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Abstract
This thesis deals with signal-based methods that predict how listeners perceive speech quality

in telecommunications. Such tools, called objective quality measures, are of great interest in

the telecommunications industry to evaluate how new or deployed systems affect the end-user

quality of experience. Two widely used measures, ITU-T Recommendations P.862 “PESQ” and

P.863 “POLQA”, predict the overall listening quality of a speech signal as it would be rated by

an average listener, but do not provide further insight into the composition of that score. This

is in contrast to modern telecommunication systems, in which components such as noise

reduction or speech coding process speech and non-speech signal parts differently. Therefore,

there has been a growing interest for objectivemeasures that assess different quality features of

speech signals, allowing for a more nuanced analysis of how these components affect quality.

In this context, the present thesis addresses the objective assessment of two quality features:

background noise intrusiveness and speech intelligibility.

The perception of background noise is investigated with newly collected datasets, including

signals that go beyond the traditional telephone bandwidth, as well as Lombard (effortful)

speech. We analyze listener scores for noise intrusiveness, and their relation to scores for

perceived speech distortion and overall quality. We then propose a novel objective measure of

noise intrusiveness that uses a sparse representation of noise as a model of high-level auditory

coding. The proposed approach is shown to yield results that highly correlate with listener

scores, without requiring training data.

With respect to speech intelligibility, we focus on the case where the signal is degraded by

strong background noises or very low bit-rate coding. Considering that listeners use prior

linguistic knowledge in assessing intelligibility, we propose an objective measure that works

at the phoneme level and performs a comparison of phoneme class-conditional probability

estimations. The proposed approach is evaluated on a large corpus of recordings from public

safety communication systems that use low bit-rate coding, and further extended to the

assessment of synthetic speech, showing its applicability to a large range of distortion types.

The effectiveness of both measures is evaluated with standardized performance metrics, using

corpora that follow established recommendations for subjective listening tests.

Keywords: Speech quality, intelligibility, noise intrusiveness, objective assessment, speech

perception, sparse coding, posterior features
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Résumé
Cette thèse traite de méthodes automatiques permettant de prédire la perception de la qualité

vocale dans les systèmes de télécommunication. Ces outils, appelés instruments d’évaluation

de la qualité, sont d’une grande utilité pour l’industrie des télécommunications afin d’évaluer

comment des systèmes existants ou nouveaux impactent la qualité perçue par les utilisateurs.

Deux instruments de mesure largement utilisés, les Recommandations UIT-T P.862 “PESQ” et

P.863 “POLQA”, prédisent la qualité vocale d’un signal de parole telle qu’elle serait perçue par

un utilisateur moyen, mais ne donnent pas d’indication supplémentaire sur la composition de

ce score. Cependant, les systèmes de télécommunication modernes comportent souvent des

composants de débruitage ou de codage qui ont un effet différent sur les parties de parole et

de bruit dans le signal. En conséquence, des instruments permettant de mesurer différentes

caractéristiques de la qualité des signaux de parole ont récemment gagné en importance. C’est

dans ce contexte que cette thèse aborde l’évaluation automatique de la gêne perçue des bruits

de fond, ainsi que de l’intelligibilité de la parole.

La perception des bruits de fond est étudiée par le biais d’une collection récente de parole

bruitée de systèmes de télécommunication. Cette collection contient notamment des signaux

de systèmes récents à bande audio élargie par rapport à la téléphonie traditionnelle, ainsi que

des enregistrements de parole à effet Lombard (i.e., avec effort vocal). L’impact de ces facteurs

sur la perception de la gêne des bruits fond, sur la déformation et sur la qualité globale de

la parole est évalué. Les relations entre ces trois caractéristiques de qualité sont également

établis. Ces analyses ouvrent sur un nouvel instrument de mesure de la gêne de bruits de fond,

basé sur une représentation parcimonieuse du bruit commemodèle de la perception auditive

à haut niveau. Les résultats obtenus avec ce modèle montrent une forte corrélation avec les

évaluations subjectives de la gêne, sans nécessiter de données d’apprentissage.

L’évaluation automatique de l’intelligibilité de la parole se concentre sur les scénarios de

dégradation par bruits de fond ou par codage à très bas débit. Partant du constat que les

utilisateurs appliquent leurs connaissances linguistiques dans l’évaluation de l’intelligibilité,

une nouvelle approche basée sur des paramètres phonétiques est proposée. Plus particulière-

ment, une mesure d’intelligibilité est déterminée en comparant les séquences de probabilités

a-posteriori de phonèmes du signal de parole original et du signal dégradé. L’instrument de

mesure développé est appliqué à une large collection d’enregistrements de parole codée à

bas débit provenant de systèmes de communication d’urgence, et étendu à l’évaluation de la
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parole synthétique, montrant ainsi son utilité pour des types de distorsions variés.

L’efficacité des méthodes proposées est évaluée à travers des mesures de performances stan-

dardisées et sur des bases de données conformes aux recommandations sur l’évaluation

subjective de la qualité.

Mots clefs :Qualité vocale, intelligibilité, gêne du bruit, évaluation objective, perception de la

parole, codage parcimonieux, paramètres postérieurs
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Zusammenfassung
Diese Doktorarbeit befasst sich mit signalbasierten Verfahren zur Vorhersage der wahrgenom-

menen Sprachqualität in Telekommunikationssystemen. Solche sogenannte instrumentelle

Verfahren sind in der Telekommunikationsindustrie von grossem Interesse, da sie erlauben,

den Einfluss von neuen oder bereits eingesetzten Systemen auf die Qualitätswahrnehmung

des Endbenutzers zu bestimmen. Zwei weit verbreitete Verfahren, ITU-T Empfehlungen

P.862 “PESQ” und P.863 “POLQA”, schätzen die Gesamtqualität, wie sie von einer durchschnitt-

lichen Versuchsperson beurteilt würde, geben aber keinen Einblick auf die Zusammensetzung

diese Urteils. Dies steht im Gegensatz zu modernen Telekommunikationssystemen, in wel-

chen Komponenten wie Geräuschunterdrückung und Sprachkodierung Sprach- und Nicht-

sprachanteile im Signal unterschiedlich beeinflussen. Aus diesem Grund stehen zunehmend

instrumentelle Verfahren, welche verschiedeneQualitätsmerkmale von Sprachsignalen bewer-

ten im Vordergrund, da sie Aufschlüsse über die Auswirkung verschiedener Komponenten auf

die Gesamtqualität geben. In diesem Kontext befasst sich diese Arbeit mit der instrumentellen

Schätzung der Lästigkeit von Hintergrundgeräuschen und der Sprachverständlichkeit.

Die Wahrnehmung von Hintergrundgeräuschen wird mittels einer eigens erstellter Daten-

bank an geräuschbehafteten Sprachsignalen aus Telekommunikationssystemen erforscht.

Erstmals wurden dabei auch Signale aus neueren Systemenmit erweiterten Audiobandbreiten,

sowie Sprachaufnahmen mit dem Lombard-Effekt (Sprechweise im Störgeräusch) berück-

sichtigt. Der Einfluss dieser Faktoren auf die wahrgenommene Lästigkeit, Sprachverzerrung

und Gesamtqualität wird untersucht, und die gegenseitige Abhängigkeit dieser drei Quali-

tätsmerkmale analysiert. Die gewonnen Erkenntnisse werden zur Entwicklung eines neuen

instrumentellen Schätzers der Lästigkeit von Hintergrundgeräuschen angewandt, welcher auf

einer spärlichen Darstellung des Geräuschsignals als Modell der auditiven Kodierung beruht.

Das entwickelte Verfahren benötigt keine Trainingsdaten und errechnet Schätzwerte, die stark

mit der Beurteilung von Probanden korrelieren.

Die instrumentelle Bestimmung der Sprachverständlichkeit wird in Bezug auf die Verständ-

lichkeit im Störgeräusch, sowie auf Verzerrungen durch sehr niedrig bitratige Kodierer ange-

gangen. Davon ausgehend, dass Versuchspersonen sprachliche Kenntnisse zur Beurteilung

der Sprachverständlichkeit anwenden, wird ein neues, auf Phonemmerkmalen basierendes

Messverfahren entwickelt. Bei diesem Verfahren werden a-posteriori Wahrscheinlichkeiten

von Phonemmerkmalen zwischen dem Original und dem verzerrten Sprachsignal verglichen,
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Zusammenfassung

und die gemessenen Unterschiede als Schätzmass angewandt. Das entwickelte Verfahren wird

mit einer umfangreichen Datenbank an niedrig bitratigen Sprachsignalen aus Kommunikati-

onssystemen der öffentlichen Sicherheit evaluiert, und ferner auf die Verständlichkeitsschät-

zung künstlicher Sprache erweitert.

Die Wirksamkeit der entwickelten Ansätze wird mittels standardisierter Gütemasse überprüft,

unter Benutzung von Testdaten, welche nach empfohlenenMethoden gesammelt wurden.

Stichwörter: Sprachqualität, Sprachverständlichkeit, Lästigkeit von Hintergrundgeräuschen,

instrumentelle Sprachqualitätsschätzung, Sprachwahrnehmung, spärliche Signalkodierung,

Posterior-Merkmale
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1 Introduction

“Ladies and gentlemen, before this presentation begins, would you please silence your phones.”

According to the International Telecommunication Union (ITU), there were an estimated

seven billion mobile-cellular telephone subscriptions in the world in 2015 [ITU, 2016]. This is

in addition to the many other users of fixed-line and voice over IP (VoIP) telecommunication

services. The technologies that are used to process, encode and transmit speech in these

services have considerably evolved over the last decades, and continue to do so. When

developing or deploying new speech technologies, it is desirable to verify their impact on

the end-user quality of experience. This is of particular interest to the telecommunications

industry, which strives for high speech quality in order to reduce customer churn and promote

new services.

The most reliable way to assess perceived speech quality is to conduct a subjective listening

test with a representative panel of users. However, such tests are costly and time-consuming,

and quickly become prohibitive if they are to be performed repeatedly during the development

of a new speech technology. There is thus a strong motivation for automatic methods, called

objective measures, that can predict speech quality as it would be evaluated in a subjective test.

In addition to being a fast and inexpensive alternative to subjective testing, objectivemeasures

provide repeatable quality estimations, making them particularly useful for the development

andmonitoring of telecommunication systems.

This thesis focuses on signal-based objective measures, i.e., methods that are based on an

analysis of the speech signal as it would be presented to a user of the telecommunication

system under test. This approach has the advantage of being technology independent, and

considers all sources of impairments or distortions in a transmission chain. ITU’s telecommu-

nication standardization sector, called ITU-T, has standardized several signal-based speech

quality measures, e.g., ITU-T Recommendations P.862 [“PESQ”, Rix, Beerends, Hollier, et al.,

2001], P.563 [Malfait, Berger, and Kastner, 2006] and P.863 [“POLQA”, Beerends et al., 2013a; b].

These measures predict the overall listening quality of a speech signal as it would be rated by

an average listener.
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Chapter 1. Introduction

Recently however, there has been a growing interest in objective measures that predict specific

quality features, allowing for amore fine-grained assessment of speech quality. Quality features

provide useful information when the optimization of overall quality involves trade-offs, or for

processing steps that only affect certain parts of the signal. Specifically, we address two quality

features in this thesis:

• The perception of background noise in speech, and its assessment with the quality

feature background noise intrusiveness. This is motivated by the growing use of tele-

communication services in environments with uncontrolled noise levels, and by the

recent extension of the telephone band to so-called wideband or super-wideband audio

frequency ranges by mobile network operators. Both factors have increased the im-

portance of noise reduction processing in telecommunications, which can be assessed

with the subjective test method defined in [ITU-T Rec. P.835, 2003]. However, there is

currently no ITU standard for the objective assessment of noise reduction processing.

• The intelligibility of speech in high levels of background noise, and/or after processing

with very low bit-rate speech codecs. Speech intelligibility is of a particular interest in

mission-critical telecommunication systems, and for the development of recent speech

coding approaches based on speech synthesis.

The relevance of both topics is reflected by ongoing or recent work items at ITU-T on the

objective assessment of noise reduction processing [ITU-T Study Group 12, 2013] and on the

subjective assessment of speech intelligibility [ITU-T Rec. P.807, 2016], respectively.

1.1 Objectives

The main goal of this thesis is to propose new objective measures for the assessment of noise

intrusiveness and speech intelligibility, focusing on their application in speech telecommu-

nications. This involves finding signal representations that are suitable to predict human

perception and—if possible— avoid the use of subjectively scored training data, since such

data tends to be scarce.

As purely signal-based approaches, the proposed objective measures should be applicable

to a wide range of distortion types as found in current telecommunication systems. In par-

ticular, this includes recent very low bit-rate speech coding approaches that are based on

speech synthesis principles, and which may change both spectral and temporal properties

of transmitted speech signals. Our focus on telecommunications further involves the use of

evaluation data and metrics that follow recommended practices for subjective testing and

performance evaluation, respectively.
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1.2. Main contributions

1.2 Main contributions

The main contributions of this work are summarized below:

• Design and collection of a new dataset of noise-corrupted speech, with further distor-

tions as found in contemporary telecommunication systems, and corresponding sub-

jective scores. Speech signals and subjective scores are compliant with ITU-T Rec. P.835

[2003], which specifies the subjective test procedure for the evaluation of telecommuni-

cation systems that include noise reduction processing.

• Statistical analysis of the effect of signal bandwidth, presence of Lombard (i.e., effortful)

speech and presentation level on the subjective quality features speech distortion,

background noise intrusiveness, and overall quality [Ullmann, Bourlard, et al., 2013].

• Analysis of the interdependency of the three quality features, and of the possibility

of exploiting this dependency and an existing overall quality measure toward their

objective assessment [Ullmann, Berger, et al., 2013; Berger and Ullmann, 2013].

• Design of a novel objective measure of noise intrusiveness that is based on a sparse

representation of noise in an auditory-inspired basis, and avoids the use of training

data [Ullmann and Bourlard, 2016].

• Development of a new objective intelligibility measure that can be used to assess speech

signals that have undergone changes to both spectral and temporal structure, as may be

the case in low bit-rate telecommunication systems [Ullmann, Magimai.-Doss, et al.,

2015].

• Extension of the developed intelligibility measure to the objective assessment of clean

and noise-corrupted synthetic speech, and to automatic intelligibility assessment at the

word level [Ullmann, Rasipuram, et al., 2015].

As can be seen from the above list, most of these contributions have already been published.

The presentation in this thesis is more in-depth, and often includes results from additional ex-

periments. These differences to the initial publications are stated in the appropriate chapters.

1.3 Thesis structure

The next thesis chapters are organized as follows:

• Chapter 2, Background, defines some of the terminology used in this thesis and pro-

vides a general introduction to subjective and objective quality assessment in speech

telecommunications. The datasets that we use for our experiments are presented, and

the evaluationmetrics that are computed to determine the performance of proposed
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Chapter 1. Introduction

objective measures are explained. Finally, we introduce some of the signal modeling

techniques that are exploited in our proposed approaches.

• Chapter 3, Perception of background noise in speech telecommunications, presents our

first contribution, which are the datasets of subjectively evaluated, noise-corrupted

speech that we collected. The subjective scores are analyzed in detail and provide

insights on the perception of signal bandwidth, Lombard speech and presentation

level in terms of the three quality features speech distortion, noise intrusiveness and

overall quality. The results from our analyses highlight the importance of the exact task

that is given to listeners in a subjective test, and also show the interdependency of the

three quality features.

• Chapter 4,Objective assessment of background noise intrusiveness, is motivated by the

insights gained in the previous chapter, and investigates a novel, sparse representation

of noise in an auditory-inspired basis as an abstract model of auditory coding. The

number of kernels or atoms in this representation is shown to model several factors

in the perception of noise, and is used to derive a feature that highly correlates with

subjective noise intrusiveness scores, outperforming or comparing to a traditional

loudness-based feature.

• Chapter 5, Objective intelligibility assessment for speech telecommunications, deals with

the case where very high levels of background noise, or low bit-rate coding may degrade

speech to the point of compromising its intelligibility. We propose a novel objective

intelligibility measure that is based on a comparison of phoneme posterior probabilities

between original and degraded speech recordings. The proposed approach is evaluated

on speech recordings degraded by low bit-rate speech codecs, and on a large dataset of

noise-degraded speech from public safety communication systems.

• Chapter 6, Objective intelligibility assessment of synthetic speech, extends the work of

Chapter 5 to the assessment of signals generated with text-to-speech (TTS) systems.

These signals are used as examples of very strong changes in spectral and temporal

structure that very low bit-rate coding may produce, but where the resulting speech

signal may still be intelligible. The approach of Chapter 5 is evaluated on clean and

noise-corrupted synthetic speech, and extended to perform intelligibility assessment

with amodel of the expected phonetic content. The model is shown to provide a more

flexible reference for synthetic speech assessment, and allows to assess intelligibility at

the word level. Finally, the analyses in this chapter also reveal the limitations of standard

performance metrics.

• In Chapter 7, we review the key conclusions from our work, and indicate possible

avenues for future research.
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2 Background

In this chapter, we first define themathematical notation and specific terms used in this thesis.

We then provide some context on quality assessment approaches in telecommunications,

explain the performance metrics with which these approaches are evaluated, and present the

datasets used in our experiments. Finally, we introduce the different types of signal features,

as well as two particular machine learning methods—artificial neural networks (ANN) and

hiddenMarkov models (HMM)— that we will exploit in this work.

2.1 Notation and terminology

This thesis uses boldface symbols in lower- and uppercase to denote vectors and matrices,

respectively. Subscripts are used for vector or time indices, and superscripts for class indices.

Unless specified otherwise, vectors are assumed to be column vectors, i.e., x = [x1, . . . ,xN ]�,
with ( )� the transpose operator. Signal position indices are enclosed in parentheses for

the continuous-time case, and in square brackets for discrete time. Finally, P (·) denotes the
probability of a discrete random variable.

The terms introduced here are used throughout this thesis:

Phones describe the full set of speech sounds independently of the language. Phones are

indicated inside square brackets, usually using symbols from the International Phonetic

Alphabet (IPA).

Phonemes are the set of sounds that distinguish oneword from another in a language [Gold et

al., 2011, Chap. 23.2]. Depending on the language, some phones are therefore not used,

and one phoneme can cover multiple phones if they carry the samemeaning (so-called

allophones). By convention, phonemes are enclosed in slashes, e.g., /k/.

Speech intelligibility as defined in [Kollmeier et al., 2008, Chap. 4.2] is “the proportion of

speech items (e.g., syllables, words, or sentences) correctly repeated by (a) listener(s) for

a given speech intelligibility test.” In this thesis, we focus on word-level intelligibility.
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Chapter 2. Background

For the sake of disambiguation and brevity, we also define the following word meanings in the

context of speech telecommunications:

Reference and test speech are the input and output signals, respectively, of a telecommunica-

tion system. The signalsmay be inserted (fed) and captured (recorded) either electrically,

i.e., using a wired interface, or acoustically, i.e., at transducers of the system under test.

Channel refers to a transmission medium as used in telecommunications, typically a wired

or radio connection.

Condition is used to describe the technical circumstances affecting the transmission of a

speech signal, e.g., bandwidth limitation, addition of noise, speech coding and decoding,

or transmission over lossy channels.

Rating denotes a single, subjective evaluation of a test speech signal by an individual listener.

Score describes a numerical value that is indicative of the quality of a test speech signal, as

obtained by averaging ratings frommultiple listeners, or with an objective measure.

In this thesis, we evaluate the objective scores of proposed measures by comparing them to

ground truth subjective scores, after averaging both scores per condition (i.e., across speakers

or sentences). This is because in telecommunications, the interest generally lies in assessing

the impact of the system and its parameters on a representative sample of speech recordings,

avoiding variability due to a particular speaker or sentence [Rix, Beerends, Kim, et al., 2006,

Sec. II-D]. We introduce subjective and objective assessment approaches in the next section,

and performance metrics for the evaluation of objective measures in Section 2.3.

2.2 Quality assessment of speech signals in telecommunications

We now briefly review quality assessment approaches, focusing on signal-based methods.

This leaves out so-called parametric approaches, which seek to estimate speech quality from

the specifications of the telecommunication system [e.g., ITU-T Rec. G.107, 2015, known as

the “E-model”], or from auxiliary measurements such as the occurrence of channel losses [e.g.,

Raake, 2006]. Signal-based assessment has the advantage of being technology independent,

and allows to consider the entire transmission chain (so-called end-to-end assessment).

2.2.1 Quality features

Speech at the output of a telecommunication system affects the user experience in different

ways, e.g., with regard to voice transmission quality, conversation effectiveness and ease of

communication [Möller, 2000, Sec. 2.2]. In practice, user experience is assessed either through

listening-only tests, focusing on the perception of the transmitted voice, or in simulated

telephone conversations, allowing to also consider interaction factors like echoes or delays.
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The results of these tests are quantified in terms of so-called quality features such as overall

quality, listening effort, or speech intelligibility [ITU-T Rec. P.800, 1996; ANSI S3.2, 2009].1

Recently, new quality features have been defined for specific signal properties, with the goal

of assessing trade-offs in telecommunication system design, or components that only affect

certain parts of the signal. Examples are the quality features speech distortion and background

noise intrusiveness studied in this thesis, which were defined to assess the effect of noise

reduction processing [ITU-T Rec. P.835, 2003]. Further quality features are currently under

study at ITU-T, e.g., to determine perceptually orthogonal signal properties, or to help identify

technical issues with expert listeners [ITU-T Study Group 12, 2011a; b].

While intelligible speech remains the fundamental feature of a telecommunication system,

these other quality features become relevant once intelligibility is sufficient [Möller and

Heusdens, 2013, Sec. IV]. The interest in new quality features can thus be seen as a result of

the increased quality and complexity of telecommunication systems.

2.2.2 Subjective assessment approaches

Subjective quality assessment involves multiple listeners and generally takes place in a con-

trolled environment (i.e., with regard to ambient noise levels, playback equipment and absence

of distractions), although recently crowdsourcing approaches have also been investigated [e.g.,

Ribeiro et al., 2011]. Listeners are presented with test speech signals containing words or short

sentences, pronounced by different speakers and in a random order of presentation. The

task given to listeners depends on the quality features of interest, and can be categorized into

judgment and functional tests [Van Heuven and Van Bezooijen, 1995].

Judgment tests collect listeners’ opinion of a given quality feature, usually by means of an

ordinal rating scale (i.e., where scale items can be sorted from lowest to highest). Absolute

category rating (ACR) scales [e.g., ITU-T Rec. P.800, 1996, Annex B] are used most often, and

require subjects to select the scale item that best describes their opinion of a test speech

recording, given their expectations of speech telecommunications. A short training session

with a variety of quality levels is presented before the actual test to set expectations, and

to ensure that listeners use the entire scale range. Nevertheless, test results still depend on

personal experience and cultural factors, and will thus vary between listener panels [ITU-T

Rec. P.1401, 2012, Sec. 7.3].

By contrast, functional tests evaluate how well speech from the system under test fulfills

its communicative purpose [Van Heuven and Van Bezooijen, 1995]. Such tests are typically

used to assess intelligibility, and can follow a closed- or open-response format. The Diag-

nostic Rhyme Test (DRT) [Voiers, 1967] and the Modified Rhyme Test (MRT) [House et al.,

1965] are two popular closed-response intelligibility tests, and require listeners to recognize

one word per recording, given two or more possible responses that differ in one phoneme only.

1Note that we cited the most recent versions of ITU-T Rec. P.800 and ANSI S3.2 here. However, the original
versions of these standards date from 1976 and 1971, respectively.
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Telecommunication
system under test

+Reference speech
signal

Simulated
background noise

Test speech
signal

Subjective
quality score

Objective
measure

Objective (predicted)
quality score

Figure 2.1 – Signal flow in subjective and objective quality assessment as used in this thesis.
Listeners evaluate quality features of the system under test using the test speech signal alone.
A signal-based objective measure predicts the listener score from the same signal (no-reference
model), or by means of a comparison to the reference signal (full-reference model).

Conversely, open-response tests allow for unconstrained listener feedback and are typically

used with longer stimuli. An example is the SUS (semantically unpredictable sentences) test

[Benoît et al., 1996], where subjects transcribe entire sentences. Open-response tests can be

more difficult to conduct due to ambiguities in listener responses (e.g., spelling errors), but

are less prone to ceiling effects in high-intelligibility conditions, where closed-response tests

may offer insufficient differentiation [Schmidt-Nielsen, 1992].

The datasets used in this thesis include scores from both judgment and functional tests, and

are presented in Section 2.4. Specifically, we use the judgment test defined in ITU-T Rec. P.835

[2003] to assess the impact of background noise and noise reduction processing with the

quality features speech distortion, background noise intrusiveness and overall listening quality.

For speech intelligibility, we use publicly available datasets with MRT and SUS test results for

recordings from public safety communication systems and speech synthesizers, respectively.

2.2.3 Objective assessment approaches

The goal of an objective measure is to predict the outcome of a subjective test. Since these

outcomes generally consist of quality scores obtained by averaging listener ratings, an objective

measure can be thought of as a model of an average listener. Signal-based measures can

estimate a quality score from the same test speech signal that was presented in a subjective

test, or take the reference signal as additional input.
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These twomeasurement approaches are referred to as no-reference and full-reference assess-

ment, respectively, and are shown schematically in Figure 2.1. No-referencemeasures typically

use a model of speech production or look for specific degradations to estimate quality fea-

tures. Such models are also called non-intrusive, as they only require access to one end of the

transmission chain, making them interesting for monitoring deployed systems. Conversely,

full-reference measures require control of both ends when testing a transmission chain, and

are thus also known as intrusivemodels. Full-referencemeasures perform a comparison of the

reference and test signal, e.g., using a similarity metric, to derive a quality score. These scores

are typically more accurate than the ones obtained with no-reference approaches, since even

small degradations can be detected. For a recent overview of standardized objective measures,

the reader is referred to [Möller, Chan, et al., 2011].

The objective measures proposed in this thesis are all based on a full-reference approach,

and predict quality scores for background noise intrusiveness and speech intelligibility. State-

of-the-art measures for either quality feature are reviewed in the respective chapters, i.e.,

Chapter 4 for noise intrusiveness, and chapters 5 and 6 for intelligibility, respectively.

2.3 Performance metrics

In this section, we introduce the metrics that we will use to evaluate the prediction accuracy

of proposed objective measures. We use twometrics that compare objective predictions to

subjective ground truth scores: Pearson’s correlation coefficient, and a modifiedmeasure of

prediction error. Both metrics are specified in the ITU standard for the evaluation of quality

prediction models [ITU-T Rec. P.1401, 2012], and will be used in sections 3.6, 4.6, 5.5 and 6.5.

2.3.1 Correlation coefficient

Pearson’s correlation coefficient R is the most frequently used metric for objective measures.

The correlation between (objective) predictions o and (subjective) scores s is defined as

R(s,o)=
∑N

i (si − s̄) (oi − ō)√∑N
i (si − s̄)2

√∑N
i (oi − ō)2

. (2.1)

This metric measures the linear relationship between s and o, but has several drawbacks:

• As mentioned in Section 2.2.2, subjective scores can be biased due to cultural effects or

imbalanced test designs [ITU-T Rec. P.1401, 2012, Sec. 7.3]. Therefore, the relationship

between objective and subjective scores need not be linear, but onlymonotonic, i.e., the

objective score should predict the increase or decrease of perceived quality.

• The correlation coefficient does not consider inter-subject variability, i.e., the confidence

interval around each score si that results from averaging multiple listener ratings.
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Figure 2.2 – Example scatter plots with corresponding performance metrics |R| and rmse∗3rd.
Note the higher correlation coefficient |R| in the right-hand plot, despite the wider spread of
data points. The blue line shows the monotonic, third-order polynomial used to compute the
metric rmse∗3rd. Error bars indicate 95% confidence intervals of subjective scores.

• Data points at the scale ends have a stronger influence on correlation, making it easy to

increase the metric by including extreme conditions (e.g., heavily distorted speech).

2.3.2 Modified prediction error

A new performance metric,modified prediction error, was introduced in ITU-T Rec. P.1401

[2012] to address some of the issues of the correlation coefficient. The metric is similar to

the traditional root-mean-square error (rmse), but uses a monotonic, third-order polynomial

mapping to compensate non-linearities between s and o. Additionally, prediction errors

are reduced by the 95% confidence interval around each score si to consider inter-subject

variability. The resulting metric is denoted rmse∗3rd and defined as

rmse∗3rd =
√√√√ 1

N −4

N∑
i=1

max
(∣∣si −o′

i

∣∣−CI95i , 0
)2 (2.2)

with o′
i the objective score after polynomial mapping and CI95i the 95% confidence interval

of the i th subjective score si , respectively [ITU-T Rec. P.1401, 2012]. The polynomial that

minimizes (2.2) is computed separately for each dataset through constrained optimization.

As an illustrative example of both metrics, Figure 2.2 shows the results of an objective measure

for two datasets. The (absolute) correlation |R| is higher for the right-hand dataset because

most data points are located at the scale ends, even though intermediate scores are not well

predicted. By contrast, the prediction error rmse∗3rd reflects how data points are more tightly

distributed around the mapping function in the left-hand dataset.
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2.3. Performance metrics

Confidence interval estimation

When si describes a mean opinion score (MOS), such as perceived noise intrusiveness or

speech quality, it can be expected that listeners’ individual ratings are approximately normally

distributed around the mean. In this case, the corresponding confidence interval CI95i can be

calculated from the standard deviation σi of ratings r ,

CI95i = t (0.05,S)
σi�
S

(2.3)

σi =
√∑K

k=1
∑L

l=1
(
ri ,k,l − ri ,k

)2
S−1

(2.4)

with K the number of recordings for condition i , L the number of listeners, S the number of

ratings and t (0.05,S) the 5th percentile of the t distribution for S degrees of freedom [ITU-T

Rec. P.1401, 2012]. Note that S = L ·K if all listeners evaluate all recordings.

With intelligibility scores, the above approach is usually not applicable. This is because

individual intelligibility ratings are often not normally distributed, with a long one-sided tail

of listeners having high error rates. In this case, confidence intervals can be estimated through

the bootstrap [Efron and Tibshirani, 1986], a numerical method that consists in repeatedly

sampling the available data, at random and with replacement, to estimate a statistic. In this

thesis, we use the adjusted bootstrap percentile interval of means of resampled listener ratings,

with 10 000 resampling steps, to estimate confidence intervals of mean intelligibility scores.

2.3.3 Statistical significance tests

We use two tests to determine whether differences in subjective scores between conditions, as

well as in the prediction performance of objective measures are statistically significant.

Differences in subjective scores are evaluated with the Wilcoxon signed-rank test, a paired

difference test that determines whether differences in ratings from the same listeners follow a

distribution that is symmetric around zero. The test requires that listener ratings be measured

on an ordinal scale (i.e., where scale items can be sorted from lowest to highest), but does not

assume equal distance between scale items, nor a normal distribution of listener ratings. It is

therefore particularly appropriate for opinion ratings, where the perceptual distance between

adjacent scale items need not be constant (e.g., “excellent”–“good” vs. “good”–“fair”).2

We evaluate differences between objectivemeasureswith themodifiedprediction error rmse∗3rd
described in Section 2.3.2, using the F-test of equality of variances as specified in [ITU-T

Rec. P.1401, 2012, Sec. 7.7]. Significant differences between correlation coefficients are not

evaluated, due to the weaknesses of this performance metric as discussed above. In particular,

the modified prediction error, instead of the correlation coefficient, was also used to select the

2Studies on the perceptual distance of opinion scale items have produced inconsistent results, see, e.g.,
Karaiskos et al. [2008, Sec. 7] (equal distance) vs. Möller [2000, Chap. 8.2] (unequal distance).
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Chapter 2. Background

winning algorithms in the ITU-T P.OLQA competition [Rapporteur for Question 9/12, 2009].

Testing the same hypothesis in multiple comparisons leads to an increase in type I errors, i.e.,

the probability of finding a significant difference only by chance (false positive). A common

approach to this problem is to perform Bonferroni correction, which involves a division of the

significance level by the number of comparisons. We use the slightly less conservative Holm-

Bonferroni correction, a stepwise procedure that has higher statistical power than Bonferroni’s

method [Holm, 1979; Abdi, 2010].

2.4 Datasets

We now introduce the different speech datasets that are used in our experiments:

• The Perceptual Assessment of Noise DAtasets (“PANDA”) are a specific contribution of

this thesis and address the perception of noise-corrupted speech in terms of the quality

features speech distortion, noise intrusiveness, and overall quality. We will briefly

introduce them here, with a more in-depth presentation in Chapter 3, page 23. An

objective measure of background noise intrusiveness is presented in Chapter 4, page 41.

• The PSCR audio library deals with speech intelligibility in low bit-rate telecommuni-

cation systems under adverse acoustic conditions (i.e., high background noise levels

and/or distortions due to wearing a breathing mask). Recordings and corresponding

subjective scores in the datasets are based on the Modified Rhyme Test (MRT), and are

made available by the Public Safety Communications Research (PSCR) program.3 We

evaluate objective intelligibility scores for this dataset in Chapter 5, page 61.

• The Blizzard Challenge results datasets contain speech synthesized with different text-

to-speech (TTS) systems that were evaluated as part of the yearly Blizzard Challenge.4

Speech recordings of semantically unpredictable sentences (SUS) and accompanying

subjective intelligibility scores are publicly available for academic research. The objec-

tive assessment of synthetic speech intelligibility is addressed in Chapter 6, page 77.

2.4.1 Perceptual Assessment of Noise DAtasets (“PANDA”)

We collected the “PANDA” datasets to investigate the perception of speech degraded by back-

ground noise in current telecommunication systems as used by the general public (i.e., com-

mercial cellular and landline as well as Voice over IP systems). These systems generally provide

highly intelligible speech transmission, such that listeners’ attention turns to other quality

features like speech naturalness, continuity, and the presence of noise [Möller and Heusdens,

2013, Sec. IV].

3http://www.pscr.gov/
4http://www.cstr.ed.ac.uk/projects/blizzard/data.html

12



2.4. Datasets

We have focused on the quality features speech distortion, noise intrusiveness and overall

quality, which are relevant to the assessment of noisy speech processed with noise reduc-

tion (as commonly applied in these telecommunication systems). The three quality features

are defined in ITU-T Rec. P.835 [2003] and are designed to assess the trade-off between apply-

ing strong noise reduction (which may distort foreground speech) and keeping some residual

background noise (which listeners may perceive as intrusive).

The collected speech data consists of recordings of short sentences from four speakers, with

digitally added noise (ten noise types with SNRs between 3 and 40 dB) and further processing

with different noise reduction and speech codec implementations as found in contemporary

telecommunication systems. The total duration of test speech recordings is 97minutes. A com-

plete description of the speech material and collection of subjective scores, with subsequent

analysis and discussion, is given in Chapter 3, page 23.

2.4.2 Public Safety Communications Research (PSCR) audio library

The Public Safety Communications Research [PSCR, 2013] audio library is a publicly available

collection of speech recordings degraded by strong noises, acoustical impairments and differ-

ent speech coding schemes, with corresponding subjective intelligibility scores. The library

originated from an effort to select appropriate communication systems for U.S. fire agencies,

and is organized in three datasets collected in 2008, 2010 and 2012, respectively.

The recordings and subjective test design follow the Modified Rhyme Test (MRT) [House et al.,

1965; ANSI S3.2, 2009], where listeners are asked to recognize a word embedded in a carrier

phrase. Listeners select the heard word from a choice list of six words differing either in the

initial or final consonant. An example is the phrase “Please select the word sent.” with choice

listwent — sent — bent — dent — tent — rent. Intelligibility is computed as the percentage

of correctly selected words (after correcting for guessing) for a given condition. Each dataset

features 50 choice lists of 6 rhyme words pronounced by 4 speakers, totaling 6×50×4= 1200

reference recordings. The complete set of rhyme words is listed in Table A.5, page 108.

Conditions in the dataset focus on scenarios in tactical fire scene communications, including

strong background noises, acoustical distortions from a breathing mask, and low bit-rate cod-

ing schemes over clean and lossy channels. Due to the presence of very strong degradations,

conditions cover intelligibility values between 90% and 0% (after correcting for guessing). Note

that all recordings are limited to the narrow audio bandwidth (i.e., below 4000 Hz). Table 2.1

provides an overview of conditions in the three datasets.

Complete descriptions of dataset designs, conditions and subjective scoring are available

in [Atkinson et al., 2008; 20135; 2012]. The total size of the datasets is (24+54+30 conditions)

×1200 phrases= 129600 test speech recordings, corresponding to 65.1 hours (entire phrases)

or 17.3 hours (rhyme words only) of speech.

5The report for the 2010 test was published in 2013.
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Chapter 2. Background

Table 2.1 – Overview of conditions in the three PSCR datasets. See [Atkinson et al., 2008; 2013;
2012] for a complete description of conditions and processing steps.

Condition Included in dataset

2012 2010 2008

Background noises

Clean (no noise) • • •

Alarm 1 (−2 dB SNR) • • •

Alarm 2 (−2 dB SNR) •

Pump hum (4 dB SNR) •

Rotary saw cutting metal (4 dB SNR) •

Chainsaw cutting wood (5 dB SNR) • •

“Club” noise (music+speech; 5 dB SNR) • •

Water hose (9 dB SNR) •

Low air alarm inside mask (15 dB SNR) •

Acoustical impairments

Transparent (no mask) • • •

Breathing mask, speech through diaphragm • • •

Breathing mask, microphone inside mask • •

Speech coding schemes

AMR codec [3GPP TS 26.090], 12.2 kbps •

AMR codec [3GPP TS 26.090], 7.4 kbps •

P25 AMBE+2 codec [TIA-102.BABA], 4.4 kbps • • •

P25 AMBE+2 codec [TIA-102.BABA], 2.45 kbps •

P25 IMBE codec [TIA-102.BABA], 4.4 kbps •

25 kHz analog FM radio • • •

12.5 kHz analog FM radio • •

Simulated radio channels

Transparent (no loss) • • •

Simulated bit errors or analog FM noise •

Total number of conditions 24 54 30

Number of listeners 10 52 30
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2.4. Datasets

The PSCR audio library distribution includes individual intelligibility ratings from the number

of listeners listed at the bottom of Table 2.1. From these, we computed the average word

accuracy (WA) with 95% confidence intervals for each condition. Since the distribution of

individual intelligibility ratings tends to be non-normal, we have used a bootstrap procedure

as described in Section 2.3.2 to estimate confidence intervals.

2.4.3 Blizzard Challenge results

The Blizzard Challengewas devised by Black and Tokuda [2005] as a yearly evaluation of speech

synthesis approaches that are trained on common data. The evaluation consists in gathering

subjective scores for speech naturalness, similarity to a target speaker, and intelligibility.

Participation to the Challenge is open to researchers in both academia and industry, with the

results being published using anonymized identifiers to protect the reputation and commercial

interest of poorly ranked participants.

We use results from the 2010 and 2011 challenges [King and Karaiskos, 2010; 2011] to evalu-

ate the objective assessment of synthetic speech intelligibility in English. We selected these

two Challenge editions because they also include recordings from a professional voice tal-

ent (male and female speaker in 2010 and 2011, respectively) as a highly intelligible reference.

We use results for task “EH1” (clean synthetic speech) from both editions, as well as results for

the noisy speech subtask “ES2” in the 2010 Challenge, where participants were requested to

build a synthetic voice capable of maintaining intelligibility in high levels of speech-shaped

noise [Dreschler et al., 2001]. For both tasks, intelligibility is evaluated by means of semanti-

cally unpredictable sentences (SUS), which the organizers found to best differentiate between

the intelligibility of different voices [King and Karaiskos, 2011].

Table 2.2 gives an overview of the speech material and subjective scores in the three datasets.

Contrary to rhyme tests, intelligibility assessment with SUS requires that no listener hear the

same sentence twice to avoid training effects. The Challenge organizers thus used a so-called

“Latin square” design, where listeners are presented with different subsets of the data that

combine to a complete evaluation across listeners. Moreover, some listeners did not complete

the entire test, resulting in a total number of answers slightly below the number of possible

listener-stimulus combinations.

An example of a typical SUS is “The glass poured the date that cared.” [King and Karaiskos,

2010], with sentence lengths varying between six and eight words. During the test, listeners

are requested to type in the sentence as they have understood it from the given test speech

recording. The intelligibility of a recording of sentence k, produced by voice i , is determined

by the Word Error Rate (WER),

WERi ,k,l =
ws

i ,k,l +wi
i ,k,l +wd

i ,k,l

Mk
×100% , (2.5)
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Table 2.2 – Overview of speechmaterial and subjective scores for synthetic speech intelligibility
with semantically unpredictable sentences (SUS) in the three used Blizzard datasets. “2010c”
and “2010n” refer to clean and noisy speech data, respectively, in the 2010 Blizzard Challenge.
See [King and Karaiskos, 2010; 2011] for complete dataset descriptions.

Property Dataset

2011 2010c 2010n

Recordings

Task identifier in [King and Karaiskos, 2010; 2011] EH1 EH1 ES2

Added speech-shaped noise, in dB SNR (clean) (clean) 0, −5, −10
Number of voices (synthetic+natural) 12+1 17+1 12+1

Number of different SUS in the subjective test 26 18 39

Total duration of evaluated SUS recordings, in minutes 12.2 12.6 58.4

Subjective scores

Number of listeners 231 177 388

Number of SUS evaluated per voice, per listener 2 1 3

Total number of answers for SUS recordings 5706 2857 14 166

with ws
i ,k,l , w

i
i ,k,l and wd

i ,k,l the number of words substituted, inserted and deleted, respec-

tively, in the transcription by listener l , and Mk the ground truth number of words in sen-

tence k. The Challenge organizers took care of correcting spelling mistakes in the answers

of listeners before computing WERs. The intelligibility of each voice i is then given by the

average of WERs across sentences and listeners,

WERi =
∑L

l=1
∑K

k=1WERi ,k,l

L ·K , (2.6)

with L and K the number of listeners and sentences, respectively.

Note that there are two possible issues with the above calculation of intelligibility. First, the

averaging of per-sentence scores in (2.6) ignores the fact that sentences have different number

of words. However, an evaluation on WER scores for Mandarin in [Karaiskos et al., 2008]

showed the impact of these differences to be negligible. Second, the definition of per-sentence

WER in (2.5) means that WER values > 100% are possible if many incorrect words are entered,

which may occur if a listener attempts to “guess” words in a highly unintelligible recording.

In this case, theWER depends on listener behavior, since another listener in the same situation

may decide not to enter anywords, yielding aWER of 100% instead. While we did find evidence

of such discrepancies in the noisy speech data, recalculating the per-voiceWER after bounding

listener WERs to [0,100]% resulted in a maximum absolute difference of only 0.67%. We thus

decided to use the original data as provided by the Blizzard Challenge organizers.
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For the purpose of our experiments, we convert per-voiceWERs toWord Accuracy (WA) scores,

defined asWAi = 100%−WERi . As with the PSCR data, we determine 95% confidence intervals

of WA scores per voice using the bootstrap procedure described in Section 2.3.2.

2.5 Features

A speech recording carries information at different levels, e.g.,what was said, how, by whom

and in what environment. In order to make the signal more amenable to analysis at a par-

ticular level, it is usual to extract features that only retain the information of interest. The

features presented in this section, and the artificial neural networks and hiddenMarkov mod-

els introduced in Section 2.6 and 2.7, respectively, are standard tools in automatic speech

recognition (ASR). They are used in this thesis to analyze the phonetic content of speech, with

the goal of assessing its intelligibility, as described in Chapter 5 and 6, respectively.

2.5.1 Cepstral features

Cepstral features are obtained by taking the Fourier transform of the log-magnitude short-

time spectrum of a signal, and are often used as acoustic features from which the phonetic

content of speech is estimated in a later step. Two popular cepstral-based features in speech

processing are mel-frequency cepstral coefficients (MFCC) [Davis and Mermelstein, 1980]

and PLP (perceptual linear predictive) cepstral coefficients [Hermansky, 1990]. Both features

are based on a spectral analysis with non-linear frequency resolution modeled after human

hearing, and mainly differ in the applied amplitude compression and smoothing of the short-

time spectrum.

In this thesis, we use PLP cepstral coefficients, where the spectral analysis involves a frequency-

dependent weighting and cubic-root compression of short-time spectral power that approxi-

mate the frequency-dependent sensitivity and loudness perception, respectively, of human

hearing. This auditory-like short-time spectrum is then smoothed through approximation

with an all-pole model in order to preserve the overall spectrum shape, but remove fine struc-

ture that is thought to be speaker dependent [Hermansky, 1990]. This operation has been

shown to yield greater noise robustness and speaker independence than smoothing through

cepstral truncation of MFCCs [Gold et al., 2011, Chap. 22.2].

We use cepstral coefficients (including the zeroth coefficient, i.e., energy) of the short-time PLP

spectrum with model order 12. The coefficients are computed with the HTK software [Young

et al., 2006], which uses a mel filterbank for PLP analysis instead of the Bark frequency scale

originally proposed by Hermansky [1990]. As is commonly done, we normalize the extracted

cepstral coefficients by subtracting their means across the length of the analyzed signal, which

compensates possible convolutional distortions from the telecommunication channel.
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2.5.2 Modulation-based features

Cepstral features of mel-cepstral or PLP short-time analyses are often combined with their

derivatives over adjacent frames to include information about the temporal dynamics of

the speech signal. These so-called delta and acceleration coefficients represent the first and

second temporal derivatives of cepstral coefficients, respectively, and have been shown to

improve the performance of speaker-independent speech recognition [Furui, 1986].

Extending on this concept, further methods have been proposed that compute cepstral fea-

tures from a subset of the temporal modulations contained in speech [Hermansky et al., 1991],

or directly use temporal modulations as features themselves [Hermansky and Fousek, 2005].

As a second type of acoustic feature besides PLP, we evaluate the latter method, i.e., so-called

MRASTA (Multi-resolution RelAtive SpecTrAl) filters, which capture the temporal trajectories

of band energies [Hermansky and Fousek, 2005]. Specifically, the features are obtained by

filtering band envelopes with first and second derivatives of Gaussian windows with six dif-

ferent widths between σ= 8 and 60 ms. Since these filters have zero mean, the features are

inherently insensitive to convolutional channel distortions.

A perceptual motivation for MRASTA features is the importance of temporal modulations

in speech for intelligibility [Drullman et al., 1994; Greenberg et al., 1998]. We evaluate both

PLP-cepstral andMRASTA features for posterior feature estimation in Section 5.5.3, page 73.

2.5.3 Posterior features

The posterior probability P (E |O) describes the probability of an unobserved or latent event E

given an observationO. In speech processing, we use the term “posterior feature” or posterior

to refer to the discrete probability vector z = [
P
(
c1 | b

)
, . . . ,P

(
ck | b

)
, . . . ,P

(
cK | b

)]�
of a set of

latent symbols c1, . . . ,ck , . . . ,cK , given an observed feature vector b. Posteriors are probability

distributions, thus we have
∑

k P
(
ck | b

)= 1.

The type of posterior features used in this thesis are phoneme posteriors, i.e., the probability

of K phoneme classes c1, . . . ,ck , . . . ,cK , given an acoustic feature vector b (e.g., PLP-cepstral

or MRASTA features) that is extracted from the speech signal. We use artificial neural net-

works (ANN), introduced in the next section, to estimate these probability distributions.

2.6 Artificial neural networks (ANN)

An artificial neural network (ANN) is an adaptive model that can be trained to learn a specific

mapping from input to output. Themapping is performed bymeans of inter-connected nodes

organized in layers. An ANN comprises an input and output layer, and possibly one or more

intermediate layer(s) called hidden layer(s). In a feed-forward ANN, the value of each node is
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a transformed, linear combination of the values of the nodes in the preceding layer,

xk
( j ) =wk

0( j )+
I∑

i=1
wk

i ( j ) · yi
( j−1) (2.7)

yk
( j ) = f

(
xk
( j )

)
(2.8)

with yk
( j ) the value of node k in layer ( j ), wi and w0 the weights and bias for the node values

y1, . . . , yi , . . . , y I in the preceding layer ( j − 1), respectively, and f (·) a so-called activation

function [Bishop, 2006, Chap. 5.1]. Note the change of node index from i to k between layers

in (2.7), reflecting the fact that layers need not have the same number of nodes.

A feed-forward ANNwith at least one hidden layer that uses a differentiable, nonlinear acti-

vation function f (·) is known as multilayer perceptron (MLP). MLPs can be trained to learn

any nonlinear input-output mapping, if the number of nodes in the hidden layer is large

enough [Bourlard andMorgan, 1994, Chap. 4]. The activation function in the hidden layer(s)

is usually a sigmoid that maps values to the range (0,1),

fh
(
xk

)
= 1

1+exp
(−xk

) . (2.9)

For MLPs that are trained to perform classification, as used in this thesis, the activation

function in the output layer is typically the softmax

fo
(
xk

)
= exp

(
xk

)
∑K

l=1 exp
(
xl

) , (2.10)

ensuring that all K values of the output layer sum to one. It can be shown that the outputs

of an MLP are estimates of posterior probabilities, conditioned on the values of the input

layer [Richard and Lippmann, 1991; Bourlard andMorgan, 1994, Chap. 6].

To train anMLP, successive input vectors are presented, and a cost function is evaluated based

on the resulting output values. Theweight and bias termsw of the network are then adjusted to

minimize the cost, using the error backpropagation algorithm [Rumelhart et al., 1986; Bishop,

2006, Chap. 5.3]. In this thesis, we use MLPs to estimate phoneme posterior probabilities z,

given an acoustic feature vector b at the input. We use the QuickNet toolkit [Johnson and

contributors, 2011] for MLP training, with utterance-level feature normalization at the input,

and the frame-level cross-entropy between MLP outputs and target phoneme labels as the

cost function. An early stopping criterion with a cross-validation dataset is used to avoid

over-fitting the network on the training data [Morgan and Bourlard, 1989].

2.7 Hidden Markov models (HMMs) and KL-based HMMs

Hidden Markov models (HMMs) are statistical generative models that are used in speech

recognition and other fields to find the succession of events or states that best explains an
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qStart q1 q2 q3 qEnd

y1 =

⎡
⎢⎣
P
(
c1 | q1

)
...

P
(
cK | q1

)
⎤
⎥⎦

y2 y3

/k/ /æ/ /t/

r11 = 0.5 r22 = 0.5 r33 = 0.5

r01 = 1 r12 = 0.5 r23 = 0.5 r3E = 0.5

Figure 2.3 – Example of a KL-HMMwith three states for the phonemes /k/, /æ/ and /t/. Each
state qi is parameterized by a posterior probability distribution yi .

observation sequence [see, e.g., Rabiner, 1989]. The model consists of a system that is in

one of I possible states Q = {
q1, . . . ,qi , . . . ,qI

}
, and produces an observation according to

a (known) stochastic process associated with the state. At each time step, the system may

either stay in the same state, or transit to a different state. The succession of states is not directly

observed (hence the name “hidden”), but assumed to be governed by a second stochastic

process, where the probability of transiting to a new state q j at time t +1 only depends on the

current state (known asMarkov assumption),

ri j = P
(
qt+1 = q j | qt = qi ,qt−1 = qk , . . .

)
= P

(
qt+1 = q j | qt = qi

)
, (2.11)

with qt the state at time t , ri j the transition probability from state qi to q j , and i , j ,k ∈ {1, . . . , I }.

Given the specifications for a HMM and a sequence of observed output values, the most

probable sequence of states that explains the observations can be determined with the Viterbi

algorithm [Viterbi, 1967; Rabiner, 1989].

In this thesis, we use HMMs as acoustic model, i.e., to find the sequence of subword units (e.g.,

phonemes or phones) that best explains a sequence of observed phoneme posterior prob-

ability distributions. The HMM state sequence thus provides a segmentation or labeling

of frame-level posteriors. Specifically, we use a type of HMM known as Kullback-Leibler

divergence-based HMM or KL-HMM [Aradilla et al., 2007], where each state qi is parame-

terized by a posterior probability distribution yi =
[
P
(
c1 | qi

)
, . . . ,P

(
ck | qi

)
, . . . ,P

(
cK | qi

)]�
.

Note that the KL-HMM states can represent different subword units (e.g., phones, or context-

dependent phonemes) than the ones in the associated distributions yi .

Figure 2.3 shows an example KL-HMMwith three states for the phonemes /k/, /æ/ and /t/,

respectively, arranged in a left-to-right topology as usual in speech processing. Given an

observation posterior sequence Z = {
z1, . . . ,z j , . . . ,zJ

}
, the local score for each HMM state is
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computed with the reverse KL divergence,

RKL(yi ,z j )=
K∑

k=1
zkj log

(
zkj

yk
i

)
(2.12)

as a measure of distance between probability distributions [Cover and Thomas, 1991; Rasipu-

ram, 2014, Chap. 4]. The HMM state sequence q1, . . . ,qj , . . . ,qJ that minimizes the global

score

min
Q(u)

(
J∑

j=1
RKL(yqj ,z j )− log

(
rqj−1qj

))
, (2.13)

where Q(u) denotes the set of all possible state sequences of length J for the utterance u

modeled with the KL-HMM, can then be computed with the Viterbi algorithm.

As shown in Figure 2.3, the state transition probabilities r can be set to a constant value,

thus KL-HMM training only involves learning the distributions Y = {
y1, . . . ,yi , . . . ,yI

}
asso-

ciated with the set of statesQ = {
q1, . . . ,qi , . . . ,qI

}
. Training is performed through a Viterbi-

EM (expectation maximization) approach, using speech data, phonetic transcriptions from a

pronunciation dictionary, and posterior probabilities z j estimated with anMLP. Specifically,

the E-step consists in segmenting the data with the KL-HMM using the Viterbi algorithm,

with a uniform segmentation derived from the phonetic transcription in the initial iteration.

During the M-step, the state distributions yi for each subword unit i are updated from the

posteriors z j assigned to the subword. When using RKL
(
yi ,z j

)
as the local score, the optimal

update is given by the arithmetic mean of the N posteriors assigned to the subword,

yk
i = 1

N

∑
j∈N

zkj ∀ k ∈ {1, . . . ,K } , (2.14)

with the proof in [Aradilla et al., 2007].

KL-HMMs have been shown to be powerful acoustic models that can be trained on very small

amounts (e.g., five minutes) of speech data [Imseng, 2013, Chap. 4; Rasipuram, 2014, Chap. 6].

A state tying approach is used to share data between states for subword units that appear

infrequently or not at all in the training data [Imseng, 2013, Chap. 4.6].

2.8 Summary

This chapter laid the background for our contributions in the remainder of this thesis. We have

given a short introduction to speech quality assessment, explained statistical evaluation

methods, and described the datasets used for our experiments. We then presented some

state-of-the-art feature extraction and machine learning methods that are exploited in our

proposed approaches. The next chapter presents our first contribution, where we investigate

the perception of background noise in speech telecommunications.
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3 Perception of background noise in
speech telecommunications

Recently, mobile telephony services have undergone a transition to newer codecs that transmit

sound in larger, so-calledwideband (WB, 50–7000Hz), or super-wideband (SWB, 50–14 000Hz)

frequency ranges. The extended bandwidth is claimed to deliver clearer sounding andmore

life-like speech to end users, dubbed “HD voice” by network operators [Deutsche Telekom,

2011; Swisscom, 2012; Orange, 2013]. Since capturing wideband audio may also include more

background noises from the caller’s environment, the industry has put a particular emphasis

on noise reduction processing in “HD voice” compatible devices [GSM Association, 2013].

Noise reduction (NR) aims to attenuate background noise without distorting foreground

speech, but such perfect separation is hard to achieve. In order to evaluate the effect of NR

on perceived quality, the standard subjective test method [ITU-T Rec. P.835, 2003] consists

in asking listeners to rate the foreground speech distortion, background noise intrusiveness,

and overall listening quality of processed speech recordings. To investigate how noisy speech

affects these quality features in wideband telecommunication systems, and with the goal

of developing a measure for their objective assessment, we have collected three datasets of

speech recordings. A particular focus was put on the following research questions:

1. How do signal bandwidth and bandwidth context (i.e., awareness of band limitations in

a subjective test) affect listeners’ quality ratings?

2. Does perceived noise intrusiveness change in the presence of Lombard (i.e., effortful)

speech, since it represents a more realistic example of speech in noise?

3. How does presentation level affect the three quality features?

To the best of our knowledge, these questions have not been addressed in previous exper-

iments. In the remainder of this chapter, we first review known effects of noisy speech on

quality features in Section 3.1. The collection of test speech recordings and subjective scores

for our datasets are described in Section 3.2 and 3.3, respectively. We analyze how different

factors affect quality features in Section 3.4, and their mutual dependency in Section 3.5.
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Finally, we evaluate in Section 3.6 whether overall quality scores can be predicted with an

existing objective measure, and discuss our main findings in Section 3.7.

3.1 Related work and contributions

The perceptual impact of noise on speech can be expressed in terms of the P.835 quality

features mentioned above, as well as in terms of intelligibility. Each of these quality features

depends on properties of the input signal and on further processing that a telecommunication

systemmay apply to it. However, the improvement of one quality feature does not necessarily

go hand in hand with the improvement of others. In the following, we briefly review some

relevant factors that influence the perception of these quality features.

Signal bandwidth and bandwidth context —The wider signal bandwidth afforded by recent

telecommunication systems has been shown to increase the perceived absolute quality of

clean speech [Wältermann et al., 2010]. However, the wider bandwidth also defines a new

context that causes listeners to adjust their expectations. As a result, a call that is reverted to

the narrow band after starting in a wideband context will be perceived as degraded by listeners,

since they have been made aware of the band limitation [Lewcio andMöller, 2014].

Whereas the long-term average spectrum of speech remains quite similar between speak-

ers [Byrne et al., 1994], noises can strongly differ in spectral distribution, so their impact on

wideband signal capture can be highly variable. Generally, the roughly 1/ f power distribution

of environmental noises [De Coensel et al., 2003] means that the additional noise power tends

to be greater in the expanded low- than in the high-frequency range.

Despite its higher quality, wideband speech provides little benefit for intelligibility [Fernández

Gallardo andMöller, 2015], since the traditional telephone band already covers most of the fre-

quencies needed for intelligible speech [Allen, 2005, Chap. 4]. However, additional cues at high

frequenciesmay help listeners compensate for speech losses in lower bands [Lippmann, 1996].

Lombard speech—The Lombard effect is an adaptation that speakers perform in the presence

of noise. It is characterized by an increase in speech level and fundamental frequency, flatter

spectral tilt and increased vowel duration [Junqua, 1996]. Several studies have shown that in

the presence of noise and at equal SNR, Lombard speech is generally more intelligible than

regular (conversational) speech [Van Summers et al., 1988; Junqua, 1993; Lu and Cooke, 2008],

although very high vocal effort (i.e., shouted speech) reduces intelligibility [Pickett, 1956].

The impact of these speech adaptations on perceived speech quality and noise intrusiveness

has been less considered so far, with noisy conditions in subjective tests consisting of regular

speech with digitally added noise instead. This is presumably due to the overhead associated

with collecting clean Lombard speech, and the difficulty in controlling the SNR in combined

Lombard speech + noise conditions.
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Presentation level—The relation between presentation level and speech quality was evaluated

during the collection of training data for the ITU-T P.OLQAmeasure. For clean speech, it was

found that deviations from the standard average level of 79 dB SPL by −10 and −20 dB result

in a reduction of about 1 and 2 MOS, respectively, on an overall quality scale [Malfait, Berger,

and Ullmann, 2009].

For noise-corrupted speech, it is known that at equal SNR, intelligibility decreases at high

presentation levels [Pollack and Pickett, 1958]. At least part of this effect seems to be due to the

wider spread of masking as sound levels increase [Fastl and Zwicker, 2007, Chap. 4.1], resulting

in a reduced effective signal-to-noise ratio [Dubno et al., 2005].

Noise reduction — A key challenge in noise reduction (NR) is to estimate the respective

contributions of speech and noise in the input signal. When accurate (i.e., oracle) estimates are

available, it is possible to improve the intelligibility of speech by attenuating time-frequency

regions of the signal that are dominated by noise [Brungart et al., 2006]. Such improvements

are not observed in real-life scenarios with single-track (i.e., mono) speech + noise mixtures,

due to under- or over-estimations of noise with state-of-the-art NR algorithms [Hu and Loizou,

2007a; Brons et al., 2012].

Depending on the type of estimation errors, NR processing results in different trade-offs

between speech distortion and noise intrusiveness [Brons et al., 2012]. Furthermore, NR algo-

rithms that are most beneficial to overall speech quality are not the same as those that are best

for speech intelligibility [Hu and Loizou, 2007a], highlighting again the differences between

quality features.

In summary, these studies show that a single quality feature is not sufficient to evaluate

and optimize the performance of telecommunication systems for noisy speech. We now

present the design, subjective rating and analysis of our datasets, referred to in this thesis as

“PANDA” (Perceptual Assessment of Noise DAtasets). These datasets focus on the three quality

features defined in ITU-T Rec. P.835 (speech distortion, noise intrusiveness, and overall quality),

with conditions from a variety of telecommunication systems. The collected data and insights

from its evaluation are the basis for developing an objective measure of background noise

intrusiveness in Chapter 4, page 41.

Contributions

• R. Ullmann, H. Bourlard, J. Berger, and A. Llagostera Casanovas [2013]. “Noise

Intrusiveness Factors in Speech Telecommunications”. In: AIA-DAGA Jt. Conf. Acoust.

Merano, Italy, pp. 436–439.

URL: http://publications.idiap.ch/index.php/publications/show/2619
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• R. Ullmann, J. Berger, and A. Llagostera Casanovas [2013]. Contribution 81—Deriva-

tion of speech degradation scores (S-MOS) from subjective noise intrusiveness and

overall quality scores (N- and G-MOS). Study Group 12, International Telecommuni-

cation Union, Geneva, Switzerland.

URL: http://idiap.ch/~rullmann/ITU-T_SG12_Q9_Contribution81.pdf

• J. Berger and R. Ullmann [2013]. Contribution 24 — ITU-T Rec. P.863 as Predictor

for P.835 G-MOS in Super-Wideband and Narrowband Experiments. Study Group 12,

International Telecommunication Union, Geneva, Switzerland.

URL: http://idiap.ch/~rullmann/ITU-T_SG12_Q9_Contribution24.pdf

The latter two documents are ITU-T contributions: they are submitted as input to

discussions at Study Groupmeetings, but are not subject to prior peer review.

3.2 Dataset design

3.2.1 Reference speech recordings

We recorded 30 short (1.6–2.9 s) sentences in French from eight native speakers (four male).

The sentences reflect everyday content as in a phone call, and are organized in groups of three

consecutive sentences that are loosely related to the background noises used in the datasets.

Recordings were carried out in two sessions, both of which took place in the psychoacoustic

chamber of the Laboratory of Electromagnetics and Acoustics (LEMA) at EPFL.

In the first session, speakers pronounced all sentences in a quiet environment and at a normal

speech level. In the second session, speakers wore a pair of closed headphones playing

background noises at different levels in order to trigger the Lombard effect. The use of closed

headphones allows to record clean Lombard speech, but also prevents speakers from hearing

their own voice. Therefore, the microphone signal was fed back to the headphones, with

speakers adjusting the level beforehand such that it felt equivalent to not wearing headphones.

This recording setup is shown schematically in Figure 3.1.

The Lombard effect results in several speech modifications (as discussed in Section 3.1) that

also depend on the noise type [Junqua, 1996]. Therefore, we kept the same correspondence

of Lombard speech recordings and background noises in the subsequent generation of test

speech signals.1 The list of sentences and matching noise types is given in Section A.1.1 of the

appendix, with further technical details on the recording setup in Section A.1.2, page 100.

1Of course, the Lombard effect also depends on the noise level. However, noise levels in test speech recordings
will inevitably differ, due to conditions with noise reduction and other speech activity-dependent processing.
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3.2. Dataset design

Figure 3.1 – Recording setup for the collection of Lombard speech.

Background noise

Speech sentence

6 s

Figure 3.2 – Temporal structure of test speech recordings in the “PANDA” datasets.

3.2.2 Generation of test speech recordings

We selected recordings from four speakers (two male) for inclusion in the subjective tests.

These recordings were overlaid with six seconds of additive background noise from a collection

used for evaluating telecommunication systems [ETSI EG 202 396-1, 2011], resulting in the

temporal structure leading noise — speech+noise — trailing noise, as shown in Figure 3.2.

Consistent with the focus of this thesis, recordings were further processed with speech codecs,

noise reduction, and other components as found in telecommunication systems at the time of

dataset creation (2012–13). Two types of processing were used:

• Simulated conditions, where recordings are processed with software implementations

of noise reduction algorithms and/or speech codecs, and

• Live conditions, where recordings are transmitted with telephone handsets over live

networks and recorded at the receiving handset.2 Live conditions represent the complete

signal processing chain, including distortions from the network.

2Live conditions were processed by the industrial partner SwissQual AG, a Rohde & Schwarz company.
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The proportion of simulated and live conditions is about 60% and 40%, respectively. In both

cases, we processed looped versions of input signals to ensure that any adaptive processing in

our conditions (e.g., noise estimation in NR processing) could converge to a stable point. The

resulting recordings were partitioned into three sets, named Set 1–3, that could be scored in

about 75 minutes each.

Table 3.1 provides an overview of noises and processing conditions in each set. It can be

seen that Sets 1 and 2 cover conditions with bandwidths up to SWB, while Set 3 features

NB signals only, allowing to compare different bandwidth contexts between subjective tests.

Each condition consists of 3 sentences×4 speakers, i.e., 12 recordings. Some conditions are

shared across sets for the purpose of later comparisons, resulting in a total of 81 unique

conditions, or 972 test speech recordings (97 minutes).

Moreover, care was taken to ensure balanced test designs by spanning the full quality range

of both speech distortion and noise intrusiveness. For this reason, about 30% of conditions

in each set are noise free; these recordings contain regular speech. The remaining ∼ 70% of

conditions are noisy and contain Lombard speech, with the exception of Set 1, where most

conditions appear in pairs (once with regular and once with Lombard speech) to study the

effect of speech type on subjective scores.

Further details on the processing steps for each condition are given in the test plans listed in

the appendix in Section A.1.3, page 101.

3.3 Collection of subjective scores

We conducted a subjective test for each set, following the guidelines in ITU-T Rec. P.835 [2003],

where listeners provide ratings for foreground speech degradation, background noise intru-

siveness and overall quality. These ratings are collected by presenting a triplet of recordings

with different sentences, but identical speaker and condition. Listeners rate a different quality

feature for each recording in the triplet, as shown in Figure 3.3. Before each recording, listeners

are instructed to focus only on the speech, only on the noise, or on both signal components (for

overall quality), respectively.

We invited 90 listeners to participate in the tests (30 per set), which took place —once more—

in the psychoacoustic chamber of LEMA. Listeners were native speakers of French, passed

a short hearing test and were paid for their participation. Recordings were presented dioti-

cally (same signal on both ears) over Grado SR 60 headphones in a random order of speaker

and condition, using a software tool from the industrial partner. Screenshots of the rating

interface with instructions in French are shown in the appendix in Figure A.1, page 110. After

a short training session to familiarize themselves with their task, listeners provided ratings

using the scales shown in Table 3.2. The duration of each subjective test was about 75 min.

Results from nine listeners who failed to complete the task or to pass the hearing test were

removed, leaving ratings from 26, 28 and 27 subjects for the three sets, respectively.
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Table 3.1 – Overview of conditions in the “PANDA” datasets.

Speech processing Included in

Set 1 Set 2 Set 3

Input filter (for all conditions)

195–3700 Hz (narrowband) • • •

50–7000 Hz (wideband) • •

50–14 000 Hz (super-wideband) • •

Background noises [ETSI EG 202 396-1]

Jackhammer (distant; 3 dB SNR) • • •

Pub (unintelligible babble; 4 dB SNR) • • •

Road (nearby traffic; 5 dB SNR) • •

Car (inside, cruising at 80 km/h; 8 dB SNR) • •

Train station (engine, announcement; 8 dB SNR) • •

Train (inside; 12 dB SNR) • • •

Office (keyboards, speech fragments; 15 dB SNR) • • •

Schoolyard (children cheering; 16 dB SNR) •

Cafeteria (cutlery sounds, laughter; 17 dB SNR) • • •

Crossroad (distant traffic; 10, 20, 30, 40 dB SNR) • • •

Simulated conditions

No further processing (anchor conditions) • • •

NR [Adami et al., 2002], spectral subtractive • • •

NR [Adami et al., 2002], Wiener filter • • •

GSM half-rate codec [ETSI EN 300 969] • •

AMR narrowband codec [3GPP TS 26.090] • •

AMR wideband codec [ITU-T Rec. G.722.2] • •

EVRC wideband codec [3GPP2 C.S0014-E] •

Live conditions

AMR narrowband codec + in-handset NR • • •

AMR narrowband codec, in-handset NR disabled • • •

EVRC narrowband codec + in-handset NR • •

AMR wideband codec + in-handset NR •

Total number of conditions 33 32 32

Number of listeners 26 28 27
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Time

Speech distortion /
noise intrusiveness

Noise intrusiveness /
speech distortion Overall quality

Figure 3.3 – Rating order of quality features in P.835 subjective tests. The rating order for speech
distortion and noise intrusiveness is inverted for 50% of listeners. Each recording consists of a
single sentence embedded in background noise.

Table 3.2 – Subjective rating scales for the quality features defined in [ITU-T Rec. P.835, 2003].
Higher ratings stand for higher quality (i.e., lower speech distortion or noise intrusiveness).

Rating Speech distortion Noise intrusiveness Overall quality

5 Not distorted Not noticeable Excellent

4 Slightly distorted Slightly noticeable Good

3 Somewhat distorted Noticeable but not intrusive Fair

2 Fairly distorted Somewhat intrusive Poor

1 Very distorted Very intrusive Bad

The average rating across listeners for a given recording or condition is called Mean Opin-

ion Score (MOS). In the following, we use the abbreviations S-MOS, N-MOS and G-MOS to

designate the speech distortion, noise intrusiveness and overall (global) MOS, respectively.

3.4 Evaluation of subjective scores

Through a similar design in the proportions and types of conditions, we aimed to obtain

comparable listener scores between the three sets. As shown in the top section of Table 3.3,

the average MOS across all conditions is very similar for each quality feature. The average

G-MOS (overall quality) lies almost exactly in the center of the five-point scale (1.0 to 5.0).

We can also observe that the maximum N-MOS is 5.0 in all sets (corresponding to clean

conditions), whereas that value is never reached with the two other quality features. This is

typical for absolute category rating (ACR) tests, where subjects have no reference signals for

comparison, and thus remain unsure about the complete absence of speech distortions.

The bottom section of Table 3.3 gives an overview of per-condition 95% confidence intervals.

Our subjects appearedmore consistent or confident in scoring noise intrusiveness than speech

distortion. This can be explained by the fact that noise is easily assessed during speech pauses,

while speech distortions may be hard to perceive in the presence of noise.
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Table 3.3 – Overview of subjective scores in the three “PANDA” datasets.

Dataset Minimum – Average – Maximum

S-MOS N-MOS G-MOS

MOS per condition

Set 1 (SWB) 1.5 – 3.4 – 4.9 1.2 – 3.3 – 5.0 1.3 – 3.0 – 4.9

Set 2 (SWB) 1.3 – 3.4 – 4.9 1.1 – 3.3 – 5.0 1.4 – 2.9 – 4.9

Set 3 (NB) 1.1 – 3.4 – 4.6 1.3 – 3.1 – 5.0 1.0 – 3.0 – 4.6

CI95 per condition

Set 1 (SWB) 0.05 – 0.14 – 0.21 0.03 – 0.10 – 0.15 0.05 – 0.12 – 0.17

Set 2 (SWB) 0.06 – 0.14 – 0.21 0.03 – 0.10 – 0.16 0.06 – 0.12 – 0.20

Set 3 (NB) 0.05 – 0.16 – 0.21 0.02 – 0.11 – 0.15 0.02 – 0.12 – 0.19

3.4.1 Effect of signal bandwidth and bandwidth context

The MOSmaxima in Table 3.3 already hinted at a possible difference in scores for different

signal bandwidths. In the top section of Figure 3.4, we compare the effect of signal bandwidth

for conditions with various levels of “crossroad” noise. These conditions were included in

each set to compare the distribution of N-MOS values between sets (so-called anchors).

Since there are no distortions other than noise, the S-MOS remains almost constant, but with

higher scores for the SWB signals of Sets 1 and 2. Higher absolute quality scores for SWB signals

are known from another test method [ITU-T Rec. P.800, 1996] that only focuses on overall

quality. The same effect appears here, except for theN-MOS, which is almost identical between

sets. The similarity of N-MOS values also indicates that different degrees of intrusiveness are

represented similarly within each set, despite having been scored by different listener panels.

Conversely, the conditions in the bottom section of Figure 3.4 were processed with a NB codec,

but presented in tests where other conditions had larger bandwidths (SWB context, Set 2) or

the same bandwidth (Set 3). The awareness of band limitations in the SWB context results in

a compression of S- and G-MOS to lower scores. This is not the case for noise intrusiveness,

where scores remain nearly the same and with identical rank order.

Despite the limited number of comparisons that can be drawn here, it appears that listeners

rate band limitations in speech and noise differently. Band-limited speech occupies a smaller

part of the S- and G-MOS scales. In contrast, listeners do not seem to have any expectations

with regard to noise, and use the entire N-MOS scale irrespective of its bandwidth. Finally, in

Figure 3.4 the G-MOS reflects the trend of both speech distortion and noise intrusiveness. We

will further study the relation between quality features in Section 3.5.
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Set 1 (SWB) Set 2 (SWB) Set 3 (NB)

Increasing noise level, SWB (50–14 000 Hz) vs. NB (195–3700 Hz) bandwidths

1 2 3 4 5

S-MOS

Crossroad (10 dB SNR)

Crossroad (20 dB SNR)

Crossroad (30 dB SNR)

Crossroad (40 dB SNR)

Transparent

1 2 3 4 5

N-MOS

1 2 3 4 5

G-MOS

AMR-NB conditions, SWB context (Set 2) vs. NB context (Set 3)

1 2 3 4 5

S-MOS

Codec only, offline, 3×
Codec only

Train (19 dB SNR)

Road (11 dB SNR)

Jackhammer (9 dB SNR)

Pub (5 dB SNR)

1 2 3 4 5

N-MOS

1 2 3 4 5

G-MOS

Figure 3.4 – Comparison of subjective scores for different signal bandwidths (top section) and
listening test contexts (bottom section).
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3.4.2 Effect of Lombard speech and presentation level

In designing our tests, we hypothesized that noise-corrupted speech in telecommunications

sounds more realistic with the Lombard effect, and may therefore yield lower noise intru-

siveness scores. To study this effect, we designed one of the sets (Set 1) to include pairs of

conditions differing only in the use of Lombard vs. regular speech, but with the same presen-

tation level and SNR. Additionally, we included conditions with both Lombard speech and

higher presentation level, but still with the same SNR.

Since these conditions were all presented to the same listener panel, we can evaluate their

effect by means of a paired Wilcoxon signed-rank test on listener ratings. In the following sub-

sections, the terms “significant” (denoted ∗ in figures) and “highly significant” (denoted ∗∗)
refer to differences at the levels p < 0.05 and p < 0.01, respectively. The increased proba-

bility of Type I errors (false positives) with multiple comparisons is compensated through

Holm-Bonferroni correction, as discussed in Section 2.3.3 of the Background chapter.

The top section of Figure 3.5 compares subjective scores for both speech types. Noise intru-

siveness remains essentially the same for most conditions, but there is a highly significant

difference for a condition with strong noise reduction, which only left some noise during

speech activity portions. Similarly, speech distortion scores only differ highly significantly for

two conditions, both of which are low-SNR conditions with “pub” (babble) noise. These in-

creases in S- andN-MOS remain significant after correcting formultiple comparisons (p < 0.01

and p < 0.05, respectively), but differences in overall quality are no longer significant.

We speculate that the observed effects are due to the flatter signal envelope of Lombard

speech. Specifically, the sustained speech level throughout the sentence length may have

better masked the residual noise in the “car” noise condition than regular speech, and helped

listeners distinguish between background babble and foreground speech distortions in the

“pub” noise conditions. In other words, the few observed quality gains seem to bemore related

to the signal acoustics than to a better acceptance of noise with Lombard speech.

The effect of presentation level (79 vs. 87 dB SPL) is shown in the bottom section of Figure 3.5.

Highly significant differences in N-MOS appear for all background noise conditions, with

higher noise levels consistently being rated as more intrusive, despite unchanged SNRs. The

comparison in the last row (Lombard speech at standard vs. increased level) supports that the

difference is indeed due to presentation level. After correcting for multiple comparisons, all N-

and G-MOS differences remain significant (p < 0.01 and p < 0.05, respectively).

The observed effect of presentation level implies that to some extent, listeners rate noise

independently of speech. We will exploit this result for our objective measure presented in

Chapter 4, page 41.
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Regular speech Lombard speech Lombard speech, +8 dB

Regular vs. Lombard speech conditions, same presentation level

1 2 3 4 5

S-MOS

Train station (15 dB SNR),
NB codec

Office (16 dB SNR),
NB codec

Car + strong NR,
NB codec

Pub, amplitude clipping,
WB codec

Pub (4 dB SNR),
WB codec

Clean,
offline WB codec, 2×

Crossroad (20 dB SNR),
SWB

∗∗

∗∗

1 2 3 4 5

N-MOS

∗∗

1 2 3 4 5

G-MOS

∗

∗

Regular vs. Lombard speech conditions, +8 dB presentation level for Lombard speech conditions

1 2 3 4 5

S-MOS

Crossroad (20 dB SNR),
SWB

Cafeteria (17 dB SNR),
WB codec

Crossroad (20 dB SNR),
SWB

Crossroad (30 dB SNR),
SWB

Transparent SWB

∗
1 2 3 4 5

N-MOS

∗∗

∗∗

∗∗

∗∗
1 2 3 4 5

G-MOS

∗∗

∗∗

∗∗

∗

Figure 3.5 – Comparison of subjective scores as a function of speech type (regular vs. Lombard
speech, top section) and presentation level (bottom section). Error bars show 95% confidence
intervals. Asterisks (∗ / ∗∗) indicate significant differences (p < 0.05 / p < 0.01) between
scores. Overall, Lombard speech has little impact on quality scores (top section), whereas
presentation level significantly affects perceived noise intrusiveness (bottom section).
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NR off NR on

Background noise conditions with and without noise reduction (NR) processing

1 2 3 4 5

S-MOS

Pub (5 dB SNR),
live NR and NB codec

Jackhammer (9 dB SNR),
live NR and NB codec

Road (11 dB SNR),
live NR and NB codec

Train (19 dB SNR),
live NR and NB codec

Cafeteria (19 dB SNR),
NB codec, offline NR

Cafeteria (17 dB SNR),
WB codec, offline NR
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1 2 3 4 5

N-MOS

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗
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G-MOS

∗∗
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Figure 3.6 – Comparison of subjective scores with and without noise reduction (NR) pro-
cessing. Error bars show 95% confidence intervals. Asterisks (∗ / ∗∗) indicate significant
differences (p < 0.05 / p < 0.01) between scores. NR always reduces noise intrusiveness, but
overall quality only improves significantly for low-SNR conditions.

3.4.3 Impact of noise reduction processing

The P.835 test method was designed to assess the trade-off between noise intrusiveness and

speech distortion that arises with noise reduction (NR). Our datasets include six pairs of

conditions with identical noises and processing steps except for the use of NR. Figure 3.6

compares two conditions processed with a commercial NR solution, as well as four conditions

from amobile handset in which NR can be switched on or off.

Unsurprisingly, NR processing always results in a highly significant improvement in terms of

noise intrusiveness. However, this improvement is offset by increased speech degradation,

which limits the benefit of NR in terms of overall quality to conditions with low SNRs. All

differences reported in Figure 3.6 remain significant after correcting for multiple compar-

isons (p < 0.01 for N-MOS, and p < 0.05 for S- and G-MOS).

It should be noted that the improvement of overall quality is not the only purpose of NR;

removing noise can also help improve the performance of codecs based on a speech produc-

tionmodel [e.g., the “EVRC” codec, 3GPP2 C.S0014-E, 2011]. Moreover, cultural preference

may change the relative importance of speech distortion and noise intrusiveness in listeners’

overall quality perception. We now analyze this relation between quality features.
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Figure 3.7 – Linear regression of per-condition G-MOS from S- and N-MOS. Values of ŝGi
outside the range [1, 5] are clipped to the nearest value on theMOS scale (1 condition in Set 3).

Table 3.4 – Comparison of coefficients across datasets for the linear regression in (3.1).

Dataset a b c

Set 1 (SWB) 0.696 0.402 −0.697
Set 2 (SWB) 0.742 0.434 −0.994
Set 3 (NB) 0.711 0.464 −0.946

3.5 Relation between the three quality features

Due to the rating order in P.835 tests, where listeners always rate overall quality last, it can be

expected that the overall quality rating combines listeners’ opinion of speech distortion and

noise intrusiveness. In order to analyze this relation in our subjective scores, we have assumed

a simple linear relation of the form

sGi ≈ a · sSi +b · sNi +c = ŝGi , (3.1)

with sG/S/N
i the G-, S- or N-MOS for the i th condition, respectively, and c a constant bias term.

Figure 3.7 shows the result of performing a least squares regression for (3.1) in each dataset.

There is indeed a very strong linear relation between the G-MOS and the combined S- and

N-MOS, as measured by the Pearson correlation coefficient R . The respective contributions a

and b of speech distortion and noise intrusiveness in the regression are shown in Table 3.4.

Speech distortion appears to have exerted a stronger influence on listeners’ perception of

overall quality. Moreover, the coefficients a and b are very similar across datasets, with the

largest difference being the overall bias term c.

The observed relation is directly relevant to the design of objective measures for P.835 scores.

Instead of designing three separate measures, it may be possible to focus only on the quality
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Figure 3.8 – Predictions of the P.835 G-MOS (overall quality) with ITU-T Rec. P.863 “POLQA”.
Error bars indicate 95% confidence intervals of subjective scores. Blue lines show themapping
functions used to determine the prediction error rmse∗3rd. One mis-predicted condition with
strong delay jitter (green diamond) was excluded from the evaluation in Sets 2 and 3.

features that are specific to the P.835 test method. In particular, ITU standards for objectively

assessing overall quality already exist [ITU-T Recs. P.862 “PESQ”, 2001, and P.863 “POLQA”,

2011], albeit for a different test method [ITU-T Rec. P.800, 1996], which does not first draw

listeners’ attention to the trade-offs between speech distortion and noise intrusiveness. We

evaluate in the next section how well the P.835 G-MOS can be predicted with P.863 “POLQA”.

Given objective scores for overall quality and for another quality feature, an estimate of the

third feature score may be derived by exploiting their interdependency. We provide details of

such a derivation in Appendix B, page 111, where we assume the availability of G- and N-MOS

to derive the speech distortion MOS (S-MOS).

3.6 Prediction of overall quality scores

As seen in the previous sections, the P.835 overall quality score reflects the impact of additive

background noise, as well as distortions to the speech component in the signal. Both types

of signal degradations were included in the training of the most recent ITU standard for the

objective assessment of overall quality, ITU-T Rec. P.863 “POLQA” [2011].3 This measure

was designed to predict subjective scores from a different test method [ITU-T Rec. P.800,

1996], where listeners only provide overall quality ratings. This means that listeners were not

necessarily attentive to the trade-off between speech distortion and noise intrusiveness as in a

P.835 test, and may thus have scored noisy conditions differently.

3In the interest of full disclosure, the author of this thesis is a co-author of the original POLQA algorithm
[Beerends et al., 2013a; b]; however, the author has not been affiliated with the POLQA coalition since March 2012.
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Chapter 3. Perception of background noise in speech telecommunications

The POLQA algorithm computes quality predictions through a full-reference approach, i.e.,

by comparing each test signal to its corresponding reference signal. Figure 3.8 compares the

G-MOS of our datasets to POLQA scores, averaged per condition.4 The algorithm failed to

align a Skype condition with strong delay jitter to its reference signals (green diamond in Sets 2

and 3), therefore we exclude this condition from further evaluation.

The overall quality of remaining conditions is rather well predicted, as measured by the two

performance metrics introduced in Section 2.3. The prediction error rmse∗3rd lies below the

worst case of 0.28 MOS indicated in the POLQA standard [ITU-T Rec. P.863, 2011, App. I.3],

with the exception of Set 2. Closer analysis reveals an offset for conditions that are mainly

degraded by background noise (yellow circles in Figure 3.8); this degradation is judged too

severely by POLQA. Due to the large number of background noise conditions in P.835 tests, it is

probable that listeners becomemore accustomed to noise than in general-purpose P.800 tests.

The prediction of P.835 G-MOS with POLQA could thus likely be improved by re-training the

measure with data that includes a higher proportion of background noise conditions.

3.7 Discussion and conclusion

In this chapter, we have presented the design and analysis of our P.835 datasets. The “PANDA”

or Perceptual Assessment of Noise DAtasets serve the dual purpose of investigating how back-

ground noise is perceived in telecommunications, and providing development data for a new

objective measure. Our investigation focused on several factors in noisy telephone speech,

which we further discuss here:

Bandwidth of the signal and bandwidth context —Our analysis in Section 3.4.1 showed an

offset in the maximum scores for speech distortion and overall quality between narrowband

and super-wideband tests. Such offsets are well known from other test methods, as discussed

in Section 3.1, and can be attributed to used the absolute category rating (ACR) scales, which

listeners interpret based on their quality expectations [Möller, 2000, Chap. 6]. In other words,

there is always a certain proportion of listeners for whom high-quality speech does not match

their expectation of “undistorted” or “excellent” quality, but that proportion becomes smaller

with super-wideband signals.

Noise intrusiveness on the other hand did not show such an offset, with average listener scores

spanning the full N-MOS scale irrespective of noise bandwidth or bandwidth context.

Lombard effect and presentation level —We have used speech recordings with the Lombard

effect for noisy conditions, as examples of speech from a caller located in a noisy environment.

We hypothesized that suchmore realistic stimuli would result in a better acceptance of noise by

listeners, as measured by the noise intrusiveness rating. However, our analysis in Section 3.4.2

4POLQA scores were computed by the industrial partner, since source code for POLQA is not publicly available.
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did not reveal a notable difference. The levels of Lombard and regular speech were equalized

in our comparison in order to have the same signal-to-noise ratio, leaving only differences in

spectral and temporal speech structure.

It is possible that our setup for recording Lombard speech (speakers hearing noise over closed

headphones, with microphone feedback) did not realistically simulate communication in a

noisy environment. In particular, noise presented over headphones has been found to elicit

stronger speech modifications than presentation over loudspeakers [Garnier et al., 2010]. On

the other hand, the missing impact on noise intrusiveness may simply be due to the P.835 test

method, where listeners are directed to focus on the noise exclusively, without considering the

speech component.

This latter notion is supported by the second tested factor of presentation level, where higher

noise levels were rated as being more intrusive, despite unchanged SNRs. Higher presentation

levels also negatively affect intelligibility, as referred to in Section 3.1. However, the lack of an

improvement of noise intrusiveness scores with Lombard speech, which has generally higher

intelligibility (see Section 3.1), indicates that listeners rate noise intrusiveness independently

of speech. Combined with our observations on bandwidth and bandwidth context, these

results imply that listeners rate noise without a particular expectation, neither with regard to

the noise itself, nor to its relation to the speech signal. We will exploit this finding in the next

chapter to objectively assess noise intrusiveness by analyzing the properties of noise only.

Relation between the three P.835 quality features—As verified in Section 3.5, listeners combine

their opinion of speech distortion and noise intrusiveness in the overall quality rating. This

result is consistent with the analysis of Hu and Loizou [2007b, Sec. 5.4], who also found a

stronger influence of speech degradation on overall quality scores. We have further evaluated

the prediction of overall quality scores with P.863 “POLQA” in Section 3.6, and observed good

prediction performance for most conditions.

In conclusion, these results set noise intrusiveness apart as a quality feature that listeners

perceive differently. Building on this, we will focus on its objective assessment in Chapter 4.
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4 Objective assessment of background
noise intrusiveness

In Chapter 3, we investigated how listeners rate noise-corrupted speech with respect to the

three quality features defined in ITU-T Rec. P.835, i.e., speech distortion, noise intrusiveness and

overall quality. Our experiments showed that overall quality scores could be predicted ade-

quately with an existing objective measure (ITU-T Rec. P.863 [2011]), and that the three quality

features are interdependent, meaning that they could be predicted with just two objective

measures. Moreover, the results showed an important difference between noise intrusiveness

and the two other quality features, in that the perception of noise did not seem to be guided

by listeners’ expectations, nor by its relation to foreground speech.

This latter property is relevant to the design of objective measures, which are often based

on a comparison of the test signal to an undistorted reference, an approach known as full-

reference assessment (see Section 2.2.3, page 8). Given that subjective noise intrusiveness

scores only reflect the presence of noise itself, and that the reference signal is noise-free, such

a comparative approach is of limited use here. Instead, existing approaches analyze the test

signal (e.g., during speech pauses) and extract multiple noise features in time and frequency.

These features are then combined to a predicted noise intrusiveness score, using a regression

learned from training data. A challenge is thus to use only few, highly predictive features, since

training data with subjective scores is expensive to collect.

In this chapter, we propose a novel, single feature to predict perceived noise intrusiveness.

Our approach is based on a sparse noise representation as a model of high-level sensory

coding, described in Section 4.2. Our hypothesis is that such a noise representation in an

auditory-inspired basis is indicative of its perceived intrusiveness. To validate this hypothesis,

we present a study in Section 4.3 with simple noise types, and show that the number of atoms

in the representation models several factors in the perception of noise. In Section 4.4, we

then propose a method for predicting the intrusiveness of noise in speech recordings and

describe the experimental setup for its evaluation in Section 4.5, using the PANDA datasets

introduced in Chapter 3. The results in Section 4.6 show a high correlation (|R| > 0.95) between

subjective intrusiveness scores and the proposed feature, and that it outperforms or compares

to a traditional loudness-based feature. We conclude with further remarks in Section 4.7.
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Chapter 4. Objective assessment of background noise intrusiveness

4.1 Related work and contributions

The perception of noise has been extensively studied in the context of environmental noise

annoyance. Of the relevant acoustic factors,1 the perceived intensity of noise emerged as

the dominant aspect, with spectral composition and temporal variability as additional fac-

tors [Marquis-Favre et al., 2005; Alayrac et al., 2010; Fastl and Zwicker, 2007, Chap. 16.1]. A

rough calculation of perceived intensity is the log noise energy in decibels (dB), although better

approximations also consider the frequency-dependent sensitivity of human hearing. This

can be done by assigning specific weights to the energies within different frequency bands, as

given for example in the “A” weighting curve [IEC 61672-1, 2013] and denoted “dB(A)”.

More advanced estimations of intensity apply detailed models of the processing at the outer,

middle and inner ear to derive an estimate called loudness [see e.g., Fastl and Zwicker, 2007,

Chap. 8]. Loudness takes the spectral composition of sound into account to estimate how

the relative signal power across frequency bands combines to an overall perceived intensity.

These and other features can be calculated either for the long-term average noise spectrum or

over short-time intervals.

Calculation over short-time intervals is relevant to the assessment of non-stationary noise.

In particular, it is well known that subjective judgments are disproportionately influenced by

peak events [Fredrickson and Kahneman, 1993]. Applied to noise perception, this means that

simple averaging of short-time features tends to under-estimate the effect of more intrusive

segments [Fastl and Zwicker, 2007, Chap. 16.1]. Therefore, the aggregation of short-time

features to a predicted score may assign higher weights to some segments, or otherwise

consider the variance of feature values over time.

Existing objective measures of noise intrusiveness for telecommunications follow these princi-

ples, and analyze multiple features of noise [Gautier-Turbin and Le Faucheur, 2005; Reimes

et al., 2011; Narwaria et al., 2012].2 Main features in these measures model perceived intensity

using the short-time noise loudness, log energy or filterbank energies, respectively. Secondary

noise features include spectral peakiness, emphasis on time-variant noise structures, or energy

variance to account for higher intrusiveness in tonal or non-stationary noises. In each case, a

regression is used to combine multiple features to a predicted intrusiveness score.

A disadvantage of these approaches is that the regression parameters to combine different fea-

turesmust be determined either with expert knowledge or using training data, i.e., subjectively

scored data that is expensive and scarce. Moreover, the computation of some individual fea-

tures involves further internal parameters. Examples are the parameters of loudness models

that were derived from subjective experiments, or the use of perceptually motivated prepro-

1There are also important non-acoustic factors in the perception of noise, e.g., listeners’ belief that noise could
be avoided [Marquis-Favre et al., 2005]. These factors cannot be assessed through in-laboratory listening tests and
are beyond the scope of this thesis.

2A modified version of the measure of Reimes et al. [2011] was also adopted in a European standard [ETSI TS
103 106, 2014].
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4.2. Sparse signal representation

cessing tunedwith expert knowledge [Reimes et al., 2011]. The feature proposed in this chapter

seeks to assess perceived noise intrusiveness while avoiding these drawbacks. Specifically, the

proposed feature directly achieves high correlation with subjective scores, allowing to avoid

combination with secondary features. It also makes very few assumptions of the parameters

with which intrusiveness is predicted, thus avoiding the need for training data.

Our approach is based on the sparse coding theory, which postulates that sensory systems

have evolved to encode stimuli efficiently by using only a small subset of a large population

of neurons at a time [Barlow, 1972]. A possible mathematical abstraction of sparse coding is

the sparse representation of a signal in an overcomplete basis [Olshausen and Field, 1997].

This signal model was substantiated for sound by the work of Smith and Lewicki [2006], who

showed that a sparse coding model could predict cochlear filter shapes as the most efficient

basis set for a wide range of sound classes. The present work takes this approach further and

applies it to the prediction of noise perception.

Contribution

R. Ullmann and H. Bourlard [2016]. “Predicting the intrusiveness of noise through

sparse coding with auditory kernels”. In: Speech Commun. 76, pp. 186–200.

URL: http://dx.doi.org/10.1016/j.specom.2015.07.005

The present chapter is a slightly revised version of the above paper.

4.2 Sparse signal representation

We now provide the background on the sparse codingmodel on which our proposed approach

is based. Sparse coding follows the idea that sensory systems have adapted to encode stimuli

in a way that maximizes the amount of information carried to the brain, but minimizes the

number of neuronal impulses [Barlow, 1972; see also Laughlin and Sejnowski, 2003, “Saving

on Traffic”]. A further motivation for a sparse representation of incoming stimuli is to present

information succinctly to later processing stages [Olshausen and Field, 1997].

Sparse coding is thus a more abstract, high-level approach to auditory modeling, compared to

the features presented in the previous section that modeled acoustical properties in hearing.

Although the approach was originally developed as a computational model of sensory coding,

our notion is that it may be possible to derive a perceptually meaningful measure of noise

from the sparse coding representation.

4.2.1 Signal model

We use the signal model proposed by Lewicki and Sejnowski [1999], which defines an approxi-

mation x̂(t ) of the waveform x(t ) through a linear combination of shiftable kernel functions
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Chapter 4. Objective assessment of background noise intrusiveness

from a set of M kernels φ1(t ), . . . ,φm(t ), . . . ,φM (t ),

x̂(t )=
M∑

m=1

Im∑
i=1

αm
i φm (

t −τmi
)

(4.1)

whereαm
i and τmi denote the gain and time shift of the i th occurrence of kernel functionφm(t ),

respectively. The temporally localized occurrences of kernels φ in the approximation yield

a spike-like, shift-invariant representation of the signal x(t). This is in contrast to frame-

based approaches like the short-time Fourier transform (STFT), where delaying the signal

can move signal components between analysis frames and change the estimated spectral

magnitude [Lewicki and Sejnowski, 1999]. It also retains the precise temporal location of

signal components, which can be a desirable property for essential auditory tasks like sound

source localization.

The error of the approximation is e(t )= x(t )− x̂(t ) and is called the residual signal. The ability

to place kernels from the set φ1(t ), . . . ,φM (t ) at arbitrary temporal locations τmeans that the

basis set is highly overcomplete. Therefore, for a given target residual signal energy ‖e‖2, there
exist an infinite number of solutions to (4.1). Sparse solutions are characterized by a low total

number of kernel occurrences
∑

m Im .

This signal model was used successfully in [Smith and Lewicki, 2005; 2006] to investigate

what type of kernel functions φ allow for sparse representations of natural sounds.3 The key

result from these studies is that the optimal kernels strongly resemble cochlear filter shapes,

as obtained frommeasurements at the auditory nerve. For our objective measure, we follow

a reverse approach: starting with a set of auditory kernel functions, we compute a sparse

representation of a noise signal x(t ) to predict its perception.

4.2.2 Choice of kernel functions

Auditory kernels are attuned to different frequencies over the audible frequency range. We

use analytical approximations, where kernels are formulated as gamma-modulated sinusoids

known as gammatones, defined as

φm(t )= (t )n−1 exp
(−2πbmt

)
cos

(
2π f mt +ϕ

)
, t ≥ 0 (4.2)

with bm a bandwidth parameter and f m the center frequency. Gammatones have been used

to characterize the impulse response of cochlear nerve fibers in cats; specifically, the output

of a gammatone filter was shown to be a good predictor of the corresponding fiber’s firing

probability [De Boer and De Jongh, 1978]. Therefore, each occurrence of auditory kernels φm

in (4.1) may be interpreted as a population of auditory nerve spikes, with average firing rate

encoded by the kernel gain α [Lewicki, 2002].

3Recordings of 5–40 seconds, featuring natural ambient noises, transients and mammalian vocalizations.
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4.2. Sparse signal representation

We use the parameters n = 4 and bm = 1.019 ERB( f m) at which gammatones provide a good

fit to human psychoacoustic data [Patterson et al., 1992]. ERB( f m) denotes the auditory

Equivalent Rectangular Bandwidth scale [Glasberg andMoore, 1990] and is given by

ERB( f m)= 0.108 f m +24.7 [Hz] . (4.3)

Since a goal of our approach is to reduce the use of parameters obtained through subjec-

tive experiments, we also evaluate more analytical gammatone parameters in Section 4.6.2,

page 56.

4.2.3 Computing a sparse solution

Several methods can be used to sparsely approximate a discrete noise signal x[n] with a linear

combination of gammatones φm[n]. Here we use a modified version of Matching Pursuit (MP)

[Mallat and Zhang, 1993], an iterative method that does not necessarily yield the sparsest

possible approximation, but is conceptually simple and computationally tractable.

Briefly, MP projects the input signal x[n] onto the set of unit-normed kernels
{
φm

}
, shifted at

all possible time offsets within the length of x[n]. The kernel that has the highest correlation

with the input signal is added to the initial approximation x̂[n](1), producing the residual

signal e[n](1) = x[n]− x̂[n](1). At the following iterations k ≥ 2, the method uses the previous

residual e[n](k−1) as input signal, and again selects the most correlated kernel to produce an

updated approximation x̂[n](k) and residual e[n](k). These iterations continue until a given

stopping criterion, discussed below, is met.

Selecting the most correlated kernel in each iteration amounts to maximizing the objective

function
∥∥e[n](k−1)∥∥2−∥∥e[n](k)∥∥2, i.e., the decrease of residual energy [Goodwin and Vetterli,

1999]. Moreover, the time offset of the most correlated kernel can be determined through

convolution, so it is not necessary to actually store time-shifted copies of the set of kernels.

The used modification of MP [Gribonval, 1999] consists in projecting onto analytic kernels

φm
a =φm + i ·H (

φm)
, (4.4)

allowing to also adjust the phaseϕ in (4.2) of each gammatone, withH (·) theHilbert transform

operator. The complete MP calculation steps are formally presented in Appendix C, page 115.

Each MP iteration adds a kernel occurrence with a specific gain, temporal offset, center

frequency and phase to the approximation. We perform iterations until the energy ‖α‖2 of
newly added kernels falls below a set threshold. This stopping criterion can be thought of a

lower limit on the firing rate of auditory nerves in the model. We adopt the terminology of

earlier work in [Smith and Lewicki, 2005; 2006] and refer to each kernel occurrence in the

approximation simply as a spike. Given a noise waveform with sound pressure in Pa, it follows

that the “spike” energy threshold ‖αmin‖2 has units Pa2.
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Figure 4.1 – Frequency responses of gammatone dictionary kernels. The waveform for the
highlighted (thick) frequency response is shown in the inset. Peak magnitudes differ because
kernel waveforms are normalized to unit norm.

4.3 Properties of the sparse representation

We perform a series of experiments to study how the sparse coding representation of noise

relates to its perception. The following experiments use a set of kernels or dictionary ofM = 32

gammatones generated with the parameters of Section 4.2.2 and shown in Figure 4.1. The

gammatones are sampled at 16 kHz and have center frequencies f m between 50 and 7150 Hz,

distributed evenly on the ERB scale. The support of kernels (measured as the length over

which amplitudes are ≥ 5 ·10−5 the gammatone peak) ranges from ∼4 to 128 ms. Dictionaries

of other sizes and with other kernel types will also be compared in Section 4.6.2, page 56.

4.3.1 Sparse representation and effect of signal level

We first study the placement of kernel occurrences (“spikes”) over time in the representation,

as well as its dependency on signal level as one key factor in the perception of noise. Figure 4.2

visualizes the sparse approximation of a speech signal (we use speech instead of noise in

this example because it nicely combines different signal structures). The waveform of the

word “punch” is sparsely approximated using MP until the energy of new spikes falls below

0.01 Pa2. The resulting ∼500 spikes are shown in a so-called spikegram as dots of different

sizes, proportional to the log energy of the spike. Each spike is plotted at the Hilbert envelope

peak position and center frequency, respectively, of the corresponding kernel.

The obtained representation exhibits a high degree of localization in both time and frequency,

showing the succession of harmonic, transient and unvoiced structure in the signal. The

number of spikes (i.e., the sparsity of the obtained representation) depends on how many

gammatone kernels with energy above the threshold are extracted from the signal. This

number scales logarithmically with the average signal energy, due to the exponential decay of

successive spike energies [Mallat and Zhang, 1993], as shown by the solid line in the bottom
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Figure 4.2 – Spikegramof theword “punch”. Dots in themiddle panel represent spikes obtained
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Figure 4.3 – Decay of spike energies for different signal types. We compare three signals with
the same duration and average sound level (i.e., the same initial residual error energy ‖e‖2,
gray lines). A thick tickmark indicates themaximum spike energy ‖α j (1)‖2 = ‖e(0)‖2−‖e(1)‖2 in
each panel. The values and decay rate of spike energies (black lines) depend on how succinctly
the dictionary kernels encode structures in the different signals.

panel of Figure 4.2. A 10 dB increase in signal level results in an upward shift of this line

(dashed line), and thus in a linear increase in the number of MP iterations until the same

threshold is reached. A feature based on the number of spikes therefore inherently accounts

for the roughly logarithmic human perception of sound intensity.

4.3.2 Effect of signal type

In order for the sparse coding representation to be indicative of noise perception, we expect

it to differ for different types of noise signals. We study this property with three signal types:

speech, a sinusoidal tone at 2 kHz and white Gaussian noise. The signals have the same

duration and average level to allow better comparison. Figure 4.3 shows the decay of both

spike energies and residual signal energy, which are linked through the relationship ‖α j (k)‖2 =
‖e(k−1)‖2 −‖e(k)‖2, with j (k) the kernel selected at the kth MP iteration (see Appendix C,

page 115).

Speech and the sinusoidal tone can both be efficiently approximated with gammatones, so

the residual error (gray line) decreases quickly. The decrease is steepest at initial iterations,

where high-energy spikes are used to approximate harmonic structure in the speech signal,

after which the remaining structure is decomposed into many lower-energy gammatones.

Similarly, the pure tone shows a steep initial step-like pattern of spike energies (black line),

corresponding to the approximation of repeated tonal structure across the length of the signal.

As more andmore gammatones are subtracted, the residual signal becomes less tonal, and

the decay rate levels off. White noise finally is not well approximated with any gammatone in

the dictionary and shows a slow, near-constant decay rate.
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Figure 4.4 – Effect of noise center frequency (CF) and noise bandwidth (BW). A narrowband
noise signal is kept at a constant level, but shifted across frequency (left panel) or increased in
bandwidth (right panel). In the resulting sparse representation, the number of spikes follows
the trend of traditional frequency weighting curves (left panel), and also models the perceived
increase in intensity when the bandwidth grows beyond 1 ERB (right panel).

The number of spikes with energies above a fixed threshold thus depends on the type of

signal. Depending on the threshold value ‖αmin‖2 that is used as stopping criterion, the

representation will capture only the higher-energy (i.e., dominant) and tonal structures in the

signal, or also include softer andmore noise-like structures with lower spike energies. This

behavior is consistent with the higher intrusiveness of tonal noises [Marquis-Favre et al., 2005].

Moreover, the dominance of higher-energy structure in complex signals bears a resemblance

to themasking effect that some objective measures estimate through loudness models.

4.3.3 Effect of spectral distribution

The last experiment compares the representation for different types of band-limited noise.

Specifically, white Gaussian noise is bandpass filtered to produce noises in different frequency

bands or with different bandwidths. The such filtered noises are all rescaled to 59 dB SPL

(sound pressure level) and sparsely approximated up to spike energies of ‖αmin‖2 = 1.16 ·
10−3 Pa2 (this threshold is derived in Section 4.4, page 51).

Figure 4.4 shows how the noise types differ in the number of spikes above threshold. The

number of spikes is expressed independently of signal length, in units of spikes/s. In the

left panel of Figure 4.4, all noises are 1 ERB (equivalent rectangular bandwidth) wide, but

centered at different frequencies. The number of spikes above threshold is higher for noises

located in higher bands. As a comparison, a frequency weighting curve used for environmental

noise assessment [“A” curve, IEC 61672-1, 2013] and another for noise in audio circuits [ITU-R

Rec. BS.468, 1986] also predict narrowband noise in higher bands to be more objectionable.
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Their spike count equivalent is obtained by scaling a reference ERB-wide noise to the level

calculated with these features, and counting the number of spikes above threshold in it.4

The right panel of Figure 4.4 shows results for noises with constant center frequency but

different bandwidths, centered on the ERB scale around 1.1 kHz. The number of spikes in the

sparse representation increases with larger bandwidths, especially beyond 1 ERB. The same

trend is obtained with a model of loudness [Zwicker, 1977], which predicts the increase in

perceived intensity when noise fills more than one auditory band [Fastl and Zwicker, 2007,

Chap. 8.3]. Frequency weighting curves on the other hand do not predict this effect. Finally,

note that a pure tone (points on the ordinate in the right panel of Figure 4.4) also results in a

higher spike count with the sparse coding approach.

The observed behavior of the sparse representation canbe explainedwith the used gammatone

dictionary. Since kernels in the dictionary are normalized to unit norm, the large-bandwidth

gammatones at higher center frequencies have lower peak magnitudes (see Figure 4.1). This

means that higher spike gains ‖α‖2 are needed to represent noise in high frequency bands,

increasing the number of spikes above threshold. The spike count also increases with wider

noise, as it enters more andmore gammatone bands.

In summary, these experiments support our hypothesis that spikes in an auditory-inspired

sparse noise representation are indicative of its intrusiveness. Specifically, the number of

spikes above a fixed threshold ‖αmin‖2 scales logarithmically with sound pressure; differs by

noise type, with a higher sensitivity to high-energy and tonal components in complex noises;

follows the trend of frequency weighting curves for narrowband noise; and considers the

higher perceived intensity of wider noises. This feature therefore combines properties of

multiple features that can be used to predict noise intrusiveness. The spike count reproduces

none of the those features exactly, but this is also not necessary, since those features are only

intermediate correlates of the actual score that we seek to predict.

4Minor irregularities in the sparse coding curve can be seen for narrowband noise centered at 250, 500 and
1000 Hz— these are frequencies that coincide with the center frequency of a gammatone in the dictionary. For the
same reason, we used a reference ERB-wide noise centered at 1.1 kHz to determine the spike count equivalent of
other features, instead of the more conventional 1 kHz.
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4.4 Noise intrusiveness measure

Given the properties of the sparse noise representation demonstrated in Section 4.3, we pro-

pose the following approach to predict the intrusiveness of noise in a test speech recording:

Noise extraction— The background noise needs to be extracted from the recording. This can

be done e.g., by trying to separate speech and background noise in the recording, or as done

here, by analyzing noise in speech pause sections. This is motivated by the P.835 test method

introduced in Section 3.3, page 28, where recordings have a specific temporal structure with

leading and trailing pause sections. Listeners successively rate speech distortion, noise intru-

siveness and overall quality in the recordings. For intrusiveness, listeners are instructed to

focus on the background only, meaning that their rating is likely determined by the noise in

speech pauses. Objective assessment may thus focus on this part of the signal only, as done

with some existing approaches [Gautier-Turbin and Le Faucheur, 2005; Reimes et al., 2011].

Sparse approximation — The extracted noise signal is sparsely approximated using a dic-

tionary of auditory kernels. This can be the gammatone dictionary used in Section 4.3, or

other dictionary types as compared in Section 4.6.2, page 56. The threshold ‖αmin‖2 for the
approximation can be selected without training data, based on the standard speech presen-

tation level of 79 dB SPL in listening tests. Since ‖αmin‖2 sets a limit on the level of noise

structures to include in the approximation, it may be selected such as to consider structures

up to a certain dynamic range below the speech level. This can be motivated by the analogy of

“spikes” in the model to the firing rate in actual auditory nerve fibers, which varies for changes

in sound pressure within a dynamic range of about 40 dB, beyond which the rate response

saturates [Sachs and Abbas, 1974]. A value for ‖αmin‖2 is derived along this line in Section 4.4.2.

Spike counting — The approximation yields a sparse representation of noise with temporally

localized kernel occurrences (“spikes”). These spikes are counted, either for the entire noise

duration or within short-time intervals. Counts for short-time intervals can be aggregated

non-uniformly to model the disproportionate perceptual effect of more intrusive intervals

in non-stationary noises. Here we use the fifth percentile, i.e., the short-time count that is

exceeded during 5% of the signal duration. Fastl and Zwicker [2007, Chap. 16.1] found that the

5th percentile of instantaneous loudness values best summarized the perceived loudness of

non-stationary noise. Percentile aggregation has since become an established method in the

assessment of non-stationary sound [e.g., Axelsson et al., 2010; Huber and Kollmeier, 2006].

While other aggregation types could be imagined, the percentile adds minimal complexity. We

evaluate both mean and percentile aggregation in Section 4.6.1, page 55.

The aggregated spike count, time-normalized to units of spikes/s, is indicative of the perceived

intrusiveness of noise in the recording. In the just described “spike density” feature, none of

the parameters are optimized for a specific dataset.
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4.4.1 Advantages and limitations

An advantage of the proposed approach is that it uses the idea of sparse coding to model

higher-level noise perception. This differs from traditional features, which model lower-level

correlates (e.g., perceived intensity) of noise intrusiveness. Moreover, traditional features

such as weighted noise level or loudness use coefficients or models of the inner ear that were

obtained from extensive subjective experiments. If multiple such features are used, their

respective contributions to intrusiveness must be determined from further training data. In

contrast, the proposed approach uses twomain parameters (the dictionary of auditory kernels

and the spike energy threshold) that are largely derived from physiological measurements

in mammals. Our evaluation in Section 4.6.2, page 56, also shows that the exact parameter

values are not critical for prediction performance.

A limitation is the higher computational complexity for sparse approximation, even with

an efficient implementation of Matching Pursuit [MPTK, Krstulovic and Gribonval, 2006].

This can be an issue for an objective measure targeted at telecommunications, where quality

assessment algorithms are sometimes used on low-power mobile platforms. The experiments

of Section 4.3 as well as the following evaluations also only use sparse representations with a

limited frequency range (50–7150Hz). This ignores possible high-frequency noise components

in super-wideband telecommunication systems, but these components tend to be very weak

in environmental noises as considered here [De Coensel et al., 2003]. Finally, the analysis

of noise in speech pause sections and assumption of a standard speech level can be seen as

further limitations, although they are not specific to the proposed approach.

4.4.2 Threshold selection

The value of ‖αmin‖2 that is used as stopping criterion for the sparse approximation can be

selected through a simple experiment with a speech signal. Here we use a 27-second recording

of concatenated sentences from 4 speakers, scaled to the standard average level of 79 dB SPL.

The peak spike energy for speech at this level is estimated, and the threshold value is set 40 dB

below, as previously motivated by the analogy to the dynamic range of auditory nerve fibers.

Specifically, we compute a sparse approximation of this speech signal where the number

of spikes multiplied by the support of the longest kernel (128 ms) equals the signal length.

Since MP selects the highest-energy spikes first, this approximation contains the peak spikes

energies for the signal, which have a median of 11.6 Pa2. The spike energy threshold is thus set

to ‖αmin‖2 = 1.16 ·10−3 Pa2.

Note that this simple approach does not account for the actual dynamic behavior of auditory

neurons [Moore, 2003], and other ways of selecting ‖αmin‖2 could be imagined. However, we

will see in Section 4.6.2, page 56, that the performance of the proposed feature remains quite

stable with other threshold values.
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4.5 Experimental setup

We evaluate the proposed feature on the PANDA datasets that were introduced in Chapter 3.

Other studies on objective noise intrusiveness assessment used unavailable (proprietary)

data [Gautier-Turbin and Le Faucheur, 2005; Reimes et al., 2011], while Narwaria et al. [2012]

used the NOIZEUS dataset developed in [Hu and Loizou, 2007b]. However, that dataset

focused on speech enhancement instead of noise perception. Consequently, the recordings in

it have very short leading and trailing pauses (∼0.15 s), making it unsuitable for the features

compared here, which analyze noise in speech pause sections.

The temporal structure and rating order of recordings in the PANDA datasets were shown in

Figures 3.2 and 3.3, respectively. In particular, listeners used triplets of test speech recordings

with different sentences, but identical speaker and condition, to provide the three P.835 quality

ratings. Since noise intrusiveness is rated either after the first or the second recording, we

evaluate the objective measure on the first two sentences in each triplet.

An overview of conditions was given in Table 3.1, page 29, with complete test plans in the

appendix, Section A.1.3, page 101. For the evaluation of noise intrusiveness measures, we

focus on the background noise conditions in each set, leaving 24, 23 and 24 conditions,

respectively. Each condition includes 6-second recordings from four speakers, resulting in a

total of (24+23+24) conditions ×4 speakers ×2 sentences = 568 test speech recordings.

4.5.1 Intrusiveness features

Given the noise-corrupted test speech recordings and ground truth subjective intrusiveness

scores from the dataset, we compare the prediction performance of the spike density feature

proposed in Section 4.4 to the traditional, main features discussed in Section 4.1.

As a common preprocessing step to all features, we extract the background noise signal from

speech pause sections in each recording, sampled at 48 kHz. Pause sections can be detected

through voice activity detection (VAD), but for this experiment we take advantage of the

availability of reference signals. Specifically, we first identify speech pauses in the clean

reference through VAD, and then find the corresponding locations in the noisy test speech

recording with a temporal alignment step [Beerends et al., 2013a, Sec. 4.3.1]. This procedure

allows for a more reliable detection of pause sections, especially in case of high noise levels.

The detected leading and trailing pause sections are concatenated to a single noise signal x[n],

using overlapping 64 ms half-Hann windows at the joint.

Given the noise signal x[n], we evaluate the following features:
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Mean noise level [dB SPL]—The average sound pressure level of noise in Pa is given by

10log10

(
1

N

N∑
n=1

(
x[n]

p0

)2)
(4.5)

with p0 = 20 μPa the reference sound pressure in air.

Mean noise level [dB(A) SPL]—This feature applies a pre-filtering with the “A” weighting curve

defined in [IEC 61672-1, 2013] before computing the noise level in (4.5).

Loudness [sone]—We use a loudness model for temporally variable sounds [Zwicker, 1977] as

implemented in the Loudness Toolbox [GENESIS S.A., 2012]. The model estimates the instan-

taneous loudness of noise over time, which can be averaged to obtain its mean loudness. The

short-time estimates may also be aggregated by computing the fifth percentile, as described

in Section 4.4. This method was proposed by Fastl and Zwicker [2007, Chap. 16.1] to better

model the perceived overall loudness of non-stationary noise. Both types of aggregation are

compared in the following section as two separate features.

Spike density [spikes/s] — The proposed feature as described in Section 4.4. Due to the re-

stricted frequency range covered by the dictionary, the noise signal is resampled to 16 kHz

and band-limited to 7150 Hz for this feature. The spike density in units of spikes/s can either

represent an average for the signal or a percentile of short-time spike counts. As with loudness,

we evaluate both aggregation types, computing the percentile in the same manner, using

25 ms intervals with 50% overlap.
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Figure 4.5 – Relation between the proposed feature (5th percentile spike density) and perceived
noise intrusiveness. Data points show results per speaker (four speakers per condition).
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Table 4.1 – Prediction performance of per-condition noise intrusiveness scores on the
three “PANDA” datasets. Best performances are highlighted in boldface. Double asterisks (∗∗)
denote prediction errors that are highly significantly lower than those of all other features in a
given set (p < 0.01 with Holm-Bonferroni correction).

Feature Correlation |R| Prediction error rmse∗3rd [MOS]

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Mean noise level [dB SPL] 0.881 0.900 0.919 0.339 0.359 0.279

Mean noise level [dB(A) SPL] 0.930 0.926 0.942 0.230 0.277 0.234

Mean loudness [sone] 0.932 0.951 0.925 0.257 0.206 0.197

Mean spike density [spikes/s] 0.930 0.916 0.887 0.250 0.242 0.270

5th Percentile loudness [sone] 0.959 0.953 0.911 0.191 0.234 0.270

5th Percentile spike density
[spikes/s]

0.970 0.953 0.939 0.087** 0.117** 0.231

4.6 Results

Figure 4.5 shows the relation between subjective scores and the values of the 5th percentile

spike density feature. Each data point represents the noise intrusiveness mean opinion

score (N-MOS) of listeners and the feature value, respectively, for a given speaker and condition.

The proposed feature has a strong linear relation to the N-MOS in all three sets. Additionally,

data points in the figure are shaded by the mean noise level. It can be seen that the noise level

can predict the low intrusiveness of very weak noises (bright shading), but not the subjective

rank-order of stronger noises (irregular progression to darker shading).

4.6.1 Prediction performance

Table 4.1 shows performance metrics for the different features described in Section 4.5.1.

For Sets 1 and 2, the proposed 5th percentile spike density feature (bottom row) achieves

the highest prediction performance in terms of both performance metrics introduced in

Section 2.3. For Set 3, its performance is the second-highest. For Sets 1 and 2, the prediction

error of the proposed feature is highly significantly lower than that of all other compared

features (p < 0.01withHolm-Bonferroni correction). For Set 3, there is no significant difference

between prediction errors (p > 0.05).

Effect of percentile aggregation

Without 5th percentile temporal aggregation, loudness and spike density perform comparably,

i.e., the prediction errors of mean loudness andmean spike density do not significantly dif-

fer (p > 0.05). Using 5th percentile aggregation does not significantly change the prediction
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error of loudness, whereas the spike density feature improves highly significantly for two of the

three sets. The sparse representation preserves the temporal localization of peak noise intensi-

ties, while loudness may smear these peaks over time to model temporal masking [Zwicker,

1977]. This may explain why percentile aggregation is more beneficial with the spike density

feature, even though it was conceived for loudness [Fastl and Zwicker, 2007, Chap. 16.1].

We also tested percentile values k in the range k = 2, . . . ,10 as sometimes found in the litera-

ture [e.g., Axelsson et al., 2010]. Our tests showed that at all these values, prediction errors of

the percentile spike density feature remain either lower or comparable (p > 0.05) to those of

percentile loudness. With the exception of Set 2 at k = 2 and k = 3, its error also remains lower

or comparable (p > 0.05) to that of all other features.

In summary, the proposed feature can be used to assess noise intrusiveness with a prediction

error that is comparable, and in most cases lower, than that of traditionally used features. This

result, in addition to the experiments of Section 4.3, further confirms our hypothesis that a

high-level model of sensory coding can be used to assess noise perception.

4.6.2 Effect of hyperparameters

A key motivation for the proposed approach is that it only uses twomain parameters —the

spike energy threshold ‖αmin‖2 and the dictionary of auditory kernels— that can be largely

derived without subjective experiments. We now evaluate the effect of both hyperparameters:

Spike energy threshold ‖αmin‖2 — This parameter determines the level of noise structures to

include in the sparse representation. A way of selecting ‖αmin‖2 was described in Section 4.4.2.

The effect of changing its value on prediction performance is shown in Figure 4.6a for the three

evaluation datasets. The error remains fairly stable within two orders of magnitude around

the original threshold value of 1.16 ·10−3 Pa2. Higher thresholds slowly increase the error in all

sets, whereas lower values have less effect, with the exception of Set 2.

Figure 4.6b provides a closer look at results per condition in Set 2. A high threshold excludes

low-intensity noise components from the sparse approximation. The intrusiveness of weaker

noises is therefore no longer differentiated (orange crosses clustered near the ordinate of

Figure 4.6b). Conversely, low thresholds include even very low-level noise components into

the approximation. These components increase the percentile spike density, but the increase

is no longer proportional to subjective intrusiveness (yellow triangles in Figure 4.6b).

This latter effect may be due to the greedy nature of the Matching Pursuit algorithm. Once

many kernels have been extracted from the signal, further iterations will mainly correct

distortions in the residual that are due to earlier iterations, and not capture true signal struc-

ture [Sturm et al., 2009]. Another explanation is that very low-energy noise components are

not perceived by listeners, i.e., that they aremasked by higher-energy components in the signal.
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Figure 4.6 – Influence of the spike energy threshold ‖αmin‖2. (a) Prediction errors for different
threshold values. The threshold for the results in Table 4.1 is ‖αmin‖2 = 1.16 ·10−3 Pa2 and was
derived in Section 4.4.2. (b) Results for Set 2 for the threshold values circled in Panel (a). Data
points show results per condition. Error bars indicate 95% confidence intervals of subjective
scores. Lines show the mapping function used to calculate the prediction error rmse∗3rd.

Dictionary of auditory kernels —We used a dictionary of auditorily motivated gammatone

kernels with center frequencies as described in Section 4.3 to compute the sparse approxi-

mation. While the gammatone shape can be derived from physiological measurements, the

distribution of center frequencies and bandwidths followed the data of subjective experi-

ments, i.e., the Equivalent Rectangular Bandwidth (ERB) scale [Glasberg and Moore, 1990].

We therefore evaluate two alternative dictionaries with different parameters.

The first alternative dictionary contains gammatone kernels with logarithmically distributed

center frequencies within the same range, with bandwidths Bm proportional to center fre-

quency (i.e., as in constant-Q filters),

Bm =max
(
f m/10 , 25

)
[Hz] (4.6)

where the minimum bandwidth of 25 Hz was chosen to avoid overly long kernels at low center

frequencies.5

The second alternative dictionary uses the same logarithmic center frequency distribution

and bandwidths Bm , and further replaces gammatone kernels by even Gabor kernels φm
g (t ),

φm
g (t )= 1�

2πσm
exp

(
− t2

2(σm)2

)
cos

(
2π f mt +ϕ

)
, t � 0 (4.7)

5The calculation of the parameter bm in the gammatone equation (4.2) for a target bandwidth Bm is given
in [Holdsworth et al., 1988].
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Figure 4.7 – Influence of the dictionaryΦ on prediction errors. “Γtones (ERB)” are the gamma-
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with σm =�
ln2/πBm the bandwidth parameter. For each dictionary, we also evaluate the effect

of the number of kernels M . The threshold value ‖αmin‖2 is re-determined for each dictionary

as per the method described in Section 4.4.2.

Figure 4.7 compares the prediction errors obtained with different dictionary types and sizes.

For dictionaries with M = 32 or 64 different kernels, there is no significant difference in

prediction errors (p > 0.05). However, when the dictionary only consists of M = 16 kernels,

significant differences (p < 0.05withHolm-Bonferroni correction) appear between the original

and alternative dictionaries for at least two of the sets.

With M = 16 kernels, the frequency space is tiled less densely, so noise approximations up

to the threshold ‖αmin‖2 are considerably less sparse. Further analysis shows that the de-

crease in sparsity is most pronounced for the “Pub” (babble) noise. The intrusiveness of this

noise type is therefore over-estimated with the alternative dictionaries, but not with the “ERB”

gammatone dictionary that matches cochlear filter shapes more closely. This result is in line

with that of Smith and Lewicki [2006], who found that the center frequency and bandwidth

characteristics of cochlear filters are highly adapted to the acoustic composition of speech.

Overall, these results show that the performance of the proposed feature does not critically

depend on the original parameter values. Specifically, prediction errors only increase slowly

around the original threshold ‖αmin‖2, and dictionaries that avoid knowledge from subjective

experiments yield similar error, as long as they allow for a sparse representation of noise.
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4.7 Discussion and conclusion

In this chapter, we have studied the objective assessment of perceived background noise

intrusiveness in telecommunications. A challenge in assessing noise intrusiveness is that the

degradation of interest is not the distortion of the speech signal, but the presence of noise. The

degradation is thus an added signal element that cannot be assessed through a comparison to

a reference signal. Instead, one or more features of noise that are relevant to its perception

need to be found. However, predicting intrusiveness from these features should require as

little subjective training data as possible, due to the expense in collecting such data.

We took insight from recent work onmodeling sensory coding to propose a novel approach,

where background noise is analyzed with a sparse coding signal model. We have tested

the hypothesis that such a noise representation, computed in a basis of auditory kernels,

is indicative of its perception, and verified this hypothesis in Section 4.3. Specifically, the

number of kernels in the representation scales logarithmically with sound pressure, differs

by noise type, follows the trend of frequency weighting curves for noise, and increases for

wider bandwidth noises. The number of kernels over time in the representation can then be

analyzed to yield a feature that is highly correlated with noise intrusiveness scores.

Our evaluation on the PANDA datasets introduced in Chapter 3 shows that the proposed

feature predicts subjective scores with an error 14–54% below that of percentile loudness.

Moreover, the prediction error is either significantly lower or comparable to that of all other

evaluated features. Note that the PANDA datasets were collected before, and independently of

the proposed feature.

An advantage of the proposed approach is that it uses few hyperparameters, which can be

determined without training data or subjective experiments. The obtained prediction error

remains low even when these parameters deviate from the proposed original values. This

is in contrast to conventional methods, which perform a regression with multiple features,

or use features that rely on parameters derived from subjective experiments. These latter

features represent acoustic correlates of intrusiveness, whereas our approach seeks to model

perception at the higher level of sensory coding.

The sparsity of noise in a basis of auditory kernels has no direct physical or perceptual in-

terpretation. When the kernels resemble cochlear filter shapes, each kernel occurrence in

the representation can be thought of a local population of auditory nerve spikes [Lewicki,

2002]. The spike rate is commonly thought to be related to loudness, although the precise

relationship appears to be more complex [Moore, 2003]. This may provide one indication of

how the proposed feature is linked to human perception. On the other hand, our experiments

in Section 4.6.2 have shown that prediction performance remains high even with kernels that

deviate from cochlear filter shapes, as long as they allow for a sparse representation of the

signal. This result is more consistent with the notion of sparsity as a general abstraction of

sensory coding, which need not be tied to the cochlea specifically.
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5 Objective intelligibility assessment for
speech telecommunications

The last two chapters discussed the perception of background noise in speech telecommu-

nications. An objective measure was proposed to predict the intrusiveness of noise during

non-speech parts. An analysis of subjective scores further showed the mutual dependency

between overall listening quality, speech distortion and noise intrusiveness.

An important quality feature that is not addressed with these scores is the intelligibility of

degraded speech. For example, Hu and Loizou [2007a] evaluated different noise reduction

algorithms and found that none of them significantly improved the intelligibility of noisy

speech. More importantly, algorithms that resulted in the best overall quality were not the ones

that best preserved intelligibility. The three quality features in P.835may thus be an insufficient

characterization of speech quality when intelligibility is key, such as in telecommunication

systems for first responders (i.e., firefighters, medical or law enforcement personnel).

Speech intelligibility can be affected by interfering background noise, but also by distortions

due to noise reduction, speech coding, channel loss or acoustical impairments. Objective

intelligibility measures (OIMs) have often been designed to assess the impact of specific

degradations. In the following, we will concentrate on OIMs that are applicable to degrada-

tions found in telecommunications. This leaves out somemeasures that rather focus on the

intelligibility of assistive listening devices [see, e.g., Falk, Parsa, et al., 2015, for a review].

In this chapter, we propose a novel objective intelligibility measure for degradations found in

telecommunications. Unlike noise intrusiveness, where listeners have no a-priori knowledge

or expectation of the noise signal, our approach is based on the notion that listeners apply

linguistic knowledge in understanding speech. The proposed approach thus makes use of a

language-specific representation to analyze speech beyond the signal level. The remainder

of this chapter is structured as follows: We briefly review existing approaches to objective

intelligibility assessment in Section 5.1 and highlight their strengths and weaknesses. Sec-

tion 5.2 explains the motivation for our proposed approach, which is described in Section 5.3.

Implementation details and the experimental setup are reported in Section 5.4. We discuss

results in Section 5.5, and conclude with further remarks in Section 5.6.
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5.1 Related work and contributions

One of the first publishedOIMs for telecommunicationswas the articulation index (AI) [French

and Steinberg, 1947; simplified by Kryter, 1962]. The (simplified) AI is obtained by computing

the average signal-to-noise ratio across critical bands k:

AI= 1

K

K∑
k=1

AIk AIk =
1

30

(
6+10log10

( |X (k)|2
|N (k)|2

))
, AIk ∈ [0,1] (5.1)

with |X (k)|2 and |N (k)|2 the speech and noise spectral power in band k, respectively. The

resulting score has a monotonic relation to the intelligibility of speech degraded by additive

stationary noise and bandpass filtering. A revised version of the AI, which adds corrections

for presentation level and the auditory threshold (among others), is standardized as speech

intelligibility index [SII; ANSI S3.5, 1997].

The AI is a macroscopic measure, in that it is usually computed for the average long-term

spectrum of speech frommultiple speakers and sentences. If the short-time spectral powers

of speech and noise are known, intelligibility may also be predicted at themicroscopic level

by measuring the occurrence of so-called “glimpses”, time-frequency regions in which the

speech energy exceeds that of noise by a given threshold [Cooke, 2006].

In test signals from telecommunication systems, separate estimates of speech and noise

powers are usually not available. Instead, a full-reference method like the speech transmission

index [STI; Steeneken and Houtgast, 1980] may be used to apply a specific input signal (the

reference) to the system, and compare it to the resulting test signal. STI uses amodulated noise

with spectral distribution similar to that of speech as reference, and analyzes the modulation

transfer function to the test signal to derive an intelligibility score. This approach has been

shown to be suitable to assess the impact of additive noise, reverberation, bandpass filtering

and waveform coding on speech intelligibility [Steeneken and Houtgast, 2002]. Like the AI, STI

is a macroscopic measure, although an extension to evaluate the STI over short-time segments

has recently been proposed [Schwerin and Paliwal, 2014].

Modern telecommunication systems often include signal-dependent processing, such as

digital speech codecs that are based on a source-filter model of speech [see e.g., Rabiner

and Schafer, 2007, chap. 7.2], or noise reduction that applies a time- and frequency-varying

signal gain. Testing these components with the modulated noise signal of the STI may not

reflect their effect on speech signals. Consequently, other approaches have been devised to

assess intelligibility with actual speech signals processed by the system under test. In that

line, Beerends, Van Buuren, et al. [2009] proposed a modification of the PESQ overall quality

measure [Beerends, Hekstra, et al., 2002], where an auditory spectral representation of the test

signal is compared to that of the transmitted reference. Full-reference approaches based on a

comparison of spectral features (e.g., short-time auditory spectra or band envelopes) have

also been proposed by several other authors [Elhilali et al., 2003; Christiansen et al., 2010; Taal

et al., 2011; Voran, 2013].
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5.1. Related work and contributions

A limitation of using spectral features for full-reference assessment is that such features may

be sensitive to differences in speech tempo and timbre between the reference and test signal.

Changes to speech tempo can occur in packet-switched telecommunication systems such as

VoIP, which may stretch or compress parts of the signal to compensate for delayed packets.

Similarly, it has been proposed to use speech synthesis principles in codecs to achieve lower

bit rates [e.g., Lee and Cox, 2001], meaning that the voice in the decoded signal may bear no

resemblance to the original voice. While differences in speech tempo can be compensated

through a prior alignment step [e.g., Sakoe andChiba, 1978; Rix, Hollier, et al., 2002], a different

speech timbre may change the spectral feature values themselves.

Therefore, recent approaches have been proposed that go beyond the spectral level and seek to

assess intelligibility at phone, phoneme orword level. For instance, Teng et al. [2007] compared

occurrences of phone bigrams, determined with an ASR (automatic speech recognition)

system in reference and test speech, to assess the impact of low bit rate codecs and bit error

conditions on intelligibility. Phonetic features were also used to assess pathological speech,

by estimating confidence scores over phone segments [Middag et al., 2008]. Meyer and

Kollmeier [2010] used phoneme-level features in an ASR system to compare word error rates

to intelligibility scores for noisy speech. Finally, Maier et al. [2007] compared pathological

speech to a referenceword-level transcription, using a complete ASR system.

In summary, most OIMs that were designed for degradations found in telecommunications

use either acoustic or spectral features. On the other hand, phone- or phoneme-level features

have been found to be suitable to assess speech with strongly distorted or unnatural timbre,

as may be the case with low bit-rate coded, pathological or even synthetic speech. In this

chapter, we expand on phoneme-level feature-based approaches to intelligibility assessment.

Specifically, we show how phoneme-level featuresmay be used to compute a distancemeasure

between a human speech reference and the output of a system under test, which may degrade

the speech signal through additive noise, noise reduction and low bit-rate speech coding. In

Chapter 6, page 77, we extend these results to the assessment of synthetic speech, which can

differ in both tempo and timbre from the reference.

Contribution

R. Ullmann, M. Magimai.-Doss, and H. Bourlard [2015]. “Objective Speech Intelli-

gibility Assessment through Comparison of Phoneme Class Conditional Probability

Sequences”. In: Proc. ICASSP. Brisbane, Australia, pp. 4924–4928.

URL: http://dx.doi.org/10.1109/ICASSP.2015.7178907

The present chapter expands on the above paper, adding results for the PSCR dataset

(see Section 2.4.2, page 13), a comparison to results obtained with the STOI measure,

and further analysis of model hyperparameters. Results from the above paper for

synthetic speech are included in Chapter 6, page 77.
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5.2 Motivation

The core idea in our work is that intelligibility impairments can be seen as cases of mismatch

between the test signal acoustics and listener’s phonetic and lexical knowledge. In this line

of thought, listeners apply lexical knowledge to match phoneme sequences against known

words, or to resolve word confusions through context. Subjective tests are often designed to

limit the application of lexical knowledge, e.g., by focusing on the recognition of individual

words (as used in rhyme tests) or of semantically unpredictable sentences to reduce context.

The closed-response format of rhyme tests, where listeners select a target word from several

alternatives (see Section 2.2.2, page 7), further reduces the use of lexical knowledge.

Intelligibility impairments that are observed in such tests can thus be largely attributed to

a mismatch with phonetic knowledge, i.e., listener’s (in-)ability to recognize speech sounds

in the test signal. Like lexical knowledge, phonetic knowledge is language-dependent in

the sense that listeners learn to differentiate sounds that carry different meaning in their

language [Kuhl et al., 1992]. This set of sounds is described by phonemes [see, e.g., Gold

et al., 2011, Chap. 23.2.3]. Therefore, it may be possible to objectively assess intelligibility by

analyzing the test signal at the phoneme level and measuring the mismatch to a reference

phoneme-level representation. Such a reference may be obtained from a highly intelligible

recording of the same words, or from a model of the expected phoneme-level content for

those words.

The approach proposed in this chapter uses a reference recording and is inspired from re-

cent results in template-based ASR. In this type of ASR, a speech utterance is recognized by

comparing it to several example recordings or templates of possible target utterances. Soldo,

Magimai.-Doss, and Bourlard [2012] recently studied the use of synthetic speech templates,

i.e., reference recordings generated with a text-to-speech (TTS) system, with phoneme pos-

terior probabilities as features. They observed that such templates could yield recognition

performance comparable to templates of natural speech, indicating that the features were

insensitive to speaker characteristics and naturalness. They also found that recognition perfor-

mance correlated with the intelligibility of the synthetic voices used for template generation.

Motivated by these results, we investigate an approach to intelligibility assessment based on

the comparison of phoneme posterior probability sequences of the test signal to those of a

reference signal. Note that in this approach, the speaker in the reference signal need not be

the same as in the test signal. This is particularly relevant to the assessment of very low bit-rate

speech codecs, which may use synthetic speech principles and yield test signals with changed

speaker characteristics.

5.3 Proposed approach

Given a reference speech signal and a test speech signal, the approach performs the steps

outlined in Figure 5.1, which consist in:
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Acoustic
feature

extraction
ANN

Sequence
comparison

Average
distance

Reference
speech ai yi

Test
speech

b j z j

waveform acoustic features phoneme posteriors

Figure 5.1 – Diagram of the proposed objective intelligibility measure. Phoneme posterior
probabilities are estimated with an artificial neural network (ANN). The type of signal feature
in each stage of the proposed approach is highlighted in gray at the bottom.

Acoustic feature extraction —Two acoustic feature sequences A = {a1, . . . ,ai , . . . ,aI } and B ={
b1, . . . ,b j , . . . ,bJ

}
are extracted from the reference and test signal, respectively. The features

can be, e.g., cepstral coefficients of a short-time spectrum. Note that the two sequences need

not be of the same length, i.e., I � J .

Posterior probability estimation — Estimation of the reference phoneme posterior prob-

ability sequence Y = {
y1, . . . ,yi , . . . ,yI

}
and test phoneme posterior probability sequence

Z = {
z1, . . . ,z j , . . . ,zJ

}
, where

yi =
[
P
(
c1 | ai

)
, . . . ,P

(
cK | ai

)]� = [
y1i , . . . , y

K
i

]�
, (5.2)

z j =
[
P
(
c1 | b j

)
, . . . ,P

(
cK | b j

)]�= [
z1j , . . . ,z

K
j

]�
, (5.3)

with
∑

k yk
i =∑

k z
k
j = 1, and ck the kth phoneme class out of k ∈ [1,K ] phoneme classes.

The distributions yi and z j are obtained through an artificial neural network (ANN) trained to

estimate phoneme posterior probabilities. The inputs to the ANN include acoustic features

frommultiple frames around the current frame i or j in order to consider temporal context

for the estimation of phoneme content. ANNs trained with spectral-based features have been

shown to learn properties of the spectral envelope [Pinto et al., 2009], i.e., speech properties

that are relevant to phoneme discrimination, but show little variability across speakers. In this

chapter, we will use multilayer perceptrons (MLPs), a type of feedforward ANNs with three or

more layers of nodes. We will evaluate both three- and five-layer architectures in Section 5.5.3.

Distance calculation—The sequences Y and Z are compared to calculate a distance score.

There are several local distance measures that can be used to compare two phoneme posterior

distributions yi and z j in the sequences [see, e.g., Soldo, Magimai.-Doss, Pinto, et al., 2011].
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Here we use the symmetric Kullback-Leibler (SKL) divergence as local distance,

SKL
(
yi ,z j

)= 1

2

K∑
k=1

yk
i log2

yk
i

zkj
+ 1

2

K∑
k=1

zkj log2
zkj

yk
i

. (5.4)

A measure based on Kullback-Leibler divergence allows for an information theoretic inter-

pretation of the distance. Specifically, a delta posterior distribution y = δlk (i.e., yk = 1

and yl = 0∀ l �= k) has no uncertainty regarding the actual phoneme class ck . Conversely, a uni-

form distribution yk = 1
K ∀ k provides no reduction in uncertainty. The Kullback-Leibler (KL)

divergence is an asymmetric measure of the increase in uncertainty that comes from assuming

a different distribution than the actual distribution [Cover and Thomas, 1991]. In the proposed

approach, the symmetric KL divergence is used as local distance in (5.4) because the reference

and test recordings can be different realizations of the same words, i.e., there is no guarantee

of which recording is more intelligible or represents the “actual” distribution.

The final objective intelligibility score is derived from the global distance between the se-

quences Y and Z . This distance may be calculated in two ways depending on the test signal:

• If test and reference signals have the same temporal structure, the sequences have equal

lengths I = J and the average of local distances can be used as intelligibility measure,

D(Y ,Z )= 1

J

J∑
j=1

SKL
(
y j ,z j

)
. (5.5)

• If both signals have different temporal structure, the sequences Y and Z can be aligned

through dynamic time warping (DTW) [Sakoe and Chiba, 1978] with path constraints

C (i , j )= SKL
(
yi ,z j

)+min
(
C (i , j −1),C (i −1, j −1),C (i −2, j −1)

)
(5.6)

where C (i , j ) is the accumulated distance at reference and test time frames i and j ,

respectively. However, no overall constraints are applied. The global distance score is

then given by the average distance over the DTW path, i.e.,

D(Y ,Z )DTW = 1

J
C (I , J ) . (5.7)

5.4 Experimental setup

We first test the proposed approach with various low bit-rate coding and bit error/frame

loss conditions. The purpose of this initial experiment is to check for any systematic offsets

between different speech coding schemes. We then perform amore formal evaluation on the

PSCR library (see Section 2.4.2, page 13), which includes recordings degraded by low bit-rate

coding, strong background noises and acoustic impairments.
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5.4. Experimental setup

5.4.1 Low bit-rate coding and frame loss conditions

As an initial experiment, the proposed approach is tested on the following conditions:

• AMR cellular telecommunications codec [ETSI TS 126 090, 2012], running at the codec’s

eight different constant bit rates (4.75–12.2 kbps),

• EVRC-B cellular telecommunications codec [3GPP2 C.S0014-E, 2011] running at the

codec’s standard average bit rates (4.8–9.6 kbps),

• MELP US DoD codec [Supplee et al., 1997] in simple, double and triple cascaded se-

tups (2.4 kbps),

• codec2 free open-source codec [Rowe, 1997; Rowe and contributors, 2013] operating at

2.4 kbps, with bit error rates of 0.0, 0.2, 0.5, 1 and 5%, and

• simulated frame loss (5, 10, 20 and 40%), by silencing randomly selected 20 ms frames

of active speech segments.

Each condition is applied to 12 recordings of phonetically balanced, English sentences from

12 speakers (six male) provided in ITU-T Rec. P.501 [2012]. Recordings are 2–3 seconds long,

and were pre-filtered with the IRS-send telephone bandpass [ITU-T Rec. P.48, 1988] prior to

processing.

5.4.2 Public safety communications conditions

The Public Safety Communications Research [PSCR, 2013] audio library consists of three

datasets (2008, 2010 and 2012) of speech recordings and was presented in Section 2.4.2,

page 13. Each recording contains a carrier phrase with a consonant-vowel-consonant (CVC)

word at its end, to be recognized by listeners from a choice list of six rhyming words.

Given that listeners’ scores only reflect the intelligibility of the final word, the proposed

approach is applied to that part of the sentence only. Specifically, the phoneme posterior

sequence is initially estimated for the entire recording, allowing to consider temporal context

at the ANN input. The sequence is then truncated to only keep frames for the final word, using

the sample-accurate start and end word positions that are provided with the distribution.1

The distribution provides these positions for the reference recordings only; thus we used a

temporal alignment step to determine corresponding positions in the test speech recordings.2

The total number of test speech recordings is 129 600, corresponding to 17.3 hours of speech.

1The PSCR distribution provides time-frequency templates of extracted rhyme words. The determination of
exact sample positions from the templates was carried out by Mr. Nicolas Gninenko during his internship at Idiap.

2Signal delays are near-constant within groups of 150 recordings per condition [Voran and Catellier, personal
communication, 25 Aug., 2015], allowing reliable delay estimation even in case of strong signal degradations.
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5.4.3 Implementation

We extract Perceptual Linear Predictive (PLP) acoustic features [Hermansky, 1990] from the

reference and test signals, i.e., cepstral coefficients derived from a short-time spectrum with

frequency resolution and power weighting modeled after human hearing characteristics. PLP

calculation involves an approximation of the short-time spectrum with an all-pole model that

is designed to remove speaker-dependent fine spectral structure (see Section 2.5.1, page 17).

We compute 39-dimensional PLP cepstral coefficients (the first 12 cepstral coefficients plus

energy, with appended delta and acceleration coefficients [Furui, 1986]), using a 25 ms frame

size with 10 ms frame shift. The PLP analysis is based on 24 mel band energies in the 125–

3800 Hz range.

The resulting acoustic features ai or b j are fed at the input of an ANN with a 9-frame temporal

context (i.e., 4 preceding and 4 following frames), resulting in 9×39= 351 input units. The

ANN used here is the samemultilayer perceptron (MLP) used in the studies in [Soldo et al.,

2011, 2012], with a single hidden layer of 5000 units and 45 output units. TheMLP is trained on

232 hours of conversational telephone speech (CTS)3 from over 4000 speakers, with additional

36.3 hours for cross-validation, to estimate posterior probability vectors yi or z j for 44 English

phonemes and silence. MLP training was carried out with the QuickNet toolkit [Johnson and

contributors, 2011] by minimizing frame-level cross entropy. General details of MLP training

and estimation of posteriors are given in Section 2.5.3, page 18.

Since all evaluated conditions preserve the temporal structure of speech, we use the global

distanceD(Y ,Z ) as defined in (5.5) for intelligibility assessment, i.e., without DTW alignment.

5.4.4 Comparison to a spectral feature-based measure

We use the short-time objective intelligibility (STOI) measure of Taal et al. [2011] to compare

our proposed approach to an objective measure based on spectral features. STOI analyzes

the short-timemagnitudes of signals within one-third octave bands, and computes the cor-

relations between reference and test signal band envelopes over segments of 384 ms. The

individual correlation values are then averaged over bands and segments to yield an objective

score in the range [0,1] that is expected to have a monotonic relation to intelligibility. This

approach was found to provide good predictions of subjective intelligibility scores for speech

degraded by additive noise, noise reduction, bandpass filtering, and speech coding as used

in cellular networks [Taal et al., 2011; Jørgensen et al., 2015]. We used the publicly available

MATLAB implementation of [Taal et al., 2010] for our experiments.

3The CTS data consists of recordings from the Switchboard-1 [Godfrey and Holliman, 1993], Callhome [Canavan
et al., 1997] and Switchboard Cellular [Graff et al., 2001] corpora.
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Figure 5.2 – Objective scores for speech intelligibility (proposed approach) and overall qual-
ity (POLQA), for the conditions described in Section 5.4.1. Darker data point shading follows
the trends given in the legend parentheses.

5.5 Results

5.5.1 Low bit-rate coding and frame loss conditions

We calculate average distances D between the original and processed recordings listed in

Section 5.4.1, sampled at 8 kHz. Even without subjective intelligibility scores, we can expect

codecs with higher bit rates to have higher intelligibility than, e.g., conditions with bit errors of

frame losses. We can also expect a trend where lower bit rates of the same codec, or increasing

error or loss rates result in lower predicted intelligibility.

Additionally, we compare the overall quality of conditions, predicted with ITU-T Rec. P.863

“POLQA” [2011]4, the technological update to ITU-T Rec. P.862 “PESQ” [2001]. Comparing

objective scores for intelligibility and quality is interesting, because a reduction in overall

quality need not translate to lower intelligibility (e.g., robotic-sounding speech may have

low overall quality but still be highly intelligible). On the other hand, good intelligibility is a

prerequisite for high overall quality [Côté and Berger, 2014, Sec. 12.1]. This means that we

should observe either high or low quality values for high-intelligibility conditions, but only

low quality values when intelligibility is low.

Figure 5.2 shows results for both types of objective scores, averaged per condition. Both

the AMR and EVRC-B codecs, which operate at comparatively high bit rates, show a range

of different quality values as a function of bit rate, but little variation in average distance

4The POLQA scores were kindly computed by SwissQual AG, a Rohde & Schwarz company.
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Table 5.1 – Prediction performance of per-condition intelligibility scores on the three PSCR da-
tasets (2012, 2010, 2008). Best performances are highlighted in boldface for both the standard
case (top section) and the case with added pink noise to model noise at the listener side (bot-
tom section). Connections with asterisks (—*— / —**—) indicate significant differences
between prediction errors (p < 0.05 / p < 0.01 with Holm-Bonferroni correction).

Measure Correlation |R| Prediction error rmse∗3rd [%WA]

2012 2010 2008 2012 2010 2008

No added noise

Average distanceD 0.955 0.937 0.948 1.17 2.52 6.99

STOI [Taal et al., 2011] 0.948 0.858 0.898 2.68 4.84 11.16

Added stationary pink noise

Average distanceD 0.901 0.642 0.970 3.33 8.13 3.88

STOI [Taal et al., 2011] 0.964 0.838 0.950 1.72 5.56 6.29

**
**

**
*

**
**

**

*
*

**
**

(i.e., high predicted intelligibility). The MELP codec at 2.4 kbps (single encoding, bright circle

in Figure 5.2) reaches a lower quality value, but a predicted intelligibility similar to that of

the two cellular telecommunication codecs. This seems plausible, given that MELP is a low

bit-rate codec designed for mission-critical telecommunications, where intelligibility is key.

On the other hand, conditions with high average distance (low predicted intelligibility) are only

found at low objective overall quality scores, as expected. Increases in the number of MELP

encoding cascades, codec2 bit errors or frame losses all show the expected trend. Informal

listening indicates that speech remains partly intelligible at 40% frame loss, but not in the

codec2 condition with maximum bit error rate (dark triangle and dark diamond in Figure 5.2,

respectively).

5.5.2 Public safety communications conditions

We estimate the intelligibility of rhyme words in all test signals and compute the average

distance D per condition. As a comparison to the proposed approach, the STOI score is

computed on truncated signals to consider only the final (rhyme) word, with an additional

192 ms of context before the word to avoid signal durations below 384 ms (the measure’s

minimum).

The top section of Table 5.1 compares the prediction performance of the proposed average

distance measure to that of the STOI measure on the three PSCR datasets. The proposed

measure consistently achieves a higher correlation to subjective intelligibility scores, as well

as a lower prediction error rmse∗3rd. With both measures, the prediction error is largest for the

2008 PSCR dataset.
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Figure 5.3 – Per-condition intelligibility scores for the PSCR datasets. Top row: proposed
average distance measure. Bottom row: STOI measure [Taal et al., 2011]. Error bars indicate
95% confidence intervals of subjective scores. Blue lines show the mapping function used to
calculate the prediction error rmse∗3rd. Highlighted outliers are discussed in the text.

Figure 5.3 provides a closer look at predictions vs. subjective scores for each dataset. Both

measures yield good predictions for conditions in the 2012 dataset (panels 5.3a and 5.3d).

The 2010 dataset reveals a systematic offset of the STOI measure between two speech coding

schemes (panel 5.3e), which does not occur with the proposed measure (panel 5.3b). Finally,

panels 5.3c and 5.3f show that both measures failed to predict the effect of some combined

impairments in the 2008 dataset. Specifically, for conditions where speech is already distorted

by the diaphragm of a breathing mask or by an alarm tone at −2 dB SNR (highlighted outliers),

additional differences in speech codec and -level had almost no effect on objective scores.

This latter discrepancy could be due to the fact that listeners were seated in a room with

ambient pink noise while evaluating intelligibility (so-called noise at the listener side). The

2012 and 2010 tests used a noise SNR of 19 dB relative to the average clean speech level,
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Figure 5.4 – PSCR intelligibility scores, with added pink noise to simulate noise at the listener
side. Top row: proposed measure. Bottom row: STOI measure [Taal et al., 2011]. Error bars
indicate 95% confidence intervals of subjective scores. Blue lines show the mapping function
used to calculate the prediction error rmse∗3rd. Highlighted outliers are discussed in the text.
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whereas the 2008 test used a 12 dB SNR [Atkinson et al., 2008–2013]. In other words, the higher

ambient noise level in the 2008 test may have exacerbated some intelligibility impairments

for listeners. To test this assumption, we repeated the evaluation after adding pink noise as

described in [Atkinson et al., 2008–2013] to all test speech files. The resulting predictions

are displayed in Figure 5.4. As can be seen in panels 5.4c and 5.4f, both objective measures

now predict additional impairments due to different speech coding systems, suggesting

that the high ambient noise level in the 2008 test indeed increased perceived intelligibility

impairments.

The lower section of Table 5.1 shows performance metrics after the addition of pink noise.

Simulating the presence of ambient noise results in a highly significant (p < 0.01 with Holm-

Bonferroni correction) reduction of prediction errors in the 2008 test for both measures.

However, errors highly significantly increase in the 2012 and 2010 tests for the proposed

measure. Here, the addition of noise creates an offset to conditions that already contain

broadband noise (“night club” noise and analog FM radio static, highlighted in panels 5.4a

and 5.4b, respectively).

Comparing individual predictions in the 2010 and 2012 tests, it appears that adding soft pink

noise excessively increased the distance scores of other conditions (i.e., those not containing

broadband noise). Since the MLP in our experiments was trained on clean speech only, we

speculate that the estimation of phoneme posteriors is too sensitive to low-level noises that

have little actual impact on intelligibility. As a result, STOI outperforms the proposed measure

in the 2012 and 2010 tests when listener-side noise is added to recordings.

5.5.3 Effect of ANN depth and input feature type

The approach proposed in this chapter used a comparison of phoneme-level features to assess

intelligibility. The same type of features have been used in ASR (automatic speech recognition)

for acoustic modeling, with extensive research on ANN topologies and input feature types. A

particular recent trend in ASR is to train ANNs with multiple hidden layers to achieve more

accurate estimations of phoneme-level content. Furthermore, the sensitivity of the proposed

approach to low-level noises, as observed in the previous section, could be addressed by using

more noise-robust acoustic features. In this section, we investigate the potential benefits of

both changes to our objective intelligibility measure.

So-called “deep” ANNs have recently been shown to achieve higher accuracy than single

hidden layer ANNs trained on the same data [see e.g., Hinton et al., 2012]. In a recent study,

Imseng et al. [2013] compared 3-layer and 5-layer MLPs (i.e., with 1 and 3 hidden layer(s),

respectively) that had been trained discriminatively for phoneme posterior estimation. They

found that the 5-layer MLP consistently achieved higher frame-level phoneme accuracies and

lower ASR word error rates for different corpora and with different ASR systems.

Some earlier studies also evaluated alternatives to the cepstral acoustic features used in
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Figure 5.5 – Effect of MLP depth and input feature type onMLP frame-level accuracy (lines)
and on prediction errors (bars). Hatched bars show prediction errors for the case with added
pink noise to simulate noise at the listener side. The two highlighted (thick) bars correspond
to the original hyperparameters and to the results in Table 5.1.

our approach. In particular, several experiments highlighted the importance of temporal

modulations in the speech envelope for intelligibility [e.g., Drullman et al., 1994; Greenberg

et al., 1998]. The same modulation frequencies were shown to be critical for the automatic

recognition of clean and noisy speech [Kanedera et al., 1998], and have inspired modulation-

based features for ASR [Hermansky et al., 1992; Hermansky and Fousek, 2005].

Therefore, we evaluate MRASTAmodulation-based features [Hermansky and Fousek, 2005] as

alternative to PLP features, as well as using 3- vs. 5-layer MLPs. The MRASTA features are ex-

tracted from the same 24 mel band energies and frame size as for PLP feature calculation, and

describe first and second temporal derivatives of band energies over 6 different lengths, plus

appended band energies, yielding (2×6+1)×24= 312-dimensional features. Further details

onMRASTA calculation are given in Section 2.5.2, page 18. We evaluate 3- and 5-layerMLPs for

both acoustic feature types, trained on the same conversational telephone speech (CTS) data

as described earlier in Section 5.4.3. The number of hidden units is the same for both feature

types, i.e., 5000 units and 5000–1000–5000 units for the 3- and 5-layer case, respectively.

The dashed line in Figure 5.5 shows the frame-level accuracy obtained with these different

MLPs on the CTS cross-validation data. Using 5 layers increases the accuracy of posteriors,

with a maximum of 68.0% for the 5-layer MLP with MRASTA input features. However, these

gains do not translate to improved intelligibility predictions. Stacked bars in Figure 5.5 show

prediction errors for the three PSCR datasets. There appears to be no consistent trend between

MLP accuracy and prediction performance for intelligibility.
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The lack of improvement could be due to a bias of the MLP to the CTS training material (e.g.,

conversational speech vs. read speech in PSCR) that appears with the higher number of

parameters in the 5-layer case. In order to verify this possibility, we also evaluated MLP

accuracies for the (clean) PSCR reference recordings (36 minutes). Accuracy was computed

through forced Viterbi alignment of posteriors to the phonetic transcription of references,

using the UNISYN pronunciation dictionary [Fitt, 2000]. The results (solid line in Figure 5.5)

follow a similar trend to those for CTS material, suggesting that 5-layer MLPs still generalized

well to the out-of-domain PSCR data. Moreover, accuracies for PSCR references are on average

20% higher, as could be expected for high-quality read speech.

Regarding the effect of feature type, the proposed approach indeed appears to be less sensitive

to the addition of pink noise when MRASTA features are used (plain vs. hatched bars in

Figure 5.5). Nevertheless, the increase in prediction errors for the 2010 dataset remains highly

significant with all hyperparameters tested here (p < 0.01 with Holm-Bonferroni correction).

This result supports our notion that the absence of noisy speech during MLP training causes

the measure to be overly sensitive to noises that have little impact on intelligibility.

More generally, these results demonstrate a fundamental difference between the objectives in

ASR and intelligibility assessment. While ASR seeks to push recognition performance to the

highest possible levels, assessment is concerned with finding measures that mimic human

behavior.

5.6 Discussion and conclusion

We have proposed a novel objective measure of speech intelligibility, based on a distance score

between phoneme posterior probability sequences. Our experiments in Section 5.5 show

that this approach yields realistic results for low bit-rate coding conditions, and achieves a

very good agreement with subjective scores for the PSCR dataset, which includes background

noise, speech coding and acoustic impairment conditions. This result is consistent with the

study in [Soldo, Magimai.-Doss, and Bourlard, 2012], where such a distance score was found

to also correlate with the intelligibility of synthetic speech templates.

The approach proposed here used perceptually motivated features and training data with high

pronunciation variability to estimate phoneme posterior probability sequences. The analysis

in Section 5.5.3 illustrated that other estimators do not necessarily achieve better prediction

performance if they are optimized to predict true as opposed to perceived phonetic content.

Training an MLP on perceived phonetic content (using annotations for noisy speech) was

proposed by Meyer and Kollmeier [2010] to predict intelligibility scores. However, their study

was limited to a single noise type and SNR. Moreover, most available datasets of phonetic

misperceptions focus on speech in noise [e.g., Cooke and Scharenborg, 2008; Tóth et al., 2015].

It is thus unclear whether a model trained on such data would generalize to other degradation

types as found in telecommunications.
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The objective measure proposed in this chapter could be further developed along several

lines:

• An advantage of the proposed approach is that reference and test speech may be differ-

ent realizations of the words from the same speaker, or even originate from different

speakers. This is relevant to the assessment of very low bit-rate speech codecs that may

modify speaker characteristics, but has not been formally evaluated yet.

• Our experiments on the PSCR dataset used known signal positions to assess the intelligi-

bility of rhyme words. In the case that such positions are not known, the approach could

be extended to word-level assessment without performing ASR, using an utterance

verification approach.

• We used a single reference recording to assess the mismatch to listener’s modeled

phonetic knowledge. However, it may be argued that listeners possess more than one

“internal reference” for each word. The approach could thus benefit from using multiple

reference speech recordings, or from replacing reference speech by a statistical model

such as a Kullback-Leibler divergence-based HMM (KL-HMM, introduced in Section 2.7,

page 19), which models lexical and phonetic content [Aradilla et al., 2007].

We address these points in the following chapter. Specifically, we apply and extend the

proposed approach to the assessment of synthetic speech intelligibility. Synthetic speech

may have completely different speech timbre and tempo from natural speech, making it an

interesting evaluation of the approach’s insensitivity to speaker characteristics.
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6 Objective intelligibility assessment of
synthetic speech

In the previous chapter, we presented a novel approach to speech intelligibility assessment,

based on a comparison of phoneme posterior sequences of reference and test speech signals.

A key motivation for this approach was the assessment of low bit-rate codec conditions, where

a spectral feature-based comparison of signals may be sensitive to differences in speech

timbre or tempo that do not affect intelligibility. In this chapter, we evaluate our approach

on synthetic speech, as examples of test signals that have very different timbre or tempo than

natural (human) speech. Synthetic speech intelligibility assessment is also directly relevant

to telecommunications, where recent very low bit-rate codecs (≤ 1 kbps) built on speech

synthesis principles have been proposed [e.g., Lee and Cox, 2001; Cerňak, Potard, et al., 2015].

In order to evaluate its potential for synthetic speech, we first apply our approach with natural

speech recordings as reference, i.e., we compare phoneme posterior sequences of natural

and synthetic speech recordings of the same words to compute an average distance score.

In a second step, we address intelligibility assessment at theword level, in order to obtain a

score that is more comparable to that of human listeners. Specifically, we replace the natural

reference recording by a model of the expected phoneme posterior sequence, generated from

the (known) textual transcription of the sentence. Aligning the model with the phoneme

posterior sequence of the test speech recording provides the word-level segmentation. The

intelligibility of each word can then be assessed individually. In addition, the model can be

used to represent a more general reference than a single natural speech recording.

This chapter is structured as follows: We briefly review existing approaches to intelligibility

assessment of synthetic speech in Section 6.1, and present the overall experimental setup for

this chapter in Section 6.2. The approach of Chapter 5, which consists in comparing synthetic

speech to a natural speech recording, is evaluated in Section 6.3. Based on the results of this

first experiment, we present a modified approach where the reference recording is replaced by

a model, as described in Section 6.4. The results of this second approach are analyzed and

compared in Section 6.5. We conclude with further comments in Section 6.6.
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6.1 Related work and contributions

Text-to-speech (TTS) synthesis can be understood as a two-stage process that consists in

1) converting text to linguistic and phonetic information, e.g., by placing pauses and stress and

using a pronunciation dictionary, and 2) converting linguistic and phonetic information to an

acoustic signal, i.e., bymodeling pitch and duration, and generating the speechwaveform [Van

Bezooijen and Pols, 1990]. Errors or artifacts in either stage may introduce audible distortions

in the synthesized signal. Typical examples are discontinuities between adjacent speech units

in the output of unit-selection TTS systems, or muffled speech due to over-smoothing of

parameters in statistical parametric synthesizers [see, e.g., Zen et al., 2009, for a review].

Due to their different root cause, these distortions do not resemble the ones encountered

with natural speech in traditional telecommunication systems, meaning that synthetic speech

should not be regarded as a degraded version of natural speech, but as a different class of

speech altogether [Norrenbrock et al., 2015]. In addition to overall quality and intelligibility,

assessment of synthetic speech has therefore focused on further quality features like perceived

naturalness, similarity to a target speaker, pleasantness, or pronunciation anomalies [Clark

et al., 2007; ITU-T Rec. P.85, 1994].

The disparity between natural and synthetic speech also means that objective measures de-

signed for natural speech may not be readily applied, as verified by the very limited success of

studies attempting to assess overall synthetic speech quality with traditional measures. For

full-referencemeasures (i.e., where a test signal is compared to a high-quality reference signal),

it was found that traditional measures could not time-align synthetic speech to a natural

speech reference [Cerňak and Rusko, 2005; Hinterleitner, Zabel, et al., 2011]. No-reference

measures, where a test signal is evaluated against a general model of speech production [e.g.,

Malfait, Berger, and Kastner, 2006; Kim and Tarraf, 2007], were also shown to provide unsatis-

factory prediction performance for synthetic speech [Möller, Kim, et al., 2008]. The authors

assumed a failure of these measures to detect distortions that are specific to synthetic speech

as one of the main reasons for this result.

Developers of TTS systems have therefore relied onmeasures for specific artifacts or targets

in speech synthesis. Two prominent examples are measures of perceived discontinuities to

assess the output of unit-selection TTS systems [e.g., Stylianou and Syrdal, 2001; Vepa et al.,

2002] and the mel-cepstral distance [Gray, Jr. andMarkel, 1976] between synthetic and natural

speech as a measure of speaker similarity [Mashimo et al., 2001; Remes et al., 2013].

More recently however, approaches have been proposed that seek to assess the overall quality

or intelligibility of synthetic speech in an integral fashion, i.e., without restriction to specific

artifacts. Falk andMöller [2008] trained a reference HMM on natural speech recordings and

found that the log-likelihood to synthetic speech yielded promising results for the prediction

of overall quality, naturalness and continuity. Other quality features such as “comprehension”1

1“Comprehension” as defined in ITU-T Rec. P.85 [1994] describes listeners’ opinion of whether speech is hard to
understand, without formally verifying the correct recognition of words as in dedicated intelligibility tests.
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were not well predicted, which may be due to the signal features used in their approach (cep-

stral coefficients of a short-time spectrum). Wang et al. [2012] used the decoder of an ASR sys-

tem to analyze the phone graph in synthetic speech, and compared it to multiple templates

of individual phones with multiple context to derive an intelligibility score. Their approach

requires a reference phonetic transcription for the comparison, and achieved high correlation

with subjective intelligibility scores for clean synthetic voices in the Blizzard 2010 dataset.

An entirely ASR-based approach was proposed by Hinterleitner, Zander, et al. [2015], who used

the Google ASR API to compute word error rates (WER) for synthetic speech recordings in the

Blizzard 2011 dataset, and obtained a high correlation to subjective intelligibility scores.

Finally, recent work also evaluated the intelligibility of degraded synthetic speech, e.g., due to

background noise or simulated telephone channels. It was shown that in this case, objective

measures that were developed for natural speech can be applied to assess the impact of

these degradations, e.g., by comparing the original and degraded synthetic signal [Počta and

Beerends, 2015]. Traditional objective measures were further shown to predict intelligibility

gains obtained by modifying synthetic speech in noise, e.g., through spectral or temporal

changes inspired by the Lombard effect [Valentini-Botinhao et al., 2011; Tang et al., 2016].

In summary, objective intelligibility measures (OIMs) developed for natural speech appear to

be suitable to assess the impact of degradations on synthetic speech, but not the intelligibility

of synthetic voices themselves. On the other hand, OIMs specifically developed for synthetic

speech have only been evaluated on signals without further degradations. In the following

sections, we apply the approach from the previous chapter to both problems, i.e., clean and

noise-corrupted synthetic speech assessment. We then present an extension that seeks to

improve predictions, and also addresses the assessment of intelligibility at the word level.

Contribution

R. Ullmann, R. Rasipuram, M. Magimai.-Doss, and H. Bourlard [2015]. “Objective

Intelligibility Assessment of Text-to-Speech Systems Through Utterance Verification”.

In: Proc. Interspeech. Dresden, Germany, pp. 3501–3505.

URL: http://isca-speech.org/archive/interspeech_2015/i15_3501.html

This chapter expands on the above paper, adding results for tasks EH1 (clean speech)

and ES2 (noisy speech) of the Blizzard 2010 dataset, and a more detailed evaluation.

Experiments with the template-based approach include results from our previous

contribution [Ullmann, Magimai.-Doss, et al., 2015].

6.2 Experimental setup

We conduct all experiments in this chapter on recordings of semantically unpredictable sen-

tences (SUS) from the 2010 and 2011 Blizzard challenges [King and Karaiskos, 2010; 2011],
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Acoustic
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Figure 6.1 – Synthetic speech intelligibility assessment through comparison to a natural speech
template. The approach is the same as in Figure 5.1, page 65, except that reference and test
speech at the input are replaced by natural and synthetic speech recordings, respectively.
Symbols are analogous to Section 5.3, with ai and b j acoustic feature vectors and yi and z j

phonemeposterior probability distributions at natural and synthetic speech time index i and j ,
respectively.

which were synthesized with 17 and 12 different text-to-speech (TTS) systems, respectively.

Both the 2010 and the 2011 challenges also include natural speech recordings from a profes-

sional voice talent for all sentences. Additionally, the 2010 Challenge analyzed the intelligibility

of natural speech and 12 TTS systems in different levels of speech-shaped noise, resulting in a

total of three synthetic speech datasets (two clean and one noisy dataset) for our experiments.

Further information about the Blizzard datasets is given in Section 2.4.3, page 15.

The experiments in this chapter use the same setup as in Section 5.4.3 to analyze the phonetic

content of speech signals, i.e., 39-dimensional PLP acoustic features and a 3-layer MLP to

estimate posterior probabilities for 44 English phonemes and silence. In particular, the

acoustic feature extraction, as well as the Conversational Telephone Speech (CTS) data used

for MLP training, are limited to the narrow telephone band (< 4 kHz bandwidth), whereas

speech recordings in the Blizzard datasets are provided with a bandwidth of up to 24 kHz.

Since bandwidths beyond the traditional telephone band provide almost no intelligibility

benefit [Côté and Berger, 2014; Fernández Gallardo andMöller, 2015], we do not consider the

information in this extra frequency range for our experiments.

6.3 Template-based intelligibility assessment

As a first experiment, we apply the method presented in Chapter 5 without further modifica-

tions, i.e., synthetic speech is compared to the natural speech recording of the same words.

This amounts to treating synthetic speech as a distorted version of the reference recording,

even though both recordings are different realizations of the same words. In this sense, the

natural reference recording is just an example or a template of a pronunciation of those words.

The steps for template-based intelligibility assessment are outlined in Figure 6.1. Since natural

and synthetic speech have different temporal structure, the duration of individual words as

well as the overall lengths I and J of posterior sequences need not be the same, i.e., I � J .
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Figure 6.2 – Prediction of per-voice intelligibility through comparison to a reference template.
Letters identify different voices, with “A” for natural speech and “B”–“V” referring to different
TTS systems in the 2011 and 2010 Challenge. Error bars indicate 95% confidence intervals of
subjective scores. Blue lines show the mapping function used to calculate the metric rmse∗3rd.

Therefore, we apply dynamic timewarping (DTW)2 to align both sequences, and use the global

distance score DDTW as defined in (5.7), page 66, for intelligibility assessment. Due to the

DTW path constraints in (5.6), the alignment may be erroneous if segments in the reference

signal are more than twice as long as in the test speech recording. In particular, differences in

leading and trailing silence lengths can cause the alignment to fail. Thus we adjusted leading

and trailing silences in all recordings to the same lengths before applying our approach.3

Figure 6.2 compares the per-voice means of average DTW distances to subjective intelligibility

scores. Letters represent different voices as referred to in [King and Karaiskos, 2010; 2011],

with “A” denoting natural and “B”–“V” synthetic speech, respectively. Since natural speech

recordings are used as references, the intelligibility of system “A” recordings is only assessed

for the noise-corrupted conditions in the right panel of Figure 6.2. The resulting performance

metrics are satisfactory overall, indicating that the method can generalize to synthetic speech.

Looking first at the noisy speech conditions in the right panel of Figure 6.2, the overall trend of

natural and synthetic speech intelligibility in noise is well predicted. However, some outliers

can be observed at negative SNRs, with the proposed approach failing to predict the higher

intelligibility of TTS system “N” compared to natural speech (system “A”). Since the natural

system “A” recordings are used as references, there are no pronunciation variabilities between

reference and test speech, leading to an offset to synthetic voices.

2The DTW implementation was carried out by Mr. Guillem Quer during his internship at Idiap.
3One incompletely synthesized sentence from system “V” in Blizzard 2010 was excluded due to its short length.
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A further offset can be seen for system “H” recordings in both clean and noisy conditions in

Blizzard 2010.4 Speech synthesized with this system is only slightly faster overall (1.2×) than
the system “A” reference, but informal listening shows that the speech tempo varies strongly

within sentences, with abrupt transitions between phonemes. The DTW path constraints and

the speech tempo in the reference template imposeminimum durations on phonemes in each

sentence, penalizing fast voices. As a result, clean recordings of system “H” are evaluated with

an average distanceDDTW greater than that of natural speech at −10 dB SNR, even though the

latter is much less intelligible.

Finally, in the 2011 data all subjective confidence intervals intersect with themapping function

for the objective measure, yielding a prediction error rmse∗3rd = 0 (left panel of Figure 6.2).

In this case, the intelligibility of clean synthetic speech is confined to a narrow range that

approaches the variability in listener scores. The rmse∗3rd also remained zero with confidence

intervals computed for the subset of native, paid listeners, thus we decided to keep using the

complete set of listener data, as done in [King and Karaiskos, 2010; 2011].

6.3.1 Analysis of significant differences

The narrow range of intelligibility differences, combined with the length of 95% confidence

intervals of subjective scores, means that the rmse∗3rd is not an insightful performance metric

for objective measures of clean synthetic speech intelligibility. However, this does not imply

that all TTS systems are comparable, with small but significant differences being revealed

through paired comparisons of individual listener scores.

Table 6.1 shows the results of paired Wilcoxon signed-rank tests in [King and Karaiskos, 2011],

with squares indicating significant subjective differences between pairs of systems. For each

pair with a significant difference, we evaluate whether the rank-order of objective scores per

voice agrees with that of listeners. As shown by green squares in Table 6.1, the rank-order

is predicted correctly for all 14 significant differences. Further significant differences with

system “A” are grayed out, since objective scores for clean natural speech are not available

with our template-based approach.

Repeating the same evaluation for the 2010 Blizzard data, we find that the proposed approach

predicts correct rank-orders for 24 out of 27 and 50/53, 45/54, 33/37 significant differences

in the clean and the three noisy conditions, respectively. On average, the template-based

approach predicts rank-orders correctly for 91% of significant pairwise differences across the

three datasets. In determining significant differences, the organizers of the Blizzard Challenge

used a significance level of p < 0.01 with Bonferroni correction, which is more conserva-

tive (i.e., with a lower probability of false positives, at the risk of more false negatives) than the

Holm-Bonferroni method used for other evaluations in this thesis. Nevertheless, we chose to

use these values so that other authors may perform comparable evaluations on their results.

4TTS identifiers refer to different systems in the 2010 and 2011 Blizzard challenges and are thus not comparable.
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Table 6.1 – Significant intelligibility differences between voice pairs in the 2011 Blizzard data.
� indicate differences where the rank-order of average subjective and objective scores agree
(14 out of 14). Results for system “A” are not available with the template-based approach.
Significant differences reproduced with permission from [King and Karaiskos, 2011].

A B C D E F G H I J K L M

A � � � � � � � � � � �
B � � � � � �
C � � � �
D � � �
E � �
F � � �
G � � � �
H � �
I � � � � � � �
J � � �
K �
L �
M � � �

In summary, these results show that a comparison of phoneme posterior sequences can be

used to assess the intelligibility of synthetic speech. However, the previous analyses also

indicated possible issues with the use of a natural speech template as reference, particularly

with respect to differences in pronunciation and tempo to synthetic speech.

A further issue that we have not discussed so far is the type of speech material used for

assessing intelligibility. The Blizzard Challenge used recordings of semantically unpredictable

sentences (SUS), where listeners transcribe any words that they understand in the signal. This

is in contrast to the rhyme tests previously used in Chapter 5, where the focus was on a single

word. As a result, distortions that are concentrated on a single word and those that are spread

throughout the sentence (e.g., an isolated noise burst vs. stationary noise) could result in the

same average distance scoreDDTW, even though they would not affect word-level intelligibility

in the same way.

In the next section, we present an extension to our approach that seeks to address these issues.
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6.4 Model-based intelligibility assessment

6.4.1 Motivation

As argued in Chapter 5, intelligibility impairments can be seen as cases of mismatch between

the test signal acoustics and listeners’ phonetic and lexical knowledge. The rhyme tests

used in the previous chapter mostly focused on phonetic knowledge, in that they required

listeners to recognize single words given a list of alternatives that differed in one consonant.

In contrast, the recognition of semantically unpredictable sentences (SUS) requires both

phonetic and lexical knowledge to identify speech sounds and match their sequence to words

from a listener’s vocabulary. Lexical knowledge is also relevant in the context of synthetic

speech assessment, where TTS systems may produce varying pronunciations for a given input

text. These pronunciations may differ both temporally and phonetically from a given natural

speech template, yet still be valid and intelligible.

One way of accounting for pronunciation variability would be to use multiple templates of

different natural speech realizations as references. Themethod we propose in this section is to

replace reference templates by a model that is trained onmultiple natural speech recordings.

The model represents the expected sequence of phoneme posteriors for a given input text,

and can include several alternative pronunciations when those exist. Training the model on

multiple speech recordings can also help produce a more general or average representation of

reference phoneme-level content.

Finally, since words are clearly separated in text, generating the model from input text also

provides knowledge of word boundaries in the posterior sequence, allowing to assess intelligi-

bility separately for each word. Specifically, a distance or uncertainty measure between the

synthetic speech signal and the model can be computed for each word, and thresholded to

determine which words can be recalled successfully. Our notion is that the computed word

recall in percent can be directly related to the word accuracy score of listeners.

6.4.2 Proposed approach

Our approach uses a Kullback-Leibler divergence-based Hidden Markov Model (KL-HMM,

introduced in Section 2.7, page 19) to generate the sequence of expected phoneme posteriors

for a given TTS input text. This reference sequence is aligned with the sequence from the

synthetic speech signal, and the mismatch between the two is evaluated for each word.

The architecture of the proposed objective intelligibility measure is shown in Figure 6.3 and

consists of the following parts:

Synthetic speech—A TTS system takes as input a sequence of wordsW = {w1, . . . ,wm , . . . ,wM }

and converts them to speech, with M the total number of words in the input text.
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Figure 6.3 – Architecture of the proposed objective TTS intelligibility assessment system.
Gray boxes indicate the type of feature across the top row of the flowchart, with “posteriors”
for phoneme posterior probabilities.
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Acoustic feature extraction—An acoustic feature sequence B = {
b1, . . . ,b j , . . . ,bJ

}
is extracted

from the synthetic speech signal produced by the TTS system. The features can be, e.g., cep-

stral coefficients of a short-time spectrum.

Test posterior sequence estimation — The acoustic feature sequence B is converted into a

test sequence of estimated phoneme posterior probabilities Z = {
z1, . . . ,z j , . . . ,zJ

}
using an

Artificial Neural Network (ANN), where

z j =
[
P
(
c1 | b j

)
, . . . ,P

(
cK | b j

)]� =
[
z1j , . . . ,z

K
j

]�
, (6.1)

with
∑

k z
k
j = 1 and ck the kth phoneme class out of k ∈ [1,K ] phoneme classes.

Reference posterior sequence estimation—The expected sequence of phoneme posterior prob-

abilities for the wordsW is modeled as a sequence of KL-HMM states. In a KL-HMM, each

state i represents a subword unit (e.g., a phone or a context-dependent phoneme), and is

parameterized by a categorical distribution yi =
[
y1i , . . . , y

k
i , . . . , y

K
i

]�
. The state distribution for

each subword unit is learned during a prior training step, using phoneme posterior probabili-

ties estimated by an ANN as feature observations, and a pronunciation dictionary. The trained

KL-HMM system and the pronunciation dictionary are then used to generate the sequence of

subword unit states for a given word.

Alignment —The test sequence Z is aligned to the KL-HMM through Viterbi alignment, with

the distance

RKL
(
yi ,z j

)= K∑
k=1

zkj log

(
zkj

yk
i

)
(6.2)

between the test posterior feature z j and the HMM state distribution yi as the local score. The

alignment provides the segmentation of the test sequence Z at the subword level.

Utterance verification—An uncertainty measureC (wm) is computed for each word wm . The

uncertainty measure is based on the local scores calculated in the alignment step, normalized

by the number of frames in each subword state and by the number of subword states in each

word, similar to the double normalization approach for hybrid HMM/ANN systems [Bernardis

and Bourlard, 1998],

C (wm)= 1

Vm

Vm∑
v=1

1

evm −bvm +1

evm∑
j=bvm

RKL(yivm ,z j ) (6.3)

with ivm the v th subword state in word wm , bvm and evm the begin and end indices of the test

frames aligned with subword state ivm , and Vm the number of subword states for word wm ,

respectively.
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6.4. Model-based intelligibility assessment

Calculation of word recall — The word recall is calculated by comparing the uncertainty

measure C (wm) of each word to a decision threshold τ. The value of τmay be chosen such

that the calculated word recall correlates best with intelligibility scores, e.g., using a small

development set of subjectively scored synthetic speech recordings.

Alternatively, the threshold τmay be selectedwithout subjectively scored data, by choosing the

value that best separates two distributionsH0 andH1 of uncertainty scores. TheH0 hypothesis

means that the expected word is present in the signal, whereas H1 means that the TTS system

synthesized a signal that does not agree with the phonetic and lexical knowledge for the word,

as modeled by the KL-HMM.

We obtain uncertainty scores for the H0 distribution from speech signals with known high

intelligibility, e.g., undistorted natural speech. Uncertainty scores for the H1 distribution can

be obtained by distorting the signals, or —more simply— by usingwrong transcriptions for

utterance verification. The wrong transcription can be a word that sounds similar to the true

word or a completely different word, depending on the type of intelligibility test for which

we are designing the objective measure. We will compare both approaches to selecting τ in

Section 6.5.1.

6.4.3 KL-HMM training

The KL-HMM system is trained on the system “A” natural speech recordings and models

crossword context-dependent phonemes. Specifically, each crossword context-dependent

phoneme is modeled with three HMM states, resulting in a minimum duration constraint

of three frames for each phoneme. The 2010 and 2011 Blizzard Challenge used different

semantically unpredictable sentences (SUS), meaning that the corresponding natural speech

recordings also cover different phoneme contexts within and across words. We therefore

trained twodifferent KL-HMMsystems (one for eachChallenge year), using 100 SUS recordings

of natural speech in the respective Challenge data (4.6 and 4.8minutes, respectively). Given the

very low amount of training data, some phoneme contexts will be observed very rarely or not

at all. Therefore, a state tying approach is used to share data between similar states [Imseng,

2013, Chap 4.6].

The word pronunciations needed for training the KL-HMM, as well as for generating the

reference sequence for a given input text, are looked up in the CMU pronunciation dictio-

nary [Carnegie Mellon Speech Group, 2014]. Further details on KL-HMM training are given in

Section 2.7 of the Background chapter, page 19.
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Figure 6.4 – Relation between word recall and word accuracy for different decision thresholds,
using a development set of five SUS recordings per TTS system. Lines show the linear fit
between both measures at the threshold values τ indicated on colorbar ticks. For clarity, data
points for TTS systems are shown for the best threshold value only.

6.5 Results

6.5.1 Threshold selection

We compute uncertainty scoresC (wm) for the words in the SUS recordings of each voice in

the Blizzard data, using the steps described in Section 6.4.2. The word recall per recording is

obtained by comparing these scores to a decision threshold τ. Our notion is that the word

recall is directly related to listener’s word accuracy (WA). However, word recall describes

the verification of expected words with the model, whereas listeners’ WA scores describe the

recognition of unknownwords. Therefore, we expect word recall to be in a higher numerical

range thanWA. Since the KL-HMMs for the assessment of Blizzard 2011 and 2010 conditions

are trained on different speech recordings, we derive separate thresholds for each model.

Selection with a development set

The relation between objective recall and subjective word accuracy (WA) is shown in Figure 6.4.

We use the first five SUS recordings that listeners rated for each TTS system in the 2011 and

2010 Blizzard Challenge, respectively, as development set to find a threshold value τ.
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Figure 6.5 – Selection of the decision threshold without development data, using two distribu-
tions of uncertainty scores. The distributions are obtained from uncertainty scoresC (wm) for
words in natural speech recordings with correct (H0) and wrong (H1) transcriptions, respec-
tively. The threshold is selected such as to minimize the overlap of both distributions.

Specifically, we select the value of τ that results in the lowest prediction error rmse1st,

rmse1st =
√√√√ 1

N −2

N∑
i=1

(
si −o′

i

)2 (6.4)

with o′
i the objective word recall after linear mapping and si the subjective WA score for the

i th TTS system, respectively. For simplicity, the prediction error in (6.4) is computed without

consideration of subjective confidence intervals.

Lines in Figure 6.4 show the linear mapping from recall to WA for different values of τ. At low

threshold values (bright lines), the word recall is in a lower numerical range than subjectiveWA

scores, and the prediction error is also larger. As the threshold is increased to yield recall values

in the higher ranges that we expect, the prediction error improves too (dark lines). The smallest

prediction error on the two development sets is obtained with decision thresholds τ2011dev = 1.22

and τ2010dev = 1.28, respectively, yielding word recall values between 87 and 100%.

Selection with two distributions of uncertainty scores

As an alternative to using subjectively scored data, we derive decision thresholds τ by compar-

ing two distributions of uncertainty scoresC (wm) as shown in Figure 6.5. The H0 distributions

for either Challenge year represent uncertainty scores for words in 100 system “A” recordings,

which were pronounced by a professional voice talent and are highly intelligible. H1 distribu-

tions are obtained with the same recordings, but using transcriptions for different words to

produce an intentional mismatch with the KL-HMM reference. Specifically, each word in the

transcription is substituted at randomwith a different word from the 100 sentences.
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Figure 6.6 – Prediction of per-voice intelligibility through utterance verification, using decision
thresholds τdev from development data. Letters identify different voices, with “A” for natural
speech and “B”–“V” referring to different TTS systems in the 2011 and 2010 Challenge. Error
bars indicate 95% confidence intervals of subjective scores. Blue lines show the mapping
function used to calculate the rmse∗3rd. Note the change in axes scales between panels.

We select the threshold value that minimizes the overlap of the fitted Beta distributions for

each hypothesis. The resulting decision thresholds τ2011hypo = 0.99 and τ2010hypo = 1.20 are close to

the values obtained with the development sets, but required no subjectively scored data.

6.5.2 Prediction performance

Figure 6.6 shows the objective word recall computed with the proposed approach, using the

thresholds τdev derived from the development sets. The utterance verification approach allows

to also assess the intelligibility of clean natural speech recordings, denoted system “A” in the

left and center panel of Figure 6.6. However, we still computed the performance metrics on

top of these two panels without considering system “A”, in order to allow a comparison to the

earlier results of the template-based approach. As observed in Section 6.3, the performance

metric rmse∗3rd shows its limitation when evaluating predictions for clean synthetic speech.

However, the metric reveals a significant reduction in prediction error for the noisy synthetic

speech conditions (an overview of all results will be given on page 92).

Looking first at results for the clean and noisy Blizzard 2010 conditions (center and right panel,

respectively), we can observe that the faster speech of system “H” is no longer penalized

compared to other voices. This improvement over the template-based approach indicates

that the KL-HMM reference provides more flexibility in aligning speech at different tempos.
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Figure 6.7 – Prediction of per-voice intelligibility through utterance verification, without thresh-
olding. Letters identify different voices, with “A” for natural speech and “B”–“V” referring to
different TTS systems in the 2011 and 2010 Challenge. Error bars indicate 95% confidence inter-
vals of subjective scores. Blue lines show the mapping function used to calculate the rmse∗3rd.

The right panel of Figure 6.6 also shows that the natural system “A” recordings are no longer

favored over synthetic speech, now correctly predicting the higher intelligibility of system “N”

recordings at negative SNRs. Both results can be attributed to the better ability of the KL-HMM

system to accommodate pronunciation variability.

Contrary to our earlier observations on the relation between word recall and subjective word

accuracy, the recall for the noisy speech conditions in the right panel of Figure 6.6 is in a

lower numerical range than subjective scores. This may be due to the used threshold τ, which

was selected with clean development data, or to a more systematic issue with the proposed

approach. In order to clarify this point, we computed results without thresholding, using the

average uncertainty of words per sentenceC (w)= 1
M

∑M
m=1C (wm) as the objective score.

The resulting predictions are shown in Figure 6.7. Comparing clean vs. noisy conditions (left

and center vs. right panel in Figure 6.7, respectively), we can see that clean conditions with

subjective WA scores of ∼ 70% have almost half the average uncertainty scoreC (w) of com-

parable noisy conditions. This points to a general discrepancy in the way that the proposed

approach assesses different distortion types. Specifically, intelligibility impairments due to

irregularities in pronunciation or prosody appear to be underestimated compared to those

that are due to noise. This can also be seen with the 0 dB SNR conditions, where the spread of

data points around the mapping function becomes larger (bright letters in the right panels

of figures 6.6 and 6.7). At this SNR, intelligibility impairments inherent to the voices become
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Chapter 6. Objective intelligibility assessment of synthetic speech

Table 6.2 – Performance of proposed approaches on three subsets of the Blizzard Challenge.
“2010c” and “2010n” refer to clean and noisy speech data in the 2010 Challenge, respectively.
Best performances are highlighted in boldface for both the set of TTS systems (top section) and
all voices (bottom section). Connections with asterisks (—*— /—**—) indicate significant
differences between prediction errors (p < 0.05 / p < 0.01 with Holm-Bonferroni correction).

Approach Correlation |R| Error rmse∗3rd [%WA] Correct rank-orders

2011 2010c 2010n 2011 2010c 2010n 2011 2010c 2010n

TTS systems only

Template-based
distanceDDTW

0.897 0.679 0.814 0.00 0.38 9.11 100% 89% 86%

Utt. verification,
uncertaintyC (w)

0.724 0.619 0.931 0.00 0.52 4.88 93% 78% 87%

Utt. verification,
recall with τdev

0.939 0.720 0.869 0.00 0.52 4.90 100% 85% 78%

Utt. verification,
recall with τhypo

0.821 0.720 0.857 0.00 0.51 6.41 100% 85% 73%

TTS systems + natural speech

Template-based
distanceDDTW

0.811 9.86 89%

Utt. verification,
uncertaintyC (w)

0.790 0.654 0.921 0.00 1.02 5.56 96% 86% 88%

Utt. verification,
recall with τdev

0.891 0.693 0.863 0.00 1.08 5.52 100% 83% 81%

Utt. verification,
recall with τhypo

0.753 0.715 0.851 0.13 1.05 6.78 92% 88% 78%

**
**

**
**

**
**

more apparent, but the proposed approach underestimates their importance relative to noise.

Since the KL-HMM does not enforce durational constraints other than the minimum of

three frames per phoneme, we hypothesize that temporal artifacts in synthetic speech, e.g.,

disfluencies or concatenation errors, are insufficiently penalized with this type of reference.

Informal listening also suggests this to be a reason for the clear offset between natural speech,

i.e., system “A”, and synthetic voices in clean conditions (left and center panel in figures 6.6

and 6.7), where the prosody of the professional voice talent may have helped listeners under-

stand certain sentence structures or words.

The performance of all proposed approaches is summarized in Table 6.2. Performancemetrics

are shown both for synthetic speech conditions only (top section), allowing a comparison to

the template-based approach of Section 6.3, and for all voices including system “A” (bottom
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6.6. Discussion and conclusion

section). Given the frequent saturation of the metric rmse∗3rd to zero, the last column header

in Table 6.2 also evaluates the proportion of correctly predicted rank-orders, relative to the

number of significant differences in subjective scores, as described in Section 6.3.1.

For both clean speech datasets (denoted “2011” and “2010c”), the template-based distance

score DDTW provides the best performance in terms of prediction error and correct rank-

orders (top section of Table 6.2). This result can be explained by the relevance of temporal

structure at high intelligibility levels, which is implicitly modeled with the natural speech

reference template and the path constraints for DTW alignment. Nevertheless, the pro-

posed utterance verification approach achieves a performance that is very close to that of the

template-based distance measure.

For the noisy speech data (denoted “2010n”), the utterance verification approach yields a

highly significant reduction in prediction errors over the template-based measure (top and

bottom sections of Table 6.2). As discussed earlier, we attribute this gain to the more flexible

alignment of the KL-HMM reference to speech with different pronunciations or tempo. The

impact of these pronunciation variabilities on intelligibility presumably becomes secondary

at SNRs ≤ 0 dB, and is thus overestimated with the template-based approach.

Regarding the effect of thresholding in the utterance verification approach (i.e.,C (w) vs. the

recall with τdev), it appears that thresholding was beneficial for assessing clean speech, but

not for noisy conditions. Given the observed discrepancy between uncertainty scoresC (wm)

for clean and noisy conditions, thresholds τ derived from clean development data may not be

appropriate for assessing noise-corrupted speech. Moreover, the benefit for clean speech is in

line with the localized nature of speech synthesis distortions, which only affect the recall of

the relevant word when thresholding, instead of a distance score for the entire sentence.

Finally, results obtained with either threshold τdev and τhypo are quite similar, although (unsur-

prisingly) performance with τdev is higher overall.
5 This implies that the proposed approach

could indeed be used to assess data without subjective scores for threshold calibration.

6.6 Discussion and conclusion

We have shown that a comparison of phoneme posterior probability sequences can be used to

assess the intelligibility of both clean and degraded synthetic speech. This result complements

our findings in Chapter 5, where the same approach was shown to predict the intelligibility

of natural speech in low bit-rate coding and background noise conditions. The proposed

approach thus provides a highly versatile method for assessing the intelligibility of speech,

based on a measure of mismatch to listeners’ phonetic and lexical knowledge, as modeled by

a reference.

5The highly significant differences for the 2011 dataset in the bottom section of Table 6.2 can be seen as artifacts
of the F-test of equal variances, where any difference to a prediction error of zero will be evaluated as significant.
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Chapter 6. Objective intelligibility assessment of synthetic speech

Our experiments in this chapter evaluated two different types of reference, one consisting of a

highly intelligible natural speech recording of the same words, and one using a model that

was trained onmultiple such recordings. A motivation for the latter reference type is that it is

more flexible with regard to pronunciation variabilities at the phonetic and temporal level,

as may be expected with different realizations of (synthetic) speech. Given the availability of

a sentence transcription, the use of a KL-HMM reference also allows to assess intelligibility

at the word level. The resulting word recall provides a measure that is consistent with the

subjective evaluation of sentence intelligibility, and is considerably simpler to implement than

a full-fledged automatic speech recognition (ASR) system. While the subjective assessment of

intelligibility requires specially designed speech material to reduce context (e.g., semantically

unpredictable sentences or rhyme words), our objective measure is not limited to particular

sentence structures.

On the Blizzard Challenge data, our evaluations showed that either reference type can provide

satisfactory predictions of clean and noisy synthetic speech intelligibility. However, we also

observed a discrepancy or offset when comparing objective scores between datasets, with the

template- and the model-based approach respectively over- and underestimating the impact

of speech synthesis distortions relative to that of noise. It is thus likely that either approach

would yield worse prediction performance for synthetic speech in moderate background

noise (i.e., SNRs > 0 dB), where intelligibility impairments would not be dominated by a single

distortion type.

Much of the analysis in this chapter was more qualitative than quantitative, due to the limita-

tions of standard performance metrics. In particular, the modified prediction error rmse∗3rd
cannot reveal performance improvements when differences between conditions become as

small as the variability in listener scores. An evaluation at the file level (i.e., predicting the

intelligibility of individual TTS recordings) was not feasible due to the “Latin square” design

used by the Blizzard Challenge organizers, where each recording is rated by a very small

subset of listeners, resulting in per-file 95% confidence intervals of up to 30%WA. However,

the availability of scores from multiple listeners still allows to reveal small but significant

differences between TTS systems. These subjective scores thus hold higher statistical power

than an objective score modeling a single average listener.

In the next chapter, we review the overall conclusions of this thesis, and discuss possible ways

of addressing the limitations we have found, as well as other avenues of research.
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7 Conclusions and directions for future
research

7.1 Conclusions

We have studied the objective assessment of two quality features in speech telecommuni-

cations: perceived background noise intrusiveness, and speech intelligibility. With regard

to background noise perception, our collected data revealed that listeners assess noise in-

trusiveness by rating the noise signal alone, without considering its relation to foreground

speech, or particular expectations to the noise itself. Specifically, signal bandwidth and the

presence of Lombard speech had no significant effect on noise intrusiveness scores, whereas

higher presentation levels resulted in significantly higher perceived intrusiveness, despite

unchanged SNRs to speech. These results imply that listeners were capable of assessing noise

independently of speech, as instructed in the ITU-T Rec. P.835 test method, and thus highlight

the importance of considering the exact task that is given to listeners before conducting a

subjective test.

Building on these results, we have proposed to objectively assess noise intrusiveness by analyz-

ing the noise signal alone. We have shown that a sparse representation of noise, computed in

a basis of cochlear filter shapes, models several effects of noise perception, such as the effects

of sound pressure, noise type and spectral distribution. This representation only exploits

knowledge of physiologically measured filter shapes, but does not require training data from

subjective tests. When aggregated over the length of the analyzed noise signal, the number of

filters or atoms in this representation provides a measure of noise intrusiveness that shows

very good agreement with subjective scores. Moreover, the obtained prediction performance

remains stable in case of deviations from the original hyperparameter values. Together with

the analyzed interdependency of speech distortion, noise intrusiveness and overall quality

scores, these results provide a comprehensive foundation for the objective assessment of noise

reduction in telecommunications.

With respect to speech intelligibility, we have shown that a comparison of phoneme posterior

probability sequences between reference and test speech can serve as a basis for the assess-

ment of a wide range of distortion types. Specifically, we have demonstrated good agreement
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with subjective intelligibility scores for speech distorted by background noise, acoustic impair-

ments and low bit-rate coding, as well as with synthetic speech. The proposed approach is

consistent with the subjective assessment of speech intelligibility, in that it evaluates the mis-

match to listeners’ modeled phonetic and lexical knowledge, but seeks to ignore differences

at the spectral or temporal level that are more related to speaker characteristics. This latter

insensitivity was partly achieved using an artificial neural network (ANN) that was trained

on conversational telephone speech from several thousand speakers. However, it was also

shown that training ANNs to provide more accurate estimations of phonetic content does not

necessarily yield more accurate intelligibility predictions. Furthermore, the absence of noise

during ANN training also appears to result in an underestimation of intelligibility with low

noise levels.

In the case of synthetic speech, switching from a reference speech template to amodel appears

to provide even greater insensitivity to speaker characteristics especially at the temporal level,

while also allowing for an automatic segmentation of individual words in a test speech signal.

However, our analysis indicates that the allowable degree of temporal variability can be hard

to model, and that the proposed approach may not properly predict the relative importance

of different impairments (i.e., background noise vs. speech synthesis distortions).

7.2 Directions for future research

The work in this thesis could be further developed along several lines:

• The objective assessment of noise intrusiveness in Chapter 4 only considered noise

during speech pauses. This was motivated by the fact that listeners exclusively focused

on the noise signal for their noise intrusiveness rating, and that foreground speech

may mask background noise. However, strong fluctuations in noise level may still be

perceptible during speech activity, and thus impact listener scores. Such fluctuations

could be detected by exploiting the availability of a reference speech signal to perform

a spectral subtraction of foreground speech, and recover the noise signal even during

active speech segments.

• Our evaluation in Chapter 4 showed that the proposed spike density feature significantly

outperforms or compares to a traditional loudness-based feature. On the other hand,

loudness estimations are based on low-level models of the inner ear that have been

extensively studied and validated for a wide range of sounds. This feature can therefore

be applied confidently for new applications and unseen conditions. By contrast, our

novel feature has only been validated for environmental noises in the very specific

context of noise intrusiveness in telecommunications. In particular, this context implied

a restricted bandwidth and dynamic range of noises. There is thus a need to further

link low-level acoustic phenomena in hearing with the higher-level perceptual model

developed here.

96



7.2. Directions for future research

• The ANNs used for intelligibility prediction in chapters 5 and 6 were trained to classify

English phonemes, making the proposed approaches language dependent. While this

limitation could be addressed by training ANNs to classify multilingual phones, the

inclusion of finer phonetic categories may also result in an objective measure that is

sensitive to minor acoustic variations that are not relevant to intelligibility.

• Our experiments on synthetic speech in Chapter 6 highlighted the importance of min-

imum duration constraints for intelligibility assessment. Such constraints could be

taken into account by combining template- andmodel-based references. The use of a

reference template could also help detect pronunciation errors in synthetic speech that

are due to errors or omissions in pronunciation dictionaries, and which could not be

detected with the KL-HMM reference.

• An advantage of the KL-HMM reference proposed in Chapter 6 is that it can be used

to generate a reference sequence of phoneme posterior probabilities for an arbitrary

text input, including words that were not part of the training data. This has not been

evaluated in this work, but may be particularly useful for synthetic speech assessment,

where the correct synthesis of a very large number of sentences could be verified.

• Finally, our evaluation of objective scores in Chapter 6 also revealed limits of standard-

ized performance metrics, especially for datasets with small differences in subjective

scores between conditions. While the availability of subjective ratings frommultiple

listeners still allowed to determine significant differences between conditions, a sin-

gle objective prediction does not offer comparable statistical power. This could be

addressed by modeling multiple listeners, using a distribution of different decision

thresholds τ in our proposed approach, e.g., to model listeners with different levels of

linguistic knowledge or listening environments.
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A Dataset descriptions

This section provides technical details on the design, recording, processing and subjective

evaluation of speech recordings in the “PANDA” datasets presented in Chapter 3, page 23.

A.1 PANDA dataset designs

A.1.1 Sentence material and corresponding background noise signals

Table A.1 lists the 30 sentences recorded for the three datasets, with corresponding background

noises used for eliciting the Lombard effect. All noises were drawn from ETSI EG 202 396-1

[2011], with the exception of (self-generated) pink noise.

Table A.1 – Sentences and noises used while recording speech for the three PANDA datasets.
The same noise was used for consecutive groups of three sentences.

Sentence (in French) Noise type

Est-ce qu’il reste des places de parc dans ta rue? Crossroad

Guillaume est avec moi, Virginie vient en bus.

Nous allons prendre des boissons au supermarché.

Hélas, notre train a pris un important retard. Train

Nous roulons actuellement à vitesse réduite.

Le trajet se prolongera d’une quinzaine de minutes.

Dépêche-toi de venir à l’apéro de Christophe. Schoolyard

Il va bientôt recevoir son cadeau d’adieu.

Magalie lui a spécialement préparé une tarte.

Continued on next page
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Table A.1 – continued from previous page

Sentence (in French) Noise type

Nous aurons du retard à la fête de mariage. Car

Notre GPS n’a pas indiqué le bon chemin.

Nous avons pris la route du lac dans le mauvais sens.

Je suis allé dîner avec Olivier et Chantale. Cafeteria

Nous sommes partis en avance pour éviter la queue.

Nous continuerons le travail cet après-midi.

Je viens de sortir à l’instant de mon bureau. Office

Sa formation est encore loin d’être achevée.

Rappelez-moi demain à huit heures s’il-vous-plaît.

Ils font du sport sur le gazon, près du grand chêne. Road

Céline et Marc devraient nous rejoindre d’ici une heure.

Ils ont dit qu’ils apporteraient un nouveau jeu de cartes.

Est-ce qu’il nous reste du fromage râpé à la maison? Pink

Les pizzas fraîches sont en action, j’en ai pris cinq.

Il n’y a plus de feuilles de basilic en vente là-bas.

Les gens profitent de l’entracte pour venir discuter. Pub

Les acteurs ont bien joué cette ancienne comédie.

Les billets sur internet peuvent être achetés plus tôt.

Je ne suis pas encore arrivé à la maison. Jackhammer

La conférence a dépassé l’horaire prévu.

Les organisateurs n’espéraient pas ce succès.

A.1.2 Technical details of the recording setup

All speech recordings took place in the psychoacoustic chamber of the Laboratory of Electro-

magnetics and Acoustics (LEMA) at EPFL. The following equipment was used:

Microphone Schoeps MK2microphone capsule (omnidirectional, free sound field, flat fre-

quency response) with CMC 5-Umicrophone amplifier and foam pop filter.
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Sound card MOTU 896 mk3 FireWire sound card with 48 V phantom power. A separate 48 V

phantom power source was used for the Lombard speech recordings. The microphone

signal was digitized with a 48 kHz sampling rate and 24-bit resolution.

Headphones Two pairs of Beyerdynamic DT 770 Pro closed headphones were used, one

for monitoring, and one for playing back noises to speakers while collecting Lombard

speech recordings.

Computer PC running Windows 7 and Adobe Audition 3, connected to the sound card via a

FireWire cable. Recordings were stored as uncompressed, mono WAV files with a 48 kHz

sampling rate and 32-bit resolution.

The first recording session (regular speech) took place on 2012-06-13. Speakers kindly accepted

to be “paid” by being offered a slice of fruit pie. The second session (Lombard speech) took

place between 2012-06-19 and 2012-06-21 with the same speakers. Speakers were paid CHF 40

for their participation in this second session.

For Lombard speech recordings, a TEAC analog mixer was used to combine the speech and

background noise signals. More specifically, the microphone signal was fed back to the

headphones worn by the speakers, such as to avoid an “earplug” effect due to the closed

shape of the headphone earpiece. The background noises used to provoke the Lombard effect

were thenmixed over this signal. In order to get accustomed to wearing closed headphones,

speakers were first asked to speak all sentences with the headphones on. During this first

round, no noises were played back on the headphones. Speakers were asked to position

themselves at a distance to the microphone (typically 10–20 cm) such as to achieve a sound

level of the feedback signal equivalent to hearing themselves when not wearing headphones.

In a second round, the speakers pronounced all sentences while different background noises

were being played back through their headphones (and mixed with the microphone feedback

signal). Speakers were given a visual cue to start speaking only after an adaptation period of

8 s into the noise signal, and then read the 3 sentences of the corresponding group. The noise

signals were processed with a fade-in effect to avoid discomforting speakers with a sudden

onset of loud noises.

A.1.3 Test plans

Tables A.2, A.3 and A.4 list all conditions in the three PANDA datasets. Italicized condition

numbers indicate conditions that are shared between multiple sets. Signal-to-noise ratios

refer to the noise level after input filtering, but before further processing (e.g., noise reduction).

The presentation level of recordings in Set 1 is shown in the last column of Table A.2. For the

two other sets, the presentation level was fixed at 79 dB SPL (diotic) for all conditions. Each

condition consists of 12 distinct recordings (3 sentences × 4 speakers).
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Appendix A. Dataset descriptions

A.1.4 On-screen rating interface

Figure A.1 on page 110 shows the on-screen rating interface for the three quality features

speech distortion, noise intrusiveness and overall quality. The interface is designed such that

the previously given rating is no longer visible after moving to the next quality feature.

A.2 PSCR word lists

Table A.5 – Lists of rhyming words used in the PSCR [2013] datasets.

list #

1 went sent bent dent tent rent

2 hold cold told fold sold gold

3 pat pad pan path pack pass

4 lane lay late lake lace lame

5 kit bit fit hit wit sit

6 must bust gust rust dust just

7 teak team teal teach tear tease

8 din dill dim dig dip did

9 bed led fed red wed shed

10 pin sin tin fin din win

11 dug dung duck dud dub dun

12 sum sun sung sup sub sud

13 seep seen seethe seek seem seed

14 not tot got pot hot lot

15 vest test rest best west nest

16 pig pill pin pip pit pick

17 back bath bad bass bat ban

18 way may say pay day gay

19 pig big dig wig rig fig

20 pale pace page pane pay pave

21 cane case cape cake came cave

22 shop mop cop top hop pop

23 coil oil soil toil boil foil

24 tan tang tap tack tam tab

Continued on next page
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A.2. PSCR word lists

Table A.5 – continued from previous page

list #

25 fit fib fizz fill fig fin

26 same name game tame came fame

27 peel reel feel eel keel heel

28 hark dark mark bark park lark

29 heave hear heat heal heap heath

30 cup cut cud cuff cuss cub

31 thaw law raw paw jaw saw

32 pen hen men then den ten

33 puff puck pub pus pup pun

34 bean beach beat beak bead beam

35 heat neat feat seat meat beat

36 dip sip hip tip lip rip

37 kill kin kit kick king kid

38 hang sang bang rang fang gang

39 took cook look hook shook book

40 mass math map mat man mad

41 ray raze rate rave rake race

42 save same sale sane sake safe

43 fill kill will hill till bill

44 sill sick sip sing sit sin

45 bale gale sale tale pale male

46 wick sick kick lick pick tick

47 peace peas peak peach peat peal

48 bun bus but bug buck buff

49 sag sat sass sack sad sap

50 fun sun bun gun run nun
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Appendix A. Dataset descriptions

Figure A.1 – Rating interface for the collection of subjective P.835 scores.
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B Derivation of speech distortion from
noise intrusiveness and overall qual-
ity

In Section 3.5, page 36, it was shown how speech distortion (S-MOS) and noise intrusive-

ness (N-MOS) could be combined to derive the overall quality score (G-MOS) in P.835 tests.

The combination consisted of a simple linear model, shown here again for convenience:

sGi ≈ a · sSi +b · sNi +c = ŝGi , (B.1)

with sG/S/N
i theG-, S- orN-MOS for the i th condition, respectively, and a, b and c the regression

coefficients.

Assuming the availability of objective estimates oG
i and oN

i for G- and N-MOS, respectively,

we can exploit the relation between scores to derive an objective estimate of S-MOS oS
i .

Rearranging (B.1) and omitting the subscript i for clarity, we obtain:

oS = (
oG −b ·oN −c

)
/a. (B.2)

In order to verify the feasibility of this approach, we have computed a common set of coeffi-

cients a, b and c through least squares regression for (B.1), by pooling subjective scores from

the three PANDA datasets. We have then applied (B.2) to derive the S-MOS from the ground

truth scores sG and sN . Figure B.1 compares the resulting estimates to the actual S-MOS. The

relation is highly linear, but there is a visible bias for conditions with N-MOS < 2.5. Due to the

high noise intrusiveness in these conditions, the G-MOS remains in a low range, meaning that

changes in speech distortion are underestimated.

We can account for this effect by switching to a quadratic model of the form

sG ≈ a · sS +b · sN +c+d
(
sS

)2+e
(
sN

)2+ f
(
sS · sN )= ŝG , (B.3)
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Appendix B. Derivation of speech distortion from noise intrusiveness and overall quality
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Figure B.1 – Linear regression of per-condition S-MOS from G- and N-MOS, using a common
set of coefficients a, b and c for the three datasets. Circles show conditions with N-MOS < 2.5.

with additional constraints

∂ŝG

∂sS
= a+2d · sS + f · sN≥ 0 (B.4)

∂ŝG

∂sN
= b+2e · sN + f · sS ≥ 0 (B.5)

to ensure that ŝG in (B.3) remains monotonically increasing with respect to both sS and sN .

Indeed, it is reasonable to assume that an increase in either S- or N-MOS should be reflected

by a higher G-MOS. Solving (B.3) for sS , we obtain

ŝS1,2 =
−(

a+ f · sN )±√(
a+ f · sN )2−4d ·

(
e
(
sN

)2+b · sN +c− sG
)

2d
(B.6)

with the additional constraint that the determinant in (B.6) be positive, i.e.,

(
a+ f · sN )2−4d ·

(
e
(
sN

)2+b · sN +c− sG
)
≥ 0. (B.7)

The derivation of speech distortion from noise intrusiveness and overall quality scores can

thus be formulated as solving (B.3) with constraints (B.4), (B.5) and (B.7).

As before, we pool subjective scores from the three PANDA datasets to find a set of regression

coefficients a to f for the quadratic model. The coefficients can be computed through con-

strained optimization, with (B.4), (B.5) and (B.7) as constraints, and the error rmse∗ between

derived and actual speech distortion scores ŝSi and sSi , respectively, as objective function:

rmse∗ =
√√√√ 1

N −1

N∑
i=1

max
(∣∣sSi − ŝSi

∣∣−CI95Si , 0
)2
, (B.8)
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Figure B.2 – Quadratic regression of per-condition S-MOS fromG- and N-MOS, using the same
regression coefficients for each dataset. Circles show conditions with N-MOS < 2.5; the earlier
bias has disappeared. Error bars show 95% confidence intervals. Values of ŝSi outside the range
[1, 5] are clipped to the nearest value on the MOS scale (1 condition in Sets 1 and 2).

where CI95Si is the 95% confidence interval of the i th subjective speech distortion score. The

error metric rmse∗ is similar to the rmse∗3rd that was introduced in the Background chapter

in Section 2.3.2, page 10, except that no further mapping of derived scores ŝSi is applied. The

initial values for the coefficients a to f before optimization are determined through ordinary

least-squares fitting, without consideration of constraints or confidence intervals.

In optimizing (B.8), it turns out that only the first solution ŝS1 in (B.6) (positive sign in front of

the determinant) provides results in the correct numerical range. The obtained coefficients a

to f are given in Table B.1. The S-MOS retains a stronger influence on the G-MOS, i.e., d > e

in (B.3), as was the case with the linear model in Section 3.5. The S-MOS derived with the

quadratic model is shown in Figure B.2. The earlier systematic bias for conditions with

N-MOS < 2.5 is no longer visible. Moreover, the difference in the maximum S-MOS that we

observed between super-wideband and narrowband signals (Sets 1&2 and Set 3, respectively)

is preserved in the derived S-MOS.

Together, these results suggest that an objective assessment of speech distortion is possible,

given objective scores for overall quality and noise intrusiveness.

Table B.1 – Coefficients for the quadratic regression in (B.3), using the pooled PANDA datasets.

Datasets a b c d e f

PANDA Sets 1–3 0.397 0.390 −0.160 −0.029 −0.052 0.131

113





C Sparse approximation with matching
pursuit

We gave a high-level introduction to the Matching Pursuit (MP) algorithm in Section 4.2.3,

page 45, where it was used to compute a sparse approximation of a given input noise signal.

Formally, the inputs to MP are the discrete-time signal x and a dictionary Φ consisting of the

set of unit-norm kernels
{
φm

}
, shifted at all possible time offsets within the length of x, i.e.,

Φ= [
φm

τ

]
, m = 1, . . . ,M and τ= 0, . . . ,N−L (C.1)

with x ∈ RN×1, φm ∈ RL×1 and Φ ∈ RN×M(N−L+1). There exist efficient implementations that

avoid explicitly storing time-shifted versions of theM kernels [Krstulovic and Gribonval, 2006].

At each iteration k, MP projects the discrete-time residual e ∈RN×1 onto the columns of the

dictionaryΦ and subtracts the projection with the highest correlation. The modification of

MP by Gribonval [1999] used in this thesis allows to also adjust the phase ϕ of gammatones

in (4.2) by projecting onto analytic kernelsφa instead, resulting in the following calculation

steps:

φm
a,τ =φm

τ + i ·H (
φm

τ

)
(C.2)

j (k)= argmax
m,τ

∥∥〈φm
a,τ , e(k−1)

〉∥∥2 (C.3)

α j (k) =
〈
φa, j (k) , e(k−1)

〉
(C.4)

e(k) = e(k−1)−Re
(
α j (k)φa, j (k)

)
(C.5)

with H (·) the Hilbert transform operator, and j (k) the index of the kernel selected at the

kth iteration in the matrixΦ. The projected signal at the first iteration is e(0) = x. The signal

approximation after K iterations is then

x̂(K ) =Re
(
Φa,JαJ

)
, J = {

j (1), . . . , j (k), . . . , j (K )
}

(C.6)

with α ∈ CM(N−L+1)×1 the sparse vector containing the gains for each kernel occurrence

or “spike”.
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Appendix C. Sparse approximation with matching pursuit

By the energy conservation property of MP [Mallat and Zhang, 1993], the energy of the original

signal is preserved between the approximation and the residual, i.e.,

‖x‖2 = ∥∥Re
(
Φa,JαJ

)∥∥2+∥∥e(K )
∥∥2 (C.7)

=
K∑

k=1

∥∥α j (k)
∥∥2+∥∥e(K )

∥∥2 (C.8)

⇒ ∥∥α j (k)
∥∥2 = ∥∥e(k−1)

∥∥2−∥∥e(k)
∥∥2 (C.9)

where (C.8) follows from the fact that kernelsφ have unit norm. The energy of spikes is thus

equal to the decrease in residual error energy per iteration [Goodwin and Vetterli, 1999]. It can

be shown that the kernel selection criterion in (C.3) achieves the highest possible decrease in

error energy per iteration [Goodwin and Vetterli, 1999, Sec. 3].

The objective ofminimizing residual error energy with a dictionary of auditory kernels is only a

coarse model of human perception. Modifications to MP that use a psychoacoustic model for

the objective function have been proposed [e.g., Pichevar et al., 2011], but our aim is precisely

to avoid the numerous experimental parameters associated with such models. Moreover, the

successful prediction of cochlear filter shapes in [Smith and Lewicki, 2006] with standard MP

suggests that the error energy minimization objective may be sufficient.
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