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Abstract

Imaging modalities such as Electron Microscopy (EM) and Light Microscopy

(LM) can now deliver high-quality, high-resolution image stacks of neural

structures. Though these imaging modalities can be used to analyze a va-

riety of components that are critical to understanding brain function, the

amount of human annotation effort required to analyze them remains a

major bottleneck. This has triggered great interest in automating the an-

notation process, with most state-of-the-art algorithms nowadays relying on

machine learning. However, such methods still require significant amounts

of labeled examples for training, which can be highly time consuming and

arduous, stressing the need for new approaches that require less amount of

human effort. In light of this, we present here two efficient machine learn-

ing algorithms that incorporate expert knowledge to maximize prediction

performance and simultaneously speed up analysis by reducing the required

amount of labeled data.

First, we present a new approach for the automated segmentation of synapses

in image stacks acquired in EM that relies on image features specifically de-

signed to take spatial context into account. These features are used to train

a classifier that can effectively learn cues such as the presence of a nearby

post-synaptic region. Our algorithm successfully distinguishes synapses from

the numerous other organelles that appear within an EM volume, including

those whose local textural properties are relatively similar. We evaluate our

approach on three different datasets and demonstrate our ability to reliably

collect shape, density, and orientation statistics over hundreds of synapses.

Second, we focus on reducing the required amount of annotation effort.

Due to changing experimental conditions in the image acquisition process,

successive stacks often exhibit differences that are severe enough to make



it difficult to use a classifier trained for a specific volume on another one.

This means that the tedious annotation process has to be repeated for each

new stack, resulting in a major bottleneck. We present a domain adap-

tation algorithm that addresses this issue by effectively leveraging labeled

examples across different acquisitions and significantly reducing the anno-

tation requirements. Our approach can handle complex, non-linear image

feature transformations and scales to large microscopy datasets and high-

dimensional feature spaces. We evaluate our approach on four EM and LM

applications where annotation is very costly. We achieve a significant im-

provement over the state-of-the-art methods and demonstrate our ability to

greatly reduce human annotation effort.

Third, we apply our synapse segmentation approach to analyze and com-

pare the structure and shape of synaptic densities in adult and aged mice,

such as their area and number of perforations. This detailed analysis re-

quires labeling each voxel within every synapse, making manual annotation

unfeasible for large volumes. We show that we can bridge this gap with

our approach and demonstrate its effectiveness on six large FIB/SEM brain

stacks. Our approach generates segmentations that agree with expert anno-

tations, while requiring very little annotation effort. To our knowledge, we

are the first ones to analyze synapse shape in such detail on large stacks, as

previous work has strongly relied on manual annotations, restricting analysis

to small volumes.

Keywords: Computer vision, segmentation, machine learning, electron

microscopy, synapses, medical imaging, domain adaptation.



Résumé

La découverte de nouvelles technologies en imagerie ont été fondamentales

aux récentes avancées en neurosciences. Des nouvelles techniques d’acqui-

sition d’images comme la microscopie électronique (ME) et la microscopie

optique (MO) sont maintenant capables de générer des images du cerveau de

haute résolution et haute qualité. Même si ces techniques d’acquisition des

images peuvent être utilisées pour étudier la fonctionalité du cerveau, leur

analyse demande, dans la majorité des cas, un travail humain d’annotation

conséquent. Des systèmes d’automatisation d’annotations ont permis la mise

en place de la plupart des algorithmes à la pointe qui sont dans leur majorité

issus du domaine de l’apprentissage automatique. Cependant, ces méthodes

demandent toujours un nombre de données important pour mettre en place

leur apprentissage et donc un effort humain conséquent. Alors que l’un des

objectifs est de minimiser cet effort, de nouvelles approches doivent donc être

proposées. C’est dans cette optique que nous proposons deux algorithmes

d’apprentissage automatique qui incorporent la connaissance d’experts pour

maximiser la performance de la prediction du système, ainsi qu’en accélérant

simultanément l’analyse, cela en réduisant la quantité de données annotées

nécessaire.

Premièrement, nous proposons une nouvelle stratégie pour la segmentation

de synapses dans les images de ME qui utilise des caractéristiques spéciale-

ment définies pour prendre en compte le contexte. De telles représentations

sont utilisées pour entrainer un algorithme de classification capable, par

exemple, d’apprendre à reconnaitre la présence d’une région postsynaptique

dans son voisinage. Notre algorithme est capable de distinguer des synapses

des autres structures présentes dans les images de ME, et ce, même si ces

autres structures présentent une apparence locale très similaire. Nous vali-

dons notre technique sur trois ensembles de données de ME et démontrons



sa capacité à collecter des informations de forme, de densité et d’orientation

sur des centaines de synapses.

Deuxièmement, nous proposons une nouvelle méthode d’apprentissage pour

réduire la quantité d’annotations manuelles à fournir avec les images d’en-

traînement. À cause des conditions d’acquisition changeantes, des images

successives montrent de larges différences. Ceci pose un problème pour les

méthodes automatiques et rend difficile l’application d’une méthode de clas-

sification entrainée dans une image sur une autre. Par conséquent, il faut an-

noter manuellement de larges quantités d’exemples chaque fois qu’une image

est acquise, cela demandant beaucoup de temps. Pour surmonter cette dif-

ficulté, nous développons un algorithme d’adaptation de domaine capable

d’exploiter les annotations dans de multiples acquisitions et de réduire la

quantité d’exemples nécessaire pour la segmentation de chaque nouvelle

image. Notre modele peut traiter des representations complexes, avec des

transformations non-linéaires et peut être appliqué à de larges ensembles

de données d’images microscopiques qui impliquent souvent des representa-

tions dans d’espaces de grande dimension et de grands volumes de donnée

3D. Nous validons notre algorithme dans quatre images de ME et MO où

faire des annotations est extrêmement coûteux.

Troisièmement, nous utilisons notre algorithme de segmentation automa-

tique pour analyser et comparer la structure et les formes des synapses

dans des souris adultes et agées. Cette analyse serait impossible sans un

algorithme d’apprentissage automatique, car il faudrait annoter manuelle-

ment des images de grande taille. Nous démontrons que notre procédure

résout ce problème et est capable de générer des resultats de haute qua-

lité et cela efficacement, sans avoir besoin de grandes quantités d’exemples

annotés. A notre connaissance, nous sommes les premiers à analyser les

formes des synapses avec de tels détails sur de larges volumes, puisque les

travaux précédents ont toujours nécessité l’annotation manuelle d’exemples,

les contraignant à analyser de petits volumes.

Mots-clés: Vision par ordinateur, segmentation, apprentissage automa-

tique, microscopie électronique
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We don’t want to conquer the cosmos, we simply want to extend the

boundaries of Earth to the frontiers of the cosmos.

Stanisław Lem, Solaris.



CHAPTER

ONE

INTRODUCTION

1.1 Motivation

New imaging technologies have been a key driver of recent advances in neuroscience.

Imaging modalities such as Electron (EM) and Light Microscopy (LM) can now de-

liver high-quality, high-resolution image stacks of neural structures. These imaging

techniques can be used to analyze a variety of components that are critical to under-

standing brain function. For example, evidence obtained from EM images suggests that

the size, shape and distribution of synapses vary during the course of normal life but

also under specific pathological conditions [74]. Similarly, EM imaging has provided

new insights into synaptic signaling [62], its relationship to mitochondrial activity [70],

as well as to some neuro-degenerative diseases [55, 86].

Analysis is typically carried out by manually segmenting the various structures of

interest using tools such as Fiji [93], or through a combination of manual and semi-

automated tools, such as [77, 92, 95]. This is not only a tedious and time consuming

process but also an error-prone one. Thus, while the growing number of EM datasets

offers a unique opportunity to unlock new concepts and secrets of neuronal function,

the required amount of human effort remains a major bottleneck. Therefore, there has

been a great interest in automating the annotation process and most state-of-the-art

algorithms nowadays rely on machine learning.

Though machine learning algorithms are typically flexible enough to be applied to

many different fields and modalities, it is often necessary to adapt them to the task

at hand to maximize the quality of their predictions. For example, EM data poses

1



1. INTRODUCTION

unique challenges for automatic segmentation algorithms, as the volumes are heavily

cluttered with structures that exhibit similar textures and are therefore difficult to

distinguish based solely on local image statistics. Consequently, directly applying a

machine learning algorithm for such task may lead to poor results, particularly in the

presence of limited annotations.

Therefore, we look forward to exploiting expert knowledge and incorporating it into

machine learning algorithms, improving prediction performance, while simultaneously

reducing the required amount of labeled data.

In this thesis we focus on the segmentation of organelles in EM stacks. We place

special emphasis on synapse segmentation, as this represents a crucial step towards

understanding the functioning mechanisms behind synaptic transmission and plastic-

ity [42]. We also show that our algorithms are generic enough and can be adapted

to tasks such as mitochondria segmentation and neuron tracing in Light Microscopy

imaging, allowing us to efficiently process large stacks with high performance and little

annotation effort.

In the remainder of this chapter we introduce the challenges of EM data, followed

by the contributions and outline of this thesis.

1.2 Challenges

EM data poses a series of challenges which must be tackled simultaneously to guarantee

a feasible and practical solution. We discuss these different aspects below.

1.2.1 Data Size & Scalability

EM can now deliver up to 4 nm voxel-size 3D stacks, revealing high details of fine

structures in neural tissue. While this is highly desirable to explore deeper into the brain

and its functioning, it also poses an important challenge for automated algorithms, as

they need to be able to deal with large amounts of data for both training and prediction.

For example, the size of the brain of a drosophila fruit fly, an insect that has been

a subject of great interest [46, 85], is around 600 × 600 × 200 μm [53]. Imaged with

anisotropic EM with a voxel size of 5 × 5 × 20 nm, this translates to a stack of 144

terabytes. Therefore, to be of practical use, we need algorithms that are not only fast,

but that scale linearly or sub-linearly with stack size.

2



1.2 Challenges

Another important aspect, sometimes disregarded, is that image stacks are intrin-

sically three-dimensional. Though slices can be analyzed individually, this typically

happens at the expense of information loss. For structures such as synapses that extend

over small regions and are oriented, treating 2D slices independently may incur in a

significant performance loss, as we show in the experiments of Chapter 2. Therefore, to

exploit the full potential of the data, we aim at processing the volumes directly in 3D

whenever possible.

1.2.2 Annotation Effort & Interactivity

Supervised machine learning algorithms require labeled data for training. Typically,

the more annotated data are available to the algorithm, the more accurate it is at

predicting unseen data. However, labeling 3D stacks can be very time consuming and

arduous, in particular for tasks such as segmentation, where per-voxel labels are needed.

Therefore, methods that require less training data to achieve certain performance level

are preferred over others. This is particularly important when working with interactive

environments, such as ilastik [95] or Espina [77], to deliver quality results with less effort

and speed up analysis.

Simultaneously, an interactive scenario not only requires fast prediction, but it must

also be fast to re-train, as new data is annotated. Therefore, we aim at developing

approaches that are fast to train and predict, and require relatively little labeled data

to achieve a desired performance.

1.2.3 Acquisition Variability

Machine learning normally relies on the fact that the training and run-time data samples

are drawn from the same distribution. In microscopy, this may be a problem because

the data preparation processes tend to be complicated and not easily repeatable, which

means that a classifier trained on one acquisition is unlikely to perform very well on a

new one, even when using the same modality.

For example, acquiring the EM images of brain structures normally requires tissue

staining to increase contrast, followed by resin encasing before the acquisition. As

a result, two samples of the same brain region acquired at different times may look

significantly different due to differences in their preparation. This is even more true

when the samples come from different parts of the brain, so that classifiers trained for
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one part of the brain perform poorly on another one. While it is theoretically possible

to gather new training data after each new image acquisition, it is impractical if high

throughput is desired.

Hence, it is necessary to take acquisition differences into account to make machine

learning algorithms of practical use and to reduce annotation effort. At first it may look

as if features can be easily normalized to compensate for different acquisitions. However,

as we will see later, typical normalizations such as zero-mean-unit-variance or histogram

equalization are not effective. Moreover, the staining and acquisition processes are very

complex and difficult to model, which makes it hard to find a proper normalization

function.

1.3 Contributions

In this thesis we aim at tackling the challenges mentioned above simultaneously, when-

ever possible. We first introduce a novel synapse segmentation approach that works

directly in 3D, exploiting contextual information that is well known to experts. The

result is an efficient segmentation method that outperforms state-of-the-art approaches.

Part of this work appears in [12, 13].

We then propose a new domain adaptation method to compensate for acquisition

variability in EM and LM imaging. We do so by allowing for a coordinate-wise non-linear

transformation between domains. Our approach simultaneously learns the decision

boundary and a non-parametric estimation of the transformation between domains. Our

method requires very little labeled data in the target domain, outperforming existing

domain adaptation approaches. Part of this work appears in [14, 15].

Finally, we evaluate the effectiveness and practicality of our synapse segmentation

approach by applying it to six large mice stacks to analyze differences in synapse density

distribution and geometry between aged and young adult mice. We show that our

approach generates segmentations that agree with expert annotations, while requiring

very little annotation effort.

We describe each contribution next.
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(a) (b) (c)

Figure 1.1: Importance of context for synapse segmentation. (a) Two close-ups of regions
containing wide dark structures that could potentially be synaptic clefts. However, only
the one at the top really is one, as evidenced by the small spheres known as vesicles on its
right. These denote the pre-synaptic region and are missing from the bottom image. The
diagram on top of (b) depicts the three elements that evidence the existence of a synapse,
namely the synaptic cleft and the pre-synaptic and post-synaptic regions. The latter are
labeled in blue and red, respectively. (c) The features we use are designed to capture
this fact. To classify a voxel (blue), we consider sums over image cubes (shown as yellow
squares) whose respective positions are defined relative to an estimated normal vector ni.

1.3.1 Context Cues for Synapse Segmentation

We introduce a new approach for automatically segmenting synapses in EM image stacks

that relies on image features specifically designed to take spatial context into account.

As shown in Fig. 1.1, a synapse can only be distinguished from other structures by

relying on contextual clues such as the presence of a nearby cluster of vesicles.

We therefore design features that can capture relevant context around the voxel of

interest, that are then used to train a classifier that can effectively learn cues such as

the presence of a nearby post-synaptic region. As a result, our algorithm successfully

distinguishes synapses from the numerous other organelles that appear within an EM

volume, including those whose local textural properties are relatively similar.

Furthermore, as a by-product of the segmentation, our method flawlessly determines
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synaptic orientation, a crucial element in the interpretation of brain circuits. We eval-

uate our approach on three different datasets, compare it against the state-of-the-art

in synapse segmentation and demonstrate our ability to reliably collect shape, density,

and orientation statistics over hundreds of synapses.

1.3.2 Domain Adaptation for Microscopy Imaging

We then move on to tackling the problem of acquisition variability, to drop the need

to extensively annotate newly-acquired stacks. We aim at compensating the shift be-

tween acquisitions by introducing a novel domain adaptation approach. We assume

that features have undergone an unknown non-linear transformation, but that their

usefulness for the task at hand (e.g. segmentation) has not changed. Our method

effectively leverages upon labeled examples across different acquisitions, significantly

reducing annotation requirements. Our approach can handle complex, non-linear im-

age feature transformations and scales to large microscopy datasets that often involve

high-dimensional feature spaces and large 3D data volumes.

We evaluate our approach on four challenging EM and LM applications that exhibit

very different image modalities and where annotation is very costly. Across all appli-

cations we achieve a significant improvement over the state-of-the-art machine learning

methods and demonstrate our ability to greatly reduce human annotation effort.

1.3.3 Synaptic Structure in the Aging Mouse Cortex

Finally, we apply our synapse segmentation approach to analyze and compare the struc-

ture and shape of synaptic densities between adult and aged mice. Such detailed analysis

requires labeling each voxel within every synapse in a stack, rendering manual annota-

tion unfeasible for large volumes. We show we can bridge this gap with our automated

segmentation approach, and show its effectiveness on six large EM brain stacks acquired

from six different mice. Three of them are young adults, and the other three are aged

mice, offering an excellent opportunity to try our segmentation approach to analyze

how aging affects the brain.

We demonstrate that our approach can efficiently generate full 3D segmentations

that agree with expert annotations, while requiring very little annotation effort. To

our knowledge, we are the first ones to analyze synapse shape in such detail on large
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stacks, as previous work has strongly relied on manual annotations, restricting analysis

to small volumes.

1.4 Outline

We begin with Part I, introducing in Chapter 2 our synapse segmentation approach

for EM stacks. We use a classifier that relies on features designed to capture context

around the voxel of interest, inspired by the information experts use to identify synapses.

We show our approach outperforms the state-of-the-art on three datasets, while being

efficient and fast to train and predict. Next, we combine our approach with Multiple

Instance Learning (MIL) to drop the need for polarity annotations during training in

Chapter 3. We show that our MIL-based method can flawlessly identify synapse polarity

at training time, giving up the need for extra manual labeling effort.

Part II targets the problem of acquisition variability and introduces our boosting-

based domain adaptation approach. We develop an algorithm that compensates for

inter-domain feature transformations. These transformations are estimated at the same

time as the decision boundary is learned, resulting in a compact and efficient algorithm.

In Part III we apply our segmentation approach to obtain biologically-relevant

synapse measures on six large stacks from young adult and aged mice. We show the

effectiveness of our automated method to reducing the annotation effort, while gener-

ating high quality segmentation outputs that would be unattainable with full manual

annotation.

Finally, we close this thesis with Chapter 6 with the concluding remarks and a

discussion on future work.
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Part I

Synapse Segmentation and
Detection
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CHAPTER

TWO

CONTEXT CUES FOR SYNAPSE SEGMENTATION

In this chapter we present a new approach for the automated segmentation of synapses

in image stacks acquired by Electron Microscopy (EM) that relies on image features

specifically designed to take spatial context into account. These features are used to

train a classifier that can effectively learn cues such as the presence of a nearby post-

synaptic region. As a result, our algorithm successfully distinguishes synapses from the

numerous other organelles that appear within an EM volume, including those whose

local textural properties are relatively similar.

Furthermore, as a by-product of the segmentation, our method flawlessly determines

to which side of the synapse the pre- and post-synaptic regions are located, a crucial

element in the interpretation of brain circuits. We evaluate our approach on three

different datasets, compare it against the state-of-the-art in synapse segmentation and

demonstrate our ability to reliably collect shape, density, and orientation statistics over

hundreds of synapses.

2.1 Introduction

EM data poses unique challenges for automatic segmentation algorithms in part because

the volumes are heavily cluttered with structures that exhibit similar textures and are

therefore difficult to distinguish based solely on local image statistics. The synapse

segmentation task is well illustrative of this difficulty. As shown in Fig. 2.1(b), a synapse

can only be distinguished from other structures by relying on contextual clues such as the

presence of a nearby cluster of vesicles. Well-established criteria enable human expert to
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Figure 2.1: Importance of context for synapse segmentation. (a) A FIBSEM stack with
5nm resolution in all three directions. (b) Two close-ups on regions containing wide dark
structures that could potentially be synaptic clefts. However, only the one at the top really
is one, as evidenced by the small spheres known as vesicles on its right. These denote the
presynaptic region and are missing from the bottom image. The diagram on top of (c)
depicts the three elements that evidence the existence of a synapse, namely the synaptic
cleft and the pre-synaptic and post-synaptic regions. The latter are labeled in blue and
red, respectively. (d) The features we use are designed to capture this fact. To classify a
voxel (blue), we consider sums over image cubes (shown as yellow squares) whose respective
positions are defined relative to an estimated normal vector ni.

identify synapses: densities on the pre-synaptic and post-synaptic membranes, vesicles

in the pre-synaptic axon terminal and finally a synaptic cleft, as shown in Fig. 2.1(c).

It is therefore essential for an automatic segmentation method to proceed in a similar

fashion.

Current methods for automated synapse detection either require first finding cell

membranes [76] or operate on individual slices [45], thus failing to leverage the 3D

structure of the data. By contrast, the recent method of [57, 58] operates entirely

in 3D. However, the latter does not exploit the contextual clues that allow human

experts to distinguish synaptic clefts from other membranes exhibiting similar textures

such as myelin sheaths. More generally, though progress has been made towards the

segmentation of various organelles from EM stacks, context has yet to be exploited in

a meaningful way.
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In this chapter, we propose an approach designed to take such contextual cues into

account and emulate the human ability to distinguish synapses from regions that merely

share a similar texture. Our method is fully automated, processes the data directly in

3D and is specifically designed to leverage context cues. We run various filters over

the EM stack and compute our features over arbitrarily sized cubes placed at arbitrary

locations inside an extended neighborhood of the voxel to be classified. As this generates

a feature representation for each voxel in the order of a hundred thousand, we rely on

Boosting to select the relevant filter channels as well as the relevant cube locations and

sizes. The resulting classifier is thus highly flexible, able to utilize context from a high

variety of regions in the neighborhood of the voxel of interest.

We apply our classifier to the synapse segmentation task and compare our results

with the state-of-the-art synapse segmentation method of Kreshuk et al. [57], a fully

automated 3D approach which does not utilize context, and with the Convolutional

Neural Network (CNN) method of [88]. By working directly in 3D and honing in on the

presence of pre-synaptic vesicles and post-synaptic regions, our method significantly

outperforms the approaches of [57] and [88]. As an added benefit, our method also

flawlessly identifies synaptic orientation, a key and hitherto unexplored task.

We validate our method on three datasets obtained from three different regions of

the adult mammalian brain: the Somatosensory cortex, the Hippocampus, and the

Cerebellum. We demonstrate our ability to automatically process large EM stacks,

reliably collect density, shape and orientation statistics from hundreds of synapses.

Moreover, our approach is not limited to synapse segmentation, and in fact it has

already been used as the input of a Conditional Random Field (CRF)-based approach

to segment mitochondria in EM, in [67]. The latter shows that, compared to other

manually-designed features, using our context features as an input in a CRF significantly

improves segmentation performance.

2.2 Related Work

Prior work on segmenting neuronal structures from EM volumes has covered a range of

approaches from early attempts at full manual tracing [33, 34, 72] to semi-automatic

methods requiring user initialization [19, 64], and lately fully-automated methods [48,

66].
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Manual segmentation has clear and well understood limitations for the analysis of

EM stacks. One notable example can be found in [108], where the successful segmenta-

tion of the nervous system of a nematode worm, containing only 302 neurons, necessi-

tated a sustained effort over a ten year period. The need for expert knowledge and the

growing size of EM datasets render manual segmentation impractical and highlight the

need for automation.

Semi-automated methods based on active contours and level sets [10, 19, 52, 64,

68, 81] as well as graphcuts [78] have achieved some measure of success on EM images.

However, these methods require careful manual initialization of each object to be seg-

mented, which is done by supplying seed points and tuning various parameters. Though

active interactions and feedback may in the long term prove essential to the success-

ful large-scale segmentation of EM stacks, the amount of user input required by these

methods remains prohibitively high. Ultimately, when applied to large EM data sets

containing millions or even billions of structures, these semi-automatic segmentation

methods suffer from the same intractability issue as their manual counterparts.

Recent research has focused on methods relying on machine learning, requiring little

to no user interaction. Among those, several follow the same methodology by performing

a segmentation in individual 2D EM slices before linking the segmented regions across

slices in 3D. For instance, in [76], a perceptron operating on Hessian ridge was shown to

provide promising results in segmenting membranes. However, in addition to the post-

processing required to link membranes across the various 2D slices, this method also

suffers from the need to remove internal sub-cellular structures from the segmentation

result. In [106] a Boosted classifier operating on Gabor filter based features is used to

segment mitochondria in 2D slices while a connected component analysis generated the

desired 3D segmentation. In [79], 2D mitochondria segmentation followed by simple

3D interpolation is obtained from a number of classifiers including Adaboost, Support

Vector Machines and Nearest Neighbor trained on Texton features. Finally, in [54],

a random forest classifier trained with Haar-like features is used to detect membranes

in individual EM slices, while a graph cut optimization is used to enforce perceptual

grouping and 3D continuity constraints.

While slice-by-slice methods have been shown to provide both reasonable segmen-

tation results and computational savings, they fail to leverage the consistency of the

structures in all three dimensions. This situation arises in part from the fact these
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approaches were designed for anisotropic EM modalities, such as transmission electron

microscopy (TEM). Though the reduced resolution in the z-direction makes slice-by-

slice approaches a reasonable choice, recent works [4, 48, 80, 98] have demonstrated the

benefits of processing the data directly in 3D even in highly anisotropic image stacks.

More generally, the appearance of objects in 2D slices can be significantly altered de-

pending on the 3D orientation of the object with respect to the stack axes. Given that

such variability is far less pronounced when observing the objects in 3D, processing EM

stacks slice by slice significantly complexifies the segmentation task and can prove ex-

ceedingly detrimental when compared to direct 3D processing. Such a strategy is clearly

foolhardy in the case of 2D images where the analogue would consist of a column by

column or a row by row processing.

For these reasons, a number of works have addressed the segmentation of various

neuronal structures directly in 3D. For example, [48] uses a multilayer convolutional

artificial neural network (ANN) to segment neuronal membranes. By employing a con-

volutional ANN, [48] removes the need to hand design features and instead learns the

necessary filters directly from the data. Andres et al. [4] propose a bottom-up hierar-

chical segmentation framework that uses a Random Forest classifier and watersheds to

segment neural tissue. Though both of these methods produce excellent membrane seg-

mentation results, they are designed for datasets prepared with an extra-cellular stain

which highlights cell membranes while suppressing the various intracellular structures.

In [98], an affinity graph that can be paired with standard partitioning algorithms is

generated using a convolutional ANN. Much as in [48], this method learns both the

features as well as the decision function directly from the data.

Even though progress has been made towards the automatic segmentation of neural

structures, none of the aforementioned methods, whether operating in 2D or in 3D, can

reliably segment objects such as synapses, which are characterized by specific arrange-

ments of structures in addition to local textural cues. Though current algorithms gener-

ally compute features in a neighborhood around the voxel of interest, they do not exploit

context in a meaningful way: features are either pooled into global histograms [66, 79],

are computed in regions centered around the voxel of interest [4, 48, 54, 106], or operate

on a limited neighborhood around the voxel of interest [48, 98]. The resulting classifiers

are therefore unable to hone in on arbitrary localized context cues.
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The importance of context for the purposes of segmentation has been highlighted by

a few attempts to leveraging ad-hoc and heuristic contextual cues to improve segmen-

tation. For instance, [106] uses vesicle detection cues to suppress false alarms on vesicle

clusters that can interfere with mitochondria segmentation, while [52, 101] propose to

sample features in a 2D stencil neighborhood around the pixel of interest. By allow-

ing the classifier to measure features computed at various locations in addition to the

pixel of interest, [52, 101] are able to identify membranes at regions of minor disconti-

nuities. However, by relying on a pre-determined set of locations from which features

can be sampled, these approaches strongly restrict the use of context. By contrast, our

approach learns the relevant context automatically, overcoming these limitations.

The recent re-emergence of Neural Networks has also inspired their use for EM

segmentation. [46] applies a CNN for synapse detection in the fly brain, consisting

of an unsupervised learning component and followed by supervised classification with

a multilayer perceptron. Along similar lines, [87] first trains a CNN for membrane

detection on a very large dataset, followed by a vesicle detector and a synapse detector

that only operates over membranes and nearby vesicles. Another interesting example is

the so-called U-Net [88]. In contrast to sliding-window CNNs, the U-Net consists of a

contracting and an expanding path in its architecture, which allows to propagate context

information from the input image to higher resolution layers, improving segmentation

performance with respect to its sliding window counterpart. Although these methods

are promising, they require large amounts of training data, and in some cases auxiliary

annotations such as labeled membranes. Moreover, they are typically slow to train,

limiting their application to interactive scenarios.

Closest to our work is the state-of-the-art method of Kreshuk et al. [57], specifi-

cally targeted to synapse segmentation in isotropic image stacks. This approach relies

on voxel-wise classification, training a Random Forest classifier that employs a set of

pre-defined features such as smoothed gradient magnitudes, Laplacian of Gaussians and

Hessian and Structure Tensor eigenvalues, evaluated at the voxel of interest. Therefore,

context can only be captured through the isotropic Gaussian filters applied to the image

stack, ignoring the presence of the asymmetric and localized context information gen-

erated by the pre-synaptic and post-synaptic regions. This typically translates into a

high number of false positive detections, which motivated a follow-up publication from
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(a) (b)

Figure 2.2: Context cues representation: (a) context cue locations cp in the global co-
ordinate system xo, yo, zo are rotated according to the orientation estimate of the voxel of
interest n to yield locations c�ip that are consistent. (b) At each of these locations, image
channels are summed over cubes of radius r around their center. Our approach employs
AdaBoost to select the most discriminative features for synapse segmentation.

the same authors in [58]. The latter applies connected components to the segmenta-

tion output of the former, and the user is asked to label the false-positive detections.

These object labels are then used to train a new classifier to refine the output of the

first. Although this helps reduce false positive counts, it requires additional annotation

effort from the user, which we believe can be avoided if context information is encoded

directly in the first place.

2.3 Proposed Approach

Let x ∈ X = [0, 1]W×H×D be an EM volume of width W , height H and depth D. Voxels

are indexed by i ∈ {1, ...,W × H × D}, and the location of each voxel is designated

�i ∈ N
3. Our goal is to find a function ϕ(x, �i) ∈ R that yields high scores at locations

�i in the volume that are part of synaptic tissue, and lower score values at those that

are not.

As shown in Fig. 2.1(b), it can be difficult to distinguish synapses from other struc-

tures based solely on local texture. Human experts confirm their presence by looking

nearby for post-synaptic densities and vesicles. This protocol cannot be emulated simply

by measuring filter responses at the target voxel [57], pooling features into a global his-

togram [66, 79] or relying on hand-determined locations for feature extraction [52, 101].

To emulate the human ability to identify synapses, we design features, termed con-

text cues, that can be extracted in any cube contained within a large volume centered

on the voxel to be classified at �i, as depicted in Fig. 2.2(b). They are computed in
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Figure 2.3: Image channels. The image is convolved with different filters and features
are computed within the yellow rectangles whose coordinates are expressed with respect to
the location of the voxel to be classified and the local orientation vector n. Each Hi line
depicts a specific channel designed to capture different statistical characteristics.

several image channels using a number of Gaussian kernels, as shown in Fig. 2.3. As will

be discussed in §2.4.2 this yields more than 100, 000 potential features. We therefore

rely on AdaBoost [36] to select the most discriminative ones.

Given that synapses have arbitrary 3D orientations, we ensure that our context cues

are computed at consistent locations across differently oriented synapses. We rely on

the pose-indexing framework of [2, 35] to enforce this consistency.

In the remainder of this section, we describe briefly the main structure of our context

features. Their implementation is discussed in more detail later in § 2.4.

2.3.1 Context Cue Location

Let us consider a voxel located at �i and an associated unit vector ni ∈ R
3, as in

Fig. 2.2(a). This unit vector is computed so that it is normal to the synaptic cleft. Let

cp ∈ R
3, p = 1, . . . , P (2.1)
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denote a set of P locations expressed in the common xo, yo, zo reference frame shown

at the center of Fig. 2.2(a). These locations are translated and rotated to occur at

consistent locations relative to a target voxel by defining,

c�ip = �i +R(�i)cp (2.2)

where R(�i) is a 3× 3 rotation matrix such that R(�i)(0, 0, 1)
T = ni.

2.3.2 Context Cue Features

Given the c�ip locations of Eq. 2.2, our goal now is to compute image statistics inside

cubic neighborhoods Nr(c
�i
p ) of edge length 2r centered around these locations, such as

those depicted in Fig. 2.2(b).

To this end, we process the original EM volume by convolving it with a number of

different filters as depicted in Fig. 2.3. Each of the resulting data cubes, in addition to

the original one, is treated as a data channel m, and is smoothed using several isotropic

Gaussian kernels with variance σnm . We denote the gray levels in the resulting data

volumes as

Hm,σnm
(x, z) ∈ X , (2.3)

where x is the original EM volume and z represents the 3D location. We take context

cue features to be

fcp,m,σnm ,r (x, �i) =
∑

z ∈Nr(c
�i
p )

Hm,σnm
(x, z) . (2.4)

In other words, we sum the smoothed channel output over the cubic boxes centered at

all c�ip for all possible values of m, σn, and r. This yields a set of K features, which we

will denote for simplicity

fk (x, �i) , k = 1, . . . ,K , (2.5)

and which we use for classification purposes as explained next.

2.3.3 Contextual Classifier

Given the context features fk, we create decision stumps by simple thresholding and

combine these stumps via a standard AdaBoost procedure [36] into a strong learner of

the form

ϕ (x, �i) =

T∑
t=1

αt1{ft(x,�i)>ρt} . (2.6)
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Table 2.1: Algorithm parameters and default values.

Parameter Symbol Default value

AdaBoost iterations T 2000

Weighting-by-resampling ratio M =
Nneg
Npos

2

Number of weak learners explored per iteration Ω 4000

Context cue maximum distance ‖cp‖max 40 voxels

Context cue distance quantization steps Q‖c‖ 6

Context cue maximum box size rmax 20 voxels

Context cue box size quantization steps Qr 11

Context cue ϕ quantization steps Qϕ 9

Context cue θ quantization steps Qθ 9

Supervoxel seed size SVn 2 voxels

Supervoxel cubeness SVm 16

Hessian scale for orientation estimation σHo = ws

2
√
2

18 nm

AdaBoost [36] solves for Eq. (2.6) in a stage-wise manner, building it one term at a

time by greedy minimization of an empirical exponential loss. Our resulting classifier is

pose-indexed as its constituent features translate and rotate according to �i and R(�i)

respectively.

2.4 Implementation Details

In what follows, the specifics of our implementation are provided. We follow the same

notation as in §2.3 and summarize all algorithm parameters in Table 2.1.

2.4.1 Image Channels

We broadly follow the methodology employed by [57] and process each EM volume with

several different filters, resulting in different data channels such as those of Fig. 2.3.

Channels can additionally be smoothed using a varying isotropic Gaussian kernels.

More specifically, we use:
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• The identity (original stack)

• Gradient Magnitude,

• Structure Tensor Eigenvalues

The Gradient Magnitude channels are computed by first smoothing the image with

isotropic Gaussian filters of σGM = {1.0, 1.6, 3.5, 5.0}. On the other hand, structure

tensor eigenvalues are computed at ρST = {1.0, 1.6, 3.5, 5.0} with σST = ρST
2 . No

smoothing is applied to the identity channel. Given that there are three eigenvalues per

structure tensor, this results in a total of 17 different filtered versions of the original

EM volume, which are available to construct the weak learners.

Note that, in contrast with our first approach [12] and with the work of [57], we

opted for a reduced set of channels. An important observation regarding our framework

lies in the fact that our features sum the response of a filter inside a box: In the case of

linear filters and boxes larger than a single voxel, these sums can be directly computed

in the original image channel, up to a scale factor and additional negligible filter border

effects. We were therefore able to eliminate the Gaussian smoothing over the original

image as well as the Laplacian of Gaussian channel. Several experiments confirmed this

observation and further allowed us to eliminate the Hessian Eigenvalue channel which

was found to be uninformative for our framework.

2.4.2 Context Cue Parametrization

Context cue locations cp, p = 1, ..., P in the common reference frame are parametrized

in spherical coordinates as

cp =
(
‖cp‖ cosϕp sin θp, ‖cp‖ sinϕp sin θp, ‖cp‖ cos θp

)

with 0 ≤ ‖cp‖ ≤ ‖cp‖max, 0 ≤ θp ≤ π and 0 ≤ ϕp ≤ 2π. The parameter space is

quantized uniformly in Q‖c‖, Qθ and Qϕ bins respectively. This is also applied to the

cube edge length 2r, which is quantized in Qr steps with 1
2 ≤ r ≤ rmax.

To compute our context cue features of Eq. 2.4 efficiently, we employ 3D integral

images for each channel Hm,σn . This allows us to compute the sum of any channel

inside an arbitrary cube in constant time. Note that to allow for maximum consistency

across the differently oriented synapses, the cubes over which sums of image channel
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Figure 2.4: Coordinate system versors (unit vectors) computed for R(�i) at different
locations of a simulated synapse. ω1(�i), ω2(�i), ω3(�i) shown in blue, green and red
respectively. Note that ω2(�i) (green) always points towards the outside of the synapse,
which comes as a consequence of Eq. 2.10.

values are computed should also be pose-indexed and hence rotate according to R(�i).

However, this would either impose a heavy memory burden if rotated integral volumes

were used or a large computational cost otherwise. For this reason, we do not pose-

index the cubes and restrict the boxes over which channel voxels are summed to be

axis-aligned as shown in Fig. 2.2(b). Note that, in practice, the axis-aligned cubes

overlap significantly with their rotated counterparts and therefore provide a fairly good

approximation.

2.4.3 Estimating Synaptic Cleft Orientation

The context cues defined above are located relative to a normal estimate ni, which

induces the rotation matrix R(�i) of Eq. 2.2, such that

R(�i)(0, 0, 1)
T = ni (2.7)

Let {ξ1(�i), ξ2(�i), ξ3(�i)} be the Eigenvectors of the Hessian matrix at the voxel

of interest, ordered by increasing magnitude of their respective eigenvalues. Hence,

ξ3(�i) = ni corresponds to the eigenvector with the highest-magnitude eigenvalue, and

is perpendicular to the synaptic cleft, assuming there is one at �i. We write

R(�i) =
(
ω1(�i) ω2(�i) ω3(�i)

)
(2.8)
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with

ω3(�i) = ξ3(�i) (2.9)

ω2(�i) = sign
[
Dξ2(�i)(�i)

]
ξ2(�i) (2.10)

ω1(�i) = ω3(�i)× ω2(�i) (2.11)

where Du(x) is the directional derivative of the image along u at location x. As shown

in Fig. 2.4, introducing Eq. 2.10 makes ω2(�i) point towards the outside of the synaptic

cleft when �i is close to the border of the synapse. The motivation behind the latter

is that R(�i) in Eq. 2.7 is only defined up to a rotation in the ω1(�i)/ω2(�i) plane.

However, it is preferable to define a rotation matrix that is consistent, particularly at �i
close to the edge of the synapses. Towards the center of the synaptic cleft, there exists a

rotational ambiguity in the ω1(�i)/ω2(�i) plane which can in fact be ignored due to the

symmetry of synaptic structures there. Both the Hessian and the derivatives Du(x) are

computed at scale σHo = ws

2
√
2

where ws is the average synaptic cleft width, estimated

once per EM volume from a single slice.

2.4.4 Anisotropic Stacks

Even though we have so far assumed the stacks be isotropic, anisotropic stacks can be

easily handled with two minor modifications. First, the kernels used for generating the

image channels and orientation estimates must be scaled accordingly. Finally, context

cue locations c�ip and the edge length of the cubic neighborhoods Nr(c
�i
p ) must be

scaled according to the anisotropy of the stack. This allows us to process isotropic and

anisotropic stacks indistinguishably.

2.4.5 Learning Method

To make training computationally tractable, we specialize the AdaBoost learning pro-

cedure [36] as follows:

2.4.5.1 Weighting-by-sampling

Denote W = {w1...wN} and Y = {y1...yN} the weights and labels for each training

sample, with 1 ≤ i ≤ N . Assume that the weights have been normalized such that∑N
i=1wi = 1. At each AdaBoost iteration, instead of searching for the weak learner that

23



2. CONTEXT CUES FOR SYNAPSE SEGMENTATION

minimizes the weighted error over all N training samples, we employ the weighting-by-

sampling scheme [2, 35] to approximate the distribution W . This is done by finding the

weak learner that minimizes a weighted error computed on a subset S of the training

data, formally

S = {SP , SN} (2.12)

where SP comprises all the positive samples and SN is a subset of the negative samples,

obtained by weighted sampling with replacement according to the weights W . The

weight of each sample in SP is its respective weight in W , while the samples in SN are

assigned a constant weight
∑

yi=−1 wi

‖SN‖ .

In situations where the amount of negative samples outnumbers the number of pos-

itives, approaches such as weighting-by-sampling can reduce training time significantly.

We call M = ‖SN‖
‖SP ‖ the ratio between the number of negative and positive samples

selected by weighting-by-sampling, which is a parameter for our algorithm. In our ex-

periments we have observed that segmentation performance is robust against the value

of M . We set M = 2, which yields faster training without decreasing the performance

of the final classifier.

2.4.5.2 Random Weak Learner Search

Due to the large number of possible weak learners fk(x, �i), k = 1, ...,K, it is impractical

to explore them all at each AdaBoost iteration. Instead, we only explore a subset of

size Ω, obtained by randomly sampling, at each Boosting iteration, from the pool of

K possible weak learners. This also speeds up training significantly. We have experi-

mented with different values of Ω and observed that segmentation performance is fairly

independent of its value. For all the results presented here we used Ω = 4000.

2.4.6 Pose Indexing

2.4.6.1 Pose Annotations

Learning our pose-indexed classifier requires annotated training data. Since our con-

textual features are computed both for a given location and orientation, our training

data must include both. While the location of synaptic voxels is manually specified by

user annotation, synaptic orientation ω3(�i) is automatically extracted as explained in

§2.4.3, using eigen analysis on the Hessian matrix computed at �i . The obtained ω3(�i)
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vector is only defined up to a polarity, which is insufficient given that the pre-synaptic

and post-synaptic regions are starkly different in appearance. We therefore follow the

standard pose-indexing methodology [35] by labeling the polarity of the ω3(�i) vector

during training. Note that the orientation labeling procedure in training only requires

single user click per synapse to consistently direct all ω3(�i) vectors to the pre-synaptic

region. Nonetheless, this is an extra burden for the annotator, which we alleviate later in

Chapter 3, where we show that we can automatically infer the polarity of all synapses in

the training data automatically with a technique based on Multiple Instance Learning.

During testing, our learned contextual classifier ϕ(·) is evaluated for both polarities

of the extracted ω3(�i) vector and the maximum response retained.

2.4.6.2 Sampling Negatives

Under the pose-indexing framework [2, 35], samples that do not exhibit the same pose

(location and orientation) as positive samples should be considered as negative during

training. However, in practice, samples that are too close in pose-space to the positives

should be excluded from training, as their appearance can be similar to that of positives

and their inclusion can therefore deteriorate performance.

For example, following [35], any voxel lying on the synaptic cleft with an incorrect

orientation should be treated as a negative sample. Likewise, a voxel that is immediately

next to a synaptic cleft should also be considered a negative sample. However, given

the overlap in appearance, it is difficult for the learning method to disambiguate such

voxels from the positive set. Thus, as is commonly done in object detection [2], we setup

conservative training exclusion zones in pose-space around our positive examples and

sample negative examples outside these exclusion zones. In particular, we do not use

positive voxels with the wrong orientation as negatives, as discussed above. Moreover,

we also exclude voxels that are outside the synaptic cleft and less than 10 voxels away

from a positive-labeled voxel.

2.4.7 Supervoxels

Our entire algorithm including feature extraction, training and testing is designed and

implemented to operate on individual voxels of the EM volumes. However, significant

computational savings can be achieved by grouping voxels into supervoxels [1] for specific

operations for training and testing. Thus, during training, instead of using every voxel
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Table 2.2: Dataset description.

Dataset Voxel Size
Train Test

Size Labeled Size Labeled
(voxels) synapses (voxels) synapses

(A) Som. cortex 6.8 nm 750× 564× 750 9 (some) 655× 429× 250 28 (all)

(B) Hippocampus 5 nm 1024× 653× 165 20 (all)
1024× 883× 165

1024× 1536× 200
79 (all)

(C) Cerebellum 5 nm 1398× 1343× 299 7 (some) 1966× 1343× 200 56 (all)

as a positive or negative data sample, we restrict our method to training only on voxels

corresponding to centers of super-voxels. In effect, this amounts to a spatially-driven

sampling of the training data which significantly speeds up training while maintaining

performance. Likewise, during testing, instead of evaluating our learned contextual

classifier ϕ(·) on every voxel in the EM test volume, we only evaluate ϕ(·) on voxels

corresponding to super-voxel centers while off-center voxels are assigned a response

equal to that of the center.

2.5 Experiments

We evaluated our method on three different EM stacks acquired from different regions of

the adult rat brain1.We assessed performance both in terms of voxel-wise segmentation

and synapse detection.

In this section, we first describe these datasets and our training and evaluation

methodology. We then use our datasets to evaluate both the voxel-wise precision of our

method and its accuracy in terms of how many entire synapses are correctly detected.

We use the Random Forest method of [57] and the CNN approach of [88] as baselines

against which we compare our results. Finally, we show that our method can be used

to compute biologically relevant statistics and discuss computational complexity issues.

2.5.1 Datasets and Evaluation Methodology

We used three different datasets from (A) the Somatosensory Cortex, (B) Hippocampus,

and (C) Cerebellum of an adult rat. Example slice cuts of each dataset are shown in

Fig. 2.5.
1Source code available at http://cvlab.epfl.ch/software/synapse
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Raw Ground Truth Baseline Our approach

Somatosensory Cortex

Raw Ground Truth Baseline Our approach

Hippocampus

Raw Ground Truth Baseline Our approach

Cerebellum

Figure 2.5: Qualitative results (slice cuts) for the three different datasets after threshold-
ing. Threshold set at best VOC. Note that our approach yields more accurate segmentation
results as well as reducing the amount of false positives.
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(a) (b)

Figure 2.6: Illustration of the ambiguities at the synaptic boundary and evaluation ignore
zone. (a) Slice cut of a region from the hippocampus dataset. Synapses indicated with
circles. Labeling voxels close to the synaptic boundary is an ill-posed problems. (b)
Diagram showing inner (d−) and outer (d+) exclusion zones on synthetic synapse ground
truth (blue). Voxels within the exclusion zone are ignored during evaluation.

The amounts of training and test data for each dataset are summarized in Table 2.2.

The volumes were annotated in a voxel-wise fashion using Fiji [93]. Note that testing

volumes were fully annotated, each voxel being assigned a synapse or a non synapse

label, in order to generate as large as possible a test set and report meaningful results.

Training volumes on the other hand, in particular for the large datasets A and C, were

only partially annotated in order to reduce labeling cost. In those cases, an approach

similar to what was used in [57] was followed, labeling a fraction of the voxels inside the

volume as positive or negative, leaving most of the voxels un-annotated and therefore

not used for training. In the case of Dataset B, two test subvolumes were extracted

from different regions of the Hippocampus.

2.5.1.1 Ground Truth and Gold Standard Annotations

It is important to highlight that annotating synapses is a difficult task and it is not un-

common to miss some of them. For example, [85] has shown that different proofreaders

have an agreement of around 90% precision and recall when labeling T-bar synapses in

fruit fly brain EM stacks.

Though in this thesis we use the term Ground Truth for consistency when referring

to the expert annotations, Gold Standard may be a more appropriate term as it is likely

to be imperfect.
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(a) Raw slice (b) Ground Truth

(c) Exclusion zone (d) Overlapped voxels
in black

Figure 2.7: Example of exclusion zone with d+ = 4 and d− = 1.6 voxels. Overlap between
ground truth and exclusion zone shown in black in (d). Note the labeling ambiguity in (b)
for the voxels close to the vesicles.

2.5.1.2 Data Annotation

Synapse labeling is an ill-posed problem because boundaries are generally blurry, as

shown in Fig. 2.6(a). For training purposes, we adopted a conservative labeling policy

whereby voxels are labeled positive only if experts are highly confident. This yields

a ground truth volume whose positive samples are mainly located at the center of

synapses.

For testing purposes, the behavior of a method on ambiguous voxels may be of

particular interest to the practitioner. Thus, we adopted a different procedure for the

annotation of test volumes. Experts were given more freedom in deciding whether or

not a specific voxel lies on a synaptic cleft while our evaluation procedure, explained

next, was designed to study the behavior of our detector at synaptic boundaries.

2.5.1.3 Evaluation Methodology

Voxel-wise evaluation is essential to assess and compare the performance of different

segmentation methods. However, such an evaluation must take into account the afore-
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mentioned boundary issue to provide meaningful performance measures.

Much as we defined a training exclusion zone, we define a testing exclusion zone

about the labeled border of the synapse with an exterior radius of d+ and an interior

radius of d-, as depicted in Fig. 2.6(b). Voxels within the exclusion zone, shown in blue

in Fig. 2.7(c), are ignored during evaluation.

Rather than arbitrarily fixing the values of d+ and d−, we propose to assess perfor-

mance as a function of their values. We plot precision-recall (PR) curves at different

exclusion zone sizes, and the value of the Jaccard Index [31, 66], also known as the

VOC Score, as a function of d+ and d−. The VOC score measures the segmentation

quality when ground-truth data is available. It is computed as the ratio of the area of

the intersection between what has been segmented and the ground truth, and of the

area of the union of these two regions.

To facilitate interpretation, we fix the ratio η = d+

d− and plot the performance

measure as a function of d = d+. In our experiments we considered 0 ≤ d ≤ 5 voxels

and fixed η = 2.5 so that the maximum d− is 2 voxels. Limiting d− is essential to confine

the exclusion zone to boundary voxels only, thus preserving most of the labeled synaptic

voxels such that the evaluation remains meaningful. In practice, the exclusion zone is

found by pre-computing a chamfer distance volume w.r.t. the synaptic boundaries in

the ground truth.

2.5.2 Baselines

We evaluate our approach and compare it against the following baselines:

• Kreshuk et al.: the Random Forest method of [57] designed for synapse seg-

mentation in isotropic stacks, that operates directly in 3D. This approach relies

on voxel-wise classification, training a classifier that employs a set of pre-defined

features evaluated at the voxel of interest.

• U-Net CNN: the 2D Convolutional Neural Network method of [88] designed to

exploit large context information. To give this approach its best chance on our

datasets, we choose the number of training iterations that maximize the Jaccard

Index on the test set. We also explored extending the U-Net to 3D to leverage

the data available in the EM stacks, but our results so far where unsatisfactory

30



2.5 Experiments

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1

Pr
ec

is
io

n

Recall

Somatosensory Cortex, d=0

Our approach
Our approach: local only

Our approach 2D
U-Net CNN

Kreshuk et al.

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1

Pr
ec

is
io

n

Recall

Somatosensory Cortex, d=3

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1

Pr
ec

is
io

n

Recall

Somatosensory Cortex, d=5

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1

Pr
ec

is
io

n

Recall

Hippocampus, d=0

Our approach
Our approach: local only

Our approach 2D
U-Net CNN

Kreshuk et al.

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1

Pr
ec

is
io

n

Recall

Hippocampus, d=3

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1

Pr
ec

is
io

n

Recall

Hippocampus, d=5

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1

Pr
ec

is
io

n

Recall

Cerebellum, d=0

Our approach
Our approach: local only

Our approach 2D
U-Net CNN

Kreshuk et al.

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1

Pr
ec

is
io

n

Recall

Cerebellum, d=3

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1

Pr
ec

is
io

n

Recall

Cerebellum, d=5

Figure 2.8: Precision-recall curves for each dataset for different values of d. Our approach
always yields better performance than the baseline of [57].

and led to severe overfitting, obtaining significantly lower performance than the

2D counterpart.

For both methods we implemented our own version that runs on CPU for the first

method, and GPU for the second.

2.5.3 Voxel-wise Accuracy

We evaluate the voxel-wise segmentation performance of our approach and compare it

against the baselines in terms of precision-recall (PR) curves and Jaccard index values,

also known as VOC scores [66]. For comparison, we also report the performance of our

approach applied on individual 2D slices, called Our Approach 2D.
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Figure 2.9: Highest Jaccard index (VOC score) as a function of exclusion zone size d for
the different datasets. Our approach outperforms [57] for all values of d.

Precision-recall curves at different exclusion zone sizes d are shown in Fig. 2.8. Our

approach clearly outperforms the baselines for all recall values as well as exclusion

zone sizes d. We also show the value of the highest Jaccard index obtained at different

values of d in Fig. 2.9, which manifests the same behavior. Overall, our results indicate a

significant improvement in segmentation performance for both border and center voxels.

There is a clear significant performance drop when 3D information is discarded with

Our Approach 2D, demonstrating the advantage of operating directly in 3D. Within

the baselines that use 2D information exclusively, we observe that the U-Net CNN

outperforms the 2D version of our approach only for the Hippocampus dataset, which

corresponds to the only training stack that has been fully labeled. This corroborates

the well-known fact that ANN need large amounts of training data to perform well,

when training them from scratch.

Importance of contextual information To demonstrate that improved perfor-

mance comes from using context, we also evaluate the performance of a degenerate

version of our approach that relies only on local information and ignores context. To

this end, we set the parameter ‖cp‖max of §2.4.2 to 0. This means that post-synaptic

and pre-synaptic context is not exploited and only local statistics are leveraged. We plot

the corresponding curves in Figs. 2.8 and 2.9, labeled as Our approach: local only. It

can be seen that our full approach utilizing context does systematically and significantly

better than the degenerate version which ignores context, highlighting the importance

of contextual information for synapse segmentation.

We note that the relative performance between [57] and the degenerate version of

our algorithm is somewhat variable. Both these methods ignore context and rely solely
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Figure 2.10: Comparison of our approach (diamonds) with a degenerate version of our
method (circles) that uses a fixed orientation estimate for all voxels, where R(�i) is set
to identity matrix for all voxels �i. The latter results in a considerable performance loss,
motivating the use of contextual cues that rotate to be consistent with the orientation
estimate of each voxel �i.

on local image statistics. We believe the difference in performance between the two has

to do with our degenerate version relying on decision stumps with a reduced feature

set, while [57] relies on decision trees with a richer feature set.

Consistency of Contextual Cues Context cue locations are rotated according to

the orientation estimate at each voxel of interest �i, which allows us to exploit synaptic

context in a meaningful way. Therefore, it is interesting to observe the effects of setting

the orientation estimate of all voxels to a fixed value. To do so, we have fixed R(�i)

to the identity matrix for all locations �i, which makes ω3(�i) point in the z direc-

tion. This is equivalent to our approach without pose-indexing, similar to the method

proposed in [48, 98]. We call this particular implementation Our approach: fixed ori-

entation estimate, and a comparison with our full method is presented in Fig. 2.10. As

expected, performance drops significantly since context is relative to the orientation of

the synaptic cleft, and fixing R(�i) to an identity transformation yields inconsistent

contextual cues, highlighting once again the importance of contextual information for

synapse segmentation.

2.5.4 Selected Features

Our approach lets AdaBoost pick the most discriminative features for synapse segmen-

tation at every boosting step. To observe how our method exploits context, we plot

the pixel locations over which channel values Hm,σnm
are summed in Fig. 2.11. To ease

visualization, context cue locations cp are projected on the zo axis (see Fig 2.2(a)).
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Figure 2.11: Some of the features selected by AdaBoost on four different channels for
the Somatosensory Cortex dataset. The left column shows the voting map (see text for
detailed description) and the right column shows an example synapse and its context.

When, according to AdaBoost, a higher value of fk (x, �i) contributes to the voxel

in the center being a synapse, its corresponding αt (Eq. (2.6)) is added to the maps in

Fig. 2.11. On the other hand, when the label is negatively correlated with fk (x, �i), its

αt value is subtracted.

It can be seen that the raw image (Fig. 2.11(a)) provides important clues, particu-

larly at the voxel of interest (center) but in its surroundings as well, especially at the

post-synaptic region, where the classifier expects an average high image value to vote

for a synapse. Another interesting channel is the lowest magnitude structure tensor,

shown in Fig. 2.11(c), which signals the presence of vesicles in the pre-synaptic region,

which is a strong clue used by experts to evidence the presence of a synapse.

2.5.5 Detection Accuracy

So far, we have evaluated the different approaches for voxel-wise segmentation. However,

it is also interesting to evaluate synapse detection performance, that is if a synapse as

a whole is detected by the algorithm or not. We measure detection performance by
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Raw slice Ground truth Baseline Our approach

Figure 2.12: Examples of detected synaptic voxels after thresholding for the best Jaccard
index. Synapses are detected by both methods, but the baseline method yields poor results
from a segmentation perspective.

Figure 2.13: Detection performance on the three datasets, after thresholding and clus-
tering voxels labeled as synapses by our approach and [57], at different thresholds. Our
method yields less false-positive detections than [57], obtaining perfect detection perfor-
mance in the first two datasets.

clustering thresholded score volumes. This can be summarized as:

1. Threshold the score volume at the value that yields the best VOC score for all d.

2. Run connected component analysis on the resulting binary volume.

3. Remove detected clusters with less than 1000 voxels, as in [57].

4. Count the number of missed and false-positive clusters/detections.

False-positive detections are clusters of positive-predicted voxels which do not inter-

sect with the ground truth, while missed (false-negative) detections are ground truth

clusters that do not intersect with the predicted score volume after step 3 above.
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As shown in Fig. 2.13, our approach yields a significant reduction in the number of

false positives when compared to the baseline, obtaining perfect detection on the first

two datasets. Furthermore, because our method yields much better voxel-wise accuracy

the shape of the recovered synapses is much closer to the ground-truth, as depicted

in Fig. 2.12. This is important when computing biologically relevant statistics such as

synapse shape and size, as discussed below.

2.5.6 Biological Statistics

We applied the classifier trained on the Somatosensory Cortex data to a large volume

consisting of 1500x1125x750 voxels or 9.8 x 7.4 x 4.9 μm. This is the original volume

from which the train and test sub-volumes were extracted.

The resulting score volume was smoothed with a Gaussian filter with unit vari-

ance and thresholded at the value that corresponds to the maximum VOC score in

the test volume. Afterwards, clusters of positive detections of less than 1000 voxels

were discarded, as in [57] and §2.5.5. This resulted in a total of 405 clusters of voxels

that our approach labeled as synapses. Finally, an expert went through the resulting

segmentation volume, discarding 31 false positive synapses, obtaining a total of 374

verified synapses. This number is in agreement with the expected synapse density in

the Somatosensory Cortex region (layer II) [27].

A 3D visualization of the detected synapses is shown in Fig. 2.15. It is interesting

to observe the large variation in synapse shape and size, which is evidenced in the

histograms of synapse size and synapse flatness Fig. 2.15(a) and Fig. 2.15(b).

Another interesting observation comes from Fig. 2.15(c), which is a scatter plot of

synapse volume and flatness. There is a strong correlation between synapse volume and

flatness. This occurs because synapses are membrane-like structures and the synaptic

cleft width is constant across different synapses, independently of their size. Therefore,

larger synapses are flatter than smaller ones, which is evidenced in Fig. 2.15(c).

In addition to generating segmentation results, our approach can also be used to

determine the location of the post-synaptic and pre-synaptic regions. This can be highly

relevant in practice to determine the location of the axons and dendrites relative to a

given synapse, helping reveal neural circuit connectivity.

As discussed in §2.4.6, our technique evaluates two different scores for location �i at

test time, one for each possible orientation polarity. The polarity with the highest score
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Figure 2.14: Examples of polarity prediction. Images have been aligned such that the
horizontal axis travels from the pre- to post-synaptic region from left to right. Our approach
achieved 100% accuracy for this task.

can be employed as a polarity estimate. Once the score image is thresholded, majority

voting can be used to determine the most likely polarity.

We applied this technique to the predicted scores for the three datasets and observed

100% accuracy at predicting synapse polarity. Examples are shown in Fig. 2.14, where

the synapse normal has been aligned to the horizontal axis. This is also an indication

that our approach is exploiting context information.

2.5.7 Computational Complexity

In terms of computational cost, our approach is faster in both training and testing than

[57] and similar to that of the U-Net [88]. However, note that the U-Net operates in

2D, while our approach and that of [57] work directly in 3D.

The training time for our approach benefits from the techniques mentioned in §2.4.5.

Using stumps as weak learners is also an important advantage at test time, in contrast

to Random Forest’s trees which are built with as many splits as necessary to separate

training data perfectly. Another speed up is obtained by using supervoxels to over-

segment the EM volumes. The chosen seed size of 2 voxels translates in an average

supervoxel size of 2 × 2 × 2 = 23 voxels [1], which yields a 8x speed factor since only

supervoxel centers are classified.

Table 2.3 summarizes timings obtained for both methods. The number of trees in

the Random Forest classifier was set to 500. To make comparison fair, we have modified

the Random Forest implementation used by Kreshuk et al. [57] to use multiple threads,

37



2. CONTEXT CUES FOR SYNAPSE SEGMENTATION

Table 2.3: Train and test times for our approach and baselines. Timings obtained with
multithreaded implementations for our approach and Kreshuk et al. [57], and on a GPU
for the U-Net [88].

Dataset Our approach Kreshuk et al. [57] U-Net [88]
Total Single stump Total Single tree

Total
(T = 2000) (average) (500 trees) (average)

Somatosensory Train 0:57 hs 1.69 sec 2:16 hs 16.4 sec 1:48 hs
Cortex Test 0:13 hs 6.2 msec 0:21 hs 2.5 sec 0:09 hs

Hippocampus
Train 2:40 hs 4.8 sec 21:22 hs 154 sec 5:45 hs
Test 1:20 hs 2.4 sec 1:46 hs 12.8 sec 0:14 hs

Cerebellum
Train 1:41 hs 3.05 sec 10:31 hs 75.7 sec 3:03 hs
Test 1:35 hs 2.8 sec 2:47 hs 20.1 sec 0:19 hs

speeding up training and testing substantially1. Note that, in the case of using the

default Vigra implementation, the timings for the baseline method in Table 2.3 would

be an order of magnitude higher.

The parameters used for our approach are the default ones described in Table 2.1.

Note that the test timings for our approach already consider evaluating the two possible

polarities for each location �i.

If further speed up was needed, soft cascades [17] could be employed to stop early

during the evaluation of the boosted classifier. This is likely to provide a considerable

speed up since most background voxels can be discarded with a simple intensity check,

given that synapses appear as dark structures.

2.6 Conclusion

In this chapter we presented a novel approach to synapse segmentation. It relies on a

large set of image features, specifically designed to take spatial context into account,

which are selected, weighed and combined using AdaBoost. We used three different EM

datasets to demonstrate that our algorithm effectively distinguishes true synapses from

other organelles that exhibit the same local texture.

Moreover, our method also flawlessly identifies synaptic orientation, a key and hith-

erto unexplored task that could be exploited to assess other measures such as synapse

1The original version is found in the Vigra library (http://hci.iwr.uni-heidelberg.de/vigra/) and
our version can be found online at http://cvlab.epfl.ch/%7Ecjbecker
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Figure 2.15: Results of our approach on a large Somatosensory Cortex volume of
1500x1125x750 voxels: (top) 3D Visualization of the detected synapses and (bottom) some
of the statistics than can be extracted from voxel-wise segmentation. The correlation be-
tween synapse volume and flatness in (c) evidences the fact that synapses are membrane-like
objects.

convexity and concavity.
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CHAPTER

THREE

AUTOMATIC POLARITY ESTIMATION WITH CLUSTERED
MULTIPLE INSTANCE LEARNING

The segmentation approach presented in the previous chapter requires that the polarity

of every synapse is manually labeled for training. In this chapter we aim at removing this

requirement, as it incurs into an extra burden for the annotator. Moreover, mislabeling

polarities may have a negative impact on prediction performance, as we show in our

experiments.

Our solution is based on Multiple Instance Learning (MIL)[5, 105] techniques and

operates on clusters of training instances. Our approach results in segmentations that

are as good or better than using manually-labeled polarities, and is able to flawlessly

estimate synapse polarity in the training data.

3.1 Introduction

Multiple Instance Learning can be categorized as a weakly-supervised learning ap-

proach [111]. The main idea behind MIL is that there exists latent information in

the training data that can be exploited to reduce annotation requirements and improve

learning. Typically, MIL assigns latent variables to each training instance, whose values

are to be inferred during learning. For example, in the synapse segmentation scenario

of Chapter 2, there would be a binary latent value per training sample, associated to

its orientation polarity.

Though various MIL method variants have been introduced and investigated [5, 8,

29, 38, 105, 110, 111], to our knowledge there is no MIL technique that can impose the
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3. AUTOMATIC POLARITY ESTIMATION WITH CLUSTERED MIL

OR

OR

OR OR

AND

OR OR

(a) Classic MIL.

AND

AND

AND

AND

AND

OROR

(b) Our approach with CMIL.

Figure 3.1: Illustration of classic MIL and our proposed CMIL in the case of synapse
polarity estimation. A supervoxel or sample is illustrated in red, and its assumed orienta-
tion with an arrow. In classic MIL, each sample is associated a binary latent variable that
determines its polarity. In contrast, our approach clusters samples that belong to the same
synapse, constraining supervoxels of each synapse to share the same polarity, and reducing
the number of latent variables at training time.

hard constraint to force nearby training samples share a common latent variable. For

synapse segmentation this is essential to ensure that the samples that belong to a given

synapse share the same polarity, as illustrated in Fig. 3.1.
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3.2 Related Work

3.2 Related Work

Multiple Instance Learning dates back to 1997 [28]. Since then, MIL has been incorpo-

rated into a variety of learning methods including Support Vector Machines (SVMs) [5,

59, 69], Random Forests [63, 102] and Boosting [8, 105, 110, 111]. It has as well been

applied to a wide range of problems, including object detection [8, 105], object track-

ing [8, 63, 113] and image segmentation [82, 83, 84, 102, 103, 110, 111].

In computer vision, one of the main applications of MIL is to reduce annotation ef-

fort in supervised learning. This achieved by introducing latent variables whose values

are estimated as training proceeds. A known example is that of [105], that employs

a boosting-based MIL approach to improve object detection results when the bound-

ing boxes in training data are not accurately aligned. Similarly, [8] introduces a MIL

framework to image alignment that splits data into groups and trains a classifier for

each group, improving prediction performance.

MIL has also been applied to image segmentation. For example, [102] combines MIL

and Multi-Task Learning for semantic segmentation, dropping the need for expensive

pixel-wise labeling, and requiring only tag-based annotations per image. Structure

models can also benefit from MIL, as shown in [103], where a pairwise CRF is learned

to infer latent superpixel labels at traininig time.

Biomedical imaging has also profited from MIL [29, 38, 110, 111]. An impressive

result is that of [109], where MIL is applied to simultaneously segment and cluster

pixel regions in histopathology cancer images. Their approach only requires per-patch

weak labels and is able to automatically segment and cluster image regions. In a later

publication [110], the same authors extend their framework to incorporate smoothness

constraints at the pixel level.

Recent work with Convolutional Neural Networks (CNNs) to reduce the amount

of supervision has also gained from MIL [82, 83, 84]. [83, 84] apply CNNs for image

segmentation, using MIL to leverage image-level annotations, such as bounding boxes

or image tags. To avoid overfitting, they both rely on pre-trained CNNs to regularize

learning. On the other hand, [82] uses Expectation-Maximization methods to learn the

CNN parameters with mixed image-level and pixel-level annotations, bypassing pre-

training.
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3. AUTOMATIC POLARITY ESTIMATION WITH CLUSTERED MIL

Though MIL has been largely explored in the literature, it has been mostly applied

to aggregate instance-level information in the form of Fig. 3.1(a). To our knowledge,

there is no current MIL approach to deal with problems such as that of Fig. 3.1(b)

that combine AND and OR operations at different semantic levels. The closest to our

work is that of [110], though in the latter the problem is a very different one, namely

that of automated image region clustering, and therefore not compatible with that of

Fig. 3.1(b).

In the remaining of this chapter we introduce the mathematical formulation of MIL

and detail our approach to solving Fig. 3.1(b). We then present results on the three

datasets introduced in the previous chapter and show that our method can flawlessly

estimate synapse polarity.

3.3 Classic Multiple Instance Learning

In this section we introduce and define the basics of Multiple Instance Learning, with a

special emphasis on the boosting-based variants, as our goal is to incorporate MIL into

the approach of Chapter 2. We then show how classic MIL can be applied to synapse

segmentation and discuss its limitations.

3.3.1 Classic MIL Model and Formulation

In MIL, data is typically grouped into bags, where each bag contains one or more training

instances. In contrast to classic supervised learning that requires one label per instance,

MIL relaxes this constraint, requiring only one label per bag, hence reducing the data

annotation effort.

For example, in the synapse segmentation scenario described in the previous section,

we can think of each positive bag as containing two instances of opposite polarity. We

know that one of them is the correct one, but it is up to the training algorithm to

determine which one, so as to minimize the overall training loss. This happens at the

same time as the discriminative function f(x) is learned.

Assume we have a set of N bags, b1, b2, . . . , bN . Bag i contains |bi| instances, and is

assigned a label yi ∈ {−1,+1}. The instances in bag i are in the set bi = {xij}j=1,...,|bi|,

and yij ∈ {−1,+1} is the latent label of sample xij .
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3.3 Classic Multiple Instance Learning

g(v1, . . . , vm) Domain

Log-Sum Exponential (LSE) 1
r log

[
1
m

∑
� exp(rv�)

]
[−∞,∞]

Generalized Mean (GM)
(
1
m

∑
� v

r
�

) 1
r [0,∞]

Noisy-Or (NOR) 1−∏
�(1− v�) [0, 1]

Table 3.1: Examples of commonly-used soft-max functions used in Multiple Instance
Learning [8] that approximate max (v1, . . . , vm).

We write the probability of instance xij being positive as

p(yij = 1|xij) = σ [f(xij)] =
1

1 + e−f(xij)
, (3.1)

where f(x) is the scoring function we seek to learn.

For classic MIL, a bag is positive if at least one sample of the bag is classified as

positive, expressed as

p(bi = 1) = max
x ∈ bi

p(y = 1|x) , (3.2)

which can also be seen as an OR operation if the p(y = 1|x) were binary variables.

One difficulty with the max function is that it is not differentiable, making optimiza-

tion difficult. Therefore, in the MIL setting it is commonly replaced by a differentiable

soft-max approximation g(·), so that

p(bi = 1) = max
x∈bi

p(y = 1|x) ≈ g(bi) . (3.3)

A summary of commonly-used soft-max functions is shown in Table 3.1.

The goal of MIL is to find a scoring function f(x) that minimizes the negative

log-likelihood of the labeled bags in the training data,

L = − log
N∏
i=1

p(bi = yi) (3.4)

= −
N∑
i=1

log p(bi = yi) , (3.5)

where the product of the probabilities p(bi = yi) can be interpreted as an AND opera-

tion, implying that all samples should be classified correctly by f(x).
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3. AUTOMATIC POLARITY ESTIMATION WITH CLUSTERED MIL

Boosting-based MIL approaches apply gradient boosting to learn f(x) and minimize

the loss above. Note that the latent variables in MIL are not explicit, but rather

implicitly coded by the max function that computes p(bi = yi).

3.3.2 Applying MIL to Synapse Segmentation

We can apply the MIL formulation described above to synapse segmentation, where

each positive bag contains two samples that are exactly equal except for their polarity.

Negative bags, on the other hand, only contain one sample, as they should be classified

as negative regardless of their polarity.

At training time we use MIL to resolve the ambiguous polarity of the positive sam-

ples. For prediction, we test both possible polarities for every voxel, and return the one

with the highest score, as in Chapter 2.

The resulting MIL problem structure can be expressed graphically, as shown in

Fig. 3.1(a), where the OR blocks represent the soft-max function and the AND blocks

the product in Eq. (3.4). For simplicity we only show six training bags coming from two

synapses. An important limitation of the classic MIL formulation for this particular

problem is that it does not guarantee consistent polarity estimates within the same

synapse. Simultaneously, it makes learning harder, as it creates as many latent binary

variables as the number of positive examples.

In the next section we propose an approach to overcome these limitations. In con-

trast to classic MIL, it requires only one latent variable per synapse, ensuring consistent

polarity estimates.

3.4 Proposed Approach

In this section we introduce a novel MIL approach that ensures that the polarity of

the training samples within a synapse is consistent. We do this by clustering training

samples according to the synapse they belong to, introducing an additional layer in the

MIL formulation. This new approach is called Clustered MIL (CMIL), and is illustrated

in Fig. 3.1(b).
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3.4 Proposed Approach

(a) Original orientation in sm (b) Orientations in s+m (c) Orientations in s−m

Figure 3.2: Generation of consistent synapse polarities. The eigenvector of the high-
est magnitude eigenvalue may not be consistent in polarity, as shown in (a). As a pre-
processing step we create consistent hypothesis (b) and (c).

3.4.1 Clustering Instances and Orientations

At training time we cluster positive training instances with Connected Components

into M synapses s1, . . . , sM . The instances in synapse m are inside the set sm =

{xmj}j=1,...,|sm|, and we denote the eigenvector with the highest magnitude eigenvalue

of the Hessian of sample xmj as nmj ∈ R
3.

For each synapse sm we find the main Hessian direction n̄m, such that the squared

projected value of the orientations nmj on n̄m is maximized,

n̄m = argmax
v∈R3

||v||=1

|sm|∑
j=1

(
vT nmj

)2
. (3.6)

To solve for n̄m we use the SVD decomposition of the matrix Nm ∈ R
3×|sm|, whose

columns are the orientation vectors nmj .

We then duplicate the training data to generate the sets s+m and s−m with consistent

polarity. The polarity of each sample in s+m is modified so that it yields a positive

projection on n̄m. On the other hand, s−m contains the same samples as s+m but with

the opposite polarity. An illustration is shown in Fig. 3.2.
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3. AUTOMATIC POLARITY ESTIMATION WITH CLUSTERED MIL

3.4.2 CMIL Formulation

The probability of synapse m for either polarity is written as

p(s+m) =
∏
x∈s+m

1

1 + e−f(x)
, (3.7)

p(s−m) =
∏
x∈s−m

1

1 + e−f(x)
, (3.8)

and the probability of the respective bag containing both polarities is computed with

the soft-max function g(·) as,

p(bm) = g

(
p(s+m), p(s−m)

)
(3.9)

=

(
1

2
p(s+m)r +

1

2
p(s−m)r

) 1
r

, (3.10)

where we used the Generalized Mean soft-max approximation, as in [8, 111].

The overall training loss is then written as

L = − log

M∏
m=1

p(bm) − log

N−∏
n=1

p(y = −1|xi) (3.11)

= −
M∑

m=1

log p(bm) +
N−∑
n=1

log
(
1 + ef(xi)

)
, (3.12)

where the first term is the loss for the positive samples (synapses), while the second

term is the log loss for the negatives. Note that both terms are consistent, as when there

is only one element per bag we get g(v1) = v1 for all the soft-max functions introduced

in Table 3.1.

Boosting can be applied to minimize Eq. 3.12. The resulting boosting weights are,

w+
mj =

∂L

∂f(x+
mj)

=
p(s+m)r

p(s+m)r + p(s−m)r

(
1− p(x+

mj)
)

(3.13)

w−
mj =

∂L

∂f(x−
mj)

=
p(s−m)r

p(s+m)r + p(s−m)r

(
1− p(x−

mj)
)

(3.14)

wn =
∂L

∂f(xn)
= 1− p(xn) (3.15)

It is important to take care of possible numerical instabilities, as p(s+m) and p(s−m)

may be very small, particularly with large synapses.
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3.5 Evaluation

3.4.3 Numerical Stability

Instead of computing p(s+m) and p(s−m) directly with Eq. 3.8, we compute its log-

probability as well as a normalization factor to avoid underflows. More specifically,

we can write

log p(s+m) = −
∑
x∈s+m

log
(
1 + e−ϕ(x)

)
, (3.16)

and its analogous for log p(s−m). The normalization factor is then computed as βm =

max (log p(s+m), log p(s−m)), and stores the log likelihood of the most likely polarity of

synapse m. We then evaluate κ+m = log p(s+m) − βm and κ−m = log p(s−m) − βm, that

allows us to compute a more stable version of the weights for the positive samples as

w+
mj =

exp(r κ+m)

exp(r κ+m) + exp(r κ−m)

(
1− p(x+

mj)
)

(3.17)

w−
mj =

exp(r κ−m)

exp(r κ+m) + exp(r κ−m)

(
1− p(x−

mj)
)
. (3.18)

This avoids low probabilities p(s+m) from propagating numerical instabilities to the

boosting weights. This same technique is applied during the linesearch step.

3.5 Evaluation

In this section we compare the segmentation performance of our approach against dif-

ferent baselines, on the datasets introduced in the previous chapter, with the same train

and test configurations shown in Table 2.2.

3.5.1 Baselines

We compare our MIL approach, denoted Clustered MIL, against three baselines:

• Classic MIL: the classic MIL formulation applied to our problem, as illustrated

in Fig. 3.1(a), which does not enforce the polarities of neighboring voxels to be

the same.

• Labeled polarity: the synapse segmentation method presented in the previous

chapter, with polarities manually labeled by the user. This is the strongest base-

line and a best-case scenario.
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Figure 3.3: Highest Jaccard index (VOC score) as a function of exclusion zone size d for
the different datasets. Our Clustered MIL approach performs as well or better than the
strongest baselines for all values of d.

• No polarity: the same approach as above, but polarities are not labeled. It assumes

that the polarity of the eigenvector of highest eigenvalue magnitude of the Hessian

matrix is correct.

• Inverted polarity: polarities are assigned manually to each synapse, as with Labeled

polarity, but we simulate a mislabeled polarity by inverting the polarity of one

synapse, and keeping the rest untouched. For this baseline we run 10 different

experiments, mislabeling the polarity of a different synapse in each run. We report

the median and first and third quartile intervals in the respective plots.

3.5.2 Quantitative Results

Figure 3.3 shows the highest Jaccard index obtained by each method on the three

datasets introduced in the previous chapter. It can be seen that there is a significant

difference in the behavior of the baselines between the Hippocampus and Cerebellum

datasets and the Somatosensory Cortex one. We first focus on the first two, and then

discuss the latter.

In the Hippocampus and Cerebellum datasets, No Polarity and Classic MIL perform

poorly, resulting in a drop of 5% to 8% in Jaccard Index than in comparison to Labeled

Polarity. Similarly, mislabeling polarities typically hurts performance, missing the full

potential of our segmentation approach. This is expected, as the classifier may struggle

to learn the right context features for segmentation.

On the other hand, our MIL approach consistently recovers this performance drop,

sometimes outperforming Labeled Polarity. We think the latter may happen because,

50



3.5 Evaluation

Somatosensory Cortex

Hippocampus

Cerebellum

Figure 3.4: Polarity estimates computed by our MIL approach on the training data.
Our method flawlessly estimates synapse polarity for all the synapses in the training set,
including those that may be confusing due to organelles such as mitochondria on either
side of the synaptic cleft.

as boosting proceeds, lower weight is given to samples whose polarity is not easily

discriminated by MIL, which could then reduce the risk of overfitting to difficult training

samples. The weight reduction effect can be seen in Eq. 3.18 if p(s−m) = p(s+m).

With respect to the Somatosensory Cortex dataset, all methods do equally well,

suggesting that the test set is too small or that tissue staining makes synapses easy to

distinguish with little local context, and therefore much invariant to polarity estimation.

This may be evidenced by looking at Fig 2.9, where Our approach local only performs

reasonably well. Nonetheless, our MIL approach performs as well as the other baselines,

and is able to estimate correctly synapse polarities, as shown next.
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3. AUTOMATIC POLARITY ESTIMATION WITH CLUSTERED MIL

3.5.3 Qualitative Results

Given that our approach assigns a polarity for each synapse or group of connected

positive-labeled voxels in the image, we can easily verify if the assigned polarities agree

after training. Figure 3.4 shows the polarities assigned by our method to different

synapses in the training data.

Furthermore, we verified through manual inspection that our approach assigns the

correct polarity to all the synapses present in the training data of each dataset.

3.6 Conclusion

In this chapter we presented a new approach for Multiple Instance Learning to automat-

ically estimate orientation polarity for synapse segmentation. In contrast to existing

methods, our approach operates on clusters of training instances, ensuring that the

orientation polarity of the training samples within the same synapse is consistent.

Our approach reduces annotation effort by dropping the requirement to manually

assign a polarity to each synapse. Our method performs as well or better than using

manually-labeled polarities, demonstrating its effectiveness. Moreover, we also verified

that our approach flawlessly estimates the polarities of all the synapses in the training

set.
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Domain Adaptation
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CHAPTER

FOUR

DOMAIN ADAPTATION FOR MICROSCOPY IMAGING

In this chapter we present a domain adaptation algorithm that effectively leverages la-

beled examples across different acquisitions, significantly reducing annotation require-

ments. Our approach can handle complex, non-linear image feature transformations and

scales to large microscopy datasets that often involve high-dimensional feature spaces

and large 3D data volumes. We evaluate our approach on four challenging Electron and

Light Microscopy applications that exhibit very different image modalities and where

annotation is very costly. Across all applications we achieve a significant improve-

ment over the state-of-the-art machine learning methods and demonstrate our ability

to greatly reduce human annotation effort.

4.1 Introduction

Imaging modalities such as Electron (EM) and Light Microscopy (LM) can now deliver

high-quality, high-resolution image stacks of neural structures, such as the ones depicted

by Fig. 4.1. Typically, a combination of manual and semi-automated segmentation or

annotation tools such as [77, 92, 95] are then used to extract structures of interest.

However, while the ever growing amount of available imagery should help unlock the

secrets of neural function, the required amounts of human annotation effort remain a

major bottleneck.

While machine learning-based approaches have shown great potential, such algo-

rithms still require significant amounts of manual annotation to train classifiers that

can generalize well to previously unseen data. In microscopy, this can be a problem
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Mitochondria Segmentation
Image data Ground truth Image data Ground truth

(a) Striatum 3D stack (b) Hippocampus 3D stack

Synapse Segmentation
Image data Ground truth Image data Ground truth

(c) Cerebellum 3D stack (d) Somatosensory Cortex 3D stack

Path Classification
Image data Ground truth

(e) 2D Aerial Road Images

Image data Ground truth Image data Ground truth

(f) 3D Neural Axons (OPF) (g) 3D Neural Axons (Brightfield)

Figure 4.1: Segmentation and path classification applications we consider: (a,b,c,d) slice
cuts from four 3D Electron Microscopy acquisitions from different parts of the brain of a
rat. Each 3D stack contains millions of voxels to be classified. (e,f,g) 2D aerial road images
and 3D neural axons from Olfactory Projection Fibers (OPF) and Brightfield microscopy.
Ground truth positive samples shown in yellow. Best viewed in color.
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4.1 Introduction

because the data preparation processes tend to be complicated and not easily repeat-

able, which means that a classifier trained on one acquisition will not perform very well

on a new one, even when using the same modality. This is because machine learning

normally relies on the fact that the training and run-time data samples are drawn from

the same distribution.

For example, acquiring the Electron Microscopy (EM) images of brain structures

shown in the top two rows of Fig. 4.1 requires tissue staining to increase contrast,

followed by resin encasing before the acquisition. As a result, two samples of the same

brain region acquired at different times may look significantly different due to differences

in their preparation. This is even more true when the samples come from different parts

of the brain, so that classifiers trained for one of them perform poorly on the other.

While it is theoretically possible to gather new training data after each new image

acquisition, it is impractical if high-throughput is desired because manual labeling of

3D image stacks is incredibly time-consuming.

A practical solution is to use domain adaptation [49] and acquire sufficient amounts

of training data after one specific image acquisition and then to use it in conjunction

with a small amount of additional training data that can be acquired quickly after

each subsequent one to retrain the classifiers. Following the terminology of domain

adaptation, we refer to the acquisition with sufficient training data as the source domain

and the one with limited supervision as the target domain. Our goal is then to exploit

the labeled data in the source domain to learn an accurate classifier in the target domain

despite having only a few labeled samples in the latter. While domain adaptation has

received significant attention in the machine learning and computer vision communities,

to our knowledge it has only recently been gaining interest in Medical Imaging, and

remains largely unexplored for the acquisition problem depicted by Fig. 4.1. For many

bio-medical applications, such as the ones considered in this work, we believe it is greatly

needed to reduce annotation effort and make machine learning algorithms of practical

use.

Current approaches to domain adaptation, and more generally Transfer or Multi-

Task Learning [3, 21, 23, 32], treat classification in each domain as separate but related

problems and exploit their relationship to learn from the supervised data available across

all of them. Multi-task learning methods typically assume that the decision boundaries

in each domain can be decomposed into a private and a shared term in a common feature
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(a) Standard Multi-task Learning (b) Our Domain Adaptation approach

Figure 4.2: Illustration of the difference between (a) standard Multi-task Learning (MTL)
and (b) our domain adaptation approach on two tasks. The feature points for each task
are shown in either red or blue, and each point is drawn as a cross or circle depending on
its class. The dotted and dashed curves represent the decision boundaries of each task.
MTL assumes a single, pre-defined transformation φ(x) : X → Z and learns shared and
task-specific linear boundaries in Z, namely βo, β1 and β2 ∈ Z. In contrast, our approach
learns a single linear boundary β in a common feature space Z, and task-specific mappings
φ1(x), φ2(x) : X → Z. Best viewed in color.

space X , as illustrated by Fig. 4.2(a). Unfortunately, acquisition artifacts like the ones

shown in Fig. 4.1(a-d) may induce a significant, possibly non-linear transformation in

feature space that may violate this assumption, as shown in Fig. 4.2(b). To correct

for these unknown transformations, we propose to learn a non-linear mapping of the

features in each domain, such that samples can be mapped to a common discriminative

latent space Z, where a shared decision boundary exists, as depicted by Fig. 4.2(b).

Such mappings seek to compensate for domain differences and acquisition artifacts, so

that the classification task can be shared among them.

In this chapter we develop a boosting-based approach [23, 43, 115] that can simul-

taneously learn the non-linear mappings as well as the shared decision boundary. We

boost regression trees or stumps and model the domain-specific mappings with a set

of common regression trees that are shared across domains, but whose thresholds have

been adapted to each of them. Our approach does not require neither specific a pri-

ori knowledge about the mappings’ global analytical form or explicit correspondences

between training samples in the different domains. This is unlike more conventional

Latent Variable Models that can be applied to learn a shared mapping, such as those

based on Canonical Correlation Analysis (CCA) [9, 30]. These methods generally re-

quire instance-level correspondences which limits their applicability because they rarely
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are explicitly available and can be difficult to establish reliably. The situation is further

complicated by the fact that the unknown mappings often are non-linear. Although

kernel methods can handle this in theory [9, 73, 91], they require kernel functions that

can be difficult to specify a priori. Furthermore, the computational complexity of kernel

methods scales quadratically with the number of training samples, thus limiting their

applicability when there are large amounts of data available in the source domain.

In contrast, our approach easily scales to large training datasets and high-dimensional

feature spaces, often found in medical imaging [65, 97]. Moreover, unlike other methods,

our approach does not require tuning any parameter except those needed by the boosted

classifier it relies on. In practice, this is an important advantage, since cross-validation

can be unreliable when few labeled data is afforded in the target domain.

We evaluate our approach on the four challenging bio-medical applications depicted

by Fig. 4.1.

• The first two applications are mitochondria and synapse segmentation from large

3D Electron Microscopy (EM) stacks of neural rat tissue where the task is to

classify voxels that belong to either structure of interest. We use as source and

target domains stacks coming from different parts of the brain, each exhibiting

different acquisition artifacts, making it difficult to apply standard machine learn-

ing to learn a classifier that generalizes across image stacks and for which domain

adaptation is required to reduce costly annotation effort.

• We also consider the detection of Olfactory Projection Fibers from two-photon

Light Microscopy stacks and axons in Brightfield imagery. Although these rep-

resent two very different imaging modalities, the task is the same in each, where

we want to classify voxels as to whether they belonging to tubular structures. To

showcase the power of our approach, we use as our source domain the 2D aerial

images of roads shown in the bottom left of Fig. 4.1. This is of practical signif-

icance for two reasons. First, the appearance of the roads is very different from

that of the fibers or dendrites. Second, delineating semi-automatically in 2D is

much easier than delineating in 3D and our method makes its possible to leverage

this easily obtainable 2D data to perform the much harder 3D task.

We will show that our approach consistently outperforms recent multi-task learning

techniques [9, 23, 24] across this wide range of applications.
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4.2 Related Work

Domain adaptation and more generally Multi-Task Learning have received considerable

attention in the machine learning and computer vision communities. However, they

have only recently been gaining interest in Medical Imaging [16, 100, 107], and remain

largely unexplored for the acquisition problem. In this section we briefly review the

state-of-the-art methods in each of these communities and clarify their connections to

our work.

Initial approaches to multi-task learning exploited supervised data from related tasks

to define a form of regularization in the target problem [11, 21]. In this setting, related

tasks, also sometimes referred to as auxiliary problems [3], are used to learn a latent

representation and find discriminative features shared across tasks. This representation

is then transferred to the target task to help regularize the solution and learn from

fewer labeled examples. The success of these approaches crucially hinges on the ability

to define auxiliary tasks. Although this can be easily done in certain situations, as in

[3], in many cases it is unclear how to generate them.

More recent multi-task learning methods jointly optimize over both the shared and

task-specific components of each task [23, 26, 32, 61]. In [32] it was shown how the two

step iterative optimization of [3] can be cast into a single convex optimization problem.

In particular, for each task their approach computes a linear decision boundary defined

as a linear combination between a shared hyperplane, shared across tasks, and a task-

specific one in either the original or a kernelized feature space. This idea was later

further generalized to allow for more generic forms [26, 47, 61, 112], as in [26] that

investigated the use of a hierarchically combined decision boundary.

For many problems, such as those common to domain adaptation [49], the decision

problem is in fact the same across tasks, however, the features of each task have un-

dergone some unknown transformation. Feature-based approaches seek to uncover this

transformation by learning a mapping between the features across tasks [73, 90, 94]. A

cross-domain Mahalanobis distance metric was introduced in [90] that leverages across-

task correspondences to learn a transformation from the source to target domain. A

similar method was later developed in [60] to handle cross-domain feature spaces of a dif-

ferent dimensionality. [114] devises a surrogate kernel approach for modeling covariate

shift that matches domain feature distributions in Hilbert space and avoids the need for
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cross-domain correspondences. Shared latent variable models have also been proposed

to learn a shared representation across multiple feature sources or tasks [9, 40, 73, 91, 94].

Feature-based methods generally require well established cross-domain correspon-

dences and/or model non-linearities using the kernel-trick that relies on the selection

of a pre-defined kernel function and is difficult to scale to large datasets. Instead, we

pursue a discriminative learning approach that does not require explicit cross-domain

correspondences, and exploit the boosting-trick [23, 43] to handle non-linearities and

learn a shared representation across tasks, overcoming these limitations.

The use of boosting for multi-task learning was explored in [23] as an alternative

to kernel-based approaches. For each task they optimize for a shared and task-specific

decision boundary, as in [32], except that non-linearities are modeled using a boosted

feature space. As with other methods, however, additional parameters are required to

control the degree of sharing between tasks and can be difficult to set, especially when

one or more tasks have only a few labeled samples. Similarly, [25] devises a boosting-

based domain adaptation method assuming that the source domain contains out-dated

samples that are down-weighted during learning. Even though [23] and [25] address

different adaptation problems, both assume that there exist weak learners that can

be shared between domains or tasks as a means of regularizing inter-domain learning,

which may not be true in cases such as those shown in Fig. 4.1.

Another interesting method is that of [24] that learns a boosted regressor for web

search ranking, using regression tree weak learners. They adapt boosted regression trees

learned in the source domain to the target domain by interpolating the thresholds and

leaf-node responses in each tree. In this way, similar to [23, 25], they seek to recover

the private component of the target domain that in our problem corresponds to the

unwanted acquisition artifacts. Furthermore, they require an interpolation parameter

that weights the different domains, which, as with [23], can be difficult to cross-validate

when afforded few training samples in the target domain.

In contrast to [23, 24, 25], we learn a mapping to a shared feature space that preserves

the task-relevant features and learn the thresholds across domains by jointly minimizing

a common loss that does not rely on a pre-defined adaptation parameter.

Within the Medical Imaging community, domain adaptation has been applied to

augment training data from synthetically generated samples [44, 107], as well as to
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modality fusion [50] and multi-task anomaly detection in CT and ultrasound [16]. How-

ever, the data acquisition problem depicted by Fig. 4.1 remains largely unexplored. An

exception is [100], which targets image segmentation using labeled samples obtained

across multiple image acquisitions. However, [100] is based on a sample re-weighting

scheme that relies on having several labeled acquisitions, not always available in large

numbers for EM and LM, and is difficult to scale to large training datasets. In contrast,

our approach can leverage as little as one source acquisition, and is also easily amenable

to large data volumes and high dimensional feature spaces.

4.3 Our Approach

In this section we first introduce our shared latent space model. We then discuss the

specific weak learners we use.

4.3.1 Shared Latent Space Model

We consider the problem of learning a binary decision function from supervised data

collected across multiple domains. In our setting, each task is an instance of the same

underlying decision problem, however, its features are assumed to have undergone some

unknown non-linear transformation. Even though task and domain originally denote

different concepts, in the remainder of this chapter we use these terms interchangeably

as is generally done in the literature [23, 25].

Assume that we are given training samples Xt = {xt
i, y

t
i}Nt

i=1 from t = 1, . . . , T tasks,

where xt
i ∈ R

D represents a feature vector for sample i in task t and yti ∈ {−1, 1} its

label. For each task, we seek to learn a non-linear transformation φt(x
t) that maps

xt to a common, task-independent feature space Z, accounting for unwanted feature

transformations. Instead of relying on pre-defined kernel functions, we model each

transformation using a set of M task-specific non-linear functions Ht = {ht1, . . . , htM},
htj : RD → R, to define φt : Xt → Z as φt(x

t) = [ht1(x
t), . . . , htM (xt)]T. In the context

of boosting, the htj(·) represent all the possible weak learners and M = |Ht| is the total

number of them, which can be large and possibly infinite.

We consider functions of the form

htj(x
t) = hj(x

t − τ t
j ), j = 1, . . . ,M , (4.1)
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where H = {h1, . . . , hM} are shared across tasks, while τ t
j ∈ R

D are task-specific. An

interpretation of Eq. 4.1 is that all tasks share mid-level representations of the decision

boundary, namely the weak learners hj(·). However, for those representations to be

shared among domains, the low level responses must be adapted to compensate for

varying imaging conditions. The latter is accomplished through the τ t
j . Empirically

we found this model to work well in cases of domain shift resulting from differences in

acquisition artifacts, such as those typically encountered in bio-medical applications.

Assuming that the problem is linearly separable in Z, the predictive function ft(·) :
R
D → R for each task can then be written as

ft(x) = βT φt(x
t) =

M∑
j=1

βjhj(x
t − τ t

j ) , (4.2)

where β ∈ R
M is a linear decision boundary in Z that is common to all tasks, and

corresponds to a non-linear boundary in each of the original task-specific input spaces

via the φt. This contrasts with previous approaches to multi-task learning such as

[23, 32] that learn a separate decision boundary per task, βt, in a common input space

φ(·), as shown in Fig. 4.2. In the results section we show that our approach performs

better for applications such as those depicted by Fig. 4.1.

We learn the functions ft(·) by minimizing the exponential loss on the training data

across each task

β∗,Γ∗ = min
β,Γ

T∑
t=1

ct L(β,Γt;Xt), (4.3)

where ct ∈ R is the weight of task t, and

L(β,Γt;Xt) =

Nt∑
i=1

exp
[− ytift(x

t
i)
]

(4.4)

=

Nt∑
i=1

exp
[
− yti

M∑
j=1

βjhj(x
t
i − τ t

j )
]
, (4.5)

with Γ = [Γ1, . . . ,ΓT ] and Γt = [τ t
1, . . . , τ

t
M ].

The explicit minimization of Eq. (4.3) can be very difficult because in practice the

dimensionality of β can be prohibitively large and the hj ’s are typically discontinuous

and highly non-linear. Luckily, this is a problem for which boosting is particularly

well suited [43]. It has been shown to be an effective method for constructing a highly

accurate classifier from a possibly large collection of weak predictors. Similar to the
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4. DOMAIN ADAPTATION FOR MICROSCOPY IMAGING

kernel-trick, the resulting boosting-trick [23, 43, 115] can be used to define a non-linear

mapping to a high dimensional feature space in which we assume the data to be lin-

early separable. Unlike the kernel-trick, however, the boosting-trick defines an explicit

mapping for which β is assumed to be sparse [23, 89]. Within this setting, each hj can

be interpreted as a weak non-linear predictor of the task label.

We use gradient boosting [43, 115] to solve for ft(·). Given any twice-differentiable

loss function, gradient boosting minimizes the loss in a stage-wise manner for iterations

k = 1 to K. More specifically, we use the quadratic approximation introduced by [115].

When applied to minimizing Eq. (4.3), the goal at each boosting iteration is to find the

weak learner h̃ ∈ H and the set {τ̃ 1, . . . , τ̃ T } that minimize

T∑
t=1

⎛
⎝ Nt∑

i=1

wt
ik

[
h̃(xt − τ̃ t)− rtik

]2⎞⎠ , (4.6)

where wt
ik and rtik can be computed by differentiating the loss of Eq. (4.5), obtaining

wt
ik = ct e

−ytift(x
t
i) and rtik = yti . Once h̃ and {τ̃ 1, . . . , τ̃ T } are found, a line-search pro-

cedure is applied to determine the optimal weighting for h̃ and the predictive functions

ft(·) are updated, as described in Alg. 1. Shrinkage may be applied to help regularize the

solution, particularly when using powerful weak learners such as regression trees [43].

Our proposed approach is summarized in Alg. 1. The main difficulty in implementing

it is at line 4. Finding the optimal values of h̃ and {τ̃ 1, . . . , τ̃ T } that minimize Eq. 4.6

can be very expensive, depending on the type of weak learners employed. In the next

section we show that regression trees and boosted stumps can overcome this problem.

4.3.2 Weak Learners

In this section we introduce the weak learners used in our approach and their corre-

sponding training procedure. We consider both regression tree and decision stump weak

learners.

Regression trees have proven very effective when used as weak learners in conjunc-

tion with gradient boosting [22]. An important advantage is that training regression

trees involves almost no parameter tuning and is very efficient when a greedy top-down

approach is used [43].

Decision stumps are a special case of single-level regression trees. Despite their

simplicity, they have been shown to achieve high performance in challenging tasks such
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Algorithm 1 Non-Linear Domain Adaptation with Boosting

Require: Training samples and labels for T tasks Xt = {(xt
i, y

t
i)}Nt

i=1

Task weights ct ∈ R for each task t. Typically ct = 1 ∀ t

Number of iterations K, shrinkage factor 0 < γ ≤ 1

1: Set ft(·) = 0 ∀ t = 1, . . . , T

2: for k = 1 to K do

3: Let wt
ik = ct e

−ytift(x
t
i) and rtik = yti

4: Find weak learner and parameters:{
h̃(·), τ̃ 1, . . . , τ̃ T

}
= argmin

h∈H,τ1,...,τT

T∑
t=1

Nt∑
i=1

wt
ik

[
h(xt

i − τ t)− rtik
]2

5: Find α̃ through line search:

α̃ = argmin
α

T∑
t=1

Nt∑
i=1

ct exp
[
− yti

(
ft(x

t
i) + α h̃(xt

i − τ̃ t)
)]

6: Set β̃ = γ α̃

7: Update ft(·) = ft(·) + β̃ h̃( · − τ̃ t) ∀ t = 1, . . . , T

8: end for

9: return ft(·) ∀ t = 1, . . . , T

as face and object detection [2, 104]. In cases where feature dimensionality D is very

large, decision stumps may be preferred to regression trees to reduce training time.

4.3.2.1 Regression Trees

We use trees whose splits operate on a single dimension of the feature vector, also known

as orthogonal splits, and follow the top-down greedy tree learning approach described

in [43]. The top split is learned first so as to minimize

argmin
n∈{1,...,D},

η1,η2,{τ1,...,τT }

T∑
t=1

(
Nt∑
i=1

1{xt
i[n]−τ t} w

t
ik

[
η1 − rtik

]2

+

Nt∑
i=1

1̄{xt
i[n]−τ t} w

t
ik

[
η2 − rtik

]2)
, (4.7)

where x[n] ∈ R denotes the value of the nth dimension of x, 1{·} is the step function,

and 1̄{·} = 1 − 1{·}. As in Eq. 4.6, the weights, wt
ik, and residuals, rtik, are computed
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by differentiating the loss of Eq. (4.5). The difference with classic regression trees is

that, in addition to learning the values of η1, η2 and n, our approach requires the tree

to also learn a threshold τ t ∈ R per task. Given that each split operates on a single

attribute x[n], the resulting τ̃ t is sparse, and learned one component at a time as the

tree is built.

Once the top split is learned, new splits are learned on children leaves recursively.

This process stops when the maximum depth L, given as a parameter, is reached, or

there are not enough samples to learn a new node at a given leaf.

4.3.2.2 Decision Stumps

Decision stumps consist of a single split and return values η1, η2 = ±1. If also rtik = ±1,

which is true when boosting with the exponential loss, then it can be demonstrated

that minimizing Eq (4.7) can be separated into T independent minimization problems

for all D attributes for each n. Once this is done, a quick search can be performed

to determine the n that minimizes Eq. (4.7). This makes decision stumps feasible for

large-scale applications with very high dimensional feature spaces.

When using the exponential loss in conjunction with decision stumps, Alg. 1 reduces

to a procedure similar to classic AdaBoost [37], with the exception that weak learner

search is done in the multi-task manner described above.

4.3.2.3 Training Complexity

Both regression trees and decision stumps require storage linear in the number of train-

ing samples in each task. Similarly, the time complexity of training a single decision

stump is linear in the total number of training examples or O(N̄), with

N̄ =
T∑
t=1

Nt. (4.8)

This contrasts with kernel machines whose storage and time complexity is O(N̄2) [73].

Regression trees are more costly to train as they require a joint search over the

thresholds across tasks whose complexity is O(
∏

tNt). In this work we mainly focus

on applications containing a single source and target task, representative of the most

common domain adaptation setting. In such cases T = 2 and the complexity of training
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regression trees remains smaller than that of kernel machines, since N1N2 < (N1)
2 +

(N2)
2 + 2N1N2.

For T > 2, regression trees become costly and their complexity can grow faster than

N̄2. It may still be possible to train them efficiently, but we leave this as a topic for

future work.

4.4 Evaluation

We evaluated our approach on four challenging and representative domain adaptation

problems for which annotation is very time-consuming. We first describe the datasets,

our experimental setup and baselines, and finally present and discuss our results.

4.4.1 Datasets

The experiments used for evaluation are described below, and Table 4.1 summarizes the

different datasets employed, their characteristics and amount of labeled data available.

4.4.1.1 Mitochondria and Synapse Segmentation

Mitochondria and synapses are structures that play an important role in cellular func-

tioning. Here, the task is to segment mitochondria and synapses from large 3D Electron

Microscopy (EM) stacks, acquired from the brain of a rat. Example slice cuts are pre-

sented in Fig. 4.1(a-d). As in the path classification problem, 3D annotations are time-

consuming and exploiting already-annotated stacks is essential to reduce labeling effort

and speed up analysis. We use our boosting-based method with contextual features

introduced in Chapter 2.

For mitochondria segmentation, the source domain is a fully-labeled EM stack from

the Striatum region of 853x506x496 voxels with 39 labeled mitochondria. The target

domain consists of two stacks acquired from the Hippocampus, one a training stack

of size 1024x653x165 voxels and the other a test stack of size 1024x883x165 voxels,

with 10 and 42 labeled mitochondria in each respectively. The target test volume is

fully-labeled, while the training one is partially annotated, similar to a real scenario.

For synapse segmentation, the source domain is a stack acquired from the Cere-

bellum of size 1027x987x219 voxels with 11 labeled synapses, and the target domain

is an EM stack from the Somatosensory Cortex region, which was divided in training
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Experiment Modality / Acquisition Image(s)
Labeled Data

(pos / neg samples)

Mitochondria Segmentation

Source Domain EM / Striatum 853×506×496
39 mitochondria

(15k, 275k)

Target Domain

Train
EM / Hippocampus

1024×653×165
10 mitochondria

(3k, 12k)

Test 1024×883×165
42 mitochondria

(14k, 265k)

Synapse Segmentation

Source Domain EM / Cerebellum 853×506×496
11 synapses
(3k, 645k)

Target Domain

Train
EM / Som. Cortex

1024×653×165
10 synapses
(7k, 510k)

Test 1024×883×165
28 synapses
(35k, 6M)

Paths: Brightfield to OPF

Source Domain Brightfield / Neural axons
6 images 30k paths

≈ 800×800×90 each (15k, 15k)

Target Domain

Train
OPF / Neural axons

4 stacks 20k paths
≈ 512×512×70 each (10k, 10k)

Test
4 stacks 20k paths

≈ 512×512×70 each (10k, 10k)

Paths: OPF to Brightfield

Source Domain OPF / Neural axons
8 stacks 40k paths

≈ 512×512×70 each (20k, 20k)

Target Domain

Train
Brightfield / Neural axons

3 stacks 15k paths
≈ 800×750×80 each (7.5k, 7.5k)

Test
3 stacks 15k paths

≈ 700×900×100 each (7.5k, 7.5k)

Paths: Roads to OPF

Source Domain Aerial Images / Roads
6 images 30k paths

≈ 750×850 each (15k, 15k)

Target Domain

Train
OPF / Neural axons

4 stacks 20k paths
≈ 512×512×70 each (10k, 10k)

Test
4 stacks 20k paths

≈ 512×512×70 each (10k, 10k)

Paths: Roads to Brightfield

Source Domain Aerial Images / Roads
6 images 30k paths

≈ 750×850 each (15k, 15k)

Target Domain

Train
Brightfield / Neural axons

3 stacks 15k paths
≈ 800×750×80 each (7.5k, 7.5k)

Test
3 stacks 15k paths

≈ 700×900×100 each (7.5k, 7.5k)

Table 4.1: Description of the segmentation and path classification experiments used for
evaluation.
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and testing stacks, each of size 750x564x750 and 655x429x250, with 10 and 28 labeled

synapses respectively.

4.4.1.2 Path Classification

Tracing arbors of curvilinear structures is a well studied problem that finds applications

in a broad range of fields from neuroscience to photogrammetry. In [99], Turetken et

al. showed the advantage of using a path classifier and a mixed integer programming

formulation to automatically trace such structures. Within this framework, machine

learning is used to predict, based on image evidence, if a tubular path between two points

in the image belongs to a curvilinear structure or not. [99] employed descriptors named

Histogram of Gradient Deviations (HGD) designed to capture several characteristics

of tubular structures in images. From the HGDs generated from the training images,

300 of them are randomly picked as codewords of a visual dictionary. For each given

path of arbitrary length, the feature vector is generated by finding an embedding of its

HGDs in the dictionary. In addition to the 300 HGDs embedding, the feature vector

also contains the maximum curvature along the path, which provides information about

its geometry.

This approach can be used for both 2D images and 3D image stacks, since feature

vectors have a fixed size, regardless of the dimensionality of the input image. This

allows us, in theory at least, to apply a classifier trained on 2D images to 3D volumes.

The latter would be highly beneficial, since labeling 2D images is much easier than an-

notating 3D stacks. However, differences in appearance and geometry of the structures

may potentially adversely affect classifier accuracy when 2D-trained ones are applied to

3D stacks, which motivates domain adaptation.

We choose images from two publicly available datasets [99] to form two separate

target domains. The first one consists of 3D image stacks of Olfactory Projection Fibers

(OPF) from the DIADEM challenge [6], as depicted by Fig. 4.1(f). The second one is

made of Brightfield microscopy stacks, such as those depicted by Fig. 4.1(g). The latter

generates a significantly harder problem, due to the irregular staining of the dendrites

and axons, which produces structured noise [99].

As source domain we explore two possible choices, one that relies on 3D imagery and

the other on 2D imagery, even though the target domain is 3D. The former is closer to

the target domain but the latter makes sense from an operational point of view because
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it is far easier to extract large amounts of ground truth data semi-automatically from

2D images than from 3D ones. To highlight the power of our approach, we use 2D aerial

road images as our source domain, whose appearance is significantly different from that

of the dendrites and axons in the target domain.

4.4.2 Experimental Setup

As in Chapter 2, we group voxels into supervoxels to reduce training and testing time for

mitochondria and synapse segmentation, which yields 15k positive and 275k negative

supervoxel samples in the source domain of the Mitochondria dataset and 7k positive

and 645k negative samples in the source domain of the synapse dataset. This renders

12k and 510k negative training samples in the target domain of the Mitochondria and

synapse datasets respectively.

To simulate a real scenario, we create 10 different transfer learning problems using

the samples from either one mitochondria or synapse at a time as positives, which trans-

lates into approximately 300 and 800 positive training supervoxels per mitochondria or

synapse, respectively. We use the default parameters in Table 2.1(K = 2000). We

evaluate segmentation performance using the Jaccard Index, computed as the number

of true positives over the sum of true positives, false negatives and false positives.

For path classification, 2500 positive and negative samples are extracted from each

image through random sampling, as in [99]. This results in balanced sets of 30k samples

for training in the roads dataset, and 20k for training and 20k for testing for OPF, and

15k in each in for Brightfield. When the last two are used as the source domain, training

and testing sets are merged together, yiending 40k and 30k samples respectively. To

simulate the lack of training data, we randomly pick an equal number of positive and

negative samples for training from the target domain.

The HGD codewords are extracted from the source domain dataset, and used for

both domains to generate consistent feature vectors. We employ gradient boosted trees,

which in our experiments outperformed boosted stumps and kernel SVMs. For all the

boosting-based baselines we set the maximum tree depth to L = 3, equivalent to a

maximum of 8 leaves, and shrinkage γ = 0.1, as in [43]. The number of boosting

iterations is set to K = 500. For these datasets we report the test error computed as

the percentage of mis-classified examples.
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For all datasets we evaluate our approach with and without class balancing. With

class balancing we set ct = 1
Nt

to give both tasks equal weight, while without class

balancing we set ct = 1 for each task.

4.4.3 Baselines

On each dataset, we compare our approach against the following baselines: training

with source or target domain data only (shown as SD only and TD only), training a

single classifier with both target and source domain data (Pooling), and with the multi-

task approach of [23] (labeled Chapelle et al.). On the path classification datasets we

evaluate our approach using regression-tree weak learners and therefore also compare

to the tree-based adaptation (Trada) method of [24] on these datasets. We evaluate

performance with varying amounts of supervision in the target domain, and also show

the performance of a classifier trained with all the available labeled data, shown as

Full TD, which represents fully supervised performance on this domain and is useful in

gauging the relative performance improvement of each method. In a sense this represents

the gold-standard that the best transfer learning technique could be expected to achieve.

We also compare to linear Canonical Correlation Analysis (CCA) and Kernel CCA

(KCCA) [9] for learning a shared latent space on the path classification dataset, and

use a Radial Basis kernel function for KCCA, which is a commonly used kernel. Its

bandwidth is set to the mean distance across the training observations. Following

[60, 90] we establish correspondence between domains using their binary category labels.

The data size and dimensionality of the Mitochondria and synapse datasets is prohibitive

for these methods, and instead we compare to Mean-Variance Normalization (MVN)

and Histogram Matching (HM) that are common normalizations one might apply to

compensate for acquisition artifacts. MVN normalizes each input 3D intensity patch to

have a unit variance and zero-mean, useful for compensating for linear brightness and

contrast changes in the image. HM applies a non-linear transformation and normalizes

the intensity values of one data volume such that the histogram of its intensities matches

the other.

4.4.4 Results: Mitochondria and Synapse Segmentation

The Jaccard Index on the test stacks of the EM segmentation datasets for 10 differ-

ent runs is shown in Fig. 4.3 for our approach and the baseline methods, with varying
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(a) Mitochondria Segmentation (b) Synapse Segmentation

Figure 4.3: EM Segmentation: (a) mitochondria and (b) synapses. Jaccard index mea-
sure for our method and the baselines over 10 runs on the target domain, with varying
supervision. Simple Mean-Variance Normalization (MVN) and Histogram Matching (HM),
although helpful, are unable to fully correct for differences between acquisitions when only
afforded few labeled data. In contrast, our method yields a higher performance without
the need for such priors and is able to faithfully leverage the source domain data to learn
from relatively few examples in the target domain, outperforming the baseline methods.

amounts of supervision in the target domain. The performance of SD-only is not dis-

played since it performs poorly on both datasets and yields a Jaccard Index below

50%.

The results for mitochondria segmentation are displayed in Fig. 4.3(a). Our ap-

proach significantly outperforms Chapelle et al. and the other baselines. The next

most successful method is pooling with histogram matching (HM). However, our method

yields even higher performance, its accuracy being close to that of Full TD when us-

ing only one labeled target mitochondria. When given more labeled data, both our

approach and HM yield higher performance than TD only and is even able to use the

source domain data to improve over Full TD.

Similarly, the results for synapse segmentation are shown in Fig. 4.3(b). Each labeled

synapse contains only a few supervoxels. Given such limited supervision, Chapelle et

al. does not improve upon TD-only performance. Instead, it overfits to the source

domain data. Similarly, MVN and HM normalization are unable to account for the

transformation between the different data acquisitions. In contrast, our approach is able
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Ground Truth TD only Pooling + HM Chapelle et al. Our approach

Figure 4.4: Qualitative results for the segmentation datasets when using a single labeled
mitochondria or synapse in the target domain. The segmentation masks output by our
approach and the baselines are shown in red for two example mitochondria and synapses.
The ground-truth is also shown. Compared with baselines the segmentations output by
our approach exhibit a higher accuracy and most closely resemble the ground-truth. Best
viewed in color.

to effectively leverage the source domain data to obtain a more accurate segmentation

even with only one labeled synapse in the target domain. Provided four labeled synapses

it becomes difficult to improve over TD-only performance. However, as annotation in

3D is costly this already represents a significant labeling effort, and our approach still

exhibits the best overall performance.

Qualitative segmentation results obtained with a single labeled mitochondria or

synapse are also provided in Fig. 4.4. Compared to the baselines, the segmentations

generated by our approach exhibit higher accuracy and most closely resemble the ground

truth. From a practical point of view, our approach does not require parameter tuning
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and cross-validation is not necessary. This can be a bottleneck in some scenarios where

large volumes of data are used for training. For this task, training our method took less

than an hour per run, while Chapelle et al. took over 7 hours due to cross-validation.

We also compare to linear Canonical Correlation Analysis (CCA) and Kernel CCA

(KCCA) [9] for learning a shared latent space on the path classification dataset, and

use a Radial Basis kernel function for KCCA, which is a commonly used kernel. Its

bandwidth is set to the mean distance across the training observations. Following

[60, 90] we establish correspondence between domains using their binary category labels.

The data size and dimensionality of the Mitochondria and synapse datasets is prohibitive

for these methods, and instead we compare to Mean-Variance Normalization (MVN)

and Histogram Matching (HM) that are common normalizations one might apply to

compensate for acquisition artifacts. MVN normalizes each input 3D intensity patch to

have a unit variance and zero-mean, useful for compensating for linear brightness and

contrast changes in the image. HM applies a non-linear transformation and normalizes

the intensity values of one data volume such that the histogram of its intensities matches

the other.

4.4.5 Results: Path Classification

We first discuss using 3D imagery as both the source and target domains and then 2D

imagery as the source while the target remains 3D.

3D Neural Axons as the Source Domain Fig. 4.5 depicts our path classification

results using the 3D microscopy images from one microscopy imaging technology as the

source domain, and those of the other one as the target domain. As the microscopy

images from each dataset depict very different imaging modalities (see Fig. 4.1), this

poses a challenge for transfer learning. The performance of SD-only and linear CCA on

these datasets is above 29% and 8% respectively, and as such they are not displayed in

the figure.

The results of Brightfield to OPF are shown in Fig. 4.5 (top). With the exception of

Trada and our approach, the other baseline methods have difficulty improving over TD-

only performance, and in fact perform worse than it especially when provided only a few

labeled samples in the target domain. In contrast, our approach achieves a consistent

improvement over TD-only that is seen to be most significant when the labeled data
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Figure 4.5: Path Classification, 3D imagery as source domain: Median, lower and upper
quartiles of the test error as the number of training samples is varied. Our approach is able
to successfully leverage the source domain data to significantly reduce annotation effort
and exhibits the best overall performance across both datasets. Best viewed in color.

in the target domain is scarce, which is when domain adaptation is most needed, and

it is even able to improve over Full-TD. The performance of our approach is matched

by Trada on this dataset, which is also able to achieve a significant improvement over

TD-only and the other baselines.

Fig. 4.5 (bottom) displays the results for OPF to Brightfield. Our approach with task

balancing achieves a significant improvement over TD-only performance when provided

few target domain training samples and outperforms the baselines. Task balancing

plays a more significant role for the Bightfield dataset that can be attributed to the

large appearance difference between them and the rich visual cues that are present in

Brightfield but absent from OPF. Unlike Brightfield to OPF, Trada is unable to match
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Figure 4.6: Path Classification, 2D imagery as source domain: Median, lower and upper
quartiles of the test error as the number of training samples is varied. For OPF, our
approach nears Full TD performance with as few as 70 training samples in the target
domain and significantly outperforms the baseline methods for both experiments when
afforded few training samples. Best viewed in color.

the performance of our approach when adapting OPF to Brightfield, which is likely

due to its reliance on a cross-domain interpolation parameter that can be difficult to

cross-validate, that is not required with our approach.

Surprisingly, naive Pooling achieves the best performance for OPF to Brightfield.

Note, however, that while it does exceptionally well on this dataset, its preference

towards Brightfield is also reflected when transferring from Brightfield to OPF where it

results in the worst performance that is significantly worse than TD-only. In contrast,

our approach is able to consistently improve over TD-only performance and the baselines

and successfully leverage the source domain data to reduce annotation effort across both
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datasets.

2D Aerial Roads as the Source Domain Using the same 3D images as before as

our target domain, we now switch to aerial road images such as those in the third row

of Fig. 4.1 to provide our source domain. Compared with to the 3D microscopy images,

the 2D road images exhibit a much more different appearance to those of the target

domain and therefore present a greater challenge.

The results on the OPF dataset are shown in Fig. 4.6 (top). Our approach out-

performs the baselines, especially when there are few training samples in the target

domain, and yields a similar performance with and without task balancing. The next

best competitor is Trada, followed by Chapelle et al., although this method exhibits a

much higher variance than our approach and both baselines perform poorly when only

provided a few labeled target examples. This is also the case for KCCA. The results of

linear CCA are not shown in the plots because it yielded very low performance com-

pared to the other baselines, achieving a 14% error rate with 1k labeled examples and

its performance significantly degrading with fewer training samples. Similarly, SD only

performance is 16%.

Our approach comes close to Full TD when using as few as 70 training samples, even

though the Full TD classifier was trained with 20k samples from the target domain.

This highlights the ability of our method to effectively leverage the large amounts of

source-domain data. As shown in Fig. 4.6, there is a clear tendency for all methods to

converge at the value of Full TD, although our approach does so significantly faster.

Moreover, the parameter tuning required by Chapelle et al. and Trada is done through

cross-validation, which can perform poorly when only afforded a few labeled samples in

the target domain, and results in longer training times. Chapelle et al. took 25 minutes

to train, while our approach only took between 2 and 15 minutes, depending on the

amount of labeled data.

The results on the Brightfield dataset are shown in Fig. 4.6 (bottom). Both linear

and kernel CCA perform poorly on this dataset, the performance of linear CCA being

only 15% using 1k labeled samples and it is not shown in the plot. Similarly, Chapelle

et al. requires a fair amount of supervision in the target domain before achieving an

improvement over SD only performance. Trada also performs poorly on this dataset.

In contrast, our approach obtains a significant improvement with as little as 30 labeled
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(a) Image Stack (b) Ground Truth (c) TD only

(d) Chapelle et al. [23] (e) Trada [24] (f) Our approach

Figure 4.7: Qualitative results for the OPF path classification dataset. The 3D visualiza-
tions show the amount of false positive and false negative paths predicted by each approach
at every location in the stack along with the ground-truth. The color coding displays the
number of false or missed detections passing through each location. While all approaches
result in only a few missed detections, compared with the baseline methods our approach
produces significantly fewer false detections. Best viewed in color.

target samples, outperforming the baseline methods. For > 70 labeled target samples,

although it still performs better than the other methods, our approach without task

balancing performs worse than the TD only baseline. We believe this is because of task-

specific attributes in the Brightfield dataset that are not modeled with our approach.

This effect is diminished with task balancing, which assigns more emphasis to the target

training samples during learning. Despite these differences, our approach is still able

to more effectively leverage the source domain data to reduce the required amount of

supervision in the target domain compared to the baselines.
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(a) Image Stack (b) Ground Truth (c) TD only

(d) Chapelle et al. [23] (e) Trada [24] (f) Our approach

Figure 4.8: Qualitative results for the Brightfield path classification dataset. The 3D
visualizations show the amount of false positive and false negative paths predicted by each
approach at every location in the stack along with the ground-truth. The color coding
displays the number of false or missed detections passing through each location. Compared
with the baselines our approach results in the fewest overall number of false and missed
detections yielding a more accurate path classification. Best viewed in color.
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(a) OPF dataset, 30 training samples in TD (b) OPF dataset, 400 training samples in TD
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(c) Mitochondria dataset, 1 labeled in TD (d) Mitochondria dataset, 10 labeled in TD

Figure 4.9: Analysis of the behavior of the trained classifiers through partial dependence
plots for the OPF (top) and Mitochondria segmentation (bottom) datasets, with different
amounts of training data in the Target Domain. Best viewed in color.

Qualitative results are displayed for both the OPF and Brightfield datasets in

Fig. 4.7 and 4.8. The false and missed detections are shown for each of the baselines

and our approach. As false detections typically concentrate about overlapping subpaths

on these datasets, we display a color coding that for each voxel reflects the number of

false or missed detections that include it. On OPF all approaches result in only a few

missed detections, however, our approach achieves a significant decrease in false detec-

tions. Compared with OPF, the Brightfield dataset contains more complicated path

structures. Our approach exhibits the best performance amongst the baseline methods

on this dataset, with the fewest overall number of false and missed detections resulting

in a more accurate path reconstruction.

80



4.4 Evaluation

4.4.6 Partial Dependence Analysis

To analyze the behavior of the classifiers learned with our approach, we use Par-

tial Dependence Plots (PDPs) [43] to observe the classifier score as a function of

the value of one specific feature, averaging out the effect of the other features. If

x = (x[1], . . . , x[M ])T and features are indexed with P = {1, 2, . . . ,M}, denote the

scoring function as f(x) = f(x[n],xc), where xc contains all features but the nth one.

The partial dependence of f(x) with respect to the nth feature is then computed as

f̄n(λ) =
1

|X|
∑
x∈X

f(λ,xc) , (4.9)

where X is the set of available training data.

We choose λ to be features with high relative importance [43] for the path classifica-

tion and mitochondria segmentation datasets, and then plot the PDPs for the baselines

SD only, TD only, Full TD, and our approach in Fig. 4.9. When comparing two clas-

sifiers, what matters is their behavior as a function of the feature value, i.e., the shape

of their response, while the overall scaling is classifier-dependent.

For the OPF dataset, we plot the partial dependence of the feature that encodes the

maximum curvature along the path. From Figs. 4.9(a,b) it is observed that the classifier

prefers paths with a low curvature, which is a sensible choice, since the shape of tubular

structures is typically smooth. For the mitochondria dataset the partial dependence of

one of the structure tensor eigenvalues is displayed, which has a high value when inside

a mitochondria, also reflected in Figs. 4.9(c,d).

In Fig. 4.9 the PDPs of the learned classifiers are displayed with varying amounts of

supervision in the target domain. Figures 4.9(a,c) depict the errors that can result from

overfitting when afforded only few target domain training samples (TD only), such as

missing important features (Fig. 4.9(a)), indicated by its constant PDP, or learning an

incorrect pattern (Fig. 4.9(c)). In contrast, our approach is able to leverage the source

domain data to discover relevant features and prevent overfitting. Another interesting

observation is the shift between the curves for Full TD and SD only, which reflect

acquisition differences that are compensated by our approach.

Finally, Figs. 4.9(b,d) show the same plots when afforded a considerable amount of

training data in the target domain. In this case, the TD only classifier exhibits a more

similar performance to Full TD and is able to learn a more representative pattern.
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Although our approach also improves, its PDPs are fairly consistent across different

amounts of supervision and it is able to learn a representative pattern even with limited

supervision in the target domain.

4.5 Conclusion

We presented an approach for performing non-linear domain adaptation with boost-

ing. Our method learns a task-independent decision boundary in a common feature

space, obtained via a non-linear mapping of the features in each task. This contrasts

recent approaches that learn task-specific boundaries and is better suited for problems

in domain adaptation where each task is of the same decision problem, but whose fea-

tures have undergone an unknown transformation. In this setting, we illustrated how

the boosting-trick can be used to define task-specific feature mappings and effectively

model non-linearity, offering distinct advantages over kernel-based approaches both in

accuracy and efficiency. Our method relies on mid-level features and its effectiveness

depends on the extent to which these features can be shared across the target and

source domains. We evaluated our approach on four challenging bio-medical datasets

where it achieved a significant gain over using labeled data from either domain alone

and outperformed recent multi-task learning methods.
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Synaptic Structure in the Aging
Mouse Cortex
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CHAPTER

FIVE

SYNAPTIC STRUCTURE IN THE AGING MOUSE CORTEX

In this chapter we apply the synapse segmentation approach introduced in Chapter 3 to

analyze and compare the structure and shape of synaptic densities between adult and

aged mice. Such detailed analysis requires labeling each voxel within every synapse in

a stack, rendering manual annotation unfeasible for large volumes. In this chapter we

demonstrate that our approach can efficiently generate full 3D segmentations that agree

with expert annotations, while requiring very little annotation effort. To our knowledge,

we are the first ones to analyze synapse shape in such detail on large stacks, as previous

work has strongly relied on manual annotations, restricting analysis to small volumes.

5.1 Introduction

Though there is significant evidence that synaptic impairment is the main cause of age-

related cognitive decline, this phenomenon is so far poorly understood [18, 41]. Although

it is believed that synaptic density and plasticity are fundamental factors in synaptic

impairment, most studies rely on manual annotation, imposing a limit on the level of

detail and structures that can be inspected. For example, while manually labeling the

existence of a synapse with a sphere to assess its size and location is typically fast,

manually segmenting them voxel by voxel to analyze their shape is infeasible without

automated methods.

In this chapter we show we can bridge this gap with the automated segmentation

approach introduced in Chapter 3. To show its effectiveness, we analyze six large

FIB/SEM brain stacks acquired from six different mice. Three of them are young
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Mouse
Age xy voxel size z voxel size Stack Size Stack size

(months) (nm) (nm) (μm) (MB)

1 4 6.0 18.6 12.3× 9.2× 7.8 1300
2 12 6.0 13.5 10.3× 11.2× 12.9 2900
3 4 5.0 11.1 15.2× 10.9× 15.3 8600
4 12 5.0 15.0 12.2× 9.2× 9.5 2700
5 12 5.0 10.2 14.1× 11.1× 4.7 2800
6 4 5.0 21.0 15.2× 10.9× 14.7 4400

Table 5.1: Details about the six C57 black 6 male mice involved in the experiments.

adults, and the other three are aged mice, offering an excellent opportunity to try our

segmentation approach to analyze how aging affects the brain.

In the following sections we describe our data, the available annotations and how our

automated segmentation approach was applied on the six stacks. We then validate our

method and compare it to fully manual annotations, demonstrating that it is possible

to obtain high quality results with much less labeling effort. Finally, we extract valu-

able morphological information from our segmentation output, that would otherwise be

unfeasible with purely manual annotation.

5.2 Data Acquisition and EM Stacks

We analyze six large FIB/SEM brain stacks, acquired from six different C57 black 6

males, of 4 and 24 months of age. The data was collected and acquired by Graham

Knott at the BioEM Facility at the Centre of Electron Microscopy at the EPFL. The

stacks were imaged from cortical layer 1, halfway between the pial surface of the brain,

and the beginning of layer 2.

Sample fixation, resin embedding and sample preparation were performed as in [56].

Once acquired, the stacks were registered with the StackReg Fiji plugin [96]. A summary

of the available data is shown in Table 5.1.

5.2.1 Manual Annotation with Spheres

The location and approximate size of synapses in each stack were annotated by re-

searchers at the BioEM facility at EPFL using Fiji [93]. The total number of synapses
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Mouse
Age ROI size # Synapses # Synapses # Synapses

(mo.) (μm) Manual Annotation Our Approach Ours Corrected

1 4 12× 9× 7.8 1145 1321 1175
2 12 10× 11× 12.9 1495 1709 1538
3 4 10× 10× 15.3 2117 2340 2108
4 12 12× 8× 9.5 1061 1212 1095
5 12 14× 4× 4.7 774 737 700
6 4 8× 6× 14.7 956 1223 996

Table 5.2: Details on the Regions of Interest (ROIs) for each stack. We also show the
number of synapses counted by experts on the ROI (Manual Counting), as well as how
many were detected by our approach without any corrections (Ours), as well as the number
of synapses after manually removing false positive detections (Ours Corrected).

to be annotated for the stacks of Table 5.1 is more than 6000, rendering manual voxel-

wise segmentation unfeasible. Therefore, each synapse was labeled instead as a spherical

object in Fiji, whose diameter represents the extent of the synaptic cleft, estimated from

2D slices by the annotator.

A Region of Interest (ROI) was defined for each stack to ensure the analysis is

performed in the neuropil and to avoid cell bodies. Synapses outside the ROI where

ignored. The size of the ROI for each stack is shown in Table 5.2.

It took on average 6 days to annotate each stack. A first observer spent 4 days

labeling the stack from scratch. Later, a second annotator took two more days to check

and correct the work of the first.

These manual annotations allow us to estimate synaptic density as well as the dis-

tribution of synapses according to their spatial extent. Moreover, this data is very

valuable, as it allow us to compare the results obtained by experts in the field of neuro-

science to those generated by our automated approach, in terms of synapse count and

size.

5.3 Automatic Segmentation

We now describe how our approach was trained and applied to each stack to generate

the automatic segmentations. In average, our full pipeline took 24 hours for training and

prediction per stack on a single 20-core machine. This is significantly faster than the 6
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days it took to manually annotate spherical objects. Moreover, our approach outputs a

segmentation map, from which we can extract rich morphological information otherwise

not available.

5.3.1 Data Annotation

Although we have been given expert annotations with the location and approximate

extent of synapses for all stacks, this is not enough for training our approach, as it

requires a segmentation, voxel-wise ground truth. We therefore cropped a small region

of each stack of approximately 200 MB, and partially labeled it, annotating annotated

between 8 and 12 synapses per stack, plus some background for the negative class.

Generating such few annotations is very fast, taking between 15 and 20 minutes per

stack when using a Wacom drawing tablet.

5.3.2 Training

We used the Multiple-Instance Learning extension of our approach introduced in Chap-

ter 3, and the parameters were kept the same as those shown in Table 2.1. Training

took between 30 minutes and an hour when using 20 cores on an Intel Xeon 2.90 GHz

CPU. Note that there is no need for user interaction or supervision during training.

5.3.3 Prediction

To generate the segmentation maps we split each stack into smaller sub-stacks, since it

is not possible to predict a whole stack at once due to the large amounts of memory

needed to store the integral cubes. The size of each sub-stack was limited to 500 MB,

including an overlapping region of 80 voxels.

Predictions were done on a single Intel Xeon 2.90 GHz machine, using 20 cores.

The sub-stacks were processed sequentially, and each whole stack took between 7 and

35 hours to complete, depending on its size. Note that this process could be easily

parallelized on a cluster to speed up prediction.

To generate the final segmentations we applied a 3D median filter with a radius

of one voxel to the raw prediction, followed by thresholding. The thresholds for each

stack were found by manually inspecting a few slices and their score maps. We set

the thresholds to discard spurious detections (eg. thick membranes, if present). The

final thresholds were either 10.0 or 20.0, depending on the stack. From our experience,
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their exact values are not critical, as the statistics we want to analyze are averages

over whole stacks. Finally, we applied connected components on the thresholded binary

stack, removing synapses whose volume is less than 200, 000 nm3. In the rest of this

chapter and in the tables and plots we refer to the output of this last step Our approach.

5.3.4 False Positive Removal

Though the output of the automated predictions can be used directly for analysis, we

also created a refined version with false positive detections removed. This results in

a reduced set of detections that we call Ours Corrected in the tables and plots. This

process took on average an hour per stack.

5.4 Comparison and Results

In this section we compare the results obtained with our automated approach against

the manual expert annotations from §5.2.1. More specifically, we compare the following:

• Manual annotation: annotations with spherical objects, containing synapse

location and their approximate extent, as labeled by the neuroscientists at the

BioEM facility at EPFL and detailed in §5.2.1.

• Our approach: the raw output of our synapse segmentation. Detections are

obtained by running Connected Components on the segmentation output, as de-

scribed in §5.3.3.

• Ours corrected: the results of our automated approach but with false positive

detections removed, as detailed in §5.3.4

5.4.1 Synapse Counting & Density

Table 5.2 shows the number of detected synapses in the ROI for each method. On

average we see that 10% of the detected synapses are false positives, with the exception

of the sixth stack where that number raises to 18%. This is not a severe issue, as

removing false positives is typically fast.

On the other hand, Fig. 5.1 shows the density estimates obtained with different

methods over 1000 random sub-regions of the ROIs. The height, width and depth of

the sub-regions are two-thirds the corresponding dimensions of the ROIs, and are placed
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Figure 5.1: Comparison of synapse density estimates obtained with the different methods
over random sub-regions of the ROIs.

at random locations within the ROIs. In this way we can generate uncertainty estimates

to help us compare the different methods more reliably.

It is clear that there is an over-estimation of the synaptic density when the false

positives are not removed from the output of our automated approach. Nonetheless,

after doing so, the obtained densities are well within the range of those computed

through manual annotation.

5.4.2 Synaptic Cleft Size

The radii of the annotated spheres in the manual annotations can be used to estimate

the spatial extent of each synapse. Likewise, we can compute the Feret diameter of each

connected component in our segmentation output to obtain a similar measure.

Even though both measures are correlated, they are not directly comparable, as

our approach segments the synapse in full 3D, while the sphere annotations were only

performed on 2D xy slices. Nonetheless, we expect that strong trends present in the

data should manifest themselves in both measurements. To this end, we first plot the

distribution of synaptic cleft size, measured through the diameter of the annotated
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Figure 5.2: Manual annotation. Distribution of synaptic cleft size, measured through
the diameter of the annotated spheres. For comparison we plot the distribution of Mouse
1 against the others. Aged mice 2, 4 and 5 present an relative increase in larger synapses.
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spheres in Fig. 5.2. Note that there is an interesting distinction between aged (2,4 and

5) and young adult mice (1,3 and 6), as there is an increase in the number of larger

synapses in the former. This was already observed by Graham Knot and the BioEM

team after processing their data.

We then plot similar figures, but now using the Feret diameter of the individual

detections of our automated approach. We obtain Figures 5.3 and 5.4, for our approach

before and after false positive removal, respectively. We observe the trend is clear on

those plots, and correctly agrees with an increase of synapses of Feret diameter between

0.5 and 0.8 μm.

This validates our approach, which yields similar results before and after false pos-

itive removal, in a fraction of the time, and with significantly less annotation effort.
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Figure 5.3: Our approach. Distribution of synaptic cleft size, measured through the
Feret diameter of the automatic segmentations. For comparison we plot the distribution
of Mouse 1 against the others. Aged mice 2, 4 and 5 present an relative increase in larger
synapses, similar to that seen in the manual annotations in Fig. 5.2.
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Figure 5.4: Ours corrected. Distribution of synaptic cleft size, measured through the
Feret diameter of the automatic segmentations, after manually removing false positives.
For comparison we plot the distribution of Mouse 1 against the others. Aged mice 2, 4
and 5 present an relative increase in larger synapses, similar to that seen in the manual
annotations in Fig. 5.2.
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5.5 Exploting Segmentation Data: Synaptic Cleft Shape

So far we have concentrated on synapse count and a rough estimate of their size. While

the results presented so far showcase some of the advantages of our approach, we have

not yet fully exploited the availability of a voxel-wise segmentation output. In this

section we will take advantage of such rich information to explore the correlation between

synaptic cleft shape and aging.

5.5.1 Biological Motivation

So far we have observed an increase in larger synapses in the aged mice. It is known

that synapse size is positively correlated with the number of receptors, and therefore

the strength of the synaptic reaction [75]. Similarly, it has been shown that perforated

synapses hold a higher number of AMPA receptors than non-perforated ones, and there-

fore may evoke larger post-synaptic responses [39]. On the other hand, smaller synapses

are typically more labile and more plastic [71].

In light of this, in this section we analyze and compare synapse surface area and the

proportion of perforated synapses among different stacks. To this end, we post-process

the segmentation output of our approach and compute the synaptic surface area and

number of holes in each synapse. We detail these steps next.

5.5.2 Data Processing

After running Connected Components on the segmentation output, we extract the sur-

face are of each synapse and the number of perforations it presents. More specifically,

we carry out the following steps:

1. Rotation to canonical coordinate system. For each synapse, we first compute

its average orientation n̂, as the coordinate-wise mean of the highest-magnitude

Hessian eigenvectors at each voxel in the segmentation, as in §2.4.3. We then

rotate the synapse to a new coordinate system {x′, y′, z′} such that z′ is parallel

to n̂. Note that there is a rotation ambiguity around x′ and y′, but this does not

pose a problem, as our measurements are independent of it.

2. Surface fitting. We fit a 5th-order polynomial to the segmented voxels in the

{x′, y′, z′} coordinate system, as a function of x′ and y′. From this polynomial we
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then extract the surface area of each synapse. Fitting a surface to the segmentation

allows for measurements that are independent of the thickness of the segmented

synapse, which may vary between synapses and on the training ground truth. An

example of the fitted surface with a synapse with two perforations is shown in

Fig. 5.5(c).

3. Perforations. To obtain the number of perforations and their geometry we

project the voxels in labeled as positives by our segmentation method to the

{x′, y′} plane, as shown in Fig. 5.5(d). We then count the number of holes in the

projected image whose surface area is larger than 5000 nm2, since the segmentation

output may contain imperfections in the form of small holes.

Processing each stack with the steps above took between 2 and 3 hours. We now

analyze and discuss the statistics obtained in terms of surface area and number of

perforations.

5.5.3 Synaptic Cleft Shape Analysis

Feret Diameter and Surface Area We first analyze whether the Feret diameter is

a reasonable proxy for the synapse surface area, as the former is much easier to label

and measure than the latter, for example by labeling spherical objects. To this end, in

Fig. 5.6 we plot, for each detected synapse, its surface area versus the surface area of

a circumference with a diameter equal to the measured Feret diameter of the synapse.

The dashed black line represents the location where ideal measurements would fall if

both were exactly equivalent.

As expected, the equivalent circumference area over-estimates the true surface area,

and by a large factor in some cases. However, there is on average a strong correlation

between both measurements, progressively deteriorating for larger synapses.

Surface Area Distribution Earlier we showed in Figures 5.4 and 5.3 that there is

an increase in larger synapses in aged mice, when the extent of a synapse is measured

with the Feret diameter. We now demonstrate that this phenomenon is also clearly

visible with regards to synapse surface area, as shown in Fig. 5.7.
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(c) Fitted surface on the {x′, y′, z′} coordinate system. (d) Surface 2D projection.

Figure 5.5: Example of surface fitting on a synapse with two perforations. The top two
rows show the original data and the segmentation obtained by our automated approach.
The number of perforations and their area can be easily estimated from the 2D projection
in (d).
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Figure 5.6: Feret diameter equivalent area and true synapse surface area. For each
detected synapse, we plot its surface area versus the surface area of a circumference with
a diameter equal to the measured Feret diameter of the synapse. The dashed black line
represents the location where ideal measurements would fall if both were exactly equivalent.

Synapse Perforations Synaptic cleft perforations have been a subject of interest in

the neuroscience literature, as it is believed that their presence is related to synaptic

plasticity [20, 39, 51, 71]. The question we ask ourselves is whether there is a significant

difference in the proportion of perforated synapses between the young adult and aged

mice, that could indicate a link with synapse plasticity.

With this in mind, we plot in Fig. 5.8 the percentage of synapses with a single

or two or more perforations. We observe a clear difference between aged (2,4,5) and

young adult mice, characterized by a consistent increase in the proportion of perforated

synapses in the aged ones.

From this observations, we proceeded to plot the distributions of perforated and non-

perforated synapses according to synapse area, as shown in Fig. 5.9. As with Fig. 5.8,

there is a marked difference between the two mouse groups, suggesting that aged mice

hold a larger proportion of perforated synapses, in comparison to young adults.
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Figure 5.7: Distribution of synaptic cleft surface area of the polynomial surfaces fitted to
the segmentation output Ours corrected. For comparison we plot the distribution of Mouse
1 against the others. Aged mice 2, 4 and 5 present an relative increase in larger synapses,
similar to what is found with the Feret diameter distribution in Fig. 5.4.
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Figure 5.8: Proportion of perforated synapses in each stack. Our results show a higher
proportion of perforated synapses in the aged mice, compared to young adults.

5.6 Conclusion

In this chapter we demonstrated the effectiveness and usefulness of our segmentation

approach in reducing annotation effort and providing high quality segmentation maps.

We showed that we can obtain equivalent results to that of experts, reducing labeling

time by six times with respect to manual annotation. This process can also be further

sped up, as prediction can be easily parallelized over multiple machines.

Furthermore, our approach outputs voxel-wise predictions that can be used to ex-

tract information such as synapse area and number of perforations, which would be

infeasible to generate manually, given the large size of the stacks.
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Figure 5.9: Distribution and relative quantity of perforated and non-perforated synapses.
There is a significant increase in the proportion of perforated synapses in the aged mice,
in comparison to the young adults.
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CHAPTER

SIX

CONCLUDING REMARKS

We began this thesis by identifying the need for automated methods for Electron Mi-

croscopy Imaging, as manual analysis is a slow, tedious, and error-prone procedure.

Among the difficulties posed in such scenarios, we spotted three main challenges that

define the requirements automated algorithms must meet to be of practical use. This

led us to develop two new machine learning approaches that outperform state-of-the-

art methods, scale well to large stacks, while being computationally efficient for both

training and prediction.

In Chapter 2 we introduced a new automated approach for synapse segmentation in

Electron Microscopy stacks. The proposed method relies on image features particularly

designed to take spatial context into account. These features are inspired by the criteria

human experts use to identify synapses, such as densities on the pre-synaptic and post-

synaptic membranes, vesicles in the pre-synaptic axon terminal and the presence of a

synaptic cleft. However, unlike other approaches, the number of our features is not

fixed to a few tens or hundreds, but is instead in the order of hundred of thousands,

allowing for a flexible algorithm that gracefully adapts to the training data. Rather

than manually selecting a subset of the features, we rely on boosting to choose the

most relevant ones and pool them adequately to optimize prediction performance. Our

approach successfully distinguishes synapses from other organelles that appear within

an EM stack, including those whose local appearance is similar. Moreover, the proposed

approach flawlessly identifies synaptic orientation, a feature unique to our approach that

had remained unexplored so far.
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We then showed in Chapter 3 that mislabeling polarities, a task that hitherto in-

volved manual labeling, can have significant detrimental performance effects. This mo-

tivated the need for automatic polarity estimation during the training process, that led

to the development of a new Multiple Instance Learning (MIL) algorithm in Chapter 3.

Our boosting-based MIL approach can flawlessly estimate the polarities of all synapses

at training time, dropping the need for manual polarity annotations, and performing as

well or better than the existing baselines.

In Chapter 4 we tackled the problem of acquisition variability and proposed a new

method for domain adaptation. Our approach simultaneously learns the decision bound-

ary and a non-parametric estimation of the transformation between domains. The

proposed algorithm effectively leverages labeled examples across different acquisitions,

significantly reducing annotation effort. We evaluated our approach on four Electron

and Light Microscopy stacks where annotation is burdensome and costly, demonstrating

its effectiveness and improvement over the state-of-the-art.

In Chapter 5 we applied our synapse segmentation approach towards answering bi-

ologically meaningful questions about how aging affects the brain. To this end, we

compared the structure and shape of synaptic densities in adult and aged mice. We

showed that we can generate segmentations that agree with expert annotations, while

requiring very little labeling effort. Our results show that aged mice enjoy a larger pro-

portion of large synapse densities in comparison to adult mice. Moreover, our approach

generates a per-voxel segmentation output from which rich morphological information

can be extracted, such as the area of each synapse and the number of perforations within

them.

The presented methods help advance the efficient analysis of large microscopy stacks,

delivering neuroscientists with powerful tools to explore and analyze large volumes with

little annotation effort.

6.1 Future Work

In this section we discuss possible extensions and improvements to our segmentation

and domain adaptation frameworks.
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Figure 6.1: Illustration of a T-Bar synapse, such as the ones found in the fly brain. The
image on the top right corner shows an example of the appearance of a T-Bar synapse in
EM. Reproduced from [7].

6.1.1 Automated Segmentation of Organelles

Fly synapse segmentation. Our automated approach focused on mammalian synap-

tic densities that exhibit a membrane-like appearance, similar to that of a disk. However,

there has also been great interest in detecting synapses in insects such as flies [46, 85]

to shed light into their connectome. Though our approach could be directly applied to

fly synapses, their appearance is strikingly different to that of mammalians, as shown

in Fig. 6.1. An important consequence of this significant difference is that the orienta-

tion estimates computed with the Hessian eigenvectors in Chapter 2 may be incorrect,

making learning harder. A possible line of future research could involve designing an

appropriate orientation estimate, or either learning it from user annotations. Another

difficulty in fly EM stacks is that the exact extent of a synapse is hard to distin-

guish. Though this also happens with mammalian synapses, we have observed that it

is much more pronounced in flies, making voxel-wise labeling a difficult and ill-posed

task. Therefore, it would be worth investigating whether our segmentation approach

can be trained directly on detection ground truth (e.g. bounding boxes). We believe
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this could be achieved through Multiple Instance Learning, along the lines of the work

of Xu et al. [110].

Membrane segmentation. We believe our approach can also be used to segment

membranes, although it may require modifications to compete with existing approaches

such as CNN-based ones, for example the U-Net [88]. For membrane segmentation,

CNN-based approaches trained on a large amount of annotated data have shown much

higher performance in comparison to algorithms that use hand-crafted features. One

possible explanation for such behavior is that membranes can take very different appear-

ance, making feature design difficult. However, we believe this gap can be bridged by

allowing for novel context features that better capture the geometry of EM membranes,

improving performance and reducing the need for large amounts of training data.

Biologically-meaningful measures. In Chapter 5 we extracted measures such as

surface area, Feret diameter and number of perforations for each synapse. We think it is

worth exploring new measures and their link to synapse plasticity and synaptogenesis.

For example, a measure of the deformation of a synapse (e.g. how deformed it is with

respect to a flat membrane), or their convexity or concavity, could be linked to its

plasticity or connection strength and aging [71].

6.1.2 Domain Adaptation

Non coordinate-wise transformations. Our domain adaptation method presented

in Chapter 4 assumed that there is a one-to-one feature correspondence between do-

mains. Though this may be a valid assumption for some applications, it may not be

correct for other problems (e.g. rotations in feature space or histogram bin features).

To deal with the latter, our algorithm needs to be modified to allow for more complex

transformations. This may require estimating the transformations parametrically to be

computationally feasible. Such paradigm shift would entail developing new optimiza-

tion methods to estimate the transformation parameters and the decision boundary

simultaneously.
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Correspondence-aided Domain Adaptation. Our method looks forward to esti-

mating coordinate-wise transformations based solely on discriminative information (i.e.

isolated labels in both domains). This may be a difficult task, especially when the

underlying transformations are too complex to be inferred from a few training points.

One way to alleviate this situation would be to include labeled correspondences between

domains to guide learning and avoid overfitting to the target domain. This could be

implemented by modifying the loss function to force scores of correspondences in the

two domains be similar.
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