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Abstract: In a future sustainable energy vision, in which diversified conversion of renewable energies
is essential, vertical axis wind turbines (VAWTs) exhibit some potential as a reliable means of wind
energy extraction alongside conventional horizontal axis wind turbines (HAWTs). Nevertheless, there
is currently a relative shortage of scientific, academic and technical investigations of VAWTs as
compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake
of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES). To
do this, we use a previously-validated LES framework in which an actuator line model (ALM) is
incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of
the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed
by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as
Nc/R, where N is the number of blades, c is the chord length and R is the rotor radius) and tip-speed
ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum
specifications is thoroughly examined by showing different relevant mean and turbulence wake flow
statistics. It is found that for this case, the maximum velocity deficit at the equator height of the
turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point,
the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI) at
the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the
turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain
height) increases, and its location moves relatively closer to the turbine. Furthermore, whereas both
TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at
the upper wake edge compared to the ones at the lower edge), only slight lateral asymmetries were
observed at the optimum tip-speed ratio for which the simulations were performed.

Keywords: vertical-axis wind turbines (VAWTs); VAWT wake; atmospheric boundary layer (ABL);
large-eddy simulation (LES); actuator line model (ALM); turbulence

1. Introduction

Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts
and are being considered as a viable alternative to horizontal axis wind turbines (HAWTs). The research
on VAWT technology started in the 1970s, and while the main focus of the performed studies
has been on the overall turbine performance (quantities such as power and torque) and on the
mechanical loading on the blades, relatively few studies have attempted to analyze the wake of
a VAWT (for a comprehensive and chronological review of the studies on VAWTs before 2000, see
Paraschivoiu [1] (Chapters 4–7)). Having a thorough understanding of VAWT wakes is especially
crucial in designing VAWT wind farms, where downstream turbines can potentially be located in
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the wake of upstream ones, and consequently, the performance of the whole wind farm could be
significantly affected by the wake flow characteristics. Among the experimental works investigating
VAWT wakes, one can find a relatively larger number of studies that have focused only on the near
wake region (e.g., [2–5]), compared to those that have considered also the far wake region (e.g., [6–8]).
Nevertheless, from a wind farm design point of view, it is the far wake behavior of the flow that has
more relevance and importance.

In the numerical flow simulation domain, the studies performed on the flow through VAWTs
can be divided into two main categories: (1) the simulations in which the blades of the turbine (and
consequently, the boundary layer around them) are resolved; and (2) the simulations in which the
blades are modeled by an actuator-type technique, which uses immersed-body forces to take into
account the effects of the blades on the flow. While the first approach (for instance, the work of
Castelli et al. [9]) can be highly valuable to calculate the loading on the blades and the flow
characteristics inside the rotor and in the near wake, to simulate the far wake of VAWTs and especially
VAWT wind farms, the second approach is deemed to be more feasible and attainable [10,11]. The use
of actuator-type techniques for VAWTs dates back to the 1980s, when Rajagopalan and Fanucci [12]
for the first time modeled the VAWT rotor by a porous surface, swept by the blades, on which
time-averaged blade forces are distributed and continuously act on the flow (which has also been
called the actuator swept-surface model [11]). An extension of this work to three dimensions was
made by Rajagopalan et al. [13]. Later on, Shen et al. [14] introduced the actuator surface model and
employed it to obtain the flow field past a VAWT in two dimensions. More recently, Shamsoddin and
Porté-Agel [11] used large-eddy simulation (LES) coupled with both the actuator-swept surface model
(ASSM) and the actuator line model (ALM) to simulate the flow through a VAWT placed in a water
channel and compared the resulting wake profiles with experimental data.

Acknowledging the fact that any given real VAWT is likely to be working in the atmospheric
boundary layer (ABL) and benefiting from the helpful experience gained from the extensive research
on HAWT wakes, it is imperative to study in detail the characteristics of the wake of VAWTs placed in
boundary layer flows, especially if VAWT farms are to be envisaged as a viable source of power in
future energy outlooks. Having this in mind, the present study is a step in this direction and attempts
to use a previously-validated LES framework, in which an actuator line model is incorporated, to
analyze the wake of a typical straight-bladed VAWT in a relatively long downstream range. Moreover,
before the wake study, using the same framework, the power production performance of the VAWT
for different combinations of blade chord lengths and tip-speed ratios is studied to find the optimum
combination for the aforementioned wake analysis. To the best knowledge of the authors, this study is
the first attempt to characterize the wake of a VAWT in ABL using LES.

The LES framework is presented in Section 2, and the numerical setups and techniques are
described in Section 3. Next, the results for both the power production parametric study and the wake
analysis are presented and discussed in Section 4. Finally, a summary of the study is given in Section 5.

2. Large-Eddy Simulation Framework

In the LES framework used for the simulations of this paper, the filtered incompressible
Navier–Stokes equations (for a neutrally-stratified ABL) are solved. These equations can be written in
rotational form as:

∂ũi
∂xi

= 0 (1)

∂ũi
∂t

+ ũj(
∂ũi
∂xj
−

∂ũj

∂xi
) = −∂ p̃∗

∂xi
−

∂τij

∂xj
− fi

ρ
+ Fpδi1 (2)

where the tilde represents a three-dimensional spatial filtering operation at scale ∆̃, ũi is the filtered
velocity in the i-th direction (with i = 1, 2, 3 corresponding to the streamwise (x), spanwise (y) and
vertical (z) directions, respectively), p̃∗ = p̃

ρ + 1
2 ũiũi is the modified kinematic pressure where p̃ is the
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filtered pressure, τij = ũiuj− ũiũj is the kinematic subgrid-scale (SGS) stress, fi is a body force (per unit
volume) representing the force exerted by the flow on the turbine blades (observe the minus sign), Fp

is an imposed pressure gradient and ρ is the constant fluid density. In this paper, u, v and w notations
are also used for the u1, u2 and u3 velocity components, respectively. Regarding the parametrization of
the SGS stresses, in these simulations, the Lagrangian scale-dependent dynamic model [15] is used.

To parameterize the VAWT-induced forces on the flow (i.e., to model the term fi/ρ in Equation (2)),
an actuator line model is used. According to the ALM, each blade of the turbine is represented
by an actuator line on which the turbine forces, calculated based on the blade-element theory, are
distributed. This method has the advantage of being capable of tracking the rotation of the blades at
each time step. For a detailed explanation of the application of the ALM for VAWTs, the reader can
refer to Shamsoddin and Porté-Agel [11] (Section 2.2).

3. Numerical Setup

In this section, the techniques used to numerically solve Equations (1) and (2), as well as the
configuration of the performed numerical experiments are presented.

The LES code, which is used to realize the simulations in this study, is a modified version of
the code described by Albertson and Parlange [16], Porté-Agel et al. [17] and Porté-Agel et al. [18].
The computational mesh is a 3D structured one, which has Nx, Ny and Nz nodes in the x, y and z
directions, respectively. The mesh is staggered in the z direction in a way that the layers in which the
vertical component of velocity (w) is stored are located halfway between the layers in which all of the
other main flow variables (u, v, p) are stored. The first w-nodes are located on the z = 0 plane, while
the first uvp-nodes are located on the z = ∆z/2 plane.

To compute the spatial derivatives, a Fourier-based pseudospectral scheme is used in the
horizontal directions, and a second-order finite difference method is used in the vertical direction.
The governing equations for conservation of momentum are integrated in time with the second-order
Adams–Bashforth scheme.

The pressure term in Equation (2) is not a thermodynamic quantity, and it only serves to have
a divergence-free (i.e., incompressible) velocity field. Therefore, by taking the divergence of the
momentum Equation (2) and using the continuity Equation (1), we can solve the arising Poisson
equation for the modified pressure, p̃∗, using the spectral method in the horizontal directions and
finite differences in the vertical direction.

The boundary conditions (BCs) in the horizontal directions are mathematically (and implicitly
through using the spectral method) periodic. For the bottom BC, the instantaneous surface shear
stress is calculated using the Monin–Obukhov similarity theory [19] as a function of the local
horizontal velocities at the nearest (to the surface) vertical grid points (z = ∆z/2) (see, for instance,
Moeng [20], Stoll and Porté-Agel [21]). For the upper boundary, an impermeable stress-free BC is
applied, i.e., ∂ũ1/∂z = ∂ũ2/∂z = ũ3 = 0.

Since the study of the flow through a single turbine is desired, we need to numerically enforce
an inflow BC to practically override the implicitly-imposed periodic BC in the x direction. For this
purpose, a buffer zone upstream of the VAWT is employed to adjust the flow to an undisturbed ABL
inflow condition. The inflow field is obtained by saving the instantaneous velocity components in
a specific y-z plane in a similar precursory simulation of ABL over a flat terrain (with the same surface
roughness) with no turbine on it. The use of this technique, i.e., using an inflow boundary condition
in a direction in which the flow variables are discretized using Fourier series, has been shown to be
successful in the works of Tseng et al. [22], Wu and Porté-Agel [23] and Porté-Agel et al. [24].

To implement the ALM, values of the airfoil’s lift and drag coefficients (CL and CD, respectively)
as a function of Reynolds number (Re) and angle of attack (α) (i.e., CL(D) = f (Re, α)) are needed.
This information was obtained from the tabulated data provided by Sheldahl and Klimas [25].
Moreover, the dynamic stall phenomenon, which is known to have a considerable effect on the
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performance of VAWTs [14,26], is accounted for using the modified MIT model [27]. A detailed
explanation of the implementation of the dynamic stall model is provided in Appendix A.

Figures 1 and 2 show the geometrical specifications of the VAWT and the computational domain
in which it is placed. The turbine rotor is made of three straight blades and has a diameter (D) of 50 m
and a height of 100 m. The blades’ airfoil is selected to be the symmetrical NACA 0018 airfoil, which
is widely used for VAWTs. It is attempted that these chosen turbine specifications are representative
of those of real VAWTs with a nominal capacity of 1 MW (this fact will be reaffirmed by the results
of the simulations). For example, a curve-bladed (or Φ-rotor) VAWT of similar size and capacity
(96 m high and an equatorial diameter of 64 m) with two NACA 0018 blades of a 2.4-m chord length
was operational as part of Project Éole in Cap Chat, Quebec, Canada, between 1987 and 1993 [28].
This turbine was designed to deliver a maximum power of about 4 MW (at high winds and high
rotational speeds), and its maximum measured power of about 1.3 MW is hitherto one of the greatest
measured power outputs for a VAWT ([1] Section 7.3.4).

Figure 1. Schematic of the computational domain, including the simulated VAWT.

The buffer zone occupies about 12% of the domain length. The domain dimensions are
Lx = 1200 m (=24D), Ly = 600 m (=12D) and Lz = 400 m (=8D) in the streamwise, spanwise and
vertical directions, respectively. The blockage ratio of the turbine in the computational domain
is 2.08%, which is well below the value of 10%, which is reported by Chen and Liou [29] as the
threshold below which it is acceptable to neglect the blockage effect. Regarding the computational
mesh, the number of grid points in each of the three directions is Nx = 360, Ny = 180 and Nz = 240.
The code has been shown to yield grid-independent results provided that a minimum number of grid
points is used to resolve the rotor [11]. In this study, we chose a resolution (15 points in each horizontal
direction covering the rotor area) that falls within the grid-independent range. The time resolution
for all of the simulations is 0.0155 s. For the wake study simulation, the total physical time of the
simulation is 90.4 min, and for mean velocity and turbulence statistics results, we have time-averaged
the quantities in question over the final 77.5-min time span.
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Figure 2. Plane views of the geometrical configuration of the simulations: (a) top view of the domain;
(b) side view of the domain, seen in the x-z mid-plane of the domain.

Figure 3 shows mean and standard deviation profiles of the inflow streamwise velocity.
As mentioned earlier, the inflow field is generated by using the flow field of a precursory simulation of
the neutrally-stratified ABL on a flat terrain. The surface roughness, zo, and the friction velocity, u∗,
used in this precursory simulation are 0.1 m and 0.52 m/s, respectively. In Figure 3a, it can be seen that
the mean streamwise velocity profile approximately follows the log law in the surface layer. The mean
inflow streamwise velocity at the equator height of the turbine (i.e., z = 100 m in this case), Ueq, and
the turbulence intensity of the inflow at the same height (σu/Ueq) are 9.6 m/s and 8.3%, respectively.
It should be noted that the above-mentioned inflow field is used for all of the simulations of this paper
(i.e., both Subsections 4.1 and 4.2).
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Figure 3. Inflow characteristics: (a) vertical profile of the mean streamwise velocity compared to
a log-law profile (horizontal axis in logarithmic scale); (b) vertical profile of the mean streamwise
velocity (linear scale); (c) vertical profile of the standard deviation of the streamwise velocity.
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4. Results and Discussion

In this section, the results of the simulations are presented and discussed. First, we examine
the turbine’s energy-extraction performance, and next, we study the wake flow of a VAWT placed in
the ABL.

4.1. Turbine Performance and Power Extraction

In this subsection, we are interested in how the power production of the turbine is affected by
different combinations of tip-speed ratio, TSR, and chord length, c. For this purpose, 117 simulations
have been performed to obtain the power coefficient, CP, of the turbine as a function of both TSR
and c, i.e., CP(TSR, c). Figure 4 shows how CP varies with different values of TSR and c. Figure 4a
is generated with a resolution of 0.5 m for chord length and 0.5 for TSR. It can be seen that, as we
increase the chord length, the useful TSR range (a range in which CP is higher than a certain value)
decreases. Moreover, the figure shows that the maximum power coefficient of the turbine occurs for
a TSR of 4.5 and a chord length of 1.5 m (which corresponds to a solidity of Nc/R = 0.18, where N
is the number of blades and R is the rotor radius). This combination results in a power extraction, P,
of 1.3 MW and a CP of 0.47 (CP is defined as CP = P/(0.5ρDHUeq

3), where ρ is the fluid density and
considered equal to 1.225 kg/m3, D is the rotor diameter and H is the rotor height).
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Figure 4. Variation of the power coefficient of a three-bladed VAWT with tip-speed ratio (TSR) and
chord length: (a) CP as a function of both TSR and chord length; (b) CP as a function of TSR for four
different chord lengths; (c) CP as a function of chord length for four different TSR values.
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4.2. VAWT Wake

In this subsection, we have picked the optimum combination of TSR and chord length (TSR = 4.5
and c = 1.5 m) for the VAWT rotor and studied the wake flow behind it. Figure 5 shows the
instantaneous streamwise velocity field of the flow in three different orthogonal planes. In all of the
following figures in this section containing contour plots, the black circles and rectangles represent the
outline of the locus of the blades. The sense of the rotation of the turbine blades is counterclockwise
when seen from above. The wake of the VAWT and the highly turbulent nature of the flow are obvious
in this figure and in the Videos S1 and S2 included in the Supplementary Material. It should be noted
that the average thrust coefficient of the turbine (defined as CT = T/(0.5ρDHUeq

2), where T is the
total thrust force of the turbine in the x direction) in this case is found to be 0.8.
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Figure 5. Contour plots of the instantaneous normalized streamwise velocity (u/Ueq) in three different
planes: (a) the x-y plane at the equator height of the turbine; (b) the x-z plane going through the center
of the turbine; (c) the y-z plane which is 2D downstream of the center of the turbine.

Figures 6 and 7 show contour plots of the mean streamwise velocity in the x-y plane at the equator
height of the turbine and in the x-z mid-plane of the turbine. It can be seen in these figures that it takes
a long distance for the wake to recover; at a downwind distance as large as 14 rotor diameters, the
wake center velocity reaches only 85% of the incoming velocity. Moreover, Figure 8 shows the mean
velocity contours in six y-z planes downstream of the turbine. In all of these figures (Figures 6–8),
one can observe how the wake recovers in the streamwise direction (after a certain distance) and how
it expands in the spanwise direction as it advances farther downstream.
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To have a more quantitative and precise insight about the VAWT wake, Figures 9 and 10 can
be consulted. Figure 9 shows spanwise profiles of the mean streamwise velocity in a horizontal
plane at the equator height of the turbine in eight downstream positions. Besides, Figure 10 presents
vertical profiles of the mean streamwise velocity in the x-z mid-plane of the turbine at different
downstream positions. An interesting observation that can be made from Figures 6, 9 and 10 is that the
maximum velocity deficit occurs at a downstream distance of about 2.7 rotor diameters; this distance is
significantly larger than the equivalent one for the case of HAWT wakes [23]. After the point where the
maximum velocity deficit (more than 65% of Ueq in this case) occurs has been reached, the wake starts
to recover with a relatively high recovery rate (defined here as the magnitude of the rate of change of
the maximum velocity deficit with streamwise distance). As we go farther downstream, the rate of the
wake recovery decreases considerably; so that in the distances as large as 17 rotor diameters, where the
velocity deficit reaches values of about 90%, the recovery rate is comparably very small.
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Figure 9. Horizontal-spanwise profiles of the normalized mean streamwise velocity (u/Ueq) in the
x-y plane at the equator height of the turbine at different downstream positions. The blue horizontal
dashed lines show the extent of the turbine.
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Figure 10. Vertical profiles of the normalized mean streamwise velocity (u/Ueq) in the x-z plane going
through the center of the turbine at different downstream positions. The black dashed line represents
the inflow profile, and the blue horizontal dashed lines show the extent of the turbine.

Another group of crucial quantities that has a significant importance in characterizing turbine
wakes is the turbulence-related statistics, such as turbulence intensity and turbulent fluxes.
These quantities are especially important for the design of wind farms, due to their role in both
wake recovery and mechanical loads on turbine blades. Figure 11 shows contours of turbulence
intensity (TI) in two different orthogonal planes (x-y and x-z) in the wake of the turbine. Here, the
turbulence intensity is defined as TI = σu/Ueq. In addition, Figure 12 shows the distribution of TI in
y-z planes at different downstream locations. In Figure 11a, it can be seen that two branches of high TI
regions start to develop from the two spanwise extremities of the rotor swept surface (the black circle in
the figure). These two branches grow in spanwise width as we go further downstream, until the point
where they meet each other (for this case, in about 3.5 rotor diameters downstream of the turbine in the
horizontal mid-plane of the turbine). Starting from the turbine area, the TI in each of these branches
increases, until a point where the maximum TI occurs (about 3.8 rotor diameters downstream in this
case); after this maximum point, the TI starts to decrease as the flow advances downstream, while the
width of the branches continues to expand. Figure 13 examines the previous figure quantitatively, by
showing the spanwise profiles of the TI in the equator height of the turbine. One can readily see that
at each downstream position, the horizontal TI profiles have two maxima at two spanwise positions,
which correspond to the two aforementioned TI branches. Although slight asymmetries can still
be seen in the TI values of the two branches, the lateral asymmetry is not significantly pronounced.
It should be noted that the degree to which the VAWT wake is laterally asymmetric is influenced by
parameters, such as TSR, airfoil type and the Reynolds number in which the turbine is working.
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Figure 11. Contour plots of the streamwise turbulence intensity, σu/Ueq: (a) in the x-y plane at the
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Figure 12. Contour plots of the streamwise turbulence intensity, σu/Ueq, in six different y-z planes at
different distances downstream of the center of the turbine.



Energies 2016, 9, 366 12 of 23

x = 1D

y
/
D

−3

−2

−1

0

1

2

3

x = 3D x = 5D x = 7D

−3

−2

−1

0

1

2

3

x = 9D

σu/Ueq

y
/
D

0 0.1 0.2

−3

−2

−1

0

1

2

3

x = 11D

σu/Ueq

0 0.1 0.2

x = 13D

σu/Ueq

0 0.1 0.2

x = 15D

σu/Ueq

0 0.1 0.2

−3

−2

−1

0

1

2

3

Figure 13. Horizontal profiles of the streamwise turbulence intensity in the x-y plane at the equator
height of the turbine at different downstream positions. The black dashed line represents the inflow
profile, and the blue horizontal dashed lines show the extent of the turbine.

In Figure 11b, one can observe a similar behavior by noticing the two high TI regions originating
from the upper and lower extremities of the turbine; however, in this case, the TI originating from the
upper edge of the blades is clearly larger than the one originating from the lower edge. To further
quantify this, and to have a better understanding of the vertical variation of the TI in a VAWT wake,
one can study Figure 14, in which vertical profiles of TI are shown at different downstream positions.
In this figure, it can also be seen that in the region below the turbine blades’ lower edge, the turbulence
intensity has even decreased to values lower than the inflow TI; this behavior has also been observed
in HAWT wakes, as well (e.g., [23]).

Furthermore, turbulent momentum fluxes in the VAWT wake are believed to be worthy of
inspection, as they quantify the rate of flow entrainment into the wake, which is responsible for the
recovery and lateral expansion of the wake. Figure 15 shows the normalized lateral turbulent flux (u′v′)
at the horizontal mid-plane of the turbine. The positive and negative regions of u′v′, which are located
on the two lateral edges of the wake, show an inward entrainment of momentum into the wake region.
This lateral entrainment can also be seen in the y-z planes in Figure 16. Figure 17 shows the spanwise
profiles of u′v′ at the equator height of the turbine at different downstream distances from the turbine.
We notice that for this case, the maximum absolute value of u′v′ at the equator height of the turbine
occurs between 4.5 and 5D (4.9D for positive values and 4.7D for negative values) downstream of the
turbine, which is about 1D farther downwind compared to the maximum TI point. It should be noted
that, again in this figure, only a slight lateral asymmetry (in terms of |u′v′|) can be observed.
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Figure 14. Vertical profiles of the streamwise turbulence intensity in the x-z plane going through the
center of the turbine at different downstream positions. The black dashed line represents the inflow
profile, and the blue horizontal dashed lines show the extent of the turbine.
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Figure 16. Contour plots of the normalized lateral turbulent flux, u′v′/Ueq
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at different distances downstream of the center of the turbine.
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Figures 18 and 19 show the normalized vertical turbulent flux (u′w′) in the wake flow. The vertical
inward entrainment from both above and below the wake region is clear in these figures. Figure 20
displays the vertical profiles of u′w′ in the x-z plane going through the center of the turbine. It can be
seen in this figure that the values of the vertical turbulent flux are higher in upper edge of the wake
with respect to the lower edge. Here, we can observe that the magnitude of u′w′ (in the aforesaid
vertical plane) peaks relatively close to the turbine (1.9D for positive values and 0.5D for negative
values) at heights near to the ones of the upper and lower edges of the blades.
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Figure 18. Contour plots of the normalized vertical turbulent flux, u′w′/Ueq
2, in the x− z plane going

through the center of the turbine.
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Energies 2016, 9, 366 16 of 23

x = 1D
z
/
D

0

1

2

3

4

5

6
x = 3D x = 5D x = 7D

0

1

2

3

4

5

6

x = 9D

u′w ′/Ueq
2

z
/
D

−0.01 0 0.01
0

1

2

3

4

5

x = 11D

u′w ′/Ueq
2

−0.01 0 0.01

x = 13D

u′w ′/Ueq
2

−0.01 0 0.01

x = 15D

u′w ′/Ueq
2

−0.01 0 0.01
0

1

2

3

4

5

Figure 20. Vertical profiles of the normalized vertical turbulent flux (u′w′/Ueq
2) in the x-z plane going

through the center of the turbine at different downstream positions. The black dashed line represents
the inflow profile, and the blue horizontal dashed lines show the extent of the turbine.

5. Summary

Acknowledging the prospects of VAWTs as alternative wind energy extractors along with HAWTs
in a future clean-energy outlook, which is likely to be marked by diversity, targeted research on
VAWTs’ performance is deemed to be highly useful and necessary. One of the research targets, which
is especially crucial in designing potential VAWT farms, is to characterize VAWT wakes; a target
which is still considerably underachieved for VAWTs, particularly with respect to HAWTs. In this
view, one of the approaches that can greatly contribute to the cause is to use turbulence-resolving
numerical simulation techniques, which can provide plenitude of high-resolution spatial and temporal
information about the flow field and lead to valuable insight into the behavior of the turbine wake.

In this study, we used a previously-validated large-eddy simulation framework, in which
an actuator line model is employed to parameterize the blade forces on the flow, to simulate the
atmospheric boundary layer flow through stand-alone VAWTs placed on a flat terrain. For a typical
straight-bladed 1-MW VAWT rotor design, first, the variation of the power coefficient with the tip-speed
ratio and the chord length of the blades was studied. In doing so, the optimum combination of TSR
and solidity (Nc/R), which yielded the maximum power coefficient of 0.47, was found to be 4.5
and 0.18, respectively. Second, for a VAWT with this optimum combination, a detailed study on
the characteristics of its wake was performed, in which different mean and turbulence statistics
were inspected. The mean velocity in the wake was found to need a long distance to recover; for
example, the wake requires a distance of 14 rotor diameters to recover its center velocity to 85% of the
incoming velocity. It was also seen that for this case, the point with the maximum velocity deficit is
located 2.7 rotor diameters downstream of the center of the turbine (at the equator height of the turbine),
and only after this point, the wake recovery starts with a rate (based on the change of the maximum
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velocity deficit) that is decreasing with streamwise distance. The turbulence intensity was observed to
reach its maximum value (at the equator height of the turbine) 3.8 rotor diameters downstream of the
VAWT. As we go towards the upper and lower extremities of the rotor, the height-specific maximum of
the TI moves closer to the turbine and its value also increases. Turbulent momentum fluxes, which
are a gauge for flow entrainment and, as a consequence, are responsible for the recovery of the wake,
were also quantified, and it was shown that in the equator height of the turbine, the magnitude of
the lateral flux peaks about 1D farther downwind of the maximum TI point. The above-mentioned
mean and turbulence statistics corresponding to the optimum tip-speed ratio show only slight lateral
asymmetries in the wake. However, significant vertical asymmetries were observed in terms of both the
TI and magnitude of momentum fluxes, with higher values at the upper edge of the blades compared
to the ones at the lower edge.

This study paves the way to further explore VAWT wakes and to discover the effects of different
relevant parameters on the wake behavior. Moreover, it can serve as a solid foundation for future
studies on performance, characteristics and optimization of VAWT farms.

Supplementary Materials: Zenodo DOI:10.5281/zenodo.51387 (https://zenodo.org/record/51387). Video S1:
Normalized instantaneous streamwise velocity field both on a vertical plane (x-z) going through the center of the
turbine and on a horizontal plane at the equator height of the turbine (Note: the physical time corresponding to
this video is 1 minute and 17 seconds, and the size of the blades is magnified for illustration purposes). Video S2:
Normalized instantaneous streamwise velocity field on a horizontal plane at the equator height of the turbine for
two cases: when the turbine starts to operate (top) and when the flow has reached statistically steady condition
(bottom) (Note: the physical time corresponding to both videos is 1 minute and 17 seconds, and the size of the
blades is magnified for illustration purposes).
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Appendix A

In this Appendix, the procedure of the method with which the dynamic stall phenomenon
is modeled is described in detail. The dynamic stall model is based on the modified MIT model
developed by Noll and Ham [27], which is a practical modification of the original MIT model [30].
This model has the advantage of being simple and easy to use and also has been found to work better
for VAWTs compared to other available models [1]. It is noteworthy that the following procedure can
be implemented for both VAWTs and HAWTs.

Dynamic stall is a phenomenon that occurs for an airfoil when the angle of attack of the incident
flow keeps changing with time and its rate of change (i.e., α̇ = dα

dt ) is sufficiently large. For a blade
element of a turbine (either VAWT or HAWT) (placed in a turbulent flow), the change of α with
time can be originated by three main sources: (1) the turbulent fluctuations of the incident flow;
(2) the changes (spatial or temporal) in the mean incident flow; and (3) the rotation of the blades. Of
these three reasons, the second one is normally specific to HAWTs, since an HAWT blade element
experiences the variation of the boundary layer mean velocity profile at different heights; which is
not the case for a VAWT blade element, as it moves at a constant height. However, the third reason is
specific to VAWTs, because the geometry of a VAWT rotor is such that α (for a given blade element)
oscillates between a maximum positive value and a minimum negative value in each revolution (even
with a uniform inflow); however, for an HAWT blade element, assuming a uniform mean inflow, α

remains constant during one revolution. Since the MIT model (and other similar practical models) is
(are) only appropriate for the large-scale behavior of α in time, in our implementation of this model,
the dynamic stall effects arising from the above-mentioned second and third sources, as well as the

https://zenodo.org/record/51387
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relatively large-scale turbulent fluctuations (from the first source) are modeled, while the changes of α

arising from the relatively small-scale turbulent fluctuations of the incident flow are filtered out.
In order to implement the above-mentioned procedure, α̇ is calculated from a time-averaged and

smoothed curve of α f = α f it(θ) during one revolution. For this purpose, the angle of attack at each
azimuthal angle is time-averaged during each Nrev revolutions of the blades, and then, a polynomial
curve, α f it(θ), is fitted on the time-averaged curve, αavg(θ). For the rest of the dynamic stall calculations,
it is the α f it(θ) curve that is used. Figure A1 shows an example for this procedure for TSR = 2 and
c = 2 m. The azimuthal angle, θ, is considered to increase counterclockwise (when seen from above)
from −90◦ to 270◦, in a way that θ = 0◦ and θ = 180◦ correspond to the most downstream and the
most upstream points of the rotor, respectively. It is also noteworthy to mention again that the sense
of the rotation of the turbine blades is counterclockwise when seen from above. Here, for the curve
fitting, an eighth order polynomial is used to detect the two extrema accurately.
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Figure A1. The time-averaged (black circles) and curve-fitted (red line) behavior of the variation of
angle of attack as a function of azimuthal angle in one revolution of a blade element.

Subsequently, we implement the modified MIT model on the α f it(θ) curve and construct CL,DS(α)

and CD,DS(α) curves, which are lift and drag coefficients as a function of the angle of attack considering
dynamic stall. In the modified MIT model, we use the tabulated airfoil data for lift and drag coefficients,
and based on that, CL,DS(α) and CD,DS(α) are constructed. Based on the tabulated airfoil data, we can
determine the static stall angle, αSS > 0, and the lift coefficient at static stall, CL,SS > 0. The static lift
and drag coefficient functions derived from the tabulated airfoil data are designated as CL,table(α) and
CD,table(α) hereafter. Moreover, the slope of the CL,table(α) curve before the static stall can be calculated
as as = CL,SS/αSS, considering that in this region, normally, CL,table(α) is linear.

As can be seen in Figure A1, the global (i.e., the curve-fitted) behavior of |α| in one revolution of a
blade element is such that |α| twice (once for positive α values and once for negative α values) increases
from zero to a maximum value and then decreases to zero again. In each of these increase-decrease
cycles of |α|, the MIT dynamic stall model casts the flow in one of the four below dynamic stall states:

State 1 occurs when |α| ≤ αSS. In this state, both lift and drag coefficients are extracted
directly from the static tabulated airfoil data:

CL,DS(α) = CL,table(|α|) (A1)

CD,DS(α) = CD,table(|α|) (A2)
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State 2 occurs when αSS < |α| < αDS and α f α̇ > 0 (i.e., |α| is increasing in time). αDS is
calculated with the following formula:

αDS = αSS + γ

√(
|α̇|c
2Vrel

)
(A3)

where c is the blade chord length, Vrel is the magnitude of the relative velocity (which is
also a function of the azimuthal angle), α̇ = Ωdα f it/dθ, Ω is the angular velocity of the
blade and γ is a constant that has a dimension of an angle and is weakly a function of the
airfoil type and is determined experimentally [27]. If an experimental value for γ is not
available, a value of one radian is recommended [31]. We keep calculating αDS in this state,
until the point at which |α| is on the verge of becoming larger than αDS (i.e., the point at
which the model goes to State 3). We designate this last value of αDS as αDS, f inal , and with
this value, we calculate the maximum value of CL,DS (i.e., CL,max):

CL,max = CL,SS + 40(
|α̇|c
Vrel

) (A4)

and we apply the following clipping conditions on CL,max:

If CL,max > 3.0 then CL,max = 3.0

If CL,max < as sin(αDS, f inal) then CL,max = as sin(αDS, f inal)
(A5)

Throughout this state, the lift coefficient is extrapolated from static values, and the drag
coefficient is still directly extracted from the static tabulated data:

CL,DS(α) = as sin(|α|) (A6)

CD,DS(α) = CD,table(|α|) (A7)

where (as in Noll and Ham [27]) a sine function is used for extrapolation (noting that in the
range of angles of attack, on which we normally apply the model, |α| is small, and we have
sin(|α|) ≈ |α|).

State 3 occurs when αDS, f inal < |α| and α f α̇ > 0 (i.e., |α| is still increasing in time). As
soon as the model enters State 3, we start to calculate the elapsed time from the moment in
which State 3 is triggered; in other words, we start to calculate the time elapsed after the
αDS, f inal value has been reached; we call this time tDS.

In this state, the lift and drag coefficients are calculated as:

CL,DS(α) = as sin(|α|) (A8)

CD,DS(α) = CL,DS tan(|α|) (A9)

However, in this state, we only keep using Equations (A8) and (A9) as long as these
conditions are both satisfied: CL,DS ≤ CL,max and tDSVrel/c < 1; otherwise, we set the lift
coefficient to the CL,max value and calculate the drag coefficient accordingly (as shown
below). We designate the value of |α| of the moment in which either of the aforesaid
conditions is on the verge of being violated as αCL,max .

If CL,DS > CL,max Or tDS
Vrel

c
≥ 1 :

CL,DS = CL,max

CD,DS = CL,max tan(αCL,max )

(A10)
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State 4 occurs when |α| > αSS and α f α̇ ≤ 0 (i.e., when |α| starts to decrease with time).
We designate the azimuthal angle of the moment in which |α| starts to decrease as θαmax .
At this stage, CL,DS is lowered exponentially (in time) from CL,max to CL,SS.

CL,DS = (CL,max − CL,SS) exp
(
−(θ − θαmax )

2R
c

)
+ CL,SS (A11)

CD,DS(α) = CL,DS tan(|α|) (A12)

where R is the radius of the blade element about the axis of rotation (in the case of a VAWT,
R is simply the radius of the VAWT rotor).

As can be noticed in the above procedure, α(t) (i.e., α(θ)) needs to be a smooth function for the
above model to work. Because of this, we use α f = α f it(θ) (i.e., the time-averaged and curve-fitted
value of α) in the above procedure instead of α. Thus, at the end of each Nrev revolution and after
getting the α f it(θ) function, we apply the MIT model on this curve, and we construct the CL,DS(α) and
CD,DS(α) functions, which will be used in the next Nrev revolutions. For the first Nrev revolutions (for
which we still do not have α f it(θ)), one can preliminarily just use the static tabulated airfoil data.

Figure A2 shows an example of a constructed CL,DS(α) curve under dynamic stall, which
corresponds to the α f it(θ) shown in Figure A1. The aforesaid states of the model are shown in
the figure. As can be seen in this figure, to construct this curve, we need both the tabulated airfoil data
and some parameters, which we should obtain from the MIT model. As a summary, all of the necessary
data and parameters required to construct the CL,DS(α) and CD,DS(α) curves are listed below:

(1) Tabulated airfoil data: CL,table(α) and CD,table(α); (2) αSS; (3) CL,SS; (4) as;
(5) γ; (6) αDS, f inal ; (7) αCL,max ; (8) CL,max; (9) θαmax

It should be noted that for the last four items, two values are obtained for each revolution: one for
the α ≥ 0 cycle and one for the α < 0 cycle. In our simulations, we have used γ = 1 radian and
Nrev = 15.

A comprehensive and step-by-step procedure to implement the MIT dynamic stall model is given
in the flowchart of Figure A3; the flowchart is deliberately given in a way that can be followed for
coding purposes in any common programming language.
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Start

Provide these input parameters:
4θ, αSS, CL,SS, as, γ

Initialize these variables: θ = −90o, f_DS = 0,
f_CL,max = 0, f_αmax = 0, tDS = 0

θ = θ + 4θ
α f = α f it(θ)

Check if θ < 270o

Check if |α f | > αSS
CL,DS(α f ) = CL,table(α f ) and

CD,DS(α f ) = CD,table(α f )

α̇ = Ωdα f it/dθ

Check if α f α̇ > 0 Check if f_αmax = 0

θαmax = θ
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CL,DS = (CL,max −

CL,SS) exp
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−(θ − θαmax )

2R
c

)
+ CL,SS

CD,DS(α) = CL,DS tan(|α|)
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αDS = αSS + γ
√
(|α̇|c/2Vrel)

CL,max = CL,SS + 40(|α̇|c/Vrel)
If CL,max > 3.0 then CL,max = 3.0

If CL,max < as sin(αDS)
then CL,max = as sin(αDS)
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Figure A3. Flowchart to implement the modified MIT dynamic stall model for a VAWT in
turbulent flow.
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