the coincidence relationship 
is not seen here as a logical connexion — i.e. an equality symbolised by the 
sign = — but as a fundamental relationship, two axioms ruling its behaviour 

figure 46 
three points 

holding a 
Betweenness 

[p0p1p2] 
relationship.
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are added at the beginning of that list. Moreover, Tarski’s set of axioms has 
the particularity of remaining valid for any dimension n. Since this thesis 
only considers the plane, the two axioms that deal with the lower and upper 
bounds of this dimension are modified so that the dimension n is 2. The result-
ing set of axioms is as follows:

T.1 — reflexivity axiom for coincidence: 
	 Coincidence[p0 p0]

T.2 — substitution axiom for coincidence: 
	 Coincidence[p0 p1] ⟶ (φ0 ⟶ φ1) 
		  where the relationship φ1 is obtained by replacing in any relationship φ0  
		  all the occurrences of p0 by p1

T.3 — inner transitivity for betweenness: 
	 Betweenness[p0 p1 p2] ∧ Betweenness[p1 p3 p2]	 ⟶ Betweenness[p0 p1 p3]

T.4 — reflexivity axiom for equidistance: 
	 Equidistance[p0 p1 p1 p0]

T.5 — transitivity axiom for equidistance: 
	 Equidistance[p0 p1 p2 p3] ∧ Equidistance[p0 p1 p4 p5]  
															               ⟶ Equidistance[p2 p3 p4 p5]

T.6 — identity axiom for equidistance: 
	 Equidistance[p0 p1 p2 p2] ⟶ Coincidence[p0 p1]

T.7 — segment axiom construction: 
	 ∃p0: ( Betweenness[p1 p2 p0] ∧ Equidistance[p2 p0 p3 p4] )

T.8 — five-segment axiom (similar triangles): 
	 (¬ Coincidence[p0 p1] 
	 ∧ Betweenness[p0 p1 p2] ∧ Betweenness[p3 p4 p5] 
	 ∧ Equidistance[p0 p1 p3 p4] ∧ Equidistance[p1 p2 p4 p5] 
	 ∧ Equidistance[p0 p6 p3 p7] ∧ Equidistance[p1 p6 p4 p7] ) 
															               ⟶ Equidistance[p2 p6 p5 p7]

T.9 — outer Pasch axiom: 
	 Betweenness[p0 p1 p2] ∧ Betweenness[p3 p2 p4] 
					     ⟶ ∃p5: ( Betweenness[p0 p5 p3] ∧ Betweenness[p4 p1 p5] )

T.10 — lower 2-dimensional axiom: 
	 ∃p0: ∃p1: ∃p2: (	 ¬Betweenness[p0 p1 p2] 
					        ∧	¬Betweenness[p1 p2 p0] 
					        ∧	¬Betweenness[p2 p0 p1] )



geometric axiomatisation of graphic statics · 69

figure 47 
axiom T.3, 

inner transitivity 
for Betweenness.

figure 48 
axiom T.5, 

transitivity for 
Equidistance.

figure 49 
axiom T.7, 

segment 
construction.

figure 50 
axiom T.8,  

five segments.

figure 51 
axiom T.9,  

outer Pasch (two 
examples).

figure 52 
axiom T.10,  

lower dimension.
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T.11 — upper 2-dimensional axiom: 
	 ¬Coincidence[p0 p1]	 ∧	 Equidistance[p0 p2 p1 p2] 
							       ∧	 Equidistance[p0 p3 p1 p3] 
							       ∧	 Equidistance[p0 p4 p1 p4] 
						      ⟶		 Betweenness[p2 p3 p4] 
							       ∨	 Betweenness[p3 p4 p2] 
							       ∨	 Betweenness[p4 p2 p3]

T.12 — Euclid's axiom: 
	 Betweenness[p0 p1 p2] ∧ Betweenness[p3 p1 p4] ∧ ¬Coincidence[p0 p1] 
						      ⟶ ∃p5: ∃p6: (	Betweenness[p0 p3 p5] 
									            ∧	Betweenness[p0 p4 p6] 
									            ∧	Betweenness[p6 p2 p5] )

T.13 — Axiom schema of continuity: 
	 ∃p0: ∀p1: ∀p2: ( φ0 ∧ φ1 ⟶ Betweenness[p0 p1 p2] ) 
				    ⟶ ∃p3: ∀p1: ∀p2: ( φ0 ∧ φ1 ⟶ Betweenness[p1 p3 p2] ) 
								        where φ0 and φ1 first-order formulas so that 
								        there is no free occurrence of p0, p2 or p3 in φ0 
								        and there is no free occurrence of p0, p1 or p3 in φ1

In order to prove that Laterality and Proximity relationships are sufficient to be 
used as a basis for first-order axiomatisation of plane Euclidean geometry, 
Tarski’s Coincidence, Equidistance and Betweenness relationships must be rewrit-
ten in terms of Laterality and Proximity, which can easily be done as follows:

(1)	 Coincidence[p0 p1] :⟷ Proximity[p0 p1 p1 p1]

(2)	 Equidistance[p0 p1 p2 p3] :⟷	Proximity[p0 p1 p2 p3] 
								           ∧	Proximity[p2 p3 p0 p1]

figure 53 
axiom T.11,  
upper dimension.

figure 54 
axiom T.12,  
Euclid's 
parallelism  
(two examples).
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(3a) Betweenness[p0 p1 p2] :⟷	 Proximity[p0 p1 p0 p2] 
								           ∧	Proximity[p1 p2 p0 p2] 
								           ∧	Laterality[p1 p0 p0 p2] 
								           ∧	Laterality[p1 p0 p2 p0]

The redefinition of Betweenness can also be performed without using Proximity 
(figure 55):

(3b) Betweenness[p0 p1 p2] :⟷ ( Coincidence[p0 p2] ∧ Coincidence[p0 p1] ) 
									         ∨ ( Laterality[p1 p0 p0 p2] ∧ Laterality[p1 p2 p2 p0] 
										          ∧ ∃p3: ( ¬	 Laterality[p3 p2 p2 p0] 
												               ∧	Laterality[p1 p0 p3 p0] 
												               ∧	Laterality[p1 p2 p2 p3] ) )

or without using Laterality (figure 56):

(3c) Betweenness[p0 p1 p2] :⟷ ∀p3: ( Proximity[p3 p0 p0 p1] ∧ Proximity[p3 p2 p2 p1] 
												            ⟶ Proximity[p3 p1 p3 p3] )

The existence of these three equivalences concludes the demonstration since 
it proves that Tarski’s entire axiomatisation can be rewritten in terms of 
Proximity and Laterality. The corollary of this is that Proximity and Laterality are 
two relationships that are sufficient for describing plane elementary Eucli-
dean geometry.

figure 55 
redefinition of 

Betweenness 
without Proximity.

figure 56 
redefinition of 

Betweenness 
without Laterality.
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examples of definitions and demonstrations in plane Euclidean rela-
tionships�  ·  This statement is illustrated here by defining some non-funda-
mental relationships — e.g. Parallelism, Collinearity, MidPoint, Orthogonality and 
LineCircleTangency — and by using them to demonstrate a simple theorem of 
plane geometry.

The first example checks whether two lines are parallel or not. 
Parallelism[p0 p1 p2 p3] is proved to be true when the line passing through p0 and 
p1 is parallel to the line passing through p2 and p3; if one or both lines have no 
direction, i.e. points p0 and p1 are coincident or points p2 and p3 are coincident, 
the relationship remains true. The Parallelism relationship can be defined as 
follows (figure 57):

Parallelism[p0 p1 p2 p3] :⟷ Laterality[p0 p1 p2 p3] ∧ Laterality[p0 p1 p3 p2]

Since this definition remains valid when the parallels are superimposed, 
three points are collinear if the following statement is verified:

Collinearity[p0 p1 p2] :⟷ Parallelism[p0 p1 p1 p2]

Furthermore, the existence of two distinct parallels can be defined as follows:

DistinctParallelism[p0 p1 p2 p3] :⟷ Parallelism[p0 p1 p2 p3] ∧ ¬Collinearity[p0 p2 p3]

To check whether two points define a real line or not can be done using the 
following statement:

ValidLine[p0 p1] :⟷ ¬Coincidence[p0 p1]

The third example uses this Collinearity relationship. It takes three points as 
parameters and is proved to be true when the second point is the middle of the 
segment joining the first and the last point (figure 58):

figure 57 
four points 
holding a 
Parallelism 
[p0p1p2p3] 
relationship.

figure 58 
three points 
holding a 
MidPoint[p0p1p2] 
relationship.



geometric axiomatisation of graphic statics · 73

MidPoint[p0 p1 p2] :⟷ Collinearity[p0 p1 p2] ∧ Equidistance[p0 p1 p1 p2]

This definition remains valid in the particular case where p0, p1 and p2 are all 
coincident.

The fourth example checks whether two lines are orthogonal or not. 
Orthogonality[p0 p1 p2 p3] is proved to be true when the line passing through p0 
and p1 is perpendicular to the line passing through p2 and p3. If one or both 
lines have no direction, i.e. points p0 and p1 are coincident or points p2 and p3 
are coincident, the relationship is always true. This definition is illustrated 
in figure 59:

Orthogonality[p0 p1 p2 p3] :⟷ ∃p4p5: 
							       Equidistance[p0 p4 p0 p1] ∧ Equidistance[p1 p4 p0 p1] 
						        ∧	 Equidistance[p0 p5 p0 p1] ∧ Equidistance[p1 p5 p0 p1] 
						        ∧	 (¬Coincidence[p4 p5] ∨ Coincidence[p0 p4]) 
						        ∧	 Parallelism[p2 p3 p4 p5]

The last example is written LineCircleTangency[p0 p1 p2 p3 p4] and is proved to be 
true when the line passing through two points p0 and p1 and the circle centred 
on p2 and passing through p3 are tangent on a point p4 (figure 60):

LineCircleTangency[p0 p1 p2 p3 p4] :⟷	 Collinearity[p0 p1 p4] 
										             ∧	Equidistance[p2 p3 p2 p4] 
										             ∧	Orthogonality[p0 p1 p2 p4]

figure 59 
four points 

holding a 
Orthogonality 

[p0p1p2p3] 
relationship.

figure 60 
five points 

holding a 
LineCircleTangency 

[p0p1p2p3p4] 
relationship.
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These various definitions can then be employed jointly with the axioms T.1 to 
T.13 (once they have been rewritten in terms of Laterality and Proximity) in order 
to prove theorems of plane elementary Euclidean geometry.

As a very simple illustration, the following example proves that two tangents 
to the same circle are equally distant from the centre of that circle (figure 61). 
If this circle is centred on point p0 and passes through p1, if the first line pass-
es through p2 and p3 and is tangent to the circle at point p4, and if the second 
line passes through p5 and p6 and is tangent to the circle at point p7, then, it 
has to be proved that the distances p0p4 and p0p7 are equal.

In other words, this means the following implication has to be demonstrated:

	 LineCircleTangency[p2 p3 p0 p1 p4]  
   ∧	LineCircleTangency[p5 p6 p0 p1 p7]		  ⟶ Equidistance[p0 p4 p0 p7]

Using the definition of the LineCircleTangency relationship, the previous impli-
cation is equivalent to the following one:

	 Collinearity[p2 p3 p4] ∧ Equidistance[p0 p1 p0 p4] ∧ Orthogonality[p2 p3 p0 p4] 
   ∧	Collinearity[p5 p6 p7] ∧ Equidistance[p0 p1 p0 p7] ∧ Orthogonality[p5 p6 p0 p7] 
		  ⟶ Equidistance[p0 p4 p0 p7]

Thanks to the axiom T.5 (page 68), it is known that

Equidistance[p0 p1 p0 p4] ∧ Equidistance[p0 p1 p0 p7] ⟶ Equidistance[p0 p4 p0 p7]

is always true — which had to be demonstrated.

figure 61 
demonstration of 
equal distances 
between 
tangencies.
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beyond classical compass-and-straightedge constructions� · Because the 
Proximity relationship brings into play the concept of inequality of distances 
and because the Laterality relationship brings into play the concept of relative 
direction they allow the precise description of positions of points that do not 
necessarily lie on circles and lines. A point can be here defined as being inside 
or outside a circle and as being on the left or on the right of a line. This ability 
is extraneous to classical compass-and-straightedge constructions.

In the plane, the concept of relative direction relates the front/back opposi-
tion with the left/right opposition. For example, if a point moves from one 
position to another one, the infinite line linking these two positions divides 
the plane into two distinct parts; the concept of relative direction allows these 
two parts to be distinguished by defining one on the left and the other on the 
right of the direction of movement.

The existence of this concept in the definition of the Laterality relationship is 
of prime importance because it is directly related to the concept of clockwise-
ness which is omnipresent in graphic statics, e.g. for the reading of the forces 
acting on a point. A ClockWiseness[p0 p1 p2] relationship is verified if the three 
positions p0, p1 and p2, browsed in this particular order, are clockwise or col-
linear (figure 62):

ClockWiseness[p0 p1 p2] :⟷ Laterality[p2 p1 p1 p0]

It might be desirable to have a first-order axiomatisation of this new geometry 
capable of inequalities and relative directions. This axiomatisation — which 
might be inspired by Tarski’s — would allow the rigorous demonstration of 
any theorem that use Proximity and Laterality relationships. Unfortunately, it 
is beyond the scope of this thesis and from now on, it will be assumed that it 
exists without it being explicitly stated.

figure 62 
three points 

holding a 
ClockWiseness 

[p0p1p2] 
relationship.
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the fundamental relationship of unit distance�  · The numerous construc-
tions that will be undertaken in this thesis — see sub-section 17 (“examples 
of graphical computations”, page  165)  — assess the need for a new funda-
mental relationship capable of identifying a unit distance, i.e. the need to use 
metric geometry instead of elementary geometry. This new fundamental rela-
tionship is written UnitDistance[p0 p1] and is verified if the distance between 
p0 and p1 is equal to a given unit distance. The only axiom that defines this 
relationship so far is the following one — it prevents the unit distance from 
being zero:

Ax.12 — non-zero unit distance: 
	 UnitDistance[p0 p1] ⟶ ¬Proximity[p0 p1 p1 p1]

Other fundamental relationships describing a transcendental distance be-
tween two points — e.g. π, e, …  — may also be introduced — e.g. PiDistance[p0 p1], 
eDistance[p0 p1] — since distances of this kind cannot be obtained precisely 
by geometric constructions. However, geometric constructions exist to ap-
proximate most of them to a sufficiently high level of accuracy —  equiva-
lent constructions will be given in Sub-section 17 (“examples of graphical 
computations”, page 165).
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09	 form diagram and force 
diagram

two fundamental relationships to differentiate two diagrams�  · Graphic 
statics establishes geometric constructions on two distinct planes: the 
form diagram and the force diagram. Two new fundamental unary relation-
ships are therefore introduced to reflect the fact that a point can either 
belong to the form diagram or to the force diagram. The first is written 
FormDiagramMembership[p0] and is proved to be true if p0 belongs to the form 
diagram. The second is written ForceDiagramMembership[p0] and is proved to be 
true if p0 belongs to the force diagram.

In order to characterise precisely the role of these two new relationships, five 
new axioms are added to the existing set. The following paragraphs present 
these axioms.

axioms guaranteeing the unicity of both diagrams�  ·  The next two axi-
oms force a point to belong to at least one of the two diagrams — the law of 
excluded middle — and at most to only one of the two diagrams — the law of 
noncontradiction. These two axioms are always true:

Ax.13 — law of excluded middle for diagram membership: 
	 FormDiagramMembership[p0] ∨ ForceDiagramMembership[p0]

Ax.14 — law of noncontradiction for diagram membership: 
	 FormDiagramMembership[p0] ⟷ ¬ForceDiagramMemberhsip[p0]

Comparing the membership of two points can then be done by defining the 
new non-fundamental relationship SameDiagramMembership as follows:

SameDiagramMembership[p0 p1] :⟷	 (	 FormDiagramMembership[p0]  
											             ∧	 FormDiagramMembership[p1] ) 
										             ∨	(	 ForceDiagramMembership[p0]  
											             ∧	 ForceDiagramMembership[p1] )
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The SameDiagramMembership[p0 p1] is consequently true only if p0 and p1 belong 
to the same diagram, regardless of whether it is the form diagram or the force 
diagram.

three axioms to limit the use of laterality, proximity and unit dis-
tance�  ·  The points taken as arguments for the Laterality, Proximity and 
UnitDistance relationships must satisfy some specific rules regarding the dia-
gram in which they are positioned. These rules are encompassed in three 
axioms.

(1)	 The first specifies that a Laterality[p0 p1 p2 p3] relationship only exists if p0 
and p1 belong to a same diagram and if points p2 and p3 also belong to a same 
diagram, which is the consequence of the fact that a direction does not exist 
if it is defined by two points that belong to different planes:

Ax.15 — diagram membership for laterality: 
	 Laterality[p0 p1 p2 p3] ⟶  (	 SameDiagramMembership[p0 p1] 
								           ∧	SameDiagramMembership[p2 p3])

This rule does not mean the first two points have to be in the same diagram as 
the last two points (figure 63). This is another great advantage of the Laterality 
relationship regarding its use in graphic statics: it allows parallels to be iden-
tified in different diagrams.

(2)	 The second new axiom specifies that a Proximity[p0 p1 p2 p3] relationship only 
exists if p0, p1, p2 and p3 belong to a same diagram, which guarantees that any 
Proximity relationship compares two lengths of an equal unit:

Ax.16 — diagram membership for proximity: 
	 Proximity[p0 p1 p2 p3] ⟶  (	 SameDiagramMembership[p0 p1] 
								           ∧	SameDiagramMembership[p1 p2] 
								           ∧	SameDiagramMembership[p2 p3])

The existence of this axiom therefore allows form and force diagrams to be of 
different units of lengths.

figure 63 
four points 
holding a 
Laterality 
[p0p1p2p3] 
relationships on 
two different 
diagrams.
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(3)	 The third new axiom specifies that a UnitDistance[p0 p1] relationship only 
exists if both p0 and p1 belong to a same diagram:

Ax.17 — diagram membership for unit distance: 
	 UnitDistance[p0 p1] ⟶  SameDiagramMembership[p0 p1]

Again, this last axiom does not mean form and force diagrams have to be of 
same units of lengths.
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10	 geometrical 
definition of forces

the fundamental relationship of force� · Let F0, F1, F2, … be a set of forces. 
This sub-section defines two new fundamental relationships: Force and 
Equipollence. The first relates the concept of forces with positions of points and 
the second inform whether two forces are the same. 

A force here is meant to be any expression of action that exerts a pull or a push 
onto a point. A force is commonly defined by:

(a)	 a point of application
(b)	 a magnitude
(c)	 a direction
(d)	 a type of application (a pull or a push)

To bring the definition of force into line with the purely geometric framework 
identified so far, these four properties are defined here using four positions of 
points. The quaternary fundamental relationship Force[F0 p0 p1 p2 p3] is said to 
be true only if there is a force F0 that:

(a)	 is applied on the point p0 lying in the form diagram,
(b)	 has an equal magnitude to the distance between p2 and p3 lying in the 

force diagram,
(c)	 has the same direction as the one going from p2 to p3, and

figure 64 
four points 

holding a Force 
[f0p0p1p2p3] 

relationship.

figure 65 
four points 

holding a Force 
[f0p0p1p2p3] 

relationship.
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(d) 	pulls on p0 if the directions going from p0 to p1 and from p2 to p3 are 
equal (figure 64) or pushes on p0 if these directions are different 
(figure 65), p1 being in the form diagram.

As a result, the negation ¬Force[F0 p0 p1 p2 p3] of this relationship means that 
such a force does not exist. The Force[F0 p0 p1 p2 p3] relationship will be defined 
in more detail by the next three axioms.

an axiom to relate force and diagrams� · The concept of force is linked to 
two different units: on the one hand, a distance between two points of applica-
tion is measured in units of lengths, e.g. metres or feet; on the other hand, the 
magnitude of a force is measured in units of force, e.g. Newtons. Therefore, 
if the four points p0, p1, p2 and p3 hold a Force[F0 p0 p1 p2 p3] relationship, it is 
expected that p0 belongs to the form diagram and that both p2 and p3 belong 
to the force diagram. Consequently, the following relationship must be always 
satisfied:

Ax.18 — diagram membership for force: 
	 Force[F0 p0 p1 p2 p3] ⟶	 FormDiagramMembership[p0] 
							          ∧	ForceDiagramMembership[p2] 
							          ∧	ForceDiagramMembership[p3]

an axiom to constrain the point that defines the application type of 
force�  · The points p0, p2 and p3 of a Force[F0 p0 p1 p2 p3] relationship can be 
placed anywhere within their respective diagram, but this is not the case for 
p1. The main role of p1 is to define the application type of the force F0, i.e. a 
pull or a push. The need for this distinction is not common practice in litera-
ture. It is essential here because it allows the geometric characterisation of 
the order in which the forces applied on the same point are read — the neces-
sity to characterise this order will be presented in the paragraph entitled 
“why imposing a uniform reading cycle locally involves a uniform reading 
cycle globally” (page 114) and the paragraph entitled “the need for uniform 
reading cycles towards reciprocal diagrams” (page 122). 

Since it is proposed that the pull or the push is defined according to whether 
or not the direction from p0 to p1 is equal to the direction from p2 to p3, point 
p1 should fulfil the following properties:

(1)	 points p0 and p1 should lie in the same diagram in order to define a 
direction; the following sentence should be verified:

	 SameDiagramMembership[p0 p1]
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(2)	 it is expected that, for the same reason, the direction from p0 to p1 is not 
zero when the magnitude of the force F0 is not zero, i.e. when the direc-
tion from p2 to p3 exists. The following sentence should be verified:

	 Force[F0 p0 p1 p2 p3] ∧ ¬Proximity[p2 p3 p2 p2] ⟶ ¬Proximity[p0 p1 p0 p0]

(3)	 in order to avoid any ambiguity of interpretation, it is also advisable 
that the direction p0p1 is zero when the direction p2p3 is zero. The fol-
lowing should be true:

	 Force[F0 p0 p1 p2 p3] ∧ Proximity[p2 p3 p2 p2] ⟶ Proximity[p0 p1 p0 p0]

(4)	 finally, the orientations p0p1 and p2p3 should be equal in order to ex-
press opposite or equal directions clearly. The following should conse-
quently be satisfied:

	 Force[F0 p0 p1 p2 p3] ⟶ Laterality[p0 p1 p2 p3] ∧ Laterality[p0 p1 p3 p2] 

The addition of these four conditions are summarised in the following axiom 
which is always expected to be satisfied:

Ax.19 — type of force application: 
	 Force[F0 p0 p1 p2 p3] ⟶	 (	 Laterality[p0 p1 p2 p3] ∧ Laterality[p0 p1 p3 p2] 
								           ∧	¬Proximity[p2 p3 p2 p2] ∧ ¬Proximity[p0 p1 p0 p0] ) 
							          ∨	(	 Proximity[p2 p3 p2 p2] ∧ Proximity[p0 p1 p0 p0] )

an axiom to ascertain the univocal definition of a force� · Each force should 
be defined by only one Force relationship. The following axiom therefore holds:

Ax.20 — univocal definition of a force: 
	 ( Force[F0 p0 p1 p2 p3] ∧ Force[F0 p4 p5 p6 p7] ) 
		     ⟶ ( 	Proximity[p0 p4 p4 p4] 
			      ∧	Proximity[p1 p5 p5 p5] 
			      ∧	Proximity[p2 p6 p6 p6] 
			      ∧	Proximity[p3 p6 p6 p6] )

On the contrary, having equivalent parameters is not a sufficient condition 
for two forces to be equivalent. For instance, the following statement does not 
ensure that F0 and F1 are a same force:

Force[F0 p0 p1 p2 p3] ∧ Force[F1 p0 p1 p2 p3]

The forces F0 and F1 could for instance be two distinct forces sharing the same 
properties.
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two axioms to define equipollence� · In order to describe whether two forces 
are distinct or not, the Equipollence relationship is introduced. Two forces F0 
and F1 are said equipollent if they actually refer to a same force, meaning that 
F0=F1. Comparable to the Coincidence relationship (page 68), the Equipollence 
relationship is defined by the following axioms:

Ax.21 — reflexivity axiom for equipollence: 
	 Equipollence[F0 F0]

Ax.22 — substitution axiom for equipollence: 
	 Equipollence[F0 F1] ⟶ (φ0 ⟶ φ1) 
		  where the relationship φ1 is obtained by replacing in any relationship φ0 
		  all the occurrences of F0 by F1

the half-line bearing the force�  ·  The opposition between pushing and 
pulling forces is related to another concept, the need for which will also be 
emphasized later — see the paragraph entitled “why a uniform reading cycle 
imposes the absence of almost any intersection of rods in the space diagram” 
(page 124). This is the concept of the half-line bearing the force. If a force F0 
is represented by the Force[F0 p0 p1 p2 p3] relationship, it is said that this force 
is borne by a half-line whose orientation is given by p2 and p3, whose extremity 
is given by p0 and whose direction is such that p1 is always on it (figure 66).

A point p4 would belong to the half-line bearing the force F0 represented by 
Force[F0 p0 p1 p2 p3] if the following truth exists (figure 67):

Laterality[p4 p0 pA pB] 
∧ Equidistance[p0 pA p0 p1] ∧ Equidistance[p1 pA p0 p1] 
∧ Equidistance[p0 pB p0 p1] ∧ Equidistance[p1 pB p0 p1] 
∧ Laterality[pA p0 p0 p1] ∧ Laterality[pB p0 p1 p0]

figure 67 
four points 
holding a Force 
[f0p0p1p2p3] 
relationship.

figure 66 
two different 
half-lines bearing 
a force.
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particular forces�  · Some non-fundamental relationships can be defined in 
order to characterise particular type of forces: zero forces, pulling forces and 
pushing forces.

ZeroForce[F0 p0 p1 p2 p3] :⟷ Force[F0 p0 p1 p2 p3] ∧ Coincidence[p2 p3]

PullingForce[F0 p0 p1 p2 p3] :⟷ ∃pA,pB: 
								        Force[F0 p0 p1 p2 p3] ∧ Laterality[p1 p0 pA pB] 
							         ∧	 Equidistance[p2 pA p2 p3] ∧ Equidistance[p3 pA p2 p3] 
							         ∧	 Equidistance[p2 pB p2 p3] ∧ Equidistance[p3 pB p2 p3] 
							         ∧	 Laterality[pA p2 p2 p3] ∧ Laterality[pB p2 p3 p2]

PushingForce[F0 p0 p1 p2 p3] :⟷ ∃pA,pB: 
								        Force[F0 p0 p1 p2 p3] ∧ Laterality[p1 p0 pB pA] 
							         ∧	 Equidistance[p2 pA p2 p3] ∧ Equidistance[p3 pA p2 p3] 
							         ∧	 Equidistance[p2 pB p2 p3] ∧ Equidistance[p3 pB p2 p3] 
							         ∧	 Laterality[pA p2 p2 p3] ∧ Laterality[pB p2 p3 p2]

The following theorems are deduced from these definitions:

Force[F0 p0 p1 p2 p3] ⟷ (	PullingForce[F0 p0 p1 p2 p3]  
						         ∨	PushingForce[F0 p0 p1 p2 p3] )

ZeroForce[F0 p0 p1 p2 p3] ⟷    (	 PullingForce[F0 p0 p1 p2 p3] 
								           ∧	PushingForce[F0 p0 p1 p2 p3] )

(PullingForce[F0 p0 p1 p2 p3] ∧ ¬ZeroForce[F0 p0 p1 p2 p3])  
														              ⟷ ¬PushingForce[F0 p0 p1 p2 p3]

force networks�  · Each set of forces {F0, F1, F2, …, Fn} is said to be a “force 
network” if, at the same time, no point is a point of application of a force 
belonging to this set and a point of application of a force not belonging to this 
set. On the basis of this definition, it can be deduced that:

 •	for any point p0, if the two relationships Force[F0 p0 p1 p2 p3] and 
Force[F1 p0 p4 p5 p6] are verified, then the two forces F0 and F1 belong to 
the same force network

 •	the set of all forces is a network of forces

Some further definitions: a force network is said to be a “sub-network” of 
another (different) force network if all the forces inside the former network 
are also within the latter one. A force network is said to be “minimum” if it 
contains no sub-network other than itself. Consequently, a force network is 
minimum if it only contains forces applied on a same unique point. If p0 is that 
point, the network is said to be a“force network of p0”.
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11	 rods and other objects

geometric definition of a rod� · A rod is here meant to be a massless recti-
linear element that links two points and exerts two forces on these points; 
these forces are (1) aligned on the axis of the rod, (2) of equal magnitude, (3) of 
opposite direction and (4) of an identical type of application. A strut is meant 
to be a rod that pushes on both points that it links. A tie is meant to be a rod 
that pulls on both points that it links. Hence, the rod is entirely defined by:

 •	the two points that it links
 •	the type of force that it exerts on these points
 •	the magnitude of the force that it exerts.

There is a slight difference between this definition and the one usually found 
in literature. The rod is indeed traditionally defined as a rectilinear element 
exerted on by two axial opposing forces (Frey·2005, point 4.6.1, page 62). 
Here, the rod is equal to two opposing forces — the minimum element is a rod 
or two forces. This difference will allow interesting conceptual simplifica-
tions in the demonstration held in the following sub-sections.

The logical flow of this thesis requires a fully geometric definition of the 
rod, i.e. using only positions of points and Laterality and Proximity relationships. 
This definition is constructed here on the basis of two forces and height points 
holding the relationships Force[F0 p0 p1 p2 p3] and Force[F1 p4 p5 p6 p7] (figure 68).

figure 68 
two random 

forces.
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In order to form a rod, these eight points must observe the following five geo-
metrical rules.

(1)	 The two forces must be aligned with the axis of the rod. In other words, the 
orientations of the forces must be equal to the orientation given by the points 
of application p0 and p4. The following relationship must therefore be satisfied 
(figure 69):

Parallelism[p2 p3 p0 P4] ∧ Parallelism[p6 p7 p0 p4]

In view of the above axiom Ax.19 (page 83), points p1 and p5 are conse-
quently expected to be in the axis p0p4.

(2)	 Since both force magnitudes must be equal, the following property must 
also hold (figure 70):

Equidistance[p6 p7 p2 p3]

(3)	 The two force directions must be opposite. If points pA and pB are con-
structed such that pA is on the left and pB on the right of the direction going 
from p0 to p4, the two directions p2p3 and p6p7 are then distinguished and 
constrained as follows (figure 71):

	 (Laterality[p2 p3 pA pB] ∧ Laterality[p6 p7 pB pA]) 
   ∨	(Laterality[p2 p3 pB pA] ∧ Laterality[p6 p7 pA pB])

figure 69 
application of the 
first geometric 
condition leading 
to a rod.

figure 70 
application of the 
second geometric 
condition leading 
to a rod.
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where pA and pB are defined as follows:

	 Equidistance[pA p0 p0 p4] ∧ Equidistance[pA p4 p0 p4] 
   ∧	Equidistance[pB p0 p0 p4] ∧ Equidistance[pB p4 p0 p4] 
   ∧	Laterality[pA p0 p0 p4] ∧ Laterality[pB p4 p4 p0]

This writing remains consistent when p2 and p3 are coincident, since p6 and p7 
would be coincident as well because of condition (2).

(4)	 The two forces must be of equal application type. Since the two forces are 
opposite — condition (3) — this means that points p1 and p5 are both either 
inside or outside the segment p0p4. This condition is written using the same 
points pA and pB as in condition (3) (figure 72 and figure 73):

	 ( Laterality[p0 p1 pA pB] ∧ Laterality[p4 p5 pB pA] ) 
   ∨	( Laterality[p0 p1 pB pA] ∧ Laterality[p4 p5 pA pB] )

As will be seen later in the paragraph entitled “why the definition of rod does 
not invalidate reciprocal rules” (page  123), only the second case —  where 
the half-lines bearing the forces are inside the segment p0p4 — is eligible, 
which deletes the first line of this geometric rule. Condition (4) is subsequent-
ly rewritten as:

	 Laterality[p0 p1 pB pA] ∧ Laterality[p4 p5 pA pB] 

(5)	 The fifth condition is specific to graphic statics. It stems from the desire 
to depict a rod in the same way in both form and force diagrams,  i.e. by a 
line segment. Geometrically, this means that points p2, p3, p6 and p7 must be 
aligned.

The necessity of this condition will be explained later in the paragraph entitled 
“why the definition of rod does not invalidate reciprocal rules” (page 123).

figure 71 
application of the 

third geometric 
condition leading 

to a rod.
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These four points are now so constrained that moving one of them involves 
moving the two points that bound the other force in the force diagram, e.g. 
moving p3 leads to the displacement of p6 and p7. For practical reasons, it 
seems logical to make p3 and p6 coincident, such that (figure 74):

Proximity[p6 p3 p3 p3]

Combined with conditions (1), (2) and (3), condition (5) implies that p2 and p7 
are always coincident:

Proximity[p7 p2 p2 p2]

figure 72 
application of the 
fourth geometric 
condition leading 
to a rod; first 
case.

figure 73 
application of the 
fourth geometric 
condition leading 
to a rod; second 
case.

figure 74 
application of the 
fourth geometric 
condition leading 
to a rod; first 
case.
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As soon as condition (5) is imposed, conditions (2) and (3) become superfluous 
and condition (1) can be simplified as follows:

(1)	 (	 Laterality[p2 p3 p0 p4] ∧ Laterality[p2 p3 p4 p0] 
	   ∧	 Laterality[p6 p7 p0 p4] ∧ Laterality[p6 p7 p4 p0] ) 
									         ⟷ Laterality[p2 p3 p0 p4] ∧ Laterality[p2 p3 p4 p0]

(2)	 Proximity[p6 p7 p2 p3] ∧ Proximity[p2 p3 p6 p7] ⟷ TRUE

(3)	 ( ( Laterality[p2 p3 pA pB] ∧ Laterality[p6 p7 pB pA] ) 
	  ∨ ( Laterality[p2 p3 pB pA] ∧ Laterality[p6 p7 pA pB] ) ) ⟷ TRUE

After this simplification and after making p3 equal to p6 and p2 equal to p7, 
only two conditions remain: conditions (1) and (4). They define the new non-
fundamental relationship Rod[F0 F1 p0 p1 p2 p3 p4 p5]. It is said to be true when 
the relationships Force[F0 p0 p1 p4 p5] and Force[F1 p2 p3 p5 p4] designate two 
forces F0 and F1 that are sufficiently compatible to form a rod. Rigorously, the 
Rod relationship is defined as follows (figure 75):

Rod[F0 F1 p0 p1 p2 p3 p4 p5] :⟷ ∃pApB:  
		  Force[F0 p0 p1 p4 p5] ∧ Force[F1 p2 p3 p5 p4] 
	   ∧ Laterality[p4 p5 p0 p2] ∧ Laterality[p4 p5 p2 p0] 
	   ∧ Laterality[p0 p1 pB pA] ∧ Laterality[p2 p3 pA pB] 
	   ∧ Equidistance[p0 pA p0 p2] ∧ Equidistance[p2 pA p0 p2] ∧ Laterality[pA p0 p0 p2]  
	   ∧ Equidistance[p0 pB p0 p2] ∧ Equidistance[p2 pB p0 p2] ∧ Laterality[pB p2 p2 p0]

Hence, the following theorem always holds:

Rod[F0 F1 p0 p1 p2 p3 p4 p5] ⟷ Rod[F1 F0 p2 p3 p0 p1 p5 p4]

The important fact about this definition is that the Rod relationship is non-fun-
damental, i.e. it can be defined entirely using fundamental Laterality, Proximity 
and Force relationships. Since graphic statics does not involve objects other 

figure 75 
two forces 

fulfilling all the 
prerequisite 

conditions in a 
way that they can 
be considered as 

a rod.
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than points, forces and rods, it is here shown that an axiomatisation of graph-
ic statics using only Laterality, Proximity and Force fundamental relationships 
is possible.

Moreover, as soon as two forces fulfil sufficient geometric conditions to be 
considered a rod, it makes no difference talking about this rod (figure 76 and 
figure 77) or about the two forces (figure 75).

For example, the following relationship (figure 78) :

Force[F0 p1 p0 p10 p11] ∧ Force[F1 p6 p8 p12 p10] ∧ Force[F2 p7 p9 p11 p12]

∧ Rod[F3 F4 p1 p2 p6 p4 p12 p10] 
∧ Rod[F5 F6 p1 p3 p7 p5 p11 p12] 

∧ Laterality[p6 p1 p10 p12] ∧ Laterality[p6 p1 p12 p10] 
∧ Laterality[p7 p1 p11 p12] ∧ Laterality[p7 p1 p12 p11]

is completely equivalent to this one (figure 79):

Force[F0 p1 p0 p10 p11] ∧ Force[F1 p6 p8 p12 p10] ∧ Force[F2 p7 p9 p11 p12]

∧ Force[F3 p1 p2 p12 p10] ∧ Force[F4 p6 p4 p10 p12] 
∧ Force[F5 p1 p3 p11 p12] ∧ Force[F6 p7 p5 p12 p11]

∧ Laterality[p6 p1 p10 p12] ∧ Laterality[p6 p1 p12 p10] 
∧ Laterality[p7 p1 p11 p12] ∧ Laterality[p7 p1 p12 p11]

figure 76 
a corresponding 
rod in tension.

figure 77 
another rod, in 
compression.
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particular rods and some theorems� · Some non-fundamental relationships 
can be defined in order to characterise particular type of rods: zero rods, 
struts and ties.

ZeroRod[F0 F1 p0 p1 p2 p3 p4 p5] :⟷ Rod[F0 F1 p0 p1 p2 p3 p4 p5] ∧ Coincidence[p4p5]

Strut[F0 F1 p0 p1 p2 p3 p4 p5] :⟷	Rod[F0 F1 p0 p1 p2 p3 p4 p5] 
								          ∧	 PushingForce[F0 p0 p1 p4 p5] 
								          ∧	 PushingForce[F1 p2 p3 p5 p4]

Tie[F0 F1 p0 p1 p2 p3 p4 p5] :⟷	 Rod[F0 F1 p0 p1 p2 p3 p4 p5] 
								          ∧	 PullingForce[F0 p0 p1 p4 p5] 
								          ∧	 PullingForce[F1 p2 p3 p5 p4]

The following theorems are deduced from these definitions:

Rod[F0 F1 p0 p1 p2 p3 p4 p5] ⟷ (	Strut[F0 F1 p0 p1 p2 p3 p4 p5]  
								          ∨ 	Tie[F0 F1 p0 p1 p2 p3 p4 p5] )

ZeroRod[F0 F1 p0 p1 p2 p3 p4 p5] ⟷ (	 Strut[F0 F1 p0 p1 p2 p3 p4 p5]  
									           ∧	 Tie[F0 F1 p0 p1 p2 p3 p4 p5] )

(Strut[F0 F1 p0 p1 p2 p3 p4 p5] ∧ ¬ZeroRod[F0 F1 p0 p1 p2 p3 p4 p5])  
														              ⟷ ¬Tie[F0 F1 p0 p1 p2 p3 p4 p5]

figure 78 
two rods and 
three forces.

figure 79 
equivalent seven 

forces.
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strut-and-tie networks�  · Each set of forces {F0, F1, F2, …, Fn} is said to be a 
“strut-and-tie network” if

(a)	 no point is both a point of application of a force belonging to this set and 
a point of application of a force not belonging to this set;

(b)	 no rod — i.e. a Rod relationship — is simultaneously formed by a force 
that belongs to this set and by another force that does not belong to this 
set.

Since the two forces composing a rod exist as soon as this rod exists, these 
two forces must also be taken into account in (a). On the basis of this defini-
tion, it can be deduced that:

 •	any strut-and-tie network is a force network
 •	for any point p0, if the relationship Rod[F0 F1 p0 p1 p2 p3 p4 p5] is verified, 

then the two relationships Force[F0 p0 p1 p4 p5] and Force[F1 p2 p3 p5 p4] 
belong to a same strut-and-tie network
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sub-network hulls�  ·  The identification of particular force sub-networks 
inside strut-and-tie networks can easily be performed by listing the set of 
application points of the forces concerned. Hence the hull that includes all 
these points of application characterise the force sub-network graphically. 
The use of sub-network hulls will be of great help in the next sub-section. 
Some examples are shown in figure 80.

figure 80 
(left) sub-network 

hulls and (right) 
their correspond-

ing force 
sub-networks.
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definition of other physical objects�  · Like rods and the Rod relationship, 
many structural objects can be defined as non-fundamental relationships 
implementing geometric rules of force networks in static equilibrium. Two 
examples are shown here: a basic shear-panel and a simple pulley. Once 
defined, these relationships can be used directly as objects whose inter-
nal functioning does not have to be known. In other words, these relation-
ships build a layer of abstraction over the elementary Force, Proximity and 
Laterality relationships. Moreover, new abstract objects can themselves be 
combined into more complex objects, adding an additional layer of abstrac-
tion to the geometric construction.

figure 81 
a basic 
shear-panel 
object ready to be 
used.

figure 82 
the geometric 
pattern of the 
BasicShearPanel 
relationship.

figure 83 
application 
example of a 
BasicShearPanel 
object.
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The basic shear panel (figure 81) here is equivalent to four forces holding the 
following geometric properties (figure 82):

BasicShearPanel[F0 F1 F2 F3 p0 p1 p2 p3 p4 p5 p6 p7 p8 p9] : 
	 ⟷ ∃pA pB :	 Rod[F0 F1 p0 p6 p1 p8 p4 p3] ∧ Rod[F2 F3 p0 p7 p2 p9 p5 p4] 
				       ∧	Laterality[p1 p2 p3 p5] ∧ Laterality[p1 p2 p5 p3] 
				       ∧	Laterality[p1 p2 pA pB] ∧ Laterality[p1 p2 pB pA]

				       ∧	Proximity[p0 pA p0 p1] ∧ Proximity[p0 p1 p0 pA] 
				       ∧	Proximity[pA p1 p0 p1] ∧ Proximity[p0 p1 pA p1] 
				       ∧	Laterality [pA p0 p0 p1]

				       ∧	Proximity[p0 pB p0 p1] ∧ Proximity[p0 p1 p0 pB] 
				       ∧	Proximity[pB p1 p0 p1] ∧ Proximity[p0 p1 pB p1] 
				       ∧	Laterality [pB p1 p1 p0]

An example of the most direct application of this object is illustrated in 
figure 83.

In the same way, a pulley can be defined as three forces that hold particu-
lar geometric conditions. An object pulley is shown in both diagrams in 
figure 84 and figure 85 shows the forces equivalent to this geometrical ob-
ject. An example of an application is shown in figure 86. The definition of the 
Pulley relationship is as follows:

Pulley[F0 F1 F2 p0 p1 p2 p3 p4 p5 p6 p7 p8] : 
	 ⟷ ∃pA pB : Force[F0 p0 p1 p6 p7] ∧ Force[F1 p2 p3 p7 p8] ∧ Force[F2 p4 p5 p8 p6] 
				       ∧	Laterality[p0 p2 p2 p4] ∧ Laterality[p0 p2 p4 p2] 
				       ∧	Proximity[p0 p2 p0 p4] ∧ Proximity[p0 p4 p0 p2] 
				       ∧	Laterality[p8 p6 p6 p7] ∧ Laterality[p8 p6 p7 p6] 
				       ∧	Proximity[p6 p8 p7 p8] ∧ Proximity[p7 p8 p6 p8]

				       ∧	Laterality[p6 p7 pA pB] ∧ Laterality[p6 p7 pB pA]

				       ∧	Proximity[p0 pA p0 p2] ∧ Proximity[p0 p2 p0 pA] 
				       ∧	Proximity[pA p2 p0 p2] ∧ Proximity[p0 p2 pA p2] 
				       ∧	Laterality [pA p0 p0 p2]

				       ∧	Proximity[p0 pB p0 p2] ∧ Proximity[p0 p2 p0 pB] 
				       ∧	Proximity[pB p2 p0 p0] ∧ Proximity[p0 p2 pB p2] 
				       ∧	Laterality [pB p2 p2 p0]
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figure 84 
a basic pulley 
object ready to be 
used.

figure 85 
the geometric 
pattern of the 
Pulley relation-
ship.

figure 86 
application 
example of a 
Pulley object.
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12	static equilibrium

This sub-section augments the axioms developed in the previous sub-sections 
in order to ensure static equilibrium. First it identifies the minimum condition 
required to guarantee the static equilibrium of strut-and-tie networks. It then 
defines four new axioms that reflect this condition geometrically. Lastly, the 
use of these axioms is illustrated using a brief example.

classical definition of static equilibrium�  · The concept of static equilib-
rium is usually defined in literature as follows: “a system of coplanar forces 
is in equilibrium if, and only if, (a) its resultant is zero, and (b) the algebraic 
sum of the moments of all its forces is zero about any point in its plane.” 
(Ziwet/Field·1912, page 165). In an abbreviated fashion, it means that a body 
is in static equilibrium if the following two conditions are satisfied:

(a)	 translational equilibrium:		 ∑(Forces applied on the body) = 0 
(b)	 rotational equilibrium:	 	 ∑(Moments applied on the body) = 0

simplified definition of static equilibrium for strut-and-tie net-
works�  ·  Since bodies are exclusively strut-and-tie networks, the definition 
can be simplified as follows:

“A strut-and-tie network is in static equilibrium if the sum of all the 
forces applied on each point of this network is zero.”
Using the fact that a sum of forces is zero if its drawing in the force diagram is 
a closed polygon, using the definition of “minimum force network” presented 
in the paragraph entitled “force networks” (page  85), and using the fact 
that rods can be entirely defined with just forces and geometric rules, this 
definition can be explained further:

“A strut-and-tie network is in static equilibrium if each minimum force 
network it contains produces a closed polygon in the force diagram.”
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It is possible to provide a quick proof of these simplifications by recalling the 
following corollary of the classical definition of static equilibrium: “If a body 
is in static equilibrium, every part of this body is also in equilibrium”.

Since (1) the only way to modify the equilibrium of a body is to change the 
forces applied on it and since (2) a force here is always applied on a point, then, 
to guarantee the equilibrium of a strut-and-tie network is tantamount to en-
suring the equilibrium of each point of this network. Considering each point 
individually, its rotational equilibrium is systematically satisfied because the 
lever arm of applied forces about the point itself is zero. In other words, mo-
ments do not have to be checked. The only condition to satisfy is to ensure 
that the vectorial sum of forces applied on each point of the strut-and-tie net-
work, i.e. each minimum force network, is zero.

To secure this condition for any kind of minimum force network, i.e. for any 
quantity, magnitude and orientation of forces, the choice has been made to 
introduce four complementary axioms: Ax.23 describes the rule guaranteeing 
the static equilibrium of a simple minimum force network and Ax.24, Ax.25 
and Ax.26 propose a method to transform this simple network into any kind 
of minimum force network in static equilibrium iteratively. Forces applied on 
various points in the space diagram can then be linked by rods using the Rod 
relationship. The resulting strut-and-tie network is guaranteed to be in static 
equilibrium.

existence of a force network in equilibrium�  ·  The first axiom (Ax.23) 
describes a simple case of equilibrium that is always proved to be true. This 
case is chosen to be the zero force (figure 87):

Ax.23 — existence of a zero force: 
	 (FormDiagramMembership[p0] ∧ ForceDiagramMembership[p1] )  
															               ⟶ ∃ F0: Force[F0 p0 p0 p1 p1]

figure 87 
axiom Ax.23, 
existence of a 
zero force.
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Other basic cases of static equilibrium that can be used instead of a zero force 
are, for instance, two forces in static equilibrium around a point (figure 88) 
or three forces in static equilibrium around a point (figure 89). The following 
variants are therefore always true:

Ax.23 (variant a) — existence of two forces in static equilibrium: 
	 (	 FormDiagramMembership[p0] 
	   ∧	 ForceDiagramMembership[p2] 
	   ∧	 ForceDiagramMembership[p3])  
							       ⟶ ∃ F0F1p1p4: Force[F0 p0 p1 p2 p3] ∧ Force[F1 p0 p4 p3 p2]

Ax.23 (variant b) — existence of three forces in static equilibrium: 
	 (	 FormDiagramMembership[p0] 
	   ∧	 ForceDiagramMembership[p2] 
	   ∧	 ForceDiagramMembership[p3] 
	   ∧	 ForceDiagramMembership[p5] )  
		  ⟶ ∃ F0F1F2p1p4p6 :  
				    Force[F0 p0 p1 p2 p3] ∧ Force[F1 p0 p4 p3 p5] ∧ Force[F2 p0 p6 p5 p2]

parallelogram of forces� · The second axiom (Ax.24) describes how to resolve 
a force (figure 90) into two components (figure 91) with the help of the paral-
lelogram rule (Benvenuto·1985):

Ax.24 — parallelogram of forces: 
	 Force[F0 p0 p1 p2 p3] ⟷ Force[F1 p0 p4 p2 p5] ∧ Force[F2 p0 p6 p5 p3]

This axiom is the only device that allows a force network to be transformed 
into a new one. The force F0 is the resultant and the forces F1 and F2 are the 
two force components. 

figure 88 
two forces in 

static equilibrium 
around a point 
— axiom Ax.23 

variant a.

figure 89 
three forces in 

static equilibrium 
around a 

point— axiom 
Ax.23 variant b.
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Ax.24 could have been defined more generally. However, a more general defi-
nition would not be compatible with the axiom Ax.27 (page 109) developed in 
the next sub-section.

The transformation rule defined by Ax.24 has to be channelled by two new 
axioms in order to be used properly. Firstly, a force cannot be regarded as two 
different resultants, or in other words, a force cannot be the resultant of two 
different pairs of forces:

Ax.25 — univocal definition of resultants: 
	  (	 (Force[F0 p0 p1 p2 p3] ⟷ Force[F1 p0 p4 p2 p5] ∧ Force[F2 p0 p6 p5 p3]) 
	   ∧	 (Force[F0 p0 p1 p2 p3] ⟷ Force[F3 p0 p7 p2 p8] ∧ Force[F4 p0 p9 p8 p3])  )

			   ⟶ (Equipollence[F1 F3] ∧ Equipollence[F2 F4])

Secondly, a component cannot be used two form two different resultants, or in 
other words, two forces cannot be resolved into a same force:

Ax.26 — univocal definition of force components: 
	  (	 (Force[F0 p0 p1 p2 p3] ⟷ Force[F1 p0 p4 p2 p5] ∧ Force[F2 p0 p6 p5 p3]) 
	   ∧	 (Force[F3 p0 p7 p2 p8] ⟷ Force[F1 p0 p4 p2 p5] ∧ Force[F4 p0 p9 p5 p8])  )

			   ⟶ Equipollence[F0 F3] 

Equivalence of Ax.23 and its variants� · The equivalence of axiom Ax.23 with 
its two variants can now be proved by applying Ax.24 once (figure 92) or twice 
(figure 93) on Ax.23 (figure 87): 

Force[F0 p0 p1 p2 p2] 
⟷ Force[F1 p0 p3 p2 p4] ∧ Force[F2 p0 p5 p4 p2] 
⟷ Force[F1 p0 p3 p2 p4] ∧ Force[F3 p0 p6 p4 p7] ∧ Force[F4 p0 p8 p7 p2]

figure 90 
a force before 
being resolved 
into two 
components.

figure 91 
two components 
of the force in 
figure 90.
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To apply axiom Ax.24 again would increase the number of forces acting on p0 
without ever affecting the closed nature of the force polygon.

proof of static equilibrium� · If all the n forces in a given network are unique 
—  i.e. if for all i and j that belong to [0,n[ such that i≠j, ¬Equipollence[Fi Fj] is 
verified  — unless explicitly stated by a Equipollence[FA FB] relationship, then 
any logical sentence satisfying the previous axioms is expected to describe a 
force network in static equilibrium. 

As an illustration, the following lines initially describe a strut-and-tie net-
work and then proves it to be in static equilibrium by using Ax.23 and Ax.24 
(figure 94):

describing the strut-and-tie network: 
	 Force[F0 p0 p1 p6 p7] ∧ Force[F1 p2 p3 p7 p8] ∧ Force[F2 p4 p5 p8 p6] 
   ∧	Rod[F3 F4 p0 p10 p2 p11 p7 p9] 
   ∧	Rod[F5 F6 p2 p12 p4 p13 p8 p9]  
   ∧	Rod[F7 F8 p4 p14 p0 p15 p6 p9]

using the definition of the Rod relationship: 
 ⟶	Force[F0 p0 p1 p6 p7] ∧ Force[F1 p2 p3 p7 p8] ∧ Force[F2 p4 p5 p8 p6] 
   ∧	Force[F3 p0 p10 p7 p9] ∧ Force[F4 p2 p11 p9 p7] 
   ∧	Force[F5 p2 p12 p8 p9] ∧ Force[F6 p4 p13 p9 p8] 
   ∧	Force[F7 p4 p14 p6 p9] ∧ Force[F8 p0 p15 p9 p6]

grouping forces by points of applications: 
 ⟶	Force[F0 p0 p1 p6 p7]	 ∧ Force[F3 p0 p10 p7 p9]	 ∧ Force[F8 p0 p15 p9 p6] 
   ∧	Force[F1 p2 p3 p7 p8]	 ∧ Force[F4 p2 p11 p9 p7]	 ∧ Force[F5 p2 p12 p8 p9] 
   ∧	Force[F2 p4 p5 p8 p6]	 ∧ Force[F6 p4 p13 p9 p8]	 ∧ Force[F7 p4 p14 p6 p9]

figure 92 
first application 

of Ax.24 upon 
Ax.23.

figure 93 
second 

application of 
Ax.24 upon Ax.23.
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applying Ax.24: 
 ⟶	Force[FA p0 pA p6 p9]	 ∧ Force[F8 p0 p15 p9 p6] 
   ∧	Force[FB p2 pB p9 p8]	 ∧ Force[F5 p2 p12 p8 p9] 
   ∧	Force[FC p4 pC p9 p6]	 ∧ Force[F7 p4 p14 p6 p9]

applying Ax.24 again: 
 ⟶	Force[FD p0 pD p6 p6] ∧ Force[FE p2 pE p8 p8] ∧ Force[FF p4 pF p9 p9]

applying Ax.23: 
 ⟶	true

The following lines use the same proof technique to identify one of the suf-
ficient conditions for the network of figure 95 to be in static equilibrium:

describing the force network: 
	 Force[F0 p0 p1 p2 p3] ∧ Force[F1 p0 p4 p3 p5]  
   ∧	Force[F2 p0 p6 p3 p2] ∧ Force[F3 p0 p7 p5 p2]

applying Ax.24 such that F1+F3=F4: 
	 Force[F0 p0 p1 p2 p3] ∧ Force[F2 p0 p6 p3 p2] ∧ Force[F4 p0 p6 p3 p2]

It is worth noting that F2 and F4 cannot be amalgamated because no relation-
ship explicitly states it, in other words: F2≠F4 or ¬Equipollence[F2 F4]. Also, F0 
cannot be duplicated — i.e. it cannot be added to F2 and added again to F4 — 
because (1) Ax.26 would imply that F0+F2=FA and that F0+F4=FA and (2) it would 
force Ax.25 to be false since F2≠F4. Consequently, one way to continue the dem-
onstration is to apply Ax.24 again. For instance:

applying Ax.24 such that F0+F2=F5: 
	 Force[F5 p0 p5 p2 p2] ∧ Force[F4 p0 p6 p3 p2]

applying Ax.19 (page 83): 
	 Force[F5 p0 p0 p2 p2] ∧ Force[F4 p0 p6 p3 p2]

applying Ax.23 (page 100):: 
	 Force[F4 p0 p6 p3 p2]

figure 94 
a strut-and-tie 
network in static 
equilibrium.
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This last relationship is only satisfied if Coincidence[p2 p3] is true, meaning that 
axioms Ax.19 and Ax.23 can then be used again and prove that the original sen-
tence is true. In other words, points p2 and p3 must be coincident if the force 
network has to be in static equilibrium.

As a final note about static equilibrium, it is acknowledged that Ax.23 to Ax.26 
are independent of whether forces exert a pull or a push on the application 
point.

figure 95 
a force network 

that is not in 
static equilib-

rium.
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13	uniform reading cycle

This sub-section introduces the last axiom, firstly providing a definition of it 
and then presenting its direct implications. The need for this axiom is subse-
quently explained. This explanation leads to the identification of an equiva-
lent axiom. Lastly, further consequences of this axiom are developed.

clockwise reading cycle of minimum force networks�  ·   This new axiom 
takes three successive forces in the force diagram and describes the geo-
metric condition that p2, i.e. the point defining the type of application of the 
second force, must satisfy in the form diagram so that the three forces are 
read clockwise in the form diagram, in the same order as described in the 
force diagram.

First, the axiom defines three forces that are applied on the same point p0 
in the form diagram and that are consecutive in the force diagram, without 
thereby forming a closed polygon, i.e. other forces might be applied on p0 as 
well:

Force[F0 p0 p1 p4 p5] ∧ Force[F1 p0 p2 p5 p6] ∧ Force[F2 p0 p3 p6 p7]

The axiom then says that p2 must be within the graphical region bordered 
by the previous and the next forces (figure 96 and figure 97). Given that the 
angle between these two forces is acute or obtuse, the corresponding region 
is either the intersection or the union of two half-planes. These two cases are 
taken into account in a generic manner by defining points p8 and p9 such that 
they are coincident to p1 and p3 when the angle is acute (figure 97) and such 
that they divide the angle into three sections when it is obtuse (figure 96). 
Point p8 is consequently defined by the following sentence:

Laterality[p8 p0 p0 p1] ∧ Laterality[p8 p0 p1 p0] 
	 ∧ Proximity[p8 p0 p0 p1] ∧ Proximity[p0 p1 p8 p0] 
	 ∧(¬Proximity[p3 p0 p0 p0] ∨ ¬Proximity[p8 p1 p1 p1] ∨ Proximity[p8 p0 p0 p0]) 
	 ∧(Proximity[p3 p0 p0 p0] ∨ ¬Laterality[p8 p0 p3 p0] ∨ Proximity[p8 p0 p0 p0])
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and point p9 by:

Laterality[p9 p0 p0 p3] ∧ Laterality[p9 p0 p3 p0] 
	 ∧ Proximity[p9 p0 p0 p3] ∧ Proximity[p0 p3 p9 p0] 
	 ∧(¬Proximity[p1 p0 p0 p0] ∨ ¬Proximity[p9 p3 p3 p3] ∨ Proximity[p9 p0 p0 p0]) 
	 ∧(Proximity[p1 p0 p0 p0] ∨ ¬Laterality[p9 p0 p0 p1] ∨ Proximity[p9 p0 p0 p0])

The need for the last two lines of both definitions will be explained in the 
paragraph entitled “particular cases” (page 110).

Given p8 and p9, p2 must hold the following disjunction of conjunctions in order 
for the three forces to be read clockwise:

	 ( Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p9] ) 
  ∨	 ( Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p3] ) 
  ∨	 ( Laterality[p2 p0 p8 p0] ∧ Laterality[p2 p0 p0 p3] )

figure 96 
Ax.27: the grey 
area is the obtuse 
section in which 
point p2 must stay 
in order to ensure 
a clockwise 
reading of the 
forces in the form 
diagram.

figure 97 
Ax.27: the grey 
area is the acute 
section in which 
point p2 must stay 
in order to ensure 
a clockwise 
reading of the 
forces in the form 
diagram.
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As a result, the entire axiom is written as follows:

Ax.27 — local reading cycle of forces: 
	 ( Force[F0 p0 p1 p4 p5] ∧ Force[F1 p0 p2 p5 p6] ∧ Force[F2 p0 p3 p6 p7] ) 
	 ⟶ ∃pApB:  
		  (	 (Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 pB]) 
		     ∨	(Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p3]) 
		     ∨	(Laterality[p2 p0 pA p0] ∧ Laterality[p2 p0 p0 p3])  )

		  ∧ Laterality[pA p0 p0 p1] ∧ Laterality[p8 p0 p1 p0] 
		  ∧ Proximity[pA p0 p0 p1] ∧ Proximity[p0 p1 pA p0] 
		  ∧(¬Proximity[p3 p0 p0 p0] ∨ ¬Proximity[pA p1 p1 p1] ∨ Proximity[pA p0 p0 p0]) 
		  ∧(Proximity[p3 p0 p0 p0] ∨ ¬Laterality[pA p0 p3 p0] ∨ Proximity[pA p0 p0 p0])

		  ∧ Laterality[pB p0 p0 p3] ∧ Laterality[pB p0 p3 p0] 
		  ∧ Proximity[pB p0 p0 p3] ∧ Proximity[p0 p3 pB p0] 
		  ∧(¬Proximity[p1 p0 p0 p0] ∨ ¬Proximity[pB p3 p3 p3] ∨ Proximity[pB p0 p0 p0]) 
		  ∧(Proximity[p1 p0 p0 p0] ∨ ¬Laterality[pB p0 p0 p1] ∨ Proximity[pB p0 p0 p0])

This axiom does not explicitly prevent a fourth force in the form diagram 
from being between the first and the third forces as well. However, this case 
is impossible since the axiom rules every triplet of consecutive forces in the 
form diagram. For example, figure 98 shows five forces applied on a point p0. 

According to the force polygon in the force diagram, the reading cycle in the 
form diagram is {F0 F1 F2 F3 F4}.

The axiom therefore holds five times:
(a)	 F1 must be clockwise after F0 and before F2

(b)	 F2 must be clockwise after F1 and before F3

(c)	 F3 must be clockwise after F2 and before F4

(d)	 F4 must be clockwise after F3 and before F0

(e)	 F0 must be clockwise after F4 and before F1

figure 98 
five consecutive 

forces read 
clockwise.
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Consequently, force F3, for instance, will never be between F0 and F1 or be-
tween F1 and F2 since condition (b) means F3 has to be clockwise after F2 and 
condition (c) means F3 has to be clockwise before F4. This comment is appli-
cable to all the forces applied on the same point, regardless of their quantity.

particular cases�  ·  This paragraph examines five particular behaviours of 
axiom Ax.27: (1) when it does not constrain the type of application of the force, 
(2) when the previous force is zero, (3) when the previous and the next force 
are zero, (4) when all the forces applied are zero forces, and (5) when there are 
only two forces applied.

(1)	 In some cases, the second of three consecutive forces remains after the 
first and before the third regardless of whether it exerts a pull (figure 99) or a 
push (figure 100). As a consequence, the point defining the type of application 
of the second force, i.e. p2, has two possible positions. The definition of Ax.27 
intrinsically takes this possibility into account.

figure 99 
in grey, the 
region in which 
p2 must stay in 
order to ensure a 
clockwise 
reading cycle; the 
force defined by 
p2 exerts a pull.

figure 100 
in grey, the 
region in which 
p2 must stay in 
order to ensure a 
clockwise 
reading cycle; the 
force defined by 
p2 exerts a push.
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(2)	 Axiom Ax.27 remains sufficient to guarantee a clockwise reading cycle 
when the preceding force (or the following one) is zero. The following illustra-
tion is based on the cycle {F0 F1 F2 F3 F4} consisting of the following forces:

Force[F0 p0 p1 p6 p7] 
Force[F1 p0 p2 p7 p8] 
Force[F2 p0 p3 p8 p9] 
Force[F3 p0 p4 p9 p10] 
Force[F4 p0 p5 p10 p6]

When F0 is a zero force, points p6 and p7 are coincident and, according to Ax.19 
(page 83), p0 and p1 are also coincident. It follows that the application of 
Ax.27 for the series {F0 F1 F2} does not condition p2 at all and is consequently 
superfluous (figure 101):

Ax.27

⟶ ( Force[F0 p0 p0 p6 p6] ∧ Force[F1 p0 p2 p6 p8] ∧ Force[F2 p0 p3 p8 p9] 
		  ⟶ ∃p11p12: (	 (Laterality[p2 p0 p0 p0] ∧ Laterality[p2 p0 p0 p12]) 
					        ∨	(Laterality[p2 p0 p0 p0] ∧ Laterality[p2 p0 p0 p3]) 
					        ∨	(Laterality[p2 p0 p11 p0] ∧ Laterality[p2 p0 p0 p3])  )

		  ∧ Laterality[p11 p0 p0 p0] ∧ Laterality[p8 p0 p0 p0] 
		  ∧ Proximity[p11 p0 p0 p0] ∧ Proximity[p0 p0 p11 p0] 
		  ∧(¬Proximity[p3 p0 p0 p0] ∨¬Proximity[p11 p0 p0 p0]∨ Proximity[p11 p0 p0 p0]) 
		  ∧(Proximity[p3 p0 p0 p0] ∨¬Laterality[p11 p0 p3 p0]∨ Proximity[p11 p0 p0 p0])

		  ∧ Laterality[p12 p0 p0 p3] ∧ Laterality[p12 p0 p3 p0] 
		  ∧ Proximity[p12 p0 p0 p3] ∧ Proximity[p0 p3 p12 p0] 
		  ∧(¬Proximity[p0 p0 p0 p0] ∨¬Proximity[p12 p3 p3 p3]∨ Proximity[p12 p0 p0 p0]) 
		  ∧(Proximity[p0 p0 p0 p0] ∨ ¬Laterality[p12 p0 p0 p0] ∨ Proximity[p12 p0 p0 p0])

⟷ (Force[F1 p0 p2 p6 p8] ∧ Force[F2 p0 p3 p8 p9]  
		  ⟶ ∃p11 p12: ( Laterality[p2 p0 p0 p12] ∨ Laterality[p2 p0 p0 p3] ) 
					     ∧ Proximity[p11 p0 p0 p0] 
					     ∧ Laterality[p12 p0 p0 p3] ∧ Laterality[p12 p0 p3 p0] 
					     ∧ Proximity[p12 p0 p0 p3] ∧ Proximity[p0 p3 p12 p0] 
					     ∧ ¬Proximity[p12 p3 p3 p3] )

figure 101 
behaviour of 

Ax.27 when the 
first of the three 

consecutive 
forces is a zero 

force.
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⟷ (Force[F1 p0 p2 p6 p8] ∧ Force[F2 p0 p3 p8 p9]  
		  ⟶ ∃p11 p12: Proximity[p11 p0 p0 p0] 
					     ∧ Laterality[p12 p0 p0 p3] ∧ Laterality[p12 p0 p3 p0] 
					     ∧ Proximity[p12 p0 p0 p3] ∧ Proximity[p0 p3 p12 p0] 
					     ∧ ¬Proximity[p12 p3 p3 p3] )

⟷ (Force[F1 p0 p2 p6 p8] ∧ Force[F2 p0 p3 p8 p9] ⟶ true )

⟷ true

However, since p6 and p7 are coincident, axiom Ax.27 also holds for the series 
{F4 F1 F2} which in turn constrains the position of p2 (figure 101):

Force[F4 p0 p5 p10 p6] ∧ Force[F1 p0 p2 p6 p8] ∧ Force[F2 p0 p3 p8 p9] 
	 ⟶ ∃p11p12: (	 (Laterality[p2 p0 p5 p0] ∧ Laterality[p2 p0 p0 p12] ) 
				       ∨	( Laterality[p2 p0 p5 p0] ∧ Laterality[p2 p0 p0 p3] ) 
				       ∨	( Laterality[p2 p0 p13 p0] ∧ Laterality[p2 p0 p0 p3] ) ) 
			   ∧ …

(3)	 Axiom Ax.27 still remains sufficient to guarantee a clockwise reading cycle 
when the preceding and following forces are zero. If F0 and F2 are two zero 
forces, then points p6 and p7 are coincident and points p8 and p9 are coincident. 
According to Ax.19, p0 and p1 are consequently coincident, as are p0 and p3. 
This means that the application of Ax.27 for the series {F0 F1 F2} does not condi-
tion p2 at all and is superfluous. But since points p6 and p7 are coincident and 
points p8 and p9 are coincident, axiom Ax.27 also holds for the series {F4 F1 F3} 
which in turn constrains the position of p2 (figure 102).

figure 102 
behaviour of 
Ax.27 when the 
first and the third 
of the three 
consecutive 
forces are a zero 
force.
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(4)	 Axiom Ax.27 also remains consistent when all the forces applied on a point 
are zero forces. Indeed, Ax.27 is totally superfluous in that case since it is 
always satisfied:

Ax.27

⟶ (Force[F0 p0 p0 p1 p1] ∧ Force[F1 p0 p0 p1 p1] ∧ Force[F2 p0 p0 p1 p1] 
		  ⟶ ∃p2p3: (	 ( Laterality[p0 p0 p0 p0] ∧ Laterality[p0 p0 p0 p2] ) 
					        ∨	( Laterality[p0 p0 p0 p0] ∧ Laterality[p0 p0 p0 p0] ) 
					        ∨	( Laterality[p0 p0 p3 p0] ∧ Laterality[p0 p0 p0 p0] ) )

				    ∧ Laterality[p2 p0 p0 p0] ∧ Laterality[p2 p0 p0 p0] 
				    ∧ Proximity[p0 p2 p0 p0] ∧ Proximity[p0 p0 p0 p2] 
				    ∧ ( ¬Proximity[p0 p0 p0 p0] ∨ ¬Proximity[p2 p0 p0 p0]  
															               ∨ Proximity[p2 p0 p0 p0] ) 
				    ∧ ( Proximity[p0 p0 p0 p0] ∨ ¬Laterality[p2 p0 p0 p0]  
															               ∨ Proximity[p2 p0 p0 p0] )

				    ∧ Laterality[p3 p0 p0 p0] ∧ Laterality[p3 p0 p0 p0] 
				    ∧ Proximity[p0 p3 p0 p0] ∧ Proximity[p0 p0 p0 p3] 
				    ∧ ( ¬Proximity[p0 p0 p0 p0] ∨ ¬Proximity[p3 p0 p0 p0]  
															               ∨ Proximity[p3 p0 p0 p0] ) 
				    ∧ ( Proximity[p0 p0 p0 p0] ∨ ¬Laterality[p3 p0 p0 p0]  
															               ∨ Proximity[p3 p0 p0 p0] ) )

⟷ ( true ⟶ ∃p2p3: ( Laterality[p0 p0 p0 p2] ∨ Laterality[p0 p0 p3 p0] ) 
					     ∧ Proximity[p0 p2 p0 p0] ∧ Proximity[p0 p3 p0 p0] )

⟷ ( true ⟶ Laterality[p0 p0 p0 p0] ∨ Laterality[p0 p0 p0 p0] )

⟷ true

(5)	 When only two forces are applied on a point, the concept of a reading cycle 
is meaningless and axiom Ax.27 must always be verified. The following state-
ments prove it (figure 103):

Ax.27

⟶ ( Force[F0 p0 p1 p3 p4] ∧ Force[F1 p0 p2 p4 p3] ∧ Force[F0 p0 p1 p3 p4] 
			   ⟶ ∃p5p6: (	 ( Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p5] ) 
						         ∨	( Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p1] ) 
						         ∨	( Laterality[p2 p0 p6 p0] ∧ Laterality[p2 p0 p0 p1] )  ) 
					     ∧ Laterality[p5 p0 p0 p1] ∧ Laterality[p5 p0 p1 p0] 
					     ∧ Proximity[p0 p5 p0 p1] ∧ Proximity[p0 p1 p0 p5] 
					     ∧ ( ¬Proximity[p1 p0 p0 p0] ∨ ¬Proximity[p5 p1 p1 p1]  
															               ∨ Proximity[p5 p0 p0 p0]) 
					     ∧ ( Proximity[p1 p0 p0 p0] ∨ ¬Laterality[p5 p0 p1 p0]  
															               ∨ Proximity[p5 p0 p0 p0])
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					     ∧ Laterality[p6 p0 p0 p1] ∧ Laterality[p6 p0 p1 p0] 
					     ∧ Proximity[p0 p6 p0 p1] ∧ Proximity[p0 p1 p0 p6] 
					     ∧ ( ¬Proximity[p1 p0 p0 p0] ∨ ¬Proximity[p6 p1 p1 p1]  
															               ∨ Proximity[p6 p0 p0 p0]) 
					     ∧ ( Proximity[p1 p0 p0 p0] ∨ ¬Laterality[p6 p0 p0 p1]  
															               ∨ Proximity[p6 p0 p0 p0]) )

⟷ ( Force[F0 p0 p1 p3 p4] ∧ Force[F1 p0 p2 p4 p3] 
			   ⟶ ∃p5p6: (	 ( Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p5] ) 
						         ∨	( Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p1] ) 
						         ∨	( Laterality[p2 p0 p6 p0] ∧ Laterality[p2 p0 p0 p1] ) ) 
					     ∧ Proximity[p5 p2 p2 p2] ∧ Proximity[p6 p2 p2 p2] )

⟷ ( Force[F0 p0 p1 p3 p4] ∧ Force[F1 p0 p2 p4 p3] 
			   ⟶ 	( Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p2] ) 
			      ∨	( Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p1] ) 
			      ∨	( Laterality[p2 p0 p2 p0] ∧ Laterality[p2 p0 p0 p1] ) ) 

⟷ (Force[F0 p0 p1 p3 p4] ∧ Force[F1 p0 p2 p4 p3]) 
			   ⟶ ( Laterality[p2 p0 p1 p0] ∧ Laterality[p2 p0 p0 p1] )

⟶ true

In short, these five particular cases shed light on the internal geometric rea-
sons of axiom Ax.27. The following paragraph shows that the local reading 
cycles expressed in Ax.27 involve global reading cycles and the paragraph 
after that identifies the extent to which uniform global reading cycles are 
mandatory.

why imposing a uniform reading cycle locally involves a uniform read-
ing cycle globally�  · This paragraph explains how Ax.27 compels the forces 
applied on any strut-and-tie sub-network to be read clockwise in the form 
diagram, according to the sequence in which they follow one another in the 
force diagram. Hence, it shows how a reading cycle condition applied on every 
minimum force sub-network influences any non-minimum strut-and-tie sub-
network containing them.

figure 103 
behaviour of 
Ax.27 when there 
are only two 
forces applied on 
a point.



geometric axiomatisation of graphic statics · 115

Given two points pA and pB and given two forces Fi and Fj respectively applied 
on pA and pB such that they are sufficiently compatible to form a rod, two 
cases might arise. Either (1) points pA and pB belong to two different strut-and-
tie networks (figure 104) or (2) they belong to a unique strut-and-tie network 
(figure 106, page 117). The following considerations show that, in both cas-
es, if the reading cycle of the forces applied on the sub-network(s) is clockwise 
when Fi and Fj are considered as two independent forces, then the reading 
cycle of the forces applied on the new network, obtained by assimilating Fi and 
Fj as a rod, is also clockwise.

(1)	 First case (figure 104). If the forces applied on the force sub-network con-
taining Fi are read clockwise in the form diagram, the previous force Fi-1 and 
the next force Fi+1 can be identified in both diagrams. Likewise, if the forces 
applied on the force sub-network containing Fj are read clockwise in the form 

figure 104 
first case before 
treating forces Fi 

and Fj as a rod.

figure 105 
first case after 

transforming 
forces Fi and Fj 

into a rod.
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diagram, the previous force Fj-1 and the next force Fj+1 can be identified in both 
diagrams. The sequence of forces from Fi+1 to Fi-1 is named S1 and the sequence 
of forces from Fj+1 to Fj-1 is named S2.

As forces Fi and Fj are aligned in the form diagram and are of equal orienta-
tion and magnitude, they can be identified as a rod (figure 105). Whatever the 
sequences S1 and S2, the following properties still hold in the force diagram 
once the forces Fi and Fj are identified as a rod:

(a)	 sequence S1 spans from Fi+1 to Fi-1

(b)	 sequence S2 spans from Fj+1 to Fj-1

(c)	 force Fj-1 is read just before Fi+1

(d)	 force Fi-1 is read just before Fj+1

Since the same four properties can also be identified in the form diagram, 
the reading cycle of the forces acting on the global force network is indeed 
clockwise.

(2)	 Second case (figure 106). If the forces applied on the force sub-network 
containing Fi and Fj are read clockwise in the form diagram, forces Fi-1, Fi+1, Fj-1 
and Fj+1 can be identified such that Fi succeeds Fi-1 and precedes Fi+1 and such 
that Fj succeeds Fj-1 and precedes Fj+1. The sequence of forces from Fi+1 to Fj-1 is 
named S3 and the sequence of forces from Fj+1 to Fi-1 is named S4.

As forces Fi and Fj are aligned in the form diagram and are of equal orienta-
tion and magnitude, they can be identified as a rod (figure 107). Whatever the 
sequences S3 and S4, the following properties still hold in the force diagram 
once the forces Fi and Fj are identified as a rod:

(a)	 sequence S3 spans from Fi+1 to Fj-1

(b)	 sequence S4 spans from Fj+1 to Fi-1

(c)	 force Fj-1 is read just before Fi+1

(d)	 force Fi-1 is read just before Fj+1

Since the same four properties can also be identified in the form diagram, 
the reading cycle of the forces acting on the global force network is indeed 
clockwise.

In conclusion, the following two facts jointly prove that any global strut-and-
tie network always presents a clockwise reading cycle when each minimum-
force network presents a clockwise reading cycle: 



geometric axiomatisation of graphic statics · 117

(a)	 any strut-and-tie network can be seen as a combination of all the mini-
mum force networks it contains (thanks to the definition of the Rod re-
lationship)

(b)	 when compatible forces are identified as rods, each of these minimum 
force networks reacts exactly as the initial sub-networks containing pA 
and pB shown in the two cases above.

Consequently, as soon as Ax.27 is verified for each minimum force network, a 
clockwise global reading cycle is ensured for any strut-and-tie network.

A practical example is shown in figure 109, figure 110 and figure 111. They are 
three possible strut-and-tie sub-networks of the truss depicted in figure 108. 
Each reading cycle is clockwise, regardless of the sub-network considered.

figure 106 
second case 

before consider-
ing forces Fi and 

Fj as a rod.

figure 107 
second case after 

transforming 
forces Fi and Fj 

into a rod.
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figure 108 
form and force 
diagrams of a 
truss; hulls 
correspond to the 
strut-and-tie 
sub-networks 
detailed in the 
three following 
figures.

figure 109 
clockwise 
reading cycle of 
the first 
strut-and-tie 
sub-network.

figure 110 
clockwise 
reading cycle of 
the second 
strut-and-tie 
sub-network.

figure 111 
clockwise 
reading cycle of 
the third 
strut-and-tie 
sub-network.
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historical review of reciprocity in graphic statics� · Prior to expressing the 
need for Ax.27, a historical review of what reciprocity means in graphic statics 
is given here. The reciprocal nature of form and force diagrams has under-
gone subtle developments over the years.

The first identifications of reciprocity were the ones stated by Wil-
liam John Macquorn Rankine in 1858 and James Clerk Maxwell in 1864 
(figure 32, page 49 and figure 112): 

“Two plane figures are reciprocal when they consist of an equal 
number of lines, so that corresponding lines in the two figures are parallel, 
and corresponding lines which converge to a point in one figure form a closed 
polygon in the other.” (Maxwell·1864, page 251)

Studying a strut-and-tie network and its inner forces with two reciprocal 
closed diagrams, such as those defined by Maxwell soon becomes tedious 
since external forces applied to the strut-and-tie are not drawn. This short-
coming was corrected immediately by Karl Culmann (Culmann·1866), Luigi 
Cremona (Cremona·1868) and James Clerk Maxwell himself (Maxwell·1867) by 
adding the representation of forces within both diagrams (figure 113).

This inclusion has the consequence of opening the form diagram. Indeed, 
each force in the form diagram is borne by an infinite half-line. If each poly-
gon in the force diagram is to be linked to a continuous set of rods and forces 
in the form diagram, then this set is sometimes a closed polygon, sometimes 
a region open to infinity. This is the reason why the definition of reciprocity 

figure 112 
illustration of the 

reciprocal rule 
for two different 

polygons 
(reworked figure 

from 
Maxwell·1864, 

page 253, 
figure 2).

figure 113 
two reciprocal 

diagrams 
according to 

Maxwell·1867 
(figure copied 

from 
Maxwell/…·1995 

pages 315 and 
316).
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given by Rankine and Maxwell was soon replaced by new conditions. For in-
stance, the following set of conditions for reciprocity is due to Robert Henry 
Bow (Bow·1873, page 52):

(1)	 “Corresponding lines, whether representing constituent parts of the 
frame, or external forces, which meet at a point in the frame, form a 
closed polygon in the [force] diagram.

(2)	 Corresponding lines which represent constituent parts of the frame, and 
form a closed polygon in it, meet in a point in the [force] diagram.

(3)	 The lines representing all the external forces acting on the frame should 
form a closed polygon in the [force] diagram.

(4)	 Lines — some of which represent external forces — which meet in a 
point in the [force] diagram, have the corresponding lines contiguous in 
the frame; but these may form a partial boundary to an infinite area [...].” 

In other words, these four conditions define reciprocity as a bijection between 
polygons or open areas and intersections of forces and rods (figure 114 and 
figure 115). However, they do not prevent a rod from being represented by 
more than one line in the force diagram or, in other words, they do not prevent 
opposite forces forming a rod from being nonadjacent in the force diagram. 

figure 114 
classical nature 
of reciprocity; 
intersection in 
the form diagram 
and correspond-
ing closed 
polygon in the 
force diagram.

figure 115 
classical nature 
of reciprocity; 
intersection in 
the force diagram 
and correspond-
ing open area in 
the form 
diagram.
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Bow consequently inserted a fifth condition to this list:
(5)	 “There should be only one line in the diagram of forces to represent any 

one force acting on the frame or in a part of it.”

Unlike the first four conditions, the fifth condition is not required for static 
equilibrium. It is just added for convenience: (a) corresponding force polygons 
are identified more easily, (b) diagrams are more compact and confusion be-
tween lines is avoided, and (c) the identification of rods in the force polygon is 
univocal since it is always equivalent to two opposite forces.

As clarified by Albert Pirard in 1950 (Pirard·1950, page 91), preventing forces 
from being drawn more than once in the force diagram, i.e. to guarantee Bow's 
fifth condition, can only be achieved if the following rule is observed: every 
polygon constituted of forces and rods in the force diagram must be read in 
an order that is identical to the order obtained when those forces and rods are 
read in the form diagram, either always clockwise or always anti-clockwise. 
The choice of clockwise or anti-clockwise order is a convention. What matters 
here is that it is always the same for every minimum force network.

The need for this additional rule can be illustrated with the figure 116 from 
Pirard·1950. Diagrams (II), (III) and (IV) are the force polygons corresponding 
to points A, D and E, respectively in the form diagram (I). Since these three 
sets of forces are read clockwise in the form diagram, their combination pro-

figure 116 
obligation to have 

a uniform 
reading cycle for 

each force 
polygon in order 

to prevent 
duplication of 

force in the force 
diagram; figure 

from Pirard·1950, 
page 91.
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duces a force diagram (V) where each pair of forces corresponding to one rod 
is superimposed. If, however, one set of forces (VI) is read anti-clockwise in 
the form diagram, the combination of multiple force polygons (VII) duplicates 
some lines representing one rod, e.g. F1, the force acting on rod 1, is repre-
sented twice in (VII).

the need for uniform reading cycles towards reciprocal diagrams�  · As 
far as the axiomatisation undergone in this section is concerned, the choice 
is made to make form and force diagrams fulfil the classical conditions for 
reciprocity, as for instance those stated by Bow·1873 (page 52). Axioms Ax.23 
and Ax.24 actually already ensure static equilibrium and bidirectional rela-
tionships between the intersection of forces and corresponding open areas 
or closed polygons,  i.e. they are equivalent to the first four conditions of 
Bow·1873, page 52. Axiom Ax.27 is therefore only meant to guarantee the 
uniqueness of forces in the force diagram, i.e. the fifth condition of Bow·1873. 

In other words, Ax.27 is meant to ensure that if two opposite forces are of 
equal magnitudes and are aligned in the form diagram, they are then super-
imposed in the force diagram. So, if two forces are compatible enough to be 
assimilated into a rod in the form diagram, they are also compatible for being 
assimilated into a rod in the force diagram. Therefore Ax.27 guarantees that 
the definition of the non-fundamental Rod relationship (page 91) contrib-
utes to the reciprocity of diagrams.

Without Ax.22, the visual expressiveness of pairs of forces capable of forming 
a rod would be less direct since it would imply the variation of the order in 
which forces succeed one another in each force polygon until one order means 
that all the compatible forces are superimposed.

Moreover, Ax.27 also makes the uniform reading cycle clockwise rather than 
anti-clockwise. 

As previously noted, the existence of Ax.27 expresses the need to make use of 
the points that define the application type of forces — the second parameter 
of each Force[p0 p1 p2 p3] relationship. See the paragraph entitled “an axiom to 
constrain the point that defines the application type of force” (page 82).
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why the definition of rod does not invalidate reciprocal rules� · When the 
Rod relationship is defined in the paragraph entitled “geometric definition 
of a rod” (page  87), a choice has been made to compel the two opposite 
forces in the form diagram to be placed between the two points of applications 
(figure 72, page 90) rather than outside them (figure 73, page 90) —  see 
condition (5) page 89 . The reason for this choice is due to the need for a 
global uniform reading cycle as imposed by Ax.27 — see the paragraph enti-
tled “why imposing a uniform reading cycle locally involves a uniform reading 
cycle globally” (page 114).

This can be shown by comparing two general networks involving a rod. Fi 
and Fj are the two forces that form that rod. In figure 117 the points defining 
their type of application, i.e. p1 and p5, are placed outside the extreme points 
of the rods, i.e. p0 and p4. In figure 118 they are placed between them. Owing 
to Ax.27, local uniform reading cycles must be clockwise and forces Fi-1, Fi+1, 
Fj-1 and Fj+1 can be localised in both diagrams so that they are respectively 
before and after Fi and Fj. However Ax.27 also leads to global uniform read-
ing cycles. As far as the global strut-and-tie network (including p0 and p4) is 
concerned, the force diagram shows that in both cases, Fj-1 comes before Fi+1 
and Fi-1 comes before Fj+1. However, only the case in figure 118 verifies this or-
der when reading the forces clockwise in the form diagram. This proves that 

figure 117 
two forces Fi and 
Fj unable to form 

a rod without 
breaking the 

reading cycle.

figure 118 
two forces Fi and 
Fj able to form a 

rod without 
breaking the 

reading cycle.
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the points defining the type of application of two forces forming a rod must 
always be placed between their application points, regardless of whether the 
forces exert a pull or a push.

why a uniform reading cycle imposes the absence of almost any inter-
section of rods in the space diagram�  · As a result of axioms Ax.19, Ax.24 
and Ax.27, it is impossible to have a strut-and-tie network that presents (1) the 
crossing of two rods in the form diagram, or (2) the crossing of a rod with a 
half-line of force in the form diagram, unless it is possible to move the points 
in the form diagram so that (a) the altered strut-and-tie network no longer 
contains an intersection of this kind, and (b) the reading cycles of the altered 
strut-and-tie network remain unchanged. However, the crossing of two half-
lines of force inside a unique strut-and-tie network does not endanger the 
reciprocity of both diagrams.

The only way to build these crossings is to divide the rod concerned in two 
— the parallelism of the two parts of the rod being ensured by appropriate 
geometric relationships — or to duplicate the forces concerned.

The six following examples outline these various scenarios and define means 
of rectification:

(1)	 an impossible strut-and-tie network due to the crossing of two rods in 
the form diagram

(2)	 an impossible strut-and-tie network due to the crossing of a rod with a 
half-line of force in the form diagram

(3)	 a possible strut-and-tie network where two rods cross without being 
divided

(4)	 a possible strut-and-tie network where one rod crosses one half-line of 
force without being duplicated

(5)	 a possible strut-and-tie network where half-lines of force cross one an-
other

(6)	 two possible strut-and-tie network where their rods cross without be-
ing divided.

(1)	 The strut-and-tie network in figure 119 does not satisfy the axiomatic 
set. Evidence of this is that it is impossible to move the force polygons in 
figure 120 in order to superimpose pairs of forces aimed at being replaced by 
rods. The solution is to divide the crossing rods into two. This has the effect 
of adding a new point in the form diagram — pA — and a new force polygon in 
the force diagram (figure 121).
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figure 119 
a strut-and-tie 

network that do 
not satisfy the 
axiomatic set.

figure 120 
these force 

polygons cannot 
be joined to form 

rods.

figure 121 
adding a point at 
the intersection 
of crossing rods 

makes the 
network 

compatible with 
the axiomatic set.
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In order to ensure that the four rods b0, b1, b2 and b3 act as two crossing rods, 
the following geometric statement must hold:

Collinearity[p1 p3 pA] ∧ Collinearity[p0 p2 pA]

which means that:

Parallelism[p4 p5 p6 p7] ∧ Parallelism[p4 p7 p5 p6]

and that:

Equidistance[p4 p5 p6 p7] ∧ Equidistance[p4 p7 p5 p6]

(2)	 The strut-and-tie network in figure 122 does not satisfy the axiomatic set 
either. The minimum force networks in figure 123 cannot be repositioned in 
order to allow the superposition of the pairs of forces aimed to act as rods. 
The solution shown in figure 124 consists of adding a force polygon by dupli-
cating force F0 and by dividing the rod crossed by its half-line.

figure 122 
a strut-and-tie 
network that do 
not satisfy the 
axiomatic set.

figure 123 
these force 
polygons cannot 
be joined to form 
rods.

figure 124 
adding a point at 
the intersection 
of the rod with 
the half-line of 
force makes the 
network 
compatible with 
the axiomatic set.



geometric axiomatisation of graphic statics · 127

figure 125 
a strut-and-tie 

network with two 
intersecting rods 

that does not 
have to be 

divided.

figure 126 
other positions of 
pA and pB: rods do 
not cross and the 

force diagram 
remains identical.

Again, the new point pA should satisfy the following geometric statement:

Collinearity[p0 p1 pA] ∧ Collinearity[p2 p3 pA]

which means that:

Parallelism[p4 p5 p6 p7] ∧ Parallelism[p4 p7 p5 p6] 

and that:

Equidistance[p4 p5 p6 p7] ∧ Equidistance[p4 p7 p5 p6] 

(3)	 The strut-and-tie network in figure 125 satisfies the axiomatic set although 
two rods cross. The reason for this is explained in figure 126 and is due to 
the fact that points pA and pB can be moved in the form diagram such that (a) 
the rods no longer cross and (b) the force diagram remains unchanged, i.e. the 
magnitudes and orientations of forces remain equal.

(4)	 The example in figure 127 is similar to the previous one. Two pairs of rods 
cross and a half-line of force crosses a rod. However, points pA and pB can be 
moved in the form diagram such that these crossings vanish without altering 
the force diagram. The strut-and-tie network in figure 128 and its force dia-
gram consequently satisfy the axiomatic set.
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(5)	 The example in figure 129 shows that the intersection of half-lines of forc-
es with half-lines of forces does not prevent either diagram being in compli-
ance with the axiomatic set.

figure 129 
a strut-and-tie 
network with 
intersections of 
half-lines of 
forces.

figure 127 

figure 128 
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(6)	 Two rods intersect in the form diagram in figure 130. However, this is not 
an issue since they belong to two separate strut-and-tie networks, each with 
its own force diagram.

how a uniform reading cycle allows multiple form and force diagrams 
to have the same structural configuration� · Cases (3) and (4) have shown 
that some intersections of rods and forces did not prevent the satisfaction 
of the axiomatic set, and did not require rods to be divided and forces to be 
duplicated (figure 125 and figure 127). However, it is still possible to divide 
these rods and duplicate these forces. This means that the same structural 
configuration sometimes allows different form and force diagrams (figure 131 
and figure 132).

figure 130 
two strut-and-tie 
networks with an 

intersection of 
rods.

figure 131 
copy of the 

strut-and-tie 
network from 

figure 125 after 
dividing the 

crossing rods.

figure 132 
copy of the 

strut-and-tie 
network from 

figure 127 after 
duplicating 

crossing rods and 
forces.
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how a uniform reading cycle implies the distinction between pulls and 
pushes�  · A direct corollary of not being able to cross rods and half-line of 
forces is that a strut-and-tie network might present a different force diagram 
depending on a force is pulling or pushing. The distinction between pulls and 
pushes is therefore fundamental to the proposed axiomatic set. An example is 
shown in figure 133 and figure 134.

how the studied hull influences the uniform reading cycle�  ·  Reading 
cycles concern the forces that are applied on a given sub-network. It has been 
seen that these sub-networks can be identified using hulls whose definition 
is given by the set of points contained in the sub-network — see the “sub-
network hulls” (page 95). Hulls can actually be distinguished further by the 
hidden intersections of forces they encompass or not. 

For example, figure 136, figure 137 and figure 138 show various hulls that all 
concern the entire global network in figure 135. However, as a consequence of 
the fact that the external forces intersecting these hulls must be read clock-
wise in the form diagram, they lead to different force diagrams.

figure 133 
a strut-and-tie 
network on which 
force F1 exerts a 
pull.

figure 134 
a strut-and-tie 
network on which 
the same force F1 
exerts a push.
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figure 135 
a strut-and-tie 

network.

figure 136 
minimum hull 

containing the 
entire strut-and-
tie network from 

figure 135.

figure 137 
intermediate hull 

containing the 
entire strut-and-
tie network from 

figure 135.
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figure 138 
maximal hull 
containing the 
entire strut-and-
tie network from 
figure 135.
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14	 recapitulation

This sub-section briefly summarises the series of axioms that have been intro-
duced throughout this section.

geometric support�  · The axiomatisation exclusively concerns fundamental 
relationships between positions of points and forces in the plane. The geo-
metric support on which it is based uses Laterality and Proximity relationships 
as (incompletely) defined by axioms Ax.1 to Ax.11 (page 62 to page 66). 
These relationships natively enable the definition of inequalities of distances 
and relative directions. 

Points may belong to the form diagram or the force diagram depend-
ing on whether they verify the FormDiagramMembership relationship or the 
ForceDiagramMembership relationship. Distances in these diagrams may be 
compared with a unit distance equal to the one that satisfies the UnitDistance 
relationship. These three fundamental relationships are defined by axioms 
Ax.12 to Ax.17 (page 76 to page 79).

forces, equilibrium and reciprocity�  · Forces are represented by Force 
relationships, defined by axioms Ax.18 to Ax.20 (page 82 to page 83). 
Two forces are said equivalent if they satisfy the fundamental relationship 
Equipollence, defined by axioms Ax.21 and Ax.22 (page 84). Unless explicitly 
tated by an Equipollence relationship, all the forces are different.

Any logical sentence that satisfies the five axioms Ax.23 to Ax.26 (page 100 to 
page 102) describes, by means of two diagrams, a strut-and-tie network that 
is in static equilibrium. The last axiom Ax.27 (page 109) guarantees that the 
form and the force diagrams are reciprocal.
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non-fundamental relationships�  ·  Using the seven fundamental rela-
tionships Laterality, Proximity, UnitDistance, FormDiagramMembership, 
ForceDiagramMembership, Force and Equipollence, more complex non-fundamen-
tal relationships can be defined. They might be used to determine new geo-
metric concepts, but also new structural concepts such as, for example, the 
rod (figure 75, page 91):

Rod[F0 F1 p0 p1 p2 p3 p4 p5] :⟷ ∃pApB:  
		  Force[F0 p0 p1 p4 p5] ∧ Force[F1 p2 p3 p5 p4] 
	   ∧ Laterality[p4 p5 p0 p2] ∧ Laterality[p4 p5 p2 p0] 
	   ∧ Laterality[p0 p1 pB pA] ∧ Laterality[p2 p3 pA pB] 
	   ∧ Equidistance[p0 pA p0 p2] ∧ Equidistance[p2 pA p0 p2] ∧ Laterality[pA p0 p0 p2]  
	   ∧ Equidistance[p0 pB p0 p2] ∧ Equidistance[p2 pB p0 p2] ∧ Laterality[pB p2 p2 p0]
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DYNAMIC 
HANDLING OF 
GEOMETRIC 
CONSTRAINTS 

This section establishes how the graphic static rules developed in the previous section can 
be observed when points in their diagram move.

Sub-section 15 (“graphical regions and dynamic compliance with geometric relationships”, 
page  137) defines three fundamental graphical constraints, relates their application onto 
points with the verification of geometric relationships, and introduces a mechanism that al-
lows the displacement of constrained positions.

Sub-section 16 (“constraint (inter)dependencies”, page  155) clarifies how this mechanism 
also handles interdependent constraints. Constraints intended for graphical computation 
are exemplified in sub-section 17 (“examples of graphical computations”, page  165). Sub-
section 18 (“switching constraint dependencies”, page  195) exhibits a systematic method 
to switch dependencies between constrained points symbolically,  i.e. without the need to 
reconsider the entire geometric construction. Sub-section 19 (“constraint propagations”, 
page 201) develops methods that construct new constraints symbolically in order to ensure 
that a solution always exists. The advantages and limitations of these methods are discussed 
in the same sub-section.

Sub-section 21 (“constraints for a uniform reading cycle of forces”, page 243) defines the 
constraints that are required in order for diagrams to display a uniform reading cycle of 
forces and sub-section 22 (“facilitating the crossing of rods”, page  259) discusses auto-
mated mechanisms that allow crossing rods in the form diagram.

Sub-section 20 (“dynamic conditional geometric statements”, page  233) finally describes 
constraints that allow the graphical execution of dynamic logic with the only aforementioned 
devices.
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15	graphical regions and 
dynamic compliance with 
geometric relationships

The role of this section is to characterise the set of values that a certain pa-
rameter can hold in order to satisfy a given geometric statement with other 
given parameters. Since all these parameters are chosen to be only positions 
of points, the set of values can be described entirely with graphical regions 
in the plane.

fundamental graphical regions� · It has been decided that these graphical 
regions will be described using three fundamental shapes: the half-plane, the 
inside of a disc and the outside of a disc. They are defined as follows.

(1)	 a half-plane, denoted HalfPlane[pA pB pC], is defined as the closed region, i.e. 
with the boundary included, to the left of pA according to the direction go-
ing from pB to pC (figure 139, left). The inversion of a half-plane, denoted 
\HalfPlane[pA pB pC], is logically the open region, i.e. with the boundary exclud-
ed, to the right of pA according to the direction going from pB to pC (figure 139, 
right);

(2)	 the inside of a disc, denoted DiscInside[pA pB pC], is defined as the closed 
region,  i.e. with the boundary included, inside the circle of centre pA and 
radius pBpC (figure 140, left). The inversion of the inside of a disc, denoted 
\DiscInside[pA pB pC], is logically the open region,  i.e. with the boundary ex-
cluded, outside the circle of centre pA and radius pBpC (figure 140, right).

figure 139 
a HalfPlane 

[pA pB pC] region 
(left) and its 

inverse (right).
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(3)	 the outside of a disc, denoted DiscOutside[pA pB pC], is defined as the closed 
region,  i.e. with the boundary included, outside the circle of centre pA and 
radius pBpC (figure 141, left). The inversion of the outside of a disc, denoted 
\DiscOutside[pA pB pC], is logically the open region,  i.e. with the boundary ex-
cluded, inside the circle of centre pA and radius pBpC (figure 141, right).

Particular cases of DiscInside and DiscOutside regions occur when points pB 
and pC are coincident. The DiscInside[pA pB pB] region is the single position pA 
(figure 142, left) and its inverse is the entire plane minus the position of pA 
(figure 142, right). The DiscOutside[pA pB pB] region is the entire plane and its 
inverse does not exist.

Boolean combinations of graphical regions�  ·  More complex graphical 
regions can be obtained by Boolean combinations, e.g. unions (∪), intersec-
tions (∩), inversions (\), differences (− or \∩), of these three fundamental 
regions. For example, figure 143 shows the following region:

	 ( \(HalfPlane[p0 p0 p1] ∪ HalfPlane[p0 p2 p0]) ∪ HalfPlane[p0 p3 p4] ) 
  ∩	 DiscOutside[p0 p0 p1] ∩ DiscInside[p0 p0 p2]

figure 140 
a DiscInside 
[pA pB pC] region 
(left) and its 
inverse (right).

figure 141 
a DiscOutside 
[pA pB pC] region 
(left) and its 
inverse (right).

figure 142 
a DiscOutside 
[pA pB pB] region 
(left) and its 
inverse (right).
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Combined regions can be defined as new non-fundamental regions in order to 
make them easier to use. The following definitions illustrate two non-funda-
mental regions corresponding to a line and a circle respectively:

Straightedge[p0 p1 p2] := HalfPlane[p0 p1 p2] ∩ HalfPlane[p0 p2 p1] 
Compass[p0 p1 p2] := DiscInside[p0 p1 p2] ∩ DiscOutside[p0 p1 p2]

The line given by two points of passage and the circle given by its centre and 
a point of passage can be defined has follows:

VeeringStraightedge[p0 p1] := HalfPlane[p0 p0 p1] ∩ HalfPlane[p0 p1 p0] 
CollapsibleCompass[p0 p1] := DiscInside[p0 p0 p1] ∩ DiscOutside[p0 p0 p1]

The region corresponding to a single position p0 and the entire plane on which 
p0 is positioned can also be defined by new non-fundamental constraints:

Position[p0] := DiscInside[p0 p0 p0] 
Ω := Plane[p0] := DiscOutside[p0 p0 p0]

pure equivalent unions and intersections� · A Boolean combination can be 
written in many equivalent ways. Two types of equivalent writings are of par-
ticular interest: pure equivalent intersections and pure equivalent unions.

 •	a pure equivalent union of a given Boolean combination is an equivalent 
Boolean combination in which (1) intersections only group fundamental 
regions or inverses of fundamental regions and (2) unions do not group 
other unions

•	 a pure equivalent intersection of a given Boolean combination is an 
equivalent Boolean combination in which (1) unions only group funda-
mental regions or inverses of fundamental regions and (2) intersections 
do not group other intersections

The transformation of a given Boolean combination into one of its pure equiv-
alent can easily be made by using distributivity and De Morgan’s laws. If R0, 
R1 and R2 are three graphical regions, these laws are as follows:

figure 143 
example of 

Boolean 
combination.
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R0 ∪ (R1 ∩ R2) = (R0 ∪ R1) ∩ (R0 ∪ R2) 
R0 ∩ (R1 ∪ R2) = (R0 ∩ R1) ∪ (R0 ∩ R2)

\(R0 ∩ R1) = \R0 ∪ \R1) 
\(R0 ∪ R1) = \R0 ∩ \R1)

As a practical example, the pure equivalent Boolean combinations of the re-
gion illustrated in figure 143, page 139 is as follows:

pure equivalent union: 
	 ( \HalfPlane[p0 p0 p1] ∩ \HalfPlane[p0 p2 p0]  
	 ∩ DiscOutside[p0 p0 p1] ∩ DiscInside[p0 p0 p2] ) 
  ∪	 ( HalfPlane[p0 p3 p4] ∩ DiscOutside[p0 p0 p1] ∩ DiscInside[p0 p0 p2] )

pure equivalent intersection: 
	 (\HalfPlane[p0 p0 p1] ∪ HalfPlane[p0 p3 p4])  
  ∩	 (\HalfPlane[p0 p2 p0] ∪ HalfPlane[p0 p3 p4]) 
  ∩	 DiscOutside[p0 p0 p1] 
  ∩	  DiscInside[p0 p0 p2]

constraining points in graphical regions� · The three fundamental shapes 
HalfPlane, DiscInside and DiscOutside are actually closely linked to the two funda-
mental relationships Laterality and Proximity, defined previously in sub-section 
08 (“relationships of proximity and laterality”, page  61). HalfPlane regions 
share the ability to describe relative direction with Laterality relationships and 
DiscInside and DiscOutside regions share the ability to describe inequalities of 
distances with Proximity relationships — see the paragraph entitled “beyond 
classical compass-and-straightedge constructions” (page  75). Moreover, 
the following statements hold

 •	if four points hold a Laterality[p0 p1 p2 p3] relationship, they each have to 
remain within a half-plane, whose position and orientation are defined 
by the three other points (figure 144)

 •	if four points hold a Proximity[p0 p1 p2 p3] relationship, they each have to 
remain either inside or outside a disc, whose position and radius are 
defined by the three other points (figure 145).

More precisely, a Laterality[p0 p1 p2 p3] relationship is always true when, for any 
positions p0, p1, p2 and p3, the following statements are verified:

 •	p0 is in the HalfPlane[p1 p2 p3] region (figure 144, top left)
 •	p1 is in the HalfPlane[p0 p3 p2] region (figure 144, top right)
 •	p2 is in the HalfPlane[p3 p1 p0] region (figure 144, bottom left)
 •	p3 is in the HalfPlane[p2 p0 p1] region (figure 144, bottom right).
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Likewise, a Proximity[p0 p1 p2 p3] relationship is always true when, for any posi-
tions p0, p1, p2 and p3, the following statements are verified:

 •	p0 is in the DiscInside[p1 p2 p3] region (figure 145, top left)
 •	p1 is in the DiscInside[p0 p2 p3] region (figure 145, top right)
 •	p2 is in the DiscOutside[p3 p0 p1] region (figure 145, bottom left)
 •	p3 is in the DiscOutside[p2 p0 p1] region (figure 145, bottom right).

Hence, compelling a point to remain on the Boolean combination of HalfPlane, 
DiscInside and DiscOutside regions is equivalent to ensuring that the corre-
sponding logical combination of Laterality and Proximity is verified.

figure 144 
four points 

holding a 
Laterality 

[p0 p1 p2 p3] 
relationship, each 

of them belongs 
to a HalfPlane 

region.

figure 145 
four points 

holding a 
Proximity 

[p0 p1 p2 p3] 
relationship, each 

of them belongs 
to a DiscInside 

region or a 
DiscOutside 

region.
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For instance, if a point px remains in the region of figure 143, page 139 
(figure 146), the following statement is always true:

	 ( ¬(Laterality[px p0 p0 p1] ∨ Laterality[px p0 p2 p0]) ∨ Laterality[px p0 p3 p4] ) 
  ∧	 Proximity[p0 p1 px p0] ∩ Proximity[p0 px p0 p2]

It is subsequently decided that geometric statements are, from now on, de-
scribed as logical conjunctions of a point’s membership of a region. This is the 
reason why each region will be called a “constraint”. The symbol ∈ will stand 
for the point’s membership of constraint.

For example, the following memberships describe three point’s memberships 
of constraints. Points p3 and p4 bisect the line p0p1 and p5 is constrained on the 
orthogonal projection of p2 onto the line p0p1 (figure 147):

p3 ∈ Compass[p0 p0 p1] ∩ Compass[p1 p0 p1] ∩ HalfPlane[p0 p0 p1] 
p4 ∈ Compass[p0 p0 p1] ∩ Compass[p1 p0 p1] ∩ HalfPlane[p0 p1 p0] 
p5 ∈ Straightedge[p0 p0 p1] ∩ Straightedge[p2 p3 p4]

This series of memberships is equivalent to the satisfaction of the following 
geometric relationships:

	 (Equidistance[p3 p0 p0 p1] ∧ Equidistance[p3 p1 p0 p1] ∧ Laterality [p3 p0 p0 p1]) 
  ∧	 (Equidistance[p4 p0 p0 p1] ∧ Equidistance[p4 p1 p0 p1] ∧ Laterality [p4 p0 p1 p0]) 
  ∧	 (Parallelism[p5 p0 p0 p1] ∧ Parallelism[p5 p2 p3 p4])

It may be noted that the order in which constraints are applied has no influ-
ence on the geometric result.

figure 146 
point px must stay 
within the grey 
region.

figure 147 
point p5 is 
constrained on 
the orthogonal 
projection of p2 
onto the line p0p1.
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restriction on the scope of available geometric statements� · The choice of 
describing geometric statements by means of logical conjunctions of member-
ships reduces the scope of available geometric statements (compared to those 
studied in the previous section). Although graphical constraints can be made 
of unions, intersections and inverses of fundamental regions, conditions of 
membership must be joined by logical conjunctions only, i.e. no logical impli-
cation, bijection, disjunction, negation and quantifier is allowed.

In terms of logical relationships, this means that the only available geometric 
relationships allowed are those meeting the following requirement: given the 
geometric relationship written such that (1) conjunctions only join disjunc-
tions, fundamental relationships, i.e. Laterality and Proximity relationships, or 
their inverses and (2) disjunctions only join fundamental relationships or their 
inverses; if a point p0 is used in one of the fundamental relationships that is in 
disjunction with other fundamental relationships φj, then this point must also 
be used in all fundamental relationships φj.

For example, the following relationship is allowed, where φ0 to φ6 are funda-
mental relationships:

φ0[…p0…] ∧ (φ1[…p0…] ∨ φ2[…p0…] ∨ φ3[…p0…]) ∧ φ4[…] ∧ (φ5[…] ∨ φ6[…])

But this one is prohibited:

φ0[…p0…] ∨ φ2[…] where p0 is not a parameter of φ2

This restriction of scope has no technical or practical rationale except that 
it makes the current research easier. Hopefully, it has a limited impact on 
the purpose of common graphic statics constructions. This is mostly due to 
the fact that geometric statements can generally be expressed in many dif-
ferent ways. A brief overview of capabilities will be given in sub-section 17 
(“examples of graphical computations”, page 165). Moreover, sub-section 20 
(“dynamic conditional geometric statements”, page 233) will later show that 
conditional constructions are still available despite this restriction.

allowing dynamic displacements of points�  · Only static geometric state-
ments have been considered so far, i.e. each point occupies a fixed given posi-
tion that satisfies the relationships to which it is subjected. The ability to 
move points in their plane is now introduced and studied. It follows that each 
logical geometric relationship (obtained by conjunction of memberships) must 
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be satisfied for any new change of position. This paragraph compares two 
options for guaranteeing the permanent verification of a relationship when 
points are moving and selects the latter.

As recalled in the paragraph entitled “constraining points in graphical 
regions” (page  140), Laterality and Proximity relationships are symmetrical 
—  see Ax.1 (page 62) and Ax.6 (page 64). As a consequence, guaranteeing 
the application of a HalfPlane[p1 p2 p3] constraint onto a point p0 would ensure 
that the Laterality[p0 p1 p2 p3] relationship is satisfied, and would therefore be 
equivalent to compelling p1 within the HalfPlane[p0 p3 p2] region, p2 within the 
HalfPlane[p3 p1 p0] region and p3 within the HalfPlane[p2 p0 p1] region. The same 
is true for DiscInside and DiscOutside constraints. Combinations of fundamental 
constraints present similar properties as well,  i.e. the application of a non-
fundamental constraint onto a point remains true as long as all the parameter 
points of that constraint stay within certain graphical regions.

A first option would be to constrain each point within the corresponding 
graphical region, i.e. they cannot be dragged outside that region. This option 
is not adopted for practical reasons. The four following examples explain why:

(1)	 Given four points p0, p1, p2, p3 holding a Laterality[p0 p1 p2 p3] relationship, p1 
is asked to be moved onto a fifth point p4. Since they hold a Laterality relation-
ship, points p0, p1, p2 and p3 would each be constrained in a HalfPlane region. 
If C0, C1, C2 and C3 are those constraints, this means that p0 ∈ C0, p1 ∈ C1, 
p2 ∈ C2 and p3 ∈ C3. As a consequence, point p1 would not be able to move 
onto p4 (figure 148), it would be stopped on the boundary of C1 (figure 149). 
In order for p1 to reach p4, p0, p2 or p3 must first be moved further than p4 
(figure 150). This means that two movements are required for one desired 
move (figure 151).

The movement of p0, p2 or p3 can be automated but this would require choos-
ing what point to move first. When a point is constrained by more complex 
Boolean combinations, it could become necessary to move multiple points 
after having selected them from a larger set. This selection should not be 
left to the computer since it may modify input data without the user being 
aware of it, which might be confusing — e.g. controlling the position of a line 
is different from controlling is orientation. On the other hand, this selection 
should not be left to the user either since it may represent a long and labori-
ous process.
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figure 148 
initial situation, 

point p1 has to be 
moved upon point 

p4.

figure 149 
first attempt to 

move of p1.

figure 150 
required move of 

p0.

figure 151 
final move of p1.
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(2)	 A similar drawback is obtained with four points p0, p1, p2, p3 holding a 
Proximity[p0 p1 p2 p3] relationship, p1 is asked to be moved onto a fifth point p4. 
Since they hold a Proximity relationship, points p0 and p1 would each be con-
strained in a DiscInside region and points p2 and p3 would each be constrained 
in a DiscOutside region. If C0, C1, C2 and C3 are those constraints, this means 
that p0 ∈ C0, p1 ∈ C1, p2 ∈ C2 and p3 ∈ C3. As a consequence, point p1 would not 
be able to move onto p4 (figure 152), it would be stopped on the boundary of 
C1 (figure 153). In order for p1 to reach p4, p0 must first be moved closer to p4 
(figure 154 and figure 155) or p3 and p4 must be moved far apart from each 
other. In the event that p4 is far further away from p1 (figure 156) and where 
the distance p2p3 cannot be changed, p0 and p1 would need to be dragged a 
number of times by small increments. This means that multiple movements 
are required for one desired move.

(3)	 The third example is even more worrying. Given four points p0, p1, p2, p3 
holding a Parallelism[p0 p1 p2 p3] relationship, i.e. the conjunction of two Laterality 
relationships, they would each be constrained on a Straightedge,  i.e. the in-
tersection of two HalfPlane regions, the position and orientation of which are 
given by the three other points (figure 157). This means that it is impossible 
to move these four points anywhere except on their Straightedge constraint. In 
other words, the orientation of and the space between the two parallels are 
unchangeable. 

(4)	 The final example is similar. Given four points p0, p1, p2, p3 holding an 
Equidistance[p0 p1 p2 p3] relationship, i.e. the conjunction of two Proximity rela-
tionships, they would each be constrained on a Compass, i.e. the intersection 
of a DiscInside region with a DiscOutside region, the position and radius of which 
are given by the three other points (figure 158). This means that it is impos-
sible to move these four points anywhere except on their Compass constraint. 
In other words, it is impossible to modify the distances p0p1 and p2p3. 

For all these reasons, the second option is adopted. It constrains just one 
of the concerned points in its graphical region. Since this allows the other 
points to be moved outside their own graphical region, they might take the 
constrained point outside its own graphical region as well. To avoid this, the 
constrained point is automatically moved to the closest suitable position as 
soon as it is taken outside its region. 
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figure 152 
initial situation, 

point p1 has to be 
moved upon point 

p4.

figure 153 
first attempt to 

move p1.

figure 154 
required move of 

p0.

figure 155 
final move of p1.
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For example, given four points and the membership p0 ∈ HalfPlane[p1 p2 p3] 
(figure 159), moving p2 clockwise around p3 would rotate the half-plane around 
p1 and would change no other position until p2p3 becomes parallel to p0p1 
(figure 160). However, if p2 keeps moving further, it would cause the posi-
tion of p0 to be updated on its closest position within the HalfPlane[p1 p2 p3] 
constraint (figure 161).

As a result of this new rule, the nature of the point on which the constraint is 
applied differs from the other points. This point must be chosen and known. 
That is the reason why the logical grammar using geometric relationships for 
describing the geometric state in full is no longer used and the description of 
point memberships in graphical regions is used instead.

The closest position of a point is actually either its orthogonal projection onto 
the given border or an inflexion point of that boundary. Thanks to the nature 
of the three fundamental regions, this new position is fairly quick to compute 
because it is either an orthogonal projection on a line or a circle, or the in-

figure 156 
same situation as 
in figure 152 
except that the 
distance p1p4 is 
greater.

figure 157 
four points 
constrained on 
parallels.

figure 158 
four points 
constrained on 
similar circles.
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tersection between two lines, two circles or a line with a circle. One simple 
method to find the closest point is to find all the candidates, i.e. orthogonal 
projections on fundamental regions and intersections between fundamental 
regions, and to compare their distance from the point that has to be moved 
(figure 162).

figure 159 
a point p0 

constrained on a 
half-plane.

figure 160 
move of p2, it 

rotates the 
half-plane.

figure 161 
move of p2, it 

forces the update 
of p0 on its closest 

position within 
the half-plane.

figure 162 
search for the 

closest candidate 
points; point p0 is 

not within its 
applied region 

and must 
therefore be 
moved to its 

closest point p*.
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figure 163 
if the region 
(grey area) is not 
empty, every 
position has a 
closest point.

If the region is not empty, every point always has a closest point belonging 
to that region (figure 163). For some positions, a point might have multiple 
closest positions inside its region. The set of all these positions (figure 161) 
is known has the topological skeleton and shares similarities with Voronoi 
skeletons and medial axis (Blum·1967, Ogniewicz/Ilg·1992 and Siddiqi/…·2008).

If the candidate closest position is on a border that is not included in the re-
gion, i.e. because of an inverse constraint, the closest position is assumed to 
be infinitesimally just beyond that border.

When a constraint consists of multiple non-continuous convex regions, it can 
be noticed that in most cases this action minimises the disturbance of the 
model when a point jumps from one region to another.
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domains of solutions�  · Since a point might belong to many graphical con-
straints, it is useful to describe the global intersection of these constraints. 
This global intersection is called the domain. By default, the domain of a point 
is full,  i.e. the point is not constrained and can be moved anywhere in the 
plane.

Constraints applied to a point may have different purposes and roles. As a 
result, it is possible to distinguish between different kinds of domains: 

(1)	 The “input domain” of a point is the intersection of all the constraints 
that are specifically applied by the user to the point. This is the initial 
set of positions outside of which the point can not go.

(2)	 The “strict domain” of a point is the intersection of the initial domain 
with all the constraints obtained by the symmetry of constraints ap-
plied on other points. In other words, the strict domain is the set of po-
sitions in which a point can move without changing the position of any 
other point,  i.e. no update to closest positions would be required but 
available geometric modifications would be seriously limited, as dis-
cussed in the first option of the previous paragraph entitled “allowing 
dynamic displacements of points” (page 143)

(3)	 The “propagation domain” of a point is the set of positions that the point 
can have so that every point related to it is guaranteed to have at least 
one position in the plane. This domain is generally more restrictive 
than the input domain and requires the computation of specific solver 
algorithms. Sub-section 19 (“constraint propagations”, page 201) dis-
cusses some of them. 

(4)	 The “domain of solutions” of a point is the set of positions that solves 
the initial geometric statement. It is the domain that satisfies the con-
straints applied by the user and for which every point as a non-empty 
domain. It is consequently equivalent to the intersection of the input 
domain with the propagation domain.

These four domains can be illustrated using the following construction 
(figure 165):

p0 ∈ VeeringHalfplane[p1 p2] ∩ CollapsibleDiscOutside[p1 p2] 
p6 ∈ VeeringHalfplane[p3 p0] ∩ VeeringHalfplane[p4 p5] ∩ VeeringHalfplane[p1 p2]

figure 164 
sometimes, it 

might be multiple 
closest points; 

the bold line 
groups all the 
positions that 
have multiple 
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figure 166 
the input domain 
of p0.

figure 167 
the strict domain 
of p0.

figure 168 
the propagation 
domain of p0.

figure 169 
the domain of 
solutions of p0.

figure 165 
the input domain 
of p6 is the 
shaded area;.
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The various domains of p0 are (figure 166, figure 167, figure 168 and 
figure 169):

inputDom[p0] = VeeringHalfplane[p1 p2] ∩ CollapsibleCompass[p1 p2]

strictDom[p0] = VeeringHalfplane[p6 p3] — p6 does not move

propagationDom[p0] = VeeringHalfplane[pA p3] ∪ \HalfPlane[p3 p1 p2] 
	 where pA ∈ Straightedge[p1 p2] ∩ Straightedge[p4 p5]						       
											            — p6 has a non-empty domain

solutionDom[p0] = VeeringHalfplane[p1 p2] ∩ CollapsibleCompass[p1 p2] 
							       ∩ (VeeringHalfplane[pA p3] ∪ \HalfPlane[p3 p1 p2])

constraining forces� · The Force[F0 p0 p1 p2 p3] relationship is no exception to 
the new rule of point displacement. To verify a Force[F0 p0 p1 p2 p3] relationship 
means that one of the four points must be constrained by the others in order 
to satisfy Ax.19 (page 83). The second point,  i.e. p1, the point that defines 
whether the force exerts a pull or a push, is chosen to be constrained rather 
than the others because this favours a direct control of the force diagram 
and choosing p0 instead does not make any sense. Sub-section 18 (“switching 
constraint dependencies”, page 195) will show that this choice may actually 
be changed at any time.

As a consequence of this choice, p1 must belong to the following domain in or-
der to verify Ax.19 when the relationship Force[F0 p0 p1 p2 p3] exists (page 83):

forceDom[p1] ∈ Straightedge[p0 p2 p3] ∩ CoincidenceCondition[p0 p2 p3]

The constraint CoincidenceCondition[p2 p3 p0] returns the position of p0 if p2 and 
p3 are coincident and returns the inverse of the position of p0 — i.e. the entire 
plane minus the position of p0 — if not. The definition of this non-fundamental 
constraint will be held in sub-section 20 (“dynamic conditional geometric 
statements”, page 233).

The satisfaction of Ax.27 (page 83) will also be guaranteed by a specific do-
main called ReadingCycleDom. Its construction will be developed in sub-section 
21 (“constraints for a uniform reading cycle of forces”, page 243).
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other fundamental constraints� · Corresponding to each fundamental rela-
tionship introduced in the previous section is a new fundamental constraint. 
Thereby, the points can be constrained as follows:

p0 ∈ ForceDiagram		  meaning that ForceDiagramMembership[p0] ⟷ true 
p0 ∈ FormDiagram		  meaning that FormDiagramMembership[p0] ⟷ true 
p0 ∈ UnitCompass[p1]	 meaning that Equidistance[p0 p1] ⟷ true 
p0 ∈ PiCompass[p1]		  meaning that PiDistance[p0 p1] ⟷ true

And similarly for each transcendental number — see paragraph entitled “the 
fundamental relationship of unit distance” (page 76). 
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16	 constraint (inter)
dependencies

directed graphs of dependencies� · When a constraint is applied to a point, 
the point is dependent on the points that define the constraint. These points 
can in turn be dependent on other points, and so on. Being able to know this 
genealogy is of great importance since it allows the identification of a chronol-
ogy for updating positions when a point is dragged.

The analysis of constraint dependencies is usually performed using a directed 
graph. Nodes correspond to points and each arrow going from a point pA to a 
point pB represents a constraint dependent on pA and applied to pB.

For example, figure 171 shows the graph of dependencies of the following 
memberships (figure 170):

p3 ∈ C1 
p5 ∈ C2 
p6 ∈ C4 
p7 ∈ C3 ∩ C2

where : 
C0 = HalfPlane[p0 p2 p1] 
C1 = DiscInside[p0 p1 p2] 
C2 = HalfPlane[p3 p4 p1] 
C3 = DiscInside[p5 p1 p4] ∩ DiscOutside[p5 p1 p4] 
C4 = ((C0 ∪ C1) − C2) ∪ C3

figure 170 
the input domain 

of p6.
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The graph in figure 171 shows only the combined constraints. The graph in 
figure 172 details the dependencies for all the fundamental constraints.

This directed graph allows the identification of particular points:
 •	“father points” of a given point pA are all the points that define the con-

straints directly applied on pA

 •	“grandfather points” of a given point pA include all the father points of 
pA as well as all the father points of its grandfather points,  i.e. all its 
ancestors.

 •	“child points” of a given point pA are all the points that directly depend 
on pA

 •	“grandchild points” of a given point pA include all the child points of pA 
as well as all the child points of its grandchild points, i.e. all its progeny.

In the example in figure 172, the following sets can be distinguished:

children[p5] = {p6 p7} 
grandchildren[p5] = {p6 p7} 
fathers[p5] = {p1 p3 p4} 
grandfathers[p5] = {p0 p1 p2 p3 p4}

figure 171 
the directed 
graph of 
dependencies 
associated with 
the construction 
of figure 170.

figure 172 
the directed 
graph of 
fundamental 
dependencies 
associated with 
the construction 
of figure 170.
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figure 173 
detail of 

figure 170.

Other particular points are orphans and childless points. The former have no 
father point, i.e. they depend on no other point — and the latter have no child 
point. For instance, figure 173 is a detail of figure 170 and shows that p1 is an 
orphan and p6 a childless point.

movement updating�  ·  As previously mentioned, the graph of fundamental 
dependencies provides a straightforward method for updating the positions 
of points when one of them — pA — is moved. Firstly, the subset of grandchild 
points of pA provides all the points whose position has to be checked — other 
points do not need any update since they are not dependent on pA. Secondly, 
these grandchildren can be checked from father to child paying attention so 
that, for each generation, a child point is only checked if all its grandfathers 
are either already checked or are grandfathers of pA as well. Thirdly, check-
ing a point will only involve an update of position if it no longer satisfies the 
constraints that are applied on it.

For example, if point p3 is moved, it means that points p0, p1, p2 and p4 do not 
have to be checked since they are not the grandchildren of p3 (figure 172). Out 
all p3’s grandchildren {p5 p6 p7}, it is deduced that p6 and p7 can not be checked 
before p5 since p5 is the father of p6 and p7. As a consequence, after having up-
dated the position of p3, the position of p5 must be checked. If the position of p5 
is moved, both positions of p6 and p7 must be checked — whether p6 is checked 
before or after p7 is a matter of choice as they do not depend on one other.

interdependency�  ·  Interdependency occurs when the directed graph pre-
sents a cycle, meaning that each point in that cycle is constrained by itself, 
directly or through in-between parameters. For example, the previous geo-
metric construction becomes interdependent when the following constraint is 
applied on it (figure 174 and figure 175): 

C5 = DiscInside[p5 p1 p4] 
p0 ∈ C5

This cycle concerns the three points p0, p3 and p5 all linked together by the 
following constraints:
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p3 ∈ DiscInside[p0 p1 p2] 
p5 ∈ HalfPlane[p3 p1 p4] 
p0 ∈ DiscInside[p5 p1 p4]

When one of them is moved, the update of its children might cause its own 
update and hence might result in a loop. After a sufficiently high number of 
iterations, it is envisaged that this loop will stop in one of three ways:

(1)	 the loop stops by itself because one of the self-constrained points is 
within its applied region, meaning that its position does not have to 
be updated anymore and consequently, neither do the positions of its 
children

(2)	 the loop produces smaller and smaller displacements — each position 
of self-constrained points converges to a single position without ever 
reaching it exactly  — meaning that an additional mechanism has to 
stop the loop as soon as a displacement caused by the “ClosestPoint” 
update becomes smaller than a given value

(3)	 the loop does not converge, meaning that the geometric construction 
which caused it should be prevented.

These are the only mechanisms that have to be implemented in order to deal 
with interdependency. The following examples illustrate these three cases.

figure 174 
the input domain 
of p5 after the 
application of C5.

figure 175 
the directed 
graph of 
fundamental 
dependencies 
associated with 
the construction 
of figure 174.
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(1)	 Given the following construction, p2 is moved onto a position p2' (figure 176):

p2 ∈ HalfPlane[p0 p1 p0] 
p1 ∈ HalfPlane[p0 p2 p0]

Although p1 and p2 are two interdependent points, moving p2 will update the 
position of p1 onto p1' (its closest position within the region C1) and this will not 
cause a loop since p2' already belongs to the constraint applied on it. The same 
behaviour for two other new positions of p2 is shown in figure 177.

The following example shows the same behaviour for a construction involv-
ing four interdependent points, constrained on four perpendicular lines 
(figure 178): 

p4 ∈ HalfPlane[p3 p0 p1] ∩ HalfPlane[p3 p1 p0] 
p5 ∈ HalfPlane[p4 p0 p2] ∩ HalfPlane[p4 p2 p0] 
p6 ∈ HalfPlane[p5 p0 p1] ∩ HalfPlane[p5 p1 p0] 
p7 ∈ HalfPlane[p6 p0 p1] ∩ HalfPlane[p6 p1 p0]

Moving p3 onto the position p3' will update the position of p4 onto its closest 
position p4', but no update of p5 will be required. Once again, the loop will 
stop by itself.

figure 176 
graph of 

dependencies and 
example of 

movement of 
interdependent 

points, whose 
positions 

converge directly.

figure 177 
two other 

displacements.
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(2)	 The second kind of stop occurs when one of the three following interde-
pendent points p3, p4 or p5 is moved (figure 179):

p4 ∈ HalfPlane[p3 p0 p1] ∩ HalfPlane[p3 p1 p0] 
p5 ∈ HalfPlane[p4 p0 p2] ∩ HalfPlane[p4 p2 p0] 
p3 ∈ HalfPlane[p5 p1 p2] ∩ HalfPlane[p5 p2 p1]

The successive updates of these three points subsequent to the move of p3 
is shown in figure 180: moving p3 onto p3' implies that p4 is updated onto p4', 
implying that p5 is updated onto p5', p3' onto p3'', p4' onto p4'', etc. This will 
continue and may be stopped when the distance between a point and its previ-
ously updated position is smaller than a predetermined value. 

figure 178 
example of 
movement and 
graph of 
dependencies of 
interdependent 
points, whose 
positions 
converge directly.

figure 179 
initial situation 
and graph of 
dependencies of 
interdependent 
points.

figure 180 
example of 
movements of 
interdependent 
points, whose 
positions 
converge.
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Practical uses of convergent interdependencies are the definition of a con-
straint with the shape of any algebraic curve. Some of them are detailed in 
sub-section 17 (“examples of graphical computations”, page 165).

(3)	 The non-convergent case can be exemplified using the following applica-
tions of constraints (figure 181):

p2 ∈ \DiscInside[p0 p0 p1] 
p1 ∈ \DiscInside[p0 p0 p2]

Points p1 and p2 will never reach a stable position; they will take each other 
away from p0 ad infinitum. This construction must therefore be avoided. How-
ever, with additional proper constraints, these ongoing displacements might 
be controlled and used for specific purposes involving dynamic loops. 

static anchorage due to interdependency�  ·  Some interdependencies of 
constraints have the effect of anchoring points on a domain that cannot be 
changed by any movement of other points. Constructions of this kind should 
consequently be avoided. Following are three examples.

(1)	 This construction constrains two points on a line whose orientation can no 
longer be altered (figure 182):

p3 ∈ HalfPlane[p2 p0 p1] ∩ HalfPlane[p2 p1 p0] 
p2 ∈ HalfPlane[p3 p0 p1] ∩ HalfPlane[p3 p1 p0]

figure 181 
graph of 

dependencies and 
example of 

movement of 
interdependent 

points, whose 
positions does not 

converge.

figure 182 
graph of 

dependencies and 
situation of the 
first example of 

static anchorage.
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(2)	 This construction constrains two points on two circles whose radius can no 
longer be altered (figure 183):

p3 ∈ DiscInside[p2 p0 p1] ∩ DiscOutside[p2 p0 p1] 
p2 ∈ DiscInside[p3 p0 p1] ∩ DiscOutside[p3 p0 p1]

(3)	 This construction constrains two points on positions that can no longer be 
altered (figure 184):

p0 ∈ DiscInside[p1 p1 p1] 
p1 ∈ DiscInside[p0 p0 p0]

inner self-constraining� · Interdependencies might also occur when a point 
is constrained by a fundamental constraint that is directly dependent of it. 
Interdependent fundamental constraints might have different behaviours: 

 •	they may be useless —  i.e. they constrain nothing at all, they are al-
ways satisfied naturally —, this is the case for p0 ∈ HalfPlane[p1 p0 p0], 
p0 ∈ DiscInside[p0 p1 p2], p0 ∈ DiscOutside[p1 p0 p0] and p0 ∈ DiscOutside[p1 p0 p0] 
(figure 185)

•	 they may be never satisfied, e.g. p0 ∈ DiscOutside[p0 p1 p2]
•	 they may produce static anchorage, e.g. p0 ∈ DiscInside[p0 p0 p0]
•	 they may produce particular conditions, for instance:
	 p0 ∈ HalfPlane[p1 p0 p2] is strictly equivalent to p0 ∈ HalfPlane[p1 p1 p2] 

(figure 186)

figure 183 
situation and 
graph of 
dependencies of 
the second 
example of static 
anchorage.

figure 184 
situation and 
graph of 
dependencies of 
the third example 
of static 
anchorage.
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	 p0 ∈ DiscInside[p1 p0 p2] compels p0 to stay on the side of p1 given by the 
line segment bisector of p1p2 (figure 187)

	 p0 ∈ DiscOutside[p1 p0 p2] compels p0 to stay on the side of p2 given by the 

line segment bisector of p1p2 (figure 188)
	 p0 ∈ DiscInside[p1 p0 p0] compels p0 to stay upon p1 and is therefore equiv-

alent to p0 ∈ DiscInside[p1 p1 p1].

figure 185 
graph of 

dependencies and 
situation of p0 ∈ 

HalfPlane[p0 p1 p2].

figure 186 
graph of 

dependencies and 
situation of p0 ∈ 

HalfPlane[p1 p0 p2].

figure 187 
graph of 

dependencies and 
situation of p0 ∈ 

DiscInside[p1 p0 p2].

figure 188 
graph of 

dependencies and 
situation of p0 ∈ 

DiscOutside 
[p1 p0 p2].

figure 189 
situation and 

graph of 
dependencies of 

p0 ∈ DiscInside 
[p0 p1 p2] ∩ 
DiscOutside 

[p0 p1 p2].
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Combinations of constraints of this kind may also produce specific results. 
For instance, p0 ∈ DiscInside[p0 p1 p2] ∩ DiscOutside[p0 p1 p2] constrains p1 on the 
bisector of the segment p0p2 (figure 189).

locus of positions� · The previous example highlights one difficulty that may 
arise with interdependencies: the displayed domain of a point may be differ-
ent from the entire set of positions it can hold. This difference only concerns 
what is displayed and not what is allowed to move. 

For example, figure 189 shows that p1 is constrained on a circle although it 
can move all along the bisector. This does not mean that p1 cannot be dragged 
all along the bisector: dragging p1 outside is current position would first fix 
the radius of the circle and than update the position of p1 onto its closest 
position belonging to the circle, which in turn would alter the radius of circle 
again and would update p1 onto its newest closed position, resulting in a loop 
that will make p1 converging to the bisector. Other examples using this device 
are presented in the following sub-section.

Since it might be preferable for the user to visualise the entire available locus 
of positions properly, a “locus domain” may be introduced. The locus domain 
of a point pA given by a point pB, where pB is a father point of pA, is the set of 
all the positions that pA can hold when pB travels around its own domain of 
solution. The locus domain of an interdependent point is therefore defined 
by pA=pB.

Thanks to the property explained in the paragraph entitled “similarity 
between the locus and the propagation domain” (page 230), some locus do-
mains may be produced using accurate, symbolic algorithms similar to those 
developed in sub-section 19 (“constraint propagations”, page 201). However, 
other locus domains,  e.g. those produced by interdependency, such as the 
curves put forward in the next sub-section, may only be approached by nu-
merical analytical or trial-and-error techniques performed on a discretised 
sample region.
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17	 examples of graphical 
computations

This sub-section exhibits a series of geometric constraints capable of per-
forming advanced computations. Rather than listing them all, the purpose is 
to illustrate the means by which they are achieved and their practical inter-
ests. 

The first five paragraphs show how classical compass-and-straightedge opera-
tions can be automated with non-fundamental graphical constraints. The next 
paragraph explains how the classical limitations of compass-and-straightedge 
constructions can be overcome using interdependencies of constraints. The 
final two paragraphs point out two approaches to constrain points on curves 
other than on the circle.

To make it more concise, the following abbreviations of constraints are used:

HP[p0 p1 p2]	 := HalfPlane[p0 p1 p2] 
VHP[p0 p1] 	 := VeeringHalfplane[p0 p1] = HalfPlane[p0 p0 p1]

SE[p0 p1 p2]	 := Straightedge[p0 p1 p2] = HalfPlane[p0 p1 p2] ∩ HalfPlane[p0 p2 p1] 
VSE[p0 p1]		 := VeeringStraightedge[p0 p1] = Straightedge[p0 p0 p1]

DI[p0 p1 p2]	 := DiscInside[p0 p1 p2] 
CDI[p0 p1] 		 := CollapsibleDiscInside[p0 p1] = DiscInside[p0 p0 p1]

DO[p0 p1 p2]	 := DiscOutside[p0 p1 p2] 
CDO[p0 p1] 	 := CollapsibleDiscOutside[p0 p1] = DiscOutside[p0 p0 p1]

C[p0 p1 p2]		 := Compass[p0 p1 p2] = DiscInside[p0 p1 p2] ∩ DiscOutside[p0 p1 p2] 
CC[p0 p1] 		  := CollapsibleCompass[p0 p1] = Compass[p0 p0 p1]

[p0]			   :=	 Position[p0] = DiscInside[p0 p0 p0]

dynamic compass-and-straightedge constructions�  ·  Successive applica-
tions of fundamental constraints can be stored to handle more abstract geo-
metric concepts, e.g. constraining lengths and angles rather than positions. 
The following list describes some of them:



166 · dynamic handling of geometric constraints 

•	 The MidPoint[p1 p2] constraint is the middle position of the line segment p1p2:

MidPoint[p1 p2] := VSE[p1 p2] ∩ VSE[pA pB] ∩ CC[p1 p2] 
	 where: 	 pA ∈ CC[p1 p2] ∩ CC[p2 p1] ∩ VHP[p1 p2] 
				    pB ∈ CC[p1 p2] ∩ CC[p2 p1] ∩ VHP[p2 p1]

The application p0 ∈ MidPoint[p1 p2] is illustrated in figure 190. This constraint 
remains valid in the particular case where p1 and p2 are coincident.

•	 A line passing through p0 and p1 is always perpendicular to a line pass-
ing through p2 and p3 if p0 ∈ LinePerpendicularToLine[p1 p2 p3] (figure 191) or if 
p2 ∈ LinePerpendicularToLine[p3 p0 p1]:

LinePerpendicularLine[p1 p2 p3] := Straightedge[p1 pA pB] 
	 where: 	 pA ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p2 p3] 
				    pB ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p3 p2]

For instance, if p2 or p3 moves, the position of p0 is updated to its closest posi-
tion and the lines remain perpendicular. If p2 and p3 are coincident, p0 can be 
anywhere in the plane. The following constraints ensure that p2p3 and p0p1 
are real lines:

p2 ∈ \[p3] 
p0 ∈ \[p1]

figure 190 
construction and 
domain of p0 ∈ 
MidPoint [p1 p2].

figure 191 
construction and 
domain of p0 ∈ 
LinePerpendicular 
ToLine[p1 p2 p3].
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•	 The TranslatedPosition[p0 p1 p2] constraint gives the position that p2 would 
have if it was translated according to the orientation going from p0 to p1 and 
to the distance p0p1 (figure 192):

TranslatedPosition[p0 p1 p2] := C4 ∩ C5 ∩ C6 
	 where:		 C0 = VeeringHalfplane[p1 p2] 
				    C1 = VeeringHalfplane[p2 p1] 
				    C2 = CollapsibleCompass[p1 p2] 
				    C3 = CollapsibleCompass[p2 p1] 
				    C4 = Compass[p0 p1 p2] 
				    C5 = Straightedge[p0 p1 p2] 
				    C6 = HalfPlane[p0 pA pB] 
				    pA ∈ C0 ∩ C2 ∩ C3 
				    pB ∈ C1 ∩ C2 ∩ C3

This constraint remains correct when p1 and p2 are coincident.

•	 If an angle α is defined by three points p0, p1 and p2 as being the angle read 
clockwise between the line p0p1 and the line p0p2, then a line p3p4 always forms 
an angle α with a line p5p6 if p4 ∈ OrientedLine[p3 p5 p6 p0 p1 p2] (figure 193) such 
that:

OrientedLine[p3 p5 p6 p0 p1 p2] := (VSE[p3 pB] ∪ VSE[p3 pC] ) − [p3] 
	 where:		 pA ∈ SE[p3 p5 p6] ∩ C[p3 p0 p1]  
								        — two allowable positions but one unique final result 
				    pB ∈  C[p3 p0 p2] ∩ C[p7 p1 p2] ∩ VHP[p3 pA] 
				    pC ∈  C[p3 p0 p2] ∩ C[pA p1 p2] ∩ VHP[pA p3]

figure 192 
construction and 

domain of 
TranslatedPosition 

[p0 p1 p2] is 
highlighted in 

grey.
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The result remains valid for any value of α, as long as the following conditions 
hold:

p1 ∈ \[p0] 
p2 ∈ \[p0] 
p3 ∈ \[p4] 
p5 ∈ \[p6]

•	 A line passing through p2p3 is always tangential to a circle of centre p0 and 
passing through p1 if p3 ∈ LineTangentToCircle[p0 p1 p2] (figure 194):

LineTangentToCircle[p0 p1 p2] := ( SE[pD pF pG] ∪ SE[pE pH pI] ) − [p2] 
	 where: 
		  — line pApB is perpendicular to line p0p2 : 
				    C0 = CollapsibleCompass[p0 p2] 
				    C1 = CollapsibleCompass[p2 p0] 
				    pA ∈ C0 ∩ C1 
				    pB ∈ C0 ∩ C1 − [pA]

	 	 — pC is midpoint of p0p2 : 
				    C2 = VeeringHalfplane[p0 p2] 
				    C3 = VeeringHalfplane[p2 p0] 
				    C4 = VeeringStraightedge[pA pB] 
				    pC ∈ C2 ∩ C3 ∩ C4

		  — pD and pE are two points of tangency (they may be coincident with p2) : 
				    C5 = CollapsibleCompass[pC p2] 
				    C6 = CollapsibleCompass[p0 p1] 
				    pD ∈ C2 ∩ C5 ∩ C6 
				    pE ∈ C3 ∩ C5 ∩ C6

		  — line pFpG is perpendicular to line p0pD : 
				    C7 = CollapsibleCompass[pD p0] 
				    pF ∈ C6 ∩ C7 
				    pG ∈ C6 ∩ C7 − [pF]

figure 193 
construction and 
domain of p4 ∈ 
OrientedLine 
[p3 p5 p6 p0 p1 p2].
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		  — line pHpI is perpendicular to p0pE : 
				    C8 = CollapsibleCompass[pE p0] 
				    pH ∈ C6 ∩ C8 
				    pI ∈ C6 ∩ C8 − [pH]

To be defined effectively, the problem should constrain p2 such that it is not 
inside the circle: p2 ∈ CDO[p0 p1].

When p2 is not superimposed onto the circle, lines p2pD and p2pE already 
provide the two tangents and the search for pF, pG, pH and p11 is superflu-
ous — i.e. SE[pDpFpG] is equivalent to VSE[p2pD] and SE[pDpHpI] is equivalent to 
VSE[p2pE]. However, points pF, pG, pH and pI are useful for finding the unique 
tangent when p2 is superimposed onto the circle — in that case, SE[pD pF pG] 
and SE[pEpHpI] are equivalent.

•	 The distance between a point p4 and a line p0p1 is equal to the distance 
between p2 and p3 if p4 ∈ OrthogonalDistanceToLine[p0 p1 p2 p3] (figure 195):

OrthogonalDistanceToLine[p0 p1 p2 p3] := SE[pD p0 p1] ∪ SE[pE p0 p1] 
	 where:		 C0 = CC[p0 p1] 
				    C1 = CC[p1 p0] 
				    pA ∈ C0 ∩ C1 ∩ VHP[p0 p1] 
				    pB ∈ C0 ∩ C1 ∩ VHP[p1 p0]

figure 194 
construction and 

domain of p3 ∈ 
LineTangentToLine 

[p0 p1 p2].
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				    C2 = VSE[pA pB] 
				    C3 = VSE[p0 p1] 
				    pC ∈ C2 ∩ C3

				    C4 = C[p7 p3 p4] 
				    C5 = VHP[p0 p1] 
				    C6 = VHP[p1 p0] 
				    pD ∈ C2 ∩ C4 
				    pE ∈ C2 ∩ C4 − [pD]

arithmetic operations�  ·  This paragraph shows how new distances can be 
achieved through the addition, subtraction, division and multiplication of dis-
tances. Each of these new lengths is stored using a Compass constraint:

•	 the SumCompass[p0 p1 p2 p3 p4] constraint returns a Compass constraint that 
is centred on p0 and whose radius is the sum of the distances p1p2 and p3p4 
(figure 196):

SumCompass[p0 p1 p2 p3 p4] := Compass[p0 pB pE] 
	 where:		 C0 = Compass[pA p1 p2] 
				    pB ∈ C0

				    C1 = Compass[pB p1 p2] 
				    C2 = VeeringHalfplane[pA pB] 
				    C3 = VeeringHalfplane[pB pA] 
				    pC ∈ C0 ∩ C1 ∩ C2 
				    pD ∈ C0 ∩ C1 ∩ C3

				    C4 = Compass[pA p3 p4] 
				    C5 = HalfPlane[pA pD pC] 
				    pE ∈ C2 ∩ C3 ∩ C4 ∩ C5

figure 195 
construction and 
domain of p4 ∈ 
OrthogonalDistance 
ToLine [p0 p1 p2 p3].
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•	 the DifferenceCompass[p0 p1 p2 p3 p4] constraint returns a Compass constraint 
that is centred on p0 and whose radius is the difference between the distances 
p1p2 and p3p4 (figure 197):

DifferenceCompass[p0 p1 p2 p3 p4] := Compass[p0 pB pE] 
	 where:		 C0 = Compass[pA p1 p2] 
				    pB ∈ C0

				    C1 = Compass[pB p1 p2] 
				    C2 = VeeringHalfplane[pA pB] 
				    C3 = VeeringHalfplane[pB pA] 
				    pC ∈ C0 ∩ C1 ∩ C2 
				    pD ∈ C0 ∩ C1 ∩ C3

				    C4 = Compass[pA p3 p4] 
				    C5 = HalfPlane[pA pC pD] 
				    pE ∈ C2 ∩ C3 ∩ C4 ∩ C5

With distances always positive, the following property always holds:

DifferenceCompass[p0 p1 p2 p3 p4] = DifferenceCompass[p0 p3 p4 p1 p2]

figure 196 
construction of a 

SumCompass 
[p0 p1 p2 p3 p4] 

constraint.

figure 197 
construction of a 
DifferenceCompass 

[p0 p1 p2 p3 p4] 
constraint.
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•	 The ProductCompass[p0 p1 p2 p3 p4] constraint returns a Compass constraint 
that is centred on p0 and whose radius is the product of the distances p1p2 and 
p3p4 (figure 198):

ProductCompass[p0 p1 p2 p3 p4] := Compass[p0 pA pE] 
	 where:		 C0 = UnitCompass[pA] 
				    pB ∈ C0

				    C1 = VeeringStraightedge[pA pB] 
				    C2 = Compass[pA p1 p2] 
				    pC ∈ C2 ∩ (\C1 ∪ [pA])

				    C3 = Compass[pA p3 p4] 
				    pD ∈ C1 ∩ C3 — two available positions 

				    C4 = VeeringStraightedge[pA pC] 
				    C5 = Straightedge[pD pB pC] 
				    pE ∈ (C4 ∩ C5 − C1) ∪ [pA]

This construction is a direct implementation of similar triangles. Two similar 
triangles have proportional sides. If the first triangle has sides of lengths a,b 
and e, and if the second triangle have sides of lengths c, d and f (figure 199), 
then the equality a/b=c/d holds. This can be written as a×d=b×c, which means 
that if one of these lengths is set to be equal to the unit length — given by 
the UnitCompass constraint, see the paragraph entitled “other fundamental 
constraints” (page 154) —, the other lengths consequently describe the mul-
tiplication of two lengths and its product.

figure 199 
two similar 
triangles.

figure 198 
construction of a 
ProductCompass 
[p0 p1 p2 p3 p4] 
constraint.
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The ProductCompass constraint remains valid when one length is set equal to 
zero. For example, if the length p3p4 is multiplied by a zero length, the radius 
of the ProductCompass[p0 p1 p2 p3 p4] constraint will be zero as well:

p1 ∈ [p2]	 ⟶ C2 = [pA] 
			   ⟶ pC ∈ [pA] 
			   ⟶ C4 = Ω — the entire plane 
			   ⟶ C5 = C1 
			   ⟶ pE ∈ [pA]

The ProductCompass constraint multiplies lengths together. If, on the other 
hand, a given length has to be multiplied by a given amount, i.e. by an integer, 
the SumCompass constraint should be used instead and applied as many times 
as desired.

•	 The QuotientCompass[p0 p1 p2 p3 p4] constraint returns a Compass constraint 
that is centred on p0 and whose radius is the division of the distance p1p2 by 
the distance p3p4 (figure 200):

QuotientCompass[p0 p1 p2 p3 p4] := Compass[p0 pA pE] 
	 where:		 C0 = Compass[pA p3 p4] 
				    pB ∈ C0

				    C1 = VeeringStraightedge[pA pB] 
				    C2 = Compass[pA p1 p2] 
				    pC ∈ C1 ∩ C2

				    C3 = UnitCompass[pA] 
				    C4 = VeeringStraightedge[pA pC] 
				    pD ∈ C3 ∩ (\C4 ∪ [pA])

				    C5 = VeeringStraightedge[pA pD] 
				    C6 = Straightedge[pC pB pD] 
				    pE ∈ C5 ∩ C6

figure 200 
construction of a 

QuotientCompass 
[p0 p1 p2 p3 p4] 

constraint.
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Again, this constraint remains valid for particular divisions: (1) 0/x, (2) x/0, 
and (3) 0/0:

(1) when p0 and p1 are coincident:	  
				    C2 = [pA] 
			   ⟶	pC ∈ [pA] 
			   ⟶	pE ∈ [pA]  
			   ⟶	the radius pAp9 is zero.

(2) when p3 and p4 are coincident: 
				    C0 = [pA] 
			   ⟶	p6 ∈ [pA] 
			   ⟶	C1 = Ω 
			   ⟶	pC ∈ C2 
			   ⟶	C6 and C5 are parallel 
			   ⟶	pE ∈ ∅ and the construction is not allowed

(3) when couples p0p1 and p3p4 are simultaneously coincident: 
				    C0 = [pA] 
			   ⟶	pB ∈ [pA] 
			   ⟶	C1 = Ω 
			   ⟶	C2 = [pA] 
			   ⟶	pC ∈ [pA] 
			   ⟶	C4 = Ω 
			   ⟶	pD ∈ [pA] 
			   ⟶	C5 = Ω 
			   ⟶	C6 = Ω 
			   ⟶	pE ∈ Ω 
			   ⟶	the distance pApE can be any desired length

trigonometric operations�  ·  Trigonometric operations can be performed 
using similar non-fundamental Compass constraints.

•	 The CosineCompass[p0 p1 p2 p3 p4] constraint returns a Compass constraint 
that is centred on p0 and whose radius is the cosine of the angle that is read 
clockwise from orientation p1p2 to orientation p3p4 (figure 201):

CosineCompass[p0 p1 p2 p3 p4] := Compass[p0 pA pE] 
	 where:		 C0 = Straightedge[pA p1 p2] 
				    C1 = Straightedge[pA p3 p4] 
				    C2 = UnitCompass[pA] 
				    pB ∈ C1 ∩ C2 — two available positions but one unique final result



dynamic handling of geometric constraints · 175

				    C3 = CollapsibleCompass[p1 p2] 
				    C4 = CollapsibleCompass[p2 p1] 
				    pC ∈ C3 ∩ C4 
				    pD ∈ C3 ∩ C4 − [pC]

				    C5 = Straightedge[pB pC pD] 
				    pE ∈ C0 ∩ C5

The computed cosine remains correct when both orientations are distinct par-
allels — i.e. cos[0]=1.

•	 The SineCompass[p0 p1 p2 p3 p4] constraint returns a Compass constraint that 
is centred on p0 and whose radius is the sine of the angle that is read clock-
wise from orientation p1p2 to orientation p3p4 (figure 202):

SineCompass[p0 p1 p2 p3 p4] := Compass[p0 pA pE] 
	 where:		 C0 = Straightedge[pA p3 p4] 
				    C1 = UnitCompass[pA] 
				    pB ∈ C1 ∩ C2 — two allowable positions but one unique final result

				    C2 = CollapsibleCompass[p1 p2] 
				    C3 = CollapsibleCompass[p2 p1] 
				    pC ∈ C2 ∩ C3

				    pD ∈ C2 ∩ C3 − [pC] 
				    C4 = Straightedge[pA pC pD] 
				    C5 = Straightedge[pB p1 p2] 
				    pE ∈ C4 ∩ C5

figure 201 
construction of a 

CosineCompass 
[p0 p1 p2 p3 p4] 

constraint.
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figure 203 
Scheiner’s 
pantograph (in 
Scheiner·1631, 
page 29).

isometric transformations of constraints using mechanical instrument 
analogies�  ·  Applying the TranslatedPosition constraint (page 167) on each 
point defining another constraint C* is equivalent to copying and translat-
ing that constraint C*. In order to perform other isometric transformations of 
constraints, non-fundamental constraints can be constructed by analogy with 
linkages having similar purposes (Reuleaux·1876, Kempe·1877, Barr·1899 and 
Hinkle·1953). For example, the implementation of a pantograph (figure 203) 
would build a constraint that copies and scales constraints.

The following lines implement a plagiograph (figure 204, figure 205). The pur-
pose of this instrument is to reproduce the rotation of a given drawing. The 
Plagiograph[p0 p1 p2 p3 p4 p5 p6 p7] constraint is a position obtained by rotating 
p7 (hinge E) around p6 (hinge I). The angle of rotation α is defined by the angle 
between p2p3 and p4p5. The distance p0p1 is half the greatest radius p6p7 — e.g. 
p0p1 defines the length of rods O-A, B-C, O-B, A-D and B-E.

figure 202 
construction of a 
SineCompass 
[p0 p1 p2 p3 p4] 
constraint.
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That constraint is shown in figure 206:

Plagiograph[p0 p1 p2 p3 p4 p5 p6 p7] := C11 ∩ C12 ∩ C13 
	 where:	— measure of the rotation angle : 
				    C0 = VeeringStraightedge[p2 p3] 
				    C1 = VeeringStraightedge[p4 p5] 
				    pA ∈ C0 ∩ C1

				    C2 = Compass[pA p0 p1] 
				    pB ∈ C0 ∩ C2 — two allowable positions but one unique final result

				    C3 = VeeringHalfplane[pB pA] 
				    pC ∈ C1 ∩ C2 ∩ C3

		  	 — search for pD = hinge B 
				    C4 = Compass[p6 p0 p1] 
				    C5 = Compass[p7 p0 p1] 
				    C6 = VeeringHalfplane[p7 p6] 
				    pD ∈ C4 ∩ C5 ∩ C6

figure 204 
Sylvester’s 

plagiograph (in 
Bartolini/…·2006, 

page 132).

figure 205 
mechanism of 

Sylvester’s 
plagiograph.
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		  	 — search for pE = hinge C 
				    C7 = Compass[pD p0 p1] 
				    C8 = Compass[p7 pB pC] 
				    C9 = VeeringHalfplane[p6 p7] 
				    pE ∈ C7 ∩ C8 ∩ C9

		  	 — search for pF = hinge A 
				    C10 = Compass[pE p0 p1] 
				    pF ∈ C4 ∩ C10 − [pD]

		  	 — search for the constraint that defines hinge D 
				    C11 = Compass[pF p0 p1] 
				    C12 = Compass[pE p10 p11] 
				    C13 = VeeringHalfplane[p6 pE]

figure 206 
construction of p8 
∈ Plagiograph [p0 
p1 p2 p3 p4 p5 p6 
p7] constraint; the 
domain of p7 is 
highlighted.
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approximations of transcendental numbers by finite construc-
tions�  ·  Some numbers (called transcendental numbers) cannot accurately 
be obtained by classical compass-and-straightedge constructions. However 
they can be approximate. For instance, the following constraint calculates the 
value of π to four decimal places. It is based on a construction of Kochanski 
(Kochanski·1685 and Kochanski/Fuks·2011, figure 207) that computes the 
square root of 22+(3-1/√3)2 (figure 208):

KochanskiPiCompass[p0] := Compass[p0 pG pI] 
	 where:		 pB ∈ UnitCompass[pA]

			   — search for pCpD = perpendicular to pApB: 
				    C0 = VeeringHalfplane[pA pB] 
				    C1 = VeeringHalfplane[pB pA] 
				    C2 = CollapsibleCompass[pA pB] 
				    C3 = CollapsibleCompass[pB pA] 
				    pC ∈ C0 ∩ C2 ∩ C3 
				    pD ∈ C1 ∩ C2 ∩ C3

			   — search for pE = intersection between circles C2 and C6: 
				    C4 = HalfPlane[pA pD pC] 
				    C5 = HalfPlane[pA pC pD] 
				    C6 = Compass[pC pA pB] 
				    pE ∈ C2 ∩ C4 ∩ C6

			   — search for pF = intersection between line pBpE  
											           and its perpendicular passing through pA : 
				    C7 = VeeringStraightedge[pB pE] 
				    pF ∈ C4 ∩ C5 ∩ C7

	 		  — search for pGpH = 3 units of length: 
				    pG ∈ C0 ∩ C1 ∩ C3 ∩ \C4 
				    pH ∈ C0 ∩ C1 ∩ C2 ∩ C4

			   — search for pGpI = 3 units of length - distance pApF: 
				    C8 = Compass[pF pG pH] 
				    pI ∈ C8 ∩ C4 ∩ C5 ∩ C1

figure 207 
approximation of 
Pi by Kochanski 

(in 
Kochanski·1685, 

page 397).
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Other constructions of π are more accurate but also longer, e.g. the approxi-
mation provided by Srivanasa Ramanujan (Ramanujan·1914) calculates the 
value of π to eight decimal places, but requires 28 fundamental constraints.

constraints that go beyond the limitations of compass-and-straightedge 
constructions  · Classical compass-and-straightedge constructions are una-
ble to perform the following problems:

 •	quadrature of the circle, i.e. defining the value of π (Klein/Tägert·1897 
page 78)

 •	doubling the cube, i.e. defining the cubic root of 2
 •	trisecting any angle (Holme·2010, page 420)
 •	drawing any regular polygons (Eeckhoff·1999)
 •	constructing transcendental lengths
 •	…

However, these problems can all be constructed with interdependent HalfPlane, 
DiscInside and DiscOutside constraints. The following examples closely mimic 
traditional linkages, e.g. Neusis constructions, Philo lines and Laisant’s mech-
anism, in order to calculate the cubic root of 2 and to divide an angle into n 
equivalent parts.

•	 A Neusis construction rotates a given marked ruler around a fixed point 
until the distance between two curves equals a given length (measured on the 
marked ruler) (figure 209). Constructions of this kind are useful for doubling 
the cube, trisecting angles and constructing regular polygons with, for in-

figure 208 
construction of a 
PiCompass [p0] 
constraint.
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stance, 7, 9 or 13 sides. It is implemented here with the Neusis[p0 p1 p2 p3 p4 p5 p6] 
constraint. This constraint is a Straightedge passing through p4 and crossing 
the lines p0p1 and p2p3 by a distance p5p6 (figure 210). 

By successive displacements to their closest position, points pA and pB con-
verge to the expected orientation of the Neusis line:

Neusis[p0 p1 p2 p3 p4 p5 p6] := C2 
	 where:		 C0 = VeeringStraightedge[p0 p1] 
				    C1 = VeeringStraightedge[p2 p3] 
				    C2 = VeeringStraightedge[p4 pA] 

figure 209 
a traditional 

Neusis 
construction.

figure 210 
construction of a 
Neusis [p0 p1 p2 p3 

p4 p5 p6] 
constraint and its 

graph of 
dependencies.
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				    C3 = Compass[pB p5 p6] 
				    p4 ∈ \(C0 ∩ C1) 
				    pA ∈ C0 ∩ C3 
				    pB ∈ C1 ∩ C2

If pA and pB are two given points that belong to non-regular curves, e.g. unions 
of arcs of circles instead of straight lines, the Neusis is obtained by constrain-
ing pA onto C3 and p8 onto C2.

The following construction uses the Neusis constraint in order to calculate the 
cubic root of 2 (figure 211):

CubicRootOf2Compass[p0] := Compass[p0 pC pE] 
	 where:		 C0 = UnitCompass[pA] 
				    pB ∈ C0

	 		  — search for the equilateral triangle pApBpC: 
				    C1 = CollapsibleCompass[pB pA] 
				    pC ∈ C0 ∩ C1 — two available positions

			   — search for pCpD = two units of lengths and parallel to pBpC: 
				    C4 = VeeringStraightedge[pB pC] 
				    pD ∈ C1 ∩ C2 ∩ \(pC)

figure 211 
construction of a 
CubicRootOfTwo 
Compass[p5] 
constraint and its 
graph of 
dependencies.
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			   — search for a unit segment between lines pApB and pApD: 
				    C3 = Neusis[pA pB pA pD pC pA pB]

			   — search for pCpE = ∛2 units of length: 
				    C4 = VeeringStraightedge[pA pD] 
				    pE ∈ C3 ∩ C4

The proof of this construction can be found in Hartshorne·2000.

•	 A Philo line is the closest segment between two given lines — p0p1 and p0p2 
in figure 212 — and passing through a given point — p3. If p4 is defined as the 
base of the altitude of triangle p0p1p2 passing through p0, then the distance 
p2p4 is one third of the distance p1p2. 

A Philo line joining two lines p0p1 and p2p3 and passing through p4 can be im-
plemented as follows (figure 213):

Philo[p0 p1 p2 p3 p4] := C2 
	 where:		 C0 = VeeringStraightedge[p0 p1] 
				    C1 = VeeringStraightedge[p2 p3] 
				    C2 = VeeringStraightedge[p4 pA] 
				    pA ∈ C0 ∩ CollapsibleOutsideDisc[pB p4] 
				    pB ∈ C1 ∩ C2 ∩ CollapsibleOutsideDisc[pA p4]

				    C3 = CollapsibleCompass[p4 pB] 
				    C4 = CollapsibleCompass[pB p4] 
				    pC ∈ C3 ∩ C4 
				    pD ∈ C3 ∩ C4 − [pC]

				    pE = C0 ∩ C1 
				    C5 = Straightedge[pE pC pD] 
				    pF ∈ C2 ∩ C5

				    C6 = Compass[p4 pB pF] 
				    pA ∈ C6

figure 212 
rotation of a Philo 

line around p3.
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Philo of Byzantium (ca. 280 BC – ca. 220 BC) used this line in order to produce 
the cubic root of 2 on the basis of three similar triangles (figure 214). 

Its construction can be implemented as follows (figure 215):

CubicRootOfTwoCompass[p0] := Compass[p0 pE pH] 
	 where:		 C0 = UnitCompass[pA] 
				    pB ∈ C0

figure 214 
proof of the 
construction of 
the cubic root of 2 
using a Philo line.

figure 213 
construction of a 
PhiloLine[p0 p1 p2 
p3 p4] constraint 
and its graph of 
dependencies.
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				    C1 = CollapsibleCompass[pB pA] 
				    C2 = VeeringStraightedge[pA pB] 
				    pC ∈ C0 ∩ C1 
				    pD ∈ C0 ∩ C1 − [pC] 
				    C3 = Straightedge[pA pC pD]

				    pE ∈ C0 ∩ C2 − [pA] 
				    C4 = Straightedge[pE pC pD] 
				    pF ∈ C1 ∩ C3 
				    C5 = Straightedge[pF pA pB] 
				    pG ∈ C4 ∩ C5

				    C6 = Philo[pA pB pA pF pG] 
				    pH ∈ C0 ∩ C6

•	 The original purpose of a Laisant’s mechanism (Brocard·1875 and 
Yates·1941) is to divide an angle into three equal sectors (figure 216) but it 
can be generalised to divide an angle into any number of sectors (figure 217).

figure 215 
construction of a 

CubicRootOfTwo 
Compass[p8] 
constraint.

figure 216 
 a Laisant’s 

mechanism (from 
Yates·1941).

figure 217 
 generalisation of 

Laisant’s 
mechanism.
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If the angle to be divided is given by lines p0p1 and p2p3, the constraint 
LaisantTrisector[p0 p1 p2 p3] returns the union of the two straightedges that di-
vide that angle into three equal parts (figure 218):

LaisantTrisector[p0 p1 p2 p3] := C6 ∪ C8 
	 where:		 C0 = VeeringStraightedge[p0 p1] 
				    C1 = VeeringStraightedge[p2 p3] 
				    pA ∈ C0 ∩ C1

				    pB ∈ C1 − [pA] 
				    C2 = VeeringHalfplane[pA pB] 
				    C3 = CollapsibleCompass[pA pB] 
				    pC ∈ C0 ∩ C2 ∩ C3 
				    C4 = CollapsibleCompass[pC pA]

				    pD ∈ C0 ∩ C4 − [pA] 
				    C5 = CollapsibleCompass[pA pD]

figure 218 
construction of a 
LaisantTrisector [p0 
p1 p2 p3] 
constraint and its 
graph of 
dependencies.
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			   — first trisector: 
				    pE ∈ C3 
				    C6 = VeeringStraightedge[pA pE] 
				    pF ∈ C5 ∩ C6 ∩ C2

			   — second trisector: 
				    C7 = CollapsibleCompass[pF pC] 
				    pG ∈ C2 ∩ C3 ∩ C7 
				    C8 = VeeringStraightedge[pA pG] 
				    pH ∈ C2 ∩ C5 ∩ C8

			   — final adjustment: 
				    C9 = Compass[pD pB pH] 
				    pE ∈ C9

Other methods are available for trisecting an angle. These include Pascal’s 
marked ruler (Archimedes/…·1808, page 396, Yates·1941 and Loy·2003) or the 
tomahawk.

constraining points on curves using geometric properties� · The interde-
pendencies of fundamental constraints can also be used to constrain points on 
curves other than the circle. Either the construction of the curves is based on 
particular geometric properties or they perform polynomial functions graphi-
cally. This paragraph develops three conic curves based on their geometric 
properties. Examples of polynomial functions will be given subsequently.

•	 The Ellipse[p0 p1 p2 p3 p4] constraint compels a point to be along the ellipse 
defined by these properties: (1) the ellipse is centred on p0; (2) the distance 
between focal points is twice the distance p0p1; (3) the major radius is of orien-
tation p0p1; and (4) the major radius is of length p2p3. p4 is the point that will be 
constrained, such that p4 ∈ Ellipse[p0 p1 p2 p3 p4]. The construction makes use 
of the fact that the sum of distances p1p4 and pBp4 is always equal to twice the 
distance p2p3 (figure 219):

Ellipse[p0 p1 p2 p3 p4] := C2 ∩ C8 
	 where:	— p2pA is the length of the major radius: 
				    C0 = VeeringStraightedge[p2 p3] 
				    C1 = CollapsibleCompass[p3 p2] 
				    pA ∈ (C0 ∩ C1) − [p2]

			   — the distance between the focal points is lower than or equal to  
				    the length of the major radius: 
				    C2 = InsideDisc[p0 p2 p3] 
				    p1 ∈ C2



188 · dynamic handling of geometric constraints 

			   — p1 and pB are the two focal points: 
				    C3 = VeeringStraightedge[p0 p1] 
				    C4 = CollapsibleCompass[p0 p1] 
				    pB ∈ C3 ∩ C4 − [p1]

		  	 — pC is constrained by the distance p1p4  
				    and constrains the distance p4pB: 
				    C5 = CollapsibleInsideDisc[p2 p3] 
				    C6 = CollapsibleInsideDisc[p3 p2] 
				    C7 = Compass[p2 p1 p4] 
				    pC ∈ C0 ∩ C5 ∩ C6 ∩ C7

			   — constraining the distance p4pB: 
				    C8 = Compass[pB pA pC]

p4 ∈ Ellipse[p0 p1 p2 p3 p4]

figure 219 
construction of 
p4 ∈ Ellipse [p0 p1 
p2 p3 p4] 
constraint and its 
graph of 
dependencies.
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•	 Constraining a point p3 on a Parabola[p0 p1 p2 p3] constraint would force it 
to stay on a parabola such that: (1) the focus is p0; (2) the axis of symmetry is 
parallel to p1p2; and (3) the distance between the focus and the directrix is 
equal to p1p2. The construction uses the fact that the distance between a point 
p3 and the directrix is always equal to the distance between that point and the 
focus (figure 220):

Parabola[p0 p1 p2 p3] := C9 
	 where:		 C0 = VeeringHalfplane[p1 p2] 
				    C1 = VeeringHalfplane[p2 p1] 
				    C2 = CollapsibleCompass[p1 p2] 
				    C3 = CollapsibleCompass[p2 p1] 
				    pA ∈ C0 ∩ C2 ∩ C3 
				    pB ∈ C1 ∩ C2 ∩ C3

figure 220 
construction of 
p3 ∈ Parabola [p0 

p1 p2 p3] 
constraint and its 

graph of 
dependencies.
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				    C4 = Straightedge[p0 p1 p2] 
				    C5 = Compass[p0 p1 p2] 
				    C6 = HalfPlane[p0 pA pB] 
				    pC ∈ C4 ∩ C5 ∩ C6 
				    C7 = Straightedge[pC pA pB]

				    C8 = Straightedge[p3 p1 p2] 
				    pD ∈ C7 ∩ C8 
				    C9 = Compass[p0 p3 pD]

p3 ∈ Parabola[p0 p1 p2 p3]

•	 Constraining points on curves may also be done using properties of me-
chanical instruments. The Hyperbola[p0 p1 p2 p3 p4] constraint is constructed 
here using the mechanism in figure 221. Points p0 and p1 are the focus and the 
magnitude of the hyperbola is given by the distance p2p3. Point p4 is the point 
to be constrained on the hyperbola (figure 222):

Hyperbola[p0 p1 p2 p3 p4] := VeeringStraightedge[p1 pB] 
	 where:		 C0 = VeeringStraightedge[p0 p4] 
				    C1 = Compass[p0 p2 p3] 
				    C2 = Compass[pA p0 p1] 
				    C3 = Compass[p1 p2 p3] 
				    C4 = Straightedge[p1 p0 pA] 
				    pA ∈ C0 ∩ C1 
				    pB ∈ C2 ∩ C3 − C4

p4 ∈ Hyperbola[p0 p1 p2 p3 p4]

figure 221 
mechanism used 
to draw a 
hyperbola (from 
Yates·1959, page 
183, figure 168b).
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constraining points on curves using analogies of polynomial func-
tions� · Finally, curves can be constructed using polynomial functions — i.e. 
by applying multiple arithmetic and trigonometric constraints. See the par-
agraphs entitled “arithmetic operations” (page  170) and “trigonometric 
operations” (page 174).

As an illustration, Hankinson’s curve (Hankinson·1921) is constructed. 
This curve is used to describe the variation of the oblique strength in an 
orthotropic material according to its two principal (orthogonal) allowable 
strengths. This strength is calculated for an angle α and is given by equation 
(f1f2) / (f1sin2[α] + f2cos2[α]) where F1 and F2 are the two principal stresses.

figure 222 
construction of 

p4 ∈ Hyperbola [p0 
p1 p2 p3 p4] 

constraint and its 
graph of 

dependencies.
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Hankinson[p0 p1 p2 p3 p4 p5 p6] is a constraint that compels p6 to be within the 
polar representation of Hankinson’s curve. Point p0 is the centre of this shape 
— moving this point means moving the entire shape. Points p0 and p1 give 
the orientation of the principal stress. The distance p2p3 is equal to F1 and 
the distance p4p5 is equal to F2. This construction is illustrated in figure 223:

Hankinson[p0 p1 p2 p3 p4 p5 p6] := CollapsibleInsideDisc[p0 pI] 
	 where:	— distance p0pA = cos[α] and distance p0pB = sin[α]: 
				    C0 = CosineCompass[p0 p0 p1 p0 p6] 
				    C1 = SineCompass[p0 p0 p1 p0 p6] 
				    pA ∈ C0 
				    pB ∈ C1

		  	 — distance p0pC = cos2[α] and distance p0pD = sin2[α]: 
				    C2 = ProductCompass[p0 p0 pA p0 pA] 
				    C3 = ProductCompass[p0 p0 pB p0 pB] 
				    pC ∈ C2 
				    pD ∈ C3

	 		  — distance p0pE = f2×cos2[α] and distance p0pF = f1×sin2[α]: 
				    C4 = ProductCompass[p0 p0 pC p4 p5] 
				    C5 = ProductCompass[p0 p0 pD p2 p3] 
				    pE ∈ C4 
				    pF ∈ C5

			   — distance p0pG = f2×cos2[α] + f1×sin2[α]: 
				    C6 = SumCompass[p0 p0 pE p0 pF] 
				    pG ∈ C6

			   — distance p0pH + f1×f2: 
				    C7 = ProductCompass[p0 p2 p3 p4 p5] 
				    pH ∈ C7

			   — distance p0pI = f1×f2 / ( f2×cos2[α] + f1×sin2[α] ): 
				    C8 = QuotientCompass[p0 p0 pH p0 pG] 
				    pI ∈ C8

p6 ∈ Hankinson[p0 p1 p2 p3 p4 p5 p6]

The same method can be used to constrain points on transcendental 
curves, e.g. cycloids and spirals, or on curves that are generated by other 
curves, e.g. cissoids. 
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The last example solves the following system of inequations:

r ≤ f1f2 / (f1sin2[α] + f2cos2[α] 
r > F3 
sin[α] ≥ (F4 - cos[α]) / F5 
cos[α] ≥ 0

If r is the distance p0p2, if α is given by p0p1 and p0p2, and if the values {F1, F2, F3, 
F4, F5} are given by the distances {pApB, pCpD, pEpF, pGpH, pIpJ}, then the system 
of inequations can be described by the following constraints:

figure 223 
construction of 

p6 ∈ Hankinson [p0 
p1 p2 p3 p4 p5 p6] 

constraint and its 
graph of 

dependencies.
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p2 ∈ Hankinson[p0 p1 pA pB pC pD p2] ∩ \DI[p0 pE pF] 
		  ∩ VHP[p4 p3] ∩ VHP[p0 p4]  
p3 ∈ VSE[p0 p1] ∩ HP[p0 p5 p6] ∩ C[p0 pG pH] 
p4 ∈ QuotientCompass[p0 pG pH pI pJ] ∩ SE[p0 p5 p6] ∩ VHP[p1 p0] 
p5 ∈ CC[p0 p1] ∩ CC[p1 p0] ∩ VHP[p0 p1] 
p6 ∈ CC[p0 p1] ∩ CC[p1 p0] ∩ VHP[p1 p0]

As a result, the set of positions that p2 can hold is equivalent to the entire set 
of values that r and α can hold (figure 224).

This last example also highlights the analogy that exists between the appli-
cation of multiple geometric constraints and solving systems of non-linear 
inequations graphically. Only full implementation of constraint propagation 
— see sub-section 19 (“constraint propagations”, page 201) — would guaran-
tee that a solution always exists and would allow the solving of more complex 
systems of non-linear inequations, e.g. involving more than two variables or 
differentiations.

figure 224 
construction of a 
system of 
inequations, the 
solution domain 
of p2 is 
highlighted.
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18	 switching constraint 
dependencies

This subsection explains how to switch the hierarchy of dependencies be-
tween points — i.e. to make a child point its father's father and vice versa — 
without having to rebuild the entire construction. The consequence of this 
feature is that the user does not have to predict the parametric hierarchy in 
advance or rebuild the model whenever the parametric hierarchy has to be 
changed. If the user first analyses the behaviour of a certain result by varying 
the terms of the problem, this technique allows the user to alter this result 
explicitly and see how the terms of the problem would behave. The solution of 
a problem can become the statement of the inverse problem and vice versa.

using symmetry to switch dependencies� · This technique takes advantage 
(1) of the fact that the only variables of the problem are positions of points in a 
plane and (2) of properties of symmetry in Proximity and Laterality relationships 
—  see Ax.1 (page 62) and Ax.6 (page 64). As explained in sub-section 15 
(“graphical regions and dynamic compliance with geometric relationships”, 
page 137), HalfPlane, DiscInside and DiscOutside constraints are directly linked 
to that symmetry. For instance, the following applications of constraints are 
all equivalent:

p0 ∈ HalfPlane[p1 p2 p3]	 ⟷ p1 ∈ HalfPlane[p0 p3 p2] 
							       ⟷ p2 ∈ HalfPlane[p3 p1 p0] 
							       ⟷ p3 ∈ HalfPlane[p2 p0 p1]

p0 ∈ DiscInside[p1 p2 p3]	⟷ p1 ∈ DiscInside[p0 p2 p3] 
							       ⟷ p2 ∈ DiscOutside[p3 p0 p1] 
							       ⟷ p3 ∈ DiscOutside[p2 p0 p1]

To replace a fundamental constraint with its symmetry means that the de-
pendency between a child point and its father point are switched. Since any 
combined constraint is made of a symmetrical fundamental constraint, the 
dependencies of any pair of points that are relatives can consequently be 
switched by the domino effect of this symmetrical property.
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As soon as two given points are relatives, the switch can be automated by an 
algorithm that (1) searches the set of fundamental constraints that link the de-
pendencies between the two points and (2) replaces each of those constraints 
with its symmetrical counterpart.

example of switches� · The following example shows how the process of this 
technique is made easier by analysing the graph of dependencies. The geo-
metric construction of this example can be seen as the geometric skeleton 
of a funicular polyline passing through p6 and bearing two forces that are 
applied on p7 and p8 and that have magnitudes equal to the distances p1p2 
and p2p3 respectively. The initial dependencies are as follows (figure 225 and 
figure 226):

p7 ∈ Straightedge[p4 p1 p2] ∩ Straightedge[p6 p0 p1] 
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p7 p0 p2] 
p9 ∈ Straightedge[p8 p0 p3]

From this construction, it is deduced that the domain of p7 is equal to a single 
position that is controlled by five points on the intersection of two secant 
straightedges. For this reason p7 cannot be moved directly.

The first example of switching considers two direct relatives and consists in 
offering a degree of freedom to p7. This would mean removing one of the two 
constraints applied to it and adding the symmetrical constraint to one of its 

figure 225 
prior to 
permutation; (left) 
the domain of p7 
is the shaded 
position; (right) 
the domain of p0 
is the shaded 
area.

figure 226 
directed graph of 
dependencies 
before permuta-
tion.
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parents. The set of its parents is {p0 p1 p2 p4 p6}. All these points are good can-
didates since they can all still move within their domain. Point p0 is chosen. It 
is a direct father of p7 due to the Straightedge[p6 p0 p1] constraint.

The Straightedge[p6 p0 p1] constraint is actually the intersection of two funda-
mental constraints:

Straightedge[p6 p0 p1] = HalfPlane[p6 p0 p1] ∩ HalfPlane[p6 p1 p0]

To apply this constraint on p7 is therefore equivalent to the following sym-
metrical application:

	 p0 ∈ HalfPlane[p1 p6 p7] ∩ HalfPlane[p1 p7 p6] 
⟷ p0 ∈ Straightedge[p1 p6 p7]

After permutation, the resulting geometric construction is as follows 
(figure 227 and figure 228): 

p0 ∈ Straightedge[p1 p6 p7] 
p7 ∈ Straightedge[p4 p1 p2] 
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p7 p0 p2] 
p9 ∈ Straightedge[p8 p0 p3]

Point p7 gained a degree of freedom and p0 lost one of its degrees of freedom.

figure 227 
after permuta-

tion; (left) the 
domain of p7 is 

the shaded line; 
(right) the domain 

of p0 is the 
shaded line.

figure 228 
directed graph of 

dependencies 
before permuta-

tion.
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The second example of switching concerns the indirect relatives p6 and p9. On 
the initial construction (figure 225 and figure 226, page 196), point p6 can 
be moved anywhere in the plane while point p9 must stay on a Straightedge 
constraint:

p7 ∈ Straightedge[p4 p1 p2] ∩ Straightedge[p6 p0 p1] 
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p7 p0 p2] 
p9 ∈ Straightedge[p8 p0 p3]

It is decided to switch between these two degrees of freedom. Since p9 is a 
great-grandson of p6, three successive permutations have to be performed on 
the graph in figure 226, page 196: the first between p9 and p8, the second 
between p8 and p7 and the third between p7 and p6.

After the first switch of symmetrical applications, the construction is:

p7 ∈ Straightedge[p4 p1 p2] ∩ Straightedge[p6 p0 p1] 
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p7 p0 p2] ∩ Straightedge[p9 p0 p3]

After the second switch of symmetrical applications, the construction is:

p7 ∈ Straightedge[p4 p1 p2] ∩ Straightedge[p6 p0 p1] ∩ Straightedge[p8 p0 p2] 
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p9 p0 p3]

After the third switch of symmetrical applications, the final construction is 
(figure 229):

p6 ∈ Straightedge[p7 p0 p1] 
p7 ∈ Straightedge[p4 p1 p2] ∩ Straightedge[p8 p0 p2] 
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p9 p0 p3]

Point p9 is now the one that controls the geometry of the funicular polyline. It 
is important to note that all these intermediate operations are fully systema-
tised. The user only needs to specify the two points that have to switch their 
degrees of freedom.

figure 229 
directed graph of 
dependencies 
after three 
permutations.
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Furthermore, no computation of solutions is required by these permutations 
because the positions remain unchanged.

generation of interdependency by switching dependencies�  ·  Multiple 
genealogical paths sometimes exist between two relatives. If these paths are 
not all switched at the same time, a cycle of dependencies would occur and 
both points would become interdependent.

For example, if only one of the two dependences between p1 and p7 is 
chosen to be switched from the initial construction of figure 225 and 
figure 226, page 196, e.g. if only the first Straightedge constraint is replaced 
by its symmetrical counterpart —, the construction would become:

p1 ∈ Straightedge[p2 p4 p7] 
p7 ∈ Straightedge[p6 p0 p1] 
p8 ∈ Straightedge[p5 p2 p3] ∩ Straightedge[p7 p0 p2] 
p9 ∈ Straightedge[p8 p0 p3]

The corresponding directed graph of dependencies (figure 230) clearly shows 
that p1 and p7 are now interdependent. The interdependency is avoided if the 
application of p7 ∈ Straightedge[p6 p0 p1] is also replaced by its symmetry.

For another example, the dependencies between p0 and p9 are chosen for 
switching from the initial construction of figure 225 and figure 226, page 196. 
Three genealogical paths link p0 and p9: (1) a direct path {p0→p9}; (2) an indi-
rect path {p0→p8→p9}; (3) another indirect path {p0→p7→p8→p9}. If these paths 
are not all switched at the same time, cycles of interdependencies would oc-
cur. The directed graph of dependencies resulting from the permutation of 
the third path only is shown in figure 231.

figure 230 
directed graph of 

dependencies 
showing the 

emergence of 
interdependency.
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automatic deletion of superfluous interdependencies� · The beneficial con-
sequence of this is that the switching of interdependencies can be automa-
tised in order to delete all the superfluous interdependencies, i.e. all interde-
pendent constraints that can be replaced by symmetrical non-interdependent 
equivalents, e.g. the interdependencies found in sub-section 17 (“examples of 
graphical computations”, page 165) are not superfluous.

As a result, the user does not have to worry about whether or not the construc-
tion being carried out will induce superfluous interdependency. Algorithms 
can be performed afterwards in order to remove any superfluous interde-
pendency.

switching the dependencies of veering and collapsible fundamental 
constraints  · Switching the dependencies of two points that are linked by 
a VeeringHalfplane, a CollapsibleDiscOutside or a CollapsibleDiscInside constraint 
may either provoke interdependency or not. It depends on the chosen point of 
application of these constraints.

For instance, if p0 ∈ VeeringHalfplane[p1 p2], either p0 ∈ HalfPlane[p1 p1 p2] or 
p0 ∈ HalfPlane[p2 p1 p2] are equivalent constraints.

(1)	 If p0 ∈ HalfPlane[p1 p1 p2], then the switch between p0 and p1 would pro-
duce either the application p1 ∈ HalfPlane[p0 p2 p1] or the application 
p1 ∈ HalfPlane[p2 p1 p0]; in both case, the switch creates the interdepend-
ency of p1 by itself — see paragraph entitled “inner self-constraining” 
(page 162).

(2)	 If p0 ∈ HalfPlane[p2 p1 p2], then the switch between p0 and p1 would pro-
duce the application p1 ∈ HalfPlane[p2 p2 p0]. This does not create a new 
interdependency.

 

figure 231 
directed graph of 
dependencies 
after permutation 
of the third path 
only.
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19	 constraint propagations

the role of constraint propagation�  · Generally speaking, the role of con-
straint propagation is to restrict the number of values that variables of a 
given problem can hold. If the remaining set of values is a solution to the 
problem, this set is said to be consistent. A set of positions is consistent here 
if every point has a non-empty graphical region of solutions. Because of the 
constraint dependencies, this means that every father point must have a posi-
tion that does not force the domain of its child points to be empty. Therefore, 
the role of constraint propagation is to restrict the domain of solutions of 
each father point so that it can never be placed in a position that empties the 
domain of one of its child points.

For instance, the following construction has to be made consistent 
(figure 165, page 152):

p0 ∈ VeeringHalfplane[p1 p2] ∩ CollapsibleCompass[p1 p2] 
p6 ∈ VeeringHalfplane[p1 p2] ∩ VeeringHalfplane[p4 p5] ∩ VeeringHalfplane[p3 p0]

Because points p1, p2, p3, p4 and p5 are orphans, their domain will never be 
made empty. However, points p0 and p6 may have empty domains. The role of 
constraint propagation is consequently to ensure (1) that p1 and p2 cannot be 
placed on positions that empty the domain of p0 and (2) that p0, p1, p2, p3, p4 and 
p5 cannot be placed on positions that empty the domain of p6.

Because of the nature of the constraints applied on p0, it is actually impos-
sible for p1 and p2 to empty the domain of p0. There is consequently no do-
main of p0 to propagate on p1 or p2. However, the constraints applied on p6 
might form an empty region for some particular positions of its father points, 
meaning that their domain must be restricted. For example, the domain of p0 
must be restricted so that there is always an intersection between the con-
straint VeeringHalfplane[p3 p0],  i.e. the constraint that links p0 with its child 
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p6, and the constraint VeeringHalfplane[p1 p2] ∩ VeeringHalfplane[p4 p5],  i.e. the 
other constraints applied on p6. The propagation domain of p0 is illustrated in 
figure 168, page 152.

The constraint that links the child point to the father point is called “the 
constraint that propagates”, and the other constraint applied on the child is 
called “the constraint to be propagated”.

Constraint propagation is not the only way to prevent empty domains. Since 
(1) geometric statements are expected to be constructed constraint by con-
straint, (2) points are expected to be dragged one by one, and (3) the initial 
set of positions is expected to be consistent, then any operation, either the 
application of a new constraint or the movement of a point, that would emp-
ty a domain can indeed be cancelled systematically. The role of constraint 
propagation is therefore mostly to display consistent domains, i.e. to ensure 
that all the positions inside a displayed domain are solutions of the geometric 
construction.

In the case of interdependent constructions, constraint propagation only 
makes sense if the child point and the father point are not identical. If they 
are, the point would actually always converge somewhere in its domain.

approaches to constraint propagation�  ·  Literature provides numer-
ous generic methods to reduce the field of solutions to a problem 
(Bouma/Fudos/…·1995, Hoffmann/…·2005, Rossi/…·2006, Joan-Arinyo·2009, 
Mathis/Thierry·2010 and Bettig/…·2011). However, although some of them 
discuss parameters that can vary according to one degree of freedom 
(Hoffmann/Kim·2001, vanderMeiden/·2006 and Hidalgo/…·2012), no method 
exists as yet to handle parameters that have two degrees of freedom, i.e. to 
consider constraints that are, in the plane, as general as HalfPlane, DiscInside 
and DiscOutside. 

Hopefully, this drawback is mitigated by the fact that there is only one type 
of variable here, i.e. only positions of points — there are no length or angle — 
and all the constraints are expressed by means of graphical regions, i.e. no ex-
ternal algebraic (in)equation. Initial attempts at constraint propagation might 
consequently be as follows:

(1)	 The first approach is mainly numerical and maybe the most straightfor-
ward. It would first generate a discretisation of all the potential positions that 
the father point could hold in the plane. It would then examine the resulting 
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domain of the child point for each position of the father point, perhaps through 
converging loops. It would finally display the entire finite set of positions (or 
a smooth approximation of it) that did not involve an empty domain of the 
child point. The main advantage of this approach is that a unique method fits 
all cases. One drawback is that the boundaries of the created domain are not 
accurate and small entities of this domain, e.g. isolated positions, may remain 
completely unknown. Another drawback is that the created domain has to be 
recalculated from scratch whenever a child point has moved, which might be 
slow and detrimental to the interactive handling of the geometric construc-
tions.

(2)	 Another approach, also numerical but taking advantage of geometric rea-
soning, would first identify each mechanism produced by the constraints. 
This would then associate each mechanism with a known locus of positions 
already studied in literature, e.g. Artobolevski·1964. Together these loci form 
the boundaries of the propagation domain. The computation of well chosen 
positions would then determine which regions are inside the propagation do-
main and which regions are not. The advantage of this approach is that the 
locus can be parameterised and does not have to be recalculated from scratch 
whenever a child point has moved. The main drawback is that there is no gen-
eral method: only known loci can be propagated.

(3)	 A third approach would construct the propagation domain symbolically, 
by means of Boolean combinations of HalfPlane, DiscInside and DiscOutside 
constraints. This approach presents two great advantages. Firstly, it uses a 
similar grammar to that already developed, meaning that any technique de-
veloped in the previous sub-sections can be directly applied to it: graphs of 
dependencies, automatic displacements to closest positions, permutations of 
constraints, etc. Secondly, propagation domains can be defined by combina-
tions of constraints in such a way that their geometrical behaviour,  i.e. the 
resulting region, remains valid for any position. Therefore they do not have 
to be recalculated at each move. Their update is only required when new 
constraints are applied or old ones deleted. However, the benefits of this ap-
proach also reduce its scope of application: it only handles domains that can 
be described by HalfPlane, DiscInside and DiscOutside constraints. As a conse-
quence, it is restricted to propagations where the path of paternal filiation be-
tween the child point and the father point is unique, e.g. if a point is the father 
of another point, it can be its father several times (by several constraints) but 
it cannot be its grandfather or its child.
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For instance, this last approach cannot perform the propagation domain of p0 
within the following construction (figure 232):

p10	∈ Straightedge[p3 p0 p1] ∩ Straightedge[p4 p4 p5] 
p11	∈ Straightedge[p10 p0 p2] ∩ Straightedge[p6 p6 p7] 
			   ∩ HalfPlane[p6 p8 p9] ∩ HalfPlane[p7 p9 p8] 
p8	 ∈ Compass[p6 p6 p7] ∩ Compass[p7 p7 p6] ∩ HalfPlane[p6 p6 p7] 
p9	 ∈ Compass[p6 p6 p7] ∩ Compass[p7 p7 p6] ∩ HalfPlane[p7 p7 p6]

The shaded area in figure 232 is the propagation domain that p0 must hold 
in order to ensure that the domain of p11 is not empty. Since p11 is its child 
and its grandchild at the same time, two paths of paternal filiation exist and 
the propagation domain of p0 cannot be expressed in terms of fundamental 
constraints.

This field of study still requires further research. The best approach would 
probably be a mix of those mentioned above. 

By way of introduction, the paragraphs that follow develop a general pro-
cedure and a sub-procedure of it for the symbolic propagation of particular 
dependencies (third approach). 

figure 232 
point p11 will 
remain on the 
line segment p6p7 
as long as p0 
moves inside the 
grey area; (below) 
corresponding 
directed graph of 
dependencies.



dynamic handling of geometric constraints · 205

general method for symbolic propagation�  ·  Graphs of dependencies are 
usually more complex than what has been explained for figure 165, page 152. 
The point whose propagation domain is sought might have many children that 
are not direct relatives — p0 in figure 233 —, meaning that domains must be 
propagated from child to father incrementally. 

figure 233 
a fictitious 

directed graph of 
dependencies.
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Since the domain of a child cannot be propagated if it does not reflect the do-
main propagation of its own children, the following general procedure should 
be used to obtain the propagation domain of a point p0:

(1)	 create Pchild = the set of all child points and grandchild points of p0, plus 
p0 itself

(2)	 rewrite the constraints applied on each point of Pchild in terms of funda-
mental constraints.

(3)	 for each point p* of Pchild (p0 excluded) and whose domain has not yet 
been propagated onto its parents that are also in Pchild:

	 (3.1)	 if p* is childless, its “propagation domain” is equal to the entire 
		  plane and is considered “completed”.

	 (3.2)	 if the constraints applied on all the children and grandchildren  
		  of p* have been propagated on it, the propagation domain of p* is  
		  “completed”

	 (3.3)	 when the propagation domain of p* becomes completed, its “do 
		  main of solutions” can be propagated on all its parents that also  
		  belong to Pchild, like this:

		  (3.3.1)	 get the “domain of solutions” of p*, i.e. the intersection of its  
			   “propagation domain” and its “input domain”

		  (3.3.2)	 get the pure equivalent union of the domain of solutions of  
			   p* —  see paragraph entitled “pure equivalent unions and 
intersections” (page 139)

		  (3.3.3)	 get all the parent points of p* that also belong to Pchild

		  (3.3.4)	 for every parent of p* that also belongs to Pchild:
			   (3.3.4.1)	 for each sub-domain of the pure equivalent union of the  

					     domain of solutions of p*:
				    (3.3.4.1.1)	 get the constraints that propagate and the  

						      constraint(s) to be propagated
				    (3.3.4.1.2)	 split up the sub-domain into as many intersections  

						      as propagating constraints, so that each new inter- 
						      section only includes one propagating constraint

				    (3.3.4.1.3)	 for each new intersection: 
					     (3.3.4.1.3.1) 	 given the nature of the constraint that  

								        propagates and the constraints to be  
								        propagated, identify the pattern of  
								        propagation to be applied —  see next  
								        paragraphs
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					     (3.3.4.1.3.2)	 if a pattern exists, construct the local  
								        propagation domain associated with this  
								        intersection

				    (3.3.4.1.4)	 get the intersection of all the generated propagation  
						      domains

			   (3.3.4.2)	 get the union of the propagation of each sub-domain
			   (3.3.4.3)	 apply this union onto the uncompleted propagation do-

main of the current parent of p*

(4)	 Once the “propagation domain” of p0 is completed, get its “domain of 
solutions” by intersecting its “propagation domain” with its “input do-
main”.

As stated above, this procedure assumes that there is only one way of pa-
ternal filiation between the child point and the father point. The following 
example meets this condition. 

On the other hand, the quality of the propagation procedure depends on the 
chronology in which the domains of the child points are propagated. In the 
worst case scenario, it is probable that the resulting propagation domain or 
that the resulting domain of solutions becomes empty after this procedure, 
meaning that there is no position on which a point can go without emptying 
the domain of one of its children. It is also likely that the domain of a child 
point remains empty after the propagation of its domain onto its father points. 
However, this does not mean that there are no sets of positions for which 
no domain is empty. The solution is to wait for the domains of other child 
points to be propagated before updating the propagation domain that cause 
the problem.

Given a new geometric construction, the goal of the following example is to 
obtain the propagation domain of p0 (figure 234) using the aforementioned 
procedure. The construction is as follows:

p5 ∈ CollapsibleCompass[p1 p2] ∩ CollapsibleCompass[p2 p1]  
																                ∩ VeeringHalfPlane[p1 p2] 
p6 ∈ CollapsibleCompass[p1 p2] ∩ CollapsibleCompass[p2 p1]  
																                ∩ VeeringHalfPlane[p2 p1] 
p7 ∈ Straightedge[p0 p1 p2] ∩ CollapsibleCompass[p3 p4] ∩ HalfPlane[p3 p6 p5] 
p13 ∈ ( (VeeringHalfPlane[p10 p11] ∩ VeeringHalfPlane[p9 p8]) ∪ Compass[p12 p1 p2] ) 
																                ∩ VeeringHalfPlane[p3 p7]
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(1) On the basis of the directed graph of dependencies (figure 235), the Pchild set 
of p0 is equivalent to {p0 p7 p13}. 

(2) Their domain expressed in terms of fundamental constraints is:

p5 ∈ C2 ∩ C3 ∩ C4 ∩ C5 ∩ C6 
p7 ∈ C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 
p13 ∈ ( (C11 ∩ C12) ∪ C13 ) ∩ C14

where:	C0 = HalfPlane[p0 p1 p2] 
		  C1 = HalfPlane[p0 p2 p1]

figure 234 
the solution 
domain of p13.

figure 235 
directed graph of 
dependencies for 
the construction 
of figure 234.
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		  C2 = InsideDisc[p1 p1 p2] 
		  C3 = OutsideDisc[p1 p1 p2] 
		  C4 = InsideDisc[p2 p1 p2] 
		  C5 = OutsideDisc[p2 p1 p2] 
		  C6 = HalfPlane[p1 p1 p2] 
		  C7 = HalfPlane[p1 p2 p1]

		  C8 = InsideDisc[p3 p3 p4] 

		  C9 = OutsideDisc[p3 p3 p4] 
		  C10 = HalfPlane[p3 p6 p5]

		  C11 = HalfPlane[p10 p10 p11] 
		  C12 = \HalfPlane[p8 p8 p9] 
		  C13 = InsideDisc[p12 p1 p2] 
		  C14 = HalfPlane[p3 p3 p7]

(3) The next instructions consider each point of Pchild (p0 excluded) individually:
 a	p13

 b	p7

a (3.1) Since p13 is childless, its domain of solutions is equal to the entire plane 
Ω.

a (3.3) Since the domain of solutions of p13 is completed, it can consequently be 
propagated on all its parents that are also in Pchild — i.e. point p7.

a (3.3.1) The domain of solutions of p13 is therefore computed as follows:

SolutionDom[p13]	= InputDom[p13] ∩ PropagationDom[p13] 
					     = InputDom[p13] ∩ Ω 
					     = ( (C11 ∩ C12) ∪ C13 ) ∩ C14

a (3.3.2) The pure equivalent union of this domain is:

PureEquivalentUnion of SolutionDom[p13] = (C11 ∩ C12 ∩ C14) ∪ (C13 ∩ C14)

a (3.3.3) The only parent point of p13 that is also in Pchild is p7.

a (3.3.4.1) The various sub-domains of the pure equivalent union of the domain 
of solutions of p13 are:

a.a	 (C11 ∩ C12 ∩ C14)
a.b	( C13 ∩ C14)

a.a (3.3.4.1.1) The constraint that propagates the first sub-domain of p13 onto p7 
is C14 since p7 is a parameter of C14.
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a.a (3.3.4.1.2) There is only one constraint that propagates the first sub-domain 
of p13.

a.a (3.3.4.1.3.1) The pattern of propagation is the one that will be presented 
in next paragraph entitled “first symbolic pattern: propagation of convex 
intersections” (page 217).

a.a (3.3.4.1.3.2) The result of this local propagation is (figure 236, left):

(Dom[p13 ∈ C11 ∩ C12 ∩ C14] propagated onto p7 by C14 ) = C15 ∪ C16 
	 where :	 C15 = \HalfPlane[p3 p3 pA] 
				    C16 = \Halfplane[p3 p11 p10]

	 with:	 	 pA = VeeringStraightedge[p10 p11] ∩ VeeringStraightedge[p8 p9]

a.b (3.3.4.1.1) The constraint that propagates the second sub-domain of p13 onto 
p7 is also C14 since p7 is a parameter of C14.

a.b (3.3.4.1.2) There is only one constraint that propagates the second sub-do-
main of p13.

a.b (3.3.4.1.3.1) The pattern of propagation is the one that will be presented 
in next paragraph entitled “first symbolic pattern: propagation of convex 
intersections” (page 217).

figure 236 
(left) first 
propagation of 
the sub-domain of 
p13 onto p7;  
(right) second 
propagation of 
the sub-domain of 
p13 onto p7.
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a.b (3.3.4.1.3.2) The result of this local propagation is (figure 236, right):

(Dom[p13 ∈ C11 ∩ C12 ∩ C14] propagated onto p7 by C14 ) = C17 ∪ C18

	 where :	 C17 = HalfPlane[pE pG pH] 
				    C18 = HalfPlane[pF pJ pI]

	 with:	 pB = Compass[p3 p3 p12] ∩ Compass[p12 p12 p3] ∩ HalfPlane[p3 p3 p12] 
			   pC = Compass[p3 p3 p12] ∩ Compass[p12 p12 p3] ∩ HalfPlane[p12 p12 p3] 
			   pD = Straightedge[p3 p3 p12] ∩ Straightedge[pB pB pC] 
			   pE = Compass[p12 p1 p2] ∩ Compass[pD pD p3] ∩ HalfPlane[p12 p12 p3] 
			   pF = Compass[p12 p1 p2] ∩ Compass[pD pD p3] ∩ HalfPlane[p3 p3 p12] 
			   pG = Compass[p12 p12 pE] ∩ Compass[pE pE p12] ∩ HalfPlane[p12 p12 pE] 
			   pH = Compass[p12 p12 pE] ∩ Compass[pE pE p12] ∩ HalfPlane[pE pE p12] 
			   pI = Compass[p12 p12 pF] ∩ Compass[pF pF p12] ∩ HalfPlane[p12 p12 pF] 
			   pJ = Compass[p12 p12 pF] ∩ Compass[pF pF p12] ∩ HalfPlane[pF pF p12]

a (3.3.4.2) PropagationDom[p7] = (C15 ∪ C16) ∪ (C17 ∪ C18).

b (3.2) The propagation domain of p7 is now completed.

b (3.3) Since the domain of solutions of p7 is completed, it can consequently be 
propagated on all its parents that also belong to Pchild, i.e. point p0.

b (3.3.1) The domain of solutions of p7 is computed as follows:

SolutionDom[p7]	 = InputDom[p7] ∩ PropagationDom[p7] 
					     = InputDom[p7] ∩ ( (C15∪C16) ∪ (C17∪C18) ) 
					     = C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ (C15∪C16 ∪ C17∪C18)

b (3.3.2) The pure equivalent union of this domain is:

PureEquivalentUnion of SolutionDom[p7] =	(C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C15) 
											             ∪	 (C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16) 
											             ∪	 (C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C17) 
											             ∪	 (C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C18)

b (3.3.3) The only parent point of p7 that also belongs to Pchild is p0.

b (3.3.4.1) The various sub-domains of the pure equivalent union of the domain 
of solutions of p13 are:

b.a	(C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C15)
b.b	(C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16)
b.c	 (C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16)
b.d	(C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16)
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b.a, b.b, b.c and b.d (3.3.4.1.1) The constraints that propagate each sub-domain of p7 
onto p0 are always C0 and C1 — i.e. p0 is a parameter of C0 and C1.

b.a (3.3.4.1.2) The propagations concerning the first sub-domain are as follows:
b.a.a	 (C0 ∩ C8 ∩ C9 ∩ C10 ∩ C15)
b.a.b	 (C1 ∩ C8 ∩ C9 ∩ C10 ∩ C15)

b.b (3.3.4.1.2) The propagations concerning the second sub-domain are as fol-
lows:

b.b.a	 (C0 ∩ C8 ∩ C9 ∩ C10 ∩ C16)
b.b.b	 (C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16)

b.c (3.3.4.1.2) The propagations concerning the third sub-domain are as follows:
b.c.a	 (C0 ∩ C8 ∩ C9 ∩ C10 ∩ C17)
b.c.b	 (C1 ∩ C8 ∩ C9 ∩ C10 ∩ C17)

b.d (3.3.4.1.2) The propagations concerning the fourth sub-domain are as fol-
lows:

b.d.a	 (C0 ∩ C8 ∩ C9 ∩ C10 ∩ C18)
b.d.b	 (C1 ∩ C8 ∩ C9 ∩ C10 ∩ C18)

figure 237 
(left) the 
propagation 
constraint C19;  
(right) the 
propagation 
constraint C20.
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b.a, b.b, b.c and b.d (3.3.4.1.3.1) The pattern of propagation is in all cases the one 
that will be presented in next paragraph entitled “first symbolic pattern: 
propagation of convex intersections” (page 217).

b.a.a (3.3.4.1.3.2) The result of the first local propagation is (figure 237, left):

(Dom[p7 ∈ C0 ∩ C8 ∩ C9 ∩ C10 ∩ C15] propagated onto p0 by C0 ) = C19 
	 where :	 C19 = Halfplane[pK p2 p1] 
	 with:	 	 pK = Compass[p3 p3 p4] ∩ Straightedge[p3 p5 p6] ∩ Halfplane[p3 p1 p2]

b.a.b (3.3.4.1.3.2) The result of the second local propagation is (figure 237, right):

(Dom[p7 ∈ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C15] propagated onto p0 by C1 ) = C20 
	 where :	 C20 = \Halfplane[pL p2 p1] 
	 with:	 	 pL = Compass[p3 p3 p4] ∩ Straightedge[p3 p3 pA] ∩ Halfplane[p3 p6 p5]

b.b.a (3.3.4.1.3.2) The result of the third local propagation is (figure 238, left):

(Dom[p7 ∈ C0 ∩ C8 ∩ C9 ∩ C10 ∩ C16] propagated onto p0 by C0 ) = C21 
	 where :	 C21 = Halfplane[pK p2 p1] 
	 with:	 	 pM = Compass[p3 p3 p4] ∩ Straightedge[p3 p10 p11] ∩ Hp[p3 p6 p6]

b.b.b (3.3.4.1.3.2) The result of the fourth local propagation is (figure 238, right):

figure 238 
(left) the 

propagation 
constraint C21;  

(right) the 
propagation 

constraint C22.
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(Dom[p7 ∈ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16] propagated onto p0 by C1 ) = C22 
	 where :	 C22 = Halfplane[pK p2 p1] 
	 with:	 	 pN = Compass[p3 p3 p4] ∩ Straightedge[p3 p5 p6] ∩ Hp[p3 p2 p1]

b.c.a (3.3.4.1.3.2) The result of the fifth local propagation is (figure 237, left):

(Dom[p7 ∈ C0 ∩ C8 ∩ C9 ∩ C10 ∩ C17] propagated onto p0 by C0 ) = C19

b.c.b (3.3.4.1.3.2) The result of the sixth local propagation is (figure 239, left):

(Dom[p7 ∈ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C17] propagated onto p0 by C1 ) = C23 
	 where :	 C23 = Halfplane[pK p2 p1] 
	 with:	 	 pQ = Compass[p3 p3 p4] ∩ Straightedge[pE pG pH] ∩ Hp[p3 p6 p5]

b.d.a (3.3.4.1.3.2) The result of the seventh local propagation is (figure 237, left):

(Dom[p7 ∈ C0 ∩ C8 ∩ C9 ∩ C10 ∩ C18] propagated onto p0 by C0 ) = C19

b.d.b (3.3.4.1.3.2) The result of the eighth local propagation is (figure 239, right):

(Dom[p7 ∈ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C18] propagated onto p0 by C1 ) = C24 
	 where :	 C24 = Halfplane[pR p1 p2] 
	 with:	 	 pR = Compass[p3 p3 p4] ∩ Straightedge[pF pJ pI] ∩ Hp[p3 p6 p5]

figure 239 
(left) the 
propagation 
constraint C23;  
(right) the 
propagation 
constraint C24.
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b.a (3.3.4.1.4) The intersection resulting from the propagation of the first sub-
domain is:

(Dom[p7 ∈ C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C15] propagated onto p0) = C19 ∩ C20

b.b (3.3.4.1.4) The intersection resulting from the propagation of the second sub-
domain is:

(Dom[p7 ∈ C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C16] propagated onto p0) = C21 ∩ C22

b.c (3.3.4.1.4) The intersection resulting from the propagation of the third sub-
domain is:

(Dom[p7 ∈ C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C17] propagated onto p0) = C19 ∩ C23

b.d (3.3.4.1.4) The intersection resulting from the propagation of the fourth sub-
domain is:

(Dom[p7 ∈ C0 ∩ C1 ∩ C8 ∩ C9 ∩ C10 ∩ C18] propagated onto p0) = C19 ∩ C24

b (3.3.4.2) The union of all these intersections is:

(Dom[p7] propagated onto p0) =	(C19 ∩ C20) 
								           ∪	(C21 ∩ C22) 
								           ∪	(C19 ∩ C23) 
								           ∪	(C19 ∩ C24)

(4) The propagation domain of p0 is now completed since p7 was its only child. 
Its domain of solution is the following one:

SolutionDomain[p0]	 = InputDomain[p0] ∩ PropagationDomain[p0] 
						      = Ω ∩ (C19 ∩ C20) ∪ (C21 ∩ C22) ∪ (C19 ∩ C23) ∪ (C19 ∩ C24)

	 where:	 C19 = HalfPlane[pK p2 p1] 
				    C20 = \HalfPlane[pL p2 p1] 
				    C21 = \HalfPlane[pM p1 p2] 
				    C22 = HalfPlane[pN p1 p2] 
				    C23 = HalfPlane[pQ p1 p2] 
				    C24 = HalfPlane[pR p1 p2])

	 with:	 pA = Straightedge[p10 p10 p11] ∩ Straightedge[p8 p8 p9] 
			   pB = Compass[p3 p3 p12] ∩ Compass[p12 p12 p3] ∩ HalfPlane[p3 p3 p12] 
			   pC = Compass[p3 p3 p12] ∩ Compass[p12 p12 p3] ∩ HalfPlane[p12 p12 p3] 
			   pD = Straightedge[p3 p3 p12] ∩ Straightedge[pB pB pC] 
			   pE = Compass[p12 p1 p2] ∩ Compass[pD pD p3] ∩ HalfPlane[p12 p12 p3] 
			   pF = Compass[p12 p1 p2] ∩ Compass[pD pD p3] ∩ HalfPlane[p3 p3 p12] 
			   pG = Compass[p12 p12 pE] ∩ Compass[pE pE p12] ∩ HalfPlane[p12 p12 pE] 
			   pH = Compass[p12 p12 pE] ∩ Compass[pE pE p12] ∩ HalfPlane[pE pE p12] 
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			   pI = Compass[p12 p12 pF] ∩ Compass[pF pF p12] ∩ HalfPlane[p12 p12 pF] 
			   pJ = Compass[p12 p12 pF] ∩ Compass[pF pF p12] ∩ HalfPlane[pF pF p12] 
			   pK = Compass[p3 p3 p4] ∩ Straightedge[p3 p5 p6] ∩ Halfplane[p3 p1 p2] 
			   pL = Compass[p3 p3 p4] ∩ Straightedge[p3 p3 pA] ∩ Halfplane[p3 p6 p5] 
			   pM = Compass[p3 p3 p4] ∩ Straightedge[p3 p10 p11] ∩ Hp[p3 p6 p6] 
			   pN = Compass[p3 p3 p4] ∩ Straightedge[p3 p5 p6] ∩ Hp[p3 p2 p1] 
			   pQ = Compass[p3 p3 p4] ∩ Straightedge[pE pG pH] ∩ Hp[p3 p6 p5] 
			   pR = Compass[p3 p3 p4] ∩ Straightedge[pF pJ pI] ∩ Hp[p3 p6 p5]

This domain is illustrated in figure 240. As this will be explained in the 
next paragraph entitled “first symbolic pattern: propagation of convex 
intersections” (page  217), this solution domain remains valid for any posi-
tion of p0, p1, …, p13. If one of these points moves, the domain of solution of p0 
remains described by (C19 ∩ C20) ∪ (C21 ∩ C22) ∪ (C19 ∩ C23) ∪ (C19 ∩ C24) but will 
have a different geometry.

figure 240 
the solution 
domain of p0 (so 
that the domain 
of p13 is never 
empty).
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first symbolic pattern: propagation of convex intersections�  ·  The core 
part of the procedure described in the previous paragraph is the local propa-
gation of a pure intersection (⋂*) of fundamental constraints (C0, C1, …, Cn) 
onto the domain of a given father point (p0) —  see step (3.3.4.1.3.1), page 
206. This local (symbolic) propagation uses here different methods accord-
ing to the pattern of the constraints to be propagated and the constraint that 
propagates (Ci where i∈[0,n]). This paragraph describes a first method and the 
beginnings of other methods are introduced in the next one.

The required pattern for the first method of local propagation is as follows: 
every constraint included in the set {C0, C1, …, Cn} must be either a HalfPlane, 
\Halfplane, DiscInside or \DiscOutside constraint. These four constraints have the 
property of being convex — i.e. if two points are included in their region, the 
line joining them is totally included in that region. Since the intersection of 
convex subsets is also a convex set, the pure intersection ⋂* is therefore also 
convex.

Among all the properties of convex shapes, there is one proven by Eduard 
Helly in 1914 (Radon·1921) that is of particular interest for the purpose of 
propagation (figure 241):

“Suppose that C0, C1, …, Cn is a finite collection of convex subsets of ℜd, 
where n>d, if the intersection of every d+1 of these sets is non-empty, then the 
whole collection has a nonempty intersection, that is : ⋂0≤j≤n Cj ≠ ∅.”

figure 241 
basic illustration 

of Helly's 
theorem.
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Since only the plane is considered here, d is equal to 2. The theorem conse-
quently means that if there are more than two constraints in the intersection 
⋂* and if every sub-intersection made of three constraints of {C0, C1, …, Cn} 
is not empty, then the intersection ⋂* is not empty. Therefore, each of these 
sub-intersections can be propagated on an individual basis. The propagated 
domain resulting from the intersection ⋂* is equal to the intersection of the 
propagated domains resulting from each sub-intersection.

The great advantage of this property is that the propagation of only sixty 
typical intersections have to be known by the method, whatever the number 
n of fundamental constraints included in the intersection ⋂*. And these sixty 
intersections are made by a maximum of 3 fundamental constraints. They are 
all listed in the following table.

For example, if a point p0 has to stay on the following intersection:

p0 ∈ C0 ∩ C1  
	 where :	 C0 = Straightedge[p1 p3 p4] 
				    C1 = Straightedge[p2 p3 p4]

this will have an empty domain when the two straightedges are not super-
imposed (figure 242). Although the domain of p0 includes four HalfPlane con-
straints, the propagation domain of its father p1 can actually be obtained sys-
tematically by intersecting the propagation domain of typical intersections 
that include a maximum of three HalfPlane constraints:
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figure 242 
Point p0 is 
constrained on 
the intersection 
of two parallels.
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PropagationDomain[p1] = Dom[p0 ∈ C2∩C3∩C4∩C5] propagated on p1 by C2 and C3 
								        where:	C2 = HalfPlane[p1 p3 p4] 
										          C3 = HalfPlane[p1 p4 p3] 
										          C4 = HalfPlane[p2 p3 p4] 
										          C5 = HalfPlane[p2 p4 p3]

						      =	 Dom[p0 ∈ C2∩C4∩C5] propagated on p1 by C2 
						         ∩	Dom[p0 ∈ C3∩C4∩C5] propagated on p1 by C3

						      =	 TypicalDom#1 [p0 ∈ C2] propagated on p1 by C2 
						         ∩	TypicalDom#5 [p0 ∈ C2∩C4] propagated on p1 by C2 
						         ∩	TypicalDom#5 [p0 ∈ C2∩C5] propagated on p1 by C2 
						         ∩	TypicalDom#21 [p0 ∈ C2∩C4∩C5] propagated on p1 by C2 
						         ∩	TypicalDom#1 [p0 ∈ C3] propagated on p1 by C3 
						         ∩	TypicalDom#5 [p0 ∈ C3∩C4] propagated on p1 by C3 
						         ∩	TypicalDom#5 [p0 ∈ C3∩C5] propagated on p1 by C3 
						         ∩	TypicalDom#21 [p0 ∈ C3∩C4∩C5] propagated on p1 by C3

The three typical propagations #1, #5 and #21 are defined later. They produce 
the following domains:

TypicalDom#1 [p0 ∈ C2] propagated on p1 by C2			   = Ω	  
TypicalDom#5 [p0 ∈ C2∩C4] propagated on p1 by C2		  = Ω	 figure 243, left 
TypicalDom#5 [p0 ∈ C2∩C5] propagated on p1 by C2		  = C5	 figure 243, right 
TypicalDom#21 [p0 ∈ C2∩C4∩C5] propagated on p1 by C2	 = C5	 figure 244, left 
TypicalDom#1 [p0 ∈ C3] propagated on p1 by C3			   = Ω 
TypicalDom#5 [p0 ∈ C3∩C4] propagated on p1 by C3		  = C4	 figure 244, right 
TypicalDom#5 [p0 ∈ C3∩C5] propagated on p1 by C3		  = Ω	 figure 245, left 
TypicalDom#21 [p0 ∈ C3∩C4∩C5] propagated on p1 by C3	 = C4	 figure 245, right

This means that the propagation domain of p1 is C4 ∩ C5, which compels the two 
straightedges to be superimposed.

The construction of the sixty typical propagations is mainly made complex 
by the fact that they must remain true for every positions of points. In other 
words, the graphical region that they produce must remain correct when the 
constraints of the sub-intersection have particular positions, orientations and 
radii. These special cases are usually due to coincidence of parameters, paral-
lelism and tangencies.

Moreover, it is expected that typical propagations do not create interdepend-
ency. And if typical propagations create empty domains, these are assumed to 
have no effect and are therefore automatically changed by the entire plane do-
main Ω. This special device is helpful for some typical propagation — e.g. typi-
cal propagation #13b.
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Because each parameter of a fundamental constraint has a different role, it 
is finally expected that the propagation of each typical intersection returns a 
different domain depending on the place of the father parameter point in the 
typical intersection. For example, the typical intersection #5 involving two 
HalfPlane constraints should return a different domain for each of these cases:

#5a: PropagationDomain[p1] if p0 ∈ HalfPlane[p1 p2 p3] ∩ HalfPlane[p4 p5 p6] 
#5b: PropagationDomain[p2] if p0 ∈ HalfPlane[p1 p2 p3] ∩ HalfPlane[p4 p5 p6] 
#5c: PropagationDomain[p3] if p0 ∈ HalfPlane[p1 p2 p3] ∩ HalfPlane[p4 p5 p6] 
#5d: PropagationDomain[p1] if p0 ∈ HalfPlane[p1 p1 p2] ∩ HalfPlane[p4 p5 p6] 
#5e: PropagationDomain[p1] if p0 ∈ HalfPlane[p0 p1 p1] ∩ HalfPlane[p4 p5 p6] 
#5f: PropagationDomain[p1] if p0 ∈ HalfPlane[p1 p1 p1] ∩ HalfPlane[p4 p5 p6]

Some of the sixty typical propagations are presented in the following lines.

#1 a, b, c • If a point p0 must belong to the only constraint HalfPlane[p1 p2 p3], its 
domain will always be non-empty. Therefore:

PropagationDomain[p1]=Ω 
PropagationDomain[p2]=Ω 
PropagationDomain[p3]=Ω

#2 a, b, c • If a point p0 must belong to the only constraint \HalfPlane[p1 p2 p3], its 
domain is empty if p2 and p3 are coincident. Therefore:

figure 243 
(left) p0∈(C2∩C4) 
propagated on p1; 
(right) p0∈(C2∩C5) 
propagated on p1.

figure 244 
(left) 
p0∈(C2∩C4∩C5) 
propagated on p1; 
(right) p0∈(C3∩C4) 
propagated on p1.

figure 245 
(left) p0∈(C3∩C5) 
propagated on p1; 
(right) 
p0∈(C3∩C4∩C5) 
propagated on p1.
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PropagationDomain[p1]=Ω 
PropagationDomain[p2]=\DiscInside[p3 p3 p3] 
PropagationDomain[p3]=\DiscInside[p2 p2 p2]

#3 a, b, c • If a point p0 must belong to the only constraint DiscInside[p1 p2 p3], its 
domain will always be non-empty. Therefore:

PropagationDomain[p1]=Ω 
PropagationDomain[p2]=Ω 
PropagationDomain[p3]=Ω

#4 a, b, c • If a point p0 must belong to the only constraint \DiscOutside[p1 p2 p3], 
its domain is non-empty if p2 and p3 are coincident. Therefore:

PropagationDomain[p1]=Ω 
PropagationDomain[p2]=\DiscInside[p3 p3 p3] 
PropagationDomain[p3]=\DiscInside[p2 p2 p2]

#5a • If a point p0 must belong to the only constraint HalfPlane[p1 p2 p3] ∩ 
HalfPlane[p4 p5 p6] (figure 246), its domain will be non-empty if the constraints 
are not parallel and opposed. Therefore, its propagation on p1 is:

PropagationDomain[p1] = VHP[pG p4] ∪ VHP[pH p4] ∪ SE[p4 p5 p6] 
	 	 where:	pA ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p2 p3] 
				    pB ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p3 p2] 
				    pC ∈ CC[p5 p6] ∩ CC[p6 p5] ∩ VHP[p5 p6] 
				    pD ∈ CC[p5 p6] ∩ CC[p6 p5] ∩ VHP[p6 p5] 
				    pE ∈ C[p4 p2 p3] ∩ SE[p4 p5 p6] ∩ HP[p4 pC pD] 
				    pF ∈ C[p4 p2 p3] ∩ SE[p4 p5 p6] ∩ HP[p4 pD pC] 
				    pG ∈ C[p4 p2 p3] ∩ SE[p4 p2 p3] ∩ HP[p4 pA pB] 
				    pH ∈ C[p4 p2 p3] ∩ SE[p4 p2 p3] ∩ \[pE] ∩ ( HP[p4 pB pA] ∪ [pF] )

Different regions resulting from this domain are illustrated in figure 247, 
figure 248, and figure 249. When p2 and p3 are coincident, p4, pE, pF, pG and 
pH are all coincident, which means that VHP[pG p4] ∪ VHP[pH p4] is equal to the 
entire plane — what is expected. When p5 and p6 are coincident, SE[p4 p5 p6] is 
equal to the entire plane — what is expected.

figure 246 
the domain 

HalfPlane [p1 p2 p3] 
∩ HalfPlane 
[p4 p5 p6].
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figure 247 
the domain of p1 
so that HalfPlane 
[p1 p2 p3] ∩ 
HalfPlane [p4 p5 p6] 
is not empty.

figure 248 
the domain of p1 
so that HalfPlane 
[p1 p2 p3] ∩ 
HalfPlane [p4 p5 p6] 
is not empty.

figure 249 
the domain of p1 
so that HalfPlane 
[p1 p2 p3] ∩ 
HalfPlane [p4 p5 p6] 
is not empty.
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#5b • If a point p0 must belong to the same constraint HalfPlane[p1 p2 p3] ∩ 
HalfPlane[p4 p5 p6], its propagation on p2 is:

PropagationDomain[p2] = \SE[p3 p5 p6] ∪ HP[p3 p1 p4] ∪ HP[p3 p4 pA] 
		  where:	pA ∈ C[p4 p5 p6] ∩ VSE[p1 p4] ∩ HP[p4 p5 p6]

Different regions resulting from this domain are illustrated in figure 250 and 
figure 251. The resulting regions remain valid when p2 and p3 are coincident 
and/or when p5 and p6 are coincident.

#5d • If a point p0 must belong to the constraint HalfPlane[p1 p1 p3] ∩ 
HalfPlane[p4 p5 p6], its propagation on p1 is:

PropagationDomain[p1] = \SE[p3 p5 p6] ∪ VHP[p3 p4] ∪ HP[p3 p4 pA] 
		  where:	pA ∈ C[p4 p5 p6] ∩ VSE[p3 p4] ∩ HP[p4 p5 p6]

Different regions resulting from this domain are illustrated in figure 252 and 
figure 253. The resulting regions remain valid when p1 and p3 are coincident 
and/or when p5 and p6 are coincident.

figure 250 
the domain of p2 
so that HalfPlane 

[p1 p2 p3] ∩ 
HalfPlane [p4 p5 p6] 

is not empty.

figure 251 
the domain of p2 
so that HalfPlane 

[p1 p2 p3] ∩ 
HalfPlane [p4 p5 p6] 

is not empty.

figure 252 
the domain of p1 
so that HalfPlane 

[p1 p1 p3] ∩ 
HalfPlane [p4 p5 p6] 

is not empty.
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#9a • If a point p0 must belong to the constraint HalfPlane[p1 p2 p3] ∩ 
\HalfPlane[p4 p5 p6], its propagation on p1 is:

PropagationDomain[p1] = \VHP[p4 pG] ∪ \VHP[p4 pH] ∪ \HP[pI pG pH] ∪ SE[pI p2 p3] 
		  where:	pA ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p2 p3] 
				    pB ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p3 p2] 
				    pC ∈ CC[p5 p6] ∩ CC[p6 p5] ∩ VHP[p6 p5] 
				    pD ∈ CC[p5 p6] ∩ CC[p6 p5] ∩ VHP[p5 p6] 
				    pE ∈ C[p4 p2 p3] ∩ SE[p4 p5 p6] ∩ HP[p4 pC pD] 
				    pF ∈ C[p4 p2 p3] ∩ SE[p4 p5 p6] ∩ HP[p4 pD pC] 
				    pG ∈ C[p4 p2 p3] ∩ SE[p4 p2 p3] ∩ HP[p4 pA pB] 
				    pH ∈ C[p4 p2 p3] ∩ SE[p4 p2 p3] ∩ \[pE] ∩ ( HP[p4 pB pA] ∪ [pF] ) 
				    pI ∈ CC[p4 p5 p6] ∩ SE[p4 pA pB] ∩ HP[p4 p3 p2]

Different regions resulting from this domain are illustrated in figure 254 and 
figure 255. The resulting regions remain valid when p1 and p3 are coincident. 
Since the typical propagations #2b and #2c already deal with the same con-
straint, p5 and p6 will never be coincident.

figure 253 
the domain of p1 
so that HalfPlane 
[p1 p1 p3] ∩ 
HalfPlane [p4 p5 p6] 
is not empty.

figure 254 
the domain of p1 
so that HalfPlane 
[p1 p2 p3] ∩ 
\HalfPlane [p4 p5 p6] 
is not empty.
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#13a • If a point p0 must belong to the constraint HalfPlane[p1 p2 p3] ∩ 
DiscInside[p4 p5 p6], its propagation on p1 is:

PropagationDomain[p1] = HP[pC p3 p2] 
		  where:	pA ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p2 p3] 
				    pB ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p3 p2] 
				    pC ∈ C[p4 p5 p6] ∩ SE[p4 pA pB] ∩ HP[p4 p2 p3]

A region resulting from this domain is illustrated in figure 256. The resulting 
regions remain valid when p1 and p3 are coincident and/or when p5 and p6 are 
coincident.

#13b • If a point p0 must belong to the constraint HalfPlane[p1 p2 p3] ∩ 
DiscInside[p4 p5 p6], its propagation on p2 is:

PropagationDomain[p2] = HP[p3 pF pG] ∪ HP[p3 pI pH] 
		  where:	pA ∈ CC[p1 p4] ∩ CC[p4 p1] ∩ VHP[p1 p4] 
				    pB ∈ CC[p1 p4] ∩ CC[p4 p1] ∩ VHP[p4 p1] 
				    pC ∈ VSE[p1 p4] ∩ VSE[pA pB] ∩ CC[p1 p4] 
				    pD ∈ CC[pC p4] ∩ C[p4 p5 p6] ∩ VHP[pC p4] 
				    pE ∈ CC[pC p4] ∩ C[p4 p5 p6] ∩ VHP[p4 pC] 

figure 255 
the domain of p1 
so that HalfPlane 

[p1 p2 p3] ∩ 
\HalfPlane [p4 p5 p6] 

is not empty.

figure 256 
the domain of p1 
so that HalfPlane 

[p1 p2 p3] ∩ 
DiscInside [p4 p5 p6] 

is not empty.
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				    pF ∈ CC[p4 pD] ∩ CC[pD p4] ∩ VHP[p4 pD] 
				    pG ∈ CC[p4 pD] ∩ CC[pD p4] ∩ VHP[pD p4] 
				    pH ∈ CC[p4 pE] ∩ CC[pE p4] ∩ VHP[p4 pE] 
				    pI ∈ CC[p4 pE] ∩ CC[pE p4] ∩ VHP[pD pE]

Different regions resulting from this domain are illustrated in figure 257 and 
figure 258. The resulting regions remain valid when p1 and p3 are coincident 
and/or when p5 and p6 are coincident.

#15a • If a point p0 must belong to the constraint DiscInside[p1 p2 p3] ∩ 
DiscInside[p4 p5 p6] (figure 259), its propagation on p1 is:

PropagationDomain[p1] = CDI[p4 pD] 
		  where:	pA ∈ C[p4 p5 p6] 
				    pB ∈ CC[p4 pA] ∩ CC[pA p4] ∩ VHP[p4 pA] 
				    pC ∈ CC[p4 pA] ∩ CC[pA p4] ∩ VHP[pA p4] 
				    pD ∈ CC[pA p2 p3] ∩ VSE[p4 pA] ∩ VHP[pB pC] ∩ DO[p4 p5 p6]

A region resulting from this domain is illustrated in figure 260. The resulting 
regions remain valid when p1 and p3 are coincident and/or when p5 and p6 are 
coincident.

figure 257 
the domain of p2 
so that HalfPlane 
[p1 p2 p3] ∩ 
DiscInside [p4 p5 p6] 
is not empty.

figure 258 
the domain of p2 
so that HalfPlane 
[p1 p2 p3] ∩ 
DiscInside [p4 p5 p6] 
is not empty.
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#37a • If a point p0 must belong to the constraint HalfPlane[p1 p2 p3] ∩ 
HalfPlane[p4 p5 p6] ∩ HalfPlane[p7 p8 p9] (figure 261), its propagation on p1 is:

PropagatedDomain[p1] = VHP[pF pA] ∪ VHP[pG pA] ∪ VSE[pA pH] ∪ VSE[pA pI] 
		  where:	pA ∈ SE[p4 p5 p6] ∩ SE[p7 p8 p9] 
				    pB ∈ C[pA p5 p6] ∩ SE[p4 p5 p6] ∩ HP[p7 p8 p9] 
				    pC ∈ C[pA p8 p9] ∩ SE[p7 p8 p9] ∩ HP[p4 p5 p6] ∩ \[pB] 
				    pD ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p2 p3] 
				    pE ∈ CC[p2 p3] ∩ CC[p3 p2] ∩ VHP[p3 p2] 
				    pF ∈ C[pA p2 p3] ∩ SE[pA p2 p3] ∩ HP[pA pD pE] 
				    pG ∈ C[pA p2 p3] ∩ VSE[pA pF] ∩ ( \VHP[pB pA] ∪ \VHP[pC pA] )  
											           ∩ ( \[pF] ∪ (VHP[pA pB] ∩ VHP[pA pC] ) ) 
				    pH ∈ C[pA p5 p6] ∩ VSE[pA pF] 
				    pI ∈ C[pA p8 p9] ∩ VSE[pA pF]

figure 259 
the domain 

DiscInside [p1 p2 p3] 
∩ DiscInside 

[p4 p5 p6].

figure 260 
the domain of p1 
so that DiscInside 

[p1 p2 p3] ∩ 
DiscInside [p4 p5 p6] 

is not empty.

figure 261 
the domain 

HalfPlane [p1 p2 p3] 
∩ HalfPlane 
[p4 p5 p6] ∩ 

HalfPlane [p7 p8 p9].
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Different regions resulting from this domain are illustrated in the following 
figures (figure 262, figure 263 and figure 264). The resulting regions remain 
valid when p1 and p3 are coincident and/or when p5 and p6 are coincident.

figure 262 
the domain of p1 
so that HalfPlane 
[p1 p2 p3] ∩ 
HalfPlane [p4 p5 p6] 
∩ HalfPlane 
[p7 p8 p9] is not 
empty.

figure 263 
the domain of p1 
so that HalfPlane 
[p1 p2 p3] ∩ 
HalfPlane [p4 p5 p6] 
∩ HalfPlane 
[p7 p8 p9] is not 
empty.

figure 264 
the domain of p1 
so that HalfPlane 
[p1 p2 p3] ∩ 
HalfPlane [p4 p5 p6] 
∩ HalfPlane 
[p7 p8 p9] is not 
empty.
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second symbolic pattern: propagation by outsides of discs�  · Other sym-
bolic propagations appear to be feasible. Some of them are illustrated in this 
paragraph.

A first pattern that is very easily automated comprises no more than one 
Halfplane and an undetermined number of DiscOutside or \DiscInside constraints. 
Since the intersection of these constraints always include points at infinity, 
the propagation domain resulting from this pattern is the entire plane Ω.

Another pattern that may be propagated with symbolic algorithms is the one 
for which the constraint that propagates is a DiscOutside or a \DiscInside con-
straint and the intersection to be propagated includes only HalfPlane, DiscInside 
and \DiscOutside constraints. This means that the intersection to be propa-
gated is a convex shape whose border is made of segments of lines and arc 
of circles. The resulting domain is a union of (1) DiscOutside and \DiscInside 
constraints that are centred on each vertex and that have a radius equal to 
the radius of the constraint that propagates and (2) intersections of DiscOutside 
and \DiscInside constraints with sectors — i.e. intersection of two secant half-
planes — that are centred on each arc of circle, that have a radius equal to 
the subtraction of the radius of the constraint that propagates by the radius of 
the arc of circle — if the difference is negative, the radius is equal to zero —, 
and that are oriented opposite to the arc of circle, with respect of its centre.

Since the number of vertices can vary depending on the orientation of the 
half-planes, the propagation domain must use dynamic conditional statements 
developed in sub-section 20 (“dynamic conditional geometric statements”, 
page 233), which complicates its construction.

A propagation domain that matches this pattern is illustrated in figure 265. 
The constraint that propagates is a DiscOutside[p1 p2 p3] constraint and all the 
constraints are applied onto point p0.

figure 265 
(left) the domain 
of p0 and (right) 

the propagation 
domain of p1 (so 
that the domain 

of p0 is not 
empty).
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similarity between the locus and the propagation domain�  ·  There is a 
noteworthy property between the locus of points — see paragraph entitled 
“locus of positions” (page 164) —, the permutation of dependencies and the 
propagation domain (when the geometric construction is not interdepend-
ent): the locus of a point p0 resulting from the displacement of its father point 
p1 is identical to the PropagationDomain[p0] once all required permutations of 
dependencies have been done in order to make p1 the child or grandchild of p0.

This property can be understood with the geometric construction of a piston 
(figure 266):

p1 ∈ C1 
p2 ∈ C0 ∩ C2 
	 where:	C0 = Straightedge[p0 p3 p4] 
			   C1 = Compass[p0 p5 p6] 
			   C2 = Compass[p1 p7 p8]

The goal is to describe the locus of the centre of the piston — i.e. p2 — when 
the crankpin — i.e. p1 — rotates around the crankshaft — i.e. p0. The directed 
graph of dependencies in figure 267 shows that p2 is effectively the child of p1.

figure 266 
(left) schematic 
functioning of a 
piston and (right) 
its geometrical 
construction with 
the locus domain 
of p2 when p1 
moves.
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The first step is to switch the dependencies between p1 and p2 (figure 268):

p1 ∈ C1 ∩ C3 
p2 ∈ C0 
	 where:	C0 = Straightedge[p0 p3 p4] 
			   C1 = Compass[p0 p5 p6] 
			   C3 = Compass[p2 p7 p8]

The second step calculates the propagation domain of p2, which is equivalent 
to:

PropDomain[p2] = Domain[p1 ∈ C4∩C5∩C6∩C7) propagated on p2 by C6 and C7 
	 where :	 C4 = DiscInside[p0 p5 p6] 
				    C5 = DiscOutside[p0 p5 p6] 
				    C6 = DiscInside[p2 p7 p8] 
				    C7 = DiscOutside[p2 p7 p8]

PropDomain[p2] =	 Domain[p1 ∈ C4∩C5∩C6) propagated on p2 by C6 
					       ∩	 Domain[p1 ∈ C4∩C5∩C7) propagated on p2 by C7

PropDomain[p2] =	 Domain[p1 ∈ C4∩C6) propagated on p2 by C6 
					       ∩	 Domain[p1 ∈ C4∩C7) propagated on p2 by C7 
					       ∩	 Domain[p1 ∈ C5∩C6) propagated on p2 by C6 
					       ∩	 Domain[p1 ∈ C4∩C5∩C6) propagated on p2 by C6 
					       ∩	 Domain[p1 ∈ C4∩C5∩C7) propagated on p2 by C7

PropDomain[p2] =	 CollapsibleDiscInside[p0 pA] ∩ CollapsibleDiscOutside[p0 pB]

figure 267 
directed graph of 

dependencies 
prior to 

permutation.

figure 268 
directed graph of 

dependencies 
after permuta-

tion.
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The propagation domain is illustrated in figure 269. Its intersection with the 
input domain of p2 gives the locus of p2 when p1 moves:

SolutionDomain[p2] = CollapsibleDiscInside[p0 pA] ∩ CollapsibleDiscOutside[p0 pB] 
										          ∩ Straightedge[p0 p3 p4]

This purely symbolic resolution clearly differs from other methods pro-
posed in constraint-based geometry literature —  see Freixas/…·2008 and 
Hidalgo/…·2012 for comparison.

figure 269 
the propagation 
domain of p2.
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20	dynamic conditional 
geometric statements

This section shows how conditional statements such as If/Else conditions 
can be replaced graphically by combinations of HalfPlane and DiscInside con-
straints. Although these constraints are constructed symbolically as usual, 
their inner behaviour gives conditional results that are dynamically updated 
when points are moving.

In other words, the role of a constraint of this kind is to tell whether a point 
presently meets a certain geometric relationship or not. If the answer is true, 
the domain of the constraint is a single position. If the answer is false, the 
domain of the constraint is the inverse of the position — i.e. the entire plane 
without the position. These constraints are constructed in such a way that 
the answer is always correct whatever the position of the parameter points. 

The following paragraphs presents five conditional constraints that can be 
combined together in order to construct more complex conditions. They pro-
duce the following results:

CoincidenceCondition[p0 p1 p2] 
	 = [p0] IF p1 and p2 are coincident 
	 = \[p0] otherwise

LateralityCondition[p0 p1 p2 p3 p4] 
	 = [p0] IF p1 is on the left of or in line with p2 according to the direction p3p4 
	 = \[p0] otherwise

ProximityCondition[p0 p1 p2 p3 p4] 
	 = [p0] IF the distance p1p2 is smaller than or equal to the distance p3p4 
	 = \[p0] otherwise

ConjunctiveCondition[p0 p1 p2 p3 p4] 
	 = [p0] IF (p1 and p2 are coincident) AND (p3 and p4 are coincident) 
	 = \[p0] otherwise
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DisjunctiveCondition[p0 p1 p2 p3 p4] 
	 = [p0] IF (p1 and p2 are coincident) OR (p3 and p4 are coincident) 
	 = \[p0] otherwise

the CoincidenceCondition constraint�  ·  The construction of the 
CoincidenceCondition constraint is drawn from the TranslatedPosition constraint 
— see paragraph entitled “dynamic compass-and-straightedge constructions” 
(page  165)  — and takes advantage of the fact that the domain of a 
Straightedge[pA pB pC] constraint is the entire plane when pB and pC are coinci-
dent. The two possible cases are shown in figure 270 and figure 271:

CoincidenceCondition[p0 p1 p2] := 
			   \(SE[p0 p1 p2] ∩ SE[p0 pA pB]) ∪ (C[p1 p2 p0] ∩ SE[p1 p2 p0] ∩ HP[p1 pC pD] )

		  where:	pA ∈ (CC[p1 p2] ∩ CC[p2 p1] ∩ VHP[p1 p2]) 
				    pB ∈ (CC[p1 p2] ∩ CC[p2 p1] ∩ VHP[p2 p1]) 
				    pC ∈ (CC[p2 p0] ∩ CC[p0 p2] ∩ VHP[p2 p0]) 
				    pD ∈ (CC[p2 p0] ∩ CC[p0 p2] ∩ VHP[p0 p2])

figure 270 
the domain of 
Coincidence 
Condition [p0 p1 p2] 
when p1 and p2 
are coincident.

figure 271 
the domain of 
Coincidence 
Condition [p0 p1 p2] 
when p1 and p2 
are not 
coincident.
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When p1 and p2 are coincident, the domain of CoincidenceCondition[p0 p1 p2] is 
equal to the position of p0. When p1 and p2 are not coincident, the domain is 
equal to the inverse of the position p0.

the LateralityCondition constraint� · The LateralityCondition[p0 p1 p2 p3 p4] con-
straint should present the following domains:

· if Laterality[p1 p2 p3 p4]:	 LateralityCondition[p0 p1 p2 p3 p4] = [p0] 
· if not: 						      LateralityCondition[p0 p1 p2 p3 p4] = \[p0]

As a result, this constraint can be constructed as follows (figure 272 and 
figure 273):

LateralityCondition[p0 p1 p2 p3 p4] := CoincidenceCondition[p0 pA p1] 
		  where:	pA ∈ ([p1] ∪ [p2]) ∩ (\HP[p1 p4 p3] ∪ [p1]) ∩ HP[p2 p3 p4]

The domain of this constraint remains relevant when the direction p3p4 does 
not exist: 

(p3 = p4) ⟶ (\HP[p1 p4 p3] = ∅) ⟶ (pA ∈ [p0]) ⟶ the condition is verified

The domain remains valid when p1, p2, p3 or p4 change position.

figure 272 
the domain of the 
Laterality Condition 

[p0 p1 p2 p3 p4] 
constraint when 

the Laterality 
[p1 p2 p3 p4] 

relationship is 
true.

figure 273 
the domain of  

the Laterality 
Condition 

[p0 p1 p2 p3 p4] 
constraint when 

the Laterality 
[p1 p2 p3 p4] 

relationship is 
false.
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the ProximityCondition constraint� · The ProximityCondition[p0 p1 p2 p3 p4] con-
straint should present the following domains:

· if Proximity[p1 p2 p3 p4]:	 ProximityCondition[p0 p1 p2 p3 p4] = [p0] 
· if not: 						      ProximityCondition[p0 p1 p2 p3 p4] = \[p0]

The construction of this constraint first copies the two distances onto circles 
that are centred on the same point p5. Point p7 is defined in order to be posi-
tioned on the expected greatest distance — i.e. the distance p3p4. Another point 
(p8) is then defined in order to be positioned on the actual greatest distance. 
The positions of p7 and p8 are finally compared with the CoincidenceCondition 
constraint (figure 274 and figure 275):

ProximityCondition[p0 p1 p2 p3 p4] := CoincidenceCondition[p0 pD pC] 
		  where:	pB ∈ C[pA p1 p2] 
				    pC ∈ C[pA p3 p4] 
				    pD ∈ ([pB] ∪ [pC]) ∩ DO[pA p1 p2] ∩ (\DI[pA p3 p4] ∪ [pC])

This constraint remains valid when (a) p1 and p2 are coincident, (b) p3 and p4 
are coincident and (c) p1, p2, p3 and p4 are all coincident. It also remains valid 
when a greatest distance decreases progressively and becomes smaller than 
the other distance.

figure 274 
the domain of the 
Proximity Condition 
[p0 p1 p2 p3 p4] 
constraint when 
the Proximity 
[p1 p2 p3 p4] 
relationship is 
true.

figure 275 
the domain of the 
Proximity Condition 
[p0 p1 p2 p3 p4] 
constraint when 
the Proximity 
[p1 p2 p3 p4] 
relationship is 
false.
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It can be noted that the same construction can be used to find the greatest 
of two given distances. If the constraint MaxDistanceCompass[p0 p1 p2 p3 p4] is 
applied to a point p5, then the distance p0p5 will always be the greatest of the 
two distances p1p2 and p3p4, whatever they are or are becoming (figure 276):

MaxDistanceCompass[p0 p1 p2 p3 p4] := Compass[p0 pA pD] 
		  where:	pB ∈ C[pA p1 p2] 
				    pC ∈ C[pA p3 p4] 
				    pD ∈ ([pB] ∪ [pC]) ∩ DO[pA p1 p2] ∩ (\DI[pA p3 p4] ∪ [pC])

the ConjunctiveCondition constraint� · The domain of a ConjunctiveCondition 
[p0 p1 p2 p3 p4] constraint is directly deduced from the logical conjunction ∧:

· if Coincidence[p1p2] ∧ Coincidence[p3p4]:		  ConjunctiveCond[p0p1p2p3p4] = [p0] 
· if Coincidence[p1p2] ∧ ¬Coincidence[p3p4]:	 ConjunctiveCond[p0p1p2p3p4] = \[p0] 
· if ¬Coincidence[p1p2] ∧ Coincidence[p3p4]:	 ConjunctiveCond[p0p1p2p3p4] = \[p0] 
· if ¬Coincidence[p1p2] ∧ ¬Coincidence[p3p4]:	 ConjunctiveCond[p0p1p2p3p4] = \[p0]

The construction of this constraint is as follows (figure 277 and figure 278):

ConjunctiveCondition[p0 p1 p2 p3 p4] := CoincidenceCondition[pB pC p0] 
		  where:	pB ∈ C[pA p1 p2] 
				    pC ∈ C[pA p3 p4] ∩ CC[pB pA]

figure 276 
application of a 

MaxDistance 
Compass 

[p0p1p2p3p4] 
constraint onto 

p5.
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the DisjunctiveCondition constraint�  · The domain of a DisjunctiveCondition 
[p0 p1 p2 p3 p4] constraint is directly deduced from the logical disjunction ∨:

· if Coincidence[p1p2] ∨ Coincidence[p3p4]:		  DisjunctiveCond[p0p1p2p3p4] = [p0] 
· if Coincidence[p1p2] ∨ ¬Coincidence[p3p4]:	 DisjunctiveCond[p0p1p2p3p4] = [p0] 
· if ¬Coincidence[p1p2] ∨ Coincidence[p3p4]:	 DisjunctiveCond[p0p1p2p3p4] = [p0] 
· if ¬Coincidence[p1p2] ∨ ¬Coincidence[p3p4]:	 DisjunctiveCond[p0p1p2p3p4] = \[p0]

The construction of this constraint is as follows (figure 279 and figure 280):

DisjunctiveCondition[p0 p1 p2 p3 p4] := \CoincidenceCondition[pB pE p0] 
		  where:	pB ∈ \[pA] 
				    pC ∈ CoincidenceCondition[p1 p2 pA] ∩ ([pA] ∪ [pB]) 
				    pD ∈ CoincidenceCondition[p3 p4 pA] ∩ ([pA] ∪ [pB]) 
				    pE ∈ MidPoint[pC pD]

The MidPoint constraint as been defined in the paragraph entitled “dynamic 
compass-and-straightedge constructions” (page 165).

figure 277 
the domain of the 
Conjunctive 
Condition 
constraint (left) 
when Coincidence 
[p1 p2] ∧ 
Coincidence [p3 p4] 
and (right) when 
Coincidence [p1 p2] 
∧ ¬Coincidence 
[p3 p4].

figure 278 
the domain of the 
Conjunctive 
Condition 
constraint (left) 
when ¬Coincidence 
[p1 p2] ∧ 
Coincidence [p3 p4] 
and (right) when 
¬Coincidence 
[p1 p2] ∧ 
¬Coincidence 
[p3 p4].
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logical conditions that return other results� · The previous five constraints 
can be combined with other constraints in order to match other behaviours. 
This paragraph shows three different uses of the resulting domains of condi-
tional constraints.

(1)	 The previous five constraints act like logical bijective equivalence — i.e. 
the domain is a position if the condition is true and the domain is the inverse 
of a position if the condition is false. In other words, its application onto a 
point p* induces a change of p*’s domain when the “IF” condition is observed 
and another change of p*’s domain when the “ELSE” condition is observed. In 
order to make a NewCondition constraint act like a logical implication — i.e. the 
application of this constraint is superfluous if the condition is false, there is no 
change of p*'s domain for any “ELSE” condition —, the NewCondition constraint 
can be constructed as follows:

NewCondition[p0 …] := OriginalCondition[p0 …] ∪ [p0]

As a consequence, the domain of the NewCondition is the entire plane when the 
OriginalCondition is not observed, meaning that, in this case, the application of 
the NewCondition constraint is superfluous.

figure 279 
the domain of the 

Disjunctive 
Condition 

constraint (left) 
when Coincidence 

[p1 p2] ∨ 
Coincidence [p3 p4] 

and (right) when 
Coincidence [p1 p2] 

∨ ¬Coincidence 
[p3 p4].

figure 280 
the domain of the 

Disjunctive 
Condition 

constraint (left) 
when ¬Coincidence 

[p1 p2] ∨ 
Coincidence [p3 p4] 

and (right) when 
¬Coincidence 

[p1 p2] ∨ 
¬Coincidence 

[p3 p4].
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(2)	 The resulting domain of a condition constraint can be changed in order to 
make it equivalent to a position (pA) when the condition is true and equivalent 
to another position (pB) when the condition is false (figure 281):

NewCondition[pA pB …] := OriginalCondition[pA …] ∩ ([pA] ∪ [pB]) 
		  where:	pB ∈ \[pA]

(3)	 If three points pA, pB and pC define two perpendicular directions, the do-
main of the following NewCondition constraint can be a line parallel to pApB 
when the OriginalCondition constraint is satisfied and can be a line parallel to 
pApC when the OriginalCondition constraint is not satisfied (figure 282):

NewCondition[pA pB pC …] = VeeringStraightedge[pA pD] 
	 where:	pD ∈ OriginalCondition[pB …] ∩ ([pB] ∪ [pC])

figure 282 
(left) the domain 
of the 
NewCondition 
constraint when 
the condition is 
met and (right) 
the domain of the 
NewCondition 
constraint when 
the condition is 
not met.

figure 281 
(left) the domains 
of the OldCondition 
constraint and 
(right) the 
corresponding 
domains of the 
NewCondition 
constraint.
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figure 283 
a rectangle 

whose longest 
side is always 

horizontal.

example of conditional construction� · The following construction presents 
a simple application using dynamic conditional statements. Given to dis-
tances p2p3 and p4p5, a rectangle is defined in such a way that its longer side 
is always parallel to p0p1, regardless of whether p2p3 is greater than p4p5 or 
not (figure 283):

C0 = VeeringHalfplane[p0 p1] 
C1 = VeeringHalfplane[p1 p0] 
C2 = CollapsibleCompass[p0 p1] 
C3 = CollapsibleCompass[p1 p0] 
p6 ∈ C0 ∩ C2 ∩ C3 
p7 ∈ C1 ∩ C2 ∩ C3 
C4 = Halfplane[p0 p6 p7] 
C5 = Halfplane[p0 p7 p6]

C6 = Compass[p0 p2 p3] 
C7 = Compass[p0 p4 p5] 
p8 ∈ C0 ∩ C1 ∩ C6 
p9 ∈ C0 ∩ C1 ∩ C7 
p10 ∈ C4 ∩ C5 ∩ C6 
p11 ∈ C4 ∩ C5 ∩ C7

p12 ∈ ProximityCondition[p9 p2 p3 p4 p5] ∩ ( [p8] ∪ [p9] ) 
p13 ∈ ProximityCondition[p10 p2 p3 p4 p5] ∩ ( [p10] ∪ [p11] )

C8 = Halfplane[p12 p7 p6] 
C9 = Halfplane[p13 p1 p0] 
p14 ∈ C0 ∩ C4 ∩ C8 ∩ C9
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21	 constraints for a uniform 
reading cycle of forces

This sub-section details which constraints should be applied on each point 
defining a force in order to ensure that forces applied clockwise on the same 
point in the form diagram are always read in the same order in the corre-
sponding force polygon in the force diagram. These constraints consequently 
guarantee the verification of axiom Ax.27 (page 109) —  see sub-section 13 
(“uniform reading cycle”, page 107).

avoiding interdependency�  ·  Axiom Ax.27 can be implemented in different 
manners. The most straightforward is to constrain the point that defines the 
type of the force — i.e. the point p2 of a Force[F0 p0 p2 p4 p5] relationship — and 
let the propagation apply equivalent constraints onto the points that define 
the force in the force diagram — i.e. points p4 and p5 of a Force[F0 p0 p2 p4 p5] 
relationship. However, this implementation always involves interdependency.

This can be understood with the basic example in figure 284. Forces F0, F1 and 
F2 are all applied on point p0. According to Ax.27, forces F0, F1 and F2 must be 
read clockwise in this order in the form diagram —  i.e. p2 must stay in the 
wedge defined by the half-lines p0p1 and p0p3. In terms of constraints, Ax.27 is 
written as follows when F0 and F2 are not zero forces:

ReadingCycleDom[p2]=	 (VeeringHalfplane[p1 p0] ∩ VeeringHalfplane[p0 pB]) 
						         ∪	(VeeringHalfplane[p1 p0] ∩ VeeringHalfplane[p0 p3]) 
						         ∪	(VeeringHalfplane[pA p0] ∩ VeeringHalfplane[p0 p3]) 
	 where:	pA  ∈	 VeeringStraightedge[p0 p1] ∩ CollapsibleCompass[p0 p1]  
				       ∩	\VeeringHalfPlane[p3 p0] 
			   pB  ∈	 VeeringStraightedge[p0 p3] ∩ CollapsibleCompass[p0 p3]  
				       ∩	\VeeringHalfPlane[p0 p1]

Using automated methods of constraint propagation, this sector would be 
propagated onto the domains of p4 and p5 since the orientations p0p2 and p4p5 
are linked by Ax.19 (page 83):

ForceDom[p2] = Straightedge[p0 p4 p5] ∩ CoincidenceCondition[p4 p5 p0]
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This propagation would make p4 and p5 dependent of p2. However, in order to 
rotate F1, either p4 or p5 must move. This means that, in most cases, F0 or F2 
would rotate as well. As a result, either p1 or p3 — i.e. the points that define 
the type of application of F0 and F2 — would be moved, which would modify the 
constraints applied on p2. A loop of dependencies consequently occurs.

This interdependency can be avoided if the uniform reading cycle requirement 
is defined specifically for each point that defines the force. This approach is 
chosen. For each Force[Fi pA pB pC pD] relationship, four ReadingCycleDom domains 
have to be constructed. The one concerning pA is actually equal to the entire 
plane Ω and is therefore superfluous. The second — i.e. ReadingCycleDom[pB] — 
is the direct application of Ax.27 already encountered — see figure 284. The 
third —  i.e. ReadingCycleDom[p2]  — is obtained by describing the geometric 
conditions that pC fulfils when Ax.27 is simultaneously applied on the previ-
ous and the next force that pC links in the force diagram. The fourth—  i.e. 
ReadingCycleDom[pD]  — is equivalent to the third regarding the subsequent 
force. As a consequence, the reading cycle domain of pC is actually the only 
one that requires study. 

It should be noted that, since Ax.27 is applied explicitly on the four points 
defining the force, their reading cycle domain should not be propagated onto 
themselves. It must only be propagated onto father points others than pA, pB, 
pC and pD.

construction of the reading cycle domain� · Given four subsequent forces 
F0, F1, F2, F3:

Force[F0 p0 p1 p5 p6] 
Force[F1 p0 p2 p6 p7] 
Force[F2 p0 p3 p7 p8] 
Force[F3 p0 p4 p8 p9]

and an undefined resultant R between F3 and F0 (figure 285 or figure 286), this 
paragraph defines the symbolic construction of the reading cycle domain of 
point p7 in such a way that it remains valid whatever the positions of points 

figure 284 
the domain that 
p2 must hold in 
order to 
guarantee Ax.27.
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—  i.e. whatever the new orientations, types of application, and magnitudes 
of forces. Therefore, the ReadingCycleDom does not have to be rebuilt when a 
point moves. It only has to be rebuilt when one of the four forces — F0, F1, F2 or 
F3 — is resolved or cancelled.

•	 When point p7 moves, the orientations and magnitudes of F1 and F2 vary, 
meaning that Ax.27 must be satisfied for F1 and F2. But, instead of guarantee-
ing the cycles ⟳[F0 F1 F2] ∧ ⟳[F1 F2 F3] separately (because it produces interde-
pendency), Ax.27 is here satisfied with guaranteeing the cycles ⟳[F0 F1 F3] ∧ 
⟳[F0 F2 F3] ∧ ⟳[F1 F2], in other words, F1 and F2 are both read clockwise after F0 
and before F3 and F1 is read clockwise before F2. These three conditions are 
developed individually and the resulting constraints are finally intersected.

•	 A constant that is of great help for this development is the axis of the re-
sultant F1+F2. It only depends on p6 and p8 and is hence independent of p7. 

•	 In order to characterise the orientation of F0 and F3 with respect to the 
resultant F1+F2, points pA and pB are constructed as follows:

pA ∈ SE[p0 p6 p8]					     ∩ VHP[p0 p4]	 ∩ CC[p0 p1] ∩ (\[p1] ∪ [p0]) 
pB ∈ (SE[p0 p6 p8] ∩ VSE[p0 pA])	∩ VHP[p1 p0]	 ∩ CC[p0 p4] ∩ (\[p4] ∪ [p0])

The role of these constraints is as follows.

figure 285 
(right) the domain 
that p7 must hold 

in order to ensure 
that the cycle {F0, 

F1, F2, F3, R} is 
read clockwise in 

the form 
diagram.

figure 286 
five other forces; 

(right) the domain 
that p7 must hold 

in order to ensure 
that the cycle {F0, 

F1, F2, F3, R} is 
read clockwise in 

the form 
diagram.
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Because of SE[p0 p6 p8] and (SE[p0 p6 p8]∩VSE[p0 pA]), pA and pB are always posi-
tioned on the axis of the resultant F1+F2 (passing through p0). And pA and pB 
always form on a line passing through p0, even if p6 and p8 are coincident — i.e. 
if the resultant F1+F2 is zero.

Because of VHP[p1 p0], F0 is always on the left of the direction going from p0 to 
pB. Because of VHP[p0 p4], F3 is always on the left of the direction going from 
pA to p0.

Because of CC[p0 p1]∩(\[p1]∪[p0]), pA and p0 are coincident when F0 is a zero force. 
Because of CC[p0 p4]∩(\[p4]∪[p0]), pB and p0 are coincident when F3 is a zero force.

Because of \[p1], pA is on the opposite side of p1 with respect to p0 when F0 is 
parallel with the axis of F1+F2. Because of \[p4], pB is on the opposite side of p4 
with respect to p0 when F3 is parallel with the axis of F1+F2.

There may be more than one position available for both pA and pB. The choice 
for one or another does not have any effect on the final result.

•	 The angle ∢[F0 F3] may be acute or obtuse, meaning that it would be some-
times described by an intersection of two half-planes and sometimes by a 
union of two half-planes. This would cause an issue since different Boolean 
combinations would be required by different positions of points. In order to 
describe it always with the same Boolean combination, the angle ∢[F0 F3] is 
here divided as a sum of two angles that are always either acute or straight. 
This is done by constructing points pC and pD as follows:

pC ∈ (VHP[p1 p0] ∩ VHP[p0 p4])	 ∩ VSE[p0 p1]	 ∩ CC[p0 p1]	 ∩ (\VSE[p0 pA] ∪ [pA]) 
pD ∈ (VHP[p1 p0] ∩ VHP[p0 p4])	 ∩ VSE[p0 p4]	 ∩ CC[p0 p4]	 ∩ (\VSE[p0 pB] ∪ [pB])

The role of these constraints is as follows.

Because of (VHP[p1 p0] ∩ VHP[p0 p4]), pC and pD always belong to the angle ∢{F0 F3}. 

Because of VSE[p0 p1], pC is on the axis of F0. Because of VSE[p0 p4], pD is on the 
axis of F3.

Because of CC[p0 p1], pC and p0 are coincident when F0 is a zero force. Because 
of CC[p0 p4], pC and pD are coincident when F3 is a zero force.

Because of (\VSE[p0 pA] ∪ [pA]), pC is on the opposite side of p1 with respect to 
p0 when F0 is parallel with the axis of F1+F2. Because of (\VSE[p0 pB] ∪ [pB]), pD is 
on the opposite side of p4 with respect to p0 when F3 is parallel with the axis 
of F1+F2.
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As a result, the angle ∢[F0 F3] is always equivalent to ∢[F0 p0pC]+∢[p0pC F3] and 
to ∢[F0 p0pD]+∢[p0pD F3], whatever the positions of p1 and p4.

•	 As a consequence, ⟳{F0 F1 F3} is verified — i.e. F0, F1 and F3 are read clock-
wise in that order — if F1 either belongs to ∢[F0 p0pC] or to ∢[p0pC F3]. If F1 exerts 
a pull, this means that:

p7 ∈ (HP[p6 p1 p0] ∩ HP[p6 p0 pC]) ∪ (HP[p6 pC p0] ∩ HP[p6 p0 p4])

If F1 exerts a push, this means that:

p7 ∈ (HP[p6 p0 p1] ∩ HP[p6 pC p0]) ∪ (HP[p6 p0 pC] ∩ HP[p6 p4 p0])

•	 Also, ⟳[F0 F2 F3] is verified —  i.e. F0, F2 and F3 are read clockwise in that 
order — if F2 either belongs to ∢[F0 p0pD] or to ∢[p0pD F3]. If F2 exerts a pull, this 
means that:

p7 ∈ (HP[p8 p0 p1] ∩ HP[p8 pD p0]) ∪ (HP[p8 p0 pD] ∩ HP[p8 p4 p0])

If F2 exerts a push, this means that:

p7 ∈ (HP[p8 p1 p0] ∩ HP[p8 p0 pD]) ∪ (HP[p8 pD p0] ∩ HP[p8 p0 p4])

•	 Finally, in order to verify ⟳[F1 F2] — i.e. F1 is read clockwise before F2 —, 
two cases must be distinguished: (a) the types of application of F1 and F2 are 
equivalent — i.e. F1 and F2 both exert either a push or a pull —; or (b) the types 
of application of F1 and F2 are different — i.e. either F1 exerts a pull while F2 
exerts a push or vice versa.

(a)	 If F1 and F2 both have the same type of application, they have the geometric 
property to be always on opposite sides of the axis F1+F2 in the form diagram 
(figure 287 and figure 288). 

figure 287 
Both F1 and F2 

exert a pull.

figure 288 
Both F1 and F2 
exert a push.
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Therefore, if the angle ∢[F0 F3] is divided in three acute angles ∢[F0 p0pB] + 
∢[p0pB p0pA] + ∢[p0pA F3], F1 is clockwise before F2 only if:

	 ( (F1 ∈ ∢[F0 p0pB]) ∧ (F2 ∈ ∢[p0pB p0pA]) ) 
   ∨	( (F1 ∈ ∢[p0pB p0pA]) ∧ (F2 ∈ ∢[p0pA F3]) )

And this is equivalent to the following check:

(F1 ∉ ∢]p0pA F3]) ∧ (F2 ∉ ∢[F0 p0pB[)

where F1 may be parallel to p0pA but not to F3, and F2 may be parallel to p0pB 
but not to F0. As a result, if F1 and F2 exert a pull, point p7 must satisfy the fol-
lowing constraint:

	 p7 ∈ \(\HP[p6 p0 pA] ∩ HP[p6 p0 p4]) ∩ \(HP[p8 p0 p1] ∩ \HP[p8 p0 pB])

⟷	p7 ∈ (HP[p6 p0 pA] ∪ \HP[p6 p0 p4]) ∩ (\HP[p8 p0 p1] ∪ HP[p8 p0 pB])

And if F1 and F2 exert a push, point p7 must satisfy the following constraint:

	 p7 ∈ \(\HP[p6 pA p0] ∩ HP[p6 p4 p0]) ∩ \(HP[p8 p1 p0] ∩ \HP[p8 pB p0])

⟷	p7 ∈ (HP[p6 pA p0] ∪ \HP[p6 p4 p0]) ∩ (\HP[p8 p1 p0] ∪ HP[p8 pB p0])

(b)	 If, on the other hand, F1 and F2 both have a different type of application, 
they have the geometric property to be always on the same side of the axis 
F1+F2 in the form diagram (figure 289 and figure 290).

figure 289 
F1 exerts a pull 
and F2 a push.

figure 290 
F1 exerts a push 
and F2 a pull.
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Consequently, if F1 exerts a pull and F2 exerts a push, F1 is always clockwise 
before F2 if:

  ·	p7 ∈ VHP[p8 p6] except in the case where the cycles ⟳[p0pA F1 F3[ ∧ ⟳]F0 F2 p0pB] 
exist (figure 291) — i.e. except when p7 ∈ (Hp[p6 pA p0] ∩ \Hp[p6 p4 p0]) ∩ 
(\Hp[p8 p0 p1] ∩ Hp[p8 p0 pB])

or ·	p7 ∈ VHP[p6 p8] and the cycles ⟳[p0pA F2 F3] ∧ ⟳[F0 F1 p0pB] exist (figure 292) 
— i.e. p7 ∈ (Hp[p8 pA p0] ∩ Hp[p8 p0 p4]) ∩ (Hp[p6 p1 p0] ∩ Hp[p6 p0 pB]).

Putting it all together, if F1 exerts a pull and F2 exerts a push, F1 is always 
clockwise before F2 if:

	 p7 ∈	 ( VHP[p8 p6] ∩\(Hp[p6 pA p0] ∩\Hp[p6 p4 p0] ∩\Hp[p8 p0 p1] ∩Hp[p8 p0 pB]) ) 
		    ∪	 ( VHP[p6 p8] ∩ (Hp[p6 p1 p0] ∩ Hp[p6 p0 pB] ∩ Hp[p8 pA p0] ∩Hp[p8 p0 p4]) )

⟷	p7 ∈	 ( VHP[p8 p6] ∩(\Hp[p6 pA p0] ∪Hp[p6 p4 p0] ∪Hp[p8 p0 p1] ∪\Hp[p8 p0 pB]) ) 
		    ∪	 ( VHP[p6 p8] ∩(Hp[p6 p1 p0] ∩ Hp[p6 p0 pB] ∩ Hp[p8 pA p0] ∩Hp[p8 p0 p4]) )

Similarly, if F1 exerts a push and F2 exerts a pull, F1 is always clockwise before 
F2 if:

	 p7 ∈	 ( VHP[p6 p8] ∩(\Hp[p6 p0 pA] ∪Hp[p6 p0 p4] ∪Hp[p8 p1 p0] ∪\Hp[p8 pB p0]) ) 
		    ∪	 ( VHP[p8 p6] ∩(Hp[p6 p0 p1] ∩ Hp[p6 pB p0] ∩ Hp[p8 p0 pA] ∩Hp[p8 p4 p0]) )

The two particular cases are illustrated in figure 293 and figure 294.

figure 291 
Impossible case 

when F1 pulls and 
F2 pushes.

figure 292 
Additional case 

when F1 pulls and 
F2 pushes.
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•	 In order for the main condition ⟳[F0 F1 F2 F3] to remain true regardless of 
whether F1 and F2 exert a pull or a push, there are four sub-conditions:

	 ⟳[F0 F1 F3] ∧ ⟳[F0 F2 F3] ∧ ⟳[F1 F2]

⟷	( ⟳[F0 F1 F3] ∧ ⟳[F0 F2 F3] ∧ ⟳[F1 F2] when both F1 and F2 exert a pull) 
   ∨	( ⟳[F0 F1 F3] ∧ ⟳[F0 F2 F3] ∧ ⟳[F1 F2] when both F1 and F2 exert a push) 
   ∨	( ⟳[F0 F1 F3] ∧ ⟳[F0 F2 F3] ∧ ⟳[F1 F2] when F1 exerts a pull and F2 exerts a push) 
   ∨	( ⟳[F0 F1 F3] ∧ ⟳[F0 F2 F3] ∧ ⟳[F1 F2] when F1 exerts a push and F2 exerts a pull)

This is equivalent to apply a constraint of the following type onto p7:

⟷	p7 ∈	 (C1,pull	 ∩ C2,pull	 ∩ Cpull-pull) 
		    ∪	 (C1,push	∩ C2,push	 ∩ Cpush-push) 
		    ∪	 (C1,pull	 ∩ C2,push	 ∩ Cpull-push) 
		    ∪	 (C1,push	∩ C2,pull	 ∩ Cpush-pull)

•	 The recapitulation of all the constraints to be applied on p7 is consequently 
the following one. If F0, F1, F2, F3 are four subsequent forces in the force dia-
gram such that:

F0 = Force[p0 p1 p5 p6] 
F1 = Force[p0 p2 p6 p7] 
F2 = Force[p0 p3 p7 p8] 
F3 = Force[p0 p4 p8 p9]

than, point p7 must belong to the following constraint in order to guarantee 
Ax.27 — i.e. in order to ensure that F0, F1, F2 and F3 are read clockwise in that 
order in the form diagram —:

figure 293 
Impossible case 
when F1 pushes 
and F2 pulls.

figure 294 
Additional case 
when F1 pushes 
and F2 pulls.
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ReadingCycleDom[p7] =	 ( C1,pull 	 ∩ C2,pull	 ∩ Cpull-pull   	 ) 
						        ∪	 ( C1,push	 ∩ C2,push	 ∩ Cpush-push	 ) 
						        ∪	 ( C1,pull 	 ∩ C2,push	 ∩ Cpull-push 	 ) 
						        ∪	 ( C1,push	 ∩ C2,pull	 ∩ Cpush-pull 	 )

where:	 
	 pA ∈ SE[p0 p6 p8]					     ∩ VHP[p0 p4] ∩ CC[p0 p1] ∩ (\[p1] ∪ [p0]) 
	 pB ∈ (SE[p0 p6 p8] ∩ VSE[p0 pA])	∩ VHP[p1 p0] ∩ CC[p0 p4] ∩ (\[p4] ∪ [p0]) 
	 pC ∈ (VHP[p1 p0] ∩ VHP[p0 p4])	 ∩ VSE[p0 p1] ∩ CC[p0 p1] ∩ (\VSE[p0 pA] ∪ [pA]) 
	 pD ∈ (VHP[p1 p0] ∩ VHP[p0 p4])	 ∩ VSE[p0 p4] ∩ CC[p0 p4] ∩ (\VSE[p0 pB] ∪ [pB])

	 C1,pull	 = (HP[p6 p1 p0] ∩ HP[p6 p0 pC]) ∪ (HP[p6 pC p0] ∩ HP[p6 p0 p4]) 
	 C1,push	= (HP[p6 p0 p1] ∩ HP[p6 pC p0]) ∪ (HP[p6 p0 pC] ∩ HP[p6 p4 p0])

	 C2,pull	 = (HP[p8 p0 p1] ∩ HP[p8 pD p0]) ∪ (HP[p8 p0 pD] ∩ HP[p8 p4 p0]) 
	 C2,push	= (HP[p8 p1 p0] ∩ HP[p8 p0 pD]) ∪ (HP[p8 pD p0] ∩ HP[p8 p0 p4])

	 Cpull,pull	 = (HP[p6 p0 pA] ∪ \HP[p6 p0 p4]) ∩ (\HP[p8 p0 p1] ∪ HP[p8 p0 pB]) 
	 Cpush,push	 = (HP[p6 pA p0] ∪ \HP[p6 p4 p0]) ∩ (\HP[p8 p1 p0] ∪ HP[p8 pB p0])

	 Cpull,push	 =	 ( VHP[p8 p6] 
					       ∩	 (\Hp[p6 pA p0] ∪ Hp[p6 p4 p0] ∪ Hp[p8 p0 p1] ∪ \Hp[p8 p0 pB]) ) 
				      ∪	 ( VHP[p6 p8] 
					       ∩	 (Hp[p6 p1 p0] ∩ Hp[p6 p0 pB] ∩ Hp[p8 pA p0] ∩Hp[p8 p0 p4]) )

	 Cpush,pull	 =	 ( VHP[p6 p8]  
					       ∩	 (\Hp[p6 p0 pA] ∪ Hp[p6 p0 p4] ∪ Hp[p8 p1 p0] ∪ \Hp[p8 pB p0]) ) 
				      ∪	 ( VHP[p8 p6]  
					       ∩	 (Hp[p6 p0 p1] ∩ Hp[p6 pB p0] ∩ Hp[p8 p0 pA] ∩ Hp[p8 p4 p0]) )

Synthesized diagrams of p7’s resulting domains are shown figure 295 for vari-
ous positions of p1, p4, p6 and p8. Regions in the force diagram are divided in 
the four following sub-regions:

I	 F1 pulls and F2 pulls
II	 F1 pushes and F2 pushes
III	 F1 pulls and F2 pushes
IV	 F1 pushes and F2 pulls

In certain positions, F1 or F2 is allowed to push or pull. The choice for one type 
of application or another depends on the position of p2, respectively p3.
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figure 295 
domain of p7 for 
various positions 
of p1, p4, p6 and 
p8, such that F1 
and F2 are read 
clockwise in the 
right order 
between F0 and 
F4.
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constraints for pushing forces or pulling forces�  · Similar constructions 
can be used to compel a force to be pushing or pulling. For instance, if the 
force F0 in figure 296 must remain pushing, the point p0 (instead of point p7) 
must be constrained so that either {F4 pushes and F0 pushes} or {F4 pulls and 
F0 pushes} and the point p1 (instead of point p7) must be constrained so that 
either {F4 pushes and F0 pushes} or {F4 pulls and F0 pushes}. In other words:

p0 ∈	 ( C4,push	 ∩ C0,push	 ∩ Cpush-push	 ) 
	   ∪	 ( C4,pull 	 ∩ C0,push	 ∩ Cpull-push 	 )

p1 ∈	 ( C0,push	 ∩ C1,push	 ∩ Cpush-push	 ) 
	   ∪	 ( C0,push 	 ∩ C1,pull	 ∩ Cpush-pull 	 )

These constraints are identical to those constructed in the previous para-
graph except that all the references to the points are shifted so that p7 is 
replaced by p0 and p1 successively. The intersection of these constraints with 
the reading cycle domains are shown in figure 296 and figure 297.
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constraints for compression rods or traction rods� · A rod always in com-
pression or in traction is simply obtained by compelling the two forces defin-
ing it to be either pushing or pulling. For instance, figure 298 shows the 
domain that p1 must hold in order for the rod R0 to remain in compression.

particular behaviours of the reading cycle domain� · The ReadingCycleDom 
mentioned above remains valid for any number of forces applied on p0 as long 
as zero forces are not taken into account, meaning that the ReadingCycleDom 
must be recalculated when a force becomes a zero force.

However, the construction of the domain remains valid when only two forces 
are applied on p0 for the following reason. If F1 and F2 are the only two forces 
applied on p0, it means that F0 and F3 are zero forces and hence, that p5, p6, p8, 
p9 are all coincident and that p0, p1, p4 are also coincident. As a result, pA, p0, 
pB, pC and pD are coincident, meaning that the constraints C1,pull, C1,push, C2,pull, 
C2,push, Cpull,pull, Cpush,push, Cpush,pull and Cpull,push are all equal to the entire plane 
Ω. The ReadingCycleDomain of p7 is consequently equal to the entire plane Ω, 
which is correct.

figure 296 
the domain that 
p0 must hold in 
order for F0 to be 
pushing.

figure 297 
the domain that 
p1 must hold in 
order for F0 to be 
pushing.

figure 298 
the domain that 
p1 must hold in 
order for R0 to be 
in compression.
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The same is true when only three forces are applied on p0. If, for instance, 
F3 is a zero force, points p5, p8 and p9 are coincident and p0 and p4 are also 
coincident (figure 299). As a consequence, pA, pB, pC and pD are constrained 
as follows:

pA ∈ SE[p0 p6 p8] ∩ CC[p0 p1] ∩ (\[p1] ∪ [p0]) 
pB ∈ [p0] 
pC ∈ VSE[p0 p1] ∩ CC[p0 p1] ∩ (\VSE[p0 pA] ∪ [pA] 
pD ∈ [p0]

C1,pull	 = HP[p6 p1 p0] ∪ HP[p6 pC p0] 
C1,push	= HP[p6 p0 p1] ∪ HP[p6 p0 pC] 
C2,pull	 = Ω 
C2,push	= Ω

Cpull,pull	 = HP[p6 p0 pA] 
Cpush,push	 = HP[p6 pA p0] 
Cpull,push	 = VHP[p5 p6] ∪ (VHP[p6 p5] ∩ HP[p6 p1 p0] ∩ HP[p6 pA p0] 
			   = VHP[p5 p6] 
Cpush,pull	 = VHP[p5 p6] ∪ (VHP[p6 p5] ∩ HP[p6 p0 p1] ∩ HP[p6 p0 pA] 
			   = VHP[p5 p6]

As a result p7 can be anywhere in the plane, which is correct:

ReadingCycleDom[p7]	 = HP[p6 p0 pA] ∪ HP[p6 pA p0] ∪ VHP[p5 p6] ∪ VHP[p5 p6] 
							       = Ω

when a point belongs to multiple force polygons� · When a point p7 belongs 
to multiple force polygons in the force diagram, the global ReadingCycleDom[p7] 
is the intersection of all the local ReadingCycleDom[p7] associated with each 
force polygon. This is mostly due to the fact that, if there is no application 
of geometric constraint other than those defining forces and rods, a point in 
the force diagram modifies the orientation and magnitude of only two forces 
for each point of application in the space diagram (figure 300). When other 

figure 299 
the domain that 

p7 must hold 
when only three 

forces are applied 
on p0.
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geometric constraints are applied on the points in the force diagram, they 
would take Ax.27 into account by propagation of each concerned reading cycle 
domain — see sub-section 19 (“constraint propagations”, page 201).

allowing the modification of reading cycle domains� · To compel each point 
of the force diagram inside its ReadingCycleDom results in preventing any mod-
ification of reading cycle. However, changing the reading cycles of forces may 
be useful for the user. Two approaches are available to change the reading 
cycles of forces.

(1)	 The first approach prevents any point from being outside its 
ReadingCycleDom. If the user wants to modify the current reading cycle of 
forces, he has to modify the equilibrium explicitly: he has to (a) move points in 
the force diagram in order to cancel the force whose order in the cycle must 
be changed and (b) make it reappear at the desired position. This approach is 
detrimental to the fluidity with which users handle strut-and-tie networks. 
The following approach is better in this respect.

(2)	 The second approach allows each point to be outside its ReadingCycleDom. 
As soon as one point is dragged outside its ReadingCycleDom, the network is au-
tomatically modified so that the new reading cycle matches the new position. 
f the point that is dragged is in the form diagram, the change only concerns 
the force whose type of application is defined by the point. If the point that is 
dragged is in the force diagram, the change concerns the two forces that it 
links. 

In both cases, the change of order in the force polygon requires the coinci-
dence of two points and the duplication of another. An example is shown in 
figure 301 and figure 303 : p2 and p3 become coincident and p5 is duplicated 
into p5 and p7.

figure 300 
a point p0 that 
belong to multiple 
force polygons.
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figure 301 
the force polygon 

prior to the 
change of reading 

cycle.

figure 302 
the force polygon 

“during” the 
change of reading 

cycle.

figure 303 
the force polygon 
after the change 
of reading cycle.

It may be that other constraints were applied explicitly onto p2 and p3 before 
the change of order. A choice will therefore have to be made as to whether 
these constraints must be deleted, kept or copied. Since there is no reason to 
delete them or to apply them all (with parameters p5 and p7 in place of p2 and 
p3), the most natural choice seems to be the following one:

 •	if the constraint is always verified because of the coincidence p2=p3, if 
it is always identical to another because of the coincidence p2=p3 or if p2 
and p3 are two parameters of the constraint, the constraint is applied 
after changing p2 by p5 and p3 by p7

 •	if not, the constraint is kept with the original parameters p2 and p3.

For instance, if a constraint DiscInside[pB p2 p3] was applied onto a point pA 
prior to the change of order in the force polygon, it would be replaced by a 
constraint DiscInside[pB p5 p7] applied onto pA.
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22	 facilitating the crossing of 
rods

It has been shown in the paragraph entitled “why a uniform reading cycle 
imposes the absence of almost any intersection of rods in the space diagram” 
(page 124) that each crossing of two rods and each crossing of a rod with a 
half-line of force in the form diagram should be replaced by a new point after 
dividing the concerned rods and duplicating the concerned force.

Since moving a point (in the form diagram or in the force diagram) can change 
the orientation of rods and forces in the form diagram, it may happen that this 
move requires the division of a rod (or its cancellation) or the duplication of 
a force (or its cancellation). This sub-section describes a systematic method 
to update rods and forces when a point moves and changes their orientation 
and position.

the topological domain� · First, the topological domain is defined such that 
any move of a point p0 inside its TopologicalDomain[p0] does not create new 
crossing of rods and forces and does not cancel other crossings of rods and 
forces in the form diagram. Accordingly, if a point in the form diagram or in 
the force diagram is dragged and causes the move of other points in the form 
diagram, it is known that, if each of these points is not moved outside its cor-
responding topological domain, no update of crossing of rods and forces must 
be performed. As a result, it is sufficient to construct the topological domain 
in the form diagram only.

If a point p0 in the form diagram links n rods {R0, R1, …, Rn-1}, its TopologicalDomain 
is the intersection of n sub-domains, each of these sub-domains being equal 
to the reading cycle domain of the point that defines the type of application of 
the force that is at the other extreme of the rod Ri (i∈[0,n-1]) — see sub-section 
21 (“constraints for a uniform reading cycle of forces”, page  243). For in-
stance, the topological domain of p0 in figure 304 is equal to the intersection 
of the three reading cycle domains that are shown in figure 305.
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Another example of topological domain is shown in figure 306.

Because the points at the other extreme of the rods may be dependent of the 
point p0 whose topological domain is sought, the construction of the topologi-
cal domain of p0 may include interdependency. This means that the displayed 
topological domain is not equivalent to the actual set of allowed positions. 
Hopefully this disadvantage is acceptable for two reasons. 

Firstly, most of these interdependencies are superfluous — i.e. the constraints 
that cause an interdependency belong to the same geometric relationships — 
and can be avoided using permutations of constraints — see the paragraph 
entitled “automatic deletion of superfluous interdependencies” (page 200).

figure 304 
in grey, the 
topological 
domain of p0.

figure 305 
in grey, the three 
topological 
sub-domains of 
p0; each 
sub-domain 
corresponds to 
the reading cycle 
domain of p0 
around an 
opposite point 
that is connected 
to p0 by a rod or a 
half-line of force.
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Secondly, the topological domain is not aimed to be displayed or intersected 
with other domains. Its unique role is to alert when a point is dragged outside 
its topological domain. As long as a point p0 belongs to its TopologicalDomain[p0], 
it does not matter whether the boundaries of the TopologicalDomain[p0] move si-
multaneously along with p0 or not.

change of the reading cycle of rods�  · When a point p0 is dragged outside 
its topological domain onto a position p*, the following operations must be 
performed:

 •	transform each rod pointing on p0 into a couple of opposite forces and 
temporarily cancel the constraints that compel each couple of forces to 
be parallel and of equal magnitude

 •	move p0 and the forces applied on it onto the position p*
 •	rotate each force that was part of a rod and, when appropriate, up-

date the force polygon in order to satisfy each reading cycle of forces, 
using the recommendations of the paragraph entitled “allowing the 
modification of reading cycle domains” (page 256)

 •	for each couple of forces: move points in the force diagram so that, if 
two forces of a same couple do not cross other forces, they can be trans-
formed into a rod;

 •	for each intersection of forces, add a point at the intersection and apply 
new forces on it. These forces have the same magnitude as the inter-
secting forces. New and old opposite forces form new couples of oppo-
site forces

 •	transform each couple of forces into a rod

A simple application of this process is illustrated on the following figures.

Since no input from the user is required in this sequence, it can be performed 
automatically as soon as a point p0 is dragged onto a position p* beyond its 
topological domain. This sequence updates the form diagram in such a way 
that no constraint of the input domain is cancelled or added.

figure 306 
another example 

of topological 
domain.
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If the update of the reading cycles is not allowed because of some constraints 
of the input domain, the move of p0 onto p* must be prevented.

figure 307 
point p0 is 
dragged onto p*; 
description of 
eight successive 
steps that can be 
automated in 
order to update 
each reading 
cycle of forces 
and each crossing 
of rods.
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265

PRODUCTION 
RULES FOR 
COMPUTER-AIDED 
GRAPHIC STATICS 

This section develops specifications for the dynamic construction and modification of any 
strut-and-tie networks in static equilibrium within two reciprocal diagrams.

Sub-section 23 (“objects and native operations”, page 267) defines the minimum set of op-
erations required allow the user to build or modify a strut-and-tie network. As summarized 
in sub-section 24 (“higher-order procedures”, page 273), these native operations can be as-
sembled in a procedural manner in order to execute more complex geometric and structural 
routines.

Sub-section 25 (“functional flow”, page  281) recapitulates the functional flow of the pro-
posed computer-aided environment and briefly describes some user-interfaces. 





production rules for computer-aided graphic statics · 267

23	objects and native 
operations

imperative coding� · The goal of this sub-section is to identify a minimum set 
of operations capable of transforming any strut-and-tie network in equilib-
rium into another one. If algorithms exist to process these basic operations, 
they can be assembled in sequence in order to define and hence perform more 
complex operations. Some of these more complex operations will be presented 
in sub-section 24 (“higher-order procedures”, page 273).

The entire sequence of operations forms the “construction plan”. A construc-
tion plan is therefore a sufficient description of the strut-and-tie network and 
its geometric description.

Before presenting the minimum set of native operations, data types are listed 
in the following paragraph.

data types�  · Besides the set of data types natively supported in usual pro-
gramming languages — e.g. numbers, Booleans and arrays —, the following 
data types should exist:

•	 Point — it is defined, at a minimum, by the following parameters:
 ·	 the diagram to which it belongs
 ·	 its current position in that diagram
 ·	 the global intersection of constraints that are applied on it by the user

•	 Constraint — it is defined, at a minimum, by
 ·	 its type: HalfPlane, DiscInside, DiscOutside, Union, Intersection or Inversion
 ·	 if it is a fundamental constraint: the three points that define the region 

of the constraint
 ·	 if it is not: the set of constraints to be unite, intersect or invert

•	 Force — it is defined, at a minimum, by
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 ·	 the four points defining it: the point of application in the form diagram, 
the point defining its type of application in the form diagram and two 
points defining its magnitude in the force diagram

•	 Rod — it is defined, at a minimum, by
 ·	 the two opposite forces that are equivalent to it

Moreover, a form diagram and a force diagram should be identified. The read-
ing cycle of forces in the form diagram must be set either clockwise or anti-
clockwise.

minimum set of native operations�  ·  In order to ease the implementation 
of the native operations, their function is limited as far as possible and the 
objects to be processed must comply with strict requirements. Unlike the 
higher-order procedures that will be describe in the next sub-section, they 
are not aimed to be intuitive for the practitioner. 

Besides the common native operations supported in programming languages 
—  e.g. assignments, arithmetic, comparisons, definitions and execution of 
subroutines, loops and static conditional statements (not to be confused with 
the dynamic conditional statements, page 233) — the following native opera-
tions should exist:

•	 CreatePointInTheFormDiagram[]
 ·	 creates a new point that belongs to the form diagram; no constraint is 

applied on the point.
 ·	 returns the point

•	 CreatePointInTheForceDiagram[]
 ·	 creates a new point that belongs to the force diagram; no constraint is 

applied on the point
 ·	 returns the point.

•	 DeletePoint[pA]
 ·	 removes the point pA from the diagram
 ·	 pA must be a point on which no constraint and no force are applied.

•	 MovePoint[pA coord]
 ·	 moves the point pA as close as possible to the position defined by the 

coordinates coord —  see the paragraph entitled “allowing dynamic 
displacements of points” (page 143).
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•	 MergePoint[pA pB]
 ·	 replaces every occurrence of pB by pA

 ·	 points pA and pB must be coincident
 ·	 if pB belongs to the form diagram, no force and no rod should be applied 

onto it.

•	 Halfplane[pA pB pC]
 ·	 creates a HalfPlane[pA pB pC] constraint
 ·	 returns the constraint.

•	 DiscInside[pA pB pC]
 ·	 creates a DiscInside[pA pB pC] constraint
 ·	 returns the constraint.

•	 DiscOutside[pA pB pC]
 ·	 creates a DiscOutside[pA pB pC] constraint
 ·	 returns the constraint.

•	 UnitCompass[pA pB pC]
 ·	 creates a DiscOutside[pA pB pC] constraint
 ·	 returns the constraint.

•	 Intersection[CA CB]
 ·	 creates a constraint equivalent to the intersection of the constraint CA 

with the constraint CB

 ·	 returns the intersection constraint.

•	 Union[CA CB]
 ·	 creates a constraint equivalent to the union of the constraint CA with 

the constraint CB

 ·	 returns the union constraint.

•	 Inversion[CA]
 ·	 creates a constraint equivalent to the inversion of the constraint CA

 ·	 returns the inversion constraint.

•	 DeleteConstraint[CA]
 ·	 deletes the constraint CA

 ·	 CA can be any type of constraint
 ·	 CA should not be applied on any point and should not be part of any 

intersection, union or inversion constraint
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•	 ApplyConstraint[pA CA]
 ·	 intersects the constraint CA with all the constraints already applied on 

point pA; 
 ·	 if necessary, pA is moved in order to belong to the region of CA

 ·	 if the application of CA empties the domain of pA, the application is not 
performed.

•	 CancelConstraint[pA CA]
 ·	 removes the constraint CA from all the constraints applied on point pA; 
 ·	 CA should be applied directly (not as part of a sub-intersection or union 

of constraint).

•	 SwitchDependencies[pA pB CA]
 ·	 switch the dependencies between pA and pB throughout the constraint 

CA

 ·	 the constraint CA must be applied on pA and pB must be a direct param-
eter defining CA

 ·	 returns the newly created symmetrical constraint

•	 CreateZeroForce[pA pB]
 ·	 creates a zero force that is applied on pA in the form diagram and that 

is defined by pB in the force diagram
 ·	 pA must belong to the form diagram and pB to the force diagram
 ·	 returns the force.

•	 DeleteZeroForce[FA]
 ·	 removes the zero force FA

 ·	 FA must be a zero force — i.e. the two points defining its magnitude in 
the force diagram must coincide

•	 ResolveForce[FA pA pB pC]
 ·	 resolves the force FA into two forces; they are applied on the same point 

of application as FA

 ·	 pA and pB become the points defining the type of application of the two 
forces in the form diagram and are constrained as such — see the para-
graph entitled “constraining forces” (page 153).

 ·	 pC is the point linking the two forces in the force diagram
 ·	 the force FA no longer exists after its resolution
 ·	 returns the two forces in their order of presentation in the force dia-

gram.
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•	 SwapForceCycle[FA FB]
 ·	 swap the order in which forces FA and FB are read in the form diagram 

and in the corresponding force polygon
 ·	 FA and FB must be applied on the same point in the form diagram and 

they must be consecutive in the force diagram
 ·	 FA must be read before FB in the form diagram and in the corresponding 

force polygon
 ·	 no constraint should already be applied on any point that define FA and 

FB

•	 CreateRod[FA FB]
 ·	 replaces the two forces FA and FB by a rod
·	 the forces FA and FB should not be already part of a rod
 ·	 the points defining FA and FB must be constrained in such a way that FA 

and FB are compatible for any position of points: FA and FB must always 
be parallel, of equal magnitude and opposite, and their point of applica-
tion in the form diagram must be aligned with the forces

 ·	 returns the rod.

•	 CancelRod[RA]
 ·	 replaces the rod RA by the two forces that defines it

In addition to these, there should be operations:
 •	to get informations —  e.g. to get the set of constraints applied on a 

certain point or to get the parameter points defining a certain funda-
mental constraint

 •	to perform checks — e.g. to check if a certain constraint is applied on a 
point or if a certain point is a child of another certain point

 •	to select objects — e.g. to select a set of points, strut-and-tie sub-net-
work or force networks with the mouse

 •	to alter the appearance of objects — e.g. to hide or show a certain point.
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24	 higher-order procedures

developing intuitive and efficient routines�  ·  High-order procedures are 
meant to automate sequences of native operations. The amount of operations 
to be performed by these procedures is not limited and they are developed in 
order to be as intuitive and efficient for the user as possible.

Routines can serve purely geometric purposes — e.g. the computations de-
tailed in sub-section 17 (“examples of graphical computations”, page 165) — 
vectorial purposes — e.g. the computation of the resultant of a set of forces — 
or structural purposes — e.g. the modification of the cross sections of a beam 
in order to minimise inner bending moments. Some routines are broad and 
others are specific to the structural model type being use.

Key general procedures to develop are those directly extending the scope of 
the native operations:

 •	to apply a Compass or a Straightedge constraint
 •	to apply a constraint on several points simultaneously
 •	to delete a constraint although it is applied on point
 •	to switch constraint dependencies between points that are not direct 

relatives
 •	to merge two points on which forces are applied
 •	to move points so that two forces are sufficiently compatible to be re-

placed by a rod
 •	to swap forces that are not direct neighbours in the force polygon
 •	…

Other procedures to develop are those implementing classical graphic statics 
methods:

 •	the construction of a funicular polyline passing through one, two or 
three given points
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 •	the identification of the order in which intersecting forces shall be 
taken into considerations in order to produce a compression-only or a 
tension-only funicular polyline

 •	the computation of the centre of gravity of n given forces
 •	the computation of the resultant of n given forces
 •	…

Some procedures to develop are especially relevant for constraint-based 
graphic statics, they help the construction of the diagrams:

 •	the displacement of points so that two strut-and-tie sub-networks can 
be merged together

 •	the application of geometric boundaries to points and rods —  i.e. to 
compel a rod to remain inside a given area, see next paragraph

 •	the imposition of conditions on inner stresses — i.e. to compel a set of 
rods to remain in compression, see the paragraphs entitled “constraints 
for pushing forces or pulling forces” (page 253) and “constraints for 
compression rods or traction rods” (page 254)

 •	the application of affine transformations —  e.g. translation, scal-
ing, rotation, shear mapping — to a given strut-and-tie network (see 
Huerta·2010 for practical applications)

 •	the creation of a symmetric copy of a strut-and-tie network
•	 the displacement of a point so that a rod in a strut-and-tie network 

passes through a given point
 •	…

The following paragraphs illustrate how to create two of these routines.

example: adding a constraint to prevent two line segments from inter-
secting each other  ·  Many practical applications are strut-and-tie net-
works that are asked to remain a inside given area (figure 20, page 41 for 
instance). These applications greatly benefits from constraint-based graphic 
statics since these boundaries are automatically propagated on every domain 
of solutions associated to the strut-and-tie network.

figure 308 
a rod that is not 
totally inside a 
given region.
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Though it is easy to constrain a point inside a given region by direct applica-
tion of constraints, to constrain an entire rod inside a given region is less 
straightforward. For instance, figure 308 shows a rod that is not entirely in-
side a region although its extreme points are constrained inside that region. 
This issue can here be settled by applying constraints on both extreme points 
in order to prevent each rod from crossing each line segment that form the 
boundary of the given region.

Concretely, two line segments p0p1 and p2p3 (one of which can be a rod) never 
cross if the point p0 is constrained as follows (figure 309):

p0 ∈ VeeringHalfPlane[p1 pA] ∪ VeeringHalfPlane[pB p1] ∪ VeeringHalfPlane[pB pA] 
	 where:	pM ∈ MidPoint[p2 p3] 
			   pA ∈ ([p2] ∪ [p3]) ∩ VeeringHalfPlane[p1 pM] 
			   pB ∈ ([p2] ∪ [p3]) ∩ VeeringHalfPlane[pM p1]  
												            ∩ (\VeeringStraightedge[p1 pA] ∪ [pA])

If p1, p2 and p3 are aligned — regardless of whether p1 is between p2 and p3 or 
not —, pA and pB would then be coincident and p0 would belong to the entire 
plane, as expected. The same is true when p2 and p3 are coincident.

Similar constraints are automatically applied on points p1, p2 and p3 by sym-
metry.

As a result, rods will never cross boundaries if the following procedure is 
performed for each potentially crossing pairs of line segments:

•	 NoLineSegmentsCross[p0 p1 p2 p3]
 ·	 applies a constraint on p0 so that the line segments p0p1 and p2p3 never 

cross
 ·	 the four points p0, p1, p2 and p3 must belong to the same diagram
 ·	 returns the constraint that has been applied on p0

NoLineSegmentsCross[p0 p1 p2 p3] = {

figure 309 
the domain that 
p0 must hold in 

order to prevent 
the intersection 

of the two line 
segments; two 

examples.
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	 if ¬(	 (GetDiagram[p1] = GetDiagram[p2]) 
		    ∧	 (GetDiagram[p2] = GetDiagram[p3]) 
		    ∧	 (GetDiagram[p3] = GetDiagram[p4]) ) 
		  {throw error “Points p1, p2, p3 and p4 do not belong to the same diagram”}

	 else { 
		  current_diagram := GetDiagram[p0]

		  pM := CreatePointInDiagram[current_diagram] 
		  ApplyConstraint[pM MidPoint[p2 p3] ]

		  pA := CreatePointInDiagram[current_diagram] 
		  pB := CreatePointInDiagram[current_diagram]

		  cA := Union[ Position[p2] Position[p3] ] 
		  cB := Intersection[ VeeringHalfPlane[p1 pM] cA ] 
		  cC := Intersection[ VeeringHalfPlane[pM p1] cA ] 
		  ApplyConstraint[pA cB] 
		  ApplyConstraint[pB cC]

		  cD := Union[	 VeeringHalfPlane[p1 pA]  
						      VeeringHalfPlane[pB p1]  
						      VeeringHalfPlane[pB pA] ] 
		  ApplyConstraint[p0 cD]

		  return cD 
	 } 
}

example: creating a funicular polyline passing through one given 
point� · The following procedure creates a simple funicular polyline that sup-
ports any number of forces and whose first rod has to pass through a given 
point. Since a load is generally free of moving along a given line of action, 
the point of application of a load in the form diagram is usually already con-
strained on a straightedge. For instance, the point p1 in figure 310 belong to a 
Straightedge[p4 p2 p3] constraint. As a consequence, the creation of a funicular 
polyline is equivalent to constraining each point of force application so that 
its position is fixed on the corresponding line of action.

figure 310 
initial situation 
before the 
execution of the 
CreateCatenary 
procedure; the 
domain of p1 is 
highlighted.
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The procedure uses the GetParam[object i] native operation that returns the 
point that is the ith parameter (starting from 0) of the given object — where the 
object is a constraint, a force or a rod.

The procedure can be defined as follows:

•	 CreateSimplyConnectedNetwork[p0 forces]
 ·	 creates a funicular polyline that supports the forces listed in the ar-

ray Forces and whose first rod passes through p0

 ·	 the forces are supported in the order in which they are referenced in 
the array Forces

 ·	 the forces are assumed to be already consecutive in the force diagram
 ·	 returns an array containing the rods that have been created

CreateCatenary[p0 forces] = { 
	 numberOfForces := ArrayLength[forces]

	 — check whether the forces are consecutive in the force diagram or not: 
	 i := 0 
	 while i<numberOfForces-1 { 
		  if ¬(GetParam[forces[i] 2] = GetParam[forces[i+1] 3]) 
			   {throw error “Forces ”+i+“ and ”+(i+1)+“ are not consecutive  
																                in the force diagram”} 
		  i := i+1 
	 }

	 — creation of the pole: 
	 pole := CreatePointInForceDiagram[]

	 — arrays that will contains the new rays and the new rods: 
	 rays:= CreateArray[numberOfForces*2] 
	 rods:= CreateArray[numberOfForces-1] 
	 i := 0 
	 while i<numberOfForces { 
		  — resolution of the forces in order to form the rays (figure 311): 
		  tempRays := ResolveForce[forces[i] CreatePointInFormDiagram[]  
													             CreatePointInFormDiagram[] pole] 
		  rays[i*2] := tempRays[0] 
		  rays[i*2+1] := tempRays[1]

		  — alignment of the points of application (figure 312): 
		  if (i=0) ∨ (i=1) { 
			   se := CreateStraightedge[p0 pA GetParam[rays[0] 2] ] 
			   ApplyConstraint[ GetParam[rays[i*2] 0] se] 
		  } 
		  else { 
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			   se := CreateStraightedge[ GetParam[rays[(i-1)*2] 0] pA  
														              GetParam[rays[(i-1)*2] 2] ] 
			   ApplyConstraint[ GetParam[rays[i*2] 0] se] 
		  }

		  — creation of the rods (figure 313): 
		  if i>0 { 
			   rods[i-1] := CreateRod[rays[(i-1)*2] rays[(i*2)+1] ]  
		  }

		  i := i+1 
	 } 
	 return rods 
}

In the example in figure 313, the force diagram has been automatically rear-
ranged after the execution of the operation ResolveForce[forces[3]] because the 
newly resolved forces crossed the rod that has been created by the operation 
CreateRod[rays[2] rays[5]].

figure 311 
creation of the 
pole and 
resolution of 
forces.

figure 312 
alignment of the 
points of 
application.

figure 313 
creation of the 
rods.
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The CreateSimplyConnectedNetwork procedure should be flanked by similar oth-
ers, e.g. to let the user select the rod through which the funicular polyline has 
to pass or to create funicular polylines that pass through two or three points. 





production rules for computer-aided graphic statics · 281

25	 functional flow

the symbolic solver and the numerical solver�  ·  Because the structural 
designer modifies his or her design step by step, the resolution of the geomet-
ric constraints is performed in a similar sequential manner — i.e. each new 
operation builds on the previous results. A rough functional flow diagram of 
the approach is presented in the following figure: boxes are computed data 
and arrows are algorithms or user’s commands.

The construction plan holds a declarative list of all the operations applied 
by the designer to the strut-and-tie network. This plan is first analysed by a 
symbolic solver. It performs all the operations that can be made regardless 
of the actual positions of points. For instance, it identifies each constraint de-
pendency and produces a symbolic description of each input and strict domain 
(page 151), each force domain (page 153), each reading cycle domain (page 
243), each topological domain (page 259) and all the propagation domains 
that can be handled symbolically (page 201).

This first solver offers the advantage of not being executed after most point 
displacements.

figure 314 
functional flow 

diagram.
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The constraints created by this symbolic solver do not have the same ser-
vice life as the constraints created by the user. The former become inefficient 
when there is a modification of the constraints applied on one of their parent 
points or one of the points on which their are applied. The latter remain ef-
ficient as long as the user does not delete them explicitly.

The update of these positions and hence of the actual shape of the domains 
of solutions is then undertaken by a numerical solver whose job is mainly 
to compute orthogonal projections on lines or circles — see sub-section 15 
(“graphical regions and dynamic compliance with geometric relationships”, 
page  137). The eventual numerical propagation domains should be per-
formed by this solver too.

The geometric construction is displayed once the numerical solver has found 
the solution — i.e. once each point is inside a non-empty region. The user can 
then modify this result by moving points or applying new operations on the 
strut-and-tie network.

locale computations�  ·  If the operation modifies the construction plan the 
solving process must be rerun. Thanks to the fact that the positions of 
points are the only variables, their dependencies is fully expressed with 
directed graphs of dependencies —  see sub-section 16 (“constraint (inter)
dependencies”, page 155). This means that the minimum set of points con-
cerned by a given operation can be easily identified and that a local treatment 
of the data is sufficient for processing modifications in both the symbolic and 
numerical solvers.

automatic routines�  ·If a point is moved outside its reading cycle domain 
or outside its topological domain, routines can be executed automatically 
in order to update the reading cycle of forces and hence the force polygons 
—  see the paragraph entitled “allowing the modification of reading cycle 
domains” (page  256) and the sub-section 22 (“facilitating the crossing of 
rods”, page 259). These automatic routines apply operations that modify the 
construction plan and must therefore be computed by the symbolic solver 
again.
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user-interfaces�  ·  Three types of user-interfaces can already be identified. 
The first type is the one that has been used in the previous sub-section. It 
consists of successive written declarations assembled into a script.

The second type is the one common to contemporary cad drawing: points are 
represented and dragged in a plane — here in a form diagram and in a force 
diagram — and operations on the construction plan are executed directly af-
ter they have been selected on button panels or entered in a command prompt.

The third type displays constraints and points as boxes in an interactive di-
rected graph of dependencies. Connecting these boxes together allows the 
creation and application of geometric constraints, in a similar way to grass-
hopper components (Payne/Issa·2009 and Khabazi·2010).

The first type seems to be better suited to the definition of new higher-order 
procedures while the second and the third types appear more adequate to 
jointly build strut-and-tie networks interactively.





285

DISCUSSION 

This final section discusses the results of the tool that has been developed throughout the 
previous sections. First sub-section 26 (“applications”, page 287) produces an overview of 
the large set of expected applications and exemplifies some of them. Future research ap-
proaches are then proposed in sub-section 27 (“future research”, page 305). A general con-
clusion concerning this thesis is finally drawn in sub-section 28 (“conclusions”, page 315).
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26	applications

The tool is expected to aid many different approaches to structural design 
and analysis. The following paragraphs present a general overview of all the 
intended applications. Examples of practical applications are subsequently 
explained.

who ? · Generally speaking, constraint-based graphic statics are intended to 
assist structural designers, be they structural or civil engineers, architects, 
industrial designers, preservation engineers, students and others.

when?  ·  As outlined in sub-section 04 (“proposal: a tool to accompany the 
construction of static equilibriums”, page  29), constraint-based graphic 
statics seem adequate for use in the following contexts:

 •	initial design explorations of structural shapes, especially when new 
typologies are sought (to suit new materials or new ways of production)

 •	cross-professional design team meetings, since drawings —  and, for 
instance, graphical depictions of shapes and forces — constitute a com-
mon medium for architects, engineers and clients; it is not only suited 
to passive exchanges of information between remote design teams, but 
also to direct dialogues thanks to the generalisation of new portable 
computing devices such as touchpads

 •	amendments of structural geometries following advanced structural 
analysis, since strut-and-tie models are appropriate for efficiently mod-
ifying structural behaviours (Zastavni·2010)

 •	preservation assessments when the stability of existing structures is 
better understood in a graphical environment — i.e. for structures with 
a plastic behaviour (such as reinforced concrete) in which identified 
defects can be considered as new geometric requirements (Fivet·2012) 
and for masonry structures where stability is essentially a geometric 
matter (Huerta·2006b and Loits·2010).
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 •	the teaching of architecture students and civil engineering students, 
since graphic statics have always been a fruitful pedagogic tool 
(Allen·2009):

“[Using graphic statics], we should have a course of Engineering 
Mechanics, so invigorating to the mind, that our students, having undergone 
its discipline, would feel themselves men, well prepared for work, capable 
of appreciating the conditions, and reasoning upon the data, of large class 
of practical questions to which they might require to address themselves”. 
(Chalmers·1881, preface page vii)

what ? · Strut-and-tie networks are very well suited for use as abstractions of 
the stability of a very wide range of structures, as long as their utilisation can 
be described in the plane (which does not impede the design of most spatial 
structures):

 •	statically determinate and indeterminate reticular structures, includ-
ing pre/post-stressed structures and self-stressed structures —  e.g. 
roof structures, frames, bridges, tensegrities, reciprocal frames

 •	mechanisms, linkages (Herrmann·1892, Kempe·1877 and 
McCarthy/…·2011) — e.g. movable bridges

 •	thrust lines within compression-only structures — e.g. masonry arches 
 •	load paths within materials showing a plastic behaviour 

(Ochsendorf·2005) — e.g. reinforced concrete bridges
 •	Euler-Bernoulli beams subjected to bending — e.g. hyperstatic beams, 

pre-stressed beams — and columns, including graphical computations 
of deformations, second-order effects and studies using Mohr’s circle 
for controlling moments of inertia (Pirard·1950, page 157) and for con-
trolling basic deflections (Heyman·2008b, page 28)

 •	discontinuous stress-fields within plastic materials — e.g. reinforced 
concrete shear-walls  — including studies using Mohr’s circle for 
controlling stress states (Fivet·2012) —  see sub-section 27 (“future 
research”, page 305) for more details

 •	stabilising slopes, retaining walls and foundations — i.e. soil mechanics 
(Terzaghi·1966).

These applications therefore consider almost any building material —  e.g. 
steel, wood, concrete, glass, ceramics, polymers, including their com-
binations into composites, e.g. reinforced wood (Trautz/Koj·2009a and 
Trautz/Koj·2009b). Moreover, although the original subject of this research 
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deals solely with architectural structures, constraint-based graphic statics 
also appears convenient for the design of naval structures, biomechanics, ro-
botics, furniture and industrial design.

how ?  ·  The following paragraphs exemplify some applications. The first 
example uses constraint-based graphic statics to reconstruct the reticular 
shed built in Chiasso by Robert Maillart in 1924. The second example shows 
how geometrical constraints can be used to control bending moments explic-
itly. The third example explains how static indeterminacy in reticular struc-
tures can be managed graphically. The final example assesses the stability of 
a masonry arch.

(1) constructing a reticular structure · In order to illustrate how a reticu-
lar structure can be shaped with constraint-based graphic statics, this para-
graph recreates the Chiasso sheds designed by Robert Maillart in 1924.

The initial settings considered here are those identified in Zastavni·2008a 
(page 290 and following) and Zastavni·2008b: the symmetrical peaked roof 
consists of a 10 centimetres wide concrete slab; its slope and its position is 
mainly given by the size of trains and the openings and slabs of the adjoining 
building (figure 315); the axial distance between vertical members is deter-
mined at 260 centimetres (half the distance between columns of the building 
adjacent to the shed); and the buildable volume is mainly given by storage 
requirements and the geometry of the adjoining building.

The following reconstruction is quite different from the one described in 
Zastavni·2008a and Zastavni·2008b and from Maillart's original design pro-
cess. The main reason is that the diagrams will be here in static equilibrium 
at each single step. The goal here is not to find a way to “close” the force 
polygon — i.e. to ensure that the final shape of the shed is in equilibrium. The 
goal here is to modify an initial force polygon already closed — i.e. to alter a 
shape already in equilibrium — until:

 •	the only remaining forces are the loads applied on the structure or the 
reactions at the supports

 •	the stresses in each element are less than their maximum strengths
 •	the overall structural system is sufficiently stable.

First, the buildable volume is defined as a Boolean combination of HalfPlane 
constraints that are dependent on a set of free points, a Straightedge constraint 
symbolizes the roof (figure 316). A first load case is then deduced from the 
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initial properties of the roof and is discretized with equilibrated pairs of forc-
es (figure 317). These pairs of forces are constrained on the axes given on 
figure 316. 

This system is already in equilibrium. The role of the designer is now to focus 
on what operations should be applied to transform these initial internal forces 
into rods.

For instance, he can apply new equilibrated pairs of forces on each point of 
the roof. These new forces being of equal magnitudes and parallel to the axis 
of the roof, they can be transformed into rods in which new axial stresses can 
flow (figure 318). In order to get rid of forces FA, FB and FC, the designer cre-
ates a new simply connected strut-and-tie network, i.e. a funicular polyline, 
that takes up equal but opposite forces (figure 319). This polyline can then be 
merged with the original network while transforming corresponding forces 
into rods (figure 320).

figure 315 
influence of the 
adjoining 
building on the 
geometry of the 
shed, from 
Zastavni·2008a.



discussion · 291

figure 316 
reconstruction of 

Maillart's 
Chiasso sheds 

(snapshot 0); 
initial buildable 

volume.

figure 317 
reconstruction of 

Maillart's 
Chiasso sheds 

(snapshot 1); 
initial set of 

loads.

figure 318 
reconstruction of 

Maillart's 
Chiasso sheds 

(snapshot 2); the 
linear domain of 

pA is highlighted.

figure 319 
reconstruction of 

Maillart's 
Chiasso sheds 

(snapshot 3); the 
linear domain of 

pB is highlighted.
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figure 320 
reconstruction of 
Maillart's 
Chiasso sheds 
(snapshot 4); the 
linear domain of 
pB is highlighted.

figure 321 
reconstruction of 
Maillart's 
Chiasso sheds 
(snapshot 5); the 
linear domain of 
pB is highlighted.

In figure 319, pC has been constrained so that the force FD becomes symmetri-
cal to the rod rA. On the opposite side, point pG' has been moved onto pG in 
order to add the forces FR and FS and to work with FT instead. Forces FD and 
FT have currently no real structural meaning so far. Their purpose is to pro-
vide “grips” on which other strut-and-tie sub-networks can be attached. For 
instance, FD will be used to link the current strut-and-tie network with the 
symmetrical network.

For the same reason, the pole pB is dragged along its domain in figure 321 
until the force FE and the rod rB become perfectly symmetrical in both form 
and force diagrams. This position coincides with the axis of symmetry in the 
force diagram. Point pB is consequently constrained at the intersection of this 
line of symmetry with the line of the poles of the funicular polyline. That 
ensures that the forces applied onto the position pY (in the form diagram) are 
symmetrical and in static equilibrium.
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From figure 321 to figure 322, points pH, pI, pJ and pK are moved along their 
domain in order to minimize the stresses in the funicular polyline: if they 
move, the geometry of the funicular line updates and the domain of pB updates 
since the funicular polyline has to pass through points pX and pY in the form 
diagram (figure 321).

figure 322 
reconstruction of 

Maillart's 
Chiasso sheds 

(snapshot 6); the 
linear domain of 

pH, pI, pJ and pK 
are highlighted.

figure 323 
reconstruction of 

Maillart's 
Chiasso sheds 

(snapshot 7); the 
linear domain of 

pG is highlighted.
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A new point (pL) is added in figure 323. This point is equilibrated with three 
forces that are constrained in such a way that the new force FJ is in equilib-
rium with the forces FG and FH. As soon as the new rods are formed, point pG is 
automatically moved in order to stay inside its new propagation domain — this 
propagation domain ensures that pL remains inside the buildable volume de-
fined in figure 316.

The presence of this point pL explains why both forces applied on pD in 
figure 321 have been divided into two equals parts and moved on pE and pF in 
figure 322. Indeed, only three rods are connected by pL thanks to this division 
and there is absolutely no node connecting more than three rods in the entire 
structure.

Finally, a new point pM and two equilibrated forces are added in figure 324. 
In order to ensure that the new rod stays inside the available area for the 
column, the geometry of the funicular polyline has to be altered. The depend-
encies between pB and the set {pH, pI, pJ, pK} are consequently switched to 
facilitate the control of the funicular polyline. As a result, pB can be dragged 
again. Its domain, i.e. a tiny horizontal line segment in figure 324, ensures 
that every rod remains inside the buildable volume.

The shaping process can now be stopped since all the remaining forces are 
either applied loads or reaction forces. All the movable points — e.g. pG, pB 
and pL — and their domains of solutions synthesize the remaining degrees of 
freedoms with which this structural shape can be deformed. For instance, an 

figure 324 
reconstruction of 
Maillart's 
Chiasso sheds 
(snapshot 8); the 
linear domain of 
pB is highlighted.
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alternative structural shape can be obtained by moving the point pG further 
(figure 325). Thanks to the nature of the reciprocal diagrams, the impact of 
this alternative can be studied simultaneously in two ways: (1) according to 
spatial considerations — e.g. the increase of free space for storage in the form 
diagram — and (2) according to mechanical considerations — e.g. the material 
needed to resist the increasing magnitudes of forces described in the force 
diagram. 

If desired, this strut-and-tie network can also be used as a basis to obtain a 
new strut-and-tie typology by dividing and recombine rods. The design ap-
proach that has been given here is essentially a bottom-up process: small 
parts are first built and the structure is obtained by assembling sub-parts 
together. The opposite, top-down, process could have been followed as well: 
a global rough network, e.g. a simply connected strut-and-tie network, would 
have been constructed initially and then modified by successive steps.

Sometimes rods, e.g. rC, directly define the orientation and width of struc-
tural members and can be sized directly according to the magnitudes rep-
resented in the force diagram. Sometimes rods define the eccentricity of the 
axial and transverse forces acting on structural members. For instance, the 
eccentricity of rD defines the bending moments occurring inside the column 
(figure 326). Also, the applied loads can be further discretized in order to de-

figure 325 
reconstruction of 

Maillart's 
Chiasso sheds 

(snapshot 9); 
alternative shape 

obtained by 
moving pG, its 

linear domain is 
highlighted.



296 · discussion 

figure 326 
reconstruction of 
Maillart's 
Chiasso sheds 
(snapshot 10); 
study of the 
impact of another 
load case by 
moving pQ, its 
domain is 
highlighted.

scribe the bending moments in the roof. The visual and numerical description 
of the bending moments is given by other constraint-based routines that are 
at the disposal of the user.

The study of the structure under other load cases can also be performed on 
the same diagrams. The basic example of figure 326, shows the variation of 
the bending moments in the column when an additional load is hung on the 
roof edge. The magnitude of this additional load is actually defined by the 
position of pQ in the force diagram — FY being the resultant of the initial load 
and the additional one. Moving pQ modifies the load case and directly displays 
its impact on the stresses in the column. Moreover, the domain of pQ already 
bounds the admissible additional load on the roof edge. If the structure has 
to sustain a bigger load on the roof edge, other positions of points in the form 
diagram or in the force diagram have to be changed by the user. More com-
plex load cases can be obtained by moving multiple points at the same time.
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(2) controlling bending moments with geometrical constraints  ·  This 
paragraph highlights how bending moments can be controlled by purely 
geometric means with constraint-based graphic statics and what benefits it 
can bring. Given two loads, a clamped beam with uniform inertia throughout 
(figure 327) is to be sized using graphical methods — this example is from 
Muttoni/…·1997 page 7 point 1.2.2 and from Zastavni·2008a, appendix 4.

Thanks to the force diagram, the bending moments are given by a simply con-
nected strut-and-tie network (i.e. a funicular polyline) whose moving pole is p* 
(figure 329). This pole is constrained in such a way that the funicular polyline 
passes through p1 and a point p2. 

Using the lower-bound theorem of plastic theory (page 19), this beam can 
be designed for a desired magnitude of bending moments. Given the bending 
moment distribution of figure 329, it is understood that two plastic hinges 
must develop in order for a mechanism to exist and the beam to collapse 
(figure 328). The first plastic hinge is situated on p0 and the other on p5 or p6 
(figure 330). 

figure 327 
initial settings for 

the clamped 
beam.

figure 328 
two possible 

collapse 
mechanisms.

figure 329 
bending moment 

distribution.
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The smallest bending moments for which this beam has to be designed are 
consequently those occurring when the moment on p0 is equivalent to the 
maximum between the moments on p5 and p6 —  i.e. when the distance p0p2 
is equal to the maximum between the distances p3p5 and p4p6. These values 
are here simply obtained by applying a MaxDistanceCompass[p0 p3 p5 p6 p4] con-
straint on p2 — see the paragraph entitled “the ProximityCondition constraint” 
(page 236). This compass is centred in p0 and its radius is equal to the great-
est distance between p3p5 and p4p6. 

Because the pole p* is dependent on p2 and because p3 and p4 are dependent 
on the position of p*, interdependency occurs between p* and p2. Concretely, 
when the position of p2 is updated such that it belongs to the compass, the line 
of the poles on which p* is constrained rotates. This updates the position of p*, 
which in turn updates the altitude of p3 and p4, and subsequently the position 
of p2 (due to the compass). These automatic updates eventually converge to a 
solution every time p* is dragged.

As a result, a point of zero bending moment is identified on p9 and the funicu-
lar polyline provides the smallest bending moment distribution for which this 
beam has to be designed. The required section of the beam can subsequently 
be obtained.

The above process is clearly faster and more interactive than any equivalent 
algebraic resolution.

For another example, figure 330 shows the same beam in which the point of 
application (p7) of the load L0 is not a given value but an unknown factor and in 
which the position of the zero bending moment p9 is a free parameter. If point 
p3 is constrained as follows, it defines the position of L0 for which bending mo-
ments on p0 and p6 are equal:

p3 ∈ Straightedge[p4 p* pB] ∩ Straightedge[p2 p2 p9] 
	 where:	p* ∈ Straightedge[pA p2 p9] ∩ Straightedge[pC p1 p4] 
			   p4 ∈ Straightedge[p8 pA pB] ∩ Compass[p6 p0 p2] ∩ HalfPlane[p0 p0 p1] 
			   p6 ∈ Straightedge[p8 pA pB] ∩ Straightedge[p0 p0 p1] 
			   p7 ∈ Straightedge[p3 pB pC]

figure 330 
bending moment 
distribution.
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(3) designing with indeterminacy  ·  Structural indeterminacy can be 
defined as the ability of a strut-and-tie network to present different inner 
equilibria under constant external loads, meaning that multiple force dia-
grams can describe the same form diagram. This is encountered when at least 
one point can be moved in the force diagram without changing the orientation 
of any rod or force. The frame of figure 331 describes a simple structure of 
this kind. 

The final step of its construction is shown in figure 332. It presents the follow-
ing geometric properties:

p4 ∈ Straightedge[p0 p0 p2] ∩ Straightedge[p1 p1 p3] 
p8 ∈ Straightedge[p12 p2 p3] 
p9 ∈ Straightedge[p5 p0 p3] 
p10 ∈ Straightedge[p9 p0 p4] ∩ Straightedge[p6 p0 p1] 
p11 ∈ Straightedge[p10 p1 p4] ∩ Straightedge[p7 p1 p2] 
p12 ∈ Straightedge[p11 p2 p4] ∩ Straightedge[p9 p3 p4] 

The point p4 is added and constrained by the software itself in order to pre-
vent the crossing of the rods — see sub-section 22 (“facilitating the crossing 
of rods”, page 259). The resulting four rods act exactly as if they were two 
crossing rods. Indeed, the network is constrained such that both rods in a 
pair have always equal magnitude, equal orientation and are aligned in the 
form diagram.

Moving p9 on its own domain — i.e. on a line — changes magnitudes without 
modifying any orientation (figure 332, figure 333, figure 334 and figure 335). 
It follows that the domain of p9 is a comprehensive graphical representation 
of the indeterminacy of the frame. In most cases, the degree of indeterminacy 
of a structure is equal to the number of rectilinear domains inside which 
points can be moved without modifying any orientation of force or rod — a 
two-dimensional domain is said equivalent to two linear domains.

figure 331 
an indeterminate 

frame.
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figure 332 
the domain of p9 
is a representa-
tion of the 
indeterminacy of 
this frame.

figure 333 
p9 moves and 
cause another 
force distribu-
tion.

figure 334 
another possible 
force distribution 
in which rod R0 is 
superfluous.

figure 335 
another possible 
force distribution 
in which rod R0 is 
in compression.
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The compactness of the force diagram provides a direct insight about the ef-
ficiency of the chosen force distribution. 

Moreover, the current position of p9 consequently defines whether rods are in 
traction or in compression. For instance, the rod R0 is in traction in figure 332 
when p9 belongs to HalfPlane[p6 p0 p2], is unnecessary in figure 334 when p9 
belongs to Straightedge[p6 p0 p2] and is in compression in figure 335 when p9 be-
longs to HalfPlane[p6 p2 p0]. Cross-sections can then be deduced from the force 
diagram so that the inertias impose the desired stress distribution.

The graphical handling of structural indeterminacy allows unprecedented 
control over the structure being shaped. For instance, it is asked which orien-
tation of the load F0 would ensure rod R0 remains compressed without chang-
ing stresses inside the ties of figure 335. The first step to solving this issue 
is to fix the inner tension forces by switching the dependencies between p6 
and p8 so that p8 becomes completely free of constraint and p6 becomes con-
strained on Straightedge[p10 p0 p1] (figure 336). Dependencies can then be fur-
ther switched between p6 and p13 so that p13 becomes free of constraint and 
point p6 must then be further constrained on Straightedge[p5 p0 p13] so that the 
orientation of F0 is given by point p13 in the form diagram. The resulting propa-
gation domain of p13 ultimately describes all the orientations that the load F0 
can have in order to ensure that the rod R0 remains compressed.

figure 336 
the domain of p13 

reflects all the 
orientations the 
load F0 can have 

so the R0 remains 
compressed.
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(4) assessing the stability of a masonry complex  · The final example is 
analytical rather than design-oriented: the stability of a given geometry of 
compressed voussoirs has to be checked. This means that a thrust line bal-
anced with the dead loads of the voussoirs must exist inside the arch geom-
etry.

The set of possible thrust lines inside the arch of figure 337 can be fully 
characterised with graphical domains of solutions. The first stage is to build 
a Boolean combination of HalfPlane constraints that corresponds to the geom-
etry of the arch and to apply it to each node of the generated thrust line. The 
generality of this description method allows local specificities — e.g. irregu-
larities detected in situ — to be taken into account without additional device.

The propagation of this set of constraints onto p0 provides the near-triangular 
region in which p0. This domain reflects the entire set of valid geometries that 
the thrust line can have. Moreover, the edges of the near-triangular region 
provide the extreme positions of p0 for which rays are of minimum and maxi-
mum magnitudes.

figure 337 
A masonry arch 
and its inner 
thrust line; 
highlighted 
regions represent 
the domain of 
stability of this 
arch.
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The domain of p1 — a linear segment —, also reflects the set of possible thrust 
lines, this time in the form diagram.

Since point p2 is also a parameter of the thrust line, its domain is affected by 
the propagation of the constraints that define the geometry of the arch. As a 
result, its domain covers all the domain of stability of the arch too. Its domain 
therefore synthesises all the possible values of the weight w*, and in particu-
lar its minimum value, for which the stability of the arch is guaranteed.

Furthermore if the forces corresponding to the actual dead load of the vous-
soirs are calculated with graphical constraints based on the geometry of 
these voussoirs and if the position of each load is constrained to be in line 
with the centre of gravity of the voussoir, the process then becomes design-
oriented: moving a point that defines a voussoir would lead to the update of 
its dead load, to the update of the position of the pole p0 and eventually to the 
update of the thrust line. That means that an interactive optimisation of the 
geometry of the voussoirs can be carried out in a fully graphical way.
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27	 future research

The framework, as presented here, still exposes significant limitations that 
prevent its full operational use. However, there is no reason to rule out the 
possibility of filling in and extending the existing framework in a manner 
that respects the objectives outlined in sub-section 03 (“answers: exemplary 
practices”, page 17) and sub-section 04 (“proposal: a tool to accompany the 
construction of static equilibriums”, page 29). Moreover, the full graphical 
approach taken in this research has already provided results that suggest 
fruitful new advances in the design and understanding of structural equilib-
rium. The paragraphs below discuss these perspectives of research.

defining additional algorithms for constraint propagation  ·  It has been 
shown in sub-section 19 (“constraint propagations”, page  201) that addi-
tional algorithms are still required to ensure the complete propagation of 
constraints, and hence the precise description of every domain of solutions. 
Although this current lack of completeness does not jeopardise the dynamic 
handling of strut-and-tie networks — e.g. empty domains can be avoided with-
out that device — and the other techniques developed in this thesis, it forces 
the user to be careful in interpreting domains. Developments in this field 
should therefore be a priority.

assessing the tool and enhancing its usability  ·  As the environment is 
intended to be extremely intuitive and easy to use, in-situ practical assess-
ments are mandatory in order to measure and improve the actual speed of 
software processing, the relevance and extent of the tool’s capabilities and its 
ergonomics. These assessments should lead to a definition of an appropriate 
graphical user interface — GUI — a rewriting of the inner algorithms and the 
definition of new simplifying routines — i.e. new and more intuitive geomet-
ric constraints. Prior to the coding of these routines, a specific study of their 
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geometric properties must be undertaken in order to define them robustly 
— i.e. to ensure that any change of position of a point will not jeopardise the 
sought behaviour of the constraint.

On the other hand, it would be beneficial to identify a number of best prac-
tices that may guide the designer towards a productive process. These are 
all the more welcome as the user is the sole master of each design choice and 
the only person responsible for the proper course of the graphical operations.

developing specific fields of applications · Another part of the research to 
be continued is the development of libraries of routines aimed at constructing 
specific abstraction models: thrust lines and stereotomy for masonry design 
and analysis (Heyman·1995); discontinuous stress fields in reinforced con-
crete (Kostic·2009, Muttoni/…·2011) or in reinforced wood (Trautz/Koj·2009a, 
Trautz/Koj·2009b), graphical methods for soil mechanics (Chalmers·1881, 
Terzaghi·1966) etc. Again, the definition of these routines must be preceded 
by a complete study of the geometric properties — concerning both the shape 
and the forces — on which they are to be built. 

By way of illustration, the library dedicated to the design of discontinuous 
stress fields can be regarded as a plug-in that replaces the set of equilibrium 
operations by adding an additional layer of abstraction. For example, the op-
eration transforming two well-suited forces into a new rod is superseded by 
an operation transforming two well-suited forces into a new rectilinear stress 
field (figure 338). The latter operation executes the former but also applies 
new geometric constraints that guarantee the specific properties of discon-
tinuous stress fields — e.g. stress fields cannot be superimposed, their width 
(in the form diagram) can vary but must be greater than the one allowed by 
the strength of the material (regarding the actual resultant stress and the 
thickness of the beam) and nodal stress fields must present a geometry capa-
ble of uniform stress distribution.

figure 338 
construction of a 
rectilinear stress 
field (right) from 
two opposite 
forces (left): 
dragging p0 will 
change the width 
of this stress field 
and automatically 
update the 
geometry of the 
nodes.
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figure 339 
a rectilinear 
stress field: 

dragging p0 will 
cause the 

rectilinear stress 
field to be rotated 

around p3 or to 
switch from 

traction to 
compression; as 

long as p0 
remains within 

its graphical 
domain of 

solution (the 
shaded area in 

the force 
diagram), the 

strength of this 
stress field is 
ensured to be 

below the plastic 
limit of the wood; 
the asymmetrical 

curvy shape of 
this domain of 

solution is due to 
the anisotropic 
nature of wood.

The details of this library have already been partially developed by the author 
(Fivet·2012). It has been reported that, assuming some particular conditions 
guaranteeing its plastic behaviour, discontinuous stress fields inside wood-
joints can be modelled in full with geometric constraints related to the form 
diagram and the force diagram. One interesting feature of this development is 
the ability to represent graphically the range of force magnitudes and orienta-
tions that ensure a certain stress field remains below the plastic limit of this 
anisotropic material (figure 339). Another feature is the ability to control and 
handle the state of stress acting on a particular cut plane by way of a Mohr’s 
circle constructed in the force diagram (figure 340).
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figure 340 
study of the state of the stress acting on a particular position and cut plane: the Mohr's circle is 
constructed in the force diagram in full; τ represents the tangential component of the constraint and σ 
the normal component; for example, point pτ reflects the state of the stress acting on the plane 
parallel to the fibre orientation; as a result, constraining pτ further will affect the domain of solutions 
of point ei and hence, the width of the corresponding rectilinear stress field.
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enhancing the geometric understanding of structures  · This thesis has 
explored how (and the extent to which) any static equilibrium may be condi-
tioned by purely geometric properties — e.g. geometric conditions for a rod to 
remain in traction or compression and the geometric description of variables 
of indeterminacy. Indeed, it seems that constraint-based graphic statics is 
rather conducive to an entirely geometry-based reconstruction of the clas-
sical theory of structures. Given the unique nature of such a reconstruction 
— i.e. at the crossroads of graph theory and (graphical) set theory — it can 
be hoped that research in this direction will result in the discovery of origi-
nal theorems of mechanics of structures. Not only would such results benefit 
from the computational simplification offered by the force diagram and the 
graphical domains of freedoms, but also from the visual expressiveness they 
give the designer.

Two specific fields of study can already be tackled:

(1)	the study of the close correlation that exists between the topology of the 
graphical domains of freedom and the rigidity of the structure. This study 
would lead to the definition of new geometrical criteria for structural robust-
ness as well as to their dynamic control for design purposes. 

Structural robustness is defined as “the property of systems that enables them 
to survive unforeseen or unusual circumstances” (Knoll/Vogel·2009) —  e.g. 
excessive loads or the collapse of part of the structure. Robustness can be 
obtained from various strategies, including sizing for a strength above the 
minimum theoretically required and the design of multiple load paths. In this 
case, the former and the latter are dealt with by graphical domains of freedom 
and their behaviour after the elimination of rods.

(2)	the study of the ability to execute algorithmic structural optimisations 
through the application of geometrical constraints. Structural optimisation is 
defined as “the subject of making an assemblage of materials sustain loads in 
the best way” (Christensen/…·2009) and commonly refers to specific comput-
erised algorithms. It is achieved by automatically varying the topology of the 
structure, its geometries and the stiffness of its members automatically. The 
use of reciprocal diagrams for discrete topology optimisation has already un-
veiled very interesting computational benefits in Micheletti·2008, Block·2009, 
Beghini·2013 and Baker/…·2013. Constraint-based graphic statics offers a 
fairly original theoretical basis on which the power of optimisation methods 
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is yet to be discovered. This is mostly due to the geometric simplifications of-
fered by the force diagram and the transcription of complex equational prob-
lems into symbolic geometric shapes.

extending the environment to the third dimension · Although great mas-
ters of the past have built spatial structures for millennia with the aid of work-
ing drawings which were only plane, the environment presented in this thesis 
would be of narrow interest if its extension to the third dimension was incon-
ceivable or simply not sought. Indeed, the interactive construction of spatial 
static equilibrium would certainly promote the emergence of new structural 
typologies and the mastering of problems that, today, are difficult to solve.

This extension can be envisioned in three ways:
(1)	 the projective approach: the form diagram is defined in a three-dimen-

sional space but the force diagram is not; the force diagram is dynami-
cally adjusted based on the current axonometric projection of the form 
diagram; geometric constraints are planar and applied either on the 
planar force diagram or on particular axonometric projections of the 
form diagram

(2)	 the full 3D approach: the form diagram, the force diagram and geo-
metric constraints are all defined and handled in a three-dimensional 
space

(3)	 the composite approach: the form diagram, the force diagram and geo-
metric constraints are defined in a three-dimensional space, but repre-
sented and handled on axonometric projections.

The first approach is apparently the only one that has received extensive de-
velopment in the literature so far —  e.g. Daubresse·1904, Henneberg·1911, 
Mayor·1926, Foulon·1969 and, to a certain extent, Block/…·2007. It actu-
ally takes advantage of the following properties: “If forces in space are in 
equilibrium, their projections on any plane are also in equilibrium. […] For 
a system of forces in space to be in equilibrium, it is both necessary and 
sufficient for the orthogonal projections on three rectangular planes to be in 
equilibrium.” (Daubresse·1904, page 43, free translation). Another beneficial 
consequence of orthogonal projections is the conservation of parallelism be-
tween reciprocal rods.

This approach is the fastest way to implement tri-dimensional constraint-
based graphic statics since there are no conceptual differences between the 
planar constraint-based reciprocal diagrams and the parallel projections. 
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Preventing rods and forces from being intersected into the projected form 
diagram — see sub-section 21 (“constraints for a uniform reading cycle of 
forces”, page 243) — is one of the few additional mechanisms that must be 
carried out. However, being unable to apply spatial geometric constraints se-
riously limits the benefits of this approach. 

The second approach is probably the most natural, but requires new theo-
retical research regarding the properties of tridimensional graphic statics 
based on premises that are completely different from those already devel-
oped in the literature. One basis may be the paper of Rankine (Rankine·1864) 
in which magnitudes are represented by volumes of polyhedral frames 
(Akbarzadeh/…·2013). Another would represent magnitudes by rods in a 
three-dimensional diagram. Both diagrams will be correct according to new 
3D rules — e.g. rules governing the reading cycle of forces in space — but the 
2D representations of these diagrams may not be reciprocal in the classical 
point of view. The merits of this approach cannot be evaluated without an 
adapted user interface.

The third approach is halfway between the first and the second approach. It 
is distinguished from the first approach by allowing the application of spatial 
geometric constraints and distinguished from the second approach by secur-
ing the reciprocity —  i.e. parallelism and reading cycles — of the displayed 
2D diagrams. In other words, the third approach allows the control of pure 
3D treatments through a reciprocal 2D display. These preliminary remarks 
motivate the development of this last approach. 

The extension of the Proximity2D and Laterality2D relationships to the third di-
mension is direct: 

 •	four points p0, p1, p2 and p3 satisfy the Proximity3D[p0 p1 p2 p3] relationship 
only if the distance from p0 to p1 is less than or equal to the distance 
from p2 to p3;

 •	five points p0, p1, p2, p3 and p4 satisfy the Laterality3D[p0 p1 p2 p3 p4] rela-
tionship only if (a) p2, p3 and p4 are collinear or (b) point p0 is on the left of 
or in line with any observer positioned on p1, standing up according to 
the direction from p2 to p3 — i.e. feet on p2 and head on p3 — and looking 
towards the direction from p2 to p4. The Laterality3D relationship can also 
be defined using the right-hand rule shown in figure 341.
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figure 342 
representation of 
a HalfSpace 
[p0p1p2p3] 
fundamental 
constraint. 

figure 343 
representation of 
a SphereInside 
[p0p1p2] 
fundamental 
constraint.

figure 344 
representation of 
a SphereOutside 
[p0p1p2] 
fundamental 
constraint

figure 341 
mnemonic 
description of the 
Laterality3D 
relationship.
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The three corresponding fundamental constraints HalfSpace[p0 p1 p2 p3], 
SphereInside[p0 p1 p2] and SphereOutside[p0 p1 p2] are illustrated in figure 342, 
figure 343 and figure 344 respectively. 

Planar fundamental constraints can easily be deduced from these three tri-
dimensional constraints by intersecting the latter with a plane defined as the 
intersection HalfSpace[p0 p1 p2 p3] ∩ HalfSpace[p0 p1 p3 p2].

As a beneficial consequence of the affine/metric distinction, these three con-
straints are sufficient for describing any geometric problem in space —  in 
other words, the extension to the third dimension does not require the crea-
tion of new fundamental constraints. However, two new non-fundamental con-
straints mixing affine and metric considerations can be added to this set for 
practical reasons: they are expected to be used abundantly but they cannot 
be defined without interdependency. These two constraints — ConeInside and 
ConeOutside — are defined as follows:

 •	the ConeInside[p0 p1 p2 p3 p4 p5] constraint corresponds to the closed solid 
of revolution obtained by rotating a line passing through p3 and parallel 
to the orientation p4p5 around the straight line passing through p0 and 
parallel to the orientation p1p2. This solid is of a different geometric 
nature depending on whether these two lines are skew (figure 345), 
secant (figure 346) or parallel (figure 347).

 •	the ConeOutside[p0 p1 p2 p3 p4 p5] constraint corresponds to inver-
sion of the open solid of revolution obtained in an analogous manner 
(figure 348).

These basic considerations highlight the direct analogy that exists between 
the planar constraint-based geometric environment described in this thesis 
and its tri-dimensional equivalent. Most mechanisms of planar constraint-
based graphic statics —  including the resolution of graphical inequalities 
through symbolic propagation of constraints, the management of interdepend-
ent constraints, the switching of constraint dependencies and the creation of 
dynamic conditional statements — have the same computational complexity in 
both 2D and 3D environments. The main subjects that still require special at-
tention are (1) the adaptation of the propagation methods, (2) the identification 
of the 3D geometric constraints capable of ensuring the reciprocity of spatial 
diagrams of graphic statics — if it does exist — and (3) the dynamic graphical 
user interface allowing the intuitive control of these diagrams.
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figure 345 
representation of 
a ConeInside[p0 p1 
p2 p3 p4 p5] 
constraint 
generated by two 
skew lines;

figure 346 
representation of 
a ConeInside[p0 p1 
p2 p3 p4 p5] 
constraint 
generated by two 
secant lines; 

figure 347 
representation of 
a ConeInside[p0 p1 
p2 p3 p4 p5] 
constraint 
generated by two 
parallel lines;

figure 348 
representation of 
a ConeOutside[p0 
p1 p2 p3 p4 p5] 
constraint 
generated by two 
secant lines; 
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28	 conclusions

recapitulation · This thesis has defined rules and techniques for a computer-
aided tool aimed at interactively assisting the definition of structural equi-
libriums.

The first section (“introduction”, page  1) contrasted the lack of appro-
priate tools for the initial shaping of structures with their significance for 
meeting consistency and efficiency requirements. It then briefly identified 
the expected capabilities of a tool that would be a useful complement to the 
existing set of structural design tools. In response to that, the main features 
of the proposal were finally presented and contextualized.

The second section (“geometric axiomatisation of graphic statics”, page 55) 
built an axiomatic set of geometric rules to define strut-and-tie networks in 
static equilibrium while the third section (“dynamic handling of geometric 
constraints”, page  135) presented original techniques to fulfil these rules 
when parameter positions vary dynamically. The fourth section (“production 
rules for computer-aided graphic statics”, page  265) subsequently set out 
the means by which the designer can produce plane constraint-based graphic 
statics using this environment.

Finally, the last section (“discussion”, page 285) argued the effectiveness of 
the proposed environment through various design applications and opened up 
new perspectives of research.

original contributions  · The contributions made by this thesis are mainly 
theoretical. Two concepts have been outlined initially. They can both be 
regarded as an extension of classical graphic statics: the first links a graphi-
cal region with the admissible positions of each point that controls the geom-
etry of graphic statics diagrams; the second prevents each temporary con-
structed diagram from being incomplete, i.e. not in static equilibrium. While 
the former lay behind the search for automated techniques for constructing 



316 · discussion 

graphical regions of solutions, the latter did this for equilibrium operations on 
diagrams. They consequently led to seek out a constraint-based graphic stat-
ics framework through various original statements, including:

 •	a renewed definition of the force diagram and its reciprocal rules with 
the form diagram

 •	a fully geometric axiomatisation of graphic statics and a new geometric 
grammar to describe it

 •	computer-aided rules capable of interactively assisting the construc-
tion and modification of reciprocal diagrams

 •	a dynamic geometry environment able to handle multiple solutions to a 
problem at the same time, switch the parametric hierarchy on demand, 
compute complete interdependency — e.g. allowing the geometric con-
struction of algebraically curved constraints — and execute dynamic 
conditional statements geometrically

 •	some symbolic techniques of constraint propagation to ensure consist-
ency between certain graphical domains of solutions.

As a result and from a broader standpoint, this thesis highlights a little more 
the significance of geometric reasoning in structural design: whether a struc-
ture is in static equilibrium is only a matter of geometry; whether a rod is in 
tension or compression is only a matter of geometry; whether a thrust line 
in equilibrium remains inside a given shape is only a matter of geometry 
— constraint-based graphic statics is an appropriate instrument for finding, 
expressing and handling all these geometric rules synthetically.

“The designs of an Engineer are geometric conceptions, his structures 
are geometric forms, within which forces statically combined act along 
geometric lines, so that it is natural that he strive to follow a train of geometric 
thought.” (Chalmers·1881, preface page viii)

figure 349 
three forces in 
equilibrium 
(Stevin/…·1634, 
page 505); 
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reservations · This praise of geometry also highlights the fact that the tool 
only deals with static equilibriums and with what can somehow be expressed 
through geometry. As such, the tool has specific possibilities and should be 
used alongside the many tools available. It is designed to support structural 
designers before and after analysis tools. Sometimes, in the best cases, it can 
make analysis and optimisation tools superfluous but it is not supposed to 
replace them.

However, numerous purposes can be achieved with this tool, using only ge-
ometry and static equilibrium. Sub-section 26 (“applications”, page 287) has 
established a preliminary list and has detailed some examples. Most of them 
may seem unexpected and currently require more research. For instance, 
Mohr's circles can be used with constraint-based graphic statics in order to 
study the state of stresses of a discontinuous stress field inside anisotropic 
material. Also, permutation of hierarchy of constraint-based graphic statics 
can be used to control beam deflections directly.

Applications of graphic statics are many and form a treasure which cannot 
be perceived by a beginner. The daily use of graphic statics is rare nowadays. 
Computerized interfaces of graphic statics have no future if their advantages 
are not advertised to current and future practitioners.

This is all the more the case as graphic statics compel designers to be proper-
ly responsible for the outcome of the process. The same is true for constraint-
based graphic statics. The proposed tool cannot be viewed as a software that 
provides an high-performance output on the basis of a series of inputs chosen 
by the user. The proposed tool is rather a drafting table equipped with various 
implements. The user has to know how to use these implements in order to 
succeed, even if they are very intuitive.

expected outcomes · Although further developments and field assessments 
are still needed, substantial benefits can reasonably be anticipated. What 
constraint-based graphic statics would add most is better control of the struc-
tural typology being shaped.

This control would allow the designer to give more coherence to the structur-
al shape in light of conditions that may and may not be objectivised and which 
might arise only during the course of the design process, and/or that are just 
a product of the designer's unpredictable sensitivity and creativity — as long 
as those conditions are somehow connected to the geometrical shaping of the 
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structure, directly or indirectly. For example, these conditions might concern 
its integration with the spatial context, its architectural quality, its robust-
ness, its durability, the economy of material, the process of building, its aes-
thetics, its functional uses etc. They are intended to improve the architectur-
al, economic and ecological qualities of the structure and its surroundings. 

This is a new kind of control. Indeed, constraint-based graphic statics encour-
ages the emergence of new design approaches that are highly interactive, 
pre-cognitive and chronology-free:

 •	highly interactive because (1) equilibrium and force magnitudes are 
visually expressed through the force diagram, (2) forces and structural 
geometries are bound together in a dynamic and homogeneous envi-
ronment and (3)  routines and parameterised dragging give the user 
ongoing ease for modifying and constraining the equilibrium being 
shaped

 •	pre-cognitive because (1) the user continuously knows that the struc-
ture is in equilibrium before it is even checked and (2) every graphical 
region of solutions marks out the range of design possibilities before 
they are even explored

 •	chronology-free because (1) equilibrium operations are bijective  and 
hence allow the user to alternate between bottom-up approaches 
— e.g. the assembly of pre-existing smaller structural parts — and top-
down approaches — e.g. the refinement of existing structural parts — 
at any time, (2) switching constraint dependencies frees the user from 
the traditional parametric hierarchy, (3) any stored set of operations 
applied to construct a custom static equilibrium can instantaneously 
be rerun with new initial conditions and (4) the design of the rod geom-
etries, their inner stresses, their sections and inertias, their static in-
determinacy, their boundary conditions and the material strength can 
be performed independently and simultaneously.

In other words, constraint-based graphic statics offers more control over the 
structural shape and its inner stresses along with more freedom of composi-
tion. This has the potential of supporting new, more efficient and more appro-
priate structural design methods as well as encouraging the user to achieve 
new, more efficient and more appropriate structural typologies.
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◈ engineering practices

○ geometry
◎ mechanical geometry
◍ computational geometry

■ graphic statics
◪ other tools, methods and theories

◬ computer programming
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The space diagram above represents a rod equilibrated by six forces. 
The force diagram on the front cover represents their corresponding magnitudes.

Dragging the magenta point (on the front cover) updates the orientation of the cyan rod and its 
adjacent forces above, without affecting its static equilibrium.

This rod will also remain in compression provided the magenta point stays within the grey area, 
the boundaries of which are fixed by geometric rules relying solely on the positions of points.
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