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 In the last decade, the power systems are experiencing important changes driven 
by the massive integration of renewable energy conversion systems. Although these 
changes are experienced by both transmission and distribution grids, the largest 
impact is definitely on the planning and operation processes of the latter. In this 
respect, the power systems research community has defined the term ‘Active 
Distribution Networks’ to identify distribution systems for which embedded 
generation is actively controlled by suitably-defined Energy Management System 
(EMS) in order to achieve specific operational objectives. However, the lack of direct 
controllability of the Distributed Generation (DG) supplying ADNs represents a 
major obstacle to the increase of the penetration of DG and, more specifically, of 
renewable energy resources characterized by a non-negligible volatility. The 
successful development of ADNs depends on the combination of i) specific control 
tools and ii) availability of new technologies and controllable resources. Within this 
context, this thesis focuses on developing practical and scalable methodologies for 
the ADN planning and operation with particular reference to the integration of 
Energy Storage Systems (ESSs) owned, and directly controlled, by the DNOs. 

In this respect, an exact convex formulation of Optimal Power Flow (OPF) problem, 
called AR-OPF, is first proposed for the case of radial power networks. The proposed 
formulation takes into account the correct model of the lines (two-port Π model). 
Moreover, the security constraints related to the nodal voltage magnitudes, as well 
as, the lines ampacity limits are suitably incorporated into the AR-OPF using a set 
of more conservative constraints. Therefore, the AR-OPF is characterized by a 
slightly reduced space of feasible solutions where the removed space is in 
correspondence of the one that is close to the technical limits of the grid. Sufficient 
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conditions are provided to guarantee that the solution of the AR-OPF formulation is 
feasible and optimal (i.e., the relaxation used in the formulation is exact). Moreover, 
by analyzing the exactness conditions, it is revealed that they are mild and hold for 
real distribution networks operating in feasible region.  The so-called linear 
DistFlow model for OPF problem is also improved by adding the shunt elements of 
the lines to the load flow equations. Another linear OPF model, based on voltage 
sensitivity coefficients, is also developed as an alternative to the AR-OPF and 
DistFlow including the transverse parameters.   

Next, the AR-OPF is further augmented by suitably incorporating radiality 
constraints in order to develop an optimization model for optimal reconfiguration of 
ADNs. Similar to the AR-OPF, this new formulation properly takes into account the 
exact lines model and security constraints. The optimality and the exactness of the 
proposed ADN reconfiguration, as well as its scalability are demonstrated using 
standard benchmark networks.  

Then, in order to address the variations and uncertainties of the parameters (PV 
and load), the developed linear OPF model based on DistFlow formulation is 
employed to formulate a two-stage optimization problem for day-ahead resource 
scheduling in ADNs accounting for the uncertainties of nodal injections. The 
Adaptive Robust Optimization (ARO) and stochastic optimization techniques are 
successfully adapted to solve this two-stage optimization problem. The solutions of 
ARO and stochastic optimization problems are discussed and, as expected, they 
reveal that the ARO provides feasible solutions for any realization of the uncertain 
parameters even if its solutions are optimal only for the worst case realization (in 
other words, it is a conservative and risk averse approach). On the other hand, the 
stochastic optimization provides a solution taking into account the probability of the 
considered scenarios. 

Finally, the problem of optimal resource planning in ADNs is investigated with 
particular reference to the ESSs. It is assumed that the ESSs are owned, and directly 
controlled, by the DNOs. In this respect, a dedicated optimization model is first 
proposed for optimal siting of ESS units in ADNs aiming at providing local voltage 
support to the grid. The linearized OPF model, based on the voltage sensitivity 
coefficients, is used to assess the advantages and performances of the ESS units.  In 
view of the large size of the problem, its solution relies on the so-called Benders 
decomposition technique. The capability of this methodology to find the best 
locations for providing local voltage control is demonstrated using standard IEEE 
test case networks. Further, it is shown that employing the Benders decomposition 
could possibly decrease the computation time up to 10 times with respect to solving 
the original problem. Afterwards, the AR-OPF jointly with the proposed ADN 
reconfiguration model are employed to develop optimization models for the optimal 
siting and sizing of ESSs in ADNs. The objective function is further augmented 
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aiming at finding the optimal trade-off between technical and economical goals. In 
particular, the proposed procedures accounts for (i) network voltage deviations, (ii) 
feeders/lines congestions, (iii) network losses, (iv) cost of supplying loads (from 
external grid or local producers) together with the cost of ESS 
investment/maintenance, (v) load curtailment and (vi) stochasticity of loads and 
renewables production. Similar to the case of optimal ESS siting, the use of 
decomposition methods for solving the targeted optimization problems with discrete 
variables and probable large size is investigated. More specifically, Benders 
decomposition and Alternative Direction Method of Multipliers (ADMM) techniques 
are successfully applied to the targeted problems. Various numerical analysis with 
respect to the standard and real networks are performed to demonstrate the 
capabilities of the proposed methodologies for providing optimal and feasible 
solutions as well as their computational efficiency and scalability. In particular, it is 
shown that the ESSs could possibly prevent load and generation curtailment, reduce 
the voltage deviations and lines congestions, and do the peak shaving. Further, it is 
shown that the Benders decomposition potentially could be the best solution 
methodology for large-scale problems with presence of binary variables. 

KKeywords- optimal power flow, energy storage systems, active distribution 
networks, convex optimization, convex relaxation, robust optimization, stochastic 
optimization, distribution networks reconfiguration, Benders decomposition, 
alternative direction method of multipliers, distributed generation, renewable 
energy, photo voltaic, voltage sensitivity coefficients, smart grid. 
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De nos jours, les réseaux électriques connaissent des changements importants de 
par l'intégration massive de systèmes de conversion d'énergie renouvelable. Bien que 
ces changements soient vécus par les deux réseaux de transport et de distribution, 
le plus grand impact est sans aucun doute sur les processus de planification et de 
fonctionnement de ces derniers. À cet égard, la communauté de recherche sur les 
systèmes d'énergie a défini le terme «réseau de distribution actif» (ADN) pour 
identifier les réseaux de distribution pour lesquels la production distribuée est 
activement contrôlée par un EMS (Energy Management System) dans le but 
d'atteindre des objectifs d’exploitations spécifiques. Cependant, le manque de 
contrôlabilité directe de la production distribuée (DG) constitue un obstacle majeur 
à l'augmentation de la pénétration de ces sources et en particulier celles de nature 
renouvelable caractérisées par une volatilité non négligeable. Le succès de 
l’expansion des ADNs dépend i) des outils de contrôle spécifiques et ii) de la 
disponibilité de nouvelles technologies et de ressources contrôlables. Dans ce 
contexte, cette thèse se concentre sur le développement de méthodologies pratiques 
et extensibles pour la planification et l’exploitation des ADNs en accordant une 
attention particulière à l'intégration des systèmes de stockage d'énergie (ESSs). 

A cet égard, une formulation convexe exacte du problème de l’Optimal Power Flow 
(OPF), appelé AR-OPF, est d'abord proposée pour le cas des réseaux de distribution 
radiaux. La formulation proposée prend en compte le modèle en pi des lignes. En 
outre, les contraintes de sécurité liées aux tensions nodales, ainsi que les limites des 
courants admissibles dans les lignes sont judicieusement intégrées dans l'AR-OPF 
moyennant un ensemble de contraintes conservatrices. Par conséquent, l'AR-OPF se 
caractérise par un espace de solutions légèrement réduit mais dont les limites 
traduisent assez fidèlement les limites techniques de l’exploitation du réseau. 
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Malgré tout, des conditions suffisantes sont prévues pour garantir que la solution de 
l'AR-OPF est réalisable et optimale. En outre, en analysant l’exactitude de ces 
conditions, il s’est révélé qu’elles sont « mild » et peuvent être considérées dans le cas 
des réseaux de distribution réels lorsque l’exploitation est dans les limites 
admissibles. Le modèle DistFlow linéaire pour les problèmes OPF est utilisé et 
également améliorée par la prise en considération des éléments shunts des lignes 
dans les équations des flux de charge dans celles-ci. Un autre modèle OPF linéaire, 
basé sur l’utilisation des coefficients de sensibilité de tension, a également été mis 
au point en tant qu'alternative à l'AR-OPF et au DistFlow mais tout en tenant 
compte des éléments shunts précités. 

Par la suite, l'AR-OPF a été renforcé par l'incorporation appropriée de contraintes 
d’arborescence afin de développer un modèle d'optimisation pour la reconfiguration 
optimale des ADNs. Semblable à l'AR-OPF, cette nouvelle formulation prend 
correctement en compte le modèle exact des lignes et les contraintes de sécurité. 
L'optimalité et l'exactitude de la méthode proposée, notamment dans le cas de 
réseaux de grande taille, sont démontrées en utilisant des réseaux de référence. 

Afin de répondre aux variations et aux incertitudes des paramètres (PV et charge), 
le modèle OPF linéaire basé sur la formulation du DistFlow est utilisé pour formuler 
un problème d'optimisation en deux étapes pour la planification des ressources tout 
en considérant les incertitudes sur les injections nodales.  Des techniques 
d’optimisation robustes (ARO) et stochastique sont adaptées pour résoudre avec 
succès ce problème d'optimisation en deux étapes. Les solutions selon ces deux 
approches sont discutées et, comme prévu, l'ARO fournit des solutions réalisables 
pour toute réalisation de paramètres incertains, même si ses solutions ne sont 
optimales que pour le cas des réalisations les plus défavorables. Autrement, 
l'optimisation stochastique quant à elle, fournit une solution tout en tenant compte 
des probabilités associées aux scénarios envisagés. 

Enfin, le problème de la planification optimale des ressources est étudié tout en 
considérant la présence d’unités ESS. À cet égard, un modèle d'optimisation dédié 
est d'abord proposé pour déterminer l'emplacement optimal d’unités ESS visant à 
fournir un soutien de tension au réseau. Dans ce but, le modèle OPF linéarisé, sur 
la base des coefficients de sensibilité de tension, est utilisée pour évaluer les 
avantages et les performances des unités ESS. Compte tenu de l’éventuelle grande 
taille des problèmes à traiter, la solution repose sur la technique de décomposition 
de Benders. La capacité de cette méthode pour trouver les meilleurs emplacements 
pour assurer le contrôle de la tension est démontrée en utilisant les réseaux tests 
standard IEEE. En outre, il est démontré que l'utilisation de la décomposition de 
Benders pourrait diminuer le temps de calcul jusqu'à 10 fois par rapport au cas de 
la résolution directe du problème original. Ensuite, l'AR-OPF conjointement avec le 
modèle de reconfiguration des ADNs proposé est utilisé pour formuler des modèles 
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d'optimisation pour l’emplacement et le dimensionnement optimaux des ESSs. A ce 
sujet, la fonction objectif est définie de sorte à trouver le meilleur compromis entre 
les objectifs techniques et économiques. En particulier, les critères suivant sont pris 
en considération : (i) les écarts de tension du réseau, (ii) les congestions de ligne, (iii) 
les pertes ohmiques du réseau, (iv) les coûts d’approvisionnement (à partir du réseau 
externe ou des producteurs locaux) ainsi que les coûts d’investissement / 
maintenance des unités ESSs, (v) le délestage de charge et (vi) la nature stochastique 
des charges et des productions intermittentes. Comme dans le cas de l’emplacement 
optimal d’unités, les méthodes de décomposition pour résoudre le problème 
d'optimisation précité sont étudiées. Plus précisément, la décomposition de Benders 
et la méthode ADMM sont appliquées avec succès à ce problème. Diverses 
applications à des réseaux standards et réels ont été effectuées pour démontrer 
l’aptitude des méthodes proposées à fournir des solutions optimales et réalisables 
notamment pour des problèmes de grande taille et leur performance en temps de 
calcul. En particulier, il est démontré que la présence d’unités ESS pourrait prévenir 
le délestage de charge, réduire les écarts de tension et la congestion des lignes, et 
permettre l’écrêtage des pointes de consommation. En outre, il est démontré que 
potentiellement la décomposition de Benders se prêterait le mieux pour résoudre les 
problèmes à grande échelle. 

 

MMots clés : répartition des puissances optimale (OPF), système de stockage 
d’énergie, réseau de distribution actif, optimisation convexe, optimisation robuste, 
optimisation stochastique, reconfiguration des réseaux de distribution, 
décomposition de Benders, méthode ADMM, énergie renouvelable, coefficients de 
sensibilité pour la tension, smart grid 
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The notations used in this dissertation are listed below. For the sake of clarity, they 
are provided separately for each section of the Thesis. They are in [p.u.]. 

Abbreviations: 

ADMM Alternative Direction Method of Multipliers 
ADN Active Distribution Network 
ARO Adaptive Robust Optimization 
A-OPF Augmented OPF 
AR-OPF Augmented Relaxed OPF 
DG Distributed Generation 
DNO Distribution Network Operator 
DTW Dynamic Time Wrapping 
ED Economic Dispatch 
ESS Energy Storage System 
GA Genetic Algorithm  
KKT Karush–Kuhn–Tucker 
LP Linear Programming 
MILP Mixed Integer Liner Programming 
MINLP Mixed Integer Non Linear Programming 
MISOCP Mixed Integer Second Order Cone Programming 
MIQCP Mixed Integer Quadratically Constrained Programming 
MIQCQP Mixed Integer Quadratically Constrained Quadratic Programming 
MIQP Mixed Integer Quadratic Programming 
OLTC On Load Tap Changer 
OPF Optimal Power Flow 
RO Robust Optimization 
SCUC Security Constrained Unit Commitment  
SOC State of Charge 
SOCP Second Order Cone Programming 
  

 
 
 
 
 
 

NNotation  
   

 



xxvi 
 

Notation: 

 ,  Real and imaginary parts of a complex number 
 Imaginary unit 
 Maximum value of  and  

  

Section 2.2: Optimal Power Flow in Radial Power Grids 

Parameters: 

 ( ) Susceptance of line  (corresponding vector of all lines)  
 ( ) Sum of the susceptance of the lines connected to bus  (corresponding 

vector of all buses)  
 The adjacency matrix of the oriented graph of the grid 
  Closure of  

  Identity matrix 
 ( ) Upper limit of  line  current flow square (corresponding vector of all 

lines)  
 

( ) 
Upper and lower bounds of bus  active power consumption 
(corresponding vector of all buses) 

 
( ) 

Upper and lower bounds of bus  reactive power consumption 
(corresponding vector of all buses) 

 Upper bounds associated with the maximum active and reactive 
power flows of line  

 
( ) 

Upper and lower bounds associated with the bus  voltage magnitude 
square  (corresponding vector of all buses)  

 
( ) 

Longitudinal impedance of line   (corresponding vector of all lines)  
 

Variables: 

 ( ) Square of current producing losses in line   
 ( ) Auxiliary variables associated with the square of current producing 

losses in line  
 

 
Complex load at bus  (corresponding vector) 

 Complex power flow entering bus  from the bottom part of line  
 Auxiliary variable for the complex power flow entering bus  from 

the bottom part of line  (lower bound for  ) 
 Auxiliary variable for the complex power flow entering bus  from 

the bottom part of line  (upper bound for  ) 
 Complex power flow entering the central element of line  (from top)) 
, 

( ) 
Complex power flow entering line  from the top (corresponding 
vector of all buses) 

, 
( ) 

Auxiliary variable (lower bound for ) for the complex power flow 
entering line  from the top (corresponding vector of all buses) 
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, 
( ) 

Auxiliary variable (upper bound for ) for the complex power flow 
entering line  from the top (corresponding vector of all buses) 

, ( ) Square of voltage magnitude of bus  (corresponding vector of all
buses) 

 ( ) Auxiliary variable for the square of voltage magnitude of bus 
(corresponding vector of all buses) 

Indices and sets: 

 Index of the lines and buses other than slack bus 
 Number of the lines  
 Set of the lines and buses other than slack bus 

 Set of the buses that are upstream of bus  
 Set of the buses that are non-upstream of bus  

 Set of the buses that are leaves of the oriented graph of the grid  
  

Section 2.3: Topology Changes in Optimal Operation of Radial Power Grids 

Parameters: 

 Shunt susceptance of the lines between buses  and  
,  Upper limits of active power, reactive power, and current flow of the 

line between buses  and  
 Resistance of the line between buses  and  

 Upper limit of  nodal voltage magnitudes’ square 
 Lower limit of nodal voltage magnitudes’ square 

 Reactance of the line between buses  and  
 (  Impedance (conjugate of impedance) of the line between buses  and 

 
 A big number 

 

Variables: 

( ) The direction of the line between buses  and  (  means the 
direction is from  to ,  means the direction is from  to ) 

( ) The square of current flow producing losses in the line between buses 
 and  (from  to ) 

( ) Auxiliary variable for the square of current flow producing losses in 
the line between buses  and  (from  to ) 

( ) Active power flow from bus  to  (from  to ) 
( ) Auxiliary variables for the active power flow from bus  to  (from  

to ) 
( ) Reactive power flow from bus  to  (from  to ) 

 
( ) 

Auxiliary variables for the reactive power flow from bus  to  (from 
 to ) 

 Reactive power injection associated with the shunt capacitance of the 
lines connected to bus  
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 Auxiliary variable for the reactive power injection associated with the 
shunt capacitance of the lines connected to bus  

( ) Complex power flow from bus  to  (from  to ) 
(  Auxiliary variables for the complex power flow from bus  to  (from 

 to ) 
 Voltage magnitude square at bus  
,  Auxiliary variables for the voltage magnitude square at bus  
 State of the switch between buses  and  (1 is open, 0 is colesd) 

 

Indices and sets: 

 Set of the lines 
 Set of the lines with switch 

 Set of the lines without switch 
 Set of the lines connected to bus  
 Set of the buses 
 Set of substation buses  

 Set of the buses that are not substation 
 

SSection 2.4: Voltage Control of Active Distribution Networks Using Sensitivity 
Coefficients 

Parameters: 

 Matrix that relates the voltage magnitude changes at bus  to the 
change of active power injection (absorption) in all network buses (at 
time step ) 

  Matrix that relates the voltage change at bus  to the changes of 
reactive power injection (absorption) in all network buses (at time 
step ) 

 Power rating of the ESS located at bus  
 Maximum and minimum allowed SOC level of the ESS located at bus 

 
 Voltage magnitude of bus  at time step  

 Reference voltage magnitude 
,   Voltage phasors of bus , and its relevant conjugate at time step  

  Charging and discharging efficiencies of the ESS located at bus  
 

Variables 

 Level of energy stored in the ESS located at bus  at time step  
 Active power production (discharge)/consumption (charge) of the ESS 

located at bus  at time step  
 Reactive power output of the ESS located at bus  at time step  
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,  Binary variables associated with the charging/discharging state of 
the ESS located at bus  at time step  

 Adjustment in active power injection (absorption) of bus  at time 
step  

 Adjustment in reactive power injection (absorption) of bus  at time 
step  

 Amount of change in the voltage magnitude of bus  at time step  
 

Sets and indices: 

 Index of network buses (without slack bus) 
 Sets of network buses, buses with ESS, and buses without ESS, 

respectively 
 Index of time steps 
 Set of time steps 

 

SSection 3.4: Adaptive Robust Optimization for Scheduling of Active Distribution 
Networks 

The notation for the second stage minimization in ARO: 

Parameters: 

 Coefficient representing the amount of residential active load at bus 
 with respect to the total residential apparent power 

 Coefficient representing the amount of commercial active load at bus 
 with respect to the total commercial apparent power 

 Coefficient representing the amount of active power production of PV 
located at bus  with respect to total active power production of PVs 

 Coefficient representing the amount of residential reactive load at 
bus  with respect to the total residential apparent power 

 Coefficient representing the amount of commercial reactive load at 
bus  with respect to the total commercial apparent power 

 Shunt susceptance of the line  
 Power rating of the ESS located at bus  

 Maximum and minimum allowed SOC level of the ESS located at bus 
 

 Upper limit associated with the square of line current flow  
 Forecasted value of the aggregated residential load apparent power 

at time step  
 Forecasted value of the aggregated commercial load apparent power 

at time step  
 Forecasted value of the aggregated PVs active power production at 

time step  
 Upper and lower bounds of uncertainty budget for the residential 

load 
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 Upper and lower bounds of uncertainty budget for the commercial 
load 

 Upper limit of the square of nodal voltage magnitudes  
 Lower limit of the square of nodal voltage magnitudes 

 Maximum and minimum voltage magnitudes’ square beyond which 
voltage deviations will be minimized 

 Lower bound of nodal voltage magnitudes 
 Weighting coefficient of the voltage deviation minimization in the 

objective function 
 (  Impedance (conjugate of impedance) of the line  

 Upper and lower bounds of the forecast confidence interval associated 
with the aggregated commercial load at time  

 Upper and lower bounds of the forecast confidence interval associated 
with the aggregated residential load at time  

 Upper and lower bounds of the forecast confidence interval associated 
with the aggregated PV production at time  

 Upper and lower bounds of the aggregated PV production variation 
at hour  

 ESS charging and discharging efficiencies  
 Downward and upward deviations price 

 Time step 
 

Set and indices: 

 Set of the lines for modeling an upper bound for  
 Index of hours  
 Set of time steps ( ) inside hour  

 Index of the lines (and the buses without slack bus) 
 Index of the lines for modeling an upper bound for the square of a 

variable 
 index of time step  
 Set of the time steps 

 Index of the bus that is connected to bus  through line  
,  Set of the lines (buses without slack bus), set of the buses with ESS 
 Set of the lines used for modeling an upper bound for the square of a 

variable 
 

Variables: 

 Downward and upward deviations (from day-ahead energy 
scheduling) at time step  

 Downward deviation of ESS  active power (charge/discharge) output 
at time step  with respect to its day-ahead scheduling 

 Downward deviation of the ESS  reactive power (charge/discharge) 
output at time step  with respect to its day-ahead scheduling 
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 Level of energy stored in the ESS  (its auxiliary variable) at time 
step  

  Active current flows at both ends of the line  at time step 
 Reactive current flows at both ends of the line  at time step 
 Upper bounds for the square of active power flows at both ends of the 

line  at time step  
 Upper bounds for the square of reactive powers flow at both ends of 

the line  at time step  
ESS active power output (charge/discharge) at time step   
ESS reactive power output (positive/negative) at time step  

 Net consumption associated with the bus  at time step  
 Residential apparent power at time  
 PV power production at time  

 Commercial apparent power at time  

 
Complex power flow of line  at time step  

 Upward deviation of ESS active power output (charge/discharge) at 
time step  with respect to its day-ahead scheduling 

 Upward deviation of ESS reactive power output (charge/discharge) 
at time step  with respect to its day-ahead scheduling 

 Square of voltage magnitude of bus  at time step  
 Vector of variables related to the first stage minimization in ARO 

(day-ahead scheduling) 
 Active power output scheduling (in day-ahead) of the ESS  (charging 
and discharging) at time step  

 Reactive power output scheduling (in day-ahead) of the ESS 
(charging and discharging) at time step  

 Energy import scheduling (in day-ahead) from external grid at time 
step  

 Vector of variables in the second stage minimization of ARO (intra-
day operation) 

 Forecast error related to the residential apparent power at time  
 Forecast error related to the PV power production at time  

 Forecast error related to the commercial apparent power at time  
 Vector of variables of the second stage maximization in ARO 

(variation in the uncertain parameters)  

SSection 3.5: Day-ahead Scheduling of Active Distribution Networks using 
Scenario-based Stochastic Optimization  

Parameters 

 Voltage magnitude square at substation 
Maximum and minimum voltage magnitudes’ square beyond which 
voltage deviations will be minimized 

 Weighting coefficient of voltage deviation minimization in the 
objective function 
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 Step change in the voltage magnitude associated with the change of 
OLTC tap 

 Energy price at time  
 Upward and downward deviations’ prices 

 Probability of scenario  
 Set of parameters associated with the models of linearized DistFlow 

and  ESS constraints  
 

Sets and indices 

 Index of the lines and the buses other than substation 
 Index of time steps 
 Set of time steps 
 Index of scenarios 
 Set of scenarios 

 

Variables 

 Energy imported from the external grid at time step  in scenario  
 OLTC tap position 
 Upward and downward deviations at time step , scenario  

 Nodal voltage magnitude square of bus  at scenario  
 Cost of changing OLTC tap position 
 Energy import scheduling in day-ahead at time step   

 Set of variables for modeling the constraints related to the 
linearized DistFlow and ESSs  

 

SSection 4.3: Energy Storage Modeling 

 Capacity of the ESS reservoir 
 Maximum and minimum allowed  levels of ESSs 

 Energy stored level in the reservoir at time  (corresponding 
auxiliary variable) 

 Discharging and charging powers of ESS at time  
 Reactive power output of the ESS at time  

 Internal equivalent resistance of the ESS 
 Ramp-up and ramp-down of the ESS 

 Power rating of ESS 
 Time step discretization  

 Discharging and charging efficiencies of ESSs 
 Resistive losses of ESS 
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SSection 4.5: Optimal Siting of ESSs in ADNs to Achieve Voltage Control Using a 
Linearized OPF Model 

Parameters 

 Matrix that relates the voltage magnitude changes at bus  to the 
change of active power injection (absorption) in all network buses 

  Matrix that relates the voltage changes at bus  to the change of 
reactive power injection (absorption) in all network buses 

 Power rating and energy reservoir capacity of one ESS unit 
 Total number of ESS units that can be installed 
 Reference voltage magnitude 
 Set of parameters corresponding to ESS models 

 Probability of scenario  
 Dual multipliers associated with the fixed ESS capacity located at 

bus  in scenario  in the iteration  of Benders decomposing 
subproblems 

Sets and indices 

 Index of the lines and the buses other than substations 
( ) Set of the buses (set of the buses with ESS) 
 Index of time steps 
 Set of time steps 
 Index of scenarios 
 Set of scenarios 

 Set of equations for modeling ESSs constraints  
 

Variables 

 Energy reservoir capacity of ESS located at bus  
 Active power production (discharge)/consumption (charge) of the 

ESS located at bus  at time , and scenario  
 Reactive power output of the ESS located at bus  at time , and 

scenario  
 Power rating of the ESS located at bus  
 Integer variable representing the number of ESSs allocated at bus 

 
 Set of variables for modeling ESS located at bus   

 Adjustment in the active power injection (absorption) of bus , at 
time , and scenario  

 Adjustment in the reactive power injection (absorption) of bus , at 
time , and scenario  

 Amount of change in bus  voltage magnitude at time , and scenario 
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SSection 4.6: Optimal Siting and sizing of ESSs in ADNs  

Parameters 

 Positive number representing the constant power factor of loads  
 Total budget for installing ESS units 

,  Maximum and minimum ESS energy reservoir capacity that can be 
installed at bus  

 Vector of ESSs energy reservoir capacity obtained in the second 
stage of ADMM procedure in iteration , scenario  

 Vector of ESSs energy reservoir capacity obtained in the first stage 
of ADMM procedure in iteration  

 square of lines current magnitude beyond which the lines current 
flow is minimized 

, ,c p e, ,c p e, ,  Unit costs associated with the ESSs fixed installation, power rating, 
and energy reservoir capacity respectively. 

 Active power production of PV located at bus  at time , scenario , 
and year  

 Active and reactive power consumptions of bus  at time , scenario 
, and year  

 Resistance of the line between buses  and  (resistance of the line 
) 

,  Maximum and minimum ESS power rating capacity that can be 
installed at bus  

 Vector of ESSs power rating obtained in the first stage of ADMM 
procedure in iteration  

 Vector of ESSs power rating obtained in the second stage of ADMM 
procedure in iteration  

 upper and lower bounds for nodal voltage square magnitudes 
beyond which the nodal voltage deviations are minimized 

 
 

Weighting coefficients associated with various objectives (voltage, 
deviation, lines congestion, resistive losses, energy import from 
external grid, and load curtailment ) 

 longitudinal impedance of line  
 longitudinal impedance of the line between buses  and  

 Set of parameters associated with the model of the ESS located at 
bus , at time , scenario , and year  

 Probability of scenario  in year  
 Energy price  

 Dual multipliers of the constraints that link the first and second 
stages of ADMM at time , scenario  and iteration  

 Dual of constraints related to the fixed ESS capacities in the 
subproblems of Benders decomposition  

 ADMM penalty parameter  
 Parameters associated with the power flow and auxiliary power 

flow equations at time , scenario , and year 
 Parameters associated with the ADN reconfiguration constraints at 

time , scenario , and year  
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 Parameters associated with the ADN reconfiguration constraints 
using DistFlow equations 

 Annual interest rate 
 

Sets and indices 

 Index of the lines  
 Set of the lines and the buses other than slack bus 

 Set of the buses with ESS 
 Set of the buses 

 Index of time steps 
 Set of time steps 
 Set of yeas 
 Index of years 

 Set of equations for modeling ADN reconfiguration constraints 
 Set of equations for modeling ADN reconfiguration constraints 

using DistFLow equations 
 Set of equations for modeling AR-OPF constraints 

 Set of scenarios 
 Index of scenarios in the master problem of Benders decomposition 
 Set of the scenarios in the master problem of Benders 

decomposition  
 Index of scenarios 

 Set of equations for modeling ESSs constraints  
 

Variables 

 Energy reservoir capacity of the ESS located at bus  

 Vector of the variables related to the energy reservoir capacity of 
the ESSs in the first stage of ADMM 

 Vector of the variables related to the energy reservoir capacity of 
the ESSs in the second stage of ADMM 

 
( ) 

Square of current flow magnitude producing losses in line  (line 
between buses  and ) at time step , scenario , and year  

/
/  

Square of current flow at both ends of line  (line from  to ), at 
time step , scenario , and year  

 Maintenance cost of ESSs  

 Active power consumption (charging) of the ESS located at bus , 
time step , scenario , and year  

 Active power production (discharging) of the ESS located at bus , 
time step , scenario , and year  

 
 

Active power flow between buses  and  at time step , scenario  
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 Active power import from the external grid at time step , scenario 
, and year  

 Reactive power output of the ESS located at bus , time step , 
scenario , and year  

  

  

 
 

Reactive power flow in the central part of the line between buses  
and  at time step , scenario  

 Power rating of the ESS located at bus  
 Vector of variables associated with the power rating of the ESSs in 

the first stage of ADMM 
 Vector of variables associated with the power rating of the ESSs in 

the second stage of ADMM 
 Complex load at bus , time step , scenario , and year  

 Binary variable associated with the presence of an ESS at bus  
 Square of voltage magnitude at time step , scenario  

 Square of voltage magnitude of bus , at time step , scenario , and 
year  

 Auxiliary variable for the square of voltage magnitude of bus , at 
time step , scenario , and year  

 Set of variables for modeling ESS  at time step , scenario , and 
year  

 Set of variables for modeling power flow and auxiliary power flow 
equations (AR-OPF) at time step , scenario , and year  

 Amount of load curtailment at bus , time step , scenario , and 
year  

 Set of variables for modeling ADN reconfiguration equations at 
time step , scenario , and year  

 Set of variables for modeling ADN reconfiguration equations using 
DistFlow equations at time step , scenario , and year  

  
 

 

 

 

 

 



 

 

11.1 Motivation of the Thesis 

The level of penetration of Renewable Energy Resources (RERs) is progressively and 
massively increasing at low and medium voltage levels. In this regard, the distribution 
networks are no longer passive networks and non-negligible changes in their 
operational practices are imminent. The Distribution Network Operators (DNOs) have 
to face increasing challenges introduced by the high volatility of the RERs. In this 
context, the term Active Distribution Networks (ADNs) has been introduced to define 
power networks that [1, 2] 

“[...] have systems in place to control a combination of distributed energy resources, 
defined as generators, loads and storage. Distribution system operators (DSOs) have 
the possibility of managing the electricity flows using a flexible network topology. DERs 
take some degree of responsibility for system support, which will depend on a suitable 
regulatory environment and connection agreement.” 

On the other hand, the lack of direct controllability of distributed generation (DG) by 
DNOs represents the main obstacles in operating ADNs. The difficulties associated 
with the near-term deployment of dedicated telecommunication infrastructures, as well 
as the availability of advanced SCADA implementing active control functions, are 
contributing to the delay in the deployment of the ADN concept. The level of successful 
RERs penetration into existing grids depends on the combination of i) specific control 
tools and ii) availability of new technologies and resources. 

 The former element is motivating the emergence of new optimization tools to 
efficiently manage and operate the ADNs in normal and contingency states. 
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Particularly proficient tools are indispensable to control the power flows in the grid as 
well as other fundamental state variables like bus voltages. In this respect, the well-
known Optimal Power Flow (OPF) problem is expected to be the core of emerging 
Energy Management Systems (EMS) in ADNs. The OPF has been the main building 
block for the formulation of optimal controls as well as operation and planning problems 
in power systems. Nevertheless, the OPF is inherently a non-convex NP-hard problem 
and, consequently, its solution is challenging. As a consequence, it is necessary to define 
computationally efficient OPF to be integrated into EMS in order to be able to manage 
these network in short time periods (in scale of seconds) 0F

1.   

Regarding the later point (availability of new technologies and resources) one of the 
most promising near-term solutions allowing the postpone of infrastructure 
investments, is the possibility to indirectly control the DG by means of dispersed Energy 
Storage Systems (ESSs) owned by the DNOs. Indeed, the availability of distributed 
storage systems allows, in principle, to: (i) actively control the power flows into the grid, 
(ii) indirectly control the voltage profiles along the network feeders and (iii) locally 
balance the hour/daily and weekly load variations. 

Another important issue needed to be addressed in ADNs is related to the inclusion of 
uncertainties of the RERs and loads in the grid operation. The uncertainties of their 
day-ahead and intra-day forecast impact the ADN operation, particularly when the 
RERs penetration level is high. This could cause financial and technical problems to 
DNOs. In this respect DNO need controllable resources as well as appropriate models 
to optimally and safely steer the grid and its resources. 

 In addition to the previous approaches, several research efforts have been performed 
on the use of knowledge-based fault location methods. Expert systems identify the most 
probable fault location by means of available information regarding the network status 
(e.g., the state of switches, unpowered user complaints, etc.) (e.g., [38], [39]). artificial 
neural networks (ANN) and fuzzy logic have been widely studied for the fault location 
problem. (e.g., [40], [41]). Nevertheless, the extensive training of such methods limits 
their application to real systems. 

11.2 Objectives and Contributions of the Thesis 

The aim of this thesis is to address the above-mentioned challenges regarding the 
control, operation and planning of controllable resources in ADNs with particular 
reference to ESSs. In this respect, first an exact convex model is proposed for the 
formulation and solution of the OPF in radial power networks. Further, the proposed 
OPF is used to develop appropriate models for optimal reconfiguration of ADNs as well 
as o find the optimal site and size of ESSs in ADNs. Moreover, stochastic optimization 

                                                

1 This reduced time-scale might be associated with the need of solving the OPF problem to 
chase the fast volatility of RERs.  
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and Adaptive Robust Optimization (ARO) are suitably employed to manage the 
uncertainties of parameters in operation and control of ADNs. In what follows, the main 
contributions of the thesis are summarized by making reference to three main issues 
mentioned above. It should be noted that in this thesis the ESSs are owned and directly 
controlled by DNOs.    

11.2.1 Optimal operation and control of ADNs  

A) Propose of an exact convex formulation for OPF in radial power networks 

The thesis first proposes an exact convex formulation for the OPF in ADNs. It is 
capable to include the correct model of transmission lines (two-port Π equivalent) as 
well as the network security constraints (nodal voltages and lines ampacity limits). We 
have augment the original OPF formulation with a new set of more conservative 
constraints to limit the line current flows together with the nodal voltage magnitudes. 
Sufficient conditions are provided to ensure the feasibility and optimality of the 
proposed OPF solution. 

B) Development of an optimal ADN reconfiguration model based on the proposed 
convex OPF  

The proposed OPF model is augmented with radiality constraints and inclusion of tie-
line switches to develop an optimization programming for optimal reconfiguration of 
ADNs. It takes into account the two-port Π equivalent model of lines and network 
security constraints. In order to formulate the radiality constraints, binary variables 
are only introduced to model tie-line switches. This approach reduces the number of 
binary variables and, consequently, decreases the computation time. The developed 
model belongs to the category of Mixed Integer Second Order Cone Programming 
(MISOCP) problems and could be solved efficiently by the state of the art commercial 
solvers for convex optimization and as a consequence is applicable to real large-scale 
networks. 

C) Voltage control in ADNs using ESSs based on voltage sensitivity coefficient 

The thesis also proposes an optimal voltage control scheme based on nodal voltage 
sensitivity coefficients and using ESSs as controllable resources. The developed model 
is linear and could be used as an alternative to the proposed OPF one.   

1.2.2 Uncertainty management in optimal operation and scheduling of ADNs  

A) Development of an Adaptive Robust Optimization model for ADN uncertainty 
management 

The day-ahead optimal scheduling of ADNs is suitably modeled as a two stage 
optimization model. The decisions of the first stage (or here- and- now) decisions, are 
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made when the random parameters are unknown. In context of our targeted problem, 
they deal with the day-ahead decision variables (the amount of import/export energy 
from the external grid at each hour to the day-ahead market, and ESSs set points).  
Given the first stage decisions, the second stage (or wait and see) decisions are made 
based on the realization of the random parameters. In case of our specific problem, the 
second stage decision variables are the 15 minutes ESSs set points. An adaptive robust 
optimization technique, considering the spatial and temporal correlations, is proposed 
to solve this two stage optimization programming.  

BB) Development of a stochastic optimization model for ADN uncertainty 
management 

A stochastic optimization technique is proposed to solve the above-mentioned two-
stage programming. Further, On Load Tap Changer (OLTC) transformers are properly 
modeled and incorporated into the optimization problem.   

1.2.3 Optimal planning of ESSs in ADNs  

A) Development of an optimization programming for siting ESSs for voltage control 

The above-mentioned optimization model that relies on voltage sensitivity coefficients 
for voltage control, is further augmented for optimal siting of ESS units in ADNs.  In 
particular, an optimal planning procedure is proposed that accounts specifically for the 
minimization of the network voltage deviations based on the formulation of a mixed-
integer linear programing problem. In view of the large size of the problem, its solution 
relies on the so-called benders decomposition technique. 

B) Development of an optimization programming for optimal siting and sizing of 
ESSs with a multi-objective for energy balance and grid support 

A multi-objective optimization problem is developed for optimal siting and sizing of 
ESSs in ADNs aiming at finding the optimal trade-off between technical and economical 
goals. In particular, the proposed procedure accounts for (i) network voltage deviations, 
(ii) feeders/lines congestions, (iii) network losses, (iv) cost of supplying loads (from 
external grid or local producers) together with the cost of ESS investment/maintenance, 
(v) load curtailment and (vi) stochasticity of loads and renewables production. The ESSs 
are suitably modeled to consider their ability to support the network by both active and 
reactive powers. The proposed OPF is used as the core of the model.  

C) Inclusion of ADN reconfiguration model into ESSs planning problem 

The above-mentioned model (section 1.2.1.C) for optimal ESSs siting and sizing is 
further developed by including the developed AND reconfiguration model into the 
optimization problem.  

 



1   Introduction 
 

5 
 

DD) Successful application of decomposition methods for targeted long-term planning 
problems  

The long-term planning problems are normally large-scale ones since they should 
include a reasonable number of scenarios to address the variations and uncertainties of 
various parameters. In case of our targeted problems, their size increase drastically 
with the increase of both network size and number of scenarios. As a consequence, a 
dedicated decomposition method might be required. In this thesis we proposed the 
proper application of Alternative Direction Method of Multipliers (ADMM) and Bender 
decomposition to break down the optimization problems.  

1.3 Thesis Outline 

The structure of the rest of this thesis dissertation is as follows. 

Chapter 2 presents a literature review of the existing models and solution approaches 
for OPF problem in ADN. Then, the proposed OPF, along with the sufficient conditions 
for its exactness, are described. Various numerical analysis are also provided to 
demonstrate the effectiveness of the proposed OPF and showing the infeasible behavior 
of the existing convex OPF models. Further in this chapter, the proposed ADN optimal 
reconfiguration model, along with a relevant literature review of distribution networks 
reconfiguration, are presented.  

In the last part of this chapter, we present a linearized OPF model for voltage control 
in ADN based on voltage sensitivity coefficients as an alternative to the relaxed OPF 
formulation.    

Chapter 3 presents first a literature review dedicated to uncertainty management in 
power system optimization problem. Then, the inclusion of uncertainties into optimal 
operation of ADNs is investigated. In this respect, first based on standard forecasting 
processes of renewables production (in particular PV) and load consumption, a 
dedicated two-stage optimization problem for the day-ahead multi period optimal 
scheduling of ADNs with presence of ESSs is presented. In this optimization problem, 
the daily forecast curves of demand consumption and RERs composed by PV production 
are subject to uncertainty. Finally, adaptive robust optimization and stochastic 
optimization techniques are suitably casted to solve the developed optimization 
problems. The IEEE 34 buses test case network is used to demonstrate the effectiveness 
of the proposed robust and stochastic methods. 

Chapter 4 presents first a literature review describing the state of the art in optimal 
siting and sizing of controllable resources in ADNs. Then, a dedicated optimization 
problem using voltage sensitivity coefficients is developed for siting of ESSs aiming to 
decrease the total voltage deviations. The proposed approach uses the concept of voltage 
sensitivity coefficients. Further, the proposed OPF model in chapter 2, is used to 
formulate the problem of optimal siting and sizing of ESSs in ADNs with multi-objective 



1.3   Thesis Outline 
 

6 
 

function for energy balance and grid support. The topology changes of ADNs is also 
incorporated in the optimization problem using the proposed ADN optimal 
reconfiguration model. In order to account for the variations of different parameters 
(load, PV and energy price) during the life-time of ESS units, an appropriate scenario 
generation method is developed relying on multivariate Gaussian distribution of 
uncertain parameters. In the last part of this chapter different solution approach 
adapted to solve this large-scale Mixed Integer Second Cone Programming (MISOCP) 
problem are presented. In particular, Alternative Direction Method of Multipliers 
(ADMM) and Benders decomposition are suitably casted to decompose the targeted 
large-scale problem. 

CChapter 5 presents various numerical analysis with reference to standard IEEE 
distribution networks as well as real distribution grids. In particular, this chapter 
presents three case study each one solved by one of the solution approaches described 
in chapter 4.  

Chapter 6 summarizes the main contributions of this research and provides an outlook 
on the potential future works.  

 



 

  

 

 

 

 

 

 

Chapter Highlights: 

We first introduce a relaxed convex OPF formulation, called AR-OPF, for radial power 
networks. Its features are i) convex formulation ii) inclusion of lines transverse 
parameters iii) inclusion of lines ampacity limits. Further, we provide sufficient 
conditions under which the relaxation in the proposed formulation is exact.  

The AR-OPF is then used to develop a Mixed Integer Second Order Cone Programming 
(MISOCP) model for the ADN optimal reconfiguration problem. The radiality 
constraints are incorporated into the AR-OPF by using binary variables only for the 
lines equipped with switches.  The proposed MISOCP model is tractable and can be 
solved efficiently with state-of-the-art optimization solvers.   

Finally, in the last part of this chapter, we present a linearized OPF model for voltage 
control in ADN based on voltage sensitivity coefficients as an alternative to the relaxed 
OPF formulation.  
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22.1 Chapter Organization 

The first part of the chapter is devoted to the literature review about the OPF problem. 
Afterwards, in section 2.2.3, the power flow equations in radial distribution networks 
are described. The OPF problem and the proposed Augmented Relaxed OPF (AR-OPF) 
formulations are described in sub-section 2.2.4. The required conditions for exactness 
of AR-OPF and the corresponding proofs are provided in sections 2.2.5 and 2.2.6, 
respectively.  

Section 2.3 proposes a model to include the grid reconfiguration feature into the AR-
OPF.  In this respect, first a dedicated literature review is provided regarding the 
optimal ADN reconfiguration. Afterwards, an optimization programming based on the 
AR-OPF formulation is proposed for this specific problem. This section is concluded with 
numerical results to demonstrate the effectiveness of the proposed model.  

The voltage control problem using a linearized OPF model based on voltage sensitivity 
coefficients is presented in section 2.4. First a literature review is presented, then the 
developed model is described in sub-section 2.4.2.  The last part of this section provides 
numerical simulation results carried out using IEEE standard networks. The 
conclusion of this chapter is provided in section 2.5.  

2.2 Optimal Power Flow in Active Distribution Networks   

Optimal Power Flow is a known challenging optimization problem. It has been the 
main building block for the formulation of optimal controls as well as operation and 
planning problems in power systems. Typical examples refer, but not limited to: unit 
commitment, grid planning and reactive power dispatch problems [3-6].  

Power distribution networks are designed in a meshed structure but are normally 
operated in radial topology due to several reasons essentially related to: limit short 
circuit current levels, selectivity of directional protections, etc. Therefore, in what 
follows we make reference to the power flow equations for radial distribution networks.  

2.2.1 State-of-the-art of the Optimal Power Flow (OPF) problem in radial power 
grids 

The OPF is inherently a non-convex NP-hard problem and, consequently, its solution 
is challenging. Several methods have been proposed to solve this optimization problem. 
They can be clustered in four general categories: (i) approximated methods that modify 
the physical description of the power flows equations [7-9], (ii) non-linear optimization 
methods [10-12], (iii) heuristic methods [13], [14] and (iv) convexification approaches 
[15-23]. Here below we briefly recall the main characteristics of each of the above-listed 
categories. 
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Approximations of the OPF constraints – This category of OPF solution methods relies 
on the approximations of the power flow constraints. The first and well known one, is 
the DC load flow. It is based on the following three main assumptions: a) voltage 
magnitudes are constant, b) line longitudinal resistances are assumed null and c) the 
angle differences between nodal voltages are small. It has been extensively used for the 
OPF in transmission networks (e.g. [3-7]). This approximation might be reasonable for 
most of OPF problems applied to transmission networks since the resistance/inductance 
ratio of high-voltage transmission lines is small and reactive power flows might be 
supplied locally. However, the DC OPF has several shortcomings like, for instance, the 
inability to optimize the reactive power dispatch. Additionally, its main drawback is 
that it always provides a solution even when it is physically meaningless (i.e., line 
power flows above the static transmission line limit). 

 Another approach is the so-called DistFlow formulation [8], [9]. It applies to power 
flow equations in radial systems. It should be noted that the DistFlow formulation, 
unlike DC OPF, does not neglect the resistance of the lines. It does not consider the 
voltage magnitude to be constant, and does not neglect the flow of the reactive power.  

Solution of the non-convex OPF – These techniques seek to find a local optimum 
solution of the OPF. They cannot guarantee the identification of the global optimal 
solution as well as the sub-optimality gap. Typical examples of these techniques refer 
to interior point methods (e.g.,[10]), trust-region based methods (e.g.,[11]), and 
Lagrangian Newton methods [12]. 

Heuristic methods applied to OPF –Heuristic methods are widely used to solve the 
OPF. Typical application examples refer to Genetic Algorithm [13] and Particle Swarm 
Optimization[14]. Similarly to the previous category, they cannot guarantee the 
identification of the global solution and, additionally, they are generally characterized 
by a high computation time. 

Convexification of the OPF – Several relaxations have been applied to convexify the 
AC-OPF problem (see the survey discussed in [15]). The Authors of [16] have proposed 
a linearized-relaxed model to approximate and solve the AC-OPF problem. A 
semidefinite relaxation method is proposed in [17]. A distributed optimization based on 
Alternative Direction Method of Multipliers (ADMM) and semidefinite relaxation is 
proposed in [18] to solve OPF in the case of unbalanced distribution networks. The 
Authors in [19] and [20] have investigated the application of moment-based relaxation 
to OPF problem. The Second Order Cone Programming (SOCP) relaxation is proposed 
in [21-23] to solve the OPF in radial power networks.   

In this thesis the focus is on this last category of OPF solution methods. The reason of 
making reference to these specific category is justified by the increasing needs of 
Distribution Network Operators (DNOs) to actively control their grids in an optimal 
fashion due to increasing connection of the distributed generation (mainly from 
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renewable energy resources) and potentially controllable devices such as distributed 
storage and demand response. 

Based on our best of knowledge, the latest contribution published on this subject is 
[23]. The Authors have shown that the SOCP relaxation is computationally more 
efficient than the semidefinite relaxation. In [21] the Authors have shown that the 
SOCP relaxation is tight when there is no upper bound on the nodal load consumptions. 
In  [22] it is shown that the relaxation is exact with no upper bound on the nodal 
voltages together with specific conditions that can be checked a-priori and are a function 
of the network parameters. In [23] the Authors have improved the work of [22] by 
introducing a more conservative constraint on the upper bound for the nodal voltages.

Although the model proposed in [23] works properly in many operating conditions, it 
has a few deficiencies. In particular, it does not take into account the shunt capacitors 
of the equivalent two-port Π line model as well as the line ampacity constraints (which 
is an important limit, for instance, in grids with coaxial underground cables). Regarding 
the line shunt capacitors, even if these elements might be aggregated to nodal loads, 
their absence leads to an incorrect computation of the line current flows and, as a 
consequence, to the violation of line ampacity constraints. 

In [24] it is proposed a methodology based on the augmented Lagrangian method to 
solve the original non-convex OPF problem considering the shunt impedances and the 
capacity limits of the feeders. However, this method is iterative and, as a consequence, 
computationally expensive. The positive aspect of it is that it can be easily formulated 
in a distributed manner. 

In order to overcome the above limitations, in this first part of the chapter we propose 
a convex relaxed formulation of the OPF problem applied to radial power grids capable 
to include both shunt impedances of the classic two-port Π line model together with the 
line ampacity constraints. The formulation is augmented with a set of more 
conservative constraints for upper nodal voltage magnitudes and feeders current flows 
to preserve the exactness of the relaxed power flow model. The proposed formulation is 
characterized by a slightly reduced space of feasible solutions. The removed space is in 
correspondence of the one that is close to the technical limits of the grid being, from the 
grid operation view point, technically sound. Further, specific sufficient conditions are 
derived under which the AR-OPF is exact. The proof of exactness of the proposed AR-
OPF is also provided.  

22.2.2 Notations and definitions 

The network is radial. Index 0 is for the slack bus and its voltage is fixed ( . Without 
loss of generality, we can assume that only bus 1 is connected to the slack bus (otherwise 
the problem separates into several independent problems). Buses other than the slack 
bus are denoted with ; denotes the set 1,...,L1,..., and is the label of the 
bus that is upstream of bus . We also label with  the line whose downstream bus is 
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bus ; its upstream bus is therefore .  denotes the set of the buses that are non-
upstream of bus  ( ) and  denotes the set of the lines that are upstream of 
bus  ( )  (  is defined in (2.1)). Finally,  denotes the set of the buses that are 
leaves of the grid.   

Let:  be the complex power flow entering line  from the top, i.e. from bus 
;  the complex power flow entering the central element of line  (it is 

equal to  minus the reactive power associated with the shunt admittance connected 
to bus , see Fig.  2-1);  the complex power flow entering bus  from 
the bottom part of line  and  the square of the current in the central element of line  
(Fig.  2-1). Let  and  be the longitudinal and shunt impedances of line . 
We denote with  the complex conjugate of .  

Let  be the square of voltage magnitude and  the power absorption at bus 
l (  and   denote power consumptions,  and   denote powers 
injections). Let  denote the sum of the susceptances of the lines connected to bus . 

 and   are the square of maximum and minimum magnitude of nodal voltages. 
 is the square of maximum current flow limit of line  .  and  denote 

the real and imaginary parts of complex numbers and  is the imaginary unit; 
 returns the maximum of  and .  

A notation without subscript such as  denotes a column vector with  rows as in  

 

Note that for  and their related auxiliary variables ( ) the vectors  
represent the relevant values at upper side of line  ( ). The notation  represents the 
column vector with  rows whose  element is the absolute value of . Comparison of 
vectors is entry-wise, i.e.  means  for every . The transpose of  is 
denoted with . 

 
Fig.  22-11: Classical two--port Π model of a transmission line adopted for the fformulation of 

the OPF relaxed constraints.  
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Matrices are shown with bold non-italic capital letters such as . We use the –norm 
for vectors  and the induced –norm for matrices 

. For two matrices   of equal dimensions, the notation  
denotes their Hadamard product, defined by  for all . 

 

For the reader’s convenience, the matrices defined are listed below. 

  is the  identity matrix.   

 For a vector such as  denotes the diagonal matrix whose  element is .  

   is the adjacency matrix of the oriented graph of the network, i.e.  is defined 
for  and  if  and  otherwise.  

  is the closure of , i.e.  if bus  is on the path from the slack bus to bus  
or , and  otherwise. Because the network is radial,  and  

 12 1LH I G G G I G   (2.1) 

 diag   diagx BM H   (2.2) 

. (  is well-defined and is nonnegative (entry-wise) when Condition 
C1 (later defined in sub-section 2.2.5.1) holds).  

  is the entry-wise positive matrix defined by  

 22diag diag 2diag diag diagr r x x zD C H I H I   (2.3) 

  and  are the vectors defined by  

 
max min

min

max ,l l
l

l

P p
v

H
  (2.4) 

 

max min max

min

1max , diag
2l

l
l

l

Q q b v

v

TH H I G
l   (2.5) 

 2 2
l l l

2
l   (2.6)  

where  and are the vectors of minimum loads level on the buses of system.  

 and    are the entry-wise positive matrix defined by  
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 1diag diag
2

Tx BF H H G D   (2.7) 

 2diag diag 2diag diagrEE H F Ddia   (2.8) 

22.2.3 Power flow equations in radial distribution networks 

For a given radial power network, the power flow equations without considering the 
lines shunt impedances are given in (2.9.a)-(2.9.c). 

 
 ,  ( ) ,t t

l l ml l
m

m ls z f lS SG ,   (2.9.a) 

 2*
up  2 ,   l

t
l l l llv v z S z f lR   (2.9.b) 

 
2

up

,    
t

l
l

lS
f l

v   (2.9.c) 

The equation (2.9.a) represents the complex flow on the line between buses  and 
 The voltages between the two ends of the feeders are linked with the equation (2.9.b) 

and the equation (2.9.c) represents the square of the current flow from bus  to   

The DistFlow equations for the given radial network are given in (2.10.a)-(2.10.b). In 
these equations  is neglected and consequently they are linear.  

 ,  
ˆ ˆ( ),l m

m

t t
l l msS S lG ,   (2.10.a) 

 *
up  ˆˆ 2 ,   t

ll l lv v z S lR   (2.10.b) 

These equations have been extensively used in the literature. However, they don’t 
consider the transverse parameters of the transmission lines.  For instance, these 
parameters are not negligible in the networks characterized by underground coaxial 
cables and, therefore, have to be taken into accounts for network studies, operation and 
control.  In the followings, the transverse parameters are appropriately incorporated 
into power flow equations and the new power flow equations considering transverse 
parameters are presented.  

For sake of clarity, the complete transmission line two-port Π model is shown in 
Fig.  2-1. For a given radial power network, the correct power flow equations are given 
by (2.11). 

 ,  up ,    
2

t t l
l l l m m l l ll

m

bS s S z f j v v lG ,    (2.11.a) 
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 2up*
up  2 z , 

2
llt

l l l l ll

v b
v v S j z f lR   (2.11.b) 

 

2
2

up

up

2 2 ,   

llt b l ll l

l
ll

v b v bS j S j
f l

v v
  (2.11.c) 

 ,  ,    b t
l l l m m

m
S s S lGG ,    (2.11.d) 

Equations (2.11.a), (2.11.b) and, (2.11.c) directly derived by the application of the 
Kirchhoff’s law to Fig.  2-1 represent the power and voltage equilibriums in the line. 
Equation (2.11.d) represents complex power flow of line  at its  side (see Fig.  2-1). It 
is a derived variable, which is introduced here for notational convenience. 

It should be noted that (2.11.c) represents the physically correct value of the internal 
current of the two-port Π model. It is worth noting that the term does not represent 
the square of the current that one can measure at the line terminals; it is an internal 
state variable of the two-port Π model. 

The corresponding DistFlow equations including transverse parameters are as 
followings: 

 ,  up ,    
2

ˆ ˆ ˆ ˆt t l
l l l m lm l

m

bS s S j v v lG ,   (2.12.a) 

 up*
up

ˆˆˆ ,
2

ˆ  2 z  llt
l l ll

v b
v v S j lR   (2.12.b). 

 

22.2.4 Proposed optimal power flow in radial distribution networks 

  One can formulate an optimization problem, called OPF, with the power flow 
equations shown in (2.11.a)-(2.11.d). The objective function is generally represented by 
a convex one and practical examples refers to minimization of: (i) nodal voltage 
magnitude deviations with respect to the rated value, (ii) network resistive losses, (iii) 
line congestion, (iv) cost of supplied energy, etc. Here we consider that the objective 
function is the minimization of the generation cost of dispatchable units available in 
the network and energy imported from the transmission network (or maximization of 
the energy exported to the grid). It should be noted that the minimization (resp. 
maximization) of energy import (resp. export) from the grid and the total resistive losses 
minimization are the same objectives. Therefore, the objective function shown in (11.a) 
is strictly increasing in total resistive losses or energy import from the gird. The general 
optimization problem is shown in (2.13.a)-(2.13.g). 
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OOriginal Optimal Power Flow (O-OPF) 

 1, , ,
minimize ,  e t

ls S v f l
ls s PR I 11,, t

l l, 1,,   (2.13.a) 

subject to: 
(2.11.a)-(2.11.d) 

 max ,    lv v l   (2.13.b) 

 min ,    lv v l   (2.13.c) 

 
2

max

up

,    
t
l

l
l

S
I l

v   (2.13.d) 

 
2

max  ,    
b
l

l
l

S
I l

v
  (2.13.e) 

 min max ,    l l lp s p lR   (2.13.f) 

 min max ,    l l lq s q lI   (2.13.g)  

where  is the cost function of nodal absorption (injection),  is the cost function 
related to energy import from the grid. Both  and are assumed to be convex, 
and as mentioned above,  is strictly increasing.  and  represent the 
maximum square current flow limit of the lines and maximum/minimum nodal square 
voltage magnitudes.  and  represent the maximum square current flow 
limit of the lines and maximum/minimum nodal square voltage magnitudes. In order 
to account for the voltage and line current operational constraints, equations (2.13.b)-
(2.13.e) are added to the optimization problem. It is worth noting that line ampacity 
limits must not be applied to  since, as stated before; it does not represent the exact 
value of the current at its terminals. Additionally, it has to be applied to both ends of 
the feeder since the current flow at both ends are not equal. The constraints (2.13.g) 
and (2.13.f) represent the upper and lower limits of nodal loads (it worth to mention 
that  and  correspond to the maximum generation capacity of active and 
reactive power on bus .).  

This optimization problem is non-convex due to equation (2.11.c). However, as shown 
in [21]), it becomes convex if we replace (2.11.c) by (2.14): 

 

2
up

up

2
,   

llt
l

l
l

v b
S j

f l
v

  (2.14) 
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The problem obtained when we replace (2.11.c) by (2.14) in O-OPF is called the Relaxed 
Optimal Power Flow (R-OPF). 

RRelaxed Optimal Power Flow (R-OPF) 

 1, , ,
minimize ,  e

l ls S v f l
s s PR I 1,  1l l,,, 1,, ,   (2.15.a) 

subject to: 
(2.11.a), (2.11.b), (2.11.d), (2.14),(2.13.b)-(2.13.g) 

 

It can easily be shown that R-OPF is a convex problem, however, it may often occur 
that the optimal solution does not satisfy the original constraint (2.11.c), i.e. is not a 
physical solution [24]. 

In the next section, we present an augmented formulation of R-OPF which does not 
have this problem, as we prove in the following.  

2.2.4.1 Proposed OPF model for ADN 

In order to ensure the feasibility of the proposed OPF formulation, we first introduce 
the following sets of auxiliary variables ,  ,  for the lines of the grid and  for the 
buses of the network as defined in (2.15.b) - (2.15.h). It should be noted that  and  
represent lower bound and upper bound on  and , respectively and are adapted from 
DistFlow equations [8].  and  are upper bounds on  and , respectively (The proof of 
these statements is in 2.2.6.1).  

 , up ,  ˆ ˆ ˆ ˆ   
2

t t l
l l l m l ll

l

bS s S j v v lG ,   (2.15.b) 

 up*
up  2 z ,    

ˆˆˆ ˆ
2

llt
l l ll

v b
v v S j lR   (2.15.c) 

 ,  up ,    
2

t t l
l l l m m l l ll

m

bS s S z f j v v lG ,   (2.15.d)

 ,  ,    b t
l l l m l

m
S s S lG ,  (2.15.e) 

 , ,   ˆ  ˆb t
l l l m l

l
S s S lG ,   (2.15.f) 

 

2
2 ˆmax ,max

ˆˆ , 2 2
,   

b bl l l lb b l l
l l

l
l l

v b v bQ j QP P
f l

v v
  (2.15.g) 
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2

up up2

up up

max ,max , 2 2
ˆ

,   

ˆˆ
l ll lt t

t t l l
l l

l
l l

v b v b
Q j QP P

f l
v v

  (2.15.h) 

In in 2.2.6.1 we will show that for any set of   that satisfies (2.11.a)
-(2.11.d) and (2.15.b)-(2.15.h) we have (recall that a notation such as  represents the 
vector ): 

 P̂ P P   (2.16.a) 
 Q̂ Q Q   (2.16.b) 
 ˆv v   (2.16.c). 

22.2.4.2 Proposed Augmented Relaxed OPF model 

The following Augmented OPF (A-OPF) formulation is obtained by adding new 
variables ( ) to (2.13) and modifying security constraints as shown in (2.17). 

 
Augmented Optimal Power Flow (A-OPF) 

 1, , , , , , ,ˆ ˆ
minimize , ) e t

l ls S v f S v S f l
s s PR I 1, ) 1l l,,, 1,,,   (2.17.a) 

subject to:  
(2.11.a)-(2.11.c) 

(2.13.f),(2.13.g) 

(2.15.b)-(2.15.h) 

 min ,       lv v l   (2.17.b) 

  ,  ˆ  max
lv v l   (2.17.c) 

 
2

maxmax , max ,ˆˆ  ,b b b b
l l l l l lP P j Q Q v I l   (2.17.d) 

 
2

max
upmax , (ma ˆxˆ , ,t t t t

l l l l llP P j Q Q v I l   (2.17.e) 

 max ,  t
l lP P l   (2.17.f) 

 max ,  t
l lQ Q l   (2.17.g) 

 max ,  t
l lP P l   (2.17.h) 

 max ,  t
l lQ Q l   (2.17.i) 
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In the A-OPF formulation, the nodal voltage magnitudes upper limit is imposed on , 
an upper bound of ). This is shown in equation (2.17.c). Similarly, the lines current 
flow limit is modeled using the maximum of absolute values of ( ) and (resp. ) 
as shown in (2.17.d)-(2.17.e). As it is shown in equations (2.16.a) and (2.16.b) ( ) 
and (resp. ) are upper and lower bounds of  (resp. ) respectively. We have also 
added constraints (2.17.f) -(2.17.i) to the optimization problem. It should be noted that 
they are not a physical constraint of the system. We have added these constraints to 
derive the exactness conditions (later presented in section 2.2.5.1) more 
straightforward. The values of , and   are chosen so that this constraints don’t 
affect the feasible solution space of A-OPF (by performing a load flow with maximum 
injection and absorption levels of the system and obtain the maximum possible values 
of  ( ) and  ( )). 

It should be noted that the new set of constraints (2.17.b)-(2.17.i) is a bit more 
conservative and slightly shrinks the feasible solution space. However, the removed 
space covers an operation zone close to nodal voltages and line ampacity limits that is 
not a desirable operating region for the network operators. 

The A-OPF is non convex due to equation (2.11.c). The proposed OPF formulation is 
obtained by replacing (2.11.c) with (2.14) in A-OPF, which gives the following convex 
model, called AR-OPF: 

AAugmented Relaxed Optimal Power Flow (AR-OPF) 

 
ˆ 1, , , , , ,ˆ ,

minimize , e t
l ls S v f S v S f l

s s PR I 1
e t

l l, s P1
e tt

l,,,   (2.18.a) 

subject to: 

(2.11.a),(2.11.b), (2.11.d)(2.14)(2.13.f),(2.13.g), 

(2.15.b)-(2.15.h), 

(2.17.b)-(2.17.i). 

In the next section, we provide conditions for exactness of AR-OPF.  

2.2.5 Exactness of augmented relaxed OPF 

In this section, we provide seven conditions under which the relaxation (2.14) in (AR-
OPF) is guaranteed to be exact. These conditions can be easily verified using the static 
parameters.  

2.2.5.1 Statement of the Conditions for exactness of AR-OPF 

The seven conditions are as follows (matrices  and  are defined in (2.3), (2.8) and 
(2.1)). 
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Condition C1:  

 
T

1max maxl ll l
x B

H H
ax l lmax

ll max   (2.19.a) 

or 

 2
1max maxl ll l

x B
L

ax l lmax
ll max

L
  (2.19.b) 

Condition C2:  

 1E   (2.20) 

Condition C3:  there exists a  such that: 

 1diag   diagr rHH E H H   (2.21) 

Condition C4:  there exists a  such that: 

 2
2diag   diagr rHH E H E   (2.22) 

Condition C5:  there exists a  such that: 

 4diag  diagx xHH E H H   (2.23) 

Condition C6:  there exists a  such that: 

 2
5diag  diagx xHH E H E   (2.24) 

Condition C7: there exists a  such that: 

 3 DDE D  (2.25) 

The following Theorem is defined to show the exactness of AR-OPF.  

TTheorem I: Under conditions C1-C7: 

1) For every feasible solution  of AR-OPF there exist a feasible 
solution  of A-OPF with the same power injection vector .  

2) Every optimal solution   of AR-OPF satisfies (2.11.c), and is thus 
an optimal solution of A-OPF. 

Part 1) of Theorem I implies that the vector of absorptions  of any feasible solution 
of the proposed OPF formulation belongs to the region where the nodal voltages upper 
and lower limits and the lines ampacity limit are satisfied. Part 2) of Theorem I is the 
exactness of the relaxation. 
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The main idea of the proof of Theorem I is as follows. If   is feasible 
for AR-OPF, then  is in general not a load flow solution for the power injections 
 (as (2.14) replaces (2.11.c)) but it is always possible to replace by  

obtained by a performing a load flow on . The technical difficulty is to find the good 
load flow solution (as there are multiple solutions), namely one that satisfies the voltage 
and ampacity constraints. This “good” load flow solution is obtained using an ad-hoc 
iterative scheme (later described in this section). Further, we show that an optimal 
solution of AR-OPF is also a load flow solution.  

In case of direct power flow operating condition the following Theorem is introduced.  

TTheorem II: Under conditions C1 and when min 0pH   and 
min max1 diag 0

2
q b vTH H I G  : 

1) Every optimal solution   of AR-OPF satisfies (2.11.c), and is thus 
an optimal solution of A-OPF. 

Theorem II implies that, under condition C1, for a network operating in direct power 
flow, the relaxation shown in (2.11.c) is exact. The proof of Theorem II is provided 
in 2.2.6.  

2.2.6 Proof of exactness of AR-OPF  

In this sub-section, first we derive the matrix form of power flow equations. Then, we 
prove that under condition C1 matrix  is invertible. Finally, the proofs of 
Theorems I and II are provided.  

2.2.6.1 Formulation of constraints in matrix form 

For , the upstream bus of , , is the unique  such that  and 
thus the voltage  at the upstream bus of  is given by , namely 

. 

Using equations (2.11.b) we can rewrite the nodal voltage equation for  as 
follows: 

 2
0 2diag( ) 2diag( ) diag( )diag( ) diag(| | )T Tv v v e r P x Q x b v z fG G   (2.26) 

where . Similarly, (2.11.a) gives: 

 diagP p P r fG   (2.27) 

 1diag diag
2

Q q Q x f b vTG I G    (2.28). 

Using (2.1) we can rewrite (2.27) and (2.28) as: 
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 diagP p r fHH H   (2.29) 

 1diag diag
2

Q q x f b vTH H H I G   (2.30). 

Similarly we have: 

 diagP p r fH H   (2.31) 

 1diag diag
2

Q q x f b vTH H H I G   (2.32). 

We can eliminate  from (2.26), using (2.29), (2.30) and obtain: 

2
0

diag diag diag diag  

2diag 2diag 2diag diag 2diag diag diag

T T Tx b x b v

v e r p x q r r x x z f

I G G H I G

H H H H
 

 (2.33) 

now using (2.1) and the following equation 

   diag  diag diagTb B bGG G    (2.34) 

this gives: 

 
0

2

2diag diag

2diag diag diag

v v e r p r f

x q x f z f

TI G M H H I

H H I
  (2.35) 

where . 

Under condition C1 (given in the sub-section 2.2.5.1), we prove that  
exists and has non-negative entries. It follows that we can solve for  in equation (2.35) 
as follows: 

 0 2 diag 2 diagv v e r p x q fCC C H C H D   (2.36) 

where   is defined in (2.3). Note that  for all  i.e.  entrywise. 
Further,  is “small” when  is small. Next, we can write (2.15.c) as follows: 

 0 2 diag 2 iagˆ dv v e r p x qC C H C H   (2.37) 

thus: 

 ˆv v fD   (2.38). 

Since  and  are non-negative matrices, thus: 
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 ˆv v   (2.39). 

Further the equation (2.11.a) and (2.15.b) can be rewritten in matrix form as: 

 P̂ pHH   (2.40) 

 1 di g
2

ˆaQ̂ q b vTH H I G   (2.41) 

 dia ˆg diagP p r f P r fHH H H   (2.42) 

 

1diag diag
2

1 diag diag
2

ˆ

Q q x f b v

Q x f b f

T

T

H H H I G

H H I G D
  (2.43). 

Since  and  are all non-negative thus: 

 P̂ P   (2.44) 

 Q̂ Q   (2.45). 

We are also interested in  and  namely the power flows inside the 
longitudinal components, which we call  and .  Using (2.41) and (2.43) we have: 

 ˆ ˆ ˆ1 1diag diag
2

ˆ
2

cQ Q b v q B vTG H H   (2.46) 

 1 1diag diag diag  
2

ˆ
2

c cQ Q b v q x f B v Q fTG H H H F   (2.47) 

where   is defined in (2.7). 

Similar to (2.45) we have: 

 'ˆ ˆQ Q Q   (2.48). 

Lemma I: If  satisfies (2.11.a)-(2.11.d) and (2.15.b)-(2.15.h) then: 

1-   and  
2- If  satisfies (2.11.a), (2.11.b), (2.11.d), (2.14), (2.15.b)-(2.15.h) 

and  then it is always possible to construct  and  such that 
  satisfies (2.11.a)-(2.11.d) and (2.15.b)-(2.15.h) and  and 

. 
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We prove this lemma by mathematical induction starting from the leaves of the grid. 
Formally, for a bus , let  denote its height in the tree, defined by  
when  is a leaf and  otherwise. 

11- Base case (height =0) 

For the base case we show that Lemma I holds for leaves of the system. 

a) Suppose bus  is a leaf of the network ( ) with  as its total load (see 
Fig.  2-1) (  satisfies (2.11.a)-(2.11.d) and (2.15.b)-(2.15.h)). From 
(2.11.c) we have:  

 

2
2

2 ,  

l l
l l

l
l

v bp q
f l

v
  (2.49). 

Noting that  from (2.15.g) we have: 

 

2

2 max ,max , 2 2
0    

ˆ

,

l l l l
l l

l l
l l

l l

v b v bq qp p
f f l

v v
  (2.50) 

combining with (2.29)-(2.32) it comes that: 

 ˆ ,  t t t
l l lS S S l   (2.51) 

this shows item 1 of Lemma I. 

b) One can choose  as followings so that and  satisfies (2.15.g) and (2.15.h) 
(note that  

 

2
'

2

' '

' "
2

'
'2

'

' '
up up

max ,max , 2 2
,

max

max ,max , 2

ˆ

ˆ
2

l l l l
l l

l l

l l

l l

l l l l
l l l l

l l l l

l l

v b v bq qp p
v v

f f
v b v bq x f qp r f p

v v

 

 (2.52) 

Thus we have: 
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2

2

' "
2

2 "
"

up up

max ,max , 2 2
,

max

max ,ma

ˆ

2
ˆ

x , 2

l l l l
l l

l l

l l

l l

l l l l
l l l l

l l l l

l l

v b v bq qp p
v v

f f
v b v bq x f qp r f p

v v

 

 (2.52.b) 

thus   and it satisfies (2.15.g) and (2.15.h). Consequently from (2.31) and (2.32) 
we have .  

This shows item 2 of Lemma I. 

22- Induction step 

Assume the statements in Lemma I are true for all buses of height , for some . 
We now want to show that is also holds for all buses of height . Let be a bus 
with . 

a) For all downstream buses  of , we have  thus  and from 
equations (2.11.d), (2.15.e) and (2.15.f) 

 ˆ b b b
k k kS S S   (2.53) 

thus (recall that : 

 

22
2 2 max ,max , 2 22

ˆˆˆ b bk k k kb b k k b b k kk k k k

k k
k k k

v b v bv b Q QP Q P P
f f

v v v
 (2.54) 

 

combining with (2.29)-(2.32) it comes that: 

 ˆt t t
k k kS S S   (2.55) 

this show item 1 of Lemma I. 

b) Based on the induction assumption and equation (2.15.e) we have for 
all buses  that are downstream of  and also . Thus one can choose  as follows 
so that  and  satisfies (2.15.g), and (2.15.h): 
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2
'

'

2
''

'

' "
2

' '

'
up

2
'' '

'
up

max ,

,
max ,

2 2

max
max ,

max ,
2

ˆ

ˆˆ

ˆ

ˆˆ
2

b b
k k

k

b bk k k k
k k

k

k k
b b

k k k k

k

b bk k k k
k k k k

k

P P

v

v b v bQ Q

v
f f

P P r f

v

v b v bQ Q x f

v
2

"

2
"

2
" "

up

" "

ˆmax ,

,
max ,

2
ˆˆ

ˆ

ˆˆ

2

max
max ,

 

max ,
2 2

b b
k k

k

b bk k k k
k k

k

b b
k k k k

k

b bk k k k
k k k k

P P

v

v b v bQ Q

v

P P r f

v

v b v bQ Q x f
2

up kv

  (2.56) 

 

thus  and  satisfies (2.15.g) and (2.15.h). Consequently from (2.31) and (2.32) 
we have  

This shows item 2 of Lemma I. 

Both basis and inductive steps are proved which completes the proof of Lemma I. 

 

AA) Inverse of matrix  

We prove that when C1  holds,   is invertible and has non-negative entries. 

We can rewrite  as follows:   

 1 T T T T TI G M I G I I G M I G I H M   (2.57). 
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We now use the identity: 

 2T T TII H M I H M H M I   (2.58) 

which holds whenever  (recall that  means induced ). 

Now: 

 

T T
, ,

, , , ,

,

diag diag

max  max

max  max  

k l k l

m k k k l l l l m k k ll lm m
T

l l k ll l

x B

x B x B

x B

HH M H H

H H H H

H H
m

ax l lmax
ll max H

  (2.59) 

thus: 

 T Tmax  max  l ll l
x BHH M H Hax  maxl lmaxmax

ll max H   (2.60) 

note that  thus: 

 T 2LHH H   (2.61). 

It follows that, when C1 holds, then , which by equation (2.58) proves that 
 is invertible. By transposition of equation (2.1),  is also invertible; 

together with equation (2.57), this shows that  is invertible when C1 holds. 
Furthermore, equations (2.1), (2.57), (2.58) imply that:  

 1 2T T 0T TII G M I H M H M H   (2.62) 

 

BB) Proof of Theorem I 

Item 1: Let  be a feasible solution of AR-OPF. Let 
 be the set of lines where (2.14) holds with strict inequality. If  is empty,  is a 

load flow solution and Theorem I is trivially true. Assume now that  is not empty and 
only one line (say line ) has strict inequality in (2.14). (Later we show the general case 
where several lines have strict inequality). We divide the lines into two groups i) those 
that  and we call them upstream of bus ,   and ii) those that  and 
we call them non-upstream of bus  . We now create a load flow solution for . 
Using Lemma II (defined later in this Appendix) first we will show that the created load 
flow solution is feasible (satisfies the security limits) and then we will show that it has 
a lower objective function.  

Consider the sequence  defined for  by means of Algorithm I. 
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We now show that this sequence converges. For let  Using 
Lemma II we have: 

 1 1nnf fE   (2.63) 

when C2 holds we have: 

 1E   (2.64) 

which ensures the convergence of ,  therefore of  and finally of the 
sequence . It follows that  converges to some limit, say 

. Since  by construction, it follows that  as well and thus, 
by Lemma II since are non-negative thus:  

 min * maxˆv v v v v   (2.65). 

Furthermore, by step 1 we have: 

 
2 2* *

*
*
up

,  
t c

l l
l

l

P Q
f l

v
  (2.66). 

Let and . It follows that 
 satisfies (2.14) with equality, i.e. it is a load flow solution. From (2.65) we can observe 

that the voltage security constraints are satisfied. Further item 2) of Lemma I 
guarantees that there exist  and  such that   and  thus 
constraints (2.17.f) and (2.17.g) are satisfied. Further from item 1) of Lemma I we have 
that  and  which show that constraints (2.17.h) and 
(2.17.i) are also satisfied. Thus  is a feasible solution of AR-OPF and of A-OPF. 

Algorithm 1: (apexes represent iteration numbers) 
Input:   
Initialization. 

 
 
 
 

 
for  

Step 1:     

Step 2:    (eq. (2.42)) 
Step 3:    (eq. (2.47)) 
Step 4:    (eq. (2.38)) 



2.2   Optimal Power Flow in Active Distribution Networks 
 

28 
 

We now show the general case. First, we name the right hand side of (2.11.c)  and 
the right hand side of (2.14)  ( ).  Further, having strict inequality for 
line  is the same case as having equality in (2.14) with nodal consumption of 
corresponding bus  equal to .  

Now suppose that there are  lines who have strict inequality in (2.14). Let label these 
lines  where has the lowest height in graph (tree) of the network and  
has the highest height. Now for all the lines belonging to  except  we replace the  
with the corresponding and add an artificial load equal to   to the 
corresponding nodal consumptions (name the new nodal consumption ). Now we have 
only one line with strict inequality in (2.14). We perform Algorithm I and obtain a new 
load flow solution called . We have already shown 
that i)   and ii) . We also have where  belongs to 

 and has the lowest height after . Further from item 2 of Lemma I and knowing 
that  we have  ( )). Finally we have  .  

Now for the next line in  with lowest height  we remove its artificial load and 
make its relaxation inexact (  is the new nodal consumption). Now again perform 
Algorithm I. We obtain a new load flow solution called 

. Similarly, we have i) , ii) , iii) 
, iv) ), and v) . 

We can performs this procedure until all the artificial loads are removed and obtain a 
load flow solution called . This new load flow 
solution satisfy (2.11.c) and we have , , 

 thus it is a feasible solution of AR-OPF and of A-OPF. 

This prove the first item of Theorem I.  

 

IItem 2: Assume that  is an optimal solution of AR-OPF but not a feasible solution of 
A-OPF, i.e.  is non-empty. Assume that only the line  has strict inequality in (2.14)
. First note that at the first line ( ) we always have . Further, for the first 
line we have:   

 1 1 1
1 1 1,  

 

0t t
l l l l l

l l
P P f f f fH   (2.67) 

thus . Define where is as in Lemma II. Since 

 it follows that . Furthermore, by Lemma II,  

 1 2 1 1 11
1 1 1 1 1 1 11 1
t n t t n t t t tn t

lP P P P P P P P  

 (2.68) 
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thus for every : 

 1 1
11 1 1 11
t

t n t ttP P P P P   (2.69) 

and therefore  Now  [resp.  ] is the net active power import from 
the external grid for the solution , [resp. ]. Since the power injections  are identical 
for  and , it follows that the objective function of  is strictly less than that of 

which contradicts the optimality of . Using the similar approach used for item one, 
one can show that  has lower objective function than  when   has more than one 
member. This proves the second item of Theorem I.  

  

LLemma II: Under conditions C1-C7, let . For : 

 11n nf fE   (2.70.a) 

 11n nv v   (2.70.b) 

 nv v   (2.70.c) 

 11 ,  t n tn m
l lP P l m   (2.70.d) 

 1 ,  t n t m
lP P l m   (2.70.e) 

 11 ,  c n cn m
l lQ Q l m   (2.70.f) 

 ,  c n c m
l lQ Q l m   (2.70.g) 

 ,   n
l mf f l m   (2.70.h) 

 ,  t n t
l l mP P l m   (2.70.i) 

 ,  c n t
l l mQ Q l m   (2.70.j) 

 

where  for  and similarly with ,  and . 

Proof of Lemma II: The proof is by mathematical induction on . 

1- Base case ( ): 

(2.70.a),(2.70.b),(2.70.d), and (2.70.f) are trivially true.  
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We have  for every  because  is the right hand side of (2.14) in the original 
formulation of the constraints and  is feasible. By equations (2.42) and since 

, it follows that . This shows (2.70.e). Similarly, since  and  are 
non-negative matrices, from (2.47) and (2.38) it follows that ,  and 

. This shows equations (2.70.g),  and (2.70.c).  

The relaxation shown in (2.14) is tight for the downstream lines of bus m ( ) Thus, 
from Lemma I we have that , and 

. . This shows equations (2.70.h), (2.70.i) and (2.70.j).  

22-  Induction step 

Assume the statements in Lemma II are true for some . We now want to show 
that is also holds for .  

a)  Consider first some fixed . Define  by , from equation (2.11.c) 
we have: 

 

up

up

2 2

2

up

2

2
grad

t
l

l

c
l

l
l

t c
l l

l

P
v

Q
v

P Q

v

  (2.71). 

 

Define  for  as: 

 

1

1

1
up up

1

t n t n
l l
c n c n
l l
n n

l l

P P
M t t Q t Q

v v
  (2.72) 

 
then by equation (2.11.c) and by the fundamental law of calculus we have: 

 
1

1

0
up

Φ 1 Φ 0 . gradΦ

t n
l

n n c n
l l l l l l

n
l

P
f f M M Q M t dt

v
  (2.73). 

We first bound each component of the gradient. For , by the induction property 
(2.70.e), (2.70.i), (2.70.g), (2.70.j) and (2.70.c) at and  (note that  is a feasible 
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solution thus , , , and 
): 

 1 max1 t n t n
l l lt P tP P   (2.74) 

 1 max1 c n c n
l l lt Q tQ Q   (2.75) 

 11 n n
min l lv t v tv   (2.76). 

Furthermore,  for any  and the matrices in equations and are non-negative, 
therefore, for all :  

 ˆ t nt
l lP P   (2.77) 

 ˆ c nc
l lQ Q   (2.78) 

and thus: 

 11 ˆt n t n t
l l lt P tP P   (2.79) 

 11 ˆc n c n c
l l lt Q tQ Q   (2.80). 

 

By equation (2.71) it follows that (entry-wise)( , ,l l ll are defined in (2.4)-(2.6)): 

 
2

grad Φ ( 2
l

l l

l

M t   (2.81) 

thus, we have: 

 1
up2 2 .n t n c n n

l l l l l l lf P Q vc n
l l

c n
l l   (2.82). 

Now this is true for some , so in matrix form we have: 

 1 2diag 2diag diagn n c n nf P Q vc nc n   (2.83). 

Further by the construction of , , and  we have: 
 diag rn nP fH   (2.84) 

 c n nQ fF   (2.85) 



2.2   Optimal Power Flow in Active Distribution Networks 
 

32 
 

 n nv fD   (2.86) 

 
combined with (2.8) and (2.83) this gives 

 1n nf fE   (2.87) 

Applying the induction property (2.70.a) for ; it comes: 

 1 1n nf fE   (2.88) 

which shows that he induction property (2.70.a) also holds for .
 

bb) From (2.38) we have: 

 1 1v fD   (2.89) 

and we have already noted that  thus: 

 1 1 1 .v v fD   (2.90). 

Using (2.38) we have: 

 1 n 1nv fD   (2.91) 

apply (2.88)and C7: 

 1 1n nv fD   (2.92) 

apply (2.90) it comes: 

 1 1 n nv v   (2.93). 

It follows that (2.70.b) also holds for . 

 

Further we have: 

 1 1 1 2 1 1 11

1
n n nv v v v v v v v   (2.94) 

(noting that ) if  thus  otherwise: 
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 1 1 1 1 1 1n nv v v v v v v v   (2.95) 

thus . It follows that (2.70.c) also holds for . 

 

cc) We have: 
 1 1diagP r fH   (2.96) 

and we have already noted that  thus: 

 1 1 1 1diag diagP P r f r fH H   (2.97). 

Since only entry  of  is non-zero  ) thus: 

 1 1 1 1diag diagt t
l l m mlm lm

P P r f r fH H   (2.98). 

Using (2.29) we have: 

 1 n 1diagnP r fH   (2.99) 

thus: 

 1 1 1 1diag diag diagt n n n n
l ml lml

P r f r f r fH H E H E  (2.100). 

From C4 we have (recall that  : 
 

 1 1diag  diag ,  n 1nr rnH E H E   (2.101) 

thus: 

 1diag  diag ,  n 1
mlm

r rnnH E H E
l

  (2.102). 

Further from C3 for the lines that are upstream of line  (  we have: 

 diag  diag , m
lm lm

r lrH E H m   (2.103) 

combining with (2.102): 

 ndiag  diag   m
lmlm

r r lnH E H m   (2.104) 

combining with (2.100):  
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 1 1 11diag diag diag ,   t n n n n m
l m mlmlm

P r f r f r f lH H E H m  

 (2.105) 

apply (2.98) 

 1 1 ,   t n tn m
l lP P l m   (2.106) 

it follows that (2.70.d) also holds for . 

 

Further for  we have (noting that ) 

1 1 1 2 1 1 11
1 ,  

1
t n t t n t t t tn t m

l l l l l l lP P P P P P P P l m  

 (2.107) 

thus (noting that ) 

 1 1 1 1 1 1 ,  t n t t n t t tt t m
l l l l l l l lP P P P P P P P l m   (2.108) 

It comes that  which shows that he induction property (2.70.e) also 
holds for . 

 
dd) Note that C5, C6 and C7 imply that  
 

 2

FE H F

FE FE
  (2.109) 

 
applying the similar approach used for , one can show that: 

 
1 1

1

,  

,  

c n cn m
l l

c n c m
l l

Q Q l

Q Q l

m

m
  (2.110) 

which shows that he induction properties (2.70.f) and (2.70.g) also hold for . 

 

e)  We have: 
 ,l l m

nf f l m   (2.111) 

thus from (2.42), (2.47),(2.31) and (2.32) and knowing that  we have: 

  ,  ˆ  t nt t
l l l mP P P l m   (2.112) 
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 up up  ,  
2

ˆ
2

n
l ll lc n t nc t

l l l l m

b v b v
Q Q Q Q l m   (2.113) 

consequently from step 1 of algorithm 1 we have: 

 1 ,   n
l mf f l m   (2.114) 

this shows that (2.70.h) holds for .  

ff) From (2.42), (2.47), (2.31), (2.32)  and (2.114) we have: 
 1 ,n

l mlP P l m   (2.115) 

 '' 1 ,n
l mlQ Q l m   (2.116) 

these show that (2.70.i) and (2.70.j) hold for .  

 
Both basis and inductive steps are proved which completes the proof of Lemma II. 

 

C) Proof of Theorem II 

Item 1: Similar to the proof of Theorem I, let  be 
a feasible solution of AR-OPF. Let  be the set of lines where (2.14) holds with strict 
inequality. If  is empty,  is a load flow solution and Theorem II is trivially true. 
Assume now that  is not empty.  

Consider the sequence defined for  by means of Algorithm I. 
For let  Using Lemma III we have and knowing that 

:  

 0, 1
0, 2

n

nf n
f n   (2.117) 

which ensures the convergence of ,  therefore of  and finally of the 
sequence . It follows that converges to some limit, 

 and . It follows that  satisfies (2.14) with equality, i.e. it is a load 
flow solution. Further from (2.38), (2.42), (2.43), and Lemma I we have: 

 min * maxv v v v   (2.118) 

 * maxP P P   (2.119) 

 * maxQ Q Q   (2.120) 

 * maxP P P   (2.121) 
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 * maxQ Q Q   (2.122). 

We can observe that the security constraints (voltage lower/upper limits and the lines 
ampacity limits) are satisfied thus  is a feasible solution of AR-OPF and of A-OPF. 
This prove the first item of Theorem I.  

 
IItem 2: Assume that  is an optimal solution of AR-OPF but not a feasible solution of 

A-OPF, i.e.  is non-empty. From Lemma III we have for   and 
. Consequently we have  Since  Thus:  

 1 1 1
* * *

,  
 

0t t
l l l l l

l l
P P f f f fH   (2.123). 

Since the power injections  are identical for  and , it follows that the objective 
function of  is strictly less than that of which contradicts the optimality of . This 
proves the second item of Theorem I.  

  
Lemma III:  When  is not empty and min 0pH   and 

min max1 diag 0
2

q b vTH H I G  under conditions C1, for : 

 0nf   (2.124) 

where  for  and similarly with ,  and . 

Proof of Lemma III: The proof is by mathematical induction on . 

1- Base case ( ): 

We have  for every  because  is the right hand side of (2.14) in the original 
formulation of the constraints and  is feasible and at least there is one line that 

because  is non empty. Since  is a non-negative matrix and  is a positive 
one from (2.42) and (2.47) we have  

 1ˆ0 P P P   (2.124) 

 1ˆ0 cc cQ Q Q   (2.125). 

 Consequently from step one of Algorithm I we have:  

 
2 1

2 0
f f

f
  (2.126). 
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22- Induction step 

Assume the statements in Lemma III are true for some . We now want to show 
that is also holds for .  

Since  for all , thus: 

 1 , 2n nf f n   (2.127) 

combining (2.42), (2.43), and (2.38) we have: 

 1ˆ0 n nP PP   (2.128) 

 1ˆ0 c n nc cQ QQ   (2.129) 

 1min n nv v v   (2.130). 

 thus from step I of Algorithm I we have: 

 1n nf f   (2.131) 

which means that .  

Both basis and inductive steps are proved which completes the proof of Lemma III. 

 

2.2.6.2 Validity of the conditions as a function of the network electrical parameters 
and physical extension 

It is interesting to note that conditions C1-C7 are function of the network topology and 
its electrical parameters. It is of interest to make observations about the validity of C1-
C7 as a function of the grid physical characteristics. 

For a power system characterized by a given rated voltage, per-unit length (pul) line 
electrical parameters  and   do not vary drastically [26]. Additionally, 
parameters  and  are linear with the line lengths . 

By expressing the left hand side of C1 as a function of the line pul parameters and , 
we note that it is given by . Also for C2, it is straightforward to 
observe that the –norm of matrix  has a linear dependence with . Concerning C3, 
C5, and C7 we can observe that the left hand side of their inequality is propositional to 

 whilst the right hand side of their inequality is proportional to . Similarly, the left 
hand side of the C4 and C6 is proportional to  while their right hand side is 
proportional to . 
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Therefore, for given pul parameters  and  , it exists a  small enough so that 
C1-C7 holds. The consequence of this observation is that C1-C7 can be verified a-priori 
for families of networks characterized by given electrical parameters and physical 
extension. In the following section, we numerically show that the validity of conditions 
C1-C7 holds for real distribution networks with large margins. 

To summarize, the AR-OPF is a combination of the original load flow equations and 
the DistFlow models with the inclusion of shunt impedances of the lines. Under the 
seven conditions provided above, the feasible solution space of the AR-OPF is a subset 
of the one of the O-OPF whereas the solution of R-OPF could lay outside the feasible 
solution space of O-OPF. Thus, every feasible solution of the AR-OPF always is in the 
feasible space of the O-OPF. These concepts are schematically represented in Fig.  2-2.  

22.2.7 Numerical analysis of AR-OPF  

The IEEE 34 buses network [25] and CIGRE European benchmark medium voltage 
network [26] are selected to assess the scalability of the provided conditions. The 
schematic of these networks are shown in Fig.  2-3. The scalability analysis is done by 
increasing the maximum level of injections into the systems. The choice of these two 
grids is because, the former network is composed by long overhead lines whereas 
underground cables with high penetration of distributed energy resources characterize 
the later one. Both networks are considered to be balanced without coupling between 
the phases. The minimum and maximum nodal voltage limits are considered to be 0.95 
and 1.05 p.u. respectively.   

In case of IEEE 34 buses, the line impedances are the positive sequence ones (it is 
assumed that the gird is a three phase balanced one). The base apparent power and 
voltage values are chosen to be 5 MVA and 24.9 kV respectively. Since there are no DG 
in the network, we increased the active and reactive power injection at each bus 
proportionally to their load share. The first condition that becomes violated when we 
increase power injections is C5. However, this condition is violated for a total injection 

 
 

Fig.  22-22: Feasible solution spaces of O--OPF, R--OPF, and AR--OPF under the provided 
sufficient conditions  

AR-OPF R-OPF 

O-OPF 
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equal to 1241.8 kW and 755.35 kVAr respectively. For this operating point, the nodal 
voltages reach a maximum value of 1.115 p.u., a value far from typical feasible 
operating conditions.  
For the CIGRE network, the positive sequence impedance with base apparent power 

and voltage base values equal to 25 MVA and 20 kV are selected. The network already 
has 3.079 MW generation capacity (it is designed for study the penetration of renewable 
resources). When we increase the generation capacity, the first conditions that are 
violated are C3 and C5. These violations happen at 570% of DG penetration, 
corresponding to 17.55 MW of active power production. For this operating point, the 
maximum value of the nodal voltages reaches 1.105 p.u., again a value far feasible.   

The C1-C7 are sufficient conditions for exactness of the AR-OPF solution. On the other 
hand we have done simulations well beyond these conditions (with both IEEE 34 buses 
and European benchmark network) and the solution of the AR-OPF is still exact (it 
should be noted that these conditions are violated outside the normal operation region 
of ADNs). Here in Table 2-2 and Table 2-1 we report the solution of AR-OPF and the a-
posteriori load flow analysis. As it can be seen, the AR-OPF is still exact even outside 
the safe operating region of the network where the sufficient conditions do not hold.  

TTable 2-1: The solution of AR-OPF and a-posteriori load flow analysis in very high loading 
condition for the IEEE 34 buses network depicted in Fig.  2-3.b 

Bus 
# 

Voltage in p.u. 
(load flow 
analysis) 

Voltage in p.u. 
(solution of AR-

OPF) 
Bus 

# 

Voltage in p.u. 
(load flow 
analysis) 

Voltage in p.u. 
(solution of AR-

OPF) 
1 1.000 1.000 17 1.117 1.117 
2 1.002 1.002 18 1.117 1.117 
3 1.004 1.004 19 1.125 1.125 
4 1.031 1.031 20 1.128 1.127 
5 1.031 1.031 21 1.120 1.120 
6 1.062 1.062 22 1.120 1.120 
7 1.087 1.087 23 1.123 1.123 
8 1.087 1.087 24 1.123 1.123 
9 1.087 1.087 25 1.124 1.124 
10 1.094 1.094 26 1.124 1.124 
11 1.096 1.096 27 1.124 1.124 
12 1.097 1.097 28 1.123 1.124 
13 1.097 1.097 29 1.124 1.124 
14 1.098 1.098 30 1.124 1.124 
15 1.116 1.116 31 1.124 1.124 
16 1.117 1.117 32 1.124 1.124 
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aa)  

bb)  
FFig.  22--33:: Distribution networks adapted to verify conditions CC1--CC7  oof AR--OOPF. a) IEEE 34 
bbuses distribution test feeder [25], b) CIGRE benchmark distribution grid for integrating 

ddistributed energy resources [226]  
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TTable 2-2: The solution of AR-OPF and a-posteriori load flow analysis in very high loading 
condition for the CIGRE network depicted in Fig.  2-3.b 

Bus # Voltage in p.u. (load flow analysis) Voltage in p.u. (solution of AR-OPF) 
1 1.0000 1.0000 
2 1.0232 1.0232 
3 1.1348 1.1348 
4 1.1391 1.1391 
5 1.1438 1.1438 
6 1.1416 1.1416 
7 1.1743 1.1743 
8 1.2163 1.2163 
9 1.1773 1.1773 
10 1.1786 1.1786 
11 1.1782 1.1782 

 

2.2.8 Comparison of AR-OPF with existing OPF formulation  

For the sake of reproducibility, the simple network introduced in [24] is chosen to show 
the infeasible behavior of the R-OPF and  the capability of the AR-OPF to provide an 
optimal/feasible solution. We have slightly modified this network by adding new 
generation. The network data is presented in Table 2-3 and its topology in Fig.  2-4. It 
should be noted that the values of the line parameters refer to the typical underground 
cables, which are in use in distribution networks 1F

1. It is worth saying that we have 
intentionally adopted a network in which line transverse parameters cannot be 
neglected.  

In order to show the effectiveness of the AR-OPF we have done a sensitivity analysis 
with various line lengths and rated voltage values (this sensitivity analysis was done 
also in [24] to show the shortcomings of the branch flow approximation (R-OPF)). It 
should be noted that the following results refer to an OPF in which the objective is the 
minimization of the total energy supply cost (see Table 2-3 for the elements considered 
in the cost function). Other objective functions that are strictly increasing in the sum of 
total losses lead to identical conclusions. 

Table 2-4 shows the values of the nodal voltages ( ) and voltage auxiliary variables ( ) 
obtained from the solution of the AR-OPF, and the ones calculated by the load-flow 
analysis using the Newton-Raphson method. We can see that the voltage magnitudes 
obtained are the same as the a-posteriori load flow analysis showing the correct 
formulation of the problem and the tightness of the relaxation show in (2.11.c). These 

                                                

1 They are derived from the page 16 of the following document. 
http://www.nexans.com/Switzerland/files/NEXANS06_BTMTAcc_F.pdf 
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results are for the case with line length factor 3 and nominal voltages equal to 
24.9 kV. The same conditions (line length factor equal to 3 and nominal voltage of 
24.9 kV) are used to show the inaccuracy of the model when the shunt capacitances are 
not taken into accounts.  

Table 2-5 shows the nodal voltage magnitudes obtained from solution of the AR-OPF 
formulation without shunt elements vs the ones calculated by the load-flow analysis 
using the Newton-Raphson method (in the load flow analysis, the shunt capacitances 
are considered). It is possible to clearly observe the discrepancies between these two 
sets of results.  

Table 2-5 reveals that the transverse parameters have non-negligible effects and they 
have to be taken into accounts appropriately (especially for the networks characterized 
by the presence of underground cables).  

 In section 2.2.1 another drawback has been mentioned concerning the existing 
literatures regarding the inclusion of the lines ampacity limits in the OPF. In this 
respect, it is worth underlying that in distribution networks line ampacities represents 
a more important constraint rather than the voltage one since they are related to a 
physical constraint capable, if violated, to produce permanent damages to the cables. 

 
FFig.  2-4: Schematic of the 4 bus case study 

 
Table 2-3: 4 buses test network parameters. 

Parameter  Value 
Line parameters(positive direct sequence)  

 
(0.193, 0.38, 0.24) 

Initial line length (line 1, line 2 line 3) (km) (3.12, 3.75,4.37) 
Network rated voltage and base power (kV, 

MVA) 
(24.9, 5) 

(MVA) (DG on bus 4) 4  
( )   

 (for all 4 lines) 80 (A) 
Complex load on bus 2, and 3 (kW , kVar)) (50 +  30), ( 60 – 27 ) 

Energy cost from external grid, cost of active and 
reactive production of DG at bus 4 ($/MWh, 

($/MWh, ($/MVArh) 

(50, 150, 150) 
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Table 2-6 shows the voltages obtained from the results of the R-OPF and a-posteriori 
load flow computations when the transverse parameters are taken into accounts. It can 
be seen that they are different. It is because the relaxation shown in (2.14) is not tight. 
The  of the third line has a value equal to 173.97 A, whereas the a-posteriori load 
flow calculation shows that it is equal to 20.57 A.  

The line current magnitudes for three cases (AR-OPF, AR-OPF without considering 
the shunt capacitances, and the R-OPF for different line lengths are shown in Fig.  2-5. 
It can be seen that the maximum rating of the lines (dashed line in Fig.  2-5) is satisfied 
with the AR-OPF whereas they are largely violated in the two other cases.  

Another sensitivity analysis with respect to nominal voltage magnitude is shown in 
Fig.  2-6. This figure also demonstrates the effectiveness and exactness of the AR-OPF, 
the influences of the transverse parameters as well as the infeasible behavior of R-OPF.  

TTable 22--44:: Voltage magnitude obtained with tthe AAR--OOPF ((lline factor:: 33,, nnominal voltage:: 
224.9 Kv) 

 Voltage magnitude (p.u.) 
 Voltage from load flow   

bus #1 1 1 1 
bus #2 1.0024 1.0025 1.0024 
bus #3 1.0046 1.0047 1.0046 
bus #4 1.0062 1.0063 1.0062 

 
 

Table 2-5: Voltage magnitudes obtained using the AR-OPF without the transverse 
parameters (line factor 3, nominal voltage value 24.9 KV) 

 Voltage magnitude (p.u.) 
 Voltage from load flow  

bus #1 1.0000 1.0000 
bus #2 1.0024 0.9974 
bus #3 1.0046 0.9958 
bus #4 1.0062 0.9958 

 
 

Table 2-6: Voltage magnitude comparison  obtained with the R-OPF  (line factor 5, nominal 
voltage value 24.9 kV) 

 Voltage magnitude (p.u.) 
 Voltage from load flow  

bus #1 1 1.0000 
bus #2 1.0093 1.0067 
bus #3 1.0173 1.0116 
bus #4 1.0217 1.0142 
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aa)  
 

b)  
 

c)  
Fig.  2-5: Current flow magnitude of the lines vs. cables length. a) AR-OPF, b) R-OPF, and c) 

AR-OPF without transverse parameters (nominal voltage 24.9 kV)) 
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a)  

b)  

c)  

FFig.  2-6: Current flow magnitude of the lines vs. nominal voltage level a) AR-OPF, b) R-OPF, 
and c) AR-OPF without transverse parameters (line factor 1) 
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22.3 Topology Changes in Optimal Operation of Radial Power Grids 

As known, distribution networks are designed in meshed structure but are normally 
operated with radial topology. Accordingly, DNOs have several options for their 
network configuration. The network reconfiguration is mostly done for resistive losses 
minimization and/or for satisfying the security constraints (nodal voltages and devices 
loadings limits). The problem of identifying the best configuration of distribution 
networks has been addressed since many years. This optimization problem involves 
non-convex constraints as well as binary variables. Since it is a mixed integer non-
linear and non-convex problem, is extremely hard to be solved. The topology constraints 
related to the radial structure of these networks make the solution even more 
challenging. In this sub-section first, we provide a literature review concerning the 
existing methods for optimal ADN reconfiguration. Then, we propose a MISOCP model 
based on the AR-OPF, to solve the network reconfiguration problem.  

2.3.1 State-of-the-art of optimal ADN reconfiguration 

Several methods have been proposed to solve ADN reconfiguration problem. Heuristic 
methods have been extensively used for this purpose. The Authors in [27] have used 
GA to solve the original MINLP problem related to the optimal reconfiguration of 
distribution networks. The objective is to minimize the voltage sag costs. A multi-
objective model has been proposed in [28] to simultaneously select the best network 
configuration and phase arrangement. The objective function includes minimization of 
resistive losses, voltage deviations, as well as voltages and currents imbalances. The 
Authors have used neural network for the network reconfiguration problem and a 
dedicated heuristic method for the phase balancing/loss minimization problem. Several 
works have studied the losses minimization in distribution networks using the 
reconfiguration option [29-37]. The problem of optimal day-ahead scheduling of ADNs, 
taking into account the network reconfiguration, is addressed in [38]. The objective 
function tries to minimize the total resistive losses, voltage deviation, feeders’ 
congestion as well as the switching cost. It is solved using discrete GA. The Authors in 
[39] present a heuristic algorithm for the solution of optimal reconfiguration problem of 
large-scale distribution networks. The heuristic strategy starts with the initial meshed 
status, with all switches closed. The status of the switches changes based on the 
calculation of the minimum value of total resistive losses, using a load-flow analysis. In 
[40] a heuristic approach based on TABU search algorithm is used to find the optimal 
configuration of a distribution network. The objective is to have the minimum level of 
resistive losses.   

An exhaustive search algorithm is proposed in [41] for finding the minimal-loss radial 
configuration of power distribution networks. The Authors have used the graph-
theoretic techniques involving semi-sparse transformations of the current sensitivity 
matrix. 
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Benders decomposition has been used in [42] and [43] to decompose the original 
MINLP problem into a MILP master and a non-convex NP subproblem. The state of the 
switches are defined in the master stage, and the fitness of the solution is evaluated in 
the subproblems. The subproblems are formulated with non-convex OPF. Therefore, 
the approach does not guarantee the global optimal solution.   

Recently, several works have been done relying on convex formulation of OPF. The 
convex relaxed formulation of OPF is used in [44] and [45] to formulate a mixed integer 
convex programming for optimal reconfiguration of distribution networks. In [46] three 
models i) Mixed-Integer quadratic (MIQP), ii) Mixed-Integer Quadratically Constrained 
Quadratic Programming (MIQCQP) and iii) Mixed-Integer SOCP programming are 
proposed for this problem. The Authors have used a convex model of OPF based on the 
SOCP formulation of OPF. They have provided a new set of constraints to guarantee 
radial topology of the distribution network where binary variables are only required for 
the switches. A heuristic algorithm based on the convex relaxation of OPF problem is 
used in [47] to solve the feeder reconfiguration problem in distribution networks.  

As discussed above, most of the works on ADN reconfiguration have used heuristic 
methods or non-linear solvers to find a local optimum solution for the problem. 
Additionally, these methods are time consuming. The methods that have used convex 
formulation of OPF have not modeled the network and the security constraints properly 
(this aspect has been already discussed in 2.2.1). In this work we have used the radiality 
constraints proposed in [46] and the proposed AR-OPF. The advantages of the proposed 
model are i) the voltage and ampacity limits are modeled appropriately ii) the full AC 
OPF is used without any approximations/simplifications iii) the shunt capacitances 
related to the transverse parameters of the lines are incorporated into the model and 
finally iii) similar to [46] binary variables are only required for the switches. The next 
sub-section provide the mathematical formulation of the proposed model.  

22.3.2 Proposed optimization model for distribution network reconfiguration 

The radiality constraints are modeled with the set of equations (2.132.a) - (2.132.e). 
The main idea is to ensure that every single bus is supplied only by one substation 
through a unique path. In another word, any loop that includes one or more substations 
is not a feasible solution. The loops without substations cannot supply the loads thus 
they are not feasible operating solutions. The variable  defines the direction between 
buses  and  (  means the direction is from  to  and  means the direction 
is from  to ).  is the set of the lines.  is the set of the lines with switches whereas 

 represents the set of the lines without switch.  represents the set of the lines 
connected to bus . The set of all buses is represented by . The buses that are 
substations are represented by  whereas set of rest of the buses is represented by 

. The constraint (2.132.a) implies that the lines without switches must have only 
one direction (either from  to  or from  to ). Every switch has one direction in case 
its switch ( ) is on. This is modeled by equation (2.132.b). The direction of any line 
connected to a substation is from the substation to its corresponding adjacent bus. It is 
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shown in the equation (2.132.c). The buses that are not substation can only have one 
infeed as modeled by (2.132.d).  

 1    , \kl lk Sd d l k \ S\   (2.132.a) 

     ,kl lk kl Sd d l k S   (2.132.b) 

 0    kl Gd l N   (2.132.c) 

 
: ,

1    \
l

kl G
k k l

d l N N
l

  (2.132.d) 

 0,1kl   (2.132.e) 

The AR-OPF is further developed with the above radiality constraints to develop an 
optimization model for optimal ADN reconfiguration. It should be noted that the 
notation for power flows is a bit different from the AR-OPF (see Fig.  2-7). In the 
following formulation the transverse parameters are merged into the nodal loads. It 
should be noted that the switches do not have transverse parameters.  The shunt 
capacitances are still considered in the lines’ ampacity limit constraints and no 
approximation is introduced in the model.  

Resistive losses minimization is the main objective of the network reconfiguration 
problem. In this work we have formulated the optimization program for resistive losses 
minimization. It should be noted that other goals (i.e., voltage deviations minimization) 
can be easily added to the objective function. The objective function is formulated as in 
(2.133.a). The optimization model is shown in set of equations (2.133.a)-(2.133.ee).  

 
( , )

minimize : ( )kl kl lk
k l

r f f   (2.133.a) 

Subject to: 

 (2.132.a)-(2.132.e)   (2.133.b) 

 
ˆ, ,

, ( , )
,

 
,  ˆ

 max max
klkl kl kl kl kl kl

max max
lklk lk lk lk lk lk

d P P P P d P
d P d P

k
P

l
P P

  (2.133.c) 

 
FFig.  2-7: Classical two-port Π model of a transmission line adopted for the formulation of 

tthe optimal ADN reconfiguration.  
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 ' " ' "ˆ0, 0, ˆ 00,l l l lv v v v   (2.133.ee) 

where  is the set of 
optimization variables. Note that a notation without subscript represents the 
correspond vector. For the lines, it represents the corresponding vector for both 
directions (e.g.,  and ). The control variables are the status of the switches.  

Constraints (2.133.c), (2.133.d), and (2.133.e) impose the flow limit based on the lines’ 
direction variable ( ). The direction of the line could be either from  to  or vice versa. 
It should be noted that with any direction, the active and reactive power flows could 
have both positive and negative values. Equations (2.133.g)-(2.133.m) model the  and 

 of the line between buses  and . is a big number (in per unit system 10 is big 
enough). These constraints are not activated (  and  are both zero) when the switch 
of a line is open. For the closed switches and other lines, this constraint is activated 
either for  or . The variables , and  are introduced to put the SOCP 
constraints in a recognizable form for commercial convex programming solvers. In case 
of  direction,  is equal to  and in case of  direction,  for is equal to .  The 
voltage and auxiliary voltage equations between two ends of a line are represented by 
(2.133.n)-(2.133.u). Similar to the case of lines’ current flow, these set of constraints are 
activated either for  or . The nodal voltage magnitudes limits are shown 
(2.133.w) and (2.133.v). The nodal load balance equations are represented in (2.133.x)-
(2.133.z). The reactive power related to the shunt admittance of the lines are modeled 
by equations (2.133.aa) and (2.133.bb). Finally, the current flow at both ends of the lines 
is limited by equations (2.133.cc) and (2.133.dd). The reactive power related to the 
transverse parameters is added to the  to limit the correct current flow of the 
lines.  

In [46] it is shown that any feasible  is either one or zero, and it is an edge of a 
directed tree graph with a root bus. It should be noted that, feasible  means that all 
the buses are connected to one substation.    

Let’s show how the radiality constraints work by investigating the load balance 
equation (2.133.x). Fig.  2-8 shows a generic bus (#1) that is connected to three other 
busses (#2, #3, #4). The equation (2.133.x) represents the nodal power balance at the 
bus #1. Let suppose that through each of the buses #2, #3, and #4 there could be a path 
that connects the bus #1 to the external gird. As stated in before, for a feasible solution, 
there is only one path from the bus #1 to the external grid (any substation). Let suppose 
that bus#1 is connected to a substation through the path passing from bus #2. Thus, we 
have that . Consequently, due to constraint (2.132.d)  and . Hence, 

, ,  

 and  are equal to zero. Therefore, the equation (2.133.x) for the line between buses 
#1 and #2 becomes (2.134) that is the nodal load balance for bus #1. 
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 12 13 14
13 14 1 12 12 1 212

b b bS S s z f j v S   (2.134) 

It should be noted that for the ampacity limit of the lines (equation (2.133.cc)) we have 
added the reactive power flow related to the shunt capacitance of the line to the complex 
power flow resulting from equation (2.133.x). 

To summarize, we have incorporated a set of radiality constraints into the AR-OPF to 
take into account the ADN reconfiguration. In the following sections we provide 
numerical examples for showing the benefits and effectiveness of the proposed 
formulation.  

22.3.3 Computational Examples 

In this section two standard test case systems, 33 buses distribution network [48], and 
IEEE 123 buses network, are used to evaluate the performances of the proposed 
formulation. The former case is employed to demonstrate the optimality of the proposed 
optimization solution, whereas the latter one is used to show the performances of the 
proposed formulation in terms of feasibility and scalability of the solution.  

Case I, standard 33 buses distribution test network: 
The single line diagram of this network is shown in Fig.  2-9. It has 33 buses (including 

the connection bus to the grid, bus #0). It was first introduced in [48]. It is a hypothetical 
12.66-kV system with two feeders and five looping branches (tie lines).  

The optimum solution for this network is obtained in [41] using a brute-force 
methodology.  The switches s7, s9, s14, s32, and s37 are the open ones. The solution of 
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Fig.  2-8: Simple network for verifying radiality constraints  
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the proposed model gives the same switching strategy showing the capability of the 
proposed formulation to find the global optimal solution. The computation time 
(average of 5 times runs) on a desktop PC with 16 GB RAM and Intel Xenon CPU E5-
1650 @ 3.20 GHz is 85 seconds. In this benchmark network every branch has a switch 
thus the number of binary variables is equal to the number of lines. Consequently, the 
advantages of the proposed model that use binary variables only for switches cannot be 
demonstrated with this network. In real networks, all the lines do not have switches. 
Therefore, models with few binary variables have a big computational advantage with 
respect to those that have binary variables for all the lines. The following sub-section 
employ IEEE 123 test buses to demonstrate the accuracy and values of the proposed 
formulation.  

Case 2 IEEE 123 buses test case network 

The schematic of this network is shown in Fig.  2-10. It is assumed that there are five 
sub-stations connected the external gird. They are buses #1, #2, # 3, # 4, and # 5. They 
have switches to connect a part of the distribution network to the external grid (see 
Fig.  2-10). There are 6 other switches in the network between buses (#94, #54), (#13, 
#52), (#18, #35), (#118, #51), (#97, #101), and (#60, #67). It is assumed that there are 10 
PV sites in the network (See Fig.  2-10). The PV sites and their respective capacities are 
shown in Table 2-8 Using the proposed optimization model, the obtained minimum 
resistive losses is 332.24 kW. The switching statuses obtained from the optimal solution 
are shown in Table 2-7. 

The identified topology of the network is shown in Fig.  2-11. As it can be seen there 
are three separate radial networks supplied from 3 substations. The nodal voltages 
obtained from the solution of the optimization problem and the ones calculated a-
posteriori using load flow procedure for the network #1 are shown in Table 2-9 (identical 
feasible results are obtained for the other two grids). It can be seen the obtained nodal 

 
FFig.  2-9: Schematic of the standard 33 buses network [43] (dashed lines are the default 

open switches). 
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voltages from the solution of the optimization problem are identical to those of a-
posteriori load flow analysis.   

 

TTable 2-7: Identified optimal switches status  

Switch Status Switch Status 
(#1, #95) open (#18, #35) close 
(#2, #116) open (#51, #118) open 
(#3, #118) open (#54, #93) open 
(#4, #120) close (#60, #67) close 
(#5, #115) close (#97, #101) close 
(#13, #52) close  

Table 2-8: PV capacities in the IEEE 123 buses test network 

Bus # 10 24 33 58 70 85 87 103 107 114 

Capacity  
(kW) 

457.8 320.5 549.4 412.08 686.8 274.7 183.15 503.6 366.3 412.08 

 
Fig.  2-10: IEEE 123 buses test case network.  
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In order to quantify the computation time of the targeted problem we report below the 
computational time. This shows that the proposed model is scalable to real large-scale 
networks and the solution of the optimization problem could be identified in a 
reasonable time. The formulated MISOCP problem is performed on a desktop PC with 
16 GB RAM and Intel Xenon CPU E5-1650 @ 3.20 GHz and the average computation 
time for 10 runs is 2.88 seconds. 

 

 

 

TTable 2-9: Voltage magnitude comparison: load flow vs. optimal solution 

Bus# 
Voltage: optimal 

solution 
Voltage: load 
flow solution Bus# 

Voltage: optimal 
solution 

Voltage: load 
flow solution 

1 1 1 77 0.9725 0.9725 
95 0.9821 0.9821 64 0.9747 0.9747 
93 0.9798 0.9798 67 0.9731 0.9731 
96 0.982 0.982 73 0.9725 0.9725 
91 0.9788 0.9788 78 0.9725 0.9725 
54 0.9789 0.9789 65 0.9744 0.9744 
89 0.978 0.978 68 0.9736 0.9736 
92 0.9787 0.9787 97 0.9727 0.9727 
53 0.9789 0.9789 74 0.9723 0.9723 
55 0.9788 0.9788 79 0.9724 0.9724 
57 0.9783 0.9783 80 0.9725 0.9725 
87 0.977 0.977 66 0.9743 0.9743 
90 0.9779 0.9779 69 0.9743 0.9743 
52 0.9788 0.9788 98 0.9723 0.9723 
56 0.9788 0.9788 75 0.9721 0.9721 
58 0.9787 0.9787 81 0.9726 0.9726 
60 0.9755 0.9755 70 0.9753 0.9753 
86 0.9753 0.9753 99 0.9717 0.9717 
88 0.9769 0.9769 82 0.9725 0.9725 
59 0.9787 0.9787 84 0.9732 0.9732 
61 0.9755 0.9755 71 0.9752 0.9752 
62 0.9752 0.9752 100 0.9715 0.9715 
76 0.9729 0.9729 83 0.9725 0.9725 
123 0.9755 0.9755 85 0.9737 0.9737 
63 0.975 0.975 120 0.9712 0.9712 
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FFig.  2-11:  IEEE 123 buses network with obtained switches status 
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22.4 Voltage Control of Active Distribution Networks Using 
Sensitivity Coefficients 

2.4.1 Introduction and state-of-the-art 

A widely used category of control approaches relies on the solution of linear problems 
by means of sensitivity coefficients. This approach has been also applied to control 
heterogeneous resources in ADNs by linearizing the dependency between nodal 
voltages and power flows as a function of the power injections (e.g.,[49] [50], [51], [52]). 

In [50] a short-term scheduling procedure is proposed for optimal scheduling and 
control of ADNs. It is composed by two stages: a day-ahead scheduler for the 
optimization of distributed resources, an intra-day operator for every 15 minutes. The 
Authors of [51] proposed a methodology for congestion management 
in distribution networks. The methodology is based on the quantification of each 
generators’ contribution to the constraints. These contributions are quantified based 
on voltage-sensitivities coefficients. The Authors of [53] proposed a low-overhead 
decentralized demand response control mechanism, to provide ancillary services to the 
ADNs by a seamless control of a large population of elastic appliances. They have 
linearized the targeted optimization problem using voltage sensitivity coefficients. 
Further, they have augmented their work in [54] to include the ESSs. In [52] a 
centralized model predictive control scheme is proposed to regulate distribution 
network voltages in the presence of high penetration of distributed generation. The 
Authors have used the voltage sensitivity coefficients to linearize the constraints of the 
problem.  

Since in a subsequent part of this thesis we formulate an ESS planning strategy by 
relying on the concept of voltage sensitivity coefficients, we briefly illustrate their use 
in an ADN voltage control process.  

In this section, we present a voltage control scheme for ADNs based on the voltage 
sensitivity coefficients. As known, each coefficient linearizes the dependency between 
the l_th bus voltage magnitude variation and the k_th bus injected active or reactive 
power variation. The typical procedure for the computation of these sensitivities is the 
use of an updated Jacobian matrix derived from the load flow problem (e.g. [55], [50]). 
An analytical expression of these coefficients, that does not use the load-flow Jacobian 
matrix, has been recently proposed in [49]. We employ this last method for the 
sensitivity computation.  

2.4.2 Voltage control using sensitivity coefficients  

The context of the problem refers to ADNs characterized by the presence of non-
dispatchable generations without the possibility to take advantage of demand-side 
management. We assume to know the phasors of phase-to-ground voltages in all the 
network busses at a generic time as well as the “per-bus” aggregate power 
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injections/absorption. This information is assumed to be obtained via a state estimation 
algorithm (e.g., [56]). Within the context of voltage control in ADNs, it is important to 
point out that both active and reactive power injections play an important role for the 
regulation in view of the non-negligible ratio of longitudinal parameters of the medium 
and low voltage lines.  

Knowing the state of the system (nodal voltages and injections) DNO computes the 
voltage sensitivity coefficients with respect to absorbed/injected power of a bus. The 
analytical expression of these coefficients as a function of system states and admittance 
matrix, has been recently proposed in [49] and reported below.  

 ,
1 ( . )lP l

ll k
k kl

V VA V
P PV

R   (2.135.a) 

 ,
1 ( . )

l lQ
ll k

lk k

V VA V
Q QV

R   (2.135.b) 

where , and  are the voltage phasor of bus , and relevant conjugate. The  and  
are the active and reactive power injections/absorption at bus respectively. 

It is therefore possible to compute the variation of the voltage magnitude at bus  due 
to the power absorption/injection at all buses  

 ( ) (A ( ) A) ( )( )Q
l

P
l lV t ttP Q tt   (2.136) 

where  and  are  and  respectively and 
, .  

The optimization problem for the optimal voltage control (minimization of voltage 
deviation with respect to the rated value) can be formulated as follows (with ESSs as 
control resources): 

 2
minimize ( ) ( ) r

l l
t l

V t V t V   (2.137.a) 

subject to:  

 A ( ) A( ) (( ) ,) ( )P
l l

Q
lV t t P tt t l t TQ ,t T,   (2.137.b) 

 ( ) ( ) ( ), ( ) ( ), ,d ch
l l l l l sP t P t P t Q t Q t l t Ts t T,s   (2.137.c) 

 ( ) 0, ( ) 0 / ,l l essP t Q t l t Tess t T/ ,ess/   (2.137.d) 

 2 2 2( ) ( ) ( ) ,d ch
l l l l essP t P t Q t C l t Tess t T,ess   (2.137.e) 
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 ( 1) ( ) ,
d

ch chl
l l l l essd
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PE t E t P l t T,ess t T,   (2.137.f) 

 min max( ) ,l l l essE E t E l t T,ess t T,   (2.137.g) 

 ( ) ( ) ,d d
i i l essP t u t C i t T,ess t T,   (2.137.h) 

 ( ) ( ) ,ch ch
l l l essP t u t C l t T,ess t T,   (2.137.i) 

 ( ) ( ) 1 ,ch d
l l essu t u t l t T,ess t T,   (2.137.j) 

 ( ), ( ) {0,1} ,ch d
l l essu t u t l t T,ess t T,   (2.137.k) 

 

where  is the set of variables (recall that the notation 
without subscript represents the vector of the corresponding variables).  and  are the 
indices of buses (without slack bus) and the time respectively.  are sets of 
network buses, buses with ESS, and buses without ESS, respectively. The control 
variables are the ESSs set points.  

The objective function formulated in (2.137.a) minimizes the nodal voltage deviations 
with respect to the reference value ( ). Equation (2.137.b) represents the total 
variation of the voltage at bus  due to the power absorption/injection at all buses. For 
this constraint, we assumed negligible variation of load/generation connected to the 
same bus  where l-th ESS is connected. Constraints (2.137.c) and (2.137.d) show that 
the nodal active/reactive variations ( ), result from the ESSs active/reactive (i.e., 
charging/discharging) productions ( / ). The ESSs capability curve and SoC 
constraints are modeled by (2.137.e) and (2.137.f) respectively (  are charging and 
discharging efficiencies, and  represents the energy stored level in ESSs,  and 

 represent the upper and lower limits of ESS  SoC). The constraints (2.137.h)-
(2.137.k) are added to the problem to ensure the operation of ESSs in only one state 
(charging or discharging). In the next section the formulated optimization problem is 
applied to a standard test case network and the results are presented and discussed.    

22.4.3 Simulation results 

This section presents the use of the proposed method with reference to a modified IEEE 
13 buses test feeder. The schematic of this network is shown in Fig.  2-12. It is supposed 
that the network hosts non-dispatchable DG units composed by photovoltaic panels 
(PVs). Concerning the representation of the network loads, they are considered as 
voltage independent PQ absorption. The time series related to active load absorption 
refer to experimentally recorded data. The power factor of loads is considered constant 
during the whole time series. The power injections of PVs have been represented by 
voltage-independent active power injections with null reactive component. It is 
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assumed that the non-dispatchable PV injections are in correspondence of buses #646, 
#684, #675, and #633 with a maximum rated power of 400 kW each. The relevant time 
series make reference to real measured solar irradiation in the central region of Europe.  
The total load and PV generation curves are shown with reference to a one-day time 
horizon with 15 minutes’ discretization. The available ESSs sites and sizes are shown 
in Table 2-10. The Cumulative Distribution Function of the nodal voltages are shown 
in Fig.  2-14 to demonstrate the effectiveness of the voltage control scheme. As it can be 
seen from this figure, the voltage deviations are significantly decreased (especially the 
ones that have high deviation magnitudes).    

 

TTable 22--110:: ESSs sites and ssizes  
Bus number #671 #684 #633 #645 #675 

ESSs size (kVA/kWh) 310/631 100/290 150/365 100/250 200/464 
 
 

  
Fig.  2-12:  Topology of the IEEE 13 bus test feeder. Adapted from [18]. 

 

a) b  
Fig.  2-13: Load and PV time series: a) PV profile b) load profile (base MVA = 2 MW) 
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FFig.  2-14: Nodal voltages CDF with and without control action 

 

2.5 Summary and Conclusion 

In this chapter, we presented a new convex model for OPF problem (AR-OPF) in ADN. 
The AR-OPF takes into account the correct electrical model of the lines (classical two-
port Π model) in addition to network security constraints (lines ampacity limit and 
nodal voltage magnitude upper and lower limits). We have derived sufficient condition 
under which the relaxation used in the AR-OPF is tight (i.e., the solution of the AR-
OPF is exact). Further, we showed that the derived conditions holds for real distribution 
networks with large margins. Using a small benchmark network we presented the 
effectiveness of the AR-OPF and the shortcomings of the existing models to provide 
physically feasible solution.    

Further in this chapter we made use of the AR-OPF to develop an optimization model 
for optimal reconfiguration of ADNs. The advantages of the developed model are i) 
convex model for OPF, ii) proper inclusion of lines ampacity limits, and iii) using the 
exact electrical model of the lines. We have shown the effectiveness of the proposed 
optimal ADN reconfiguration model in terms of optimality and feasibility.  

Finally in the last part of this chapter, we presented an optimization model for voltage 
control using a linearized OPF. The linearized OPF is based on the voltage sensitivity 
coefficients.  

 

 

     





 

 

  

 

 

 

 

  

 

 

 

 

Chapter Highlights: 

In this chapter, we investigate the inclusion of uncertainties in the optimal day-ahead 
scheduling of ADNs. In this respect, we first formulate a dedicated two-stage 
optimization problem for the day-ahead multi period optimal scheduling of ADNs in 
presence of ESSs. In this optimization problem, the daily forecast curves related to load 
consumption and PV production are subject to uncertainty. Then, adaptive robust 
optimization and stochastic optimization techniques are suitably casted to solve the 
developed optimization problems. The IEEE 34 buses test case network is used to 
demonstrate the effectiveness of the proposed robust and stochastic methods. 
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33.1 Chapter Organization 

The sources of uncertainties in ADNs are related to the forecast errors of stochastic 
DG (mainly PV) production, demand and network parameters. In this work, the focus 
is on the uncertainties of loads and PVs (i.e., in general, on the uncertainties of nodal 
power absorptions/injections). Intuitively, their day-ahead and intra-day forecasts 
errors impact the ADN operation, particularly when the PV penetration level is high 
causing financial and technical problems to DNOs. The focus of this chapter is on the 
day-ahead forecasting errors. We investigate two general ways to take into account the 
above uncertainties: i) Adaptive Robust Optimization (ARO) and ii) stochastic 
optimization. In the following, first the typical Autoregressive Integrated Moving 
Average (ARIMA) model for PV and load forecasting is briefly introduced. Then, the 
ADN day-ahead scheduling problem is formulated as a two-stage optimization problem. 
Later, sections 3.4 and 0 present the use of ARO and stochastic optimization techniques 
to solve this targeted two-stage optimization problem. A brief comparison between ARO 
and stochastic optimization techniques is provided in section 3.6. The chapter is 
concluded with a summary of main findings in section 0.       

3.2 Load and PV forecasting methods 

The aim of this section is to illustrate a typical approach to forecast daily load and PV 
profiles. The presence of this section is justified since ARO and stochastic optimization 
frameworks require the knowledge, to some extent, of the distribution of the uncertain 
parameters. Therefore, we make reference to the well-known ARIMA forecasting tool. 
Although in day-ahead scheduling the load is discretized on the hourly basis, the intra-
day deviations are quantified on 15 minutes basis. For this reason, we have used the 
15 minutes interval to discretize the forecasted time-series. The uncertain parameters 
have temporal and spatial correlations. In order to consider the spatial correlation, we 
have considered that the PV profiles have the same variation for all the buses of the 
system. This is justified since distribution networks are characterized by limited area. 
Additionally, as we solve the intra-day operation with 15 minutes step, this is sufficient 
to filter all nodal PV relative variations. For the nodal loads, we assumed spatial 
correlation only for the same kind of loads (i.e., residential, commercial, and industrial). 
We use ARIMA time-series forecasting method, trained with experimentally obtained 
data, to consider the temporal correlation.    

Photovoltaics (PV) is the fastest-growing renewable energy production technology 
since 2002, particularly for the case of distribution networks [57]. However, the 
forecasting methods for PV are not yet mature enough in contrary to the case of wind 
power. Recent researches has been concentrated on forecasting solar irradiation, 
whereas few works focus on prediction of PV production and even less on uncertainty 
estimation of the predictions [57]. Time series methods are one of the classical PV 
forecasting tools [58, 59]. However, an appropriate model for day-ahead forecasting of 
PV requires, to some extent, knowledge of cloud cover and their movements [57]. 
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Nowadays, hybrid models are developed that incorporate the data of the satellite 
images and weather forecasting tools with statistical methods (like time-series and/or 
neural network) to effectively predict the day-ahead PV profile [60, 61]. A multiplicative 
ARMA model to generate instantaneous series of global irradiation is presented in [62]. 
The developed model is based on removing the annual periodicity and seasonal 
variation of solar radiation and fitting an AR model to the data. In [63], a two-stage PV 
forecasting method is proposed where statistical normalization of the solar power is 
obtained using a clear sky model. The forecasts of the normalized solar power are 
calculated using an adaptive linear time series model. A medium-term solar irradiance 
forecasting model  is presented in [64] by adopting predicted meteorological variables 
as inputs to an Artificial Neural Network (ANN) model. A seasonal ARIMA time-
series analysis is developed in [65] in order to forecast the power output of a PV site.  
The developed model is improved by incorporating short-term solar 
radiation forecasts derived from numerical weather prediction models. In this thesis 
the basic ARIMA model is used for forecasting the PV data since the data of satellite 
images and weather parameters are not practically available. A model-free approach 
for ultra-short-term prediction of solar irradiance is proposed in [66]. It is independent 
from i) the method used for point-forecast of solar irradiance and ii) the error 
distribution of the point forecast method.     

 On the other hand, the existing literature concerning the load forecast is quite rich 
[67]. There are several methods for short-term (i.e., day-ahead) load forecasting that 
can effectively forecast the day-ahead load profiles. Neural network [68]  and time series 
methods [69] are the most sophisticated and utilized models. In [70] it is proposed a 
load forecasting technique based on a nonlinear generalization of Box and Jenkins 
approach for nonstationary time-series. A self-supervised adaptive neural network for 
short term load forecasting is presented in [68]. The Authors have used the self-
supervised network to extract the correlational features from temperature 
and load data. The Authors of [71] proposed a forecasting model based on the linear 
regression analysis of previous load and weather data. The normal load model and the 
weather-sensitive component of the load are estimated using the parameters of 
regression analysis. In [72] a two-stage integrated price and load forecasting framework 
is proposed. The first stage provides initial price and load forecasts separately. The 
second stage considers load and price interaction with initial forecasts as inputs. At 
each stage, a hybrid time-series and adaptive wavelet neural network model is used, in 
which ARIMA model catches the linear dependencies between the price and load time 
series. In this work we used the standard ARIMA model as a tool for demand 
forecasting.   

33.2.1 The ARIMA forecasting tool 

A time series is a sequence of data over a time interval. Under the hypothesis that 
future values of a time series depend on its previous ones, it is possible to build specific 
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tools accounting for this correlation.  In this respect, a model is first built based on the 
previous data and, then, the future values are predicted using the developed model. We 
have used Auto-regressive Integrated Moving Average (ARIMA) to forecast the load 
and PV profiles since they have been extensively used for these purposes and they also 
allow a simple quantification of the distribution of the forecasting errors. In the 
following, the ARIMA process is briefly described for the sake of clarity and introduction 
of the nomenclature.  

The Auto-regressive (AR) models a time series where the future data are a linear 
combination of its previous values [73]. An AR model of order  (the future data 
depends on its  previous values) is shown in (3.1). 

 
1

ˆ
m

it t i t
i

y t y   (3.1) 

where ŷ t is the forecasted load at time , t  is the random disturbance and it  
represents the random coefficients. Least Mean Square (LMS) method is normally used 
to tune the random coefficients [74].  

The Auto-regressive Moving Average (ARMA) predicts the future values of a time 
series as a linear function of the previous data and previous values of a white noise 
[ ( ), ( 1),...]a t a t .  The ARMA model of order  is shown in (3.2).  

 1 1( ) ( 1) ... ( ) ( ) ( 1) ... ( )p qy t y t y t p a t a t a t q   (3.2) 

Recursive scheme and maximum-likelihood approaches are mostly used for ARMA 
parameter identification [73]. The following lag operator is defined to condense the 
notation and solve linear difference equations: 

 ( ) ( )iB y t y t i   (3.3) 

 2
1 2( ) 1 ... p

pB B B B     (3.4) 
 

 2
1 2( ) 1 ... q

qB B B B   (3.5). 

The final ARMA formulation is shown in (3.6). 

 ( ) ( ) ( ) ( )B y t B a t   (3.6) 

In case of non-stationary process, it is necessary to transform the series to a stationary 
form. Let define  operator as: . Then, a series with AR and MA 
orders equal to  and , that needs to be differentiated  times, known as Auto-
Regressive Integrated Moving-Average (ARIMA( )) can be written as (3.7) 

 ( ) ( ) ( ) ( )dB y t B a t   (3.7) 



3   Optimal Operation and Scheduling of Active Distribution Networks under 
Uncertainty 
 

67 
 

ARIMA is capable of modeling seasonal data. It is possible to include the seasonal 
terms in the ARIMA model as shown in (3.7). The seasonal ARIMA is written as ARIMA 

 where  is the number of periods per season. Finally, the general 
formulation of ARIMA model, which includes differencing, multiplicative seasonality 
and seasonal differencing is as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )sddB B y t B B a t   (3.8.a) 

 1(B) 1 ... s
s

p ss
pB B   (3.8.b) 

 1(B) 1 ... s
s

q ss
qB B   (3.8.c). 

In this study, we use the basic ARIMA model as formulated in equation (3.8.a). In this 
respect, the distribution is considered to be non-stationary (it can be transformed to a 
stationary one with an initial differencing step) and non-iid (independent and 
identically distributed).  

33.2.2 Load and PV forecasting using the ARIMA model 

Five days of experimentally recorded data of a region in Southern-east part of 
Switzerland is used to model the demand profile 2F

1. The data are categorized based on 
two types of demand: i) residential ii) commercial/industrial. The recorded data of 4 
days is shown in Fig.  3-1.a. These 4 profiles are used to train the ARIMA model and 
predict the load for 5th day (see Fig.  3-1.b). The average of 15 minutes errors in 
comparison with the real data over 96 time periods (each 15 minutes) are calculated as 
(3.9). In this equation and are the forecasted and actual demands at time step .  

 
1:96

1
96

f r
t t

D r
t t

s s
MDE

s
  (3.9) 

The MDE (MDE : Mean Day Error) for the forecasted commercial and residential load 
profiles shown in Fig.  3-1.b are equal 5% and 9% respectively.  

Similar to the load profiles, the recorded PV profiles shown in Fig.  3-2.a are used to 
create an ARIMA model and forecast the PV profiles shown in Fig.  3-2.b. It should be 
noted that two categories of PV profiles are taken into account, i) partially cloudy sky 
(Fig.  3-2.1), and clear sky (Fig.  3-2.2). The MDEs for the forecasted PV profile shown 
in Fig.  3-2  are equal 20.3% and 2.1% for partially cloudy and clear sky, respectively. 

                                                

1 It should be noted that, more available data lead to better prediction. Unfortunately, we had 
access to only one week of data. 
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a.1   a.2  

b.3  b.4  

FFig.  3-1: Load forecast using ARIMA a) load profiles used to train the ARIMA , 1. commercial 
2. Residential, b) forecasted and actual day-ahead load profiles, 1. commercial 2. Residential 

(  and  are upper and lower bounds of confidence interval with  error 
intervals for commercial and residential loads, respectively) 

a.1  a.2  

b.1   b.2  

Fig.  3-2: PV forecast using ARIMA in p.u. of total capacity: a. PV profiles used to train the 
ARIMA (1. partially cloudy sky, 2. clear sky) b. forecasted and actual day-ahead PV profiles (1. 

partially cloudy sky, 2. clear sky) 
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33.3 Two-stage Optimization Problem for Day-ahead Scheduling of 
Active Distribution Networks 

The targeted optimization problem is the day-ahead scheduling of an ADN under 
uncertainty. It is modeled as a two-stage optimization programming.   

The decisions of the first stage are made when the random parameters are unknown. 
In the context of our targeted problem, they deal with the day-ahead decision variables. 
The first-stage decisions determine the amount of import/export energy from the 
external grid at each hour and ESSs set points. 

The second stage deals with the intra-day decisions variables, given the first stage 
decisions. The objective function includes cost of deviations from day-ahead energy 
import/export scheduling, rescheduling cost of ESS units, and deviation cost of nodal 
voltage magnitudes. The control variables are the ESSs set-points.  

3.3.1 First stage formulation 

The first stage or the day-ahead scheduling problem is formulated as following.  

 ess

, , , ,
minimize: ( ) ( ) ( ) ( ) ( )

ch d

DA ch d
l l lp p q t l

t t p t p t q t   (3.10.a) 

subject to: 

 ( ( ), ( )) 0,t t t T   (3.10.b) 

The objective function is to minimize the cost of energy import from the external grid 
and the ESSs operation one. The operation cost of the ESSs is modeled as in (3.11).  

 ess ch d
essC p p q   (3.11) 

where  and  are the active  power charge and discharge variables,  is the reactive 
power output of ESS units, and  is a linear increasing function in . 

The energy price and the day-ahead energy import scheduling, are represented by , 
and , respectively. 

For the sake of brevity, the set of load flow, grid security (nodal voltages and lines 
ampacity limits), and ESSs (capability curve, SoC, and energy reservoir capacity) 
constraints are represented with ( , ) 0 .  is the vector of variables (square of nodal 
voltages, lines complex power flows and current flow, square of current flow producing 
losses, ESSs active and reactive power outputs, energy level of ESSs) and  is the vector 
of parameters (nodal load, nodal voltages upper and lower limits, lines ampacity limit, 
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ESSs power rating and energy reservoir capacities). These constraints are further 
described in section 3.4.3.1. 

The first stage optimization problem is represented in matrix form as following:  

 
( )

minimize
F x

T
xx

c x   (3.12.a) 

subject to: 

 'ΨAx   (3.12.b) 

 Gx g   (3.12.c) 

33.3.2 Second stage formulation 

The second stage optimization problem is formulated as following: 
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, , , , ,
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  (3.13.a) 

 ( , ) 0, t T   (3.13.b) 

 ,( ) ( ) ( )r r f rs t s t s t t T   (3.13.c) 

 ,( ) ( ) ( )c c f cs t s t s t t T   (3.13.d) 

 ,( ) ( ) ( )pv pv f pvs t s t s t t T   (3.13.e) 

The second stage is also a multi-period OPF problem where DistFlow equations with 
inclusion of transverse parameters are used to model the load flow constraints.  The 
objective function includes minimization of: i) nodal voltages deviations, ii) deviations 
from day-ahead scheduling and ii) cost of rescheduling of ESSs. 

The  are the charge/discharge upward (downward) variables for 
the active power outputs of ESSs, respectively. The  are the 
positive/negative upward (downward) variables for the reactive power output of ESSs, 
respectively. The  and  represent down and up deviations from day-ahead energy 
schedule.  is the weighting coefficient of voltage deviation cost.  
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 are the square of voltage magnitude thresholds (upper and lower) beyond 
which the voltage magnitudes deviations with respect to the  are minimized.  

We have considered three sets of uncertainties, residential load, commercial load, and 
the PV production as shown in (3.13.c), (3.13.d) and (3.13.e), respectively. The 
forecasted load and PV profiles and their respective variations are represented by 

/ , / , and / , respectively. ,  and  are 
the aggregated residential, commercial loads and PV production at each time step ( ), 
respectively.  

The total load and PV are distributed among the network buses based on their nodal 
residential/commercial active load, PV production, and residential/commercial reactive 
load coefficients. 

The second stage optimization problem is represented in matrix form as following:  

 

( )

minmize

H y

T
yy

c y   (3.14.a) 

subject to: 

 Py   (3.14.b) 

 My Rx e   (3.14.c) 

 Dy d   (3.14.d) 

 is the vector of uncertain parameters (  is the day-ahead forecast and  
represents the corresponding variations),  is the vector of variables in the second stage. 
The equality constraints of the second stage minimization are divided into two sets i) 
those that have uncertainty (nodal PV and load) and are shown in (3.14.b), and ii) those 
that don’t have uncertainty (DistFlow, ESSs, and grid security constraints) and are 
shown in (3.14.d). In the following two techniques are suitably casted to deal with the 
uncertainties in the equation (3.14.b). In particular, ARO is used to deal with the worst-
case realization of the uncertain parameters whereas stochastic optimization is 
employed to deal with the uncertainties using scenarios sampled from the PDF of 
uncertain parameters.     

33.4 Adaptive Robust Optimization for Day-ahead Scheduling of 
Active Distribution Networks  

Recently, Robust Optimization (RO) methods have gained attention in power systems 
optimization problems since they allow to deal with the uncertainties and stochasticity 
of the parameters. The RO needs moderate information (mean value and range of 
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variation) regarding the stochastic parameters. Additionally, RO provides an immune 
solution against all realizations of uncertain data within the deterministic uncertainty 
set. This latter element is the key difference between the RO and stochastic 
optimization. Indeed, RO provides a solution considering the worst case realization of 
the uncertain parameters, whereas the stochastic programming provides a solution 
with respect to probability of the considered scenarios.  

In the following, a literature review regarding the application of RO in power system 
optimization problems is presented. Afterwards, we propose a model to build the 
uncertainty set for the load and PV profiles. Then, Adaptive Robust Optimization (ARO) 
applied to the problem of ADN day-ahead scheduling, described in section 3.3, is 
presented. Finally, the solution approach adapted to solve the proposed ARO model is 
described.  

33.4.1 State-of-the-art of robust optimization in power system optimization 
problems 

The RO has been widely used in power system optimization problems as suitably 
coupled with planning and operation objectives. The Authors of [75] presented a RO 
approach for the transmission network expansion planning. The presented model is 
formulated as a tri-level programming problem. The upper level minimizes the 
investment and operation costs. In the middle level, the contingencies leading to 
maximum power imbalances are identified. The lower-level problem minimizes the 
power imbalances following a given contingency.  The RO has been also applied to 
energy storage planning in a transmission network with high level of renewable energy 
[76]. The Authors used a RO approach to minimize the investment cost of storage units 
while guaranteeing a feasible system operation, without load or renewable power 
curtailment.  

The RO is also applied to Security Constrained Unit Commitment (SCUC) and day-
ahead Economic Dispatch (ED) problems.  The Authors of [77] have used an ARO for 
the ED problem with high level of wind penetration. They proposed an ARO model for 
multi-period economic dispatch problem and also introduced the concept of dynamic 
uncertainty set to model temporal and spatial correlations of stochastic parameters.  In 
[78] a two-stage adaptive robust unit commitment model for the SCUC problem with 
uncertain nodal injections (wind power and price responsive demand) is presented. The 
Authors proposed a solution methodology based on a combination of the Benders 
decomposition and the Outer approximation techniques. A RO approach is proposed in 
[79] to accommodate wind power output uncertainties in the day-ahead market that 
tries to minimize the total cost under the worst wind power output scenario. The 
Authors in [80] have presented a sparse formulation and solution for the affinely 
adjustable robust counterpart (AARC) of the multi-period OPF problem. The objective 
of AARC is to operate a storage portfolio via receding horizon control. It provides the 
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optimal set-points and reserve participation factors of conventional generation and 
storage units for the forecasted load and renewable generation profiles.  

The RO has been also used in context of offering strategy of energy providers [81], 
demand response management [82], and contracting strategies for renewable resources 
[83]. It also has been applied to some of the distribution network optimization problems. 
A two-stage RO model is proposed in [84] for distribution network reconfiguration with 
load uncertainty. The first-stage decision determines the topology of the network 
whereas the second-stage performs AC-OPF for the worst demand realization. The 
Authors of [85]  proposed a RO planning strategy for siting, sizing, and choosing of 
dispatchable and intermittent DGs. The costs included in the objective function are 
investment, operation, maintenance, fuel and emission costs of DGs whereas the 
revenues come from selling energy. A RO programming for bidirectional dispatch 
coordination of a large-scale V2G is presented in [86].  

In this work we develop an ARO model for day-ahead scheduling of an ADN with 
presence of PV and ESSs. 

33.4.2 Dynamic uncertainty set for ARO   

The so-called uncertainty set is the building block of the RO and has a direct impact 
on its performance. An appropriate uncertainty set has to i) balance between the 
robustness and the conservativeness of the solution ii) capture the significant aspects 
of the uncertainties, and iii) be computationally tractable [77]. It should be noted that 
the DGs are considered to be non-dispatchable and there is no possibility to use demand 
response.    

A simple static uncertainty set applied to robust scheduling of an ADN could be 
constructed based on the confidence intervals of the total load (commercial and 
residential) and PV forecasting errors as shown in(3.15).  

 ( ) ( ) ( )
cc ct s t t   (3.15.a) 

 ( ) ( ) ( )
rr rt s t t   (3.15.2) 

 ( ) ( ) ( )
pvpv pvt s t t   (3.15.c) 

where  ( ), ( ), ( )
c r pvc r pv are the forecast confidence intervals lower (upper) bounds 

for commercial load, residential load, and PV production, respectively. , ,c r pvs s s are 
the commercial load, residential load and PV production variations with respect to their 
forecasts. The above uncertainty sets are conservative and, in general, unrealistic since 
the worst case will not happen for all the forecasted time intervals (it does not consider 
the temporal correlation between the errors). Demand uncertainty is usually less 
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dynamic than PV output and a static uncertainty set could be an appropriate model. In 
this work we used a static uncertainty set for the commercial and residential load 
profiles. However, an uncertainty budget as in (3.16) is introduced to limit the total 
deviation of the load profiles (for both commercial and residential). Furthermore, the 
forecast confidence intervals for the loads are obtained assuming a fixed level of error 
for each time step.   

 ( ) cc c

t
L s t U   (3.16.a) 

 ( ) rr r

t
L s t U   (3.16.b) 

The same approach has been used for PV forecast in case of clear sky, since its 
uncertainty is not dynamic. 

On the other hand, the uncertainty set of PV production, in case of partially cloudy 
sky, is very dynamic i.e., the uncertainty of each time step depends on its previous 
values.    

The first step in building an appropriate uncertainty set is to determine the forecast 
confidence interval for each time step ( ( ), ( )

pv pvt t ). After fitting a model, it is 
important to have an index for the variability of what is still unknown. The variances 
of the error terms could be used to measure these uncertainties. We use the square 
mean error of the forecast ( 2( )t ) to estimate the variances. Assuming that the error of 
the forecast follows a normal distribution, the uncertainty index is defined as 

2( ) ( )pv t z t where  and  is the level of confidence. The upper and lower 
bounds of the confidence intervals are calculated as shown in Fig.  3-3. 

 ,( ) ( ) ( )
pv pv f pvt s t t   (3.17.a) 

 ,( ) ( ) ( )pv pv f pvt s t t   (3.17.b) 

where  is the forecasted PV production at time step .  

The upper and lower bounds of the 95% confidence interval ( ) for 
the forecasted PV of a partially cloudy sky, depicted in Fig.  3-2.b.i,  are shown in green 
and red dashed lines in Fig.  3-3.  

As previously observed, a RO with the upper and lower bounds shown in Fig.  3-3 is a 
conservative model. Fig.  3-4 shows the square mean error of the forecasts with 95% 
confidence interval. As it can be seen, the cumulative error of the 15 minutes forecasts 
inside one hour is almost twice as the corresponding hourly forecast. It can be explained 
by the fact that the per hour variance is 4 times the 15 minutes variance, thus the 
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standard deviation is doubled. Hence, we have created the following uncertainty budget 
based on the hourly forecast. In particular, the sum of the variations of the time 
intervals (each 15 minutes) inside one hour is limited by the corresponding hourly 
confidence interval.  

 ( ) ( ) ( )
t

pvpv pv
hh

t H
h s t h   (3.18) 

where  is the index of hours,  is the index of time intervals (15 minutes), and  is the 
set of time intervals inside one hour.  

 

FFig.  3-3: Approximated confidence intervals of PV forecast 

 

 

Fig.  3-4: Estimated level of errors for hourly and 15 minutes forecast intervals 
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    Another important observation in Fig.  3-4 is that the estimated level of variations 
of the PV production is a monotonous increasing function over time. This is due to the 
fact that the forecasts for the earlier time intervals are relying more on the real data 
from the day before, whereas the forecasts for the later times are relying more on the 
forecasts of the earlier time intervals which are less accurate in comparison to the real 
data. Finally, it is worth to mention that the analysis is on daily basis and it is reset in 
correspondence of the daily optimization horizon. 

33.4.3 ARO problem formulation  

The targeted optimization problem is the day-ahead scheduling of an ADN under 
uncertainty. It is modeled as a two-stage optimization programming, as described in 
section 3.3.   

Given the first stage decisions, the operation cost of the network is minimized for the 
worst case realization of the stochastic parameters (load and PV).  

The DistFlow, with inclusion of transverse parameters, is used here (equations (2.12.a)
-(2.12.b)) to model the power flow equations.  The optimization problem has the form of 

. In another words, it minimizes the first (day-ahead 

scheduling) and second stage (intra-day operation) costs while the uncertainties (load 
and PV forecast errors) are maximally affecting the second stage cost function. The 
control variables in the first stage are the ESS set points and the hourly energy 
import/export scheduling, whereas in the second stage, they are the ESSs set points. 
The general form of the adopted ARO model for the ADN day-ahead scheduling is shown 
in (3.19) (The ESS model and the linearized DistFlow constraints are described later 
in 3.4.3.1). 

 

( )( ) ( )

minimize maximize minmize

H yF x G
T T
x yx y

c x c y   (3.19.a) 

                                                     1s.t. :Py   (3.19.b) 

                                                            2:My Rx e   (3.19.c) 

                                                   :Dy d   (3.19.d) 

              s.t. B b   (3.19.e) 

  'Ψs.t. Ax                                                                   (3.19.f) 

Gx g (3.19.g)
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where  is the vector of variables in first stage,  (day-ahead scheduling), and 
(3.19.f), (3.19.g) are its set of equality and inequality constraints, respectively. The 
maximization in the middle, called , maximizes the minimum of intra-day 
operation cost over the set of uncertainties.  is the vector of variables representing 
the uncertain parameters and the(3.19.e) models the uncertainty sets. Finally,  is the 
vector of variables in the second stage, (intra-day operation). Equations (3.19.b)- 
(3.19.d) are the constraints of the second stage minimization. The equality constraints 
of the second stage minimization are divided into two sets i) those that have uncertainty 
(nodal PV and load) and are shown in (3.19.b), and ii) those that don’t have 
uncertainties (DistFlow, ESSs, and security (voltage and ampacity limits) constraints) 
constraints) and are shown in (3.19.c). The Lagrange multipliers associated to the 
constraints (3.19.b), (3.19.c), and (3.19.d) are represented by , , and  respectively. 

The first stage minimization ( ) is the multi-period OPF problem. The scheduling 
is done on 15 minutes basis, however the energy import scheduling is determined 
hourly, since the day-ahead markets are hourly basis. The load flow constraints are 
modeled using the DistFlow ones (see equations (2.12.a)-(2.12.b)). Other constraints 
are, nodal voltages limits, feeder ampacity limits, and ESSs ones (the ESSs constraints 
are formulated later as shown in section 3.4.3.1). The objective function is to minimize 
the load supply cost as well as the ESSs operation one.  

The middle stage programming , maximize the minimum cost of the ADN 
operation concerning the worst case realization of the uncertain parameters 
represented by  (load and PV). The uncertainty sets are modeled as described in 
section 3.3.2.  

The second stage is also a multi-period OPF problem where DistFlow equations with 
inclusion of transverse parameters are used to model the load flow constraints.  Its 
objective function is to minimize the cost of operation in case of the worst case 
realization of the uncertain parameters ( ). It includes minimization of: i) nodal 
voltages deviation, ii) deviation from day-ahead scheduling and ii) cost of rescheduling 
of ESS (the expanded formulation is presented in 3.4.3.1).  

The min-max-min optimization problem presented in (3.19) cannot be solved in 
practice by state-of-the-art optimization methods. Thus it is necessary to reformulate 
the problem. In this respect, the second stage minimization   is replaced by its 
dual maximization. Then, the two maximization problems are merged into one as shown 
in  (3.20) [87].  

 
1 2

1 2

( , , , )( ) Ψ

1 2, , , Ψ
minimize maximize ( ) (Ψ Ψ )

F x

T T T T
xx

c x e Rx d
1 2( , ,

  (3.20.a) 

                      1 2s.t. T T T
yP M D c   (3.20.b) 
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 0   (3.20.c) 

    ΨB b   (3.20.d) 

'Ψs.t. Ax                                                                                (3.20.e) 

   Gx g                                                                                 (3.20.f) 

 

The right hand side maximization  is a bilinear programming since the 
cross product of  and  appears in the objective function. 

The formulated optimization in (3.20) leads to the following two important 
observations [87]:  

1. The maximization on the right hand side is bilinear and defined 
over a polyhedral set. Therefore, its optimal solution is one of the vertices of this set. 

2. The vector x  of day-ahead decision variables only appears in the objective function 
thus, the feasible polyhedron is independent from the day-ahead decision, and hence it 
has a finite number of vertices. 

The order of the two maximization in the right hand side can be switched (first 
maximize over  and then over ). Therefore, (3.20) can be reformulated as 
(3.21).  

 

 
1 2

1 2

( , , )( ) (Δ )

1 2 1, , Δ

Ψ

Ψ
minimize maximize ( ) maxim ΨizΨ e

AF x

T T T T T
xx

c x e Rx d   (3.21.a) 

                                                                            Ψs.t. :B b   (3.21.b) 

 1 2s.t. T T T
yP M D c   (3.21.c) 

0                                                             (3.21.d) 

'Ψs.t. Ax                                                                                         (3.21.e) 

   Gx g                                                                                          (3.21.f) 

where  is the Lagrange multiplier associated to the constraint (3.21.b). 

The right hand side maximization  is a linear program and the strong duality 
theorem holds thus at optimality we have [87]: 
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 1 ΨT Tb   (3.22) 

Due to the Karush-Kuhn-Tucker (KKT) conditions, for a linear program, the 
complementary slackness conditions together with (3.22) are necessary and sufficient 
for optimality. Thus one can replace the left hand side of (3.22) with its right hand side. 
Further, the maximize-maximize optimization problem in the right-hand side can be 
casted as a Mathematical Program with Equilibrium Constraints (MPEC) [88] and 
render the following optimization problem.  

 
1 2

1 2, , , Ψ,
minimize m Ψaximize ( )T T T T T

xx
c x e Rx d b   (3.23.a) 

 s.t. 0 0Ψb B   (3.23.b) 

1
TB                                                     (3.23.c) 

                1 2
T T T T

yP M D c   (3.23.d) 

0                                                          (3.23.e) 

'Ψs.t. Ax                                                                               (3.23.f) 

   Gx g                                                                               (3.23.g) 

 

The orthogonal condition in (3.23.b) could be replaced with a set of new constraints as 
shown (3.24).  

 

 0 uB   (3.24.a) 

 Ψ0 bb B uB   (3.24.b) 

 1bu u   (3.24.c) 

 , 0,1bu u   (3.24.d) 

where B  is a large enough positive number. 

It is worth to note that the solution to the inner maximization problem belongs to a set 
of finite candidates , which does not depend on the first stage decisions. Therefore, it 
can be solved effectively using Benders Dual cutting algorithm or Primal cut algorithm. 
We have employed the Benders dual cut algorithm since the number of vertices of the 
uncertainty space is very high and primal cut algorithm cannot be easily employed. The 
Benders dual cut solution algorithm is described in the appendix A.1.  
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33.4.3.1 Formulation of the second stage minimization 

The formulation of the second stage minimization is shown in the following.  

max max min min

, , , , , , , ,

minimize: ( ( ) ( ) ( ) ( ))

( ) : ( ) ( ) : ( )
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is the set of optimization variables (it should be noted that  are 
variables of the middle stage maximization and  are variables 
of first stage minimization). The notation without subscript denotes the vector of 
corresponding variables.  

The objective function is represented in (3.25.a) where  and  are the prices for 
down and up deviations from the day-ahead energy import/export scheduling. As stated 
previously, it minimizes the cost of deviations from day-ahead scheduling, cost of nodal 
voltage magnitude deviations, and the ESS rescheduling. We use the nomenclature of 
chapter 2 and recall it here for reader’s convenience. Buses other than the slack bus are 
denoted with ;  denotes the set 1,2,...,L1,2,.  and  is the label of the bus that 
is upstream of bus . We also label with  the line whose downstream bus is bus ; its 
upstream bus is therefore .  is the index of time (15 minutes) where  is the 
set of time steps. The set of buses with ESSs are represented by . The 

 are the charge/discharge upward (downward) variables for active 
power outputs of ESSs, respectively. The  are the positive/negative 
upward (downward) variables for reactive power output of ESSs, respectively. The  
and  represent down and up deviations from day-ahead energy schedule.  is the 
weighting coefficient of voltage deviation cost.  

 are the square of voltage magnitude thresholds (upper and lower) beyond 
which the voltage magnitudes deviations with respect to the  are minimized.  

We have considered three sets of uncertainties, residential load, commercial load, and 
the PV production as shown in (3.25.b), (3.25.c), and (3.25.d), respectively. The 
forecasted load and PV profiles and their respective variations are represented by 

/ , / , and /  respectively. ,  and  are 
the aggregated residential, commercial loads and PV production at each time step ( ), 
respectively.  

The total load and PV are distributed among the network buses based on their nodal 
residential/commercial active load, PV production, and residential/commercial reactive 
load coefficients (  and ), respectively. The equality constraints 
shown in (3.25.b), (3.25.c), and (3.25.d) are the ones that have uncertainty and are 
represented by (3.19.b) in the compact form of the optimization problem.  

The load and voltage balance equations are modeled by equations (3.25.e) and (3.25.g). 
Equation (3.25.h) represents the nodal voltage magnitudes limits. Equations (3.25.i)-
(3.25.l) model the active and reactive current flows on both ends of line . These 
variables are used to model the current flow constraints of line . It should be noted that 

 (the minimum voltage magnitude) is used in the denominator to consider the worst 
case conditions (Note that  is the square of voltage magnitude whereas  represents 
voltage magnitude). Constraints (3.25.m)-(3.25.p) provide upper bounds ( , 
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) for square of ,  using a set of linear constraint, called . 
These set of linear constraints are shown in Fig.  3-5. The index  corresponds to the 
line  shown in Fig.  3-5 with dashed red line (  represents the set of these lines). The 
current flow at both ends of the lines is limited using constraints (3.25.q) and (3.25.r).  

Constraint (3.25.s)-(3.25.w) are the links between the first stage (day-ahead 
scheduling, ) and the second stage ( ). These equations model the upward and 
downward deviations from the energy import scheduling and ESSs outputs with respect 
to their day-ahead scheduling ( ). It should be noted that by upward deviation we mean 
the extra (resp. less) production (resp. consumption) of energy with respect to the day-
ahead plan. In contrast, downward deviation means less (resp. extra) production (resp. 
consumption) of energy with respect to the day-ahead plan. The day-ahead scheduling 
of energy import/export from the grid is hourly basis whereas the deviations in the 
second stage are on 15 minutes basis.  are actual values of active power 
imported from the external grid, ESSs active (charge/discharge) and reactive 
(positive/negative) powers outputs, respectively. 

 The ESSs constraints (capability curve, State of Charge (SoC), and energy reservoir 
capacity limit) are shown in (3.25.x)-(3.25.ee).  is the energy stored in ESS  at time 
 and  and  are charging and discharging efficiencies respectively. In order to have 

a linear formulation, the capability curve constraint (3.25.x) is linearized by merging a-
priori defined number of linear boundaries approximating the original curve (see 
Fig.  3-6). The SoC constraint of ESSs is modeled by (3.25.y). The constraint (3.25.z) 
models the upper and lower bounds of energy stored in ESS reservoir.  Equations 
(3.25.aa) and (3.25.bb) add auxiliary constraint concerning the SoC of ESSs to avoid ill 
use of ESSs efficiencies. The constraint (3.25.cc) implies that the energy stored in the 
ESSs at the end of the day have to be greater than the initial energy level. The last 
constraint implies that the active (charging and discharging) and reactive (positive and 
negative) variables of ESSs cannot be negative.  

 
FFig.  3-5: Linearized model of square of active and reactive power flows 
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33.4.4 Numerical analyses 

The IEEE 34 buses network is chosen for the test case study (see Fig.  2-3). It is 
assumed there are two ESS units available in the network. They are located on buses 
#852 and #860 (see Fig.  2-3). Each ESS has 0.5 MW power rating capacity and 1 MWh 
energy reservoir capacity. The load and PV profiles modeled and forecasted in 
section 3.3.2 are used (Fig.  3-1 and Fig.  3-2) as the input to the optimization problem. 
The partially cloudy sky day (see Fig.  3-2.1) is chosen for PV production (worst case).  
The PV uncertainty budget is modeled using the method described in section 3.3.2. It 
is assumed that the forecasts of each time step of residential and commercial loads have 

10% and 7% errors, respectively. The energy price profile is shown in Fig.  3-7. The 
downward and upward regulations price are assumed to be 80 and 125 present of the 
day-ahead energy price, respectively. Finally the voltage deviation (for each 15 minutes) 
is penalized by 0.03 CHF/volt. 

The hourly energy import/export scheduling for two cases, i) base case (without forecast 
variations) and ARO scheduling are shown in Fig.  3-8. It should be noted that in the 
former case, the day-ahead decisions are taken without considering the intra-day 
variations. It can be seen that the biggest differences between the two cases are in the 
middle of day. It is because of two reasons i) high level of PV production in middle of 
the day and consequently, high amount of uncertainty ii) high level of commercial load 
and its relevant uncertainty. Additionally, one can observe that in case of ARO, the 
scheduling is more conservative when the energy price is high (hours 8, 9, 10 and 19). 

The day-ahead scheduling of the two available ESSs are shown in Fig.  3-9. It can be 
seen that in base case, the ESSs are charged with maximum capacity, when the PV 
production level is high and the price is low.  On the other hand, one can observe that 

 

 
Fig.  3-6: Linearized capability curve of ESS 
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the scheduling of ESSs is more conservative in case of ARO. A part of ESSs capacities 
is preserved to manage the forecast errors. Additionally, one can observe that in base 
case the ESSs are used to exploit the energy price differences during the day.   

  
TTable 3-1: Installed PV capacities in the IEEE 34 buses 

Bus # #810 #816 #854 #856 #864 #860 #838 #840 
PV capacity (kW) 110 230 450 115 550 800 1000 400 

 
 
 

 
 Fig.  3-7: Daily energy price 

 
 
 

 
Fig.  3-8: Energy import/export scheduling in day-ahead for two cases i) base case without 

considering the forecast errors and ii ) the ARO scheduling (base value of energy is 2.5 
MWh) 

 
 
 



3.4   Adaptive Robust Optimization for Day-ahead Scheduling of Active 
Distribution Networks 

 

86 
 

a)  

b)  
  

Fig.  3-9: ESSs scheduling in day-ahead a) ARO scheduling, b) base case (base value of 
power is 2.5 MW)  

 

The day-ahead cost (cost of energy import/export plus the ESSs operation costs) in case 
of ARO is 182.13 CHF and the worst case intra-day cost is equal 128.16 CHF (the intra-
day cost includes the voltage deviations cost as well the unbalance costs and ESSs 
rescheduling). For the base case, the day-ahead cost is equal 79.36 CHF whereas the 
worst case intra-day cost is equal 379.62 CHF. 

The convergence of the Benders decomposition approach used to solve the ARO is 
demonstrated in Fig.  3-10. In particular, one can observe the procedure converges after 
42 iterations. The stopping criterion is chosen to be 0.1% (the difference between the 
upper and lower bounds). The details about convergence of Benders decomposition are 
provided in A.1.  
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FFig.  33--110:: The convergence of Benders decomposition approach used to solve the ARO  
 

33.5 Day-ahead Scheduling of Active Distribution Networks using 
Scenario-based Stochastic Optimization 

As known, stochastic programming is a mathematical framework to deal with the 
uncertainties of optimization problem parameters. This approach has been extensively 
used in power system context. It has been used for generation and transmission 
network expansion planning [89], [90], maintenance scheduling [91], unit commitment 
and SCUC [92], [93], electricity portfolio optimization [94], optimal bidding strategy 
[95], and so on.  In this section, we develop a two stage stochastic programming to deal 
with the uncertainties related to the PV and load profiles [96, 97]. In this context, a set 
of decisions have to be made a priori when the environmental parameters are not 
completely available. The targeted optimization problem is the day-ahead scheduling 
of an ADN, as described in section 3.3. In the previous section ARO was presented to 
deal with the worst-case realization of the uncertain parameters. In contrast, in this 
section, stochastic optimization is employed to deal with the uncertainties using 
scenarios sampled from the PDF of uncertain parameters. 

The first-stage decisions determine the amount of import/export energy from/to the 
external grid for each hour, ESSs set points, and the sub-station transformer tap 
position. 

A non-zero cost is considered for the On Load Tap Changer (OLTC) operation. Indeed 
changing the tap position of OLTC causes arc at the diverter or selector switch contacts 
producing contact erosion and carbonization of the diverter switch oil. The level of 
damage depends upon the operating current of the OLTC and number of operations. 
Thus, an associated cost is considered for changing the tap position of the OLTC [98].  
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Given the first stage decisions, the second stage or wait and see decisions are made 
based on the realization of the random parameters. In case of our specific problem, the 
second stage decision variables are the 15 minutes ESSs set points. The random 
variables of this second stage are the PV production and load consumption.    

33.5.1 Stochastic optimization formulation 

The general form of the stochastic optimization problem is shown in the following. 

 
 

,
minimize T T

x yx y
c x c y   (3.26.a) 

 s.t. Ay Bx C   (3.26.b) 

       Dy Ex d   (3.26.c) 

where  and  are the vectors of the first and second decision variables and  and  
are their corresponding cost coefficients. The objective function includes the first stage 
cost  plus the expectation of the second stage costs with respect to probability ( ) 
of each scenario.  

The control variables in the first stage are ESS set points, OLTC tap position and the 
amount of hourly energy import/export from the grid. The 15 minutes set point of ESSs 
are the control variables in the second stage.  

The objective function (as it is shown in (3.27.a)) accounts for the minimization of 
different goals: (i) energy cost from the external grid, (ii) deviation costs from the day-
ahead energy import/export scheduling, (iii) nodal voltage deviations, and (iv) OLTC 
tap-changing cost.  

The mathematical formulation of the optimization problem is as follow: 
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 0 0.9 c cv v t tT T   (3.27.e) 

 max0 c Tt tT T   (3.27.f) 

 1,2,...,cT t t T   (3.27.g) 

 0t t T   (3.27.h) 

 1c cT t T t tt T   (3.27.i) 

 1c ct T t T tt T   (3.27.j) 

 

where  is the set of optimization variables. 

 is the voltage magnitude of the slack bus (sub-station)  is the index of scenarios 
(load and PV) and  is the probability of each scenario. The upper and lower voltage 
magnitudes thresholds, beyond which the voltage magnitude deviations are minimized, 
are represented by , and  , respectively.  The energy price, upward and 
downward prices, day-ahead energy import scheduling, and the cost of transformer tap-
changer are represented by ,  and , respectively. The OLTC 
tap position variable is represented by .  is the weighting coefficient of voltage 
deviation cost.  and  are upward and downward deviations’ variables with respect 
to day-ahead scheduling ( ).  is the amount of active power imported from the 
external grid at time step  and scenario .  

Constraint (3.27.e) models the voltage magnitude level at the substation supplying the 
ADN (slack bus). The numbers of OLTC steps is limited in constraint (normally it is 36 
steps) (3.27.f) and its discrete nature is modeled by constraint (3.27.g). 

The cost of moving the tap of the OLTC is modeled using (3.27.h)-(3.27.j).  is the 
OLTC position. It is between the minimum position 0, and the maximum position that 
produce the maximum voltage  and is an integer variable.  models the cost of 
moving OLTC tap.   

33.5.2 Uncertainty modeling 

The aim of this section is to illustrate a typical approach to generate appropriate 
scenarios for daily load and PV profiles. It is required since stochastic optimization 
frameworks require the knowledge of the distribution of the uncertain parameters.  
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33.5.2.1 Scenario generation 

In order to statistically characterize the network loads and PVs, we assume that the 
aggregate load/PV at the  time interval of the day denoted hereafter by  is a 
random variable. In order to generate appropriate scenarios, we take into account 
temporal correlation of the random variables. In this respect, we assume that the 
random vector  follows a multivariate Gaussian 
distribution,  where  is the covariance matrix that contains the whole 
information about the variance and covariance of the random variables. It should be 
noted that  is a full matrix and its rank corresponds to the number of considered time 
steps (i.e., 96). Similar to the case of ARO, in order to consider the spatial correlation, 
we have considered that the PV profiles have the same variation on all buses of the 
system3F

1. For the nodal loads, we assumed spatial correlation only for the same kind of 
load (i.e., residential, commercial/ industrial). 

3.5.2.2 Scenario reduction 

Accounting for all possible scenarios may results in a large-scale and computationally 
expensive simulation. Due to this computationally complexity, often the number of 
scenarios is reduced to a reasonable one characterized by the same degree of 
volatility/stochasticity of the original scenarios. 

The first step for scenario reduction is to determine an appropriate criterion for 
comparing the resemblances of the scenarios. It is a case-dependent problem, one 
method may fit well one application whereas it cannot appropriately model the 
resemblances of two time-series in another application. Two widely used methods for 
time series clustering are based on i) Euclidean distance ii) Dynamic Time Warping 
(DTW). 

Dynamic Time Wrapping (DTW) is a well-known algorithm for measuring the 
similarities between two temporal time series. It can detect the similarities of two time 
series even with different phases by allowing elastic transformation [99]. On the other 
hand, Euclidean distance criteria measure the point to point distance. Fig.  3-11 shows 
the different criteria used by each method for measuring the similarity of two time 
series. In power systems studies the time shifts in the load or PV curves are important 
and thus the two curves shown in Fig.  3-11 are different resulting in different 
scheduling of flexible resources. Consequently, in this study we have employed 
Euclidean distance algorithm to determine the similarities between each pair of daily 
profiles. 

                                                

1 Remind that this hypothesis is justified in the view of the relatively small geographical 
extension of ADNs.  
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Once the similarities between every pair of the daily time series are determined, using 
an appropriate algorithm (i.e., Euclidean distance), they are grouped into a binary, 
hierarchical cluster tree. In this respect the pairs of the objects are linked based on 
their proximity. The new formed clusters are again grouped into larger clusters and 
this continues until a hierarchical tree is formed. The distance between the newly 
formed clusters can be defined using several algorithms. In what follows, we have used 
the furthest distance of the two grouped scenarios. 

 

 

FFig.  3-11: Euclidean distance aligns the ith point in one sequence with the ith point in the 
other, DTW alignment allows a more intuitive distance measure to be calculated [100]. 

The next step is to partition the data into the clusters using the created hierarchical 
tree of binary clusters. This can be done using several approaches. The simplest one is 
to determine the number of clusters by the user based on his intuition about the 
scenarios. It can be done also based on the clusters’ inconsistency criteria or distances. 
Here we have chosen the final number of clusters based on a predefined maximum 
distance between the clusters.   

At the final step, one scenario from each cluster is selected using K-Medoids algorithm 
[101]. They form the final input scenarios of the optimization problem.  

3.5.3 Simulation results 

The residential and commercial load profiles shown in Fig.  3-1.a are used as the initial 
time series for generating the final scenarios. For each category (commercial and 
residential load, and PV) five time series samples are available. We use these initial 
time series to obtain the covariance matrix, mean, and standard deviation of data. The 
final scenarios are shown in Fig.  3-12. The maximum distance of 1.3 p.u. (using 
Euclidean distance criteria between the time series) is selected as the criteria for 
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scenario reduction. It should be noted that Euclidean distance corresponds to a vector 
of 288 elements (96 times steps for PV, commercial load, and residential load). One 
hundred scenarios are generated using the scenario generation-reduction method 
presented in section 3.3. The IEEE 34 buses test case network is selected as the case 
study.  

The energy price profile is shown in Fig.  3-7. Similar to the case of ARO, it is assumed 
that there are two ESS units available in the network. They are located on buses #852 
and #860 (See Fig.  2-3). Each ESS units has capacity equal to 0.5 MW and 1 MWh. 

In the following the performances of the proposed formulation are demonstrated using 
two cases, i) with presence of ESSs ii) without ESSs units. The hourly energy 
import/export schedules for the two cases are shown in Fig.  3-15. One can observe that 
the amount of imported energy with ESS is less than the case without ESS when the 
energy cost is high (i.e., between hours 7-9 and 18-20).  

The total amount of upward and downward deviations are shown in Table 3-2. The 
identified value of the objective function for the case with ESS is 10556.5 CHF whereas 
it is equal 26428.4 CHF when there is no ESS available. The impact of ESSs on 
decreasing upward and downward deviations are shown in this Table. The upward and 
downward deviation prices are considered to be 80% and 120% of the corresponding 
day-ahead price. It should be noted that by upward regulation we mean the extra (resp. 
less) production (resp. consumption) of energy with respect to the day-ahead plan. In 
contrast, downward deviation means less (resp. extra) production (resp. consumption) 
of energy with respect to the day-ahead plan. 

The OLTC tap position for each hour is shown in Table 3-3 for two cases. One can 
observe that with presence of ESSs, the number of changes in OLTC tap-position as 
well as the corresponding magnitude of change are less than the case without ESS. 
Particularly, one can observe that in the middle of the day, the changes in the OLTC 
tap position with presence of ESS is less than the one without ESSs.  

TTable 3-2: Total upward and downward deviations for two cases i) with ESS ii) without ESS 

 Total upward deviation 
(MWh) 

Total downward deviation 
(MWh) 

With ESS 1.126 2.4285 
Without ESS 1.6610 4.6250 

 

Finally, the boxplot of nodal voltage magnitudes for each time step for both cases are 
shown in Fig.  3-17 and Fig.  3-16. The bottom and top of the blue boxes indicate the 
first and third quartiles (25th and 75th percentiles of the data) of the nodal voltage 
magnitudes at each time step. The red lines indicate the median while the whiskers 
show the maximum and minimum of nodal voltage magnitudes. The green lines show 
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the desired voltage region. It can be observed that, for the case without ESSs the voltage 
deviations outside the desired interval (the range is chosen to be between 0.97 p.u. to 
1.03 p.u.) are worse than the case with ESSs. These figures show that the voltage profile 
of the network has been improved (i.e., the voltage magnitude deviations are 
minimized) by using ESSs.  Particularly one can observe that in presence of ESSs the 
over-voltages are almost eliminated and under-voltages below 0.93 p.u. are completely 
removed. 

TTable 3-3: Hourly OLTC tap position 

Time 
[hour] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

OLTC 
Position 
without 

ESS 

29 29 29 30 30 30 29 18 16 11 10 8 7 8 15 24 29 32 33 31 30 30 29 29 

OLTC 
position 

with 
ESS 

29 29 29 29 29 29 29 22 19 18 16 16 16 16 19 24 29 29 29 29 29 29 29 29 

 

Fig.  33-112: Final residential load scenarios (base 
vvalue of active power is 2.5 MW)  

Fig.  33-113: Final commercial load scenarios 
((base value of active power is 2.5 MW) 

  
Fig.  33-114: Final PV production scenarios (base 

value of power is 2.5 MW) 
Fig.  33-115: Hourly sscheduling of energy 
import/export from the external grid  
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aa)   

a.)  

 

Fig.  3-16: The nodal voltage magnitudes boxplot with presence of ESSs (a). First half of the 
day, b). Second half of the day) 

3.6 Adaptive Robust Approach vs. Stochastic Approach 

In this chapter we presented two optimization techniques to deal with uncertainties of 
the parameters in ADN scheduling and operation. In section 3.40 ARO approach was 
presented to solve the ADN day-ahead scheduling and the two-stage stochastic 
optimization was presented in 3.5 to solve almost the same problem (with transformer 
tap-changer). The question may raise about the advantages and disadvantages of each 
method and, generally, their comparisons. In general, these two methods do not have 
same goals thus their solution comparison does not make sense (ARO considers the 
worst case scenario whereas stochastic programming takes into account the probability 
of each scenario). However, their advantages, disadvantages and characteristics are 
summarized and compared in this section.    
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bb)   

b)  

Fig.  3-17: The nodal voltage magnitudes boxplot without presence of ESSs (a). First half of 
the day, b). Second half of the day) 

The stochastic optimization is more straightforward to be modeled. It can have discrete 
variables (binary and integer ones) as well as non-convex equations.  On the other hand, 
ARO has to be convex (at least the second stage minimization). Due to this fact, we 
easily modeled the OLTC in the stochastic programming however, it was not included 
in the ARO approach.  

The ARO approach tries to minimize cost of the worst case realization of uncertain 
parameters whereas the stochastic one minimizes the cost of each scenario concerning 
its probability. Therefore, the ARO is more conservative but more risk averse. Thus, it 
depends on the DNO priorities to choose one of the methods.  

The stochastic approach requires an accurate estimation of the probability distribution 
function (pdf) of the uncertain parameters (load, and PV). In contrast, the ARO needs 
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moderate information concerning the uncertain parameters i.e., the mean and the 
range of variations. Thus, it is easier and straightforward to model the uncertainty of 
the parameters in ARO with respect to stochastic approach.  

The solution computation time of the ARO depends on the chosen solution strategy. 
For example, in case of Benders dual cut algorithm, it depends on the number of 
iterations required for convergence of the algorithm. The solution computation time in 
case of stochastic programming depends on the number of scenarios. Generally, for 
small-scale problems stochastic programming is faster than ARO whereas ARO is faster 
in case of large-scale problems.  

A quantitative analysis is provided for comparing ARO and stochastic optimization 
solutions. In this respect, the solutions of two approaches are compared using the 
simulation data of section 3.3.4 (test case study of ARO) (uncertainty budget constraints 
are not considered for load forecasts). The presence of OLTC is not considered in 
stochastic optimization. The simulation for the case of stochastic optimization is done 
with 60 scenarios. Afterwards, 1000 scenarios are generated using Multivariate normal 
random numbers technique. The solutions of ARO and stochastic optimizations are 
compare using these 1000 scenarios.  

TTable 3-4: Comparison between ARO and stochastic optimization 

 ARO Stochastic optimization 
Computation time [sec] 4098  

(average computation time of 
second stage: 97) 

Number of Benders 
iterations : 42 

70  

Total cost (first and second 
stages) [CHF] 

164.4 128.2 

Second stage worst case cost 
[CHF] 

117.6 268 

 

3.7 Summary and Conclusion  

In this chapter, the problem of ADN operation and scheduling under uncertainty have 
been addressed. The sources of uncertainties are load (commercial/industrial and 
residential ones) and PV productions. A short term forecast method based on ARIMA is 
developed to model the characteristics of the uncertain parameters and create the 
uncertainty set for the ARO. The Multivariate Gaussian distribution is used to generate 
scenarios for stochastic optimization.  

The ADN day-ahead scheduling problem is formulated as a two stage optimization 
programming where the first stage determines the day-ahead decision (hourly schedule 
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of energy import/export, OLTC tap position and ESSs set points). The second stage 
deals with intra-day operation of ADN with presence of ESSs.     

The results show that the ARO approach is conservative and takes into account the 
worst case realization of the uncertain parameters. In fact, the day-ahead decision 
guarantees that the system is feasible for any realization of stochastic parameters and 
optimal for their worst case realization.  

The stochastic programming is more flexible in terms of modeling. Binary variables 
and non-convex equations could be easily incorporated into the model. Due to this 
aspect, the OLTC is appropriately modeled and incorporated into the optimization 
problem. 

  





 

 

 

 

 

 

CChapter highlights:  

It is first proposed and discussed a dedicated optimization problem, using voltage 
sensitivity coefficients, for siting ESSs with the aim of providing voltage support 
functions.  

Then, the AR-OPF proposed in chapter 2, is used to formulate the problem of ESSs 
optimal siting and sizing in ADNs with a multi-objective approach dealing with energy 
balance and local grid ancillary services support. Further, the topology changes of 
ADNs are incorporated in the optimization problem. 

In order to account for the stochasticity of different parameters (load, PV and energy 
price profiles), during the life-time of ESS units, an appropriate scenario generation-
reduction procedure is developed. The resulting scenarios are then incorporated into 
the targeted optimization problems.   

In the last part of this chapter, different solutions approach adapted to solve the 
targeted problems are presented. In particular, the Alternative Direction Method of 
Multipliers (ADMM) and Benders decomposition are suitably casted to decompose the 
targeted large-scale problems.  

The owner and operator of the ESSs are considered to be the DNO.       

 
 
 
 
 

4 4 OOptimal Planning of Energy Storage 
Systems in Active Distribution 
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44.1 Chapter Organization 

In the previous chapters, we assumed to know the sites and sizes of the ESS units. The 
main goal of this chapter is to propose methodologies for the optimal siting and sizing 
of ESSs in ADNs. In the followings, a literature review is first presented for the state-
of-the-art of the optimal ESS planning in ADNs. Next, the scenario generation and 
reduction methods, developed to take into account the uncertainties of the parameters, 
are presented in section 4.4. Then, the proposed model for optimal siting of ESSs aiming 
to decrease the nodal voltage magnitudes’ deviation is described in 4.5. In this model, 
we use the linear OPF based on the voltage sensitivity coefficients already presented in 
section 2.4. After that, the proposed optimization models for ESSs siting and sizing in 
ADNs for network support and energy purposes are then presented in section 4.6. In 
particular, two models are discussed, i) without considering network reconfiguration ii) 
with network reconfiguration. The adapted solution approaches are described and 
compared in section 4.7. Finally, the chapter is concluded in section 4.8 summarizing 
the main findings.   

4.2 State-of-the-art of the optimal ESSs planning in ADNs 

In this section, we briefly present the state-of-the-art of optimal resource planning in 
ADNs including the DGs and ESSs. The subject of DG siting and sizing have been 
largely addressed in the literature. A comprehensive survey of this subject is presented 
in [102]. In particular, optimal siting and sizing of DGs in ADNs has been addressed 
with the following goals: i) minimizing network losses [103, 104], ii) improving 
reliability criterion [105], iii) performing energy arbitrage [106], and iv) reducing 
harmonics [107]. In [108], the problem of optimal DG placement is investigated within 
the specific context of deregulated electricity markets aiming at maximizing the social 
welfare and profit of DG owners. A multi-objective model for optimal DG siting and 
sizing in ADNs is presented in [109] and [110]. In particular, the proposed approach 
takes into account the minimization of investment and maintenance costs of DGs, 
network operation and capacity adequacy costs, and the total resistive losses. In [111] 
a methodology based on GA is proposed to determine the sites and sizes of DGs in a 
distribution network. It takes into account a realistic load model (the power factor of 
the load is not constant). The objective of the optimization problem includes the 
minimization of resistive losses, nodal voltage magnitudes’ deviations and lines’ 
congestion.  

The literature related to ESSs optimal siting and sizing has treated the following 
aspects. In [112] a methodology for sizing energy storage devices within the context of 
microgrids is presented. The targeted problem is solved using GA-based approach. In 
[113] a methodology for allocating energy storage systems in medium voltage 
distribution networks is proposed with the aim of decreasing wind energy curtailment 
and minimizing annual cost of the electricity. The Authors in [114] used a hybrid GA, 
combined with a sequential quadratic programming algorithm, to size and site DGs, 
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energy storage and reactive power compensation systems. The objective function 
accounts for the minimization of i) total resistive losses, ii) the costs associated with the 
network upgrades, and iii) energy cost from the external grid. A hybrid method of 
dynamic programming with GA has been presented in [115] for optimal integration of 
energy storage systems in distribution networks. The objective is to find the optimal 
sites, sizes and control strategy of storage systems in order to minimize the overall 
investments and network costs (network upgrade and Joule losses). The Authors in 
[116] presented a model for sizing the ESS systems for providing balancing power in a 
non-interconnected power network with large penetration of renewables. The 
peculiarity of the proposed approach is the use of the Discrete Fourier Transform (DFT) 
to determine the required balancing power in different time-spans. For each time-span 
(i.e., intra-day, intra-hour and real-time), the proposed approach identifies, by using 
the DFT-components, the total amount of power/energy required from energy storage 
systems. A cost-benefit approach is presented in [117] to find the optimal sites and sizes 
of ESSs in distribution networks. The goal of the optimization is to maximize the DNO 
profits from energy transactions, as well as investment and operation costs savings. 
The Authors in [118] presented a methodology for improving the system reliability 
through the allocation of ESSs in ADNs. The costs of ESS installation are minimized 
with respect to a dedicated reliability index expressed as customers' willingness to pay 
to avoid power interruptions. A model for calculating the optimal size of an ESS unit in 
a microgrid considering a reliability criterion is presented in [119]. The proposed MILP 
model minimizes the investment cost of the ESS, as well as the expected microgrid 
operating cost. In [120], the Authors proposed an optimal planning programming for 
siting and sizing the battery energy storage systems in ADNs. The objective function is 
to minimize the investment and operation costs (cost of energy purchase, resources 
maintenance and operation costs). A hybrid Tabu search/particle swarm optimization 
(TS/PSO) algorithm is used to solve the optimization problem. The planning of ESSs 
connected to transmission networks has been also investigated in the literature (e.g., 
[121], [122]). In [121] the optimal planning of ESSs in a network with renewable and 
uncertain energy production resources is presented. The objective of the optimization 
is to minimize the operation and investment costs of energy storage devices. The 
application of ESSs in optimal allocation of wind capacity related to distant wind farms 
is investigated in [122]. The methodology simultaneously optimizes the wind farm 
capacity of each site, its ESS and the required transmission connection capacity. 

A common technical drawback of the above-listed papers is that they did not account 
for the capability of ESSs to provide local ancillary services (by supplying both active 
and reactive powers) with particular reference to voltage control and line congestion 
management. 

Another drawback is related to the proper formulation of the OPF in relation to the 
correct treatment of its non-linearities and non-convexities. The above-mentioned 
papers either use non-convex formulation of the OPF or only address the economic 
aspects without considering the technical constraints of the networks (e.g., network 
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power flows and bus voltage constraints). In this respect, we propose to make use of AR-
OPF (proposed in section 2.2.4) in order to obtain a convex and exact OPF model.  

Another contribution of this chapter is related to the inclusion of topology changes in 
the targeted planning problem. In particular, the ADN optimal reconfiguration model 
proposed in section 2.3.2 is employed.  

Additionally, we appropriately, formulate the objective function as a multi-objective 
linear one.  We have accounted for the minimization of the following elements: a) lines’ 
congestion, b) nodal voltages’ deviations c) load curtailment, d) dispatchable DG and 
ESS units’ operation costs as well as energy supply cost, and f) ESSs investment and 
maintenance costs.  

Finally, we incorporate the scenarios related to the variations of PV, load, and energy 
prices in different time spans (weekly, seasonal, and yearly variations). This inclusion 
might drastically increase the size of the optimization problem. In order to deal with 
this issue, we have proposed to use the decomposition techniques relying on the ADMM 
and Benders procedure. 

It should be noted that the owner and operator of the ESSs is considered to be the 
DNO.   

44.3 Energy Storage Modeling 

ESSs could cover a wide spectrum of applications into electrical networks ranging from 
fast power quality problems to energy management. ESS technologies that fit the ADN 
applications are essentially the following: batteries, super/ultra-capacitors, compressed 
air systems, power-to-gas, pumped-hydro storage, and flywheels. In this study, the most 
important characteristics of ESSs in terms of charge/discharge dynamics, the 
availability of State-of-Charge ( ) models, power rating capabilities, and internal 
losses are taken into account for integrating ESSs into the targeted problem. The 
generic ESS model used in this study is described in the followings.   

ESS State-of-Charge ( ): 

The state-of-charge of an energy storage system depends on its power 
production/consumption, and its losses. The  of the ESS is formulated as4F

1: 

 ( )( ) ( 1) ( ) ( )
d

c c
d

P t tE t E t P t t t t   (4.1.a) 

                                                

1 In the rest of the manuscript, the term “ ” is used to quantify the energy content of the ESS 
reservoir. This aspect is specified to avoid confusion with the  concept used in electro-
chemical storage systems to quantify the charge level (expressed in Coulombs).  
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 ( )l uCE E t CE   (4.1.b) 

where  is the energy level in the reservoir at time ,  and  are the 
discharging and charging powers of ESS at time ,  and   are the discharging and 
charging efficiencies,  is the time step,  is the capacity of the ESS reservoir,  models 
the resistive losses and is described later (see equation (4.2)),  and  are the 
maximum and minimum allowed  levels. Finally  is the capacity of ESS reservoir. 

Equation (4.1.a) is the general form of  and, based on the type of the ESS can be 
modified. It implies that the amount of stored energy in the ESS reservoir at time 

depends on its state in the previous time step, the net energy injected/extracted from 
it, and the internal losses. The internal losses may depend on the level of power 
production/consumption and/or it could be fixed regardless of the ESS output. In case 
of resistive losses, we have relaxed the original equality constraint to an inequality one 
(see (4.2)). This allows to have a convex constraint. 

 2 2 2
( ) ( ) ( ) ( )ess e d ct r Q t P t P t   (4.2) 

where  is the internal equivalent resistance of the ESS and  is the reactive 
power production/consumption of the ESS at time .  

We have added an auxiliary SOC constraint, in addition to the original one, assuming 
an ideal efficiency (100%) for this specific auxiliary variable. This auxiliary constraint 
is necessary to avoid ill use of relaxed ESS efficiencies in order to create an unreal load 
(this could happen in case of high amount of injections into the grid). The presence of 
this auxiliary variable is justified by the relaxation used in (4.2).    

 ˆ ˆ( ) ( 1) ( ) ( )d ct t P t t P tE E t   (4.2.b) 

 ˆ ( )l uECE t CE   (4.2.c) 

ESS capability curve:  
ESSs are normally interfaced with the grid using a power electronic converter. In this 

respect, their capability curve is governed by the ampacity limit of the power converter 
that, in case of an operation under constant AC grid voltage, can be translated into a 
constraint on the apparent power delivered by the ESS as shown in (4.3). 

 2 2 2 2( ) ( ) ( )e d cQ t P t P t 2   (4.3) 

where  is the power rating of the ESS.  

 In case of optimal ESS siting and sizing,  (ESS power rating) on the right hand side 
of equation (4.3) is a decision variable. Therefore, this constraint is non-convex. In order 
to have convex formulation, this constraints is linearized as shown in Fig.  3-6. 

ESS Ramping limit:  
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The ESSs ramp-up and ramp-down constraints are modeled as below: 

 ( 1) ( )d d upP t P t R   (4.4.a) 

 ( 1) ( )c c dnP t P t R   (4.4.b) 

where  and  are obviously the ramp-up and ramp-down of the ESS.   

Finally, the energy stored in the ESS at the end of the day have to be greater than or 
equal to its initial value at the beginning of the day.  

 
fin 1

fin 1

( ) ( )
ˆ ˆ( ) ( )E

E
t E
t E t

t
  (4.4.c) 

For the sake of brevity, hereinafter in this document, the above set of equations used 
for modeling the ESSs are represented as following: 

 ( , ) 0   (4.5) 

where is the vector of variables (active and reactive power production/consumption 
( ), energy level of ESS reservoir (  and its auxiliary variable , power rating 
and energy reservoir capacities ( ), and the resistive losses of ESSs ( ). is the vector 
of parameters (charging and discharging efficiencies ( ), ramp rates ( ), and 
time step ( ). 

44.4 Treatment of Uncertainties for Long-term Planning 

The aim of this section is to illustrate an approach to generate appropriate scenarios 
for load and PV profiles. The presence of this section is needed since the long-term 
planning problems require the knowledge, to some extent, of the distribution of the 
parameters’ variations. Some of the parameters (load, PV, and energy price) have 
variations and consequent uncertainties. These variations are characterized by 
stochastic behaviors over different time spans. The PV profiles have variations across 
the seasons and, also, they exhibit dissimilar characteristics for the cloudy and clear 
sky conditions. The load and energy prices have seasonal variations in addition to 
dissimilarities in weekdays and weekends. Additionally, their profile can have 
variations with respect to the external parameters like temperature and/or holidays 
and they also have variations from year to year. These variations need to be taken into 
account in the planning.  

4.4.1 Scenario generation for load consumption, photovoltaic production and 
energy price 

The historical data of the load, solar irradiation (PV production), and energy price are 
assumed to be available. These data are grouped with different criteria. In case of the 
load and energy price, they are first divided into 3 bins representing the seasonal 
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variations (winter/spring-fall/summer). The grouped data for each season is again 
divided into two categories: weekdays, weekends. Finally, the data in the weekends and 
weekdays bins are divided into two groups. This last step is necessary since there may 
exist a big variation in the weekend/weekdays load/energy price profiles of each season 
with respect to temperature or other external factors. Similar to the load data, the PV 
data is distributed among three group representing the seasonal variations. The data  

of each season is again divided with the irradiation profiles for clear or cloudy sky. 
Finally, the data in the partially cloudy sky bins are divided into three groups. These 
data clustering are shown in Fig.  4-1. 

In order to statistically characterize these uncertain parameters (load and PV), we 
assume that the aggregate load/PV at the  time interval of the day denoted 
hereafter by  is a random variable. For each time interval, we observe the available 
samples and the mean ( ). The QQ-plot of the zero-mean data of load for a specific 
time interval in each specific season is shown in Fig.  4-2. Similarly, the QQ-plot of PV 
production for one specific time interval in a clear day and one specific time interval in 
a partially cloudy sky day are shown in Fig.  4-3. The data for the rest 95 time intervals 
are not shown here for the sake of brevity as they exhibit almost similar characteristics. 
As it can be observed the data are approximately Gaussian. 

In order to generate scenarios, we have accounted for the temporal correlation of the 
parameters during the day. We assumed that the daily vector of each input parameter 
(load, and PV) has a multivariate Gaussian distribution with mean μ and covariance Ω 
( (μ, Ω)). The mean and covariance matrix of the parameters are obtained empirically 
using the historical data in each bin. The obtained distributions are used to generate 
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FFig.  44--11:: Load, energy price and PV data clustering a) load and eenergy price b) PV data  
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appropriate scenarios using multivariate normal random numbers for each bin. Once 
the scenarios for load and PV are generated, they are used to generate the final scenario 
tree.  

The obtained scenarios for the PV production are distributed among the PV sites in 
proportion to their nominal power. In this way, we achieve their spatial correlation. In 
order to account for the spatial correlation of the load data, the generated scenarios for 
the load are distributed among the buses of the system based on their seasonal/daily 
load level. It should be noted that the best approach is to treat the load of the system 
based on their type (i.e., commercial, industrial, and residential). However, we have 
considered the spatial correlations based on the rating of the low voltage transformers 
since we did not have the load profiles based on their types.  

The annual increase rates of the load and PV are considered to be constant.  

In case of energy price scenarios, the historical energy price data for one year are used 
as the initial scenarios.  The energy and fuel prices’ growth over the years are modeled 
by using the Geometric Brownian Motion (GBM) [123].  

44.4.2 Scenario reduction technique 

Accounting for all possible scenarios may results in computationally expensive 
simulations. Thus, often the number of scenarios is reduced to a reasonable one 
characterized by the same degree of volatility/stochasticity of the original scenarios. 

a)  b)  
Fig.  4-2: QQ-plots of zero-mean load data (recorded data in the southern east part of 

Switzerland) for a specific time interval during a) fall-spring b) summer  

a) b)  
 

Fig.  4-3: QQ-plots of zero-mean PV data (recorded data in the southern east part of 
Switzerland) ffor a specific time interval during a) partially cloudy sky b) clear sky  
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The scenarios for our targeted problems are the daily load/PV/price ones. In other 
words, we have scenarios in the form of time series with  dimension.  
and  are the length of the daily load, PV, and price profiles respectively. The first 
step for scenario reduction is to determine an appropriate criterion for comparing the 
resemblances of the scenarios. In this study we have employed Euclidian distance to 
determine the similarities between each pair of daily profiles. Afterwards, the scenario 
reduction procedure explained in 3.5.2.2 is employed to reduce the generated scenarios.     

44.5 Optimal Siting of ESSs in ADNs to Achieve Voltage Control 
Using a Linearized OPF Model 

The context of the problem refers to active distribution networks characterized by the 
presence of non-dispatchable generation. The possibility to take advantage of demand-
side management is not considered. We assume to know the phasors of phase-to-ground 
voltages at all the network busses at a generic time . The objective of the problem is to 
find the best locations of ESSs that contribute to minimize the voltage deviations at all 
the network busses. For this reason the problem can be formulated as a planning one 
with classical time step discretization of 15 minutes. The investment costs are not taken 
into account. It is assumed that the maximum number of total ESSs units is given. 
Additionally, it is assumed that the various ESSs locations have equal installation and 
operation costs. This hypothesis relies on the fact that ESSs used for ADNs are typically 
composed by electrochemical storage systems whose installation costs is site 
independent.   

In view of the above, the optimization problem is formulated as follows using linearized 
power flow equations introduced in section 2.4: 
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 0,1,...,l lu   (4.6.h) 

where  and   
represent the optimization variables (recall that a notation without subscripts 
represents the vector of corresponding variables/parameters and  represents the 
ESS constraints).  is the index of scenarios and  is the index of time step 
discretization of each scenario.   is the index of the network buses other than the 
slack bus,  represents the probability of scenario , and  is the set of busses with 
ESSs (the candidate buses for installing ESSs).  

The objective function shown in (4.6.a) minimizes the differences between the reference 
voltage magnitude ( ) and the voltage magnitude of the network buses over a given 
period of time5F

1. For the sake of brevity, the set of constraints of ESSs introduced in 
section 4.3 are represented as  for all buses, scenarios and time steps. 
It should be noted that the resistive losses, ramp-up and ramp-down limits of the ESSs 
are not considered here.  and  are the maximum power rating and energy reservoir 
capacity of ESS units which are bounded by the number of ESSs units  allocated at 
bus ,  is the set of the buses with ESS.  and  are the power rating and energy 
reservoir capacity of one ESS unit, respectively. The total number of ESS units is 
limited to .  

44.5.1 Solution methodologies 

The formulated problem is a Mixed Integer Quadratically Constrained Quadratic 
Programming (MIQCQP). This type of optimization problems can be solved using state-
of-the-art commercial software. In case of large-scale distribution networks with high 
number of scenarios, decomposition methods could be used to decompose the original 
problem. In what follows we present the Benders decomposition approach applied to 
our targeted problem. In this respect, the optimization problem is decomposed into a 
master one, which determines the site and number of ESSs unit for each bus of the 
system, and a set of subproblems, which quantify the fitness of the master problem 
solution. The ESSs capacities obtained in the master problem are fixed and imposed on 
the subproblems. The solution of each sub-problem allows defining a set of dual values 
indicating the changes in the subproblem objective functions resulting from marginal 
variations in the ESS capacities. These duals are returned to the master problem as a 
feedback in order to setup an iterative procedure. In particular, Benders cuts are 
generated from these dual values governing the determination of the master problem 
solution. This process is iterated between the master problem and the sub-problems 
until it converges to the optimal solution. Since the subproblems are independent from 
each other, they can be processed simultaneously in parallel. Fig.  4-4 demonstrates the 

                                                

1 Note that the slack-bus voltage is not considered in the objective function. 
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proposed procedure. More details about Benders decomposition are given in 
Appendix A.4.  

44.5.1.1 Master problem 

The initial master problem determines the number of ESS units at each bus of the grid 
regardless of the sub-problems. Afterwards, at each iteration, a cut from each sub-
problem is added to the master problem representing the changes in the subproblems 
objective function resulting from marginal variations in the ESS capacities. The master 
problem is formulated as shown in (4.7.a)-(4.7.d). 

 
 

, ,
minimize: 

u, ,
nimize

u
  (4.7.a) 
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Fig.  44-44: Flowchart of the pproposed methodology uusing Benders decomposition 
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subject to: 

 0,0,   (4.7.b) 

 (4.6.g), (4.6.h)   (4.7.c) 

 ,n n,n n   (4.7.d) 

where represents the investment and  represents the cost related to each 
subproblem ( ) (using dual variables). The other constraints are related to the 
maximum number of ESS units that can be installed and the discrete nature of ESS 
units. The constraint (4.7.d) represents the generated cuts from the subproblems.  is 
the index of Benders iteration. The cuts’ formulation is described in the next sub-
section.  

44.5.1.2 Sub-problem 

The sub-problems objective is to minimize the voltage magnitude deviations using 
the identified ESS units in the master problem. The formulation of the subproblem for 
each scenario ( ) is shown in (4.8.a)-(4.8.c). 

 
2

, ,minimize: ( ) ( ) r
l l

t T l
V t V t V   (4.8.a) 

Subject to: 
 (4.6.b)-(4.6.f)   (4.8.b) 

 ,ˆ : ll l lu u   (4.8.c) 

where  and  (  is the set of 
variables for modeling ESSs constraints) represent optimization variables. 

The  represents the Lagrange multipliers associated o the constraint  (4.8.c). Note 
that  indicates that is a parameter that is obtained in the master problem.  

After solving the subproblems, the following set of cuts is generated and added to the 
next iteration of the master problem. 

 ,Â ˆ ,n
l

n

l
l

n
l u u   (4.9.a) 

where  is the identified value of objective function in the subproblem  and is a 
parameter.  is the number of ESS units on bus , in iteration  of the Benders 
decomposition and is a parameter.  

The proposed procedure iterates between the master problem and subproblems until 
it converges to the optimal solution.  
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44.5.2 Simulation results 

This section presents the use of the proposed method with reference to the IEEE 13 
buses test network. We also provide a comparison between solving the original problem 
and the decomposed one regarding their solutions and computational performances. 
The schematic of this network is shown in Fig.  2-12. It is supposed to have non-
dispatchable DG units composed by photovoltaic panels (PVs). Concerning the 
representation of the network loads, they are considered as voltage independent PQ 
absorptions. The time series related to active load absorption and PV production make 
reference to experimentally measured data in a region located in the southern-east part 
of Switzerland. The power factor of loads is considered constant during the whole time 
series. 

The power injections of PVs have been represented by voltage-independent active 
power injections with null reactive component. It is assumed that the non-dispatchable 
PV injections are installed on buses #646, #684, #675, and #633 with a maximum rated 
power of 400 kW each. The relevant time series make reference to real measured solar 
irradiation in the central region of Europe.  It is assumed that DNO can allocate a 
maximum of 10 ESS units with 10 kW power rating capacity and 100 kWh energy 
capacity each. The maximum number of ESSs units that can be installed on each buses 
of the system is considered to be 5. The scenario generation/reduction method presented 
in section 4.4 is used to create 1000 scenarios and then reduced to 100 ones (the 
Euclidean distance for scenario reduction is considered to be of 0.9 p.u.). The final 
scenarios for load and PV are shown in Fig.  4-5.  

Making reference to a simulation window of 1006F

1 days discretized in 15 minutes time-
intervals, i.e. 96 time intervals per day, Table I shows the results related to the optimal 
allocated ESSs capacities at each bus of the network. Further a comparison is provided 
regarding the solutions of the decomposed problem and the original one 7F

2. As it can be 
seen from this Table, both approaches give the same solution, however, the 
computational performance of the case with Benders decomposition outperforms largely 
the one of original optimization problem8F

3.  

The probability distribution density of the nodal voltage magnitudes corresponding to 
all buses for the whole simulated period is shown in Fig.  4-6. In particular, Fig.  4-6.a 

                                                

1 It should be noted that number of scenarios obtained from scenario generation and reduction 
method presented in section 4.4 is equal 97. We added three more scenarios to have 100 
scenarios.  
2 The simulations are done on a desktop PC with 16 GB RAM memory and Intel Xenon CPU 

E5-1650@3.20 GHz. Gurobi version 6.0.5 is used to solve the optimization problems. The 
optimality Gap for MIQCP is chosen to be 0.01 %.   
3 The Gurobi solver benefits from the state of the art in solving MIQCP problems like Presolve, 

Cutting Planes, Heuristics, and Parallelism for solving MIQCP [124] J. T. Linderoth and A. 
Lodi, "MILP software," Wiley encyclopedia of operations research and management science, 
2011.. 



4.5   Optimal Siting of ESSs in ADNs to Achieve Voltage Control Using a 
Linearized OPF Model 

 

112 
 

refers to the case without ESSs whilst Fig.  4-6.b refers to the case in which ESSs are 
installed in agreement with the optimal location reported in Table I. As it can be 
observed, this last case results into voltages densities closer to the value of 1 p.u.. In 
particular, the under-voltages below 0.94 and over-voltages above 1.04 are completely 
removed.  

44.5.2.1 Convergence of Benders decomposition 

In case of using Benders decomposition, the value of the objective function for upper 
and lower bounds (see Appendix A.4), that represents the total nodal voltage 
magnitudes’ deviation for all the considered time intervals and for all the buses, is 
shown in Fig.  4-7. As it can be seen, the procedure converges after 22 iterations and 
results into minimum identified total nodal voltage magnitudes’ deviations.  

 

Fig.  4-7: Bender decomposition convergence  

 

4.6 Optimal Planning of ESSs in ADNs for energy balance and 
local grid support  

In the previous section, we proposed a model for optimal siting and sizing of ESSs 
aiming at minimizing the nodal voltage magnitudes’ deviations. We used the voltage 
sensitivity coefficients to linearize the problem. In order to improve our approach and 
avoid the approximation related to the linearization, in this section we present two 
optimization models for optimal siting and sizing of ESSs in ADNs with the AR-OPF 
model presented in 2.2.4 and the proposed ADN optimal reconfiguration model 
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FFig.  4-5: Scenarios for a) active power consumption b) PV active power production (base 

value is 5 MW) 
 

 
 
 
 
 

Table 4-1: Identified ESSs sites and numbers (each unit of ESS has 10kW power rating 
capacity and 100kWh energy reservoir capacity)  

 Bus # Number of units Computation time [sec] 

Using Benders 
decomposition 

# 684 5 
69 

# 652 5 

Without Benders 
decomposition 

# 684 5 
685 

# 652 5 
 

 
 

 
 

a) b)  
Fig.  4-6: Distribution of nodal voltage magnitudes in the network (for 100 days with 15 

mminutes discretization; a) without ESSs b) with optimally placed ESSs  
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proposed in 2.3. Further, we augment the objective function to take into account for 
various goals related to ESS planning.  

As introduced in the previous section, the context refers to ADNs with the presence of 
non-dispatchable generation. It is supposed that the ADN is connected to an external 
sub-transmission grid characterized by a given day-ahead hourly cost of the energy 
exchange known for a time window of 24 hours. The goal is to optimally site and size 
ESSs in the given radial ADN. The objective function includes two main parts (i) the 
investment and maintenance costs of ESSs ( ) and (ii) the operation cost of the 
targeted grid during the ESSs lifetime ( ) (brought to the year of investment).  

The former cost is composed of a fixed investment cost for each ESS and the cost related 
to its relevant power and energy capacities. The maintenance cost (brought to the year 
of the investment) is also accounted. 

The operation objective aims at minimizing a virtual cost associated with the system 
operation conditions. This virtual cost includes: (i) nodal voltage magnitude deviations, 
(ii) line congestions, (iii) total network losses, (iv) cost of energy from the external grid, 
and (v) load curtailment. Each term in the objective function has a suitable weighting 
coefficient that might be selected by the DNO as a function of his needs/priorities, or 
using a dedicated weighting coefficient technique. The virtual cost is minimized for the 
whole simulated time period considering a set of scenarios.  

The weighting coefficient of each term is determined by using the Analytic Hierarchy 
Process (AHP) proposed by Thomas L. Satty in [125]. In AHP method, first a pairwise 
comparison is done between the objectives. The decision-maker (i.e. the DNO) defines 
the importance of each factor in comparison with all the other ones. This pairwise 
comparison depends on the needs of the decision maker and it can vary from network 
to network and operator to operator. Then a matrix is built based on these pairwise 
comparisons and the final weights are calculated based on this metric. The AHP process 
is described in Appendix A.2.  

For the sake of brevity, hereinafter in this chapter, the set of equations for modeling 
the AR-OPF (see section 2.2.4.2) are represented as follows: 

 ( , ) 0   (4.10) 

where is the vector of variables that includes i) square of nodal voltages’ 
magnitude , ii) dispatchable nodal injections (ESS production and consumption), iii) 
square of current producing losses in the network ( , and its relevant auxiliary 
variable ( ) iv) complex power flow of the lines ( ), v) auxiliary variable 
associated with the square of nodal voltages’ magnitude ( ), vi) upper bounds associated 
with the square of current flows at both ends of the lines ( ) and vii) auxiliary 
variables for the complex power flow of the lines ( ). is the vector 
of parameters that includes i) lines parameters ( ), nodal load and non-dispatchable 
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generations (PV), square of lines’ ampacity limit ( ), and upper and lower limits of 
the square of nodal voltage magnitudes (  and ). 

The upper bounds for the square of current flows at both ends of the lines are 
formulated as shown in the following (see the constraints of AR-OPF (section 2.2.4)). 
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Similarly the corresponding set of equations for the proposed optimal ADN 
reconfiguration model (proposed in section 2.3.2) are represented as following: 

 ( , ) 0   (4.12) 

where is the vector of variables that includes i) square of nodal voltages 
magnitude , ii) auxiliary variables for the square of nodal voltage magnitudes 
( ), iii) complex power flow of the lines in both directions (

), vi) auxiliary variables for the complex power flow of the lines in 
both directions ( , v) lines 
direction variables ( ), vi) binary variables associated with the switches ( ), vii) 
reactive power associated with the shunt capacitances ( ), viii) auxiliary variable for 
reactive power associated with the shunt capacitances ( ), ix) dispatchable nodal 
injections (ESSs production and consumption), x) square of currents producing losses 
in the network  and their relevant auxiliary variables (  in both directions, 
finally upper bounds for the square of current flows at both ends of the lines ( ).  
is the vector of parameters that includes i) lines parameters ( ), ii) nodal load and 
non-dispatchable generations (PV), iii) square of the lines ampacity limit ( ), iv) 
upper and lower limits of the square of nodal voltage magnitudes (  and ). 

The corresponding set of equations for the proposed optimal ADN reconfiguration model 
using DistFlow equations are represented with ' ' '( , ) 0 .   

In this thesis two models are developed for optimal planning of ESSs in ADNs. The 
first one, called , is formulated using the AR-OPF formulation (see section 2.2.4.2) 
and does not take into account ADN reconfiguration (i.e., a fixed topology is considered 
for the network). The second one, called , is developed using the proposed ADN 
optimal reconfiguration model (see section 2.3.2).  and  are described in the 
followings.  
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 minimize: e ge g   (4.13.a) 
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where  is the set of the optimization variables.  
 and  are the vectors of 

variables for AR-OPF and ESSs (recall that the notation without sub-script represents 
the vector of corresponding variable for all time steps in all scenarios).   
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 and  are, index of the buses other than slack one, index of the years, index of the 
scenarios in each year, and index of time steps, respectively.   is the binary variable 
associated with the presence of an ESS at bus ,  and  are the variables representing 
ESS power rating and energy reservoir capacities,  is the total budget for installing 
ESS units, cc  , pp , and ee  are the unit costs associated with  ESSs fixed installation, 
power rating capacity, and energy reservoir capacity costs, respectively (in per unit).  
is the ESS maintenance cost and is a linear and strictly increasing function of  and . 
 is the net nodal consumption at bus  and the relevant time (year, scenario, and time 

step),  is the load curtailment variable,  is the per unit energy price,  is the annual 
interest rate,  and  are the PV active power production and active/reactive 
demands,  is a constant representing the fixed power factor in case of load curtailment, 

 and  are the upper and lower bounds for the square of nodal voltage magnitudes 
beyond which the nodal voltage deviations are minimized,  and s represent upper 
bounds for the square of current flow at both ends of line , /  and /  
represent the maximum/minimum power rating and energy reservoir capacities that 
could be installed on bus ,  and finally  is the square of lines current magnitude 
beyond which the lines current flow is minimized.      
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where  is the set of the optimization variables. 
 is the vector of variables for energy storage systems and  

represents the vector of ADN reconfiguration model.  is the set of network buses,  is 
the set of the lines,  is the set of the buses that are substations.  for one time step is 
as follows: 

 

where  represent the vector of corresponding variable associated with the 
lines of the network in both directions ( ). Similarly, , etc. shows the 
vector of corresponding variables associate with the buses of the grid.      

44.7 Solution Approaches   

The formulated problems,  and , are MISOCP. As it was mentioned in 4.5.1, this 
type of optimization problems can be solved using state-of-the-art commercial software. 
However, their solution could be computationally expensive due to the large-scale size 
of the targeted problems and/or presence of discrete variables. The inherent large-scale 
nature of the problem lays in the fact that it should cover a reasonable number of 
scenarios in order to obtain a solution accounting for a sufficiently large set of variations 
of the considered parameters. Consequently, the solution of the targeted problems, 
especially , could be computationally challenging for real large-scale networks with 
high number of scenarios. Further, they may also require a large amount of physical 
memory. One of the most common approaches used in the literature to treat this kind 
of problems is to use decomposition methods. In what follows we present the Alternative 
Direction Method of Multipliers (ADMM) and Benders decomposition approaches 
suitably applied to the targeted problems. 
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44.7.1 Alternative Direction Method of Multipliers (ADMM) applied to ESSs 
optimal planning  

The ADMM is a powerful and well-suited method for decentralized convex 
optimization. The peculiarity of the ADMM is that it uses a decomposition-coordination 
procedure in order to find the solution to a large global problem by solving small local 
sub-problems in parallel. It uses the benefits of dual decomposition and augmented 
Lagrangian methods [126, 127]. In the following, the ADMM is briefly described.   

The ADMM is used here to decompose the installation-cost minimization problem from 
the one of operation-cost minimization enabling a parallel formulation. The two 
optimization problems are linked by a set of linear constraints. These constraints imply 
that the ESS capacities obtained in the first stage (investment cost minimization) are 
identical to the ESSs capacities in the second stage (operation cost minimization). The 
application of the ADMM for the ESS optimal planning problem is described in what 
follows.  

It should be noted that the convergence of the ADMM process is not guaranteed for the 
optimization problems with non-convex constraints (e.g., with discrete variables). In 
this respect, we have considered that the ESS capacities are continuous variables.  

First stage optimization  

The first stage problem is related to the ESS investment and maintenance costs; its 
formulation is shown in (4.15.a)-(4.15.c). 
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where  is the set of optimization variables,  is the index of ADMM 
iteration,  is the dual multiplier of the constraint that links the first and second 
stages and is obtained in the dual update stage  (see Appendix A.3),  and  
are the ESS power rating and energy reservoir capacities of ESS located at bus  in first 
stage problem (investment cost minimization).  and  represent the ESS 
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power rating and energy reservoir capacities in the previous iteration of second stage 
(they are parameters here).  is the penalty parameters.   

SSecond stage optimization  

The second step is represented by the operation-cost minimization for all the possible 
scenarios. In this stage, each scenario is processed separately since they can be 
evaluated in parallel. The objective function of the problem for every single scenario 
( ) is formulated as (4.16.a). The constraints of the problem are (4.16.b)-
(4.16.d).  
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where  is the set of optimization variables.  and  
represent the ESS power rating and energy reservoir capacities obtained in the first 
stage (they are parameters here). 
 
Dual Update:  
The last step in ADMM procedure is the dual update as shown in (4.17.a).  
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These steps are iterated until the solver converges to an optimal solution. The scheme 

of the proposed ADMM-based procedure is shown in Fig.  4-8. Further details are 
provided in Appendix A.3 and [126]. 

44.7.2 Bender decomposition approach applied to the optimal siting and sizing 
of ESSs in ADNs  

Including ADN reconfiguration adds new binary variables and constraints (radiality 
ones)) to the ESS optimal siting and sizing problem. This could further complicate the 
solution of the optimization problem. We have employed the Benders decomposition to 
deal with this difficulty and solve . 

Benders decomposition is used to break down the optimization problem into a master 
problem and a set of subproblems. The Master problem determines the ESSs site and 
size as well as the state of the switches for each category of load /PV profiles. The 
constraints are geographical and budget constraints for ESSs installation, the radiality 
ones, and the linearized DistFlow constraints. Once the solution of the master problem 
is determined and the configuration of network is defined, the ESSs capacities are fixed 
and used in the subproblems. For each network configuration, a set of scenarios 
characterized by load, PV, and energy price profiles are used for assessing the 
operational benefits of the ESSs. The duals of these constraints are used to form 
appropriate cuts for the next iteration of the master problem. The procedure iterates 
between the master problem and subproblems until it converges and the difference 

Investment cost minimization 

Daily OPF... .

Operation cost minimization 

Dual update

Daily OPF Daily OPF

Identified optimal 
solution

Converged

Yes

No

 
 

Fig.  44-88: AADMM procedure applied to the problem of ESS optimal planning 
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between the upper bound and lower bound is less than the predefined tolerance (see 
Appendix A.4).    

44.7.2.1 Master Problem  

The Master problem determines the ESSs site and size as well as the state of the 
switches for each category of load /PV profiles. In this step, the daily time step 
discretization is considered to be 2 hours (the time step discretization is 15 minutes in 
the subproblems). This choice of time step is justified because the short term variations 
of load and PV do not impact the optimal switching strategy. Additionally, the price 
scenarios are not considered here, since they have no effect on the switching strategies. 
Taking into account the above mentioned points, the final scenarios for ESS siting and 
sizing generated as explained in section 4.4 are further clustered into categorizes of 
load and PV profiles. The state of the switches for each category is determined in master 
problems aiming at minimizing the total resistive losses (one configuration for each 
category).  

The constraints of the optimization problem are i) geographical and budget constraints 
for ESSs installation ii) the radiality ones, and iii) the constraints related to the 
DistFlow equations with inclusion of transverse parameters. The Master problem is 
formulated as shown in following:  
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subject to: 

 , Y0, ,y y, 0,y   (4.18.b) 

 , , , Y, , bn
y y y n Nn
y ,   (4.18.c) 

(4.14.g),(4.14.h),(4.14.i)(4.14.j) 

 , ,( , ) 0, T, ,l l ess m mt t l t, , ess m   (4.18.d) 

 ' ' '
,B ( , ) 0 , T

m mt y t m m t, ,   (4.18) 

where  is the set of optimization variables.  is the binary 
variable associated with the presence of an ESS at bus ,  and  are the ESS power 
rating and energy reservoir capacities,  is the maintenance cost of ESSs, 

( / ( ) represent the active and reactive power flows in the 
central part of the lines,  is the set of variables for modeling ESSs,  is the set of 
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variables for modeling ADN reconfiguration constraints with DistFLow equations,  is 
the index of Benders iteration, and  is the index of master problem scenarios.  
Constraints (4.18.b) and (4.18.c) model the Benders cuts from the subproblems. The 
ESSs constraints are presented by equation (4.18.d). Once the solution of the master 
problem is determined, the ESSs site and size as well as the switching states are fixed 
and sent to the subproblems.  

44.7.2.2 Subproblem (Optimal Day-ahead scheduling) 

The fitness of the master problem solution is determined in the subproblems. For each 
network configuration, a set of scenarios characterized by load, PV, and price variations 
are used for assessing the operational benefits of the ESSs. The time step discretization 
is 15 minutes. The formulation of the subproblems is shown in (4.19.a)-(4.19.f).  
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where  is the set of optimization variables.  and  are the ESS 
power rating and energy reservoir capacities obtained in the master problem. They are 
parameters here.  

The capacity of the ESSs power rating and energy reservoirs are fixed to the values 
obtained from the master problem in equations (4.19.e) and (4.19.f). The Lagrange 
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multipliers associated with these constraints are used to form the appropriate cuts as 
shown in (4.20.a) for the master problem.  

 , , , , , ,
ˆˆ , Y,ˆn g

y y l y l l l y l l
l N

C C yˆ ˆg
l y l l l y C   (4.20.a) 

where  represents the identified value of the objective function and  
represent the dual of constraints related to the fixed ESS capacities.    

The proposed Benders decomposition procedure is depicted in Fig.  4-9.  

44.7.3 Comparisons of solution approaches 

In this section we compare the three solution approaches discussed above with respect 
to . The IEEE 34 buses network is used to compare the solution of the three 
approaches; i) the original problem without making use of a decomposition method 
[128], ii) decomposed problem using ADMM,  and iii) decomposed problem using 
Benders decomposition. As previously stated, the convergence of the ADMM process is 
not guaranteed for optimization problems with non-convex constraints (e.g., with 
discrete variables). In this respect, in the following we provide two analyses, i) a 
comparison between the solution of the decomposed problem using Benders 
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Fig.  4-9: The Benders decomposition procedure adapted for optimal siting and sizing of 

ESSs considering network reconfiguration 
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decomposition with the solution of the original problem, in presence of discrete 
variables for ESSs capacities and ii) a comparison between the solution of the 
decomposed problem using ADMM with the solution of the original problem using 
continuous variable for ESSs capacities.  

44.7.3.1 Comparison between the solutions of the original problem and the decomposed 
one using Benders decomposition 

As mentioned above, IEEE 34 buses network is selected as the test case study. It is 
assumed that at most 20 ESS units, with 125 kVA power rating and 125 kWh energy 
reservoir each, could be installed in the grid. The simulations are done with respect to 
45 scenarios. The load and PV data are obtained from experimentally measured data 
in a region in southern-east part of Switzerland. The total aggregated load and energy 
profiles are shown in Fig.  4-10. Ten buses, # 9, #13, #19, #24, #25, #27, #29, #31, #32, 
and #34, are considered as the candidates for installing ESS units.  

With reference to 45 scenarios with 15 minutes time discretization (96 time step per 
scenario), the identified optimal solution using the two approaches, are reported in 
Table 4-2. The simulations are done on a desktop PC with 16 GB RAM memory and 
Intel Xenon CPU E5-1650@3.20 GHz. Gurobi version 6.0.5 is used to solve the 
optimization problems. The Gurobi solver benefits from the state-of-the-art methods in 
solving MIQCP problems like Presolve, Cutting Planes, Heuristics, and Parallelism for 
solving MIQCP [124]. The optimality gap is chosen to be 0.01%. Similarly, the stopping 
criterion for Benders decomposition is chosen to be 0.01% (see Appendix A.4). As it can 
be observed from Table 4-2, the two approaches lead to the same identified optimal 
solution (the same ESS sites and capacities). Further one can observe that the 
computation time for the case using Benders decomposition is much smaller than the 
computation time of the original problem solution.   

4.7.3.2 Comparison between the solution of the original problem and the decomposed 
one using ADMM 

The same test case study as the previous section is used here. The capacities (power 
rating and energy reservoir) of the ESS units are considered to be continuous variables. 
The same desktop PC and solver as the previous section are used for solving the 
optimization problems. The identified optimal solution and the corresponding 
computational time for two cases i) solving the original problem, ii) solving the 
decomposed problem using ADMM) are demonstrated in Table 4-3. It can be seen that 
both approaches lead to the same optimal solution. Further it can be observed that 
solving ADMM in parallel could decrease the total computation time significantly. It 
should be noted that the advantage of using decomposition methods is not only limited 
to the computation time. They also decrease the amount of required physical memory 
since several small scale problems are treated instead of a large-scale one. Finally, it 
should be noted that the convergence of ADMM largely depends on the selection of 
penalty parameter, . Here, we used the approach proposed in [126].  
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FFig.  4-10: a) the aggregated active power load scenarios (base vale for power is 2.5 MW), b) 
the energy price scenarios 

Table 4-2: Comparison between the solutions of the original problem and the decomposed one 
using Benders decomposition (each unit of ESS has 125 kVA and 125 kWh capacity)  

 Bus # Number of units Computation time  

Using Benders 
decomposition 

#19 1 # iterations: 17 
Average computation time of subproblems (total 
time for solving original problem and Karush–
Kuhn–Tucker (KKT) conditions to obtain dual 

variables): 4.01 [sec] 
Average computation time of master problem: 

0.022 [sec] 
Total computation time: 3068 [sec] 

#25 1 

#34 4 

Without 
Benders 

decomposition  

#19 1 
64822.5 [sec] #25 1 

#34 4 
 

Table 4-3: Comparison between the solutions of the original problem and the decomposed one 
using ADMM  

 Bus # 
Power 
rating 
(kVA) 

Energy 
reservoir 

(kWh) 
Computation time  

Using ADMM #34 
 124 124 

# iterations: 30 
Average computation time of subproblems: 

2.71 [sec] 
Average computation time of master problem: 

0.002 [sec] 
Total computation time in parallel: 85.33 [sec] 
Total computation time in series: 3839.1 [sec] 

Without 
ADMM  #34 124 124 1340.7 [sec] 
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44.8 Summary and Conclusion  

In this chapter, the problem of optimal siting and sizing of ESSs in ADNs is studied. 
First, the linearized OPF, based on voltage sensitivity coefficients, is used to develop a 
model for optimal siting of ESSs aiming at minimizing the total nodal voltage 
magnitudes’ deviations. Further, Benders decomposition approach is suitably adopted 
for the solution of this MIQCQP problem. It is shown that the computation time of 
solving the decomposed problem largely outperforms the one of original problem. 
Further, the AR-OPF and the proposed ADN reconfiguration models are employed for 
optimal siting and sizing of ESSs in ADNs with a multi-objective goal including energy 
balance and network services. Additionally, using the proposed ADN reconfiguration, 
the topology changes are also incorporated into the problem. Variations of different 
parameters (load, PV and energy price) during the life-time of ESS units are taken into 
account using an appropriate scenario generation/reduction method. 

In the last part of this chapter, two solution approaches, based on Benders 
decomposition and ADMM, are adapted to solve the targeted large-scale Mixed Integer 
Second Cone Programming (MISOCP) problems. In particular, it was shown that the 
Benders decomposition is potentially the best approach for solving the targeted 
planning problems because i) it can efficiently handle the discrete variables, ii) it breaks 
down the problem enabling solving several smaller problems in parallel instead of one 
single large-scale one. Further, the use of ADMM for solving the problem with 
continuous variables is investigated. It is shown that this approach also enables 
reducing the computation time through the decomposition of problem and solving it in 
parallel.   

 

 

 

 

 

 

 

 

 

 

 





 
 

 

 

 

 

 

 

 

 

 

 

CChapter highlights:  

In this chapter, the developed methodologies related to the optimal ESSs siting and 
sizing are applied to real and benchmark networks. In particular, IEEE 34 and 123 
buses networks and a real distribution network located in southwest Switzerland are 
used as the test cases. The objective function of the optimization problems includes: i) 
ESS investment and maintenance costs, ii) nodal voltage magnitudes’ deviation, iii) 
resistive losses, iv) lines congestion v) cost of energy imported from external grid and 
operation of DGs. 
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55.1 Chapter Organization 

In section 5.2 the modified IEEE 34 buses network is used to apply the process 
illustrated in section 4.5 without using a decomposition method9F

1. The objective function 
refers to the minimization of: i) ESS investment and maintenance costs, ii) nodal 
voltage deviations, iii) resistive losses, iv) lines congestion v) cost of energy imported 
from external grid and operation cost of dispatchable DGs. In section 5.3 a real large-
scale network located in southwest of Switzerland is used, as a case study, to apply the 
developed optimal planning technique based on ADMM. In particular, the problem is 
decomposed using the ADMM technique. Finally, in section 5.4, the IEEE 123 buses 
network is employed as a test case to validate the developed methodology taking into 
account the network reconfiguration. The solution of the optimization problems relies 
on the use of Benders decomposition technique.  

5.2 Optimal ESS Siting and Sizing  

The simulation results presented here make reference to the optimization model 
presented in  (equations (4.13.a)-(4.13.j)). The modified IEEE 34 buses system is used 
as the test case (see Fig.  5-1) [25]. The two voltage regulators are removed in order to 
obtain a weaker grid with respect to nodal voltage magnitudes. It is supposed to have 
both non-dispatchable DGs composed by PV panels and wind turbines, and 
dispatchable DGs. The yearly profile of active power loads for the entire network is 
shown in Fig.  5-3. The load profiles are considered to be voltage-independent PQ 
absorptions. Even for PV and wind units, it is also considered that they are voltage-
independent active power injections with null reactive power component. Their yearly 
power production profiles are shown in Fig.  5-3 and  Fig.  5-4. The load data corresponds 
to real measurements recorded into a primary high-to-medium voltage substation 
located in north of Italy. The PV and wind profiles are obtained from [129] and [130] 
respectively.  
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Fig.  5-1: The modified IEEE 34 bus test feeder. 

                                                

1 It should be noted that the quadratic term in the voltage equation (equation (2.11.b)) as well 
as the transverse parameters are neglected in this case study. 
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As mentioned above, in this study we have also considered the presence of some 
dispatchable DGs, owned and operated by the DNO. They are molded as follow:  

 DG,min DG,max
l l

DG DG DG
l l lu P P u P   (5.1.a) 

 DG,min DG,max
l l

DG DG DG
l l lu Q Q u Q   (5.1.b) 

 ( , )DG DG
l l lP Q   (5.1.c) 

 
where are the active and reactive power output of the DG, represents the 
on/off state of the DG unit, represent the upper and 
lower bounds of DG active and reactive power outputs, finally  is the feasible 
operating region of DG as shown in Fig.  5-2. Note that  and  are 
optimization variables. 

The constraints (5.2.a) and (5.2.b) define the maximum and minimum active and 
reactive power that can be produced by dispatchable DGs, respectively. The constraint 
(5.2.c) defines the capability curve of DG generator that is linearized and shown in 
Fig.  5-2. 

A linear formulation is used for DGs operation and start-up costs [131]. The start-up 
cost is modeled by a constant cost function. 
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Fig.  5-2: The linearized dispatchable DG capability curve 
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The simulation parameters are shown in Table 5-1. It is assumed that PV generation 
units are installed at all load buses where loads are present. The wind turbines are 
connected to buses #18 and #22 (see Fig.  5-1). 

TTable 5-1: Simulation parameters 

Base power (energy) 
value 

2.5 MW 
(MWh) 

Maximum number of 
buses where ESSs can be 

installed 

4 

Total PV capacity 1 (p.u.) Total maximum ESS 
power rating capacity 

0.8 (p.u.) 

Total wind capacity 0.3 (p.u.) Total maximum ESS 
reservoir capacity 

2 (p.u.) 

Resistive losses of ESSs 0.04 (p.u.) ESS ramp-up ramp-down 
limits  

0.3 (MW/h) 

Max/min voltage-
thresholds beyond which 

voltage deviation is 
minimized  

+/- 3% Max feeder current-
threshold beyond which 

current feeder flow is 
minimized 

80 %  

Annual load growth 2% Interest rate 3% 

Average energy price 
from external grid in 

first year 

36 ($/MWh) GBM sigma 0.08 

Capital investment cost 
of ESSs 

5000 ($) Installation cost of ESSs 
power rating 

1200 ($/kW) [39] 

Installation cost of ESSs 
energy reservoir 

4000 ($/kWh) 
[132] 

Maintenance cost of ESSs 100 ($/MWh/year) 

Dispatchable DGs total 
maximum capacity 

0.2 (p.u.) 
(2 units)  

  

 

 
Fig.  5-3: Initial yearly load profile (base power Sb=2.5 MW). 
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FFig.  5-4: Initial yearly PV production profile (base power Sb=2.5 MW). 

 
Fig.  5-5: Initial yearly wind production profile (base power Sb=2.5 MW). 

 

Table 5-2: Pairwise comparisons of the objective terms 

 Voltage 
deviation 

resistive 
losses 

Energy cost from 
external grid 

Lines’ 
congestion 

ESSs 
losses 

Voltage 
deviation 

1 5 7 1/4 12 

resistive losses 1/5 1 1/2 1/8 5 
Energy cost 

from external 
grid 

1/7 2 1 1/9 8 

Lines’ 
congestion 

4 8 9 1 15 

ESSs losses 1/12 1/5 1/8 1/15 1 
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The scenario generation/reduction method presented in section 4.4 is used to generate 
150 scenarios for load, PV, wind and energy price profiles. The ESSs lifetime is assumed 
to be 5 years. The simulation is performed for the considered ESSs lifetime where the 
parameters’ growth/variations are taking into account. The load growth is considered 
constant during the lifetime. The wind power capacity is considered constant during 
the lifetime while the PV capacity is considered to have a growth associated with one of 
the load since these systems are normally installed on the customers’ side. The energy 
and fuel prices’ growth over the years are modeled using the GBM [123]. Table 5-2 
shows the pairwise comparison of selected relative weights fed into the AHP. 

The scaled coefficients of each term in the objective function, obtained using the 
pairwise comparison reported in Table 5-2 feeding into AHP, are: WEP=0.0562, 
Wloss=0.0396, Wvol=0.2535, Wflow=0.6421, and WlossESS=0.0086. The coefficient of load 
curtailment is considered to be equal 100. It is equal to the value of unsupplied load. It 
should be noted that the coefficient of load curtailment is not considered in the AHP 
method. In this respect, a large weighting coefficient has been considered in order to 
prevent at most the load curtailment.  

Table 5-3 shows the optimal obtained ESS locations and relevant sizes. From the 
results of Table 5-3, we can see that two buses are selected by the proposed method to 
host ESSs. 

Changes of the other terms of the objective function during the lifetime (i.e., total loss, 
energy cost, feeders loading and load curtailment) are shown in Table 5-4. These values 
correspond to the sum of all time periods in 5 years (43800 hours) and the peak value 
of the load is 3.58 MW. It should be noted that the initial network is heavily loaded and 
the load curtailment is inevitable. This heavy loading causes relatively high amount of 
losses and lines over-loading. These results show that all the elements of the objective 
function, exhibit significant improvements. In addition to the total losses reduction, the 
total cost of supplied energy, that includes the energy imported from the external grid 
as well as the energy supplied by local DG units, is significantly reduced. 

In order to quantify the benefits related to the optimal ESS placement, in what follows 
we have reported the results of two cases corresponding to: case 1 with optimal allocated 
ESSs and case 2 without ESS. In particular, the Cumulative Distribution Functions 
(CDFs) of the voltages related to both cases 1 and 2 related to the whole time period 
and for all the network buses are shown in Fig.  5-6. These results show that the optimal 
solution improves the voltage profiles with reference to the case without ESS. In 
particular, the voltages exhibit a larger probability of occurrence in correspondence of 
an interval closer to the desired voltage.  
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TTable 5-3: Obtained optimal ESSs location and size (base power  Sb=2.5 MW, base energy 
Eb=2.5 MWh). 

bus 22 34 
ESS power rating (p.u.) 0.33 0.39 

ESS reservoir capacity (p.u.) 0.88 1.05 
 
 
 

 

Fig.  5-6: Bus voltage CDFs for the case with and without optimally-planned ESSs. 

 

Furthermore, the presence of load curtailment and feeders over-loading (representing 
the first and second goals in the objective function) are entirely eliminated with the 
proposed optimal placement of ESSs.   

The daily operation cycle of the two ESSs provided by case 1 in correspondence of two 
days (one day in winter and one day in summer of the first year) are shown in Fig.  5-7.  
In particular, Fig.  5-7a shows the p.u. energy stored in the two ESS units for the 
summer-day and Fig.  5-7b for the winter-day. Furthermore, in summer days, the ESSs 
are used to store the power produced by the renewable resources in the mid-hours of 
the day (essentially the energy produced by PVs) and supply it back to the grid during 
high peak hours. As it can be also seen from these results, the ESSs state-of-charge 
constraints are fulfilled. 
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TTable 5-4: Changes in each term of the objective function 

 Total network 
energy losses 

(MWh) 

Total 
energy cost 

($) 

Total feeders 
loading with 

percentages larger 
than 80% (MW) 

Total load 
curtailment 

(MW) 

With optimal ESS 
allocation 

1855 2,151,700 0 0 

Without ESS 1925 2,609,000 516.06 1729.7 

 
 

a) b)  
Fig.  5-7: ESSs state-of-charge during one summer (a) and one winter (b) day (base energy 

Eb=2.5 MWh). 

The total active load, PV, wind and dispatchable DGs power productions are shown in 
Fig.  5-8. In particular, Fig.  5-8a is related to a generic summer day and Fig.  5-8b to a 
generic winter day. It can be observed that, in the winter day, the ESS are used to 
accumulate energy in the first two-third of the day (from both the external grid and, 
when available, wind and PV supply), in order to support the grid in the peak hours for 
which high prices appear. Concerning the case of summer days, it can be seen that the 
ESSs accumulate energy in the central part of the day (essentially from PV). It should 
be underlined that these objectives are always reached by supporting the quality of the 
supply (i.e., voltage control, lines congestion and losses minimization). 

a) b)  
Fig.  5-8: Active power profiles of load, PV, wind, and two dispatchable DGs during one 

summer (a) and one winter (b) day (base power Sb=2.5 MW). 
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55.3 Optimal ESS Planning in a Real Distribuution Network Using 
the ADMM  

In this section, we provide numerical analyses with respect to the use of ADMM for 
solving the ESS optimal planning problem (the model presented in 4.7.1). In this 
respect, a real distribution network located in the southeast of Switzerland has been 
used as a case study (see Fig.  5-9). The network contains 287 buses and is characterized 
by a non-negligible amount of PV installations with a total capacity of 2 MW. Buses 
where PVs are connected are shown in Fig.  5-9 together with the obtained location of 
the ESSs inferred from the proposed procedure. The simulation is done for five years 
(assumed life-time of ESSs) and four weeks in each year: one in spring, one in summer, 
one in fall, and one in winter. Experimentally measured loads and generation profiles 
for this specific grid are considered with a discretization time step of 15 minutes. The 
aggregated load profiles of these four time periods are shown in Fig.  5-10. The load 
profiles for the other years are considered to have the same profile with 5% increase 
each year. The load is distributed among the feeders as shown in Table 5-5. The energy 
price profiles of these weeks (for the first year) are shown in Fig.  5-11. The energy price 
is assumed to increase by 2% at each year. The load, and PV profiles are obtained from 
experimentally measured data in a region in south-east part of Switzerland. The energy 
price profiles make reference to the profile of a specific day. The weight coefficients of 
the elements composing the objective function are: voltage deviation Wvol=0.61, total 
network loss Wloss =0.05, energy cost from the external grid Wep=0.04 and the feeder 
overloading above 80% of their respective capacities Wvol=0.3.  

The investment costs for ESSs capacity rating and energy reservoir are assumed to be 
1800 CHF/kW and 1000 CHF/kWh respectively. These values are inferred from the 
report [132] with specific reference to the Li-ion electrochemical batteries. 

The annual interest rate is assumed to be 4%. The voltage minimization term in the 
objective function is activated when the voltage exhibits a deviation from the rated 
value larger than +/-2%. 

The obtained optimal locations and ratings of ESSs are shown in Table 5-6. As it can 
be seen, 4 buses are selected to install ESSs. All the selected buses are close to the 
largest loads. Table 5-7 shows the total amount of network losses, feeder over-flow 
above 80% and energy cost imported from the external grid in both cases, namely: 
without ESSs and with optimally located ESSs. All these quantities exhibit a clear 
decrease in case where optimally-allocated ESSs are available in the network (total 
resistive losses is decreased by 1.6% and he total energy supply cost is decreased by 
8.8%). 
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FFig.  5-9: The schematic of the real test case study (total number of buses: 287, 
number of feeder: 9) 

a)  b)  

c)  d)  

Fig.  5-10: Aggregated network loads: active-power profiles for the four considered weeks. a) 
winter, b) summer, c) fall, and d) spring (base value of power is 1 MW) 

10 20 30 40 50 60 70 80 9010

15

20

25

30

Time [15 minutes]

To
ta

l l
oa

d 
[p

.u
.]

10 20 30 40 50 60 70 80 900

5

10

15

Time [15 minutes]

To
ta

l l
oa

d 
[p

.u
.]

10 20 30 40 50 60 70 80 90

6

8

10

12

14

16

Time [15 minutes]

To
ta

l l
oa

d 
[p

.u
.]

10 20 30 40 50 60 70 80 908

10

12

14

16

18

20

22

Time [15 minutes]

To
ta

l l
oa

d 
[p

.u
.]



5   Application Examples of the developed methodologies for ESS siting and sizing 
using benchmark and real power grids 
 

139 
 

 
FFig.  55--111:: PProfiles of the eelectricity  pprices in the four considered weeks.  

 
TTable 5-5: Average feeder loading with respect to the primary substation aggregated power in 

the four considered weeks 

Feeder # 1 2 3 4 5 6 7 8 
Starting bus of the considered feeder (see 

Fig. 2) 
105 113 121 127 138 168 207 249 

Load share with respect to total network 
loading (%) 

0.62 25.1 13.2 7 20 5 0.29 28 

 

Table 5-6: Optimal ESS sites and sizes 

ESS # 1 2 3 4 
Bus number 41 159 230 233 

Power rating (MW) 1.1 1.87 0.47 1.12 
Reservoir capacity (MWh) 3.4 3.32 0.48 1.15 

 
Table 5-7: Changes in each term of the objective function 

 Total network 
losses in the 
simulated 

weeks [MWh] 

Total energy cost 
imported from the 
external grid in the 

simulated weeks (CHF) 

Total feeders loading 
with percentages 

larger than 80% (p.u.) 

With optimal ESS 
siting and sizing 

714.7 898,450 0 

Without ESS 859.02 985,140 14.7 
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Fig.  5-12 shows the Cumulative Distribution Function (CDF) of nodal voltages in both 
analyzed cases (i.e., with and without ESSs). It is evident that the presence of ESSs 
allows to largely improve the ADN quality-of-service with respect to voltage variations. 

 The SoC of all the ESSs in two days, one day in summer and one day in winter, are 
shown in Fig.  5-12 and Fig.  5-13, respectively. As it can be observed, the figures show 
how the constraints on the ESS SoC are respected. Fig.  5-12 shows that, in summer 
period, all the ESSs except the one that is on the feeder with PV production, follow the 
load profile. The ESS 1, which is located on the feeder with PV production is responding 
to energy price profile. It stores excess PV production during the day and produce 
energy during high-peak hours. Fig.  5-13 shows that the ESSs SoC in wintertime 
period is different. In particular, all the ESSs are responding to the load profile. In this 
respect, it is worth observing that these ESSs are located in the feeders characterized 
by the highest loading level with associated largest voltage variations. Thus, they tend 
to minimize the corresponding elements of the multi-objective function since they have 
a larger priority. In view of the above considerations, it is evident how the proposed 
process is capable to locate each ESS by distinguishing their influences on: the network 
quality-of-service, the local energy balance and the network zone of influence. 

 

 

 

 

 
FFig.  5-12: The CDF of nodal voltage magnitudes for the cases with and without optimal ESS 

siting and sizing 
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FFig.  5-13: SoC profiles of the ESSs in summer period (Base value of energy is 5 MWh). 

 

 
Fig.  5-14: . SoC profiles of the ESSs in winter period (Base value of energy is 5 MWh). 

 

It should be noted that the solution provided for the case study in this section 
does not result in any load curtailment. It is also worth noting that the main 
objective investigated in this case study is the ESSs contribution to increase the 
ADN quality-of-service (i.e., compensate the voltage deviations). Therefore, this 
specific objective is characterized by the highest weight in the objective function. 
As a result, as it can be noted from Table 5-7, the benefits resulting from the peak 
shaving cannot justify the ESS high capital cost alone.  
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Observation about the ADMM convergence 

A reasonable stop criterion is that the primal and dual residuals have to be 
small [126] (see Appendix A.3). The objective sub-optimality is small when these 
two values are small [126]. The progress of primal and dual residuals as a 
function of the iteration number is shown in Fig.  5-15 and Fig.  5-16, respectively. 

 
FFig.  5-15: Norm of the primal residual versus iteration 

 

Fig.  5-16: Norm of the dual residual versus iteration 

5.4 Optimal ESS Siting and Sizing Taking into Account Network 
Reconfiguration Using Benders Decomposition  

This section provides numerical analysis associated with the solution of optimal ESS 
siting and sizing taking into account the ADN reconfiguration. Benders decomposition 
technique is used to decompose the problem into a master problem and several 
subproblems (see section 4.7.2). The IEEE 123 buses network is selected as the test 
case. Fifteen scenarios (per year) for the master problem and 300 ones for the 
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subproblem are created using the scenarios generation/reduction method presented in 
section 4.4. The master problem scenarios, with time step discretization of two hours, 
represent the load and PV profiles, whereas the subproblem scenarios, with 15 minutes 
discretization, are related to the energy price variations in addition to the load and PV 
ones.  

The goal of the reconfiguration in the master problem is to minimize the total resistive 
losses as well as satisfying the network constraints. The objective function of the 
subproblems includes minimization of i) energy cost ii) nodal voltage magnitudes 
deviations, and iii) lines congestion. It should be noted that the load curtailment is not 
considered here since it is not necessary and can be avoided. Contrary to the other cases, 
we have assumed that the DNO has pre-selected a list of candidate buses for installing 
ESSs. They are shown in Table 5-9 (25 buses are selected as the candidate buses). The 
ESSs installation cost is considered to be 0.6 million CHF per unit of ESS (a typical cost 
for large-scale Li-On batteries). Each unit of ESS has 0.25 kVA power rating and 0.25 
MWh energy reservoir capacity. Other simulation parameters are provided in 
Table 5-10. 

The identified optimal sites and sizes of the ESSs units are provided in Table 5-11.  
The obtained ADN topology as well as the identified optimal sites of ESSs and PV 
locatins are shown in Fig.  5-17. In particular, 10 buses are selected for installing 24 
ESS units. Note that the configuration obtained for all the 15 cateorizes of the load and 
PV data is the same (one configuration is obtained for all the 15 categorizes). 

The Cumulative Distribution Functions (CDFs) of the nodal voltage magnitudes 
related to two cases, i) with optimal siting and sizing of ESSs and ii) without ESS, are 
shown in Fig.  5-18. These results clearly show that the optimal solution improves the 
voltage profile with reference to the case without ESS. In particular, it can be observed 
that the voltage magnitudes are well kept in the desired operation region ( % 
deviation). Further, it can be seen that the voltage magnitudes below 0.96 p.u. and 
larger than 1.02 p.u. are completely removed. 

Improvements in the other objectives are presented in Table 5-8. Particularly, it can 
be observed that the lines congestion is completely removed. Furthermore, the energy 
supply cost is decreased by 2.4%. It should be noted that the weighting coefficient of 
each element of the objective function is as follows: i)  (ESS investment and 
maintenance cost as well as the energy supply cost), ii) (nodal voltage 
magnitudes deviations), and iii)  (lines congestions). 
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TTable 5-8: Changes in the objective function with optimal planning of ESS units 

 Energy cost from external 
grid [CHF] 

Total lines loading over 80% 
of capacity (sum over all 

periods) [p.u.] 
with optimal ESS placement  25,087,962.30  0 

without ESS 25,712,958.15  0.1 
 

Table 5-9: Candidate buses for installing ESSs 

Bus # 9 20 22 26 30 34 38 41 49 46 61 63 65 
Bus # 66 71 76 78 80 83 88 91 100 102 105 116  

 

Table 5-10: Simulation parameters 

Base power (energy) 
value 

5 MW (MWh) Maximum number of 
ESSs that can be 

installed 

30 

Resistive losses of ESSs 0.04 (p.u.) ESS ramp-up ramp-down 
limits  

0.3 (MW/h) 

Max/min voltage-
thresholds beyond which 

voltage deviation is 
minimized  

+/- 2% Max square value of lines 
current beyond which 
lines current flow is 

minimized 

80 %  

Annual load growth 2% Interest rate 3% 

Total number of buses 
where ESS can be 

installed 

25 GBM sigma 0.08 

Weighting coefficient for 
Energy supply, 
investment and 

maintenance costs [$] 

1 Weighting coefficient for 
voltage deviation [p.u.] 

20 

Weighting coefficient for 
lines congestion 

managements [p.u.] 

40   

 

Table 5-11: Identified optimal ESS sites and sizes 

Bus # 26 30 38 41 65 66 76 83 91 105 
Number of ESS units 1 1 6 1 5 1 1 2 2 3 
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FFig.  5-17: Identified ADN topology and ESS sites (the buses with PV are shown with blue 
color) 
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FFig.  5-18: Nodal voltage magnitudes CDF, i) with optimal placement of ESSs ii) without ESSs 

Finally in the Fig.  5-19 the convergence of the Benders decomposition is depicted. In 
particular, the procedure has converged in 11 iterations with stopping criteria equal to 
0.01% (see Appendix A.4). 

 

Fig.  5-19: Convergence of the Benders decomposition procedure  
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55.5 Summary and Conclusion 

In this chapter, the developed processes for optimal siting and sizing of ESSs in ADNs 
are applied to real and standard test case studies. The obtained results have shown the 
capabilities of the proposed methods to optimally allocate ESSs to: (i) largely improve 
the quality of supply of the ADNs in terms of mitigating voltage deviations, eliminating 
line congestions and load curtailment together with (ii) minimizing the total cost of 
locally-used electricity and investment cost for ESSs installation and maintenance. It 
is possible to conclude that optimally-allocated ESSs can represent a valid solution for 
ADN operators that do not want to deploy massive DG controls. This opportunity will 
potentially postpone large control infrastructure deployment as well as grid 
infrastructure reinforcement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 
 

 

In this thesis we propose methodologies for optimal control, operation and planning of 
controllable resources in ADNs with specific reference to ESSs. In this respect, we focus 
on the following three main problems: 

 Optimal control and operation of radial ADNs using an exact convex 
formulation of the OPF as well as a specific linearized OPF based on voltage 
sensitivity coefficients; 

 Optimal operation of ADNs with uncertainties; 
 Optimal planning of ESSs in ADNs aiming at providing local ancillary services 

and load balance 

OOptimal operation and control of ADNs 

First, an exact convex formulation for OPF in ADNs, called AR-OPF, is proposed. The 
AR-OPF is capable to include the correct model of transmission lines (two-port Π 
equivalent) as well as the network security constraints (nodal voltages and lines 
ampacity limits). In fact, AR-OPF is an augmented-relaxed version of the original OPF 
(O-OPF). The AR-OPF includes a new set of more conservative constraints, with respect 
to the original ones in O-OPF, to limit the line current flows as well as the nodal voltage 
magnitudes. Sufficient conditions are provided to ensure the feasibility and optimality 
of the proposed OPF solution or, in other words, to ensure the exactness of the SOCP 
relaxation. We have demonstrated the infeasible behavior of the existing convex OPF 
formulation using a small benchmark network. Referring to the same network, it is 
shown that AR-OPF is capable to provide an exact feasible solution. Further, by 
analysis the exactness conditions, it is revealed that they are mild and hold for real 
distribution networks operating in feasible region.     
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Then, the AR-OPF is further augmented with radiality constraints and inclusion of tie-
line switches to take into account the topology changes in ADNs. The radiality 
constraints, are formulated by introducing binary variables only for the tie-line 
switches. This approach reduces the number of binary variables and, consequently, 
decreases the computation time. The developed model is Mixed Integer Second Order 
Cone Programming (MISOCP) and could be solved efficiently by the state-of-the-art 
commercial solvers for convex optimization. The optimality and the exactness of the 
proposed ADN reconfiguration, as well as its scalability are demonstrated using 
standard benchmark networks.   

Finally, we have developed an optimal voltage control scheme based on nodal voltage 
sensitivity coefficients and using ESSs as controllable resources. The developed model 
is linear and could be used as an alternative to the DistFlow model (with inclusion of 
transverse parameters) which is also linear or the AR-OPF which is a SOCP model.  

OOptimal operation of ADNs with uncertainties 

First, we have suitably modeled the day-ahead optimal scheduling of ADNs as a two 
stage optimization programming. The day-ahead decision variables, called first stage 
decisions, are made when the uncertain parameters are unknown. These decisions 
correspond to the amount of import/export energy from the external grid at each hour 
and ESSs set points.  The second stage decisions are taken based on the realization of 
the random parameters and the first stage ones. In case of the targeted problem, the 
second stage decisions correspond to the 15 minutes ESSs set points.  

Further, adaptive robust optimization and stochastic optimization techniques, 
considering spatial and temporal correlations, are properly casted to solve the above-
mentioned two-stage problem.  

The simulation results reveal that the ARO approach is feasible for any realization of 
the uncertain parameters and is optimal for the worst case realization, in other words, 
it is a conservative and risk averse approach. On the other hand, the stochastic 
optimization provides a solution taking into account the probability of the considered 
scenarios. In terms of modeling, stochastic optimization is more flexible and both stages 
could contain non-convex functions and discrete variables.  

Optimal planning of ESSs in ADNs aiming at providing local ancillary services 
and load balance 

First, an optimal ESS siting model based on the concept of voltage sensitivity 
coefficients is presented. We have also shown the application of Benders decomposition 
approach for solving the targeted MIQCQP problem. Using standard IEEE 14 buses 
network, the capability of the proposed methodology to find the best locations for 
providing local voltage control is demonstrated. Further, it is shown that employing the 
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Benders decomposition could drastically decrease the computation time (up to 10 times 
faster than solving the original problem).   

Then, the AR-OPF and proposed ADN reconfiguration are suitably employed to 
develop a multi-objective optimization model for optimal siting and sizing of ESSs. In 
particular, the proposed methodologies takes into account the following objectives: (i) 
network voltage deviations, (ii) feeders/lines congestions, (iii) network losses, (iv) cost 
of supplying loads (from external grid or local producers) together with the cost of ESS 
investment/maintenance, and (v) load curtailment. Moreover, the stochasticity of loads 
and renewables productions as well as the possibility of ADN reconfiguration are 
incorporated into the model. The ESSs are suitably modeled to consider their ability to 
support the network by both active and reactive powers. Furthermore, two 
decomposition methods, ADMM and Benders, are appropriately employed to decompose 
the targeted large-scale problems. Various numerical analysis with respect to the 
standard and real networks are performed to demonstrate the capabilities of the 
proposed methodologies for providing optimal and feasible solutions as well as their 
computational efficiency and scalability. In particular, it was shown that the ESSs 
could possibly prevent load and generation curtailment, reduce the voltage deviations 
and lines congestions, and do the peak shaving. Further, it was shown that the Benders 
decomposition potentially could be the best solution methodology for large-scale 
problems with presence of binary variables. 

FFuture works   

In the continuation of this work, the following topics are suggested for further studies: 

 We have developed the optimization models for the balanced power grids. They 
could be further developed to take into account the unbalanced grids   

 We have developed simple schemes for modeling the variations and the 
uncertainties of the parameters for ARO, stochastic optimization and optimal 
planning. In future works, more sophisticated statistical models could be 
developed and incorporated into the proposed models. 

 The inclusion of possible contingencies and reliability indices are also 
interesting aspects that could be developed and incorporated into the 
optimization models developed for planning of ESSs.  

 In this thesis we just considered the planning of ESSs in ADNs. The proposed 
procedure could be further extended for optimal design of the whole ADN 
architecture.  

  In this thesis it is assumed that the owner of the ESSs is the DNO. The 
deployment of ESSs owned by other entities could be also the subject of further 
research.   

 We developed simple and static models of ESSs. Their model could be further 
improved to include their dynamic aspects.      

 





 
 

 

 

A.1. Benders-Dual Cutting-Plane Algorithm for adaptive robust 
optimization 

The solution of the right hand side maximization belongs to a set of finite cardinality 
K  and is independent of the first stage solution. Indicating the elements of this set 

1, 2,( , , , )T
k k k k [87]. The original robust programming can be reformulated as follows 

[87]:  

 minimize T
xc x   (7.1.a) 

 1 1,k 2,k 2,kΨs.t.  ,T T T
k

T
k d e Rx k   (7.1.b) 

 0   (7.1.c) 

 'Ax L   (7.1.d) 

 Gx g   (7.1.e) 

The term  is bounded from below by pointwise maximum of a finite set of linear 
functions in the first stage decision variable x . In [133] the following cutting plane 
algorithm is proposed to solve the above optimization problem. It is guaranteed to 
converge to the optimal solution in a finite number of iterations. It is called Benders-
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dual cutting algorithm since the cut generated are based on the optimal dual solution 
of the lower level problem [87, 133].  

Step 1: set the upper and lower bounds (UB, LB) equal to  and  respectively. 
Initialize the iteration index 1 i  . 

Step 2: Define the Master Problem (MP) as the minimization of  (7.1.a) and fix a 
reasonable lower bound for   . Fix a feasible solution ( * *

1 1,x  ) to the MP.  

Step 3: solve the Sub-Problem (SP) (right-hand side maximization in (3.17) ) while the 
first stage variables are fixed. Update the upper bound * *min , T SP

x i iUB UB c x z  where 
*SP

iz  is the optimal SP objective value. Add the corresponding Benders cut to the MP 
determined at stage i  .   

Step 4: Solve the MP. Fix *
1ix  and MP*

1iz  at the solution and the objective function value 
respectively. Update MP*

1iLB z . 

Step 5: IF ( )UB LB , where  is a small value stop, otherwise, update 1i i  and 
go to step 3.  

A.2. Analytical Hierarchy Process (AHP) 

In AHP method, first a pairwise comparison is done between the objectives. The 
decision-maker (i.e. the DNO) will define the importance of the each factor in the 
comparison with all the other factors [125] based on the scale from 1 to 9. A larger scale 
value indicates that the index associated with is more important. 

It depends on the needs of the decision maker and it can vary from network to network 
and operator to operator. Then a matrix is built based on these pairwise comparisons 
as shown in (7.2.a).  

 
11 1

1

n

n nn

a a
W

a a
  (7.2.a) 

where 1
ij

ji
a a  represents the importance pairwise comparison result between the 

objective i  and j  .  

 The final weighting coefficient for each index is calculated by (7.3.a).  
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  (7.3.a) 

A.3. Alternative Direction Method of Multipliers 

Suppose an optimization problem generically represented by (7.4.a) and (7.4.b)where 
, , , and  are convex. The and  are independent from each other except they are 

linked by the constraint (7.4.b). 

 

 
,

minimize ( ) ( )

subject to dom ={ | }
dom ={ | }

x z
f x g z

f x x
g z z

  (7.4.a) 

 Ax Bz c   (7.4.b) 

 
where ,  and  when the variables  and . The 
augmented lagrangian of this problem with respect to constraint (7.4.b) has the form as 
shown in (7.5.a).  

 
2

2

( , , ) ( ) ( ) ( )

( )2
subject to dom ={ | }

dom ={ | }

TL x y z f x g z y Ax Bz c

Ax Bz c
f x x
g z z

  (7.5.a) 

 
The ADMM procedure is deployed as follows. An iterative process between the three 

steps shown in equations (7.6.a)-(7.6.c) will results in the optimal solution. First, the 
augmented Lagrangian problem (7.6.a) is minimized with  and  being fixed. Then the 
obtained  is then used in the minimization of (7.6.b) with , and  being fixed. Finally, 
the dual multipliers are updated as shown in (7.6.c) with the obtained  and  from the 
previous step. This procedure will be continued until it converges to the global optimal 
solution. 

  

 1 : argmin ( , , )k k k

x
x L x y z   (7.6.a) 
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 1 1: argmin ( , , )k k k

z
z L x y z   (7.6.b) 

 1 1 1: ( )k k k ky y Ax Bz c   (7.6.c) 

 

The primal and dual residuals are calculated as (7.7.b) and (7.7.a), respectively 
and are used as the stopping criteria [126].  

 k k km Ax Bz c   (7.7.a) 

 1k k kn z z   (7.7.b) 

A.4. Benders decomposition  

The main idea of using Benders decomposition is to break down the original large-scale 
problem, having block angular structure with linking variables, into a master problem 
and several subproblems. The Benders decomposition is briefly described in what 
follows [134, 135].  

Consider the following optimization problem: 

 
,

minimize  T T
s sx y s S

c x q y   (7.8.a) 

subject to: 

 ,s s sWy h T x s S   (7.8.b) 

 ( ) 0c x   (7.8.c)
 ( ) 0,sd y s S   (7.8.d) 

The following procedure, called Benders decomposition, decompose the problem at the 
cost of iteration (the notation with  implies that the corresponding notation is a 
parameters).  

Step 0: set iteration index  

Step 1: Solve the following mater problem: 

 0minimize  = T
x

c x   (7.9.a) 

 ( ) 0c x   (7.9.b) 

The solution of this problem is . 
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Step 2: Set iteration index  and solve the following subproblem for each 
scenario ( ): 

 minimize  
s

n T
s s sy

q y   (7.10.a) 

 ( ) 0sd y   (7.10.b) 

 1ˆ n
s s sWy h T x   (7.10.c) 

 1ˆ :n n
sx x   (7.10.d) 

where  represent the dual of constraint (7.10.d). The solution of this problem is 
. 

Step 3: Solve the master problem (either MP1 or MP2): 

MP1: 

 
,

minimize  n T
x

c xmize    (7.11.a) 

 ( ) 0c x   (7.11.b) 

 A , 1,...,ˆ ˆk k k
s s

s S s S
x k nxˆ   (7.11.c) 

MP2: 

 
,

minimize  n
s

s S

T
x

c xmize  s
  (7.12.a) 

 ( ) 0c x   (7.12.b) 

 A , 1,.ˆ ..,ˆ , s Sk k k
s ss nx x kÂ k
ss   (7.12.c) 

MP2 is called multi-cut Benders decomposition [135]. The solution of this problem is 
. 

Step 3: Calculate upper bound (UB) and lower bound (LB) as follows: 

 
UB

ˆˆ ALB

n

n nT
s

s S
xc   (7.13.a) 

If  stop and the optimal solution is  and , otherwise go to 
step 2.  
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In case that the subproblems are infeasible, first feasibility cuts have to be created and 
sent to the master problem. For further details we refer the interested reader to [134, 
135].  
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