Cell proliferation and migration during early development of a symbiotic scleractinian coral

In scleractinian reef-building corals, patterns of cell self-renewal, migration and death remain virtually unknown, limiting our understanding of cellular mechanisms underlying initiation of calcification, and ontogenesis of the endosymbiotic dinoflagellate relationship. In this study, we pulse-labelled the coral Stylophora pistillata for 24 h with BrdU at four life stages (planula, early metamorphosis, primary polyp and adult colony) to investigate coral and endosymbiont cell proliferation during development, while simultaneously recording TUNEL-positive (i.e. apoptotic) nuclei. In the primary polyp, the fate of BrdU-labelled cells was tracked during a 3-day chase. The pharynx and gastrodermis were identified as the most proliferative tissues in the developing polyp, and BrdU-labelled cells accumulated in the surface pseudostratified epithelium and the skeletogenic calicodermis during the chase, revealing cell migration to these epithelia. Surprisingly, the lowest cell turnover was recorded in the calicodermis at all stages, despite active, ongoing skeletal deposition. In dinoflagellate symbionts, DNA synthesis was systematically higher than coral host gastrodermis, especially in planula and early metamorphosis. The symbiont to host cell ratio remained constant, however, indicating successive post-mitotic control mechanisms by the host of its dinoflagellate density in early life stages, increasingly shifting to apoptosis in the growing primary polyp.

Published in:
Proceedings of the Royal Society B: Biological Sciences, 283, 1831, 20160206
London, Royal Soc

 Record created 2016-06-06, last modified 2018-09-13

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)