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SUMMARY

A new robust controller design method that satisfies the H∞ criterion is developed for linear time-
invariant single-input single-output (SISO) systems. A data-driven approach is implemented in order to
avoid the unmodeled dynamics associated with parametric models. This data-driven method uses fixed order
controllers to satisfy the H∞ criterion in the frequency domain. The necessary and sufficient conditions
for the existence of such controllers are presented by a set of convex constraints. These conditions are also
extended to systems with frequency-domain uncertainties in polytopic form. It is shown that the upper bound
on the weighted infinity norm of the sensitivity function converges monotonically to the optimal value, when
the controller order increases. Additionally, the practical issues involved in computing fixed-order rational
H∞ controllers in discrete- or continuous-time by convex optimization techniques are addressed. Copyright
c© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Data-driven controller design is a very attractive research field within the control community (for
a survey, see [1, 2, 3]). In this method, a controller is designed by using either the time-domain
or frequency-domain data of a system rather than by using a parametric model of the plant, where
the intermediate identification procedure or first principle modeling is not required. Thus, they are
expected to perform better than the model based approaches because of the absence of unmodelled
dynamics and parametric errors (see [4]).

The majority of the data-driven methods use time-domain data for computing a controller that
minimizes a model reference criterion (or more generally, an H2 control criterion). Model Reference
Adaptive Control (MRAC) [5], adaptive switching control [6, 7], Iterative Feedback Tuning (IFT)
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2 A. KARIMI ET AL.

[8], Virtual Reference Feedback Tuning (VRFT) [9] and Iterative Correlation-based Tuning (ICbT)
[10] are among the well-known methods using time-domain data.

There are only a few methods that use the frequency-domain data to compute robust controllers
to meet some constraints on the stability margins or H∞ norm of the sensitivity functions. The
frequency-domain methods assume that the frequency response of a system is available from
an experiment (i.e., in applications where the parametric model is unknown or unavailable).
These methods are closely related to time-domain data-driven methods because there is a linear
relationship between the time-domain and frequency-domain data (through the Fourier transform).
In this paper, the data-driven framework refers to a design method which uses the frequency
response of a system in order to compute a robust controller.

A robust fixed-order controller design method using linear programming is proposed in [11].
In this method, the constraints on the gain margin, phase margin and crossover frequency are
approximated with linear constraints by using linearly parameterized controllers. The frequency
response data are used in [12] to compute the frequency response of a controller that achieves
a desired closed-loop pole location. In [13], a complete set of PID controllers is computed that
guarantee a gain margin, phase margin and H∞ performance specification using frequency-domain
data. This method is extended to design fixed-order linearly parameterized controllers in [14]. A
data-driven synthesis methodology with a fixed structure controller that ensures H∞ performance
is presented in [15]. This method, however, uses the Q parameterization in the frequency domain
and solves a non-convex optimization problem to find a local optimum. Another frequency-domain
approach is presented in [16] to design reduced order controllers with a guaranteed bounded error
on the difference between the desired and achieved magnitude of closed-loop sensitivity functions;
this approach also uses a non-convex optimization method. A convex optimization method is used in
[17] to compute robust H∞ controllers for SISO systems represented by their frequency response.
An interpretation of this algorithm based on convex-concave optimization for tuning PID controllers
is given in [18]. This approach is extended to compute decoupling controllers for multi-input-multi-
output (MIMO) systems in [19]. Based on this method, a public domain toolbox for MATLAB is
developed which is available in [20].

In this paper, the necessary and sufficient conditions for the existence of robust controllers that
guarantee bounded infinity norm on the sensitivity functions are developed. It is shown that these
conditions depend only on the frequency response of the plant model and can be represented
by convex constraints with respect to the controller parameters. By using fixed-order rational
controllers, a convex optimization problem is formulated which produces a solution that ensures H∞
performance. The results are extended to systems with frequency-domain polytopic uncertainties
that are caused by measurement noise or multimodel incertitude. The developed conditions are
necessary and sufficient for stable systems and only sufficient for unstable systems with polytopic
uncertainties. The main contributions with respect to the work in [17] are: (1) The existence of
a multiplier that convexifies the problem is proved (no linearization around a given desired open
loop transfer function is performed). (2) Rational controllers are designed instead of linearly
parameterized controllers. (3) The convergence of the method to the global optimal solution is
proved.

This paper is organized as follows: the system structure and general preliminaries are discussed
in Section 2. The problem formulation and main results with regards to satisfying the H∞ criterion
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ROBUST CONTROLLER DESIGN USING FREQUENCY-DOMAIN DATA 3

are addressed in Section 3. The implementation issues associated with the optimization problem
are considered in Section 4. The effectiveness of the proposed design scheme is demonstrated with
simulation examples and experimental results in Section 5. Finally, the concluding remarks are given
in Section 6.

2. PRELIMINARIES

Let RH∞ represent the family of all stable, proper, real-rational transfer functions. It is imperative
to note that RH∞ is closed under multiplication and addition (i.e., if A(s), B(s) ∈ RH∞, then
{A(s) +B(s), A(s)B(s)} ∈ RH∞). Suppose that a SISO unity feedback control system structure
is used where the plant is represented as G(s) = N(s)M−1(s) such that {N(s),M(s)} ∈ RH∞.
As asserted in [21] and [22], if N(s) and M(s) are coprime, then G(s) = N(s)M−1(s) is called a
coprime factorization of G(s) over RH∞.

The frequency response of such a factorized SISO system is given by:

G(jω) = N(jω)M−1(jω), ω ∈ Ω (1)

where Ω := R ∪ {∞} and N(jω),M(jω) are the frequency responses of bounded analytic
functions in the right half plane. It is also assumed that G(j∞) = 0, which implies that N(j∞) = 0

and M(j∞) �= 0. This representation includes time-delayed systems as well as unstable plants with
unbounded infinity norms.

Finding the coprime factors of a given plant is a standard problem in control when the model
of the plant is available ([23]). In a data-driven setting, for stable systems, a trivial choice is
N(jω) = G(jω) and M(jω) = 1. For unstable systems, a stabilizing controller is needed in order
to properly formulate N(jω) and M(jω). In this case, N(jω) is the frequency response function
between the reference signal and the measured output, while M(jω) is the frequency response
function between the reference signal and the plant input. Given these definitions, it is evident that
N(jω)M−1(jω) represents the frequency response of the plant model. For notation purposes, the
dependence on jω will be omitted and will be reiterated when deemed necessary.

Consider the controller structure, K = XY −1, where X and Y are stable transfer functions with
bounded infinity norm (X,Y ∈ RH∞). These transfer functions may be discrete- or continuous-
time; however, for presentation purposes, the continuous-time transfer functions will be considered.
Note that the methods proposed in this work can also be used for computing discrete-time
controllers. This will be shown through a simulation example in Section 5.

The objective is to design a controller that meets some constraints on the infinity norm of the
weighted sensitivity functions. Some of the sensitivity functions associated with the unity feedback
control system structure are given by:

S = (1 +GK)−1 = MY (NX +MY )−1 (2)

T = GK(1 +GK)−1 = NX(NX +MY )−1 (3)

U = K(1 +GK)−1 = MX(NX +MY )−1 (4)

V = G(1 +GK)−1 = NY (NX +MY )−1 (5)
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An upper bound on the infinity-norm of H(jω) = W1(jω)S(jω) will be considered, where W1(jω)

is the frequency function of a stable system with bounded infinity norm. Therefore, the control
objective is to find a stabilizing controller K such that

sup
ω∈Ω

|H(jω)| < γ (6)

This condition can easily be extended to the other weighted sensitivity functions asserted in
equations (2-5).

3. CONVEX PARAMETERIZATION OF ROBUST CONTROLLERS

The main objective is to find a set of convex constraints (with respect to X and Y ) to satisfy the
constraint in (6). The following lemma will be used in the proof of the main results of this paper:

Lemma 1
Suppose that H(jω) = W1MY (NX +MY )−1 is the frequency response of a bounded analytic
function in the right half plane. Then, (6) is met if and only if there exists a stable proper rational
transfer function F (s) that satisfies

Re{(NX +MY − γ−1|W1MY |)F (jω)} > 0, ∀ω ∈ Ω

Proof : The basic idea is similar to that of the proof of Theorem 1 in [24]. From Fig. 1, it is
clear that (6) is satisfied if and only if the disk of radius γ−1|W1MY | centered at NX +MY does
not include the origin for all ω ∈ Ω, i.e. |NX +MY | > γ−1|W1MY |. This is equivalent to the
existence of a line passing through origin that does not intersect the disk. Therefore, at every given
frequency, ω, there exists a complex number f(jω) that can rotate the disk such that it lays inside
the right hand side of the imaginary axis. Hence, we have

Re{(NX +MY − γ−1|W1MY |)f(jω)} > 0 (7)

for all ω ∈ Ω. In [24], it is shown that, f(jω) can be approximated arbitrarily well by the frequency
response of a rational stable transfer function F (s) if and only if

Z = (NX +MY − γ−1
0 |W1MY |)−1 (8)

is analytic in the right half plane for all γ0 > γ. However, (NX +MY )−1 is stable because of
the stability of H . On the other hand, by decreasing γ0 from infinity to γ, the poles of Z move
continuously with γ0. Therefore, Z is not analytic in the right half plane if and only if Z−1(jω) = 0

for a given frequency, which is not the case because the disk shown in Fig. 1 does not include the
origin. �
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[NX +MY ](jω)

|γ−1W1MY |(jω)
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Im

Figure 1. Graphical illustration of nominal performance

3.1. Nominal and robust performance

The set of all controllers that meet the nominal performance condition defined by the weighted norm
of sensitivity functions is asserted in the following theorem.

Theorem 1
Given the frequency response model G in (1) and the frequency response of a bounded weighting
filter W1, the following statements are equivalent:
(a) There exists a controller K that stabilizes G and

sup
ω∈Ω

|W1(1 +GK)−1| < γ (9)

(b) There exist X,Y ∈ RH∞ with K = XY −1, such that

γ−1|W1MY |(jω) < Re{[NX +MY ](jω)}, ∀ω ∈ Ω (10)

Proof : (b ⇒ a) Since NX +MY is analytic in the right half plane and its real part is positive
for all ω ∈ Ω, it will not encircle the origin when ω travels along the Nyquist contour, so its inverse
is stable and therefore K stabilizes G. On the other hand, we have

|[NX +MY ](jω)| ≥ Re{[NX +MY ](jω)}, ∀ω ∈ Ω

which leads to
|W1MY |(jω) < γ|NX +MY |(jω) ∀ω ∈ Ω

and consequently to (9) in Statement (a).
(a ⇒ b) Assume that K = X0Y

−1
0 satisfies Statement (a) but not Statement (b). Then, according

to Lemma 1 there exists a stable proper rational transfer function F (s), such that

Re{(NX0 +MY0 − γ−1|W1MY0|)F (jω)} > 0 ∀ω ∈ Ω
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Therefore, there exist X = X0F and Y = Y0F with K = XY −1 = X0Y
−1
0 , such that Statement

(b) holds. �
The necessary and sufficient conditions for robust performance of closed-loop systems with

disk-type frequency-domain uncertainty can be developed in a similar manner. Suppose that the
frequency response of the plant model with some disk additive uncertainty is given as :

Ñ(jω) = N(jω) + |Wn(jω)|δnejθn
M̃(jω) = M(jω) + |Wm(jω)|δmejθm

(11)

where |δn| ≤ 1, |δm| ≤ 1; θn, θm ∈ [0 , 2π]; Wn and Wm are computed from the covariance of the
estimates for a given confidence interval (see [25]). These types of models can be easily obtained
by spectral analysis of measured data.

If we consider the nominal performance as defined in (6), the robust performance condition given
by [22]:

|W1M̃Y | < γ|M̃Y + ÑX | ∀ω ∈ Ω (12)

|W1M +W1|Wm|δmejθmY | < γ|M̃Y + ÑX + |Wm|δmejθm + |Wn|δnejθn | ∀ω ∈ Ω (13)

becomes:
sup
ω∈Ω

|W1MY |+ |W1WmY |
|NX +MY | − |WnX | − |WmY | < γ (14)

Equivalently, at any ω ∈ Ω, a disk of radius

r(ω) = γ−1|W1MY |+ γ−1|W1WmY |+ |WnX|+ |WmY | (15)

centered at [NX +MY ](jω) should not include the origin. This can be presented as a set of convex
constraints with respect to X and Y as follows:

r(ω) < Re{[NX +MY ](jω)}, ∀ω ∈ Ω (16)

3.2. Multimodel and frequency-domain polytopic uncertainty

Let the frequency-domain polytopic uncertainty be defined as:

G(λ, jω) = N(λ, jω)M−1(λ, jω) (17)

where

N(λ, jω) =

m∑
i=1

λiNi(jω) ; M(λ, jω) =

m∑
i=1

λiMi(jω)

λi ≥ 0 ,
∑q

i=1 λi = 1 and λ is the convex hull of λi’s. This uncertainty should not be confound with
the parametric polytopic uncertainty, which is defined in the parameter space in model-based robust
control approaches.

It is clear that the following constraints

γ−1|W1MiY | < Re{[NiX +MiY ](jω)}, ∀ω ∈ Ω , for i = 1, . . . ,m (18)
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are necessary and sufficient conditions for robust performance of the closed-loop system with
multimodel uncertainty. However, it can be shown that there are only sufficient for frequency-
domain polytopic uncertainty. It suffices to compute the convex combination of the constraints in
(18) as

γ−1
m∑
i=1

λi|W1MiY | < Re

{
m∑
i=1

λi[NiX +MiY ]

}
, ∀ω ∈ Ω

and for i = 1, . . . ,m. Noting that:

∣∣∣∣∣
m∑
i=1

λiW1MiY

∣∣∣∣∣ ≤
m∑
i=1

λi|W1MiY | (19)

we obtain:
γ−1|W1M(λ)Y | < Re{N(λ)X +M(λ)Y ](jω)}, ∀ω ∈ Ω

Then, according to Theorem 1, the upper bound for the weighted sensitivity function is satisfied for
all λ.

Although the constraints for polytopic uncertainty are only sufficient, the necessary and sufficient
conditions can be developed for some class of models and some sensitivity functions. The following
theorem represents the results for systems that have polytopic uncertainty only in N .

Theorem 2
Consider the model given in (17) with N(λ, jω) =

m∑
i=1

λiNi(jω) and M(λ, jω) = M(jω). Then,

the following statements are equivalent:
(a) Controller K stabilizes G(λ) = N(λ)M−1 and

sup
ω∈Ω

|W1(1 +G(λ)K)−1| < γ

(b) There exist X,Y ∈ RH∞ such that K = XY −1, and

γ−1|W1MY (jω)| < Re{[NiX +MY ](jω)}, ∀ω ∈ Ω, for i = 1, . . . ,m (20)

Proof : (b ⇒ a) The convex combination of the constraints in (20) leads to

γ−1|W1MY (jω)| < Re{[N(λ)X +MY ](jω)} (21)

for all ω ∈ Ω and for all λ. So Statement (a) can be concluded using the result of Theorem 1.
(a ⇒ b) Suppose that (a) is satisfied with the controller K = X0Y

−1
0 . Therefore, all disks of

the same radius, γ−1|W1MY0|, centered inside a polygon with m vertices, NiX0 +MY0, do not
include the origin. This represents a convex set, which is the convex hull of the m disks. Therefore,
there exists a line that passes through the origin and does not intersect this convex set. As a result,
similar to the proof of Lemma 1, there exists a stable transfer function F (s) such that:

Re{[NiX0 +MY0 − γ−1|W1MY0|]F (jω)} > 0, ∀ω ∈ Ω, for i = 1, . . . ,m

Hence X = X0F and Y = Y0F satisfies the inequalities in Statement (b). �
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[N2X0 +M2Y0](jω)

γ−1|W1M1Y0|(jω)

γ−1|W1M3Y0|(jω)
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Im

Figure 2. Illustration of the constraints for polytopic uncertainty with 3 vertices

Remark: Theorem 2 considers only the plant model with polytopic uncertainty in N . This
represents the class of stable systems that may have some fixed poles on the imaginary axis. The
theorem also holds for unstable systems with no uncertainty in M . A polytopic uncertainty in M

will change the radius of the disks centered at NiX0 +MiY0, such that the whole set of the disks
will not be necessarily convex. Figure 2 shows a case in which the set of the disks is not convex
but is inside the convex hull of the disks. This is always true because of the constraint in (19). In
the special case shown in Fig. 2, we observe that the set of disks does not include the origin but
the convex hull does. Similarly, Statement (b) in Theorem 2 is a sufficient condition for satisfying
an upper bound on the weighted sensitivity functions T or V , since the radius of the disks, at each
frequency, will not be constant for the whole polygon. However, it will be necessary and sufficient
for an upper bound on the weighted sensitivity function U in (4).

3.3. Parametric uncertainty

The approach proposed in this paper requires only the frequency response of a model to design a
robust controller. However, if a parametric model is available, the approach can be still used by
computing the frequency response of the model. It is well known that the interval deterministic
parametric uncertainty cannot be converted to the ellipsoid uncertainty in the frequency-domain.
In a data-driven framework, for an identified parametric model using noisy data, the parametric
uncertainties have stochastic bounds and can be transferred to the frequency-domain in a stochastic
sense.

In a data-driven approach, a parametric model of the plant is identified together with its parametric
uncertainty using the classical prediction error methods (see [25]). The parametric uncertainty is
characterized by an ellipsoid in the parameter space and can be computed using the asymptotic
covariance matrix of the parameters for a given probability level. Thanks to the invariance property
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of the Maximum Likelihood Estimators, any function of the estimated parameters will converge
to a normal distribution with a covariance matrix that can be computed based on the derivative of
the function with respect to the parameters and its covariance matrix. In the complex plane, this
parametric uncertainty is represented by an ellipse at each frequency that is well approximated with
an m-side polygon (m > 2) of minimum area that circumscribes each ellipse. In this manner, the
parametric uncertainty can be taken into account using the frequency-domain polytopic uncertainty
with almost no conservatism.

Suppose that a stable parametric model Ĝ(θ) is identified from a set of noisy data and the
covariance matrix of the parameters, cov(θ), is computed. Then, the frequency response of the
identified model can be computed and its real and imaginary parts put in a vector as:

Ĝv(ω) =
[
Re{Ĝ(jω)} Im{Ĝ(jω)}

]T
(22)

This vector has a joint normal distribution with the covariance CG(ω) that can be estimated from
cov(θ) using a linear approximation as follows:

CG(ω) =

(
∂Ĝv(ω)

∂θ

)
cov(θ)

(
∂Ĝv(ω)

∂θ

)T

(23)

Note that θ ∈ R
n, cov(θ) ∈ R

n×n and CG(ω) ∈ R
2×2. Then, the true frequency response will

belong to the following ellipse in the complex plane with a probability of 1− α:

[
x−Re{Ĝ}
y − Im{Ĝ}

]T
C−1

G (ω)

[
x−Re{Ĝ}
y − Im{Ĝ}

]
≤ X 2

2 (α) (24)

where X 2
2 is the chi-square distribution with two degrees of freedom. For a confidence interval

of 0.95 (α = 0.05), we have X 2
2 (0.05) = 5.99. Since the uncertainty set is an ellipse, the disk

uncertainty in (11) cannot be used to model it without conservatism. However, the ellipse can be
represented by an nq-sided polygon with minimum area that circumscribes it, and is approximated
by frequency-domain polytopic uncertainty as:

G(λ) =

nq∑
k=1

λiĜk(jω) (25)

where

Ĝk(jω) = Ĝ(jω) + [1 j]
√

5.99CG(ω)

[
cos(2πk/nw)
cos(π/nq)

sin(2πk/nw)
cos(π/nq)

]
(26)

The last vector in (26) represents the k-th coordinate of a vertex of a polygon circumscribing the
unit circle while the matrix

√
5.99CG(ω) designates the size and direction of the uncertainty (for

0.95 probability).
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4. FIXED-ORDER CONTROLLER DESIGN

The minimization of the H∞ norm becomes an optimization problem that can be solved as follows:

min
X,Y

γ

subject to

|W1MY (jω)| < γRe{[NX +MY ](jω)}, ∀ω ∈ Ω

(27)

In general, this optimization problem is not convex. However, by linearly parameterizing the
controllers X and Y , it becomes a quasi-convex optimization problem and can be solved by using
a bisection algorithm to obtain the optimal solution for γ. Within a given tolerance, the bisection
algorithm ensures the convergence to the global optimum solution. There are several practical and
implementation issues in this optimization problem that will be addressed in this section.

4.1. Controller parameterization

A linear parameterization of X and Y keeps the constraints in (27) convex. As a result, X(s) and
Y (s) are linearly parameterized as X(s) = ρTx φ(s) and Y (s) = ρTy φ(s), where ρTx = [ρx0 , . . . , ρxn ]

and ρTy = [1, ρy1 , . . . , ρyn ] are the vectors of the controller parameters and

φT (s) = [1, φ1(s) · · · , φn(s)] (28)

is a vector of stable orthogonal basis functions. A simple choice is the Laguerre basis functions
given by

φi(s) =

√
2ξ(s− ξ)i−1

(s+ ξ)i

with ξ > 0 and i = 1, · · · , n. These basis functions have only one parameter to be selected (ξ). The
effect of the Laguerre parameter on the control performance for low order controllers is illustrated
in a simulation example in the next section.

4.2. Convergence to the optimal solution

In this sub-section, we will show that the optimal solution (γn) to the optimization problem in (27)
(for a linear parameterization of X and Y by the orthogonal basis functions of order n) will converge
to the least upper bound of the infinity norm of the weighted sensitivity function when n goes to
infinity. The following Lemma is required to prove this convergence:

Lemma 2
([26]) Let X∗

n(s) be the projection of Xo(s) ∈ RH∞ into the subspace spanned by the orthogonal
basis functions φ(s) in (28). Then

lim
n→∞

‖Xo −X∗
n‖∞ = 0

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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Theorem 3
Suppose that the controller Ko(s) achieves the optimal H∞ performance for the plant model
G = NM−1 such that

γo = inf
K

sup
ω

|W1(1 +GK)| = sup
ω

|W1(1 +GKo)|

Suppose also that γn is the optimal solution of the convex optimization problem in (27) when
X and Y are parameterized by an n dimensional orthogonal basis function. Then γn converges
monotonically from above to γo when n → ∞.

Proof : According to Theorem 1, there exist Xo(s), Yo(s) ∈ RH∞ such that Ko(s) =

Xo(s)Y
−1
o (s) and

γo = sup
ω∈Ω

∣∣∣∣ W1MYo

NXo +MYo

∣∣∣∣ (29)

Take X∗
n and Y ∗

n as the projections of Xo and Yo into the subspace spanned by an n dimensional
orthogonal basis functions and define

γ∗
n = sup

ω∈Ω

∣∣∣∣ W1MY ∗
n

NX∗
n +MY ∗

n

∣∣∣∣ (30)

We assume that γ∗
n is bounded, i.e., NX∗

n +MY ∗
n has no zero on the imaginary axis. This can be

proved if n is large enough using contradiction and based on the fact that ‖NXo +MYo‖∞ > ε > 0.
Assume that jω∗ is a zero of NX∗

n +MY ∗
n . Therefore, at ω = ω∗, one has:

|NXo +MYo| = |N(Xo −X∗
n) +M(Yo − Y ∗

n )| > ε (31)

However, |N(Xo −X∗
n) +M(Yo − Y ∗

n )| can be made arbitrarily small by increasing n, which
shows that for large but finite n, NX∗

n +MY ∗
n will not have a zero on the imaginary axis.

Now, let us compute

|γ∗
n − γo| ≤ sup

ω∈Ω

∣∣∣∣ W1MY ∗
n

NX∗
n +MY ∗

n

− W1MYo

NXo +MYo

∣∣∣∣ (32)

≤ sup
ω∈Ω

∣∣∣∣W1MN [X∗
n(Yo − Y ∗

n )− Y ∗
n (Xo −X∗

n)]

(NX∗
n +MY ∗

n )(NXo +MYo)

∣∣∣∣
Moreover, according to Lemma 2:

lim
n→∞

‖Xo −X∗
n‖∞ = 0, lim

n→∞
‖Yo − Y ∗

n ‖∞ = 0

Therefore, since all frequency functions in (32) are bounded and the denominator has no zero on
the imaginary axis

lim
n→∞

|γ∗
n − γo| = 0 (33)

On the other hand, γn is always less than or equal to γ∗
n and greater than the optimal solution γo.

Thus γn converges from above to γo and this convergence is monotonic because the basis functions
of order n are a subset of those of order n+ 1, which ensures that γn+1 ≤ γn. �
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4.3. Finite number of constraints

The constraints in (27) should be satisfied for all ω ∈ Ω, which is an infinite set. This problem
is known as semi-infinite programming (SIP) problem and there exist different methods to solve
it. A very simple and practical solution to this problem is to choose a finite set of frequencies
Ωp = {ω1, ω2, · · · , ωp} and satisfy the constraints for this set. In this manner, the optimization
problem is converted to a semi-definite programming (SDP) problem which can be solved efficiently
with solvers that are readily available.

Another solution is to use a randomized approach where the constraints are satisfied for a finite
set of randomly chosen frequencies. In this approach, a bound on the violation probability of the
constraints can be derived and approaches zero when the number of samples goes to infinity (see
[27] and [28]). It should be mentioned that in a data-driven framework, the frequency domain
uncertainties are given by some stochastic bounds. Therefore, even if the constraints are met for all
ω, the stability, robustness and performance are guaranteed within a probability level. As a result,
the use of randomized methods to solve the robust optimization problem in (27) is fully compatible
with the uncertainty description of the frequency-domain model of the proposed approach.

4.4. Solution by linear programming

The convex constraints in (27) are equivalent to the following linear constraints:

Re{[NX +MY ](jω)− γ−1ejθW1MY (jω)} > 0, (34)

∀ω ∈ Ω and ∀θ ∈ [0 , 2π[. In fact, γ−1ejθW1MY (jω) represents the circle in Fig. 1. Note that ejθ

can be very well approximated by a polygon of q > 2 vertices with least area that circumscribes it.
By gridding ω and bounding the circle ejθ, a finite set of linear constraints can be obtained as:

Re

{
[NX +MY ](jωi)− γ−1 ej2πk/q

cos(π/q)
W1MY (jωi)

}
> 0 (35)

for i = 1, . . . , p and k = 1, . . . , q. Therefore, the convex constraints in (27) can be replaced by p× q

linear constraints.

5. CASE STUDIES

5.1. Case 1: Multimodel uncertainty

In this example, a simulation is carried out to compare the traditional µ-synthesis method and the
proposed approach for a set of unstable models. The controlled plants are taken from an example
in the robust control toolbox of MATLAB. The nominal plant model is a first-order unstable system
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G0(s) = 2(s− 2)−1, and the family of perturbed plants are variations of G0(s) as follows,

G1(s) = G0(s) · (0.06s+ 1)−1

G2(s) = G0(s) · e−0.04s

G3(s) = G0(s) · 502(s2 + 10s+ 502)−1

G5(s) = 2.4(s− 2.2)−1

G4(s) = G0(s) · 702(s2 + 28s+ 702)−1

G6(s) = 1.6(s− 1.8)−1

Remark: It is imperative to note that these models are simply used to obtain the frequency
response functions of the perturbed plants. The actual controller synthesis does not rely on these
parametric models.

Compared with the nominal plant, G1 has an extra lag, G2 has an additional time delay, G3 and
G4 have high frequency resonance mode, G5 and G6 have pole and gain migrations. The control
task is to design a linear controller to simultaneously stabilize this family of unstable plants and
minimize the infinity norm of the weighted sensitivity functions, i.e.:

min γ

‖W1Si‖∞ < γ , ‖W2Ti‖∞ < γ , for i = 0, . . . , 6

where

W1(s) =
0.33s+ 4.248

s+ 0.008496
; W2(s) =

0.1975s2 + 0.6284s+ 1

7.901e−5s2 + 0.2514s+ 400

The µ-synthesis method from the MATLAB robust control toolbox is used to solve this problem. The
multimodel uncertainty is approximated with a fourth-order uncertainty weighting filter and a 18th-
order controller is designed that achieves a performance of γo = 1.0248. Comparable performance
is achieved after reducing the controller order to 6.

Continuous-time Laguerre basis functions of order 5 with ξ = 20 and an integrator are used for
the controller parameterization. A high frequency pole at 100 is used for constructing Ni and Mi

for the models. For example, for G6(s) = N6(s)M
−1
6 (s):

N6(s) =
1.6

s+ 100
, M6(s) =

s− 1.8

s+ 100

The frequency response of the model is computed at N = 200 logarithmically spaced frequency
points between 10−3 and 104 rad/s. The linearized constraints in (35) are used with a polygon of
q = 25 vertices for over bounding ejθ. Solving the optimization problem leads to the following
controller:

K(s) =
0.26773(s+ 1)(s+ 2348)(s2 + 19.82s+ 131.3)(s2 + 28.5s+ 3510)

s(s+ 7.759)(s2 + 27.77s+ 556.5)(s2 + 94.5s+ 12440)

which leads to the step disturbance response depicted in Fig. 3. The resulting performance obtained
from the proposed optimization problem is γo = 0.8852. This is much smaller than that of the µ-
synthesis method; in the proposed approach, there is no conservatism in modeling the multimodel
uncertainties. It should be mentioned that in the µ-synthesis approach the time delay in G2(s) is
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Figure 3. Step responses of the family of closed-loop systems

approximated with a first-order Pade function, while the time-delay is taken into account with no
approximation in the proposed approach.

5.2. Case 2: Convergence to optimal performance

Consider a discrete-time SISO system as follows:

G(z) =
z − 0.186

z3 − 1.116z2 + 0.465z − 0.093
, (36)

The goal is to design a controller with an integrator that minimizes ‖W1S‖∞, where

W1(z) =
0.4902(z2 − 1.0431z + 0.3263)

(z − 1)(z − 0.282)
. (37)

For discrete-time controller synthesis, the controller is parameterized by discrete-time Laguerre
basis functions as follows:

K(z) = X(z)Y −1(z) ; X(z) = ρTxφ(z) , Y (z) = ρTy φ(z)

where n is the controller order, φT (z) = [1, φ1(z), . . . , φn(z)] with

φi(z) =

√
1− a2

z − a

(
1− az

z − a

)i−1

and −1 < a < 1. It will be shown that by increasing the controller order, the side effect of the
selection of the parameter of Laguerre function, a, is reduced.
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Figure 4. γn versus the controller order with different Laguerre parameter

In this example, 50 equally spaced frequency points between 0 and π are chosen. In order to
have an integrator in the controller and to avoid unboundedness of W1 at ω = 0, the basis functions
for Y (z) are multiplied by (z − 1)/z. Since the system is stable, we choose N(jω) = G(jω) and
M(jω) = 1. The convex constraints are linearized by approximating ejθ with a polygon of q = 50

vertices.
The standard H∞ control method in the Robust Control toolbox of MATLAB leads to the optimal

value of γo = 0.552 with a 6th order controller. Fig. 4 shows the optimal value, γn, for different
choice of the parameter a in Laguerre basis function and different controller order n. It can be
observed that the optimal solution converges monotonically and is independent of the value of a.
The best results are obtained for a = 0, which almost achieves γo for an 8th-order controller.

5.3. Case 3: Flexible Transmission System

In this example, the experimental data are used to compute a robust controller with respect to
frequency-domain uncertainty. An electro-mechanical flexible transmission system which consists
of three disks connected by elastic belts is considered. The first disk is coupled to a servo motor
which is derived by a current amplifier. The position of the third disk is measured with an
incremental encoder and controlled by a proportional controller. The input of the system is the
reference position for the third disk (see Fig. 5). This system is excited by a PRBS signal with a
sampling period of Ts = 40ms and the data length is 765. Figure 6 shows the experimental data
that are used to identify a frequency domain model using spa command in Identification toolbox
of MATLAB. The Nyquist diagram of this spectral model together with the uncertainty disks of 0.95
probability are given in Fig. 7. The uncertainty disks are approximated by a polygon of m = 20

vertices and the goal is to design a stabilizing controller that minimizes γ where ‖W1S‖∞ < γ,
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Figure 5. Flexible transmission system
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Figure 6. Experimental identification data.

with
W1(z) =

z − 0.96

z − 1

In the proposed method, discrete-time Laguerre basis functions of order 4 with a = 0 (FIR filter)
are considered for X and Y . The resulting controller is

K(z) =
20.3(z2 − 1.88z + 0.92)(z2 − 1.278z + 0.6057)

(z + 0.72)(z − 1)(z2 + 0.209z + 0.563)
,

which achieves an optimal performance of γ = 2.12. Figure 8 shows the magnitude of the Bode
diagram of the sensitivity function for the nominal model. It can be observed that the sensitivity
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Figure 7. Nyquist diagram of the spectral model together with uncertainty disks
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function is small at low frequencies and its maximum value is less than 5db which guarantees a
good stability margin.
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6. CONCLUSION

A robust controller design method for LTI-SISO systems based on frequency-domain data is
proposed. In comparison with the classical H∞ controller design methods, the following features
can be highlighted:

• The frequency response of the plant is the only requisite for controller synthesis where no
parametric model is required

• Pure input/output time delay is considered with no approximation.
• Frequency-domain uncertainty is taken into account with reduced conservatism.
• Parametric uncertainty in identified models with noisy data can be considered in a stochastic

sense with reduced conservatism.
• Fixed-order controllers can be designed in a convex optimization problem that considers a

finite amount of constraints in the frequency domain.

It is shown that the choice of the basis functions affects the optimization results for low-order
controllers. The optimal choice of the basis function and the extension to multivariable systems
are considered for future research works.
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10. Karimi A, Mišković L, Bonvin D. Iterative correlation-based controller tuning. Int. Journal of Adaptive Control

and Signal Processing 2004; 18(8):645–664.
11. Karimi A, Kunze M, Longchamp R. Robust controller design by linear programming with application to a double-

axis positioning system. Control Engineering Practice February 2007; 15(2):197–208.
12. Hoogendijk R, Den Hamer AJ, Angelis G, van de Molengraft R, Steinbuch M. Frequency response data based

optimal control using the data based symmetric root locus. IEEE Int. Conference on Control Applications,
Yokohama, Japan, 2010; 257–262.

13. Keel LH, Bhattacharyya SP. Controller synthesis free of analytical models: Three term controllers. IEEE Trans. on
Automatic Control July 2008; 53(6):1353–1369.

14. Parastvand H, Khosrowjerdi MJ. Controller synthesis free of analytical model: fixed-order controllers. Int. Journal
of Systems Science 2014; (ahead-of-print).

15. Den Hamer AJ, Weiland S, Steinbuch M. Model-free norm-based fixed structure controller synthesis. 48th IEEE
Conference on Decision and Control, Shanghai, China, 2009; 4030–4035.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
Prepared using rncauth.cls DOI: 10.1002/rnc



ROBUST CONTROLLER DESIGN USING FREQUENCY-DOMAIN DATA 19

16. Khadraoui S, Nounou H, Nounou M, Datta A, Bhattacharyya S. A measurement-based approach for designing
reduced-order controllers with guaranteed bounded error. Int. Journal of Control 2013; 86(9):1586–1596.

17. Karimi A, Galdos G. Fixed-order H∞ controller design for nonparametric models by convex optimization.
Automatica 2010; 46(8):1388–1394.

18. Hast M, Aström K, Bernhardsson B, Boyd S. Pid design by convex-concave optimization. Proceedings European
Control Conference, Citeseer, 2013; 4460–4465.

19. Galdos G, Karimi A, Longchamp R. H∞ controller design for spectral MIMO models by convex optimization.
Journal of Process Control 2010; 20(10):1175 – 1182.

20. Karimi A. Frequency-domain robust control toolbox. 52nd IEEE Conference in Decision and Control, 2013; 3744
– 3749.

21. Zhou K, Doyle JC. Essentials of robust control. Prentice-Hall: N.Y., 1998.
22. Doyle CJ, Francis BA, Tannenbaum AR. Feedback Control Theory. Mc Millan: New York, 1992.
23. Zhou K. Essentials of Robust Control. Prentice Hall: New Jersey, 1998.
24. Rantzer A, Megretski A. Convex parameterization of robustly stabilizing controllers. IEEE Trans. on Automatic

Control September 1994; 39(9):1802–1808.
25. Ljung L. System Identification - Theory for the User. second edn., Prentice Hall: NJ, USA, 1999.
26. Akcay H, Ninness B. Orthonormal basis functions for continuous-time systems and lp convergence. Mathematics

of Control, Signals, and Systems 1999; 12:295–305.
27. Calafiore G, Campi MC. The scenario approach to robust control design. IEEE Trans. on Automatic Control May

2006; 51(5):742–753.
28. Alamo T, Tempo R, Luque A. On the sample complexity of probabilistic analysis and design methods. Perspectives

in Mathematical System Theory, Control, and Signal Processing. Springer, 2010; 39–55.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
Prepared using rncauth.cls DOI: 10.1002/rnc


