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Introduction

Figure 1: Plasma turbulence simulation performed on Piz Dora (project s549)

I Magnetic fusion research intends to create a star
on Earth and to harvest the energy it releases.

I The fusion fuel, heated to 100 million degrees, is
in the plasma state and it is confined in a
magnetic cage.

I A Tokamak is an axisymmetrical torus-shaped
device that creates such a magnetic cage to
confine the hot plasma.

I At the Tokamak edge magnetic field lines
intercept the wall:
I Exhaust heat
I Control impurity transport, fusion ashes removal, and

plasma fueling (recycling and gas puffing)

I GBS is a simulation code to evolve plasma turbulence in the edge of fusion devices.
[Halpern et al., JCP 2016], [Ricci et al., PPCF 2012]

I GBS solves 3D fluid equations for electrons and ions, Poisson’s and Ampere’s equations, and a kinetic
equation for neutral atoms.

The GBS code
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I A set of fluid boundary conditions where the magnetic field lines intersect the vessel:
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I Gradients and curvature terms discretized using finite differences
I Poisson brackets, [a,b] = b̂0 · (∇a×∇b), discretized using Arakawa scheme
I Time evolution using the classic Runge Kutta method
I GBS uses a 3D Cartesian MPI communicator decomposing the computational 3D domain. OpenMP

directives have been included recently.

The Poisson and Ampere equations
I Poisson equation with Boussinesq approximation, ∇2

⊥φ = ω, or without, ∇ · (n∇⊥φ) = Ω− τ∇pi

I Ampere’s equation from Ohm’s law,
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I Stencil based parallel multigrid implemented in GBS
I The elliptic equations are separable in the parallel direction leading to independent 2D solutions for

each x-y plane
I 2D Cartesian (x , y) grid topology mapped to a 2D domain decomposition
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I δαβ describe diagonally dominant 2-D elliptic operators
I Damped Jacobi/RB Gauss-Seidel/SOR relaxation
I In GBS, the residue converges to ε ∼ 10−10 within 3-4 V(3,3)-cycles

The kinetic equation for neutral atoms
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I Method of characteristics to obtain the formal solution of fn
I Two assumptions, τneutral losses < τturbulence and λmfp, neutrals� L‖,plasma, leading to a 2D steady

state system for each x-y plane
I Linear integral equation for neutral density obtained by integrating fn over v
I Spatial discretization leading to a linear system of equations[
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I This system is solved for neutral density, nn, and neutral particle flux at the boundaries, Γout, with the
threaded LAPACK solver.

Scalability of MPI+OpenMP GBS

I Hybrid MPI+OpenMP with MPI_THREAD_FUNNELED (MPI calls only by thread 0)
I Basic OpenMP directives: parallel, do, single, master, barrier, simd
I Simple clauses: schedule(static), collapse
I Scalings performed on the Helios Supercomputer system at IFERC-CSC, two 8-core Sandy-bridge

processors and 64 GB memory on each node, InfiniBand network

Strong scaling (grid size 256 x 2048 x 128)
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Weak scaling (grid size 256 x 2048 x nodes*8)
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I Fluid equations profit from OpenMP directives. Efficiency decreases in the strong scaling due to 3D
ghost cell exchange.

I Parallel multigrid solver shows very good parallel scalability (2D ghost cell exchange), runs best with
1 or 2 threads, and shows superlinear scaling probably related to cache use.

I Optimal parallelization for overall timestep depends on physical case and system architecture

Parallel Multigrid Solver with OpenACC

I Initialize the array TYPE(grid_2d)::grids(1:levels) including grids, stencils, and solution
arrays on the host and offload to the GPU before MG iterations start
I No support for derived types with ALLOCATABLE members in OpenACC-2.0: only shallow-copy of such derived types
I Extension of Cray Fortran: deep-copy with the compiler switch -hacc-model=deep-copy

I Offloading during MG iterations:
I Residual norm and discretization error norm (16 Bytes): used in the stopping criteria
I For multi-node multi-gpu version, additional offload of 2D domain boundaries (1D buffers) for ghost cells exchange

I Run on a Cray XC30 (Piz Daint at CSCS) equipped with one 8-core Xeon E5-2670@2.6 GHz and one
NVIDIA Tesla K20X per node
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 Strong scaling, 1024X4096 grid, GPU vs CPU on DAINT
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 Weak scaling,GPU vs CPU on DAINT

I 3x speed-up from a single CPU (8 cores) to a single GPU
I Good speed-up in the strong scaling for two GPUs, but saturation above four GPUs

I In GBS the x-y planes are localized closest in the 3D MPI communicator, so only few GPUs are involved in the 2D parmg
solver, and parallel scalability up to 2-4 GPUs is sufficient.

I Super-linear speed-up for the CPU parmg solver, probably due to efficient cache use
I The increase of execution time in the weak scaling is mainly due to the increase in exchange time

(offloading and MPI communication)
I Large problem size necessary for efficient use of many GPUs

Summary and Outlook

I The hybrid MPI+OpenMP parallelization implemented recently in GBS leads to performance
improvements for the fluid equations in the code.

I The optimal distribution of processors between MPI and OpenMP depends on the chosen problem
and platform. The scalability on many-core platforms (Xeon Phi) to be evaluated.

I A hybrid MPI+OpenACC multigrid Poisson solver developed as a first step in porting GBS to mixed
CPU+GPU architectures.

I The fluid equations evaluation of GBS still to be ported to MPI+OpenACC. CPUs will be used for MPI
ghost cell exchange and diagnostics output, while the main computation is to be carried out on the
GPUs.
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