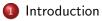
A new mathematical formulation to integrate supply and demand within a choice-based optimization framework

Meritxell Pacheco Shadi Sharif Azadeh, Michel Bierlaire

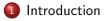
Transport and Mobility Laboratory (TRANSP-OR) École Polytechnique Fédérale de Lausanne

May 18th, 2016

Outline



2 Customer behavioral model

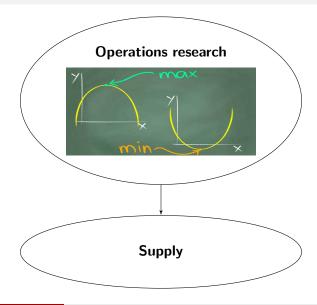


Customer behavioral model

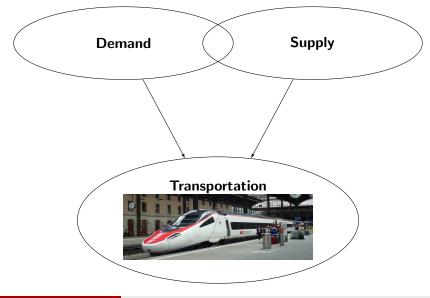
Motivation



Motivation



Motivation



Demand vs. supply

Customer behavioral models

- Given the configuration of the system ⇒ predict the demand
- Maximize satisfaction
- Here: discrete choice models

Operations Research

- Given the demand \Rightarrow configure the system
- Minimize costs
- Here: MILP

Discrete choice models in optimization problems

- Integrated choice model \Rightarrow source of nonconvexity
- Many techniques to convexify and linearize. Here: different approach
 - Nonconvex representation of choice probabilities
 - Include a wide class of discrete choice models

Utilities

Demand and supply

- Population of *N* individuals
- \bullet Set of products ${\mathcal C}$ in the market
 - artificial "opt-out" product
- $C_n \subseteq C$ subset of available products to individual n

Utility

 U_{in} associated score with alternative *i* by individual *n*: $U_{in} = V_{in} + \varepsilon_{in}$

- V_{in}: deterministic part
- ε_{in}: error term

Behavioral assumption: *n* chooses *i* if U_{in} is the highest in C_n

MP, SSA, MB

Probabilistic model

Choice variable

$$w_{in} = \begin{cases} 1 & \text{if } n \text{ chooses } i \\ 0 & \text{otherwise} \end{cases} \quad \forall n, \forall i \in \mathcal{C}.$$

Probabilistic model

$$\mathsf{Pr}(w_{in} = 1) = \mathsf{Pr}(U_{in} \ge U_{jn}, \forall j \in \mathcal{C}_n)$$

 $D_i = \sum_{n=1}^N \mathsf{Pr}(w_{in} = 1)$

Simulation

Non linearity

 D_i is in general non linear

Example:

$$\Pr(w_{in} = 1) = rac{y_{in}e^{V_{in}}}{\sum_{j \in \mathcal{C}} y_{jn}e^{V_{jn}}} ext{ (logit model)}$$

Simulation

- Assume a distribution for ε_{in}
- Generate R draws $\xi_{in1} \dots \xi_{inR}$
- r behavioral scenario
- The choice problem becomes deterministic

Demand model

$$U_{inr} = V_{in} + \xi_{inr} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \xi_{inr}$$

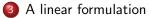
 $\Rightarrow U_{inr}$ is not a random variable

Endogenous part of Vin

- Linear in the variables x_{ink}
- Decision variables (involved in the optimization problem)
- Assumption for the integration in a MILP

Exogenous part of Vin

- Depends on other variables zin
- f not necessarily linear



11 /

Mixed Integer Linear Problem

Availability of alternatives

- Availability at operator level
- Availability at scenario level (e.g. demand exceeding capacity)

Preference of alternatives

- Take into account only the available alternatives
- Choose the alternative with highest utility

Choice

Choice at scenario level: winr

$$D_i = \frac{1}{R} \sum_{n=1}^{N} \sum_{r=1}^{R} w_{inr}$$

Demand based revenues maximization (I)

Application

- Operator selling services to a market, each offered service:
 - Price
 - Capacity (number of customers)
- Demand is price elastic and heterogenous
- Goal: best strategy in terms of capacity allocation and pricing

Maximization of revenues

• p_{in} price that individual n has to pay to access service i

$$\max R_i = \max \frac{1}{R} \sum_{n=1}^{N} p_{in} \sum_{r=1}^{R} w_{inr}$$

• p_{in} endogenous variable $\Rightarrow R_i$ non linear

Demand based revenues maximization (II)

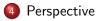
Pricing

- Linearization of the price
- Discretization \Rightarrow price levels

Capacity allocation

- Capacity for each alternative i
 - We assume it given
 - It could be a decision variable
- Who has access?
- Provide a priority list to the model

Customer behavioral model



Perspective

Conclusions

- High dimensionality of the problem (INR)
- Any assumption can be made for the ε_{in}

Ongoing research

- Proof of concept: case study from the literature (mixed logit)
- Define different scenarios to test the formulation
- More accurate values (e.g. price levels)

Future work

- Decomposition techniques to speed up the computational results
 - By customer: capacity!
 - By scenario: only considered together in the objective function
- Introduce new features (e.g. N as a group of individuals), capacity?

Questions?

