
Query Rewriting in RDF Stream Processing

Jean-Paul Calbimonte1, Jose Mora2, and Oscar Corcho2

1Faculty of Computer Science and Communication Systems, EPFL, Switzerland.
firstname.lastname@epfl.ch

2 Ontology Engineering Group, Universidad Politécnica de Madrid, Spain.
j.mora@upm.es, ocorcho@fi.upm.es

Abstract. Querying and reasoning over RDF streams are two increas-
ingly relevant areas in the broader scope of processing structured data
on the Web. While RDF Stream Processing (RSP) has focused so far on
extending SPARQL for continuous query and event processing, stream
reasoning has concentrated on ontology evolution and incremental ma-
terialization. In this paper we propose a different approach for query-
ing RDF streams over ontologies, based on the combination of query
rewriting and stream processing. We show that it is possible to rewrite
continuous queries over streams of RDF data, while maintaining effi-
ciency for a wide range of scenarios. We provide a detailed description of
our approach, as well as an implementation, StreamQR, which is based
on the kyrie rewriter, and can be coupled with a native RSP engine,
namely CQELS. Finally, we show empirical evidence of the performance
of StreamQR in a series of experiments based on the SRBench query set.

1 Introduction

Streams are currently one of the main sources of data on the Web, and are used
in a number of applications, ranging from wearable devices for health monitor-
ing to geospatial and environmental sensing. Some of the main challenges of
managing this very dynamic type of data are linked to the velocity of the in-
puts, and the need for reactive processing. While these have been addressed to
a large extent by the database community, through Data Stream Management
Systems (DSMS) and Complex Event Processors (CEP), there is still a need
for tackling the issues of heterogeneity, integration and interpretation of data
streams on the Web. Semantic Web technologies and standards have provided
fundamental concepts and tools to address these issues, such as ontologies, RDF
triple stores and reasoners, although most of these are targeted towards stored
data. The goal of RDF stream processing (RSP) is to apply and extend the Se-
mantic Web models and languages for processing RDF data streams. Previous
works have presented RSP engines [4, 16, 1, 7, 24], focusing on different aspects
of query processing. However, most of them provide limited or no reasoning ca-
pabilities, nor use an ontology model (TBox) to provide inferences during query
processing. Other works have also explored the field of stream reasoning, but
they have centered their attention mainly on the materialization of streaming
axioms in ontologies [23, 17] and, to some extent, to query processing that takes

into account materialization rules [5]. The problem of answering queries over an
ontology can be solved in different ways, and an important technique to do so is
query rewriting. It is based on the idea of transforming the original query into
an expanded query that captures the information of the ontology TBox [21].
Then this expanded query is evaluated over the ABox, providing answers that
extract implicit knowledge of the data. This technique has been successfully used
in scenarios such as OBDA (Ontology based data access) where data is stored
in relational databases [22].

In this paper we address the problem of providing query answering over on-
tologies in RSP, through a novel approach that combines query rewriting tech-
niques and RDF stream query processing. While most of the focus on query
rewriting has been on OBDA for relational databases, we show that it is possi-
ble to use it for rewriting continuous queries over streams of RDF data. RDF
streams, understood as potentially infinite flows of timestamped triples, require
reactive processing of queries, and therefore most RSP engines have focused on
efficiency and high throughput. Our approach demonstrates that these engines
can be coupled with a query rewriter, and still be efficient for a large range of sce-
narios. Furthermore we implemented our solution, called StreamQR, extending
the CQELS query processor with the kyrie [18] rewriting engine.

The paper is organized as follows. In Section 2 we introduce the notions
related to RDF stream processing and query rewriting. In Section 3 we present
our proposal for ontology query answering over data streams. Then, in Section 4
we describe the implementation of StreamQR. Section 5 provides details on the
experimentation and applicability of this approach. In Section 6 we analyze
and compare previous work in the areas of stream reasoning, query rewriting
and RDF stream processing. Finally we draw our conclusions in Section 7 and
identify future areas of research.

2 Preliminaries
2.1 RDF Stream Processing
Data streams are infinite and time-varying sequences of data values [2], and can
also be seen as more complex events whose patterns can be queried and pro-
cessed [12]. In the case of RDF stream processing (RSP) the elements of the
stream are RDF data, typically annotated with a timestamp. Managing stream-
ing data differs significantly from classical stored data, given the potentially
infinite nature of streams and the need for continuous evaluation of queries.
Continuous processing changes the usual query execution model, since it is the
data arrival that initiates query processing, and produces results as soon as
streaming data matches the query criteria.

Most RSP systems define a data model based on timestamped triples to
represent RDF streams. As in [4, 7], we define an RDF stream S as a sequence
of pairs (T, t) where T is a triple 〈s, p, o〉 and t is a timestamp in the infinite set
of non-decreasing timestamps T:

S = {(〈s, p, o〉, t) | 〈s, p, o〉 ∈ ((I ∪B)× I × (I ∪B ∪ L)), t ∈ T}

where I, B and L are sets of IRIs, blank nodes and literals, respectively. The
pairs (T, τ) are called a timestamped triples. An RDF stream can be identified
by an IRI, which allows referencing a particular stream of tagged triples.

Most of the state-of-the-art RSP query languages and systems are to a large
extent based on Data stream management systems (DSMS) and complex event
processing (CEP) extensions to the standard SPARQL query language. These
extensions include operators such as windows, the ability to input and output
RDF streams, and the declaration of continuous queries. Examples of such RSP
systems include C-SPARQL [4], SPARQLStream [7] and CQELS [16], which in-
corporate these notions, although with some differences in syntax and semantics.
As an example, the CQELS query in Listing 1 requests the maximum tempera-
ture and the sensor that reported it in the last hour, from the stream identified
as http://example.org/stream (prefixes are omitted for brevity).

SELECT (MAX(?temp) AS ?maxtemp) ?sensor

WHERE {

STREAM <http://example.org/stream> [RANGE 1 HOUR] {

?obs ssn:observationResult ?result;

ssn:observedProperty cf-property:air_temperature;

ssn:observedBy ?sensor.

?result ssn:hasValue ?obsValue.

?obsValue qu:numericalValue ?temp. }

} GROUP BY ?sensor

Listing 1. Query the maximum temperature in the last hour in CQELS.

Sliding windows such as the one in the previous example are available in
almost all RSP engines. They limit the scope of triples to be considered by the
query operators. In particular, a window can be defined as a function that takes a
stream S and a time instant t ∈ T and produces an RDF graph of triples. A more
particular case, the time window W is defined by parameters σ, δ where σ is the
size and δ is the slide, such that: W (S, t) = {Tj | (Tj , tj) ∈ S and t−σ ≤ tj < t}
and t`+1 − t` = δ for two consecutive windows W (S, t`) and W (S, t`+1).

2.2 Query Rewriting

Query answering using ontologies provides the capability of extracting explicit
and implicit knowledge from a data source. In general, an ontology O is com-
posed of a TBox T containing intensional knowledge and an ABox A containing
extensional knowledge [9]. Query rewriting can help answering queries over on-
tologies, by transforming –or rewriting– the original query into an expanded
query that takes into account the TBox, and using this rewritten query to evalu-
ate it against the ABox part of the ontology. This technique has been used in the
past in different scenarios, most notably Ontology-based Data Access (OBDA).
In OBDA, data from one (or more) data sources can be queried in terms of
a high-level ontological model, hiding from the users the internal schema and
storage details of the data sources [21].

In general, a query rewriting algorithm works in the following way [9]. First,
given an input query q and an ontology (T ,A), it transforms q using the TBox
T into a query q′, such that for every ABox A, the set of answers that q′ obtains
from A is equal to the set of answers that are entailed by q over T and A.
The rewritten query q′ can normally be unfolded and expressed as a union of
conjunctive queries, as long as some restrictions are imposed on the expressivity
of the ontology language. As an example, consider the query q(x) ← Sensor(x),
requesting instances of Sensor, and the TBox axiom: HumiditySensor v Sensor.
Using this TBox assertion, query rewriting will produce the union of the following
conjunctive queries, which will also request for all instances of HumiditySensor:

q′(x)←Sensor(x) q′′(x)←HumiditySensor(x)

An important property for query rewriting is FOL-reducibility [9] or FO-
rewritability [14], meaning that rewritten queries are first-order queries, what
allows converting them to languages like SQL without using advanced features
like recursion. It has been shown that the combined complexity of satisfiability
on some of these logics is polynomial, while data complexity is AC0 [3, 14].

The ontology TBox can be described using different languages or logics. De-
pending on their expressiveness, the query rewriting process can be more or less
expensive in terms of computation. A logic with special relevance in our case
is ELHIO, one of the most expressive logics currently used for query rewrit-
ing. ELHIO is not FOL-reducible (in the presence of certain cyclic axioms the
rewriting produces a recursive datalog program) but remains tractable (PTime-
complete [21]) for the rewriting process. For the description of our TBoxes we
will use acyclic ELHIO.

3 RSP Query Rewriting

Our approach for querying RDF streams over ontologies stems from the combi-
nation of the query rewriting techniques described previously and RDF stream
query processing. As described in Section 2.2, the first lack support for contin-
uous query processing and the second, in general, do not take into account the
TBox of an ontology and hence do not perform any inferences during querying.

3.1 RSP Query Evaluation using the Ontology TBox

Most of the existing RSP engines do not make use an ontology TBox during
query evaluation (excepting a materialization technique described in [5] which
is not currently available in the C-SPARQL implementation). Consequently it
might be the case that there are queries that return a reduced number of answers,
or no answers at all, in contrast to what could be expected if TBox assertions
were taken into account. For example, let’s consider the following RDF graph G
with triples of the form:
:obs1 rdf:type ssn:Observation .

:obs2 rdf:type ssn:Observation .

:obs3 rdf:type ssn:Observation .

If we pose the following query, requesting all instances that are observed by some
other entity (e.g. a sensor):

qG(x)← ssn:observedBy(x, y)

Without any other information, the evaluation of this query over the stream
would produce no results, since we do not have any match to a corresponding
triple in the stream, for the ssn:observedBy property. However if we take into
account TBox assertions, the situation may change. For instance, the presence
of the following TBox axiom:

ssn:Observation v ∃ ssn:observedBy

would mean that all subjects of the triples in the stream (i.e. obs1,obs2,obs3)
are also implicitly observed by someone. By rewriting q(x) with this TBox, we
would obtain an expansion consisting of the two following queries:

q′
G(x)←ssn:observedBy(x, y)
q′′

G(x)←ssn:Observation(x)

While q′ is just the original queries and will not produce answers, q′′ (containing
ssn:Observation(x)) will match during the evaluation over the RDF stream.

The previous rewriting examples can be extended to handle continuous eval-
uation of RDF data streams. For instance, we can consider the following stream
based on the dataset of the previous example1:
:obs1 rdf:type ssn:Observation . [1]

:obs2 rdf:type ssn:Observation . [3]

:obs3 rdf:type ssn:Observation . [6]

...

As the stream is potentially infinite, the complete answer to a query theoretically
takes infinite time to evaluate, but partial answers may be computed in a con-
tinuous fashion, e.g., applying a sliding window W of 3 time units σ = 3, δ = 3.
Then we can compute continuous queries of the form qW (S,t) for every evaluation
time t, computed over the instantaneous graph produced by W (S, t):

qW (S,t)(x)← ssn:observedBy(x, y)

Then, for each instantaneous graph, all other SPARQL operators can be applied
on top of the resulting operation. The time window operator is already incor-
porated into existing RDF stream languages such as CQELS, C-SPARQL, or
SPARQLStream, as described in Section 2.1.

3.2 Query Answering Semantics

We describe in this section the semantics of our approach of query answering for
data streams, over ELHIO ontologies, one of the most expressive logics that can
be currently handled in query rewriting. An ontology O is composed of a TBox
1 Turtle http://www.w3.org/TR/turtle/, extended with timestamps in square brackets.

T and an ABox A, i.e. O = 〈T ,A〉. Given the inference capabilities provided by
the TBox, the results to the queries that are posed to the ontology are called
certain answers. These can be seen intuitively as the kind of answers that users
would expect, i.e. the answers matching triples explicitly stated in the database
and those entailed by the ontology. We constrain the queries in this work to
conjunctive queries (CQ) of the form:

qh(x)← p1(x1) ∧ . . . ∧ pn(xn)
where qh is the head predicate of the query, x is a tuple of distinguished variables,
x1 . . .xn are tuples of variables or constants, and pi(xi) are unary or binary
atoms in the body of the query. Every variable xj ∈ x in the head of the query
also appears in the body of the query. The certain answers for this type of queries
can be defined as the set:

cert(q,O) = {α | q ∪ T ∪ A |= qh(α)}
where qh is the head predicate of the query q over an ontology O = 〈T ,A〉.

The query rewriting process uses the TBox T to rewrite the query q into a
new query q′ such that:

cert(q,O) = {α | q′ ∪ A |= qh(α)}
In this work, q′ is in fact a union of conjunctive queries (UCQ), which is a set
of CQ with the same head. In the following, we describe: (i) the query rewriting
semantics to obtain the UCQ q′, and (ii) the adaptation of this semantics to a
continuous evaluation.

ELHIO axiom antecedent → consequent

A v {a} ?x rdf:type ex:A → ?x = ex:a

A1 v A2 ?x rdf:type ex:A1 → ?x rdf:type ex:A2

A1 u A2 v A3 ?x rdf:type ex:A1 ; rdf:type ex:A2 → ?x rdf:type ex:A3

A v ∃P ?x rdf:type ex:A → ?x ex:P []:fx

A1 v ∃P.A2 ?x rdf:type ex:A1 → ?x ex:P [rdf:type ex:A1]

A v ∃P −
?x rdf:type ex:A → []:fx ex:P ?x

A1 v ∃P −.A2 ?x rdf:type ex:A1 → [ex:P ?x ; rdf:type ex:A2]

∃P v A ?x ex:P ?y → ?x rdf:type ex:A

∃P.A1 v A2 ?x ex:P [rdf:type ex:A1] → ?x rdf:type ex:A2

∃P − v A ?y ex:P ?x → ?x rdf:type A

∃P −.A1 v A2 [ex:P ?x ; rdf:type A1] → ?x rdf:type A2

P v S, P − v S−
?x ex:P ?y → ?x ex:S ?y

P v S−, P − v S ?x ex:P ?y → ?y ex:S ?x

Table 1. ELHIO axioms as rules over RDF triples. Converted from Table 2 in [20].

Query Rewriting in ELHIO Query rewriting in our approach uses a non-
recursive ELHIO ontology to rewrite the conjunctive query q into a union of
conjunctive queries (UCQ) q′ such that cert(q,O) = {α | q′ ∪ A |= qh(α)}.
The details of the inference steps for the rewriting can be found in [18]. The
transformation of the ontology to first order logic is performed according to
the rules described in [21]. Afterwards, the UCQ is then converted into a union
of basic graph patterns (BGPs). Since this conversion is merely syntactical, the
semantics of the rules in ELHIO can be expressed over transformations on triple
patterns, as detailed in Table 1.

Query Rewriting for Continuous Queries In the context of this work, the
ontology is not considered to be static at query evaluation time, but it is available
as a stream. Assuming that that the ABox of the ontology is dynamic and that
the TBox does not change at query time, we can define an instantaneous ABox
as A(t), for a given time t. An instantaneous ABox contains all assertions in the
stream timestamped at time t. Then we can represent the stream as a sequence
of ABoxes over time: A(0),A(1), ...,A(ti), ... where ti represents a time point.
Furthermore, given a time window w with starting and ending times s and e, we
can define Aw as the ABox consisting of the union of the instantaneous ABoxes
A(t) such that s ≤ t < e.

To provide continuous answers to queries on this stream of ABoxes, each
query is executed over a sliding time window that limits the number of assertions
of the stream. A slide parameter indicates how often this window is computed (as
described in Section 2.1, but without loss of generality we can assume that the
window size is equal to the slide. Then, if we assume t0 as the initial evaluation
time, given a query qw over a window of size δ, it will be evaluated at times
t0, t0 + δ, ..., t0 + kδ, ..., with k ∈ N. The certain answers for this query, for the
k-th window can be defined as:

cert(qwk
, 〈T ,Awk

〉) = {α | qw ∪ T ∪ Awk
|= qh(α)}

where the start and end times of the k-th window wk define the contents of the
ABox Awk

. This instantaneous query evaluation is compatible with the previous
definition of certain answers given above, as we are referring to instantaneous
snapshots of the ABox stream. Therefore, the query rewriting algorithms for
static data sources can be used to compute the inferences on this instantaneous
query. For the k-th window, the corresponding query qwk

will be rewritten into
a new query q′

wk
such that:

cert(qwk
, 〈T ,Awk

〉) = {α | q′
w ∪ Awk |= qh(α)}

As we will see in the next section, the time-window based query q′ can be
concretely implemented using an RDF stream processor that natively includes
the window operator, as we have seen in Section 2.1. Given that queries are
continuously evaluated, the rewriting process does not need to be performed on
every window evaluation. Assuming that T does not change, the query rewriting
can be executed only once.

4 RSP Rewriting Implementation

In this section we describe StreamQR, an implementation of the query rewrit-
ing approach presented in Section 3. This prototype is available as open-source
code2, and is based on two main components: (i) the query rewriter kyrie [18],
which rewrites queries using ELHIO ontologies, and (ii) the RSP query engine
CQELS [16]. The whole process is divided in a series of steps that are graphically
summarized in Figure 1.
2 Github StreamQR: https://github.com/jpcik/streapler/tree/streamQR

kyrie
rewriter

CQELS

ontology
TBox

query
registration CQELS

RDF
stream

continuous
answers

CQELS
query

CQELS
UCQ

StreamQR

Fig. 1. High level architecture of StreamQR. The original query is rewritten by kyrie
into a union of CQELS queries based on the ontology TBox. The rewritten queries are
evaluated by the CQELS engine, on the incoming RDF stream.

RDF streams continuously feed StreamQR, specifically through the CQELS
interface for consuming incoming streams, and allows registering queries specified
in the CQELS language. In the following we describe the implementation of the
rewriting and continuous execution.

As a running example, consider the following ontology TBox, including asser-
tions about observations. For instance, temperature observations are observed
by a temperature sensor, a thermistor is a type of temperature sensor, etc3:

met:TemperatureObservation v ∃ ssn:observedBy.aws:TemperatureSensor

met:AirTemperatureObservation v met:TemperatureObservation

met:ThermistorObservation v ssn:TemperatureObservation

aws:Thermistor v aws:TemperatureSensor

aws:CapacitiveBead v aws:TemperatureSensor

Registration. In this stage StreamQR takes as input an ontology TBox and a
registered CQELS query, to produce a union of conjunctive queries (UCQ). For
instance the following query asks for all instances observed by a temperature
sensor in the last 10ms.

PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>

PREFIX aws: <http://purl.oclc.org/NET/ssnx/meteo/aws#>

CONSTRUCT { ?o a :ObservedTemperature. }

WHERE {

STREAM :stream1 [RANGE 10ms] {

?o ssn:observedBy ?t .

?t a aws:TemperatureSensor. }

}

Listing 2. CQELS query for the latest 10ms of observations of temperature sensors.

Pre-processing. When this query is registered, the rewriting process is launched
using the kyrie [18] module. kyrie uses ELHIO as the language for the ontologies,
as it is one of the most expressive DLs that can be currently handled in query
3 For brevity we use the prefixes aws: http://purl.oclc.org/NET/ssnx/meteo/aws#, met:http:
//purl.org/env/meteo#, ssn:http://purl.oclc.org/NET/ssnx/ssn#

rewriting (see Section 6 for details). While the ontology is typically an OWL
file, kyrie ignores assertions that go beyond the expressivity of ELHIO. It also
converts the ontology to Horn clauses and performs additional pre-processing.
At this point, the system produces a conjunctive query from the basic graph
patterns in the original CQELS query, while the time window definitions of the
query (the query context) are preserved. For example, the following conjunctive
query clauses can be obtained from the query in Listing 2:

Q(?0) <- aws:TemperatureSensor(?1), ssn:observedBy(?0,?1)

Saturation and expansion. These clauses with the conjunctive query form
a logic program that is saturated by using resolution with free selection (RFS)
and including a series of optimizations, as described in [18]. This results in a
number of clauses that is usually smaller than those produced by other similar
techniques (e.g. REQUIEM [21]). After two saturation stages, we can remove
functional terms to obtain a Datalog program or expand that program into a
UCQ (as in our case without recursion). As an example, the previous conjunctive
query is expanded to a union of the following conjunctive queries:

Q(?0) <- met:TemperatureObservation(?0)

Q(?0) <- met:AirTemperatureObservation(?0)

Q(?0) <- met:ThermistorObservation(?0)

Q(?0) <- aws:TemperatureSensor(?1), ssn:observedBy(?0,?1)

Q(?0) <- aws:Thermistor(?1), ssn:observedBy(?0,?1)

Q(?0) <- aws:CapacitiveBead(?1), ssn:observedBy(?0,?1)

Back to CQELS. The UCQ is then syntactically re-transformed back in
CQELS using the context information from the original query. This includes the
window definition, the query form and other modifiers. We refer to this query as
the CQELS UCQ to avoid ambiguity with the original CQELS query. Following
our example, after finishing the rewriting process we obtain the following union
of queries (Listing 3), which already takes into account the axioms in the TBox.
Given that CQELS does not allow unions on the stream clause, in practice this
query is split into different CQELS queries with the same window and the union
content as the pattern inside the stream clause.

PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>

PREFIX aws: <http://purl.oclc.org/NET/ssnx/meteo/aws#>

PREFIX met: <http://purl.org/env/meteo#>

CONSTRUCT { ?o a :ObservedTemperature. }

WHERE { STREAM :stream1 [RANGE 10ms] {

{ ?o a met:TemperatureObservation } UNION

{ ?o a met:AirTemperatureObservation } UNION

{ ?o a met:ThermistorObservation } UNION

{ ?s a aws:TemperatureSensor . ?o ssn:observedBy ?s } UNION

{ ?s a aws:Thermistor . ?o ssn:observedBy ?s } UNION

{ ?s a aws:CapacitiveBead . ?o ssn:observedBy ?s }

}

Listing 3. The query of Listing 2 after rewriting.

The general description of the process is depicted in Figure 2.

ontology

preprocess remove func-
tional terms

separate BGP
& context

CQELS
query

remove
auxiliary
predicates

expandUCQ syntactic
transformation

Datalog
query

Rewritten
CQELS UCQ

context
(including
window)

CQ
(BGP)

Fig. 2. Main steps of the query rewriting algorithm: preprocess, remove functional
terms, auxiliary predicates and unfold (adapted from [18]). Added steps for syntactic
conversion between CQELS and UCQ.

5 Evaluation

In this section we evaluate the performance of StreamQR in terms of the through-
put of the query answering process, considering different input streaming rates
and simultaneous continuous queries. More concretely, we compute the through-
put of the system in terms of triples processed per unit of time, comparing
StreamQR with rewriting enabled, and StreamQR running CQELS without any
rewriting. Then, we evaluate the throughput under different input data loads,
considering that the query answering process depends not only on the input rate
but also on the number of query matches produced in a given time span. Further-
more, we compare different queries whose rewriting produces different number of
UCQs. Finally, we compare StreamQR with TrOWL [23], a state-of-the-art stream
reasoner, which provides incremental reasoning over ontology streams, although
not targeted towards query answering. We used a modified version of the SR-
Bench [28] benchmark queries, as well as an ontology based on AWS (Ontology
for Meteorological sensors4), which extends the W3C SSN ontology [11]. The
ontology describes sensors, observations, features of interest, ans other weather-
related concepts. The ontology is available online 5. We have taken the SRBench
queries and adapted them according to our extended ontology. The full set of
queries is available in the Github repository, and additional information about
the experiments can be found there as well6. All the experiments were performed
on an Intel Core i7 3.1 GHz, 16 GB.

Comparing with CQELS without rewriting. A key indicator in stream processing
is the system throughput, which can be measured in terms of the number of input
elements processed per unit of time. Input rates, number of matching results
and the number of concurrent queries are some of the main factors that impact
throughput. In most evaluations concerning query rewriting, the rewriting time
is also relevant. This is also the case in RSP, although to a lesser degree, because
4 AWS: http://www.w3.org/2005/Incubator/ssn/ssnx/meteo/aws
5
http://jpcik.github.io/streapler/ontology/envsensors.owl

6
https://github.com/jpcik/streapler/wiki/StreamQR-experiments

for continuous queries the rewriting is performed once, so its cost is not critical in
the long run. In the first experiment we compared the throughput of StreamQR
with rewriting enabled, to only evaluating the query with CQELS. We tested
under different input rates, ranging from 10 to 100K triples/s, as depicted in
Fig. 3(a,b,c). We also tested under three different load conditions, i.e. in such
a way that only 10%, 50% and 90% of the input data matches the continuous
query. As it can be seen in the results, the rewriting of StreamQR performs
exactly as without rewriting for most of the input rates. Only under very high
rates there is a considerable difference. This is the case for the three types of
loads, although we can see considerable changes depending on the percentage
of matching input triples. Notice that in these cases, up to 200K triples/s., the
behavior reaches the maximum expected throughput.

0

5000

10000

15000

20000

25000

10 100 1000 10000 100000

th
ro
ug
hp

ut
	[t
rip

le
/s
]

input	rate	[triple/s]

no	rewriting
rewriting

(a) l0% of input matches

0

5000

10000

15000

20000

25000

30000

10 100 1000 10000 100000

th
ro
ug
hp

ut
	[t
rip

le
/s
]

input	rate	[triple/s]

no	rewriting
rewriting

(b) 50% of input matches

0

10000

20000

30000

40000

50000

10 100 1000 10000 100000

th
ro
ug
hp

ut
	[t
rip

le
/s
]

input	rate	[triple/s]

no	rewriting
rewriting

(c) 90% of input matches
Fig. 3. Throughput in StreamQR with and without rewriting.

Variations in input matching. As we saw in the previous experiment the number
of matching triples affects the overall throughput. The more matches, the more
time the engine spends on evaluation. We performed a series of experiments
under different input loads, with a varying distribution of the types of triples,
in such a way that 10, 20, 50, 80 and 90% of the triples match the query. As we
can see in Figure 4, up to 10K triples/s., in almost all cases StreamQR is capable
of handling all the input. Beyond that, the throughput degrades until it reaches
a limit. Notice that for each run, as StreamQR produces a UCQ, several queries
are running simultaneously.

0

5000

10000

15000

20000

25000

30000

35000

40000

10 100 1000 10000 100000

th
ro
ug
hp

ut
	[t
rip
le
/s
]

input	rate	[triple/s]

10%	match
20%	match
50%	match
80%	match

Fig. 4. Throughput in StreamQR for different distributions of input triples.

Query rewritings. Different queries may produce a UCQ with a different number
of sub-queries. In this experiment we launched nine distinct queries that produce
from 2 to over 180 sub-queries. As it was expected, in general the throughput
decreases for queries that produce more rewritten queries (Figure 5). Although

this can also be affected by the complexity of the query, it is a limiting factor on
the overall throughput. Existing techniques used in query rewriting and OBDA
can be used to alleviate this, for instance by pruning queries that may not match
any input. In stream processing this can be feasible in many cases as the data is
often repetitive in terms of structure and can be deduced in the long run. Even
then, for around 1K triples/s, it still reaches maximum throughput.

100

1000

10000

100000

100 1000 10000 100000

th
ro
ug
hp

ut
	[t
rip
le
/s
]

input	rate	[triple/s]

q4
q6
q1
q5
q2
q3
q7
q10

Fig. 5. Throughput for different queries with multiple rewritings, respectively 2, 2, 16,
18, 31, 36, 88, 51 and 185 sub-queries.

Comparison with TrOWL. Finally, we compared the performance of StreamQR
with TrOWL, which provides incremental reasoning for ABoxes. While the tar-
get of TrOWL is not query answering, but materialization, it is a state-of-the-art
stream reasoner which can be used to populate an RDF store that can be peri-
odically queried. We compared the throughput in three different settings. First,
with TrOWL only consuming the data without performing any reasoning (no-
reclassify), then activating the reasoning, but allowing only additions, and finally
including removals as well. The removal operation is known to be expensive in
incremental materialization. As we can see in Figure 6, StreamQR sustains bet-
ter throughput under fast input rates, even at the same level as TrOWL without
any reasoning. With reasoning enable in TrOWL, this is even more noticeable.
Under lower input rates both are able to reach maximum throughput. Given
that the goal of TrOWL is not stream query answering, this comparison is only
informative, showing that input throughput with materialization is lower than
with query rewriting. A more systematic comparison of materialization vs. query
rewriting is worth considering, although it is outside of the scope of this paper.

6 Related Work

Different DL languages have been explored and used for query rewriting and
several systems have been implemented for these languages. The DL-Lite fam-
ily of languages [9], a first milestone in this area, derived into DL-LiteR and
DL-LiteF .DL-LiteR includes ISA and disjointness assertions between roles and
DL-LiteF includes functionality restrictions on roles. These logics are first-order
reducible with a tractable complexity [9], as done in Quonto and extended in
Presto and Prexto [26, 25]. The OWL2 QL profile was inspired by the DL-Lite
family and designed to keep the complexity of rewriting low, considering first-
order rewritability. As a summary of a more extensive comparison [3], the main

100

1000

10000

100000

100 1000 10000 100000

th
ro
ug
hp

ut
	[t
rip
le
/s
]

input	rate	[triple/s]

StreamQR
Trowl-no-reclassify
Trowl-only-add
Trowl-add-remove

Fig. 6. Comparison with TrOWL, no reclassify, only additions, and with removals.

difference with DL-Lite is related with the lack of the unique name assump-
tion (UNA). Among the systems that address this expressiveness we can find
Rapid [10].

The ELHIO¬ logic [21] is more expressive. It extends the expressiveness of
DL-LiteR by including basic concepts of the form {a}, >, and B1 uB2, as well
as axioms of the form ∃R.B v C. This logic does not preserve the first-order
rewritability property, what means that depending on the query and the expres-
siveness in the ontology, the generated Datalog may contain recursive predicates.
Thus some queries cannot be expressed as a union of conjunctive queries (UCQ)
and must be rewritten to recursive Datalog. In spite of that, the computational
complexity of the rewriting process remains tractable (PTime-complete). Among
the systems that can handle this logic we can find REQUIEM [21] and kyrie [18].

Some of the Datalog paradigms that ensure decidability are chase termina-
tion, guardedness or stickiness, extended to weak-stickiness by Calì [8]. These
paradigms limit the loops that can be present in some Datalog to ensure de-
cidability of the unfolding and thus first-order rewritability. Among the systems
that can handle this logic we can find Nyaya [14]. Finally, Horn-SHIQ includes
role hierarchies and inverse roles as ELHIO. It does also include universal re-
strictions and transitive roles (S) axioms of the form A v ∀R.B and trans(R).
Among the systems that can handle this logic we can find Clipper [13].

With regards to RDF stream processing and reasoning, as described in Sec-
tion 2.1, different approaches have surfaced in recent years, adding streaming
support to SPARQL-based query processors. C-SPARQL [4] takes a hybrid ap-
proach that partially relies on a plug-in architecture that internally executes
streaming queries with an existing DSMS. CQELS [16] implements a native
RDF stream query engine with a focus on the adaptivity of streaming query
operators and their ability to efficiently combine streaming and stored data.
EP-SPARQL [1] adopts a perspective oriented to complex pattern processing,
and includes sequencing and simultaneity operators. Other recent approaches
focused on event processing based on the Rete algorithm for pattern matching
include Sparkwave [15] and Instans [24]. There has also been a proposal for
including rules from a knowledge base into C-SPARQL [5], although these are
based on instantaneous materialization only for RDF-S, and are not available

yet in the C-SPARQL software package. Concerning OBDA, the STARQL [19]
framework introduced an ABox sequencing strategy which allows it to use unions
of conjunctive queries combined with languages such as DL-Lite.

Previous efforts on stream reasoning have focused on ontology maintenance
for streams, e.g. using truth maintenance systems [23] and approximate reason-
ing optimized for memory consumption, by eliminating unnecessary intermediate
results. Other works have also proposed parallelization techniques for the mate-
rialization of inferences in streaming knowledge-bases, although limited only to
a fragment of RDFS [27]. On a similar path, works on knowledge evolution [17]
have used DL reasoning over ontology streams to detect and explain the nature
of the changes on the ontology, as well as potential inconsistencies. Concerning
theoretical results, the LARS framework [6] proposed a rule-based formalization
that captures the semantics of stream reasoning engines.

7 Conclusions
In this paper we presented an approach for providing query answering over on-
tologies for RDF stream processors, through a novel approach that combines
query rewriting techniques and an RSP engines. Furthermore, we implemented
StreamQR, a system that incorporates the kyrie rewriter into an existing RSP
engine, and that shows the feasibility of our approach. We also provided evi-
dence that this implementation can still be efficient in terms of throughput, for
a large range of scenarios, compared with an RSP engine with no rewriting or
inferencing capabilities.

In the future, we plan to study other criteria such as correctness of the query
answering process, which is known to be non trivial for data streams. Moreover,
we are interested in exploring different expressiveness in order to find a good
balance between efficiency and complexity. Finally, we believe that there is still
large room for research in approaches that combine rewriting and incremental
materialization for stream reasoners and query answering over ontologies.
Acknowledgments Partially supported by the Nano-Tera.ch OpenSense2 and
D1namo projects, evaluated by the SNSF. Supported by Ministerio de Economía
y Competitividad (Spain) under the project 4V: Volumen, Velocidad, Variedad
y Validez en la Gestión Innovadora de Datos (TIN2013-46238-C4-2-R)

References

1. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: WWW, pp. 635–644 (2011)

2. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. The VLDB Journal 15(2), 121–142 (June 2006)

3. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Int. Res. 36(1), 1–69 (2009)

4. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:
SPARQL for continuous querying. In: WWW, pp. 1061–1062 (2009)

5. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental
reasoning on streams and rich background knowledge. In: ESWC, pp. 1–15 (2010)

6. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: Lars: A logic-based framework for
analyzing reasoning over streams. In: AAAI (2015)

7. Calbimonte, J.P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to
streaming data sources. In: ISWC, pp. 96–111 (2010)

8. Calì, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in
datalog+/-. In: Web Reasoning and Rule Systems, vol. 6333, pp. 1–17 (2010)

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (Oct 2007)

10. Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL 2 QL.
In: Automated Deduction – CADE-23, vol. 6803, pp. 192–206 (2011)

11. Compton, M., Barnaghi, P., Bermudez, L., García-Castro, R., Corcho, O., Cox,
S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz,
K., Kelsey, W.D., Phuoc, D.L., Lefort, L., et al.: The SSN ontology of the W3C
semantic sensor network incubator group. J. Web Semantics 17, 25–32 (2012)

12. Cugola, G., Margara, A.: Processing flows of information: From data stream to
complex event processing. ACM Computing Surveys 44(3), 15:1–15:62 (2011)

13. Eiter, T., Ortiz, M., \vSimkus, M., Tran, T.K., Xiao, G.: Query rewriting for
horn-SHIQ plus rules. In: AAAI (2012)

14. Gottlob, G., Orsi, G., Pieris, A.: Ontological query answering via rewriting. In:
Advances in Databases and Information Systems, pp. 1–18. No. 6909 (Jan 2011)

15. Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pat-
tern matching over RDF data streams. In: DEBS, pp. 58–68 (2012)

16. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. In:
ISWC, pp. 370–388 (2011)

17. Lécué, F.: Diagnosing changes in an ontology stream: A DL reasoning approach.
In: AAAI (2012)

18. Mora, J., Corcho, O.: Engineering optimisations in query rewriting for OBDA. In:
I-SEMANTICS, pp. 41–48 (2013)

19. Özçep, Ö.L., Möller, R., Neuenstadt, C.: A stream-temporal query language for
ontology based data access. In: KI, pp. 183–194 (2014)

20. Pérez-Urbina, H.: Tractable query answering for description logics via query rewrit-
ing. PhD thesis (2009)

21. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for OWL 2.
In: ISWC, vol. 5823, pp. 489–504 (2009)

22. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. Journal on Data Semantics X pp. 133–173 (2008)

23. Ren, Y., Pan, J.Z.: Optimising ontology stream reasoning with truth maintenance
system. In: CIKM, pp. 831–836 (2011)

24. Rinne, M., Törmä, S., Nuutila, E.: SPARQL-based applications for RDF-encoded
sensor data. In: SSN, vol. 904, pp. 81–96 (2012)

25. Rosati, R.: Prexto: Query rewriting under extensional constraints in DL-Lite. In:
ESWC, vol. 7295, pp. 360–374 (2012)

26. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
KR (2010)

27. Urbani, J., Margara, A., Jacobs, C., van Harmelen, F., Bal, H.: Dynamite: Parallel
materialization of dynamic rdf data. In: ISWC, pp. 657–672 (2013)

28. Zhang, Y., Duc, P., Corcho, O., Calbimonte, J.P.: SRBench: A Streaming RDF/S-
PARQL Benchmark. In: ISWC, pp. 641–657 (2012)

