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”Again, it [the Analytical Engine] might act upon other things besides number, were objects

found whose mutual fundamental relations could be expressed by those of the abstract science

of operations, and which should be also susceptible of adaptations to the action of the operating

notation and mechanism of the engine . . . Supposing, for instance, that the fundamental rela-

tions of pitched sounds in the science of harmony and of musical composition were susceptible

of such expression and adaptations, the engine might compose elaborate and scientific pieces of

music of any degree of complexity or extent.”

Lovelace, Ada. Notes upon L. F. Menabrea’s Sketch of The Analytical Engine Invented by Charles

Babbage. 1843.





Abstract
Humans are able to learn and compose complex, yet beautiful, pieces of music as seen in e.g.

the highly complicated works of J.S. Bach. However, how our brain is able to store and produce

these very long temporal sequences is still an open question. Long short-term memory (LSTM)

artificial neural networks have been shown to be efficient in sequence learning tasks thanks to

their inherent ability to bridge long time lags between input events and their target signals.

Here, I investigate the possibility of training LSTM networks to learn and reproduce musical

sequences and eventually better understand some of the mechanisms neural networks deploy

to learn and compose long time scale structures.

To be able to learn music with LSTM networks requires representing musical sequences

in these networks. The musical representation developed for this work is inspired by the

tonotopic representation of sounds in the auditory system. It is shown that LSTM networks

are able to learn each note transitions of the monophonic and polyphonic versions of a simple

song using a particular network architecture where both input and output of LSTM networks

are musical notes in the developed network representation. However, this architecture for

LSTM networks fail to learn longer and more complex musical sequences (e.g. the J.S. Bach

cello suites). To solve this problem, I introduce the separation of time scales model, which

consists in two connected LSTM networks, operating on different time scales. On one hand,

trained slow time scale LSTM networks produce transitions between unique identifiers of

musical patterns, which resemble a compressed memory of the pattern akin to neural memory.

This gives the long time structure of music. On the other hand, trained fast time scale LSTM

networks are producing the note-to-note transitions of each musical patterns. The latter

receives as additional inputs the identifiers from slow time scale networks, akin to feed-

forward input from memory regions of the brain. These unique identifiers bias fast time

scale LSTM networks toward the production of the corresponding musical pattern. The most

efficient identifiers of musical patterns are found to be a representation of how similar patterns

are from one another. Finally, when unlearned pattern identifiers are given to trained fast time

scale networks, novel musical patterns are created from the learned production rules.

I show that the introduction of a separation of time scales greatly improves the capacity

of LSTM networks to learn a larger body of musical sequences. Finally, I demonstrate that

previously unseen input biases can be used to induce the network into the generation of

new musical sequences, akin but not similar to known patterns. This presents a possible first

step towards the generalization of previously learnt musical knowledge to the creation and

composition of new music by artificial neural networks.
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Introduction

Can we come close enough to the mechanism of artistic creation in order to be able to understand

how a composer, a musician or a director, chooses to combine particular notes or rhythms? This

question is addressed among others in the book "Enchanted neurons" by the neurobiologist

Pierre Changeux, the composer Pierre Boulez and the musicologist Philippe Manoury [1].

The work presented here, assesses this question by the means of artificial neural networks

(ANNs). Can ANNs learn the mechanism of music composition and produce complex musical

sequences?

Artistic creation is often considered as a third entity, which is not part of the physical world,

but rather part of the spirit or the soul [1]. J.S. Bach compositions were even attributed to

the voice of God. Indeed, many people could not find any rational explanations for how only

a man could create such intrinsically complicated and yet beautiful compositions. In this

regard, Hofstadter [2] relates the story of the musical offering: how can Bach’s brain improvise

in real time a six voices fugue, while others could not do it on paper? From the point of view of

the neurosciences, Bach’s brain is a neural circuits trained with past experiences. This circuit

commands the hand of the composer to write a particular note at a particular place in the

musical creation process. Thus, a neuroscientist would probably strictly say that Bach’s brain

was either better trained or had a special layout, particularly well suited for the task, or both. A

computational neuroscientist would argue that the neural circuits of Bach’s brain dedicated

to music composition could be represented in an analytical form with interconnected units

whose behavior obeys specific dynamical equations. The idea of using an analytical engine

to mimic the musical creation process can be trace back as far as in 1843 when Ada Lovelace

thought about the possibility of Charles Babbage’s analytical engine to represent music in

order to compose elaborate and scientific pieces of music of any degree of complexity or extent

[3].

However, music is a very complex task to represent with analytical processes. Indeed, musical

structures generally spread along very long time lags. In addition, musical sequences are

highly non deterministic. On the note-to-note time scale, many different notes depending on

the sequence place follow a particular note or chord. On a longer time scale, a given musical

pattern is often followed by many other patterns, even in the same piece of music. Such

non-deterministic sequences are here referred to as non-Markovian. Furthermore, music

could have repetitive structures over many different time scales that range from the single
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Introduction

note to a symphony of more than one hour where the first theme is recalled during the last

bars. Overall, although musical sequences are constrained by many rules, learning them is a

very challenging task for ANNs.

Back to the neuroscientist point of view, as Bach’s neurons operate on the millisecond time

scale, solving such long time problems requires the storage of information. The brain possesses

such storage capability in long- and short-term memory. When the fourteen years old Mozart’s

neurons received the Miserere music in Vatican, they were able to store it until Mozart wrote

the polyphonic song entirely in musical notation the same evening. That Mozart’s neurons,

probably operating similarly to any regular human’s neurons on the millisecond time scale,

remembered the whole of this long musical sequence for such a long time is most likely a

memory emerging from the collective activity of a whole network of recurrently connected

neurons [4] – a network effect. Similarly, to improvise in real time a fugue with six Obligato

part, a task that only Bach’s neurons could do, Bach needed to efficiently store each previous

time events to be able to keep a well organized structure that fit the highly constraining rule of

the fugue. ANNs and especially recurrent neural networks (RNNs), inspired by the biological

brain architecture, provide a numerical model for a kind of short-term memories in neural

networks.

Among ANNs specialized in sequence learning, the long short-term memory (LSTM) network

is a potential candidate for application to musical sequence learning and production. LSTM

networks are RNNs that were introduced by Hochreiter and Schmidhuber in 1997 [5]. They

are composed of three layers: an input, a hidden and an output layer. The hidden layer is

composed of specialized units called the memory cells (MCs) that are able to store information

for long time intervals [5]. Each MCs are part of a higher structure, the memory cell block

(MCB). LSTM networks typically are composed of several MCBs, each of which operates on an

intrinsic time scale. Gating variables associated with each MCB modulates the information

flow through MCs. Thanks to its architecture and learning algorithm, LSTM networks have

been shown to be efficient in learning complex sequences and have been applied to speech

processing [6] and handwriting recognition [7].

The results obtained on complex sequence learning by LSTM networks, the internal mech-

anisms of LSTM networks (e.g. the different time scales of each memory cell blocks) and

their capacity to bridge long time lags between input events and target signals ultimately

make LSTM networks good candidates for the task of musical sequence learning. Moreover,

the structure of LSTM networks, although more related to machine learning than biological

neural networks, could be linked to the neural circuits of Mozart’s brain retrieving the Miserere.

Indeed, MC states can possibly be linked to neural networks capable of storing information

and MCBs to short-term memory operational substructures of the brain, each working on

different time scales [8]. For example, slow time scale subnetworks retaining the information

about the global song structure (time entries of the different voices or how each musical phrase

is ordered) and faster time scale subnetworks that have storing the melody or note transitions

within each musical phrase. As a first step, these hypotheses on how musical sequences are

2



encoded in the brain can be tested with ANNs. However, experimental evidence for such time

scale hierarchy has been reported in the neuroscience literature. For example, Kiebel et al.

reviewed empirical evidence that time scale hierarchy is actually present in the cortex and

build a model completely based on this concept. Their findings suggest that their temporal

hierarchy model can naturally retrieve and reproduce bird songs [8].

Here, I therefore apply LSTM networks to the problem of musical sequences learning and

production. Representation of music in ANNs is consequently a critical step. In physical

terms, music is, like sounds, propagation of mechanical vibration in an elastic medium [1]

and the more complete representation is consequently the sound spectrogram [9]. However,

neurons are not directly coupled with the pressure wave of music propagating in the air. The

transduction from mechanical pressure waves to action potentials, the neural communication

mechanism, is done by the hair cells of the cochlea [10]. The cochlea is built in a manner

that hair cells are frequency tuned (tonotopic representation). To be closer to what neurons

are operating with, I chose to represent musical sequences in LSTM networks as pure tones

perceived by hair cells, each pitch being associated with one cell in the input and output

layers.

The results reported in this master thesis demonstrate that LSTM networks are able to predict

every upcoming note from the previous one of simple musical sequences. In addition, a

new model will be introduced that transforms trained LSTM networks into autonomous

musical sequences composers, the generative model. The model used to learn the simple

musical sequence is referred as the input-note-ouput-note (INON) model because both input

and output to the network are notes only. While INON LSTM networks combined with the

tonotopic music representation are efficient to learn a single musical sequence such as Frère

Jacques, they fail to capture longer and more complex musical sequences (e.g. Bach’s cello

suites). To solve this problem, a novel model is presented that relies on the separation of time

scales. The separation of time scales model architecture consists of one LSTM network trained

to learn the slow time scale structure of the musical sequence that transfers its information

to another LSTM network, which is producing the fast time scale structure. The musical

sequence is severed into musical patterns of constant length, each of which is associated with

unique identifiers. In this new model, the slow time scale LSTM network is then trained to

predict pattern transitions, translated in transitions between pattern identifiers, while the fast

time scale LSTM network is trained to predict note transitions from all musical patterns, given

their corresponding unique identifiers. Furthermore, the musical pattern identifiers could be

compared to a compressed memory of musical patterns that is taken advantage of by fast time

scale LSTM networks in order to recall the high frequency note-to-note transitions from each

of the pattern. This compressed memory of musical patterns is found to be very efficient for

pattern recalling when it is taking into account similarities between patterns as the associative

memory of Hopfield networks is [11].

3
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Outline Chapter 1 summarizes the properties of LSTM networks and the learning algorithm

of LSTM networks is introduced. Chapter 2 describes the tonotopic music representation in

ANNs along with a tool to convert any MIDI files to the chosen representation. Chapter 3

presents the results obtained when LSTM networks are trained on the nursery rhyme Frère

Jacques either in a monophonic or a polyphonic version. Both versions of the song are learned

and reproduced by LSTM networks. Effects of the network topology, the learning rate and

noise on learning are also discussed. Chapter 4 introduces the separation of time scale model

and tests it on musical extracts from Bach’s cello suites. Both the LSTM network dedicated

to the fast and slow time scales are able to learn their corresponding time scale of Bach’s

cello suites. In addition, trained slow and fast time scale LSTM networks are transformed to

generate their corresponding time scales. Finally, Chapter 5 explores the possibility of novel

musical pattern production by trained fast time scale LSTM networks.
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1 Long Short Term Memory

The specialized cells of long short-term memory (LSTM) networks have been shown to be able

to bridge arbitrary time lags between input signals and their target outputs. LSTM networks

were able to solve efficiently the non-trivial tasks that require very long time memory, e.g.

the continuous embedded Reber grammar and continuous noisy sequence tasks [12]. LSTM

networks have also outperformed other neural networks when applied to handwriting recogni-

tion [13], language learning [14] and more recently protein secondary structure classification

[15]. Furthermore, they have been found to be able to learn non-Markovian sequences, which

makes LSTM networks ideal candidates for learning of musical sequences.

This chapter begins with a short summary of artificial neural networks and present the back-

ward propagation of the error signal learning algorithm. In the second part, I give introduction

to the special properties of LSTM networks. Finally, the learning algorithm of LSTM networks

(forward and backward passes) is presented and detailed.
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Chapter 1. Long Short Term Memory

1.1 Artificial Neural Networks and Learning by Backward Propaga-

tion of the Error

Before introducing LSTM networks, I first summarize the learning mechanisms of standard

artificial neural networks (ANNs) [16]. ANNs are typically multilayer networks composed of

interconnected artificial neurons called units or cells. Like biological neurons, an artificial

neuron j integrates the activation yi of connected cells with a strength defined by the weight

of the connection wi j from neuron i to neuron j . Input units receive external stimulation

that is then propagated along the network through the connections (forward pass). The

objective of an ANN is to match the external stimulation signal to a target output through

sequential update of the connection weights between each unit. The weight updates are made

through backward propagation of the error signal observed at the output cells (backward

pass). Recurrent neural networks (RNNs) are a particular class of ANNs where neurons are

recurrently connected in addition to feedforward connections. Use of recurrent connections

enables the network to use its own internal state to affect its output.

1.1.1 Forward pass

The input net j to non-input neurons j in an ANN is given by the weighted sum of previous

neuron activations y i (equation 1.1). The input neurons receive the external input that is

propagated along each of the connected units. The activation of each neurons y j is then given

by equation 1.2 where f is the activation function and is in general a non-linear monotonic

and differentiable function such as the logistic function.

net j = ∑
i

wi j y i (1.1)

y j = f (net j ) (1.2)

1.1.2 Backward pass

The error function is given by equation 1.3, where t k is the target activation of output cell k

and yk the actual output unit activation. The gradient descent method gradually minimizes

the error function by changing the connection weights with respect to the partial derivative of

the error function ∂E
∂w j i

(equation 1.4).

E = 1

2

∑
k
||t k − yk ||2 (1.3)

∂E

∂wi j
= ∂E

∂y j

∂y j

∂net j

∂net j

∂wi j
(1.4)
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1.2. LSTM Network and Units

The terms in the right hand side of equation 1.4 can be simplified. Indeed, the last term is

y i and the middle term is simply the derivative of the activation function evaluated at net j .

The first term is easy to evaluate for output neurons ( j = k) and ∂E
∂yk = yk − t k . However, if j

it is not an output neuron, the derivation is less trivial and for non-output neurons, due to

the chain rule, one needs all higher derivatives ∂E
∂y j until an output unit is reached, hence the

name backward propagation of the error. The final equation for the partial derivative of the

error with respect to the weights is given by equations 1.5 and 1.6. The local weight update to

approach the minimum of the error function is given by equation 1.7 where α is the learning

rate.

∂E

∂wi j
= δ j yi (1.5)

δ j =
 f ′(net j )(yk − t k ) for output neurons ( j = k)

f ′(net j )
∑

l δl w j l otherwise
(1.6)

∆wi j = −α ∂E

∂wi j
(1.7)

1.2 LSTM Network and Units

LSTM networks are RNNs composed of three layers. The input layer receives the external

inputs and forwards information toward the hidden layer and output layer. In contrast to

conventional RNNs, in LSTM networks, the hidden layer is entirely composed of memory

cell blocks (MCBs). These special subunits are the central feature of LSTM networks and are

described in more detail in section 1.2.2. A MCB is composed of a fixed number of separated

memory cells (MCs) and three gate units (input, output and forget gates). The unique hidden

layer of traditional LSTM networks has recurrent connections in addition to feedforward

connections from input cells and toward output units.

LSTM networks are also trained using a gradient descent algorithm applied on the error signal

at the output layer. The error signal is backward propagated through the hidden layer and

its components to compute the weight changes needed to gradually approach the optimal

solution. However, because MCs have their own activation function and mechanisms that

differs from the model described in the previous section, the derivation of the error signal is

different for those cells (see section 1.3).

The main objective of LSTM networks is to be able to store information relative to the network

state of previous times until it is no longer necessary, thereby allowing to learn sequences

with arbitrary long time lags. This is done through explicit gating of information flow and

the inner cell state of each memory cell, which constitutes the memory of the network. More

importantly, the learning algorithm enables the possibility to keep a constant flow of the error

signal, which is crucial to solving long time lag problems [5].

7
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1.2.1 Constant Error Flow

The conventional backward propagation through time (BPTT) algorithm (section 1.1) suffers

from exponential blow up or vanishing of error signals in time [17]. The weight update being

related with the error signal, if the flow of error signals grows exponentially, weights are

updated with high values making them oscillate and eventually diverge. On the other hand, if

the error signal is vanishing over time, learning to bridge long time lags is not possible. LSTM

networks are addressing this problem by introducing the central feature of LSTM: the constant

error carousel or inner cell state of MCs [5].

From the Hochreiter analysis [18], the local error back flow of a conventional BPTT algorithm

for a single recurrently connected unit is given by equation 1.8. To force the error flow to

a constant value across time (δ j [n] = δ j [n +1]) the equation 1.9 should be respected. The

update rule of the state s j from MC j is satisfying this condition by setting w j j to 1 and

f (x) = x (equation 1.10).

δ j [n] = f ′(net j [n])δ j [n +1]w j j (1.8)

f ′(net j [n])w j j = 1 (1.9)

s j [n +1] = f (net j [n +1]) = f (w j j s j [n]) = s j [n] (1.10)

In other words, the inner cell state of MC s j remains constant to be able to keep tract of the

error signal. However, MCs are obviously not only connected only to themselves but to other

cells too and truncation of the error signal leaving MCs and gates should be applied [5] (see

section 1.3.2). The gates are introduced to be able to modulate the MC states and to resolve

input and output weight conflicts (see update equation 1.21 for MC states).

1.2.2 Memory Cell Block

The fundamental structure of LSTM networks is the memory cell block (MCB). Figure 1.1

is a block diagram that summarizes the different components of a MCB. The hidden layer

is entirely composed of MCBs, each of which contains several memory cells (MCs). Three

gates are associated to each MCB. Their role is to modulate the information flow through the

MCs. The gates and MCs receive input from the MCs in every blocks in addition to forward

connections from all input units. The input gate (i n) modulates delivery of information

from MC inputs to their inner cell states. The output gate (out) modulates the access or

sensitivity of connected cells to the information stored in MCs. The forget gate is an extension

of original LSTM networks [5] introduced by Gers et al. [12]. The forget gate (ϕ) role is to

discard useless memory from the inner cell states of MCs and has been shown to facilitate

continual predictions [12].
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1.2. LSTM Network and Units

...

∑wijyj

Out

gate

g

h

S1

Forget

gate

In

gate

g

h

S2

g

h

SN

yMC1 yMC2 yMCN

Figure 1.1 – Diagram of one memory cell block. S is the inner cell state, also called the constant
error carousel, of each memory cell (see text for details). h and g are non–linear transfer
functions common to all memory cells.

1.2.3 Gates

Here, I introduce and motivate gating of information flow within MCBs, while the mathemati-

cal formulation is given later in the learning algorithm section (section 1.3).

In gates The network uses the input gate to decide when to keep or override the information

stored in memory cells. To avoid input weight conflict, the input gate controls the error flow

to the MCs. The input weight conflict comes from the fact that learning will make the weights

of the synapses from input units toward MCs participate in storing the new input but also

protecting the information stored in MCs.

Out gates The output gate allows the network to decide when output units and other con-

nected structures can access a set of MCs and when to prevent output units from being

perturbed by these cells. Output weight conflicts can be prevented with the output gate by

controlling the error flow from output units toward a set of MCs. The output weight conflict is

the fact that learning will make the connections from MCs toward output units participate

in accessing information stored in the MCs along with protecting output units from being

perturbed by these information when they are not necessary.

Forget gates The original LSTM as presented by Hochreiter and Schmidhuber in 1997 [5]

encounter issues when learning continuous streams of sequences. Indeed, the memory cell

states are increasing linearly with time if there is no external reset of their values. The outputs
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Chapter 1. Long Short Term Memory

of the memory units are then saturated. Effects of this saturation are blocked incoming error

signals and output equal to the value of the output gate. To learn to forget, Gers and his

colleagues proposed the concept of forget gate [12]. These gates learn when to reset the

memory cell states, consequently replacing an external reset and preventing saturation.

Using the gating of information flow and a constant flow of error signal, learning long time

structures is possible. The figure 1.2 taken from Graves work [19] represents this effect. Indeed,

when the first input is stored in the inner cell state, it remains in memory for as long as the

forget gate is open and is not changed for as long as the input gate is closed. The output gate

allows the output units to access this stored information whenever it is needed. By doing

so, the network could theoretically bridge arbitrary time lags between input events and their

target output signals.

Figure 1.2 – Keeping information for long time lags is possible with memory cells. Open gates
are schematized with circles and closed gates with lines. The bottom gate is the in gate, up is
the out gate and on the left side is the forge gate.
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1.3. LSTM Learning Algorithm

1.3 LSTM Learning Algorithm

The algorithm of the forward pass (propagation of unit activations) and backward pass (back-

propagation of error signals and weight updates) is described in this section. For all equations,

the index k ranges over output units, j over memory cell blocks, v over memory cells in the

block j and i over input units. i n stands for in gates, out for out gates ϕ for forget gates and

c for MCs. The mathematical equations given in this section are all adapted from the ones

described in the paper from Gers et al. [12].

1.3.1 Activation Functions

The activation of gates and cells are computed by filtering the linear net input to the current

units with a non linear sigmoid. Three of these sigmoids are used for this implementation of

the long short term memory algorithm.

f (x) = 1

1+exp(−x)
(1.11)

g (x) = 4

1+exp(−x)
−2 (1.12)

h(x) = 2

1+exp(−x)
−1 (1.13)

f is the activation function of the output units and gates. It is the logistic function and its

output is in the range [0 1]. g is squashing the network input of memory cells into the range

[-2 2] and h is squashing the inner cell states of MCs in the range [-1 1].

1.3.2 Forward Pass

The forward pass is computed at each time step. It consists in propagating the information

from the input layer toward the output layer and computing the partial derivatives needed for

the weight updates in the backward pass.

Unit Activations

The input unit y i
i nput activations at time t are determined by the external input at this time.

y i
i nput [n] = external inputi [n] (1.14)

At the beginning of the forward pass, the activations of the previous time step is set to the

current activities as a new step as begun (equation 1.15) . This is done after having set the

11



Chapter 1. Long Short Term Memory

input unit activations to allow for easier computation of the information propagation.

y[n −1] = y[n] (1.15)

The net input neti n j and activation y i n j of the in gate j are given by equations 1.16 and 1.17. In

all activation equations, the bi as terms are additional inputs to the units that are typically fixed

when the network is initialized (see Network initialization in section 3.1). Similar equations

apply to forget gates (equations 1.18 and 1.19) and output gates (equations 1.22 and 1.23).

neti n j [n] = ∑
m

wi n j m ym[n −1]+wbi as
i n j

ybi as (1.16)

y i n j [n] = f (neti n j [n]) (1.17)

netϕ j [n] = ∑
m

wϕ j m ym[n −1]+wbi as
ϕ j

ybi as (1.18)

yϕ j [n] = f (netϕ j [n]) (1.19)

The net input of memory cells and their inner states are given by equations 1.20 and 1.21. The

inner cell state s is additive with time and forget gates act as a reset function. The inner cell

state is modulated when the in gate is open and depends on the memory cell input squashed

by the sigmoid g .

netcv
j
[n] = ∑

m
wcv

j m ym[n −1] (1.20)

scv
j
[n] = yϕ j [n]scv

j
[n −1]+ y i n j [n]g (netcv

j
[n]) (1.21)

netout j [n] = ∑
m

wout j m ym[n −1]+wbi as
out j

ybi as (1.22)

yout j [n] = f (netout j [n]); (1.23)

The sensitivity of the output units to the memory cell activations is directed by the out gate

activation and depends on the memory unit inner state scv
j
, which is squashed by the sigmoid

h (see equation 1.24). Finally, the output unit activations are given by equations 1.25 and 1.26.

ycv
j [n] = yout j [n]h(scv

j
[n]) (1.24)

netk [n] = ∑
m

wkm ym[n]+wbi as
k ybi as (1.25)

yk [n] = f (netk [n]) (1.26)

12



1.3. LSTM Learning Algorithm

Partial Derivatives

The partial derivatives needed to minimize the error function are truncated to ensure the

constant error flow through the inner cell states of MCs by setting the error flow leaving MCs

and gates to 0 (for detailed description of the truncation see [5]). Therefore, the remaining

partial derivatives after truncation are the ones involving the inner cell state of each MC and

are presented below.

The remaining partial derivatives of MCs are given by equation 1.27, while the input gates and

forget gates partial derivatives are given by equations 1.28 and 1.29.

∂scv
j

∂wcv
j m

[n] =
∂scv

j

∂wcv
j m

[n −1]yϕ j + g ′(netcv
j
[n])y i n j [n]ym[n −1] (1.27)

∂scv
j

∂wi n j m
[n] =

∂scv
j

∂wi n j m
[n −1]yϕ j + g (netcv

j
[n]) f ′(neti n j [n])ym[n −1] (1.28)

∂scv
j

∂wϕ j m
[n] =

∂scv
j

∂wϕ j m
[n −1]yϕ j + sv

c [n −1] f ′(netϕ j [n])ym[n −1] (1.29)

1.3.3 Backward Pass

The backward pass consists in minimizing the output unit errors using a gradient descent

algorithm. The error signal at each output unit is backward propagated toward the lower layers

in order to update each weight (see section 1.1).

Errors and δs

The error at time t for each output unit is given by the difference between the current target of

the output unit and its activation at the same time step (equation 1.30). The target t k for each

output unit k is set at each time step and depends on the external input; it is the value that

should take the output unit given the input. The output units, out gates and inner cell states

δs are given by equations 1.31, 1.32 and 1.33 respectively.

ek [n] = t k [n]− yk [n] (1.30)

δk [n] = f ′(netk [n])ek [n] (1.31)

δout j [n] = f ′(netout j [n])
S j∑

v=1
h(scv

j
[n])

∑
k

wkcv
j
δk [n] (1.32)

escv
j

[n] = yout j [n]h′(scv
j
[n])

∑
k

wkcv
j
δk [n] (1.33)

13



Chapter 1. Long Short Term Memory

Weight Update

For all equations below, the weight update is applied with the learning rate α. Traditional

gradient descent based weight update is applied to weights of connections toward output

units and out gates as showed in equations 1.34 and 1.35.

∆wkm = αδk [n]ym[n] (1.34)

∆wout j m[n] = αδout j [n]ym[n −1] (1.35)

Weights of connections toward in and forget gates are updated based on the error signal back

propagation and the partial derivatives for all MCs in MCB j (equations 1.36 and 1.37). Finally,

weights of connections toward memory cells are updated based only on the local partial

derivative as described in equation 1.38.

∆wi n j m[n] = α

S j∑
v=1

esv
j
[n]

∂scv
j

∂wi n j m
[n] (1.36)

∆wϕ j m[n] = α

S j∑
v=1

esv
j
[n]

∂scv
j

∂wϕ j m
[n] (1.37)

∆wcv
j m[n] = α

∂scv
j

∂wcv
j m

[n] (1.38)

Learning modes The learning mode consisting in update of the weights after each predic-

tion or timestep n is called online learning. If the weight update is applied after a series of

predictions, the learning mode is called batch. In the case of musical sequences learning, the

network performances will be evaluated after a complete forward and backward pass on all

the sequence (a trial). To evaluate correctly the network performances on the sequence, the

weights should not change during a trial. It is therefore chosen the batch learning mode for

musical sequences learning.
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1.4 C++ Implementation

The LSTM model has been completely re-implemented in C++ in a object-oriented and flexible

fashion. The main classes are listed below.

Cell The Cell super class is a generic class for every neurons in the ANN. Its attributes are the

current and previous activations, the sum of weighted inputs and the bias.

Input cell The Input cell subclass inherits from Cell and possess only a function to externally

set the input cell activations.

Output cell The output cell subclass inherits from Cell. Its attributes are the target output

value, the δk and its activation function. Its public methods encompass the activation

and the δk update functions.

Memory cell The Memory cell subclass inherits from Cell. Its attributes are the current and

previous inner cell state, the local error and the two sigmoids needed to compute

the activation of the MC. Its public methods are the inner cell state update given the

activations of the forget and in gates, the activation update given the out gate activation

and the local error update.

Memory cell block The Memory cell block class attributes are a collection of pointers to MCs

and one pointer to each of the three gates.

Gate The Gate subclass inherits from Cell. Its attributes are the δ needed for the backward

pass and the activation function. Its public methods encompass activation and /del t a

updates.

Synapse The Synapse attributes are the synaptic weight, the pre and post synaptic cells and

the partial derivatives needed for its weight update. A weight update public method is

implemented in the Synapse class.

Sigmoid The Sigmoid class attributes are the three value needed to represent a sigmoid:

the multiplication coefficient, the steepness and the offset. Its public methods are

calculations of the activation and its derivative given the input.

Network The Network class reassembles every units and their connections in polymorphic

collection of pointers. It is calling and computing the forward and backward passes.
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2 Music Representation in Artificial
Neural Networks

Music is a complex temporal sequence and consequently a candidate to be learned by long

short-term memory (LSTM) networks. In order to be able to feed the network with a musical

sequence, a specific encoding of the music should be elaborated. To characterize all infor-

mation carried in a live performance of even a single instrument is a complex task. Indeed,

depending on the level of representation, one should be able to encode, among others, the

pitch, the tempo, the beat, the duration, the amplitude, the timbre of each note [20]. When

the music is polyphonic or orchestral, the complexity increases further. The objective of

representing music in artificial neural networks is to find a compromise that keeps as much

information as possible but remains simple enough to be learned.

In the current chapter, I start by a review about musical sequence representation and then in-

troduce a tool that allows to convert MIDI files in the proposed LSTM network representation.
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Chapter 2. Music Representation in Artificial Neural Networks

2.1 Review of Music Representation

The bibliography for music representation encompasses the work of Todd [21], Eck and

Schmidhuber [22], Franklin [23], Oliwa and Wagner [24], Boulanger-Lewandowski and Dan-

nenberg [20]. Todd included in addition to pitch and duration the information about note

beginning enhancing the possibility to discriminate between repeated notes and a single

sustained one [21]. Franklin made effort in making the representation as simple as possible

and proposed a representation that uses a single scale of 12 half tones or even a compressed

version which he called the Circles of Thirds that compresses the 12 half tones scale into 7

bits, while keeping a certain musical meaning Franklin [23]. The representation of Eck and

Schmidhuber [22] is of great interest for the current work because they used LSTM networks

to learn blues chords and melodies in order to do blues improvisation. In their representation,

they separated the chords from the melody in the sense that they first learn the chord structure

and then, given the chord, the melody is displayed. This could make sense as they argue that

in blues music, it is often the case that jazz musician improvise their way based on chord

grids. However, this one-way relation between chords and melody does not hold for classi-

cal music and especially for monophonic musical sequences where no chords are implicitly

present at each time. In addition, they restricted the possible outputs to the pentatonic scale,

which is a way to ensure that the output will be pleasant to listen to. However, the main

achievement they made that is promising for the current study, is that they were able to mimic

and reproduce in slightly different ways famous blues melodies that were used as a training

set. Their representation of music in LSTM networks was similar to the one from Todd [21].

Boulanger-Lewandowski used the piano roll representation for unconstrained polyphonic

music [25]. This representation is relevant for a better generalization capability because it

allows a two way interaction between chords and melody. It will be used as a starting point

for the music representation used in this study. In addition, this representation can be linked

with the neurophysiology of the hearing system, which is organized in a tonotopic manner.

In particular, auditory neurons in the cochlea are tuned in a frequency specific manner [10].

The piano roll representation, where each pitch is represented by one cell of an ANN, either

active or inactive, is consequently highly generalizable since it is unconstrained and closer to

biology than other representations.

In the following section I will introduce how I am able to represent any musical instrument

digital interface (MIDI) files in LSTM networks.
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2.2. From MIDI to LSTM

2.2 From MIDI to LSTM

Figure 2.1 – Flow chart of the musical sequences conversion from MIDI file to LSTM represen-
tation.

MIDI is a widely used format of music encoding and multiple music pieces in MIDI format

(.mid) can be freely downloaded from internet. MIDI files principally contains the information

about when and for which duration a pitch is active and is consequently an ideal candidate

as dataset for the piano roll, or tonotopic, representation of music in ANNs. Furthermore,

MIDI files can be easily visualized in the musical notation. The Figure 2.2 shows the musical

notation obtained by reading the Frère Jacques MIDI file with the free software MuseScore.

Figure 2.2 – The musical notation of the song Frère Jacques.

To convert MIDI files into the tonotopic representation that will be used by LSTM networks I

first use a MIDI to abc converter (download and documentation at http://abc.sourceforge.

net/abcMIDI/) as depicted on Figure 2.1. This converter extract the MIDI information about

pitches and note durations and convert them into a text file (see Figure 2.3). The header

include the converted MIDI file name (T), the time signature of the song (M), the note basic

duration (L), the speed in beats per minute (Q) and the key (K). Each bar are separated by the

’|’ tag and pitches are associated to the corresponding letter in the english musical notation.

The ’,’ indicates on which octave the pitch stands and the number after each note stands for

the note duration as a factor of the specified basic duration in the header (L).

The ABC notation is then parsed to extract a vector in the piano roll representation for each

sixteenth note (second step in Figure 2.1). The piano roll representation is a vector of size 84

that ranges all possible notes (tempered) from C1 to C8. When a note is active, its correspond-

ing index in the piano roll representation is activated (value of 1). In addition, the converter

from ABC to piano roll representation transposes every song in the common tonality C Major.

For each musical sequence to be learned by LSTM networks, the LSTM representation cuts off

every non-displayed note in the training set from the piano roll representation (last step in

Figure 2.1). This is not a mandatory step, however, as the input units that are dedicated to a

note that is never active would always be null in the training phase, their contributions to the

network would always be also be null. In order to reduce the computation time and remove

useless connections, it is chosen to apply this processing step. It could also be validated

against biology, indeed, the neurons that are tuned to frequencies that are never displayed in

a repertoire of sequences would never be activated and can thus be discarded from the neural

circuit that is being studied. Figure 2.4 shows the input and target of the neural network for the
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Chapter 2. Music Representation in Artificial Neural Networks

X: 1
T: from NurseryRhymes/frere_jacques.mid
M: 4/4
L: 1/8
Q:1/4=120
K:G % 1 sharps
%%MIDI program 24
G,2 A,2 [B,2G,,2-] [G,2G,,2]| \
G,2 A,2 [B,2G,,2-] [G,2G,,2]| \
[B,2G,,2-] [C2G,,2] [D4-B,,4-]| \
[B,2G,,2-] [C2G,,2] [D4-B,,4-]| \
[DD,-][ED,-] [DD,-][CD,] [B,2D,2-] [G,2D,2]| \
[DD,-][ED,-] [DD,-][CD,] [B,2D,2-] [G,2D,2]| \
[G,2B,,2-] [D,2B,,2] [G,4-B,,4-]| \
[G,2B,,2-] [D,2B,,2] [G,4-B,,4-]| \

Figure 2.3 – The abc notation of the song Frère Jacques.

harmonized nursery rhyme Frère Jacques and the prelude of the first cello suite from J.S. Bach.

Each coordinate in the y axis represent a pitch or its corresponding input/output cell in the

network representation. It should be mentioned the pitch order in the LSTM representation (y

axis) is not the same as the order in which pitches appears on the frequency scale, rather the

order in which each pitch appears in the converted musical sequences.

Note duration The information about note length are lost using this representation. There

are several possibilities to introduce this information such as adding the information about

note beginning or end [21]. However, this only works for monophonic representations. If

it is chosen to have this information in a polyphonic song, each voices should have their

own network and connections between the networks could then be constructed to link them.

The main goal of this study being to predict and compose note transitions, note duration

information is discarded.

Note For the rest of the study the term note represents the vector that characterizes the

active and inactive pitches in the network representation for a duration of a sixteenth note.
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Figure 2.4 – The LSTM representation of (A) the song Frère Jacques in the polyphonic version
and (B) the prelude of Bach first cello suite.
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3 Learning a Single Musical Sequence –
The INON Model

The objective of the current work is to produce music with LSTM networks. To approach this,

I aim to extract production rules from musical examples. As a first step in this direction, I

chose to learn the well known nursery rhyme Frère Jacques to evaluate the capacity of LSTM

networks to learn music in the chosen representation and to find optimal network and learning

parameters. Two versions of the song are fed to the network; one monophonic with the melody

only and one polyphonic including harmonization of the song. Although the song has a quite

simple structure, it is non Markovian: after many given notes there is not a unique possible

transition. The correct transitions will rather depend on the history of notes played, i.e. the

position of the notes in the musical sequence.

The chapter starts by introducing the model architecture and learning paradigm along with

two operating modes: the predictive and the generative mode. I then show the results obtained

on both version of the Frère Jacques song.
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Chapter 3. Learning a Single Musical Sequence – The INON Model

3.1 Network Architecture and Learning

Here, I first introduce the architecture of INON LSTM networks used for single sequence

learning. Importantly, the network can operate in two modes, the predictive and the generative

modes, with slightly different architectures. However, for both modes, the input and output

of the ANN are notes in the network representation, hence I call this model the input-note-

output-note (INON) model.

The training phase (predictive mode) consists in adapting the connection weights until the

network has learned to predict every upcoming notes from the last one. On the other hand,

the production phase (generative mode) consists in making a trained LSTM network to au-

tonomously reproduces a musical sequence thanks to the learned and fixed connection

weights.

Network initialization Initialization of a LSTM network applied to learning and production

of musical sequences involves several steps described below. It is created the same number

of input units as the number of pitches that are present in the network representation of the

musical sequence to be learned. The hidden layer units are created with B MCBs containing

M MCs each and the three gates, where B and M are free parameters. Learning involves

predicting the upcoming note from the notes history, hence each output unit also represents a

pitch. The network is fully connected with connections from each input unit toward all MCs

and gates, connections from each input unit toward all output units and recurrent connections

from each memory cells toward all memory cells (including itself) and gates. No connection

from gates toward other cells are set. Each connections have an initial random weight in the

range [-0.2 0.2]. Bias activations from each biased cell are fixed to 1 (see equations for unit

activations in the forward pass mathematics, section 1.3.2). The output units each have a

random weight bias in the range [-0.2 0.2].

Gradual increase of gate biases To have an initial decreasing ability through memory cell

blocks to, first, influence memory acquisition, second, forgetting, and finally, delivering stored

information to the output units, the fixed biases across MCBs are not chosen randomly. Forget

gate weight biases across MCB are serially increased: the forget gate of the first MCB has a

weight bias of 0.5, the second 1, the third 1.5, . . . By doing so, the forget gate of the last memory

cell will initially be always open, making harder for the MCs of this MCB to forget memories

about the sequence than for the MCs of the first block. Similarly, a decreasing weight bias for

the in and out gates starting from -0.5 and decreasing with a step of 0.5 is applied. The first

MCB will learn quicker to open and close its in and out gates than the last one which is initially

biased toward having the in and out gates always open. By these mechanisms, it is ensured

serial activations of MCs during the initial phase of training [5].
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3.1.1 Learning – Predictive Mode

Figure 3.1 – INON Network architecture of the predictive mode.

To learn a single musical sequence the network is fed with this sequence until it can correctly

predict it. The error is taken as the difference between the expected (target) and observed

(output) output unit activations (see equation 1.30). The single sequence is looped so that

the target note at the last time step is the first one. By doing so, the network will theoretically

learn to generate an infinite sequence of the same song. The network state is consequently

never externally reset. The main task of the network is then to learn the transitions between

each note along with the note durations. The pseudocode of the learning algorithm is given in

Algorithm 1.

In the training phase, the network is fed with a note in the song and should predict the upcom-

ing one. Again, as both input and output are note in the network representation, this model is

called the input-note-output-note (INON) model. In order to assess for non Markovianities in

the sequence, the network has to find a way to keep track of useful information about the song

structure. The long short term memory network can store these information into its memory

cell states as explained in section 1.2.3.

Batch learning is applied, consequently weight updates are accumulated across the trial and

the update is made at the end of the trial (see Algorithm 1). One trial is considered as the pre-

diction of each and every note in the dataset. This allows to evaluate the network performance

during training. If online learning would be applied, evaluation of the performances is needed

to be performed at every time step or, alternatively, in a separate evaluation sequence with

fixed weights.

Note selection from network output To infer if the corresponding pitch should be active,

the output unit activations, real valued numbers comprised between 0 and 1, are filtered with

a step function that projects every activations below 0.5 to 0 and every activations over 0.5 to 1

(see equation 3.2). Applying this filter allows to get a note both as an input and as an output of
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the network as seen on the Figure 3.1.

pitchk [n] = χ(yk [n]) (3.1)

χ(yk [n]) =
1 if yk [t ] > 0.5

0 otherwise
(3.2)

Accuracy(T ) = C (T )

N
(3.3)

Accuracy A prediction is then considered correct in the predictive mode if the output note

has the exact same pitches activated as the next input note, the target. The accuracy is taken

as the percentage of correctly predicted note in a given musical sequence. Equation 3.3 gives

the mathematical formulation of the accuracy where T is the current trial, N the total number

of notes in the sequence and C the number of correctly predicted note.

3.1.2 Reproducing – Generative Mode

Figure 3.2 – INON Network architecture of the generative mode.

In the generative mode, the output of the network, the predicted upcoming note at the current

time step, becomes the input of the next time step (see green arrow on Figure 3.2). Applying this

architecture to a network that has correctly learned to predict every note based on sequence

history would theoretically result in a network independent of any external information about

the song that generates the learned musical sequence.
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Data: song in LSTM representation
Result: Connection weights updated to predict the song
Network initialization;
while Accuracy(T) < 1 (equation 3.3) do

T=T+1;
for each note n in the song do

Forward pass

External input: y i
i nput [n] = note i [n];

Roll over: y i [n −1] = y i [n];
Update forget and input gates activations: equations 1.16-1.19;
Update memory cell states: scv

j
[n] = yϕ j [n]scv

j
[n −1]+ y i n j [n]g (netcv

j
[n]);

Update out gate activations: equations 1.22 and 1.23;

Update memory cell activations: ycv
j [n] = yout j [n]h(scv

j
[n]);

Update output unit activations: equations 1.25 and 1.26;
Update memory cell, in and forget gates partial derivatives: Equations 1.27-1.29;

Backward pass

Update output errors: ek [n] = t k [n]− yk [n] with t k [n] = notek [n +1];

if χ(yk [n]) = t k [n] then

Prediction n is correct
end
Update output unit δs: δk [n] = f ′(netk [n])ek [n];
Update out gate and memory cell δs:

δout j [n] = f ′(netout j [n])
∑S j

v=1 h(scv
j
[n])

∑
k wkcv

j
δk [n] and

escv
j

[n] = yout j [n]h′(scv
j
[n])

∑
k wkcv

j
δk [n];

Compute and store local weight change ∆w j i [n] for every connections: Equations
1.34-1.38;

end
if Accuracy(T) < 1 then

Update weights: w j i [T +1] = w j i [T ]+∑N
n=0∆w j i [n];

end
end

Algorithm 1: Learning a single musical sequence with the INON model
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3.2 Monophonic Musical Sequence

As mentioned, the first musical sequence to be learned by LSTM networks is the monophonic

melody of the Frère Jacques song. In this section, it is showed that the long short term memory

network can learn the sequence using the predictive mode and how the accuracy of the

network changes with respect to time.

3.2.1 Predictive Mode

Topology Learning rate Accuracy threshold
Input units MCB MCs Output units
7 4 7 7 0.01 100%

Table 3.1 – Frère Jacques monophonic Fixed parameters, if not mentioned, for the monophonic
Frère Jacques experiments

The network is composed of 4 memory cell blocks with 7 memory cells each. Training is

stopped when each of the output units are closer to the target state (error is less than 0.5) for

one complete trial (presentation of all notes in the song). It corresponds to an accuracy of

100%. After training, the network is tested on the whole musical sequence and performances

are evaluated in term of accuracy, mean square error over all output units and the trial number

needed to learn the note transitions of the song. The monophonic version of the song is learned
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Figure 3.3 – Frère Jacques monophonic A. Left: musical sequence to be learned. Right: MSE at
each predicted note over time during the training phase. Black indicates the maximum MSE.
B. Accuracy at each trial.
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3.2. Monophonic Musical Sequence

by the INON predictive mode in the sense that all note transitions are correctly predicted at the

end of the training phase (Figure 3.3). The network quickly learns to continuously reproduce

the last note at the next time steps and then begin to learn the transitions between notes as

seen on Figure 3.3 A. It is interesting to note hat during learning transitions compete with each

other and a network that has learned the song could de-learn it if training is not stopped at

the right time (Figure 3.4). Alternatively, a cooling scheme could be employed as the α-decay

LSTM from Gers et al. [12].
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Figure 3.4 – Frère Jacques monophonic Accuracy at each trial for a retrain network without
stopping.

3.2.2 Generative Mode

The generative mode applied to INON LSTM networks that have been trained on the mono-

phonic version of Frère Jacques is able to completely and periodically reproduce the learned

musical sequence. More detailed results for the generative mode are presented in the next

section.
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Chapter 3. Learning a Single Musical Sequence – The INON Model

3.3 Polyphonic Musical Sequence

After showing that LSTM networks are able to learn the song melody using the INON predictive

mode, it is inquired if the chosen music representation could also be used for a more general

case with polyphonic and monophonic predictions. In this section, the effects of several

network parameters on the training performances are studied. Finally, the INON generative

mode is validated on the polyphonic version of Frère Jacques.

3.3.1 Predictive Mode

Topology Learning rate Accuracy threshold
Input units MCB MCs Output units
9 4 9 9 0.01 100%

Table 3.2 – Frère Jacques polyphonic Fixed parameters, if not mentioned, for the polyphonic
Frère Jacques experiments
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Figure 3.5 – Frère Jacques polyphonic A. Left: musical sequence to be learned. Right: MSE at
each predicted note over time during the training phase. Black indicates the maximum MSE.
B. Accuracy at each trial.

The Figure 3.3 shows that learning the polyphonic version of the song is possible within 1100

trials using the network parameters described in Table 3.2. The proposed music representation

and note selection can therefore be used to learn polyphonic music with LSTM networks. It

can be observed that the accuracy evolution over time is less noisy than for the monophonic

version. This observation could arise from the fact that harmonies are effectively reducing the

song Markovianity since transitions from given notes are more easily separable. When Eck
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3.3. Polyphonic Musical Sequence

et al. used the harmony grid of blues songs as supplementary inputs to LSTM networks [26],

they benefit from this observation.

3.3.2 Parameter Analysis

The network setup used so far has several free parameters that could be tuned to the task

complexity (e.g. learning rate and topology). Moreover, some effect may increase the learning

performance of the current model (e.g. noise or removing useless connections). Here, it

is studied in several experiments the effect of different network parameters on the training

performance in order to acquire knowledge on the behavior of LSTM networks with respects

to these parameters. For each experiment, 10 training sessions are run where all parameters

but the one that is studied are fixed. A training session is stopped when the accuracy over the

last trial is 100% or the 10000th trial is reached. In the latter case, the sessions are considered

null, otherwise completed. In each following Figures, Figure A shows the count of completed

sessions from the 10 that are run and statistics (Figures B and C) are only applied on the

training sessions that reached the stopping criterion (100% accuracy).
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Figure 3.6 – Frère Jacques polyphonic Learning rate analysis. The subplot title ’3MCB9MC’
refers to a LSTM network composed of 3 MCBs each with 9 MCs. A. Number of training
sessions that reached the stopping criterion before the 10’000th trial. B. Boxplots of the
number of trials needed to reach the stopping criterion. C. Boxplots of the mean square error
observed over the all sequence.

Learning rate The effect of three different learning rates on the training phase outcome is

studied in this experiment. The learning rate is a very important parameter in order to find

the global minimum. Indeed, a too high learning rate would results in high jumps and the

network would struggle to find any minimum, even local, and a too small learning rate could

trap the network in local minima. A learning rate of 0.001 is not able to reach the stopping

criterion before the 10’000th trial and should thus not be used to learn this song (Figure 3.6

A). It is observed that increasing the learning rate beyond a certain value would make the

network to have higher jumps and eventually not reach the convergence criterion. However,

31



Chapter 3. Learning a Single Musical Sequence – The INON Model

using a slightly higher learning rate that the one that complete the most training sessions may

decrease the training time (Figure 3.6 B) and eventually lead to a lower mean square error

(Figure 3.6 C).
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Figure 3.7 – Frère Jacques polyphonic Number of MCBs analysis. The x axis is the different
topologies that are evaluated. 2;9 refers to a network composed of 2 MCBs each with 9 MCs.
A. Number of training sessions that reached the stopping criterion before the 10’000th trial.
B. Boxplots of the number of trials needed to reach the stopping criterion. C. Boxplots of the
mean square error observed over the all sequence.

Number of MCBs The effect of the topology is important to study, to be able to evaluate the

need of adapting the topology to more complex tasks. In this experiment I studied the number

of MCBs for a fixed number of MCs. Results of the experiment are shown in Figure 3.7. There

is a clear jump in the count of completed training sessions from the use of 2 to 3 MCBs (Figure

3.7A). Below a network constituted of 3 MCBs, almost all sessions are null and consequently

these topology are not able learn the sequence. Thus, it should be preferred for this task a

topology that include at least 3 MCBs. However, the number of MCBs does not impact on the

number of trials needed (Figure 3.7B) nor on the final MSE (Figure 3.7C). The main conclusion

from the MCBs number analysis is that, if the network is not able to learn a musical sequence,

one should try to slowly increase the number of MCBs.

Number of MCs Figure 3.8 shows the result obtained for variable number of MCs in each

MCB. The number of MCs should be as low as possible to minimize the CPU training time,

since the more MCs the more connections and consequently mathematical operations. How-

ever, less than 9 MCs per MCB is not sufficient for the LSTM network to reliably learn the

polyphonic Frère Jacques song (Figure 3.8A. Again for this topology experiment, the training

sessions that were completed resulted in the same training performances (Figures 3.8A and B).

Finally, if the network does not learn a musical sequences, modifying the number of MCs may

result in a more reliable learning. Surprisingly, for the polyphonic and monophonic version

of the song, the ideal number of MCs for a LSTM network composed of 4 MCB is exactly the
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Figure 3.8 – Frère Jacques polyphonic Number of MCs per block analysis. A. Number of
training sessions that reached the stopping criterion before the 10’000th trial. B. Boxplots of
the number of trials needed to reach the stopping criterion. C. Boxplots of the mean square
error observed over the all sequence.

length of the note vector in the network representation (the number of pitches present in the

dataset). For more complex music learning tasks (Chapter 4), setting the number of MCs per

block to the number of output units will be a starting point.
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Figure 3.9 – Frère Jacques polyphonic Noise analysis. A. Number of training sessions that
reached the stopping criterion before the 10’000th trial. B. Boxplots of the number of trials
needed to reach the stopping criterion. C. Boxplots of the mean square error observed over
the all sequence.

Noise I studied the effect of noise on the learning process, since it could provide an escape

from local minima traps [27], it is hypothesized that noise could improve the training perfor-

mances. Noise is introduced by building a collection of slightly modified song; a collection of

100 songs is built where each component of a note is added a uniformly distributed noise in

the range [-σ σ]. The activation range of the output units consequently has to be modified so

that it can accept non binary values in the range [0-σ 1+σ]. This is achieved by replacing the
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Chapter 3. Learning a Single Musical Sequence – The INON Model

activation function of output units f with fout (equation 3.4). Noise seems to help the network

to reach the stopping criterion (Figure 3.9A) but does not decrease the trials needed to reach

it (Figure 3.9B). In addition, for higher noise levels, the distance between the output and the

target note is increasing (Figure 3.9C) resulting in significantly decreasing accuracy on the test

sequence (σ= 0). This effect comes from the stopping criterion. Indeed, training is stopped

when the accuracy has reached 100%, however, the noise could be the reason why a given

prediction is considered correct and when applied on the test sequence, this prediction is

considered wrong. This analysis is however very interesting because it shows that the network

output units do not saturate to their maximal and minimal values, but instead converge to the

expected value of the target note (1 when active, 0 otherwise) even under a larger dynamic

range of the output unit activation functions. This observation makes possible to use such

modified LSTM networks on real valued targets instead of binary or integers, which will be

important for the separation of time scale model in section 4.3.

fout (x) = 1+2σ

1+exp(−x)
−σ (3.4)
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Figure 3.10 – Frère Jacques polyphonic Connection analysis. A. Number of training sessions
that reached the stopping criterion before the 10’000th trial. B. Boxplots of the number of
trials needed to reach the stopping criterion. C. Boxplots of the mean square error observed
over the all sequence.

Input to output synapses In this experiment wether the impact of the connections form

input to output units are essential or helpful in the musical sequence learning task. The results

(Figure 3.10) show that removing these connections resulted in lowered testing MSE (Figure

3.10C) but at the significant cost of less completed training sessions (Figure 3.10A) and more

trials per session to reach the stopping criterion (Figure 3.10B). I therefore choose to maintain

these connections for the rest of the study.
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3.3. Polyphonic Musical Sequence

3.3.3 Generative Mode

Figure 3.11 – Frère Jacques polyphonic Output of a trained network. The learned song Frère
Jacques is reproduced without error for as long as the simulation is running. The yellow box
highlights a full period of the song.

Once the network is able to correctly predict every transition in the song, I apply the generative

mode architecture (see section 3.1.2). When the INON generative mode is applied, the network

does not have any external information about the song and the input is simply the previous

output note. Using this mode, trained INON networks achieve complete and periodic exact

reproduction of the learned sequence. An extract of a network trained with the polyphonic

version of Frère Jacques output back translated into musical notation (see section 2.2) is shown

in Figure 3.11. The states and activations of the hidden layer units that resulted in this musical

output are shown on Figures 3.12 and 3.13.

Interpretation of network mechanisms Figures 3.12 and 3.13 show the MC states and the

gate activations across one full period of the learned sequence for the first two MCBs and last

two MCBs respectively. The intrinsic frequency of the MC inner states and gate activations are

decreasing across MCBs. It is observed that the MCs of the fourth block have their inner states

oscillating with the same period as the learned musical sequence (Figure 3.13E). This MCB

is thus encoding for the longer time structure of the song, while the first two MCB’s MCs are

encoding the fast time scale of the sequence (Figure 3.12C and E). This separation of time scale

mechanism is the one deployed by LSTM networks to assess for non Markovianities in the song.

LSTM networks are learning to recruit hidden units [28] in terms of the longer time scale MCs

and, using this mechanism, learns to make the state space effectively Markovian. In addition,

the first two blocks are resetting their states with their corresponding forget gates in order to
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Chapter 3. Learning a Single Musical Sequence – The INON Model

produce the needed outputs at the right times (Figure 3.12B and D), while the third and fourth

blocks exhibit almost constant, never resetting, forget gate activations (Figure 3.13B and D).

This is comforting the idea that the network mechanisms to learn non Markovian sequences

are taking advantage of the multiple blocks in order to encode different time scales. From

this analysis, the serial recruitment of MCs in each MCB during the initial training phase (see

Gradual increase of gate biases in section 3.1) is effectively helping to train LSTM networks in

this direction. Finally, it can be observed that for similar patterns in the song (e.g. the two first

bars of Frère Jacques), the gate activation patterns for all MCBs are very similar. It is therefore,

as expected, the MCs that carry most of the information that informs the network in which of

the two repetitions of this pattern it actually is.
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Figure 3.12 – Frère Jacques polyphonic A Network output for a full period of Frère Jacques. B
Gates activation of the first memory cell block. C Memory cells activation of the first memory
cell block. D Gates activation of the second memory cell block. D Memory cells activation of
the second memory cell block.
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Figure 3.13 – Frère Jacques polyphonic A Network output for a full period of Frère Jacques. B
Gates activation of the third memory cell block for a full period of Frère Jacques. C Memory
cells activation of the third memory cell block. D Gates activation of the fourth memory cell
block. E Memory cells activation of the fourth memory cell block.
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4 Learning Multiple Musical Patterns –
The Separation of Time Scales Model

I showed in the previous chapter that LSTM networks working with notes as input and output

(INON model) are able to learn a single, yet non-Markovian, musical sequence. Indeed, the

128 sixteenth note transitions in the LSTM representation of Frère Jacques are predicted with

an accuracy of 100%. Furthermore, self-fed trained INON networks using the generative mode

architecture resulted in a periodic and exact autonomous reproduction of the learned musical

sequence.

In this chapter, I extend the previous model to longer and more complex musical sequences.

In particular, it is studied how extended INON LSTM networks performs on the J.S. Bach cello

suites. It is first described a novel approach to learn musical sequences using LSTM networks,

the separation of time scales model. In the second part, the results obtained on either a single

prelude of the cello suite or three of them are discussed along with an analysis of the different

free network parameters.
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Chapter 4. Learning Multiple Musical Patterns – The Separation of Time Scales Model

4.1 Separation of Time Scales

To learn more complex and longer musical sequences simply by using the architecture de-

scribed in the previous chapter does not seem feasible. Indeed, LSTM networks fail to learn

both the long time structure and the fast transitions using the previously described architec-

ture (see Figure 4.1). Therefore, I will present here the separation of time scales model, which

will be shown to provide a solution to this problem.

A

T
im

e
s
te

p

100

200

300

400

500

600

Trial

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

B

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

10

20

30

40

50

A
c
c
u
ra

c
y
 [
%

]

Trial

Figure 4.1 – Prelude CS 1 Training phase results using the predictive mode of the INON model.
A. Left: musical sequence to be learned. Right: MSE at each predicted note over time during
the training phase. Black indicates the maximum MSE. B. Accuracy at each trial.

Thinking as Mozart retrieving the Miserere, we might suppose that he started by remembering

the long time structure of the song and began to produce note combinations based on this

longer structure. To mimic this, it is proposed to separate the time scales of the musical

sequences to be learned into a slow and a fast component. One LSTM network would then

be dedicated to each time scale and connections from the slow time scale network to the fast

time scale network created. This idea arose by observing the internal mechanism of LSTM

networks to solve non-Markovian sequence learning tasks. Indeed, as previously discussed

(see Interpretation of network mechanisms in section 3.3.3) LSTM networks exhibit a time

scale hierarchy across MCBs, which allows them to learn complex sequences. Applying
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4.1. Separation of Time Scales

a supplementary separation of time scales is consequently coherent with LSTM network

principles.

How the slow and the fast time scale networks interact is explained in the following section. It

is then presented what are the slow and fast time scales applied to musical sequences (sections

4.1.2 and 4.1.3).

4.1.1 Separation of Time Scales Architecture

SLOW TIME SCALE NETWORK 
 

Transition between musical patterns 

FAST TIME SCALE NETWORK 
 

Musical patterns 

Pattern[p] 

Pattern[p+1] 

NotePattern[p][n] 

NotePattern[p][n+1] 

Musical pattern 
“signature” 

Figure 4.2 – Model architecture for the separation of time scales approach.

As schematized in Figure 4.2, the slow time scale LSTM network sends information about

the long time structure of the song to the fast time scale network. The information about the

long time structure of the song is encoded by the musical pattern signatures. The fast time

scale LSTM network is trained to learn the transitions between notes of a given pattern, while

the slow time scale LSTM network is trained to learn transitions between each patterns. In

other word the slow time scale LSTM network biases the fast time scale LSTM network toward

the the production of the musical pattern corresponding to the state of the slow time scale

network.

In the following, the predictive and generative modes adapted to the separation of time scales

architecture are detailed.
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Learning – Predictive Mode

For the predictive model of the separation of time scales architecture, the fast and slow time

scale LSTM networks are trained separately with their respective predictive mode as presented

in section 4.2.1 for the fast time scale LSTM networks and 4.3.1 for the slow time scale LSTM

networks.

Reproducing – Generative Mode

Self feedback independently each of the two trained networks provides a complete generative

mode for autonomous music production based on the learned production rules of both time

scales.

4.1.2 Fast Time Scale

The fast time scale is chosen to be the sequence of notes in musical patterns. These patterns

are parts of the song to be learned or reproduced. One free parameters of the slow and fast

time scale is the pattern length and it should be carefully chosen to maximize the efficiency of

the model (see the analysis in Figures 4.8 and 4.10). The bar is the most natural subdivision

in most classical music pieces and is therefore a natural candidate as pattern length. It is

especially important in Bach music because of the information it carries about symbolism;

Bach had the habit and the gift to be able to produce incredibly beautiful pieces of music

while constraining itself to hide information that only appears after precise analysis about

the song structure, which often involves bars counting. Examples are found in almost all its

compositions. For these reasons, it has been chosen a pattern length of 1 or 2 bars, which

corresponds to 16 and 32 sixteen notes respectively for musical pieces with time signature 4/4

as Bach prelude of the first cello suite.

4.1.3 Slow Time Scale

The slow time scale represents how musical patterns are ordered into a wholwmusical se-

quence. To represent a musical pattern I chose to apply a principal component analysis (PCA)

on the repertoire of musical patterns (in the network representation) present in the sequence

(or repertoire of sequences) to be learned. The intuition for the use of a PCA for musical pat-

tern signatures is that similar musical patterns will be mapped to similar principal component

(PC) values [29]. The principles of a PCA applied to musical patterns are that patterns are

represented in new dimensions along which the variance between different musical pattern

unique identifiers is maximized. PCA on the collection of musical patterns to be learned is

then a tool to associate each pattern to points in these new dimensions or PCs. It is the first

PC values that are taken to uniquely identify musical patterns from each others.

Furthermore, because patterns that are similar would have similar PCs values, the unique
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Figure 4.3 – Prelude CS 1 A Data matrix for PCA on the prelude from the first cello suite of J.S.
Bach. Each row is a pattern: 16 notes in a row. B Value of the first principal component for
each of the 42 patterns. Pattern order is kept in the x-axis.

pattern identifiers given to the fast time scale network are called external biases. I will show

later that the shared similarities between actual patterns and their associated PC values will

help the fast time scale LSTM networks to learn the different musical patterns. Indeed, due

to the choice of PCs as pattern signature, similar musical patterns would have similar bias

activations, which will in turn help LSTM networks to retrieve the correct patterns. This

phenomenon is discussed in section 4.2.3.

The data matrix (Figure 4.3A) is formed from the musical sequence that is to be learned. To

construct the PCA data matrix, the sequence is separated in patterns of given and fixed length

(here 16 notes), then these patterns are vectorized (each of the pattern notes in the network

representation are linearized in one row of the data matrix). PCA is applied using the MATLAB

standard PCA package on this matrix. PCs are sorted from higher to lower eigenvalues of the

diagonalized covariance matrix. The projection of each of the 42 bars from Bach prelude of the

first cello suite in the first PC space is shown on Figure 4.3B. Interestingly, it seems that there

is an order in the time evolution of the PC value across patterns. This order most probably

comes from the highly structured properties of music in general and even more of Bach music.

This observation is promising to be able to learn the slow time scale production rules since

the pattern walk in the PCs space is not random.
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4.2 Learning Musical Patterns – Fast Time Scale

It is presented next the fast time scale network. This network produces the actual note of each

pattern given the external biases. The network architecture and algorithm are presented first,

then the results and effect of several network parameters are studied.

4.2.1 Network Architecture

The network architecture is similar to the one presented in section 3.1. However, I added

external biases that carry the information about the long time structure. These biases are

integrated in the network as additional input units and are fully connected with the hidden

and output layer. The connections are plastic, hence the network should learn how to use

these biases to produce the wanted musical patterns. The external biases corresponding to a

pattern are sustained for as long as the pattern is being learned or predicted.

Starting note of patterns To be able to independently generate a complete musical se-

quence, the network should also predict the first note of each pattern. Indeed, if the predictive

mode is able to predict every note transitions from the first note, in the generative mode the

first note would also be needed as external information to reproduce the sequence, which is

to be avoided for a completely autonomous. To achieve autonomous prediction of the first

note of each musical pattern, it is added a special binary input unit yi nput st ar t that is active

only for the first prediction of each pattern. When this input unit is activated, the note given

to the network is a silence (all pitches non active) and the network task is then to predict the

first note of the corresponding pattern.

Learning – Predictive Mode

Figure 4.4 – Architecture of the predictive mode for fast time scale LSTM networks.

The predictive mode algorithm (Algorithm 2) is applied on the dataset to be learned with a
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4.2. Learning Musical Patterns – Fast Time Scale

network architecture as presented in Figure 4.4. The training consists in finding the connection

weights that are able to predict the upcoming note of every pattern. The network is trained

until a threshold level of accuracy is reached. As a preprocessing step, it is needed to compute

the external biases of the dataset. The main parameter of this step is the pattern length.

Afterwards, the network is trained on the dataset patterns with the computed external biases.

The accuracy is the proportion of correctly predicted notes across all patterns with respect to

the total amount of predictions.

Data: Patterns and external biases in LSTM representation
Result: Connection weights updated to predict each pattern
Network initialization;
while Accuracy < θ do

for each pattern p in the song do
Reset all activations and MC states;
for each note n in pattern p do

if first note in pattern then
External input: y i

i nput note [0] = 0, y i
i nput bi as = PCp [i ], yi nput st ar t = 1;

else
External input: y i

i nput note [n] = note i
p [n], y i

i nput bi as = PCp [i ], yi nput st ar t = 0;

end
Forward pass

Update unit activations and partial derivatives

Backward pass

Compute local weight changes to decrease the output error
end

end
if Accuracy < θ then

Update weights;
end

end
Algorithm 2: Learning multiple musical pattern – fast time scale

Reproducing – Generative Mode

If the fast time scale network is able to correctly predict a collection of patterns given their

biases after training, when self-fed with its own output, it should theoretically be able to

reproduce the pattern. It is also inquired what happens to the network when it is given non

learned external biases in chapter 5.

Effect of a prediction error In the predictive mode, the note to note transitions are learned

and the song to be learned is known by the network preventing any consequence to a wrong

prediction. However, in the generative mode, only the external biases and their transitions are
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Chapter 4. Learning Multiple Musical Patterns – The Separation of Time Scales Model

known and a mistake in a prediction would output a wrong note as in the predictive mode,

however, this error is then propagated along the remaining predictions of the pattern. This is

the reason why a high accuracy in the network predictive performances is needed to be able to

reproduce the learned patterns. However, if the focus is music composition, a lower accuracy

may be wanted in order to let the network make mistakes that could eventually create new

musical patterns [26].

4.2.2 Predictive Mode

Topology
Input units External biases MCB MCs Output units
28 25(87% data explained) 5 10 28

PCA
Pattern length Pattern number
16 notes 42

Training
Learning rate Accuracy threshold
0.01 90%

Table 4.1 – Prelude CS 1 Fixed parameters, if not mentioned, for the prelude of the first cello
suite experiments

Topology
Input units External biases MCB MCs Output units
37 70(82% data explained) 5 10 37

PCA
Pattern length Pattern number
16 notes 197

Training
Learning rate Accuracy threshold
0.01 90%

Table 4.2 – Preludes CS 1,3 and 4 Fixed parameters, if not mentioned, for the three preludes of
the first, third and fourth cello suites experiments

Datasets For the following results, either the single prelude from the first Bach cello suite

(Prelude CS 1) or three preludes from Bach first, third and fourth cello suits (Preludes CS 1,3

and 4), are taken as dataset to be learned by the networks. The dataset used to generate the

data is specified in each figure. For each dataset, different constant parameters are applied

as shown in Tables 4.1 and 4.2. I present results from both datasets in order to observe the

networks behavior when the dataset is increased, while still having a smaller dataset that

allows for quicker computations.
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4.2. Learning Musical Patterns – Fast Time Scale
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Figure 4.5 – Prelude CS 1 A. Left: musical sequence to be learned. Right: MSE at each predicted
note over time during the training phase. Black indicates the maximum MSE. B. Accuracy at
each trial.

Learning patterns from Bach prelude of the first cello suite The predictive mode applied

on the prelude of the first cello suite is able to learn 90% of the patterns in a number of trials

of mean 1877±132 (n=10). A typical evolution if the error along training is showed in Figure

4.5. Using the separation of time scale and principal components as external biases, the LSTM

is able to learn a much longer and complex musical sequence than the Frère Jacques song. In

addition, the accuracy evolution during training is much less stochastic. However, with this

topology (10 MCs in each of the 5 blocks) the accuracy reaches a plateau at 94.9% accuracy as

seen on Figure 4.6.
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Figure 4.6 – Prelude CS 1 Accuracy evolution on a retrained network.
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Chapter 4. Learning Multiple Musical Patterns – The Separation of Time Scales Model

Learning patterns from three Bach preludes The predictive mode applied on the three

preludes is able to learn 90% of the patterns in a number of trials of mean 2246±214 (n=5).

The training takes more than four times more time to see all patterns when two songs are

added (42 patterns for prelude CS 1 versus 197 patterns for the three preludes). However the

number of trials needed to reach 90 % accuracy is only slightly bigger. In addition, the number

of principal components needed for learn 197 patterns are also not linearly dependent to

the number of patterns in the dataset (25 principal components for prelude CS 1 versus 70

principal components for the three preludes). One can deduce that this model is a powerful

tool to learn long musical sequences that can come from different songs. I should mention

that one limiting factor is computation time, which is in this case around two days on the LCN

servers.

4.2.3 Parameter analysis

In the following section, it is first validated the chosen architecture for the fast time scale

network, especially the external biases. It is then studied the network capacity along with the

effect on learning of some of the network parameters such as the topology, the pattern length

and the number of external biases.

Validation of the separation of time scales model As shown in the beginning of this chapter

(Figure 4.1), when a INON LSTM network is applied on the Prelude CS 1 dataset, it fails to

learn the sequence. The accuracy is only reaching 40% after 5000 trials. This observation

validates the separation of time scales model presented here, since using the latter model

LSTM networks are abel to learn the same dataset (Figure 4.5).
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Figure 4.7 – Prelude CS 1 Boxplot for N=10 training sessions for different external biases.

Validation of principal components as external biases It is inquired if the use of principal

components as external biases is an efficient way of biasing the network toward a pattern. To
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4.2. Learning Musical Patterns – Fast Time Scale

do so, I compared the number of trials needed to learn the sequence when binary biases are

used as external biases versus principal components (Figure 4.7). To implement binary biases,

I created one additional input unit for each of the 42 patterns instead of the bias units used so

far. When a pattern is being trained, the corresponding input units has an activation of 1, 0

otherwise. I compared the training performance of the 42 binary biases with 42 PC external

biases and 25 PC bias units, which I later show to be the ideal number of external biases for this

dataset. Using binary biases, the fast time scale LSTM network is also able to learn the musical

sequence as there is one unique input units dedicated to each pattern. However, the number

of trials needed to learn the sequence is much higher than when principal components are

used. As the binary biases does not account for similarities in patterns, it is an expected

outcome. This observation validates the use of principal components as external biases for

the fast time scale network as it is more efficient than binary biases. In addition, learning with

ANNs transitions between pattern signatures (the slow time scale) encoded as a collection of

binary biases is not an option and strongly lacks generalization. Indeed, on one hand, the

number of binary bias units will be as high as the number of musical patterns to learn and on

the other hand, the transitions between each patterns is a serial activation of each and every

external binary bias units, which is clearly not a task to solve for ANNs.
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10 bars learned, Pattern length: 16 notes

5 bars learned, Pattern length: 16 notes

10 bars learned, Pattern length: 32 notes

Figure 4.8 – Prelude CS 1 Trials needed to reach 90% of accuracy on 5 or 10 first bars of the
prelude from the first cello suite of J.S. Bach in function of the external biases length and
the pattern length. The x axis shows how much of the data is explained by the principal
components used as external biases.

Number of principal components as external biases It is studied the number of principal

components that are required to efficiently learn the songs. In addition, a double pattern

length of 32 notes is inquired for the Prelude CS 1 dataset. The results of this analysis are

showed in Figure 4.8 and 4.9 respectively for the Prelude CS 1 and Preludes CS 1, 3 and 4

datasets. The pattern length that corresponds to one bar in a time signature of 4/4 (16 notes) is

easier to learn by the network than a pattern length of two bars This is the reason why 16 notes
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Figure 4.9 – Preludes CS 1,3 and 4 Trials needed to reach 90% of accuracy on 10, 15 and 20
randomly chosen bars of the preludes from the first, third and fourth cello suites of J.S. Bach in
function of the external biases length (N=10). The x axis is how much of the data are explained
by the principal components used as external biases. The pattern length is 16 notes in the
network representation.

long pattern is chosen as the standard in this report. The trials needed to learn the song(s)

are decreasing when more principal components are added to the external biases. After 70%

of data explained by the principal components, a plateau is reached. For both dataset, it is

chosen a tradeoff between a minimal number of external biases and a minimal training time.

This tradeoff is chosen to be the number of principal components needed to explain 85% of

the original data. Counterintuitively, it is observed for the bigger dataset only that the number

of training trials is decreasing with increasing number of patterns learned (see Figure 4.9).

However, a small amount of pattern are learned to do this analysis. Therefore, this effect is

further studied in the capacity analysis but it can already be concluded that it is easier for the

fast time scale networks to learn patterns when it is trained on a certain amount of external

biases values.

Capacity analysis The capacity of the networks, in term of the number of trials needed to

learn the sequences is showed in Figures 4.10 and 4.11 for the Prelude CS1 and Preludes CS

1,3 and 4 datasets respectively. In Figure 4.10, it is added the same analysis with 2 bars long

patterns (15 first PCs used as external biases). As previously observed, longer patterns are

harder to learn and the training trials highly increases as the number of patterns to be learned

increases. On the contrary, the number of trials needed to learn 90% of the 1 bar length

patterns does not increase much as the number of patterns to learn increase, validating again

the choice of this size of patterns. The same observation is made when the dataset is increased

from 42 to 197 patterns (Figure 4.11). For each run of this experiment, the 197 patterns are

learned in a random but constant order. The initial negative bump may come from this

randomized order or that the network need to explore multiple regions of the PCs space in
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Figure 4.10 – Prelude CS 1 Capacity analysis. Training trials in function of the number of
patterns learned and the pattern length. 15 principal components are used as external biases
for the 32 notes long patterns data versus 25 for the 16 notes long patterns.
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Figure 4.11 – Preludes CS 1,3 and 4 Capacity analysis. Training trials in function of the number
of pattern learned. Pattern length is 16 notes. Number of external biases is 70.

order to take a real advantage of the separation of time scales model, or both. However, the

main conclusion from this capacity analysis is that the proposed separation of time scale

algorithm combined with LSTM networks is a powerful tool to learn quickly very complex and

long musical sequences.

Topology analysis How the topology influences learning was studied in section 3.3.2 for the

single musical sequence learning LSTM algorithm. We observed that the hidden layer topology

is a crucial parameters to allow for convergence to a network that has learn the sequence. In

the Figure 4.12, it is seen that increasing by a factor 2 the MCBs’ number does not change at all
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Figure 4.12 – Preludes CS 1,3 and 4 Number of training trials for increasing number of pattern
learned in function of the hidden layer topology. Pattern length is 16 notes. Number of external
biases is 25.

the training trials needed to learn 90% of the patterns but increasing by the same factor the

number of MCs per block does. However, the number of connections so much increased that

the training time is way more than for the 5MCB10MC topology. The main conclusion is that

the it should be found a compromise between the task complexity and the topology and that

the number of MCBs does not need to be high to be able to learn complicated music.

4.2.4 Generative Mode

The generative results for the Prelude CS 1 dataset comes from the more accurate network; a

network composed of 20 MCs instead of 10 per block (Table 4.1). This fast time scale network

is able to reproduce the learnt musical sequences independently from them (Figure 4.13) with

an accuracy of 96.6%. Listening to the generative mode output is pleasant, even to the neurons

of a master student, and Bach music is easily recognizable.

Network units receptive field to external biases Each units connected to the external biases

that act as unique identifiers for musical patterns are modulated by the biases in a specific

way that allows the fast time scale network to reproduce almost exactly all learned patterns.

The receptive field (RF) of each network units to the external biases is computed as the net

contribution of external biases to each unit’s input (see equation 4.1). The Figure 4.14 shows

this effect on selected network units (RFs of all units are presented in the Appendix). It can be

observed that the two selected MCs have net activations due to the external biases that are

dependent on the region where the patterns are projected in the principal components. In

addition, those two MCs have opposed receptive fields; when patterns that are in a principal

component region are positively contributing to the net activations of one unit, the same
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A

B

Figure 4.13 – Prelude CS 1 Network output in musical notation for the first 6 patterns. A
Target sequence B Generative mode result for a trained network (5MCB20MC) with a training
accuracy of 96.6%. Error with respect to the original dataset are highlighted.

region tends to result in negative contribution for the other unit. This specialization of the

unit is here clearly dependent on the similarities between patterns rather than the place they

are displayed in the sequence as no order is present in the left figures. It should be pointed out

that this behavior does not appear on every units but is an effect observed in every trained

networks and is thought to be one of the mechanism that the fast time scale long short term

memory networks are using to be able to learn the complex and long musical sequences that

are fed to them. The similarities with the associative memory of Hopfield networks [11] should

be highlighted. Indeed, trained fast time scales LSTM networks are using the compressed

memory of patterns in the form of similarity-dependent musical patterns identifiers to recall

the pattern they should produce.

RF j [P ] =∑
p

wp j y p
i nput bi as (4.1)
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Figure 4.14 – Prelude CS 1 Unit net input after training due to the external biases of each of
the 42 patterns in temporal order (left) or in the first two principal components space (right).
A 12th MC of the 5th block. B 15th MC of the 5th block.
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4.3. Learning Pattern Transitions – Slow Time Scale

4.3 Learning Pattern Transitions – Slow Time Scale

The role of the slow time scale network is to produce the pattern signatures encoded in

principal components. The LSTM should be modified in order to learn transition between

patterns that are real valued number. It is presented in this section how the LSTM network is

modified to achieve this goal and the results obtained on the prelude of the first cello suite

from J.S. Bach.

4.3.1 Network Architecture

The architecture is similar with the one used to learn a single musical sequence with the

difference that input and output are now principal component values. The number of input

and output units is consequently the number of principal components used to define a pattern

in the fast time scale network. In order to obtained real valued number as output, the non

linear function f in the equation that computes the output unit activations (Equation 1.26) is

transformed to the fout equation below similarly to the equation used to introduce noise in

the network (see section 3.3.2). In this equation σ is the maximal real valued number found in

the principal components (in absolute value) across all patterns. This transformation allows

the output units to take any value in the principal components range.

fout (x) = 1+2σ

1+exp(−x)
−σ (4.2)

Learning – Predictive Mode

Figure 4.15 – Network architecture of the predictive mode for slow time scale LSTM networks.

The predictive mode algorithm is the same as Algorithm 1 with the change of output units
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squashing function and the way a prediction is considered correct: if all output unit activations

are close enough to their target values, the prediction is correct. Close enough is defined to be

an error of less than 0.1% of the total range (2σ). The network is trained until the accuracy has

reached 100% and the MSE over all patterns is less than 1e-12.

Reproducing – Generative Mode

The generative mode principle is to feedback the output of a trained network to the next time

step input. The major issue of this mode for this application is that errors will accumulate

across the sequence and only a network that is very precise could reproduce the pattern signa-

tures up to the last one as presented in the generative mode section below. As a consequence,

the stopping criterion of the predictive mode is adjusted: training with the predictive mode

for a later application to the generative mode is stopped when all output units have an error of

less than 1e-9.

4.3.2 Predictive Mode
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Figure 4.16 – Prelude CS 1 A. Accuracy evolution during first part of training. B. Mean square
error evolution during training end.

A network topology of 3 MCBs containing each 25 MCs is used to predict the transition in

pattern unique identifiers, the 25 first principal components, of the prelude from Bach first

cello suite. The predictive mode learns to predict every pattern transition with a very low

error after 60’000 trials with a learning rate of 1e-3 (Figure 4.16). The accuracy is an arbitrary

criterion that illustrates the network behavior during training; the network tries multiple local

minima, where only a part of the pattern signature are correct, and is able to get out of them
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until it finds the global minimum where output unit activations across the sequence are all

very close to their target values. The mean square error is decreasing further after the accuracy

has reached 100% implying that the network is further approaching its target values.
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Figure 4.17 – Prelude CS 1 A Target output, the pattern signatures across the sequence. B
Absolute error between target value and output observed at each output units for a trained
network.

Testing the network after training shows that it can predict every coordinates of pattern

signatures from the previous pattern with a maximal error of 5e-6 (Figure 4.17).
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4.3.3 Generative Mode
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Figure 4.18 – Prelude CS 1 A Network output using the generative mode for a network trained
with the predictive mode stopping criteria. B Difference for one complete period between the
generated sequence and the training target sequence for a network trained with the predictive
mode stopping criteria. C Network output using the generative mode for a network trained
with the generative mode stopping criteria. D Difference for one complete period between the
generated sequence and the training target sequence for a network trained with the generative
mode stopping criteria.

Errors accumulation The errors made at each timestep are propagated to the next predic-

tions in the generative mode. The Figure 4.18 shows the error accumulation for two trained
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network. The first one is trained until the predictive mode stopping criterion is reached.

One can observed that after the 20th prediction, the difference between the generative mode

output and the true pattern signature transitions explode due to error accumulation. The

stopping criterion consequently needs to be refined. As it has been seen that the accuracy

of the network could be further increased (mean square error is still decreasing after the

predictive mode stopping criterion is reached), the refined stopping criterion of the predictive

mode for the application to the generative mode is set to a slow time scale LSTM network

that predicts every patterns with an error of less than 1e-9. Applying this criterion resulted

in a network that can reproduce entirely all patterns (Figure 4.18C and D). Slow time scales

LSTM networks are consequently not robust to noise but can be overfitted to the learned data

in order to learn the slow time scale transitions in the form of transitions between musical

pattern PC values.

Starting seed In order to correctly reproduce the slow time scale sequence with the real

valued LSTM and without any starting seed, the cell states should be initialized to the state in

which they are at the end of training. A starting seed that bring the cell states to their values

at training end is another option. However, it is needed to give the learned sequence to the

network for several full periods of the slow time scale sequence to reach the cell states that

allows for perfect recovers of the song. The goal being to have a network that could reproduce

a learned sequence independent from the sequence itself, this procedure is to be avoided. In

the fast time scale network, this problem is solved by introducing a sequence start tag.

Combining slow and fast time scale networks – Full generative mode As expected by the

independent analyses presented in the previous sections, when the output of trained slow

time scale networks operating in the generative mode is fed to trained fast time scale network

salso operating using the generative mode, the Prelude CS 1 dataset is reproduced with an

accuracy of up to 92% using the best performing networks for each time scale.
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5 Creation of New Musical Patterns –
Music Composition

I explained how long short term memory networks combined with the separation of time scale

algorithm are able to learn complex and long musical sequences. After the training phase,

the fast time scale network is able to predict up to 96% of the musical sequences when given

proper biases toward the patterns in the form of principal components.

In this chapter, I study the effect on trained fast time scale network outputs when unlearned

external biases are applied. This will ultimately lead to the creation of new musical patterns
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A

B

C

Figure 5.1 – Prelude CS 1 Right: representation in the principal components 2 and 3 of the
learned patterns, the interpolation coordinates and the resulted patterns. Left: Network
output in musical notation for a selection of interpolation coordinates. A Interpolation 1
results, 10 steps from pattern 13 to pattern 16, which are close in the first principal component
dimension. B Interpolation 2 results, 10 steps from pattern 13 to pattern 24, which are far
in the first principal component dimension. C Interpolation 3 results, 10 steps from pattern
13 to a created pattern that stand in a region where no pattern stands in the first 3 principal
component dimensions.
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Pattern interpolation — exploring new regions in the principal components space The

Figure 5.1 shows the results obtained when linear interpolations between selected patterns

of the Prelude CS 1 dataset are fed to the fast time scale network as external biases. Linear

interpolation is made on all 25 principal components. All interpolations start from the 13th

pattern. The interpolation 1 goes to a close pattern in the first principal components (pattern

16), interpolation 2 goes to a much less similar pattern (pattern 24) and the last interpolation

goes toward a non existing pattern in a region where no trained patterns exists in the first 3

components. The interpolations consist of 10 steps (1.1 to 1.10, 2.1 to 2.10 and 3.1 to 3.10

for interpolation 1, 2 and 3 respectively) with the first and last interpolations being learned

patterns for interpolations 1 and 2, while only the first interpolation (3.1) is a learned pattern

for interpolation 3. The output musical pattern of the network is then projected back onto

the PCs to visualize it. It is very interesting to see that pattern signatures in-between learned

patterns resulted in the creation of new patterns that were not learned instead of collapsing

onto already known points in the PC space, i.e. previously learnt patterns. More interestingly,

these patterns sound as they could be part of the dataset, meaning, they could have been

produced by Bach. In addition, the interpolation 3, which explore a region completely out of

any receptive fields, produced pattern that sound less and less as Bach music as the coordinates

increase away from any region with learnt patterns. These patterns, when back projected in

the principal component dimensions, however, stand in region where patterns are. They are

thus similar to other patterns but the production rules that governed their production are not

in the Bach style.

Note selection for unlearned pattern signatures Note selection is changed with a priori

knowledge about the dataset. Indeed, it has been observed that the trained networks are

highly overfitting the data and that the same mechanisms that allows learning of such complex

and long sequences are a withdrawal to pattern composition; a non learned external biases

close to a learned one, would result in a slight change in the network unit receptive fields that

could impact strongly on the output unit activations. For example, the interpolation closer to

the learned patterns (1.2, 1.8 and 1.9) produced outputs that are similar to the closer learned

pattern. However, the output unit activations are lowered due to the receptive field change.

The contrary is observed for pattern signatures being far from any learned patterns, signatures

that are out of any unit receptive fields, resulted in very high output unit activations for all

output units. To asses this problem, the note selection for the interpolation experiments takes

a priori knowledge about the dataset that consists in knowing that the majority of the patterns

are monophonic and only the most active output unit is transformed as an activated pitch.

Applying this note selection prevents composition of polyphonic new patterns, however, it

is hypothesized that if the dataset included more polyphonic patterns, then receptive fields

for polyphonic patterns would be present and the standard note selection could be used to

produce new patterns.
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Figure 5.2 – Preludes CS 1,3 and 4

Generalization to non-learned patterns – Inferring patterns A network that has learned

half of randomly selected patterns of the Preludes CS 1,3 and 4 dataset is tested on the all

dataset to observe its behavior with respect to the non learned patterns. The non learned

patterns are correctly predicted for up to 35% (Figure 5.2). A network that has learned to

predict correctly 90% of half of the patterns is able to predict correctly more than 25% of the

remaining patterns. This observation can be explained by the similarity between patterns

and the receptive fields of the learned patterns. A non learned pattern that stands in-between

learned patterns and is part of multiple receptive field would activate the unit with respect to

the weighted contribution of all receptive fields it is standing in and thus be predicted using a

mix of the close patterns production rules, which in turn are the right production rules for up

to 35% of the non learned pattern (Figure 5.3 shows the receptive field of two selected memory

cells, all unit receptive fields are showed in the Appendix).
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Figure 5.3 – Preludes CS 1,3 and 4 Memory cell net activation due to the external biases after
training until 90% of 100 randomly selected patterns. The empty circles correspond to non
learned patterns while the filled circles correspond to learned pattern. A Memory cell number
8 of the third block. B Memory cell number 2 of the fifth block.
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Conclusion

The present study demonstrated how long short-term memory (LSTM) artificial neural net-

works (ANNs) could be adapted to the specific task of learning and production of musical

sequences. I presented two models for musical sequence learning with LSTM networks: the

input-note-output-note (INON) and separation of time scales models. The first consists in

applying the learning algorithm of LSTM networks introduced by Gers et al. [12] to predict

each upcoming note from the previous one (note transition) given a history of notes presented

to the network in a temporally sequential manner. The note history is reflected in the activa-

tion of the hidden units of trained LSTM networks. This model is referred as the INON model

as both input (the current note) and output (the upcoming note for a trained network) are

notes in the network representation. The separation of time scales model has been introduced,

since the INON model failed to learn longer and more complicated musical sequences, e.g.

Bach cello suites. Its basic principle relies on the separation of music time scales into slow

and fast components with one LSTM network trained on the slow time scale transitions and

another trained on the fast time scale transitions. The training of the separation of time scales

model then consists of the fast time scale LSTM network learning the note-to-note transitions

for a given musical sub-pattern belonging to a longer sequence, while the slow time scale

LSTM network learns the transitions between musical pattern, linking them together into

the whole sequence. The slow time scale network is working on top of the fast time scale

network and informs the latter of which musical pattern it is currently learning or producing.

The separation of time scales model has been shown to be very efficient at learning complex

and very long musical sequences, here the cello suites from J.S. Bach. In addition, using the

generative mode on trained fast and slow time scale LSTM networks, I was able to reproduce

with very high accuracy Bach’s musical sequences.

In the following, I will summarize the key findings of the current work on musical sequences

learning and (re)production with LSTM ANNs and discuss open questions for several points.
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Why LSTM networks? LSTM recurrent neural networks (RNNs) are capable of solving com-

plex sequence learning tasks that were considered hard or even unlearnable by traditional

RNNs [12]. Hochreiter’s analysis [18] showed that conventional RNNs are suffering from ex-

ponential grow or vanishing error signal through time. Hochreiter and Schmidhuber solved

this problem by creating RNNs that satisfied the condition for a constant flow of the error

signal, the LSTM networks [5]. This central feature of LSTM networks allows them to bridge

arbitrary time intervals between input events and their target output signals [5]. Since musical

sequences have long time structures, LSTM ANNs were chosen to be applied on the specific

task of musical sequence learning.

Music representation in LSTM networks To be able to apply LSTM networks to the task

of musical sequences learning, I presented a way to represent music in these networks and

to extract back notes from the network output. The music representation in LSTM ANNs is

chosen to resemble the input from the lowest auditory neurons in the cochlea (tonotopic

representation of the hair cells). From the harmony point of view, each pitch present in the

musical sequence that is learned is associated with one single input and output unit of the

ANN. From the temporal point of view, each musical sequence is discretized with sixteenth

note steps. The network therefore sees a musical sequence as a sequence of activations of

sixteenth notes. Interestingly, I showed that LSTM networks were not only able to learn mono-

phonic note-to-note transitions but also polyphonic sequences, which are simply represented

by having multiple input/output units active at the same time step in the chosen music rep-

resentation. This music representation carries most of the information a music sheet has.

However, no difference can be made from a sustained note from repeated ones. I expect

that this information could not be discarded for faithful (re)production of some music styles

and that it is an inherent property of music composition. Therefore, I suggest to include the

information about note duration for future works.

Training phase The training phase for all LSTM network models consists in sequentially

adapting the connection weights using the LSTM networks learning rules [12]. I chose to train

LSTM networks from all models to learn music by predicting every time steps of a sequence

from the previous one. The target outputs of the INON and fast time scale LSTM networks

are notes in the network representation, while the target outputs of the slow time scale LSTM

networks are the unique identifiers of musical patterns. The training phase of INON LSTM

networks therefore consists in training the networks to output each upcoming note from the

previous one, which is given as input. The training phase of the fast time scale LSTM networks

is relatively similar to the one of INON networks. However, in addition to a note as input to

the network, the unique identifiers of the current musical pattern to be learned are added.

The training phase of the slow time scale networks is, for its part, completely different. Indeed,

the training phase consists in training slow time scale LSTM networks to learn the transitions

between the unique identifiers of each musical pattern, instead of note transitions. What is

common to training phases of all models is that these training schemes are applied for all steps
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in the sequence to be learned until the accuracy is maximized or reached a threshold. Several

different training parameters could be changed for different application. For example, I expect

that for an application focused on music composition, the accuracy of trained networks should

not go further a certain level to prevent the overfitting effects observed in the current work,

which was focused on accurate learning of musical sequences. Differential learning rate could

also be applied in order to modulate the impact on learning from different time steps. Finally,

one major limiting factor being the computation time of the training phase, I expect that

meaningful pre initialization of weights could be efficient to stabilize and improve the learning

speed as it has been shown by Corrêa et al. [30].

Transforming trained LSTM networks for autonomous music production If the output at

each time step of (trained) INON and fast time scales LSTM networks is a note in the network

representation, this note can be fed back to the network as the input of the next time step.

In the current work, I referred to this self-feedback loop as the generative mode. If trained

INON and fast time scale LSTM networks can accurately predict every note-to-note transitions

of a musical sequences, applying the generative mode resulted in exact reproduction of the

learned musical sequence. The same was applied to very accurate slow time scale networks

and resulted in the reproduction of every musical pattern identifiers in the correct order.

Combining the slow and fast time scale LSTM networks in the generative mode reproduced

correctly more than 90% of Bach’s prelude of the first cello suite, which is composed of 672

notes in the network representation.

Time scale hierarchy in LSTM networks The mechanisms deployed by LSTM networks to

learn non-Markovian musical sequences were shown to be based on the time scale hierarchy

across memory cell blocks (MCBs) where each MCB is working on its own intrinsic frequency.

By this mechanisms, memory cells (MCs) from slower MCBs are encoding most of the informa-

tion related to the long time structure of the sequence, while MCs from fast MCBs are mainly

dedicated to notes production. Indeed, forget gates from fast MCBs are often resetting their

MC states to be able to forward the right states to output units so that the latter produce the

correct notes, while the forget gates from slow MCBs are typically never resetting and constant

in order to inform fast MCs of the long time structure of the sequence. This mechanism is

very similar from the one proposed for the separation of time scales model and was actually

the inspiration for the creation of this model. Furthermore, I showed that the initialization of

LSTM networks proposed by Hochreiter and Schmidhuber [5] and extended to forget gates

by Gers et al. [12] prepared a favorable environment to the time scale hierarchy across MCBs.

Indeed, by gradual increase of forget gate biases and decrease of input and output gate biases,

it is forced the serial recruitment of MCs across MCBs during training, therefore externally

helping LSTM networks to separate time scales and consequently to learn non-Markovian

sequences. Bidirectional LSTM networks have been shown to significantly increase effec-

tiveness of speech recognition tasks [6]. Because the task of phoneme classification highly

depends on contextual information as music is, I expect that bidirectional LSTM networks
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could also show a significant improvement in the performance for musical sequence learning

tasks. Furthermore, introduction of peepholes connections from the inner cell states of MCs

toward gates allow them to access the state of their MCs even when the output gate is closed

and has been shown to increase performance of precise timing prediction [31]. As music is

build on precise timing of notes and output of notes at given times may depends on internal

states rather than only the seen output, I suggest that the current work could strongly benefit

from such peephole connections. Finally, I also expect that multilayer LSTM networks could

solve more complex tasks by adding supplementary control/memory mechanisms as reflected

by the recent work on protein secondary structure prediction of Sonderby et al. where multi-

layer bidirectional LSTM networks performed significantly better than other state of the art

classifiers [15].

Separation of time scales model The separation of time scales model was shown to be able

to learn very complex and long musical sequences extracted from Bach cello suites. It has

been constructed so that its generalization capacity is maximized. The time scale of music is

separated in two components. Slow time scale LSTM networks inferred the slow time scale

structure of the musical sequences to be learned to fast time scale LSTM networks, which

role is to produce the note-to-note transitions knowing the slow time scale. To represent the

slow time scale of musical sequences it has been chosen to associate a musical pattern (one

bar of the sequence to be learned) to principal components (PCs) from a PCA applied on the

whole collection of musical patterns that are wanted to be learned. Slow time scale LSTM

ANNs were able to predict and autonomously reproduce all pattern transitions in the form

of real valued PCs from Bach’s prelude of the first cello suite. The idea of the separation of

time scales model is to forward the pattern unique identifiers from slow time scale networks

to fast time scale LSTM networks so that the latter knows which pattern to produce. Training

fast time scale networks to predict every note-to-note transition from the previous note and

the pattern unique identifiers from slow time scale networks was shown to be fast and very

efficient. Furthermore, the forward connections from the slow to the fast time scale network

have been associated with recalling of musical pattern from a compressed memory of it. I

should mention that although the slow time scale network learned the transitions between

each pattern identifiers, the moment fast time scale networks access the next compressed

representation of musical patterns is artificially set. Indeed, the next musical pattern identifiers

are fed to trained fast time scale networks after they have produce as many note-to-note

transitions as there are in one full pattern (16 notes for 1 bar length patterns). Therefore, I

externally chose how long the fast time scale LSTM networks should recall the compressed

memory of the pattern they are playing. For a fully autonomous model, I suggest to add to the

learning phase of either time scale networks the information about when to switch to the next

musical pattern.
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How fast time scale LSTM networks learn multiple musical patterns For the special case

of Bach’s prelude of the first cello suite, I demonstrated that the first 25 PCs taken as external

biases to fast time scale LSTM networks, are enough to be able to retrieve more than 95% of the

original musical sequence composed of 42 musical patterns. Therefore, the separation of time

scales model, in addition to solve the problem of complex and long musical sequence learning,

apply a dimensionality reduction on the representation of patterns. I showed that each

network unit connected to the external biases of trained fast time scale networks developed a

receptive field (RF) to the pattern identifiers in the PC spaces. The networks are then taking

advantage of these RFs to accurately predict each note transition of every learned musical

pattern. This mechanism is similar to the associative memory of Hopfield networks [11] and I

sowed that fast time scale LSTM networks effectively learn how to recall each musical pattern

from their compressed identifiers, akin to feedforward inputs from brain memory regions. I

suggest that other, even non-linear, compressed representation of musical patterns or high

level features of music could be used and would yield similar results.

Slow time scale LSTM networks are not robust to noise I demonstrated that slow time scale

LSTM networks should predict very precisely (i.e. error has to be less than 1e-12) every PC

values of a pattern to be able to autonomously reproduce the pattern transitions. Indeed, on

the contrary from the generative modes of INON and fast time scale networks, the generative

mode of slow time scale networks does not filter the outputs. Therefore, the errors made

by generative slow time scale LSTM networks are accumulated across time and only very

accurate, consequently overfitted, slow time scale networks does not suffer from this error

accumulation. To address this problem, I suggest to train slow time scale LSTM networks on

noisy PCs or use other models, more robust to noise, as winnerless competition networks

[32]. Finally, I propose to test other time scale separation methods such has using deep neural

networks to encode and decode a musical sequence or pattern. Indeed, deep neural networks

were recently found to be efficient to uniquely identify a sequence of word in order to translate

it from French to English by using a simplified version of LSTM networks to produce the

sentence in either languages [33].

Capacity of fast time scale LSTM networks The fast time scale networks capacity experi-

ments were done by gradual increase of the number of musical patterns to be learned. For

each of the capacity experiment, learning was stopped when the network accuracy was over

0.9. For all presented network topologies, fast time scale LSTM networks were always able

to reach the stopping criterion. Impressively, the number of trials needed to complete the

training sessions was only slowly increasing with the number of learned musical patterns.

Furthermore, when the dataset was increased from 42 to 197 patterns, the number of training

trials was not significantly different (p-value=0.0747). However, it was needed to increase the

number of external biases from 25 to 70 respectively. These observations indicate that the fast

time scale model is a robust and very efficient model to learn multiple and complex musical

patterns and that aside from the training time, which was around 2 days on the LCN servers to
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learn all 197 patterns of the second dataset, the capacity of fast time scale networks was not

shown to be limited. Further experiments with bigger datasets or different stopping criteria

should be done to better observe the capacity of the network.

Exploring the receptive fields of trained fast time scale LSTM networks In the last chapter,

I presented how trained fast time scale LSTM networks respond to previously unseen external

biases. Untrained external biases with values comprised in the RFs of fast time scale network

units were shown to also activate the network units and that this activation was similar to a mix

of activations due to the closest learned external biases. However, the responses of the network

units to these unseen external biases were lowered for external biases close to learned ones

and boosted for external biases far from the RF centroids. This affected highly the network

output and a new filter for note selection from the output unit values of fast time scale LSTM

networks was implemented using a priori knowledge about the musical patterns. Using this

novel note selection filter, I showed that unseen external biases with values in close range

from trained external biases resulted in the production of the exact same musical pattern as

the one associated with the closer trained external biases. More importantly, external biases

comprised in a region where multiple RFs are overlapping resulted in the production of new

musical patterns in the same style as the learned musical sequence. Finally, when fast time

scales LSTM networks were trained on half of the musical patterns, using the new filter for

note selection, I demonstrated that the network was able to correctly reproduce more than

25% of the patterns from the other half thanks to the RF mechanism.
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A Complementary Figures

Here, I present the receptive field to the external biases of all network units.
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Figure A.1 – Prelude CS 1 Gate net activations in response to external biases for a trained
network with topology 5MCB20MC (96.6% accuracy).
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Figure A.2 – Prelude CS 1 Output unit net activations in response to external biases for a
trained network with topology 5MCB20MC (96.6% accuracy).
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Appendix A. Complementary Figures

MCB1 MCB2 MCB3 MCB4 MCB5
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Figure A.4 – Preludes CS 1,3 and 4 Gate net activations in response to external biases for a
trained network on 100 randomly chosen patterns (90% accuracy). Filled circles represent
learned patterns, empty circles represent non learned patterns.
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Figure A.5 – Preludes CS 1,3 and 4 Output unit net activations in response to external biases for
a trained network on 100 randomly chosen patterns (90% accuracy). Filled circles represent
learned patterns, empty circles represent non learned patterns.
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Appendix A. Complementary Figures

MCB1 MCB2 MCB3 MCB4 MCB5
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