Splitting Methods for Distributed Optimization and Control

THESE N° 7041 (2016)

PRESENTEE LE 27 MAI 2016
A LA FACULTE DES SCIENCES ET TECHNIQUES DE L'INGENIEUR
LABORATOIRE D'AUTOMATIQUE 3
PROGRAMME DOCTORAL EN GENIE ELECTRIQUE

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Ye PU

acceptée sur proposition du jury:

Dr A. Karimi, président du jury
Prof. C. N. Jones, Prof. M. N. Zeilinger, directeurs de thése
Prof. F. Allgbwer, rapporteur
Prof. P. Patrinos, rapporteur
Prof. P. Frossard, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2016

May 11, 2016

Abstract

This thesis contributes towards the design and analysis of fast and distributed opti-
mization algorithms based on splitting techniques, such as proximal gradient meth-
ods or alternation minimization algorithms, with the application of solving model
predictive control (MPC) problems.

The first part of the thesis focuses on developing an efficient algorithm based on
the fast alternating minimization algorithm to solve MPC problems with polytopic
and second-order cone constraints. Due to the requirement of bounding the online
computation time in the context of real-time MPC, complexity bounds on the num-
ber of iterations to achieve a certain accuracy are derived. In addition, a discussion
of the computation of the complexity bounds is provided. To further improve the
convergence speed of the proposed algorithm, an off-line pre-conditioning method is
presented for MPC problems with polyhedral and ellipsoidal constraints.

The inexact alternating minimization algorithm, as well as its accelerated vari-
ant, is proposed in the second part of the thesis. Different from standard algorithms,
inexact methods allow for errors in the update at each iteration. Complexity upper-
bounds on the number of iterations in the presence of errors are derived. By employ-
ing the complexity bounds, sufficient conditions on the errors, which guarantee the
convergence of the algorithms, are presented. The proposed algorithms are applied
for solving distributed optimization problems in the presence of local computation
and communication errors, with an emphasis on distributed MPC applications. The
convergence properties of the algorithms for this special case are analysed.

Motivated by the complexity upper-bounds of the inexact proximal gradient
method, two distributed optimization algorithms with an iteratively refining quan-
tization design are proposed for solving distributed optimization problems with a
limited communication data-rate. We show that if the parameters of the quantizers
satisfy certain conditions, then the quantization error decreases linearly, while at
each iteration only a fixed number of bits is transmitted, and the convergence of the
distributed algorithms is guaranteed. The proposed methods are further extended
to distributed optimization problems with time-varying parameters.

Keywords: Convex optimization, first-order optimization algorithms, splitting
methods, alternation minimization algorithm (AMA), fast alternation minimization
algorithm (FAMA), inexact alternation minimization algorithm (IAMA), inexact
fast alternation minimization algorithm (IFAMA), distributed optimization, quan-
tization design, model predictive control and distributed model predictive control.

Résumé

Cette these a pour sujet la conception et I'analyse des algorithmes d’optimisation
rapides et distribués basés sur les techniques dites de ”splitting”, telles que les
méthodes de gradient proximal ou des algorithmes de minimisation alternée, ap-
pliquées & la résolution de problémes de controle prédictif (MPC).

La premiere partie de la thése porte sur le développement d’un algorithme efficace
basé sur l'algorithme de minimisation alternée rapide (fast AMA) pour résoudre les
problemes de type MPC avec des contraintes polytopiques et coniques du second
ordre. En raison de l'exigence de limiter le temps de calcul en ligne, par exemple
pour une implementation temps-réel de MPC, des bornes sur le nombre d’itérations
pour obtenir une certaine précision sont calculées. En outre, une discussion sur le
calcul de ces bornes est détaillée. Pour améliorer encore la vitesse de convergence de
I’algorithme proposé, une méthode de pré-conditionnement hors-ligne est présentée
pour des problemes MPC avec contraintes polyédriales et ellipsoidales.

L’algorithme de minimisation alternée inexacte, ainsi que sa variante accélérée,
sont proposés dans la deuxieéme partie de la these. A la différence des algorithmes
standards, les méthodes inexactes autorisent des erreurs a chaque itération. Des
bornes supérieures sur le nombre d’itérations en présence d’erreurs sont calculées.
En utilisant ces bornes, des conditions suffisantes sur les erreurs qui garantissent la
convergence, sont présentées. Les algorithmes proposés sont appliqués pour résoudre
des problemes d’optimisation distribués en présence d’erreurs de calcul et de commu-
nication locales, en particulier pour des problemes de MPC distribués. Les propriétés
de convergence des algorithmes pour ce cas particulier sont analysées.

Motivés par les bornes de complexité de la méthode du gradient proximal in-
exact, deux algorithmes d’optimisation distribués avec une quantification raffinée
itérativement sont proposés pour résoudre des problemes d’optimisation distribués
avec une bande passante limitée. Nous montrons que si les parametres des quantifi-
cateurs satisfont certaines conditions, I’erreur de quantification décroit linéairement,
méme si a chaque itération un nombre fixe de bits est transmis, et la convergence
des algorithmes est garantie. Les méthodes proposées sont étendues a des problemes
d’optimisation distribués avec des parametres variables dans le temps.

Keywords: Optimisation convexe, algorithmes d’optimisation du premier ordre,
méthodes de “splitting”, algorithme de minimisation alternée (AMA), algorithme de
minimisation alternée rapide (FAMA), algorithme de minimisation alternée inexacte
(IAMA), algorithme de minimisation alternée inexacte rapide (IFAMA), optimiza-
tion distribuée, quantification, commande prédictive et commande prédictive dis-
tribuée

ii

Acknowledgements

This thesis could not have been accomplished without the guidance of my supervisor,
Prof. Colin Neil Jones. Colin has his unique and admirable way of thinking about
research problems and assessing the values and potentials of the results, which has
to a great extent influenced my research style. I also learned a lot from his superb
presentation and communication skills. During these years, he gives me complete
freedom so I can pursue research directions that interest me, and offers invaluable
advice and encouragement after usual frustrations. I would like to express my deep-
est respect and gratitude to him.

My co-supervisor Melanie Nicole Zeilinger plays an equally pivotal role in the
process of my PhD study. During the four years, Melanie provides countless invalu-
able advices, not only regarding researches but also on how to plan my future career
and life. Moreover, I am very lucky to be her first official PhD student. I would like
to extend my deepest respect and gratitude to Melanie for all her guidance, supports
and encouragement.

It was a great honor to have Frank Allgéwer, Panos Patrinos, Pascal Frossard
and Alireza Karimi on my thesis committee, and I am very thankful for their careful
reading of the thesis and helpful advices and comments on the thesis.

The LA family leaves me many memorable moments in these four years. I would
like to express my gratitude to Dominique Bonvin, Roland Longchamp and Alireza
Karimi for creating and maintaining a very friendly and research-conducive envi-
ronment in LA. My gratitude also goes to our secretaries Ruth Benassi and Khava
Isaeva for their friendly and helpful administrative help and Christophe Salzmann
for his precious help for laboratory setups. I also appreciated various discussion with
Philippe Miillhaupt, Ioannis Lymperopoulos and Timm Faulwasser, from which I
learned many interesting things.

Many thanks to my lovely officemates, Tomasz, Georgios, Martand, Faran, Fran-
cisco, Andrea, Jean-Hubert, Milan, Altug, Harsh, Sanket and Luca for their support
and accompanies. It is always very enjoyable to talk with them technically and non-
technically. Thanks to Tomasz’s home-made cake, Martand’s daily lunch reminder,
Jean-Hubert’s french jokes and every moments we shared in the office.

Finally, I want to thank my family for their continuous supports throughout the
years. This thesis is dedicated to Jingge, for his love and patience which makes me
a very happy person every day.

iii

Contents

Abstract i
Résumé ii
Acknowledgements iii
Contents iv
1 Introduction 1

2 Splitting Methods
2.1 Convex optimization
2.2 Splitting methods
2.2.1 Proximal-gradient method and its accelerated variant 1
2.2.2 Alternating minimization algorithm and its accelerated variant 12
2.2.3 Theoretical properties of alternating minimization algorithm

© -1

o

and its accelerated variant oo 13

2.2.4 Alternating direction method of multipliers and its accelerated
variant L. 17
2.2.5 Comparison of the splitting methods 18
2.3 Imexact splitting methodso oL 20
2.3.1 Inexact proximal gradient method and its accelerated variant 20
3 Model Predictive Control 24
3.1 Linear Model predictive control (MPC) 24
3.2 Distributed model predictive control 25

4 Complexity Certification of the Fast Alternating Minimization

Algorithm for Linear MPC 27
4.1 Imtroduction 27
4.2 Fast alternating minimization algorithm (FAMA) for MPC 29
4.3 Complexity Bounds of FAMA for MPC 33
4.3.1 Complexity upper-bounds for splitting strategy 1 33
4.3.2 Complexity upper-bounds for splitting strategy 2 35
4.4 Computation of complexity bounds 37
4.4.1 An upper-bound using sum of squares relaxations. 37
4.4.2 A sample-based method, 38

iv

Contents v

4.5 Preconditioningo 40
4.6 Numerical example Lo 43
4.7 Conclusion L 44

5 Inexact Alternating Minimization Algorithm for Distributed Op-

timization 48
5.1 Imtroduction 48
5.2 Inexact alternating minimization algorithm and its accelerated variant 50
5.2.1 Inexact alternating minimization algorithm 51
5.2.2 Inexact fast alternating minimization algorithm 55
5.2.3 Discussion: inexact algorithms with bounded errors 57

5.3 Inexact algorithms for distributed optimization with an application
to distributed MPCo 59
5.3.1 Distributed optimization problem 59
5.3.2 Application: distributed model predictive control 60
5.3.3 Inexact algorithms for distributed optimization 60

5.3.4 An approach to certify the number of iterations for solving
local problems guaranteeing global convergence 63
5.4 Numerical example o oo 67
5.5 Conclusion 71
5.6 Appendix 71
5.6.1 Proofof Lemma 5.2 71
6 Quantization Design for Distributed Optimization 74
6.1 Introduction L 74
6.2 Uniform quantizer 76
6.3 Distributed optimization with limited communication 76
6.3.1 Distributed optimization problem 76
6.3.2 Qualitative description of the algorithm 77
6.3.3 Distributed algorithm with quantization refinement 79
6.3.4 Accelerated distributed algorithm with quantization refinement 87
6.4 Numerical Example. o o o 91
6.5 Conclusion 92

7 Quantization design for distributed optimization with time-varying

parameters 924
7.1 Introduction 94

7.2 Preliminaries 95
7.2.1 Parametric distributed optimization problem 95

7.2.2 Distributed optimization with limited communication 95

7.3 Parametric distributed optimization with limited communication . . 97
7.4 Numerical Example 100
7.5 Conclusion e 101

8 Conclusion and Outlook 103

Bibliography 106

Introduction

Outline and Contribution

Due to the increasing computational power of computers and the new development
of optimization algorithms, the optimization-based control methods are becoming
powerful and promising tools for applications with fast and large dynamics and
complex control specifications. One important optimization-based method is Model
Predictive Control. The strength of Model Predictive Control (MPC) is that it
optimizes an objective over a finite time-horizon in the future and permits constraints
on the states and control inputs to be integrated into the optimal controller design.
However, the cost is that at each sampling time an optimization problem needs to be
solved, which has traditionally restricted MPC to applications with slow dynamics
and long sampling times. This limitation has given rise to an increasing interest
in the development of new methods to either improve the on-line computation,
driven by the increase in computational power of hardware and newly developed
optimization techniques, or to approximate the optimum with a sub-optimal but
stabilizing solution.

One technique to reduce the on-line computation is multi-parametric program-
ming, which pre-computes the solution for every state off-line, see [1] for more details
and references. [2] presents a method combining explicit MPC with on-line compu-
tation. However, all explicit and approximate explicit methods are limited to small-
scale problems. For medium and larger scale MPC problems, on-line computation
methods are used. Various approaches have been proposed to improve the on-line
computation time. The authors in [3] employ the fast gradient method introduced
in [4] to solve MPC problems with box constraints on inputs. Efficient implementa-
tions of interior-point methods have been studied in [5] and [6]. Accelerated gradient
methods with dual decomposition are investigated in [7] and in [8] in the context of
distributed MPC. [9] and [10] present efficient active set methods for MPC.

Splitting methods, which are also known as alternating direction methods, offer a
powerful tool for general mathematical programming and optimization, see e.g. [11],
[12] and [13]. Their efficiency results from splitting a complex convex minimization
problem into simple sub-problems and solving them in an alternating manner. For
a problem with multiple objectives, the main strategy is not to compute the descent

Introduction 2

direction of the sum of several objectives, but to take a combination of the descent
directions of each objective. This can significantly reduce computation time, in
particular when the objectives have different properties, for instance one being a
quadratic function, one an [j-norm and one involving indicator functions, which
originate from constraints. In Chapter 4, we will propose efficient optimization
algorithms based on splitting methods for solving MPC problems.

Networked systems, e.g. power grids and social networks, require vastly more
managing and stabilizing services at different levels, due to the increasing number of
components. To meet some advanced specifications, e.g. constraint satisfaction and
low economical cost, optimal control techniques seem to be a promising approach.
One challenge is to design and implement an optimal controller at the network level.
As the system network gets larger and more complex, solving an optimal control
problem in a centralized way becomes difficult, since it requires full communication
to collect information from each sub-system, as well as the computational power to
solve the global problem in one central entity.

A promising concept to avoid this problem is to use distributed model predictive
control techniques to solve network-level control problems, requiring only neighbour-
to-neighbour communication. Distributed MPC, see e.g. [14], [15] and [16], compared
to centralized MPC (with full communication), computes the control input based
on local measurements and communication between neighbouring systems. The
drawback is that distributed MPC may provide a sub-optimal control solution with
respect to centralized MPC. Therefore, distributed MPC represents an interesting
trade-off between centralized and decentralized MPC (without communication be-
tween sub-systems), in other words a trade-off between control specification and
communication costs. The initial studies [17] and [18] have shown that distributed
MPC is a promising tool for many control applications, e.g. frequency and voltage
control in power grids. From the implementation perspective, a key challenge to
apply a distributed MPC controller, in particular to systems with fast dynamics,
is to develop an efficient distributed optimization algorithm to synthesize the con-
troller. However, in practice distributed optimization algorithms may suffer from
inexact local solutions and unreliable communications, see e.g. [19], [12] and [8].
The resulting inexact updates in the distributed optimization algorithms affect the
convergence properties, and can even cause divergence of the algorithm.

In this thesis, we will study inexact splitting methods and aim at answering the
following two questions: 1) How do errors affect the algorithms and under which
conditions can convergence still be guaranteed; 2) How can we develop efficient
distributed algorithms subject local computation limitations and communication
constraints. Seminal work on inexact optimization algorithms includes [20], [21]
and [22]. In [22], an inexact proximal-gradient method, as well as its accelerated
version, are introduced. The conceptual idea is to allow errors in the calculation of
the gradient and in the proximal minimization. The results in [22] show convergence
properties of the inexact proximal-gradient method and provide conditions on the
errors, under which convergence of the algorithm can be guaranteed. We will develop
new distributed optimization algorithms based on inexact splitting techniques in
Chapters 5, 6 and 7.

Introduction 3

Chapter 2 - 3: Background

In the background chapters, we introduce the relevant definitions and results for
convex optimization, splitting algorithms, inexact splitting algorithms, model pre-
dictive control and distributed model predictive control.

Chapter 4: Complexity Certification of the Fast Alternating Minimization
Algorithm for Linear Model Predictive Control

In this chapter, the fast alternating minimization algorithm (FAMA) is proposed
to solve model predictive control (MPC) problems with polytopic and second-order
cone constraints. Two splitting strategies for MPC problems are presented. Both
of them satisfy the assumptions of FAMA and result in efficient implementations
by reducing each iteration of FAMA to simple operations. We derive computational
complexity certificates for both splitting strategies, by providing complexity upper-
bounds on the number of iterations required to provide a certain accuracy of the
dual function value and, most importantly, of the primal solution. This is of partic-
ular relevance in the context of real-time MPC in order to bound the required online
computation time. We further address the computation of the complexity bounds,
requiring the solution of a non-convex minimization problem. For MPC problems
with polyhedral and ellipsoidal constraints, an off-line preconditioning method is
presented to further improve the convergence speed of FAMA by reducing the com-
plexity bound and enlarging the step-size of the algorithm. Finally, we demonstrate
the performance of FAMA compared to other splitting methods using a quadrotor
example.

Chapter 4 is based on the following conference paper and technical
report. The majority of the text and content in Chapter 4 has appeared
in the following two papers.

e Y. Pu, M. N. Zeilinger and C. N. Jones. Fast Alternating Minimization
Algorithm for Model Predictive Control. 19th IFAC World Congress, Cape
Town, 8-24, 2014.

e Y. Pu, M. N. Zeilinger and C. N. Jones. Complexity Certification of the
Fast Alternating Minimization Algorithm for Linear Model Predictive Control,
March 2016, accepted for publication in to IEEE Transactions on Automatic
Control

Chapter 5: Inexact Alternating Minimization Algorithm for Distributed
Optimization with Distributed MPC Application

In this chapter, we propose the inexact alternating minimization algorithm (inexact
AMA), which allows inexact iterations in the algorithm, and its accelerated variant,
called the inexact fast alternating minimization algorithm (inexact FAMA). We
show that inexact AMA and inexact FAMA are equivalent to the inexact proximal-
gradient method and its accelerated variant applied to the dual problem. Based on
this equivalence, we derive complexity upper-bounds on the number of iterations for
the inexact algorithms. We apply inexact AMA and inexact FAMA to distributed
optimization problems, with an emphasis on distributed MPC applications, and

Introduction 4

show the convergence properties for this special case. By employing the complex-
ity upper-bounds on the number of iterations, we provide sufficient conditions on
the inexact iterations for the convergence of the algorithms. We further study the
special case of quadratic local objectives in the distributed optimization problems,
which is a standard form of a distributed MPC problem. For this special case, we
allow local computational errors at each iteration. By exploiting a warm-starting
strategy and the sufficient conditions on the errors for convergence, we propose an
on-line approach to certify the number of iterations for solving local problems, which
guarantees that the local computational errors satisfy the sufficient condition and
the inexact distributed optimization algorithm converges to the optimal solution.

Chapter 5 is based on the following conference paper and technical
report. The majority of the text and content in Chapter 5 has appeared
in the following two documents.

e Y. Pu, M. N. Zeilinger and C. N. Jones. Inexact Fast Alternating Minimiza-
tion Algorithm for Distributed Model Predictive Control. 53rd IEEE Confer-
ence on Decision and Control, Los Angeles, 2014, December 15-17, 2014.

e Y. Pu, M. N. Zeilinger and C. N. Jones. Inexact Alternating Minimization
Algorithm for Distributed Optimization with an Application to Distributed
MPC, March. 2016, submitted to IEEE Transactions on Automatic Control

Chapter 6: Quantization Design for Distributed Optimization

In this chapter, we consider the problem of solving a distributed optimization prob-
lem using a distributed computing platform, where the communication in the net-
work is limited: each node can only communicate with its neighbours and the chan-
nel has a limited data-rate. A common technique to address the latter limitation
is to apply quantization to the exchanged information. We propose two distributed
optimization algorithms with an iteratively refining quantization design based on
the inexact proximal gradient method and its accelerated variant. We show that if
the parameters of the quantizers, i.e. the number of bits and the initial quantiza-
tion intervals, satisfy certain conditions, then the quantization error is bounded by
a linearly decreasing function and the convergence of the distributed algorithms is
guaranteed. Furthermore, we prove that after imposing the quantization scheme,
the distributed algorithms still exhibit a linear convergence rate, and show complex-
ity upper-bounds on the number of iterations to achieve a given accuracy. Finally,
we demonstrate the performance of the proposed algorithms and the theoretical
findings for solving a distributed optimal control problem.

Chapter 6 is based on the following conference paper and technical
report. The majority of the text and content in Chapter 6 has appeared
in the following two papers.

e Y. Pu, M. N. Zeilinger and C. N. Jones. Quantization Design for Uncon-
strained Distributed Optimization. American Control Conference, Chicago,
2015.

Introduction 5

e Y. Pu, M. N. Zeilinger and C. N. Jones. Quantization Design for Distributed
Optimization, March 2016, accepted for publication in IEEE Transactions on
Automatic Control.

Chapter 7: Quantization Design for Distributed Optimization with
Time-Varying Parameters

We consider the problem of solving a sequence of distributed optimization problems
with time-varying parameters and communication constraints, i.e. only neighbour-
to-neighbour communication and a limited amount of information exchanged. By
extending the results in Chapter 6 and employing a warm-starting strategy, we
propose an on-line algorithm for solving optimization problems under the given
constraints and show that there exists a trade-off between the number of iterations
for solving each problem in the sequence and the accuracy achieved by the algorithm.
For a given accuracy ¢, we can find a number of iterations K, which guarantees that
for the sequential realization of the parameter, the sub-optimal solution given by
the algorithm satisfies the accuracy. We apply the method to solve a distributed
model predictive control problem by considering the state measurement at each
sampling time as the time-varying parameter and show that the simulation supports
the theoretical results.

Chapter 7 is based on the following conference paper. The majority
of the text and content in Chapter 7 has appeared in the following paper.

e Y. Pu, M. N. Zeilinger and C. N. Jones. Quantization Design for Distributed
Optimization with time-varying parameters. 54th IEEE Conference on Deci-
sion and Control, Osaka, 2015.

Additional Publications

The following papers were published or submitted during the Ph.D. study and are
not chosen to be included in this thesis.

e M.N. Zeilinger, Y. Pu, S. Riverso, G. Ferrati-Trecate, C. N. Jones. Plug and
Play Distributed Model Predictive Control based on Distributed Invariance
and Optimization. 52nd IEEE Conference on Decision and Control, Florence,
2013

e G. Stathopoulos, A. Sziics, Y. Pu and C. N. Jones. Splitting methods in
control. 13th European Control Conference, Strasbourg, June 24-27 2014.

e F. F. C. Rego, Y. Pu, A. P. Aguiar and C. N. Jones. A Consensus Algo-
rithm for Networks with Process Noise and Quantization Error. 53rd Annual
Allerton Conference 2015.

e F.F. C. Rego, Y. Pu, A. P. Aguiar and C. N. Jones. Design of a Distributed
Quantized Luenberger Filter for Bounded Noise. American Control Confer-
ence, Boston, 2016.

Introduction 6

e G. Stathopoulos, H. Shukla, A. Sziics, Y. Pu and C. N. Jones. Operator
splitting methods in control. Sep. 2015 submitted to Foundations and Trends
in Systems and Control.

e L. Ferranti, Y. Pu, C. N. Jones, and T. Keviczky. Asynchronous Splitting
Design for Model Predictive Control. submitted to 55th IEEE Conference on
Decision and Control, 2016

Splitting Methods

In this chapter, relevant definitions and results for this thesis will be introduced.

Notations for vector and matrices

Let C be a matrix. p(C) denotes the largest eigenvalue of C7C. For the case that
C' is a positive definite matrix, Ay (C) denotes the smallest eigenvalue of C. Let
C1 and Cs be two matrices. The Kronecker product of C; and Cs is denoted by
C1 ® Cy. The operators max, < and > are defined to work on vectors as well as
scalars. For vectors, the operators are defined to be element-wise. Let x € R™ be
a vector. ||z| and ||z|~ denote the ly and infinity norms of x, respectively. Note
that [|z]|co < ||z|l2 < v/nllz||co. We refer to [23] for details on the definitions and
properties above.

2.1 Convex optimization

In this section, we will introduce definitions and results in convex optimization. We
refer to [24], [25] and [26] for details on the definitions and properties below.

Definition 2.1. (Conver Set) A set C C R"™ is convez, if the line segment between
any two points in C lies in C, i.e., if for any x1, xo and any 0 with 0 < 0 < 1, we
have

Ox1 + (1 — 9).%’2 e C.

Definition 2.2. (Projection) The projection of any point x € R™ onto the set C is
defined by
Projc(x) == argming ¢ ly — z||.

Definition 2.3. (Cone and Convex Cone) A set C is called a cone, if for any x € C
and 0 > 0 we have x € C. A set C is a convex cone, if for any x1, x9 € C and 01,
0> > 0, we have

011 + 0229 € C.

2.1. Convex optimization 8

Definition 2.4. (Polar Cone) Let C be a convex cone. The polar cone of C is
defined as
C° :={w | vTw <0, Yo e C.

Definition 2.5. (Dual Cone) Let C be a convex cone. The dual cone of C is defined
as
C*:={w | vTw >0, Vv eC}.

Definition 2.6. (Self-dual Cone) A convex cone C is called self-dual, if C = C*.

Definition 2.7. (Normal Cone) Let C be a non-empty, closed convex set. The
normal cone to the set C at the point x € C is defined as

Ne(z) := {w | wl (v — x) <0, Yo € C}.

Definition 2.8. (Convex Function) A function f:R"™ — RU {cc} is convez, if the
domain of the function dom f is a convex set and if for all x, y € dom f, and all
0<6<1, it holds that

fOx+ (1 —0)y) <O0f(x)+(1—0)f(y)
Definition 2.9. (Epigraph) The epigraph of a function f : R™ — R is defined as

ept f:={(z,t) |z € dom f, f(z) <t}.

Definition 2.10. (Closed Function) A function f : R™ — R U {oo} is closed, if the
epigraph of f is a closed set for all x € dom f.

Definition 2.11. (Sub-gradient and Sub-differential) A sub-gradient to a convex
function f at x € dom f is any vector {(x) such that

f) > fl@)+ &) (y —), (2.1)

forally € dom f. The set of vectors {(x) that satisfy (2.1) at x is denoted by O f(x)
and is called the sub-differential of f at x.

Definition 2.12. (Strongly Convex Function) A function f : R" — R U {oo} is
strongly convex if there exists a constant oy > 0 such that for all x, y € dom f, we
have

0f(z) + (1~ 0)f(y) — f(Oz + (1= 0)y) = o7 - (1 —)|z — y]|*

for all 0 < 0 < 1. The constant oy is named as the converity modulus the function

f-

Definition 2.13. (Strongly Monotonic Function) A function f:R"™ — RU {oo} is
strongly monotonic if there exists a constant oy > 0 such that for all x, y € dom f,
we have

<p —q,r — y> > O'f”ﬂj - y||27
where p € 0f(x), g € 0f(y) and O(-) denotes the sub-differential of the function at
a gwen point. The constant oy is called the convexity modulus the function f.

Remark 2.1. A function f : R™ — R is a strongly convex function, if and only if
f is a strongly monotonic function.

2.2. Splitting methods 9

Definition 2.14. (Lipschitz Continuity) A function f : R — R U {oo} is called
Lipschitz continuous with Lipschitz constant L(f) on a subset C of dom f, if for all
z,y € C, we have

1f () = FW)Il < L)z — yll-

Definition 2.15. (Conjugate Function) Let f : R™ — RU{oo} be a convex function.
The conjugate function of f is defined as

Fly)= saup (y'z— f2)).

zedom f

Remark 2.2. We note that for a conjugate function, it holds that ¢ € df(p) < p €
af*(q).

Remark 2.3. If f is a strongly convex function with the convexity modulus oy, then
the gradient of the conjugate function of f is Lipschitz continuous with a Lipschitz
constant L(V f*) = a;l. For more details, see in Theorem 4.2.1 in [27]

Definition 2.16. (Indicator Function) The indicator function on the set C is defined
as
0 ifxeC
Ic(x) = . (2.2)
oo ifx ¢ C.

Remark 2.4. We note that the indicator function defined in (2.2) is a convex
function.

Definition 2.17. (Prozimity Operator) The prozimity operator is defined as

_ 1
prox;(y) = argmin, f(z) + S lz — y* . (2.3)

Remark 2.5. We note the following equivalence:
r* = prox;(y) <=y — 2" € 9f(z") (2.4)

Definition 2.18. (Linear and Sub-linear Convergence Rates) A sequence {eF}%°
converges linearly to zero if there exist constant 0 < g < 1 and C' > 0 such that

F<C. gk (2.5)

forallk=0,1,..... The constant q denotes the convergence ratio.
A sequence {ek}zozo converges sub-linearly to zero, if it does not converge linearly.
Ezxamples for sub-linearly converging sequences include

K k K k
;e s ;e < ;
VEk+1 k+1 (k+1)2
where K is a positive constant. The sub-linear convergence rate examples are also

denoted as as O(ﬁ), O(3) and O(k%), respectively.

K

ek§

(2.6)

2.2 Splitting methods

In this section, we will introduce splitting methods, including proximal-gradient
method, alternating minimization algorithm, alternating direction method of mul-
tipliers, as well as their accelerated and inexact variants.

2.2. Splitting methods 10

2.2.1 Proximal-gradient method and its accelerated variant
Proximal-gradient method (PGM)

In this section, we will introduce the proximal-gradient method (PGM), which is also
called the iterative shrinkage-thresholding algorithm (ISTA) in [28]. It addresses op-
timization problems of the form given in Problem 2.1 and requires Assumption 2.1
for sub-linear convergence, and Assumption 2.2 for linear convergence. In this thesis,
the convergence of an algorithm indicates the convergence of the difference between
the sequence generated by the algorithm and the optimal solution. The PGM algo-
rithm is presented in Algorithm 1.

Problem 2.1.

min B(w) = $(w) + Y(w).

weRMw
Assumption 2.1. We assume that

e & is a conver function with Lipschitz continuous gradient with Lipschitz con-

stant L(V)
e v is a convex function, not necessarily smooth.
Assumption 2.2. We assume that

e ¢ is a strongly convex function with a convexity modulus oy and has a Lipschitz
continuous gradient with Lipschitz constant L(V¢).

e v is a lower semi-continuous convex function, not necessarily smooth.

For the case that Assumption 2.2 holds, we denote the condition number of the
objective ¢ as

y = L("v‘z’@. (2.7)

Remark 2.6. Due to the fact that the summation of a strongly convex function
with a convexity modulus o and a convex function is still a strongly convex function
with the same convexity modulus o, we know that if Assumption 2.2 holds, then the
function ® is also strongly convex with a convexity modulus o4. Since ® is a strongly
convex function, the optimal solution x* of Problem 2.1 is unique.

Algorithm 1 Proximal-Gradient Method

Require: Require w® € R™ and 7 <
for k=1,2,--- do
1: w? = prox ., (wF~t — 7V (wh 1))
end for

1
L(Ve)

The following propositions state the convergence property of the proximal-gradient
method with different assumptions.

2.2. Splitting methods 11

Proposition 2.1 (Theorem 3.1 in [28]). Let {w*} be generated by PGM defined in
Algorithm 1. If Assumption 2.1 holds, then for any k > 0 we have:

L(V¢)
2k

¢ (w") — ®(w”) < w*||?

[l —
where ®(-) is defined in Problem 2.1 and w® and w* denote the initial point of
Algorithm 1 and the optimal solution of Problem 2.1, respectively.

Proposition 2.2 (Proposition 3 in [22] for the case without errors). Let {w*} be
generated by PGM defined in Algorithm 1. If Assumption 2.2 holds, then for any
k > 0 we have:

lw* —w* < (1 ="’ "] (2.8)

where v = % and w® and w* denote the initial point of Algorithm 1 and the
optimal solution of Problem 2.1, respectively.

Accelerated Proximal-Gradient Method (APGM)

In this section, we introduce an accelerated variant of PGM, named the accelerated
proximal-gradient method (APGM) proposed in [28]. APGM is also known as fast
iterative shrinkage-thresholding algorithm (FISTA) in [28]. It addresses the same
problem class as Problem 2.1 and similarly requires Assumption 2.1 for convergence,
and Assumption 2.2 for linear convergence.

Differing from PGM, APGM involves one extra linear update in Algorithm 2.
If Assumption 2.1 holds, it improves the convergence rate of the complexity upper-
bound from O(}) to O(k%) The sequence 3* is updated as follows: for the case
that Assumption 2.1 holds, the sequence 8* is updated as

k
gt = %111 with o = (14 V4ak* +1)/2 , (2.9)

where the sequence o is initialized as a® = 1; and for the case that Assumption 2.2
is satisfied, the sequence ¥ is updated as

1=V
BF = v (2.10)

with v in (2.7).

Algorithm 2 Accelerated Proximal-Gradient Method

e i1 1_,.0 nw 1
Require: Initialize v* = w” € R™ and 7 < V)

for k=1,2,--- do
1: wh = PIOX,y; ck (WP — 7 (Vo (vF~1) + b))
9. Uk — wk 4 /Bk(wk _ wkfl)

end for

The following proposition states the convergence property of APGM.

2.2. Splitting methods 12

Proposition 2.3 (Theorem 2 in [28]). Let {wy} be generated by APGM defined
in Algorithm 2. If Assumption 2.1 holds and the parameter sequence 3* is updated
according to (2.9), then for any k > 1, we have:

2L(V9)

k 0 2
P(w") — (w") < m“w —w*[|*,

where ®(-) is defined in Problem 2.1 and w® and w* denote the starting point of
Algorithm 2 and the optimal solution of Problem 2.1, respectively.

Proposition 2.4 (Proposition 4 in [22] for the case without errors). Let {w"}
be generated by APGM defined in Algorithm 2. If Assumption 2.2 holds and the
parameter sequence (¥ is updated according to (2.10), then for any k > 0 we have:

(wh) — (w*) < (1 —)" -2 (2w — &(w*)) , (2.11)

where v = % and w® and w* denote the initial point of Algorithm 7 and the
optimal solution of Problem 2.1, respectively.

2.2.2 Alternating minimization algorithm and its accelerated variant
Alternating minimization algorithm (AMA)

In [29], a splitting method called the alternating minimization algorithm (AMA)
is proposed. It addresses optimization problems of the form given in Problem 2.2
and requires Assumption 2.3 for convergence. Compared to Problem 2.1, Prob-
lem 2.2 covers more general optimization problems. It allows for an affine coupling
constraint and meanwhile maintains the desired property that the objective of the
optimization problem can be split into two functions. The AMA algorithm is pre-
sented in Algorithm 3. The AMA algorithm is a dual decomposition based method,
therefore we need the Lagrange multiplier in the algorithm denoted by .

Problem 2.2.
ueRngg}eRnw fw) +g(w)
st. Av+Bw=c .
Assumption 2.3. We assume that
o f is a strongly convex function with the convexity modulus oy.

e g is a convex function, not necessarily smooth.

Fast alternating minimization algorithm (FAMA)

In this section, we introduce an accelerated variant of AMA, named the fast al-
ternating minimization algorithm (FAMA) presented in [11]. It addresses the same
problem class in Problem 2.2 and similarly requires Assumption 2.3 for convergence.

In Algorithm 4, X\ denotes the Lagrange multiplier. Differing from AMA, FAMA
involves one extra linear update in Algorithm 4. If Assumption 2.3 holds, it improves
the convergence rate of the complexity upper-bound from O(%) to O(k%) The

sequence o is updated according to the same rule as in (2.9).

2.2. Splitting methods 13

Algorithm 3 Alternating minimization algorithm (AMA)

Require: Initialize \° € RV, and 7 < 04/p(A)
for k=1,2,--- do
1: v = argmin, f(v) + (\g, —Av)
2: w41 = argmin,, g(w) + (Mg, —Bw) + Z[|b — Avgq — Bwl?
3:)\k+1 =)\k + T(b — Aka — BwkH)
end for

Algorithm 4 Fast alternating minimization algorithm (FAMA)
Require: Initialize ¥ = 1, A0 = A\l = X7 ¢ RNy and 7 < 04 /p(A)
for k=1,2,--- do
1: v* = argmin, f(v) + <5\k, —Av>
2: wh = argmin, g(w) + <5\k, —Bw> + Z|le — Av® — Bw||?
3: M= M 4 7(c — AvF — Buwb)

4: 9{’”1 = (14 V4a** +1)/2
5-)\kJrl —)\k 4 (Oék _ 1)()\16 o)\kfl)/alv#l
end for

Remark 2.7. The step-size constraint of FAMA 7 < o¢/p(A) originates from the
step-size constraint of FISTA, i.e. T < ﬁ. For the case that the Lipschitz
constant is not known or very small, the backtracking step-size rule in [28] can be
applied. The idea is to update L at every iteration k as L, = n* Ly_1, where n is a

positive constant and i* is the smallest non-negative integer satisfying

FHATN) < TN
where \F denotes the one-iteration solution of FAMA based on \F=1, the step-size
is LF = n’kkal, and

* * 1 *
Tre(yi,y2) = (A y2) + (g1 — y2, AV (AT 1)) + il - vl + g* (B 1) .

2.2.3 Theoretical properties of AMA and FAMA

In this section, we present the theoretical properties of AMA and FAMA. We first
show that AMA and FAMA are equivalent to applying the proximal-gradient method
and its accelerated variant to the dual problem of Problem 2.2, respectively. Then,
we derive the complexity upper-bounds for AMA and FAMA under Assumption 2.3.
Finally, we show the KKT conditions of Problem 2.2, which will be important for
the computation of complexity bounds in Section 4.4.

Relationship between AMA and PGM

The Lagrangian of the optimization problem solved by AMA and FAMA in Problem
2.2 is:

L(v,w,\) = f(v) + g(w) + \T(Av 4+ Bw —¢) . (2.12)

2.2. Splitting methods 14

The dual problem of Problem 2.2 is expressed as:
Problem 2.3.

max D)) = —f*(ATA) + TN — g*(BT)) . (2.13)

—o(A) —¥(A)

where D(-) denotes the dual function and A\ denotes the Lagrange multiplier.
The functions f* and g* denote the conjugate functions of f and g. Furthermore,
the dual problem is equivalent to

min ¢(\) + () . (2.14)

Remark 2.8. Note that if f is a strongly convex function with the convexity modulus
of, then the gradient of the conjugate function of ¢p(\) = f*(ATN) is Lipschitz
continuous with a Lipschitz constant L(V¢) = (7]71 -p(A).

Previous work in [29] and [11] has shown that the alternating minimization
algorithm is equivalent to applying the proximal-gradient method in Algorithm 1 to
the dual problem. The proof of Lemma 2.1 can be found in the proof of Theorem 2
in [11] and the proof in Section 3 in [29].

Lemma 2.1. If Assumption 2.3 is satisfied and AMA and PGM are initialized
with the same dual and primal starting point, then applying AMA in Algorithm 3

to Problem 2.2 is equivalent to applying PGM in Algorithm 1 to the dual problem
defined in Problem 2.3 .

Proof: In order to show the equivalence, we prove that Steps 1, 2 and 3 in
Algorithm 3 are equivalent to Step 1 in Algorithm 1, i.e., the following equality
holds:

M= proxw()\k_1 —7- V(W) . (2.15)

Step 2 in Algorithm 3 implies:
BTN 4 7BT (¢ — Av* — B2F) € 9g(2F) .
From the property of the conjugate function p € df(q) < q € 9f*(p), it follows:
2F e ag* (BT A1 + 7B (¢ — Av® — BZF)).
By multiplying with B and subtracting ¢ on both sides, we obtain:
BzF — ¢ € Bogn(BTAF"1 + 7BT (¢ — Av* — B2F)) — .
By multiplying with 7 and adding *=! + 7(¢ — Av* — Bz*) on both sides, we get:

M= rAvR € 7BAg* (BTN 4+ BT (¢ — AvF — B2F))
—71e+ X 47 (e — Ak — BZR).

Since ¥(A\) = g*(BTA) — cI'\, we have 9¢(\) = Bdg*(BT\) — ¢, which implies:

N 2 Ak € 7oV 4 7 (c — Avk — B2Y))
+ X 7 (e— AR — B2R).

2.2. Splitting methods 15

By Step 3 in Algorithm 3, the above equation results in:
M=t r AR € TOp(AF) + N

From Step 1 in Algorithm 3 and the property of the conjugate function p € df(q) <
q € 0f*(p), we obtain:

Nl 2 AV (AT € 7o (ANF) + 2\F
By definition of the function ¢, we get:

Nt — 7 VoA € rap (W) + AF
which is equivalent to:

M= proxw()\k_1 — 7 VoA 1)) .

Relationship between FAMA and APGM

By extending the results in Lemma 2.1, we show the equivalence between FAMA
and applying APGM to the dual problem in Lemma 2.2.

Lemma 2.2. If Assumption 2.8 is satisfied and FAMA and APGM are initialized
with the same dual and primal starting point, then applying the FAMA in Algo-
rithm 4 to Problem 2.2 is equivalent to applying APGM in Algorithm 2 to the dual
problem defined in Problem 2.35.

The proof of Lemma 2.2 follows the same flow as the proof of Lemma 2.1 by
replacing (2.15) with A)
P proxw()\k —7-Vo(A\F) . (2.16)

Computational complexity upper-bounds for the dual sequences {*} generated
by AMA and FAMA

Based on the equivalence shown in Lemma 2.1 and 2.2, we can now present upper-
bounds on the difference of the dual function value of the sequence {*} generated
by Algorithms 3 and 4 in Theorems 2.4 and 2.5.

Theorem 2.4. Let {\¥} be generated by AMA in Algorithm 3. If Assumption 2.3

s satisfied, then for any k > 1 we have

p(A)[IA — >
20k ’

D(*) — D(\F) < (2.17)

where D(-) is the dual function in Problem 2.3, and \° and * denote the starting
point and the optimizer, respectively.

2.2. Splitting methods 16

Proof: Lemma 2.1 shows that applying AMA to Problem 2.2 is equivalent
to applying PGM to Problem 2.3. The functions ¢ and 1 in Problem 2.3 are both
convex, since the conjugate functions and linear functions as well as their weighted
sum are always convex (conjugate function is the point-wise supremum of a set
of affine functions). By Assumption 2.3, we know that f is strongly convex with
modulus o¢. By the property of the conjugate function, a Lipschitz constant of V f*
is given by

L(Vf) =o'

This provides a Lipschitz constant of Vo,

L(VON) = 07" - plA) .

By Proposition 2.1, it follows that the sequence {\;} generated by AMA satisfies
the complexity bound (2.17). [

Theorem 2.5. Let {*} be generated by FAMA in Algorithm 4. If Assumption 2.3

1s satisfied, then for any k > 1 we have

2p(A)IA° — M2
op(k+1)

D(\) — D)) < , (2.18)

where D(-) is the dual function in Problem 2.3, and \° and * denote the starting
point and the optimizer, respectively.

The proof of Theorem 2.5 follows the same flow of the proof of Theorem 2.4 by
replace Proposition 2.1 by Proposition 2.3.

KKT conditions for Problem 2.2

In this section, we state the KKT conditions of Problem 2.2, which will be used in
Section 4.4 for estimating the complexity bound in (2.18). The KKT conditions of
Problem 2.2 are given by:

(i) Av* 4+ Bw* = ¢,
(i) 0 € af(v*) + AT)",
(iii) 0 € dg(w*) + BTX*.

Condition (i) represents the feasibility condition, and (ii) and (iii) represent
optimality conditions. In Chapter 4, we will apply FAMA to MPC problems with
polytopic and second-order cone constraints and propose two splitting strategies. In
both splitting strategies, the second objective g is considered to be a set of indicator
functions on convex constraints given by non-empty, closed and convex cones. In
order to compute the explicit form of Condition (iii) for this case, we introduce the
subdifferential of the indicator function on a convex cone, which is defined as

Ol (z) = {?C(gj) iz Z E (2.19)

2.2. Splitting methods 17

where N¢(z) denotes the normal cone of C at z. The following proposition states
that being in the normal cone Ng¢(x) is equivalent to two conditions: z is in the
polar cone of C and the complementary slackness condition holds. This results will
be used in Section 4.4 to express the explicit KKT conditions for MPC problems.

Proposition 2.5 ([30], Proposition 2.51). Let C be a non-empty closed convex
cone. Then, for any point T € C, x € N¢(Z) is equivalent to 277 = 0 and z € C°,
where C° denotes the polar cone of C.

2.2.4 Alternating direction method of multipliers and its accelerated
variant

In Chapter 4, we will compare the proposed algorithm with another popular splitting
method, the alternating direction method of multipliers (ADMM) as well as its
accelerated variant. Hence, in this section, we will briefly introduce ADMM and its
accelerated variant and provide a comparison between FAMA and ADMM as well
as its accelerated variant FADMM from a theoretical perspective, highlighting the
key differences.

Alternating Direction Method of Multipliers (ADMM)

In this section, we present another popular splitting method, called the Alternating
Direction Method of Multipliers (ADMM), which was introduced first by Glowinski
and Marocco in [31] and an extensive study is provided in [12]. ADMM addresses
optimization problems of the form given in Problem 2.2 and requires Assumption 2.4
for convergence. The ADMM algorithm is presented in Algorithm 5. The detailed
proof of convergence can be found in [12].

Assumption 2.4. We assume that both functions f and g in Problem 2.2 are closed
and convex functions.

Algorithm 5 Alternating direction method of multipliers (ADMM)

Require: Initialize A\ € R and 7 > 0
for k=1,2,--- do
1: vpy1 = argmin, f(v) + (Ag, —Av) + Z||b — Av — Bz ?
2: zpp = argmin, g(2) + (g, —Bz) + I||b — Avgyq — Bz|?
3:)\k+1 = >\k + T(b - Avk+1 — sz_H)
end for

Remark 2.9. However, with Assumption 2.4, il is not clear how to derive com-
plexity upper-bound for the iterates generated by ADMM. Requiring a stronger as-
sumption that both function f and g are strongly conver with modulus oy and oy, a
complexity bound on the iterates A\, generated by ADMM exists and can be verified
as:

A*— Ao

DOV) — D(n) < X = all 2.20

(%) = D) < T (2.20)
2

where T is the stepsize, which satisfies 7> < m.

2.2. Splitting methods 18

The convergence properties of ADMM for different assumptions are summarized
in [11].

Fast Alternating Direction Method of Multipliers (FADMM)

The fast ADMM algorithm is an accelerated variant of ADMM with a predictor-
corrector type acceleration step, which is given in Algorithm 6. Comparing with
ADMM, FADMM has one more restarting step, which can improve the convergence
performance of the algorithm or can improve the convergence rate in the case that
Assumption 2.3 is satisfied. The predictor-corrector type acceleration step is as
follows: If Ej < 1, which is chosen from the options defined in (2.21) - (2.22),
FADMM updates the parameter o and applies the standard acceleration step. The
first choice for the function Fj is shown in (2.21).

E? = max(|[s1 [, [ri—ill) — max(sell). (2.21)

with r, = b — Avy — Bz, and s = TATB(z, — 2,_1). Choosing Ej, = EV is
equivalent to enforcing monotonicity on the dominant residual. The acceleration step
is activated when the largest residual has decreased. This restarting rule results in
faster convergence in practice, but a better convergence rate O(k%) will be achieved
only when both functions f and g are strongly convex. The second restart rule E{j in
(2.22) requires Assumption 2.3, i.e., the first objective function f is strongly convex.

p(ATAT?)
g

Bl =\ — Ml — | Buy, — Biy||>. (2.22)

In return, it not only improves performance of the algorithm practically, but also
guarantees a better convergence rate O(k%)

Algorithm 6 Fast alternating direction method of multiplier (FADMM)

Require: Initialize ag = 1, Wy = w_; € RV, 5\0 =X €RM and7>0
for k=1,2,--- do
1: v = argmin, f(v) + <5\k, —Av> + 2o — Av — By ||?

2: w = argmin,, g(w)+ <5\k, —Bw> + Z||b — Avg — Bw||?
3:)\k :S\k-l-T(b—Avk—B’wk)
4: if F, > 0 then
5. g1 = (1+ /402 +1)/2
6: N1 = M+ (o — 1) A — A1)/
T gy = wp + (o — 1) (wp — wp—1) /g
8: else R
90 apy1 =1, Wpp1 = wg and Agp1 = A
end for

2.2.5 Comparison among AMA, FAMA, ADMM and FADMM

In this section, we provide a brief comparison between FAMA and the popular
technique ADMM as well as its accelerated variant FADMM from a theoretical per-
spective, highlighting the key differences. Firstly, they require different assumptions

2.2. Splitting methods 19
Methods | Assumptions Convergence | Complexity | Condition
rate bound on step-size
AMA one obj strongly convex | O(1/k) yes yes
FAMA | one obj strongly convex | O(1/k?) yes yes
ADMM | both obj convex O(1/k) no no
FADMM | both obj strongly con- | O(1/k?) no no
vex

Table 2.1 — Summary of assumptions and properties of ADMM, FADMM and
FAMA.

and have different convergence rates. Note that in this thesis, we denote the bound
on the worst-case convergence rate as the convergence rate for short.

ADMM and FADMM require the objectives to be convex functions, and under
this assumption both algorithms guarantee the same theoretical convergence rate
O(%) in dual function value. If both objectives are strongly convex, ADMM and
FADMM provide a linear convergence rate. However, this assumption is rarely
satisfied by our target applications, i.e., MPC problems, since MPC problems have
constraints, which can be considered as indicator functions and are therefore not
strongly convex. FAMA requires one objective to be strongly convex and the other
to be convex, which is stronger than the basic assumption of ADMM and FADMM,
but in return, it achieves a faster convergence rate O(k%) in the dual function value.

The second difference is that FAMA provides a complexity upper-bound on the
number of iterations for a given accuracy (Section 2.2.3) in the dual function value,
which allows for a real-time solution guarantee, i.e., a certificate that the problem
can be solved in the given fixed amount of time. For ADMM and FADMM, it is not
clear how to derive such a complexity bound.

The third difference is that for ADMM and FADMM, the question of how to best
tune the step-size in general still remains largely unclear. Theoretically, any positive
step-size guarantees convergence, however, not any positive step-size practically re-
sults in good performance. This issue has been studied for some special cases, e.g.,
QP problems in [32], however not suitable for problems with more general conic
constraints, e.g., the second-order cone constraints. FAMA, in contrast, has a clear
step-size rule, i.e., it requires the step-size to be smaller than the reciprocal of the
Lipschitz constant of the gradient of the dual objectives. This condition simplifies
the selection of the step-size, and together with the complexity bound allows for
preconditioning the problem to speed up the algorithm, which will be discussed in
Section 4.5.

The differences among AMA, FAMA, ADMM and FADMM are summarized in
Table 2.1.

2.3. Inexact splitting methods 20

2.3 Inexact splitting methods

2.3.1 Inexact proximal gradient method and its accelerated variant
Notations

In this section, we use - to denote an inexact solution of an optimization problem.
The proximity operator, which is defined in (2.3) with an extra subscript €, i.e., i =
proxy (v), means that a maximum computation error € is allowed in the proximal
objective function:

P+ gli—ol? < etming {)+ glu—ol?} @2

Inexact Proximal-Gradient Method (inexact PGM)

In this section, we will introduce the inexact proximal-gradient method (inexact
PGM) proposed in [22]. It addresses optimization problems of the form given in
Problem 2.1 and requires Assumption 2.1 for convergence, and Assumption 2.2 for
linear convergence. The algorithm is presented in Algorithm 7.

Algorithm 7 Inexact Proximal-Gradient Method

Require: Require w° € R™ and 7 <
for k=1,2,--- do
1: wk = PIOX,y; ck (WF — 7(Vo(aF—1) 4 €¥))
end for

1
L(Vo)

Inexact PGM in Algorithm 7 allows two kinds of errors: {e*} represents the error
in the gradient calculations of ¢, and {¢*} represents the error in the computation of
the proximal minimization in (2.23) at every iteration k. The following propositions
state the convergence property of inexact PGM for different assumptions.

Proposition 2.6 (Proposition 1 in [22]). Let {@*} be generated by inevact PGM
defined in Algorithm 7. If Assumption 2.1 holds, then for any k > 1 we have:

k
@(% ;mp) — d(w*) < L(;f) (||1z)0 —w*|| + 2% + \/2Ak)2

where () is defined in Problem 2.1,

k k
B |leP]] 2ep B €eP
=2 <L<v¢> ’ L(W)) A= Ty

p=1

and @° and w* denote the initial point of Algorithm 7 and the optimal solution of
Problem 2.1, respectively.

As discussed in [22], the complexity upper-bound in Proposition 2.6 permits to
derive sufficient conditions on the error sequences {e*} and {€*} for the convergence
of the algorithm to the optimal solution w*:

2.3. Inexact splitting methods 21

e The series {||e¥||} and {Vk} are finite summable, i.e., .52, [|€¥|| < oo and

e The sequences {[|e¥|} and {V/€F} decrease at the rate O(ﬁ) for k > 0.

Proposition 2.7 (Proposition 3 in [22]). Let {@w*} be generated by inevact PGM
defined in Algorithm 7. If Assumption 2.2 holds, then for any k > 0 we have:

10" —w*| < (1 =) (Jlw® = w*| +T%) (2.24)

where v = LUV¢> and w® and w* denote the initial point of Algorithm 7 and the

optimal solution of Problem 2.1, respectively, and

k
F’“=Z<1—v>-p-<L(;¢)rePH+ L(§¢)@> .

p=1

As discussed in [22], the upper-bound in Proposition 2.6 permits to derive suf-
ficient conditions on the error sequences {¢¥} and {e*} for convergence of the algo-
rithm to the optimal solution w*, where p =1 — ~:

e If the sequences {||e*||} and {V/€F} decrease at a linear rate with the constant
p < p1, then ||@* — w*|| converges at a linear rate with the constant .

e If the sequences {||e*||} and {V/eF} decrease at a linear rate with the constant
p < p <1, then ||@* — w*|| converges at the same rate with the constant p.

e If the sequences {||e*||} and {V/€F} decrease at a linear rate with the constant
p = p, then ||@* — w*|| converges at a rate of O(k - u*).

Inexact Accelerated Proximal-Gradient Method (inexact APGM)

In this section, we introduce an accelerated variant of inexact PGM, named the
inexact accelerated proximal-gradient method (inexact APGM) proposed in [22]. It
addresses the same problem class in Problem 2.1 and similarly requires Assump-
tion 2.1 for convergence, and Assumption 2.2 for linear convergence.

Algorithm 8 Inexact Accelerated Proximal-Gradient Method

. . T 1 _ ~0 Nw 1
Require: Initialize v* = w” € R™ and 7 < Ve

for k=1,2,--- do
L @ = prox,,, o (V1 = 7(V(vF 1) + €¥))
2: oF = @F + L (aF — k)
end for

Differing from inexact PGM, inexact APGM involves one extra linear update
in Algorithm 2. If Assumption 2.1 holds, it improves the convergence rate of the
complexity upper-bound from O(%) to O(%) If Assumption 2.2 holds, it changes
the constant of the linear convergence rate from (1 —) to \/1 — /7. The following
two propositions state the convergence properties of inexact APGM.

2.3. Inexact splitting methods 22

Proposition 2.8 (Proposition 2 in [22]). Let {@w*} be generated by inexact APGM
defined in Algorithm 8. If Assumption 2.1 holds, then for any k > 1 we have:

. o 2L(VY) ¢, - N 2
B(a") — ®(w*) < Grir (” —ws \|+2r’f+@)

where ®(+) is defined in Problem 2.1

e~ (el 2er S e
g :Zp<L<V¢>+ LV) ~ LWy

p=1 p=1

and @° and w* denote the starting point of Algorithm 8 and the optimal solution of
Problem 2.1, respectively.

The complexity upper-bound in Proposition 2.8 provides similar sufficient con-
ditions on the error sequences {€¥} and {e*} for the convergence of Algorithm 8:

e The series {k||*||} and {kVe*} are finitely summable.

e The sequences {[|e*|} and {V/eF} decrease at the rate O(#) for k > 0.

o If the sequences {||e¥||} and {Vek} have a decrease rate of O(k%), then {kl|[e*||}

and {kVeF} decrease at the rate O(3) and I'* increase at O(log k). Since vV AF

is always smaller than I'*, then we can conclude that the convergence rate is
2

O(IOI%2 k), which is poor but still converges.

If one of the above conditions holds, then the algorithm converges to the optimal
solution. For x = 0, i.e., the errors decrease at the rate O(k%), the algorithm

converges, but the convergence rate is poor O(log k)

Proposition 2.9. Let {@w"} be generated by inexact APGM defined in Algorithm 8.
If Assumption 2.1 holds, then for any k > 0 we have:

¥] < (-)5 (2”(@%) ek) . @)

where v = Iz @° and w* denote the initial point of Algorithm 7 and the optimal
solution of Proglem 2.1, respectively, and

k
o8 = 2.3 - v 5 I+ (VELa + ||) V)

p=0
Proof: From Remark 2.6, we know that the function ® is strongly convex
with the convexity modulus o4. Thus we have

%Hwk-&—l *HQ < (I>(k:—l—l) (I)(w*)]

2.3. Inexact splitting methods 23

From Proposition 4 in [22], it follows that

it = < 20 - ﬁ)Hl(V?(@(wO) ~8(w)

2 < _pFl
o I VI)

k

2
+ Zep(l—ﬁ)_p_1>)

p=0

By the fact that /v + pu < /v + \/p for any v, u € Ry, we simplify the inequality
above as

[+ — w2 < 02(;5(1 - v <V2(<I>(w0) - ®(w*))
9 k
+ %Z(HePH + (V2L(V)
p=0

2
| Ve - ﬁ)ﬂ .

Taking the square-root of both sides of the inequality above, we get inequality (2.25).
|
Proposition 2.9 is an extension of the results in Proposition 4 in [22], presenting
a complexity upper-bound on the sequence of the function value {®(w*) — ®(w*)},
where the sequence {w"*} is generated by inexact APGM. From Remark 2.6, we
know that the function @ is a strongly convex function with the convexity modulus
o4. By using this fact, we extend the result in Proposition 4 in [22] and states a
complexity upper-bound on [[w*! — w*|.
The upper-bound in Proposition 2.9 provides similar sufficient conditions on the
error sequences {e*} and {¢*} for the convergence of Algorithm 8, which are obtained
by replacing ;1 = 1 — v in the sufficient conditions for Algorithm 7 in Section 2.3.1

with p = /1 — /7.

Model Predictive Control

3.1 Linear Model predictive control (MPC)

Model predictive control (MPC) has its roots in the chemical process industry, where
it has been studied as a subject of dynamic matrix control since the late 1970s. Due
to the ability to handle constraints, MPC has been successfully applied in practice.
For a thorough description of MPC, the reader is referred to [33] and [34]. In this
section, we will introduce the MPC problems considered in this thesis.

Problem 3.1.
N-1
min ; Uz (t), u(t)) + 1V (z(N))
st. x(t+1)=Ax(t)+ Bu(t), t=0,1,---,N—1
a(t)eX, t=1,2,--- ,N—1
ut)eU, t=0,1,--- ,N—1
z(N) e X/,
z(0) =2z
where x = [27(0),--- , 2T (N)]T and u = [u7(0),--- ,u? (N — 1)]7 denote the state

and input sequences, ¢t denotes the discrete time index and N is the horizon of the
MPC controller. The equality constraints z(t+1) = Axz(t) + Bu(t) denote the linear
dynamics of the discrete-time system, where A and B denote the dynamic and input
matrices dynamic matrices, respectively. The variables x(t) € R™ and u(t) € R"»
are the state and the control input of the dynamical system. { and I/ are the stage
and terminal cost functions. The sets X, U and X7 are the state, input and terminal
state constraint sets, respectively. denotes the measurement of the current state.

Assumption 3.1. In this thesis, we assume that the MPC problem satisfies the
following two properties:

e The stage and terminal cost functions | and 11 are convez functions.

24

3.2. Distributed model predictive control 25

e The state, input and terminal state constraint X, U and X are convez sets.

One widely used example for the stage and terminal cost functions I and I/ is
quadratic cost function:

I(z,u) 2 2T Pr+u'Ru, VV(x)22TP/z | (3.1)

where P, P’ and R are symmetric positive definite matrices.

3.2 Distributed model predictive control

In this section, we will introduce the distributed MPC problems considered in
this thesis. We consider a network of M sub-systems (nodes). The sub-systems
communicate according to a fixed undirected graph G = (V,&). The vertex set
V ={1,2,---, M} represents the sub-systems and the edge set £ C V x V specifies
pairs of sub-systems that can communicate. If (i, 7) € £, we say that sub-systems 4
and j are neighbours, and we denote by N; = {j|(4,j) € £} the set of the neighbours
of sub-system i. Note that N includes i. The degree of the graph G is defined as
the maximum number of connections of each node, i.e., d := max;<;<ps |[NV;|, where
|NV;| denotes the number of elements in the set A;. The distributed MPC problem,
as e.g., considered in [14], is given in Problem 3.2. The reader is referred to [35], [18]
and [36] for more information about distributed MPC.

Problem 3.2.
M N—1 M
min 30> llwi(t), wilt) + 31 (@(N))
’ i=1 t=0 i=1

st mlt+1) =) Ayay(t) + By, (t)
JEN;
zi(t) € Xy, wui(t) € Uy,
z;(N) € le, 7;(0)=2;, i=1,2,---, M.

where [;(-, -) and lzf (+) are local stage and terminal cost functions and N is the horizon
for the MPC problem. The state and input sequences along the horizon of agent ¢
are denoted by z; = [z (0),- -,z (N)]T and u; = [ul (0),--- ,ul (N —1)]T, and the
state and input sequences are denoted by x = [z7,--- ;21 JT andu = [uf, - ,ul]T.

We denote the concatenations of the state sequences and input sequences of agent ¢
and its neighbours by xy; and wy;. The dynamics of the ith agent are given by the
discrete time linear dynamics z;(t+1) = Eje/\/i Ajjzi(t)+ Bijuj(t), i =1,2,--- , M,
where A;; and B;; are the dynamical matrices. The states and inputs of agent ¢
are subject to local convex constraints z;(t) € X; wu;(t) € U;, i =1,2,--- , M. &
denotes the measurement of the local current state.

Assumption 3.2. In this thesis, we assume that the distributed MPC problem sat-
isfies the following two properties:

e The local stage and terminal cost functions l; and llf are convex functions.

e The state, input and terminal state constraint X;, U; and le are convex sets.

3.2. Distributed model predictive control 26

Similarly to Problem 3.1, we can set the local stage cost and terminal cost
functions /;(-, -) and llf (+) to be quadratic cost functions:

i, u;) £ :UZTPZ:I:Z + uz-TRiui, lzf(l‘l) £ x;-rPifJ:i , (3.2)

where P;, Pz-f and R; are symmetric positive definite matrices.

Complexity Certification of the Fast
Alternating Minimization Algorithm
for Linear Model Predictive Control

The majority of the text and content in Chapter 4 has appeared in [37] and [38].

4.1 Introduction

Fast numerical solvers for model predictive control (MPC) have attracted significant
research attention due to the increasing interest in applying MPC to problems with
fast dynamics and the rapidly developing computational power of embedded systems.

Various on-line optimization methods for solving MPC problems have been pro-
posed aiming at improving the computation time or at approximating the optimum
with a sub-optimal but stabilizing solution. The fast gradient method introduced
in [4] has been employed to solve MPC problems with box constraints on inputs
in [3]. In [5] and [6], efficient implementations of interior-point methods have been
studied. Accelerated gradient methods with dual decomposition are investigated
in [7] and in [8] in the context of distributed MPC. In [9] and [10], efficient active
set methods for MPC have been discussed.

In this chapter, we focus on first-order methods, see e.g. [4], [28] and [11], because
they offer simple iteration schemes that only require information of the function
value and the gradient, and have shown good performance for solving medium and
large-scale problems with moderate accuracy requirements. An efficient first-order
method has the following two properties: 1. Each sub-problem, i.e. the computa-
tion of the gradient at each iteration, can be solved efficiently; 2. The optimization
problem is well-posed, i.e. well conditioned, as the conditioning (geometry) of the
optimization problem has a strong impact on the convergence speed of the algo-
rithm. In this chapter, we investigate a sub-group of first-order methods, called
splitting methods, and apply them to MPC problems. The efficiency of splitting
methods results from splitting a complex convex minimization problem into simple
sub-problems and solving them in an alternating manner. We will show how the two
desired properties discussed above can be achieved by using the splitting methods.

A variety of different spitting methods exist, requiring different assumptions
on the problem setup, while exhibiting different properties, see e.g. [11] and [13]
for an overview. In practice, splitting methods have shown good performance for

27

4.1. Introduction 28

solving complex problems in many fields, e.g. signal processing, image processing
and machine learning, see e.g. [11], [12] and [13]. We focus on using these methods to
solve control problems. The alternating direction method of multipliers (ADMM),
as one of the most well-known splitting methods, was shown to solve optimal control
problems both rapidly and robustly in [39]. However, ADMM also has its drawbacks.
Firstly, ADMM only provides the convergence rate O(%) under the assumption that
both objectives are convex, see [40]. An accelerated variant of ADMM, the fast
alternating direction method of multipliers (FADMM) presented in [11], improves
the practical convergence speed, but maintains the same theoretical convergence rate
as ADMM. Secondly, ADMM and FADMM do not have efficient step-size tuning
rules, whereas the step-size has been observed to be critical for their performance. In
practice, the step-size is usually tuned by trial and error. The third aspect is that for
ADMM and FADMM no theoretical complexity bound on the number of iterations
is known. The complexity bound plays an important role in the context of real-time
MPC, since it allows one to derive a certificate on the number of iterations to achieve
a given accuracy, and thereby offers a prediction of the worst-case sub-optimality of
the solution after running the algorithm for a fixed number of iterations.

In this chapter, we propose the use of the fast (accelerated) alternating minimiza-
tion algorithm (FAMA) in Algorithm 4 in Section 2.2.2, which was introduced in [29]
and [11], for solving MPC problems, offering superior theoretical properties while
providing similar or even better performance than the existent work, i.e., applying
ADMM to MPC problems in [39]. Compared to ADMM, FAMA requires stronger
assumptions on the objectives of the optimization problem for convergence, which
can, however, be satisfied by standard MPC problem formulations with polytopic
and second-order cone constraints. In return, FAMA offers a faster convergence
rate of O(k%) and provides theoretical complexity bounds on the required number
of iterations. The main contributions of this chapter are:

e Second-order cone constraints: Compared to previous work, e.g. [39] and [41],
we focus on MPC problems with polytopic and second-order cone constraints,
covering a broad range of MPC problems, e.g. including ellipsoidal constraints
and chance constraints.

e Splitting strategies: We propose two splitting strategies for MPC problems
that satisfy the assumptions of FAMA and provide efficient implementation,
by reducing each iteration of FAMA to simple operations.

e Complexity bound: In order to allow for a derivation of real-time guarantees
on the online solution, we derive complexity upper-bounds on the number of
iterations to achieve a certain solution accuracy both in the dual function value
and for the primal iterates for both splitting strategies.

e Computation of the complexity bound: We further addresses the computation
of the convexify bounds, requiring the solution of a non-convex minimization
problem. We propose two methods to convexify the problem and compute
approximate bounds.

e Preconditioning: For MPC problems with polytopic and ellipsoidal constraints,
we propose an off-line preconditioning method to further improve the conver-

4.2. Fast alternating minimization algorithm (FAMA) for MPC 29

gence speed of FAMA. The method reduces the complexity bounds and en-
larges the step-size of the algorithm by scaling the polytopic constraints and
reshaping the ellipsoidal constraints.

All properties above are demonstrated for the simulation example of a quadroter.

4.2 Fast alternating minimization algorithm (FAMA) for
MPC

In the following, we show how FAMA can be applied to MPC problems to achieve
an efficient online implementation. We consider the MPC problem in Problem 3.1
with state and input constraints in the form of polytopic and/or second-order cone
constraints and quadratic stage and terminal costs and present two splitting strate-
gies.

Splitting Strategy 1

By eliminating all state variables and moving the constraints to the cost in the
form of indicator functions, MPC problems of this class can be reformulated in the
following form suitable for the application of FAMA, with one strongly convex and
one convex objective.

Problem 4.1.
M
min u’ Hu+ hTu+ Z I, (o)
u,o —— -
) =
g9(o)

st. Cu—c¢ =04, 1=1,---, M,
where u = [uOT,ulT, e ,u%fl]T € RNV denotes the sequence of inputs over the
control horizon N and o = [07,--- ,01]T € R are auxiliary variables. C; and ¢;

denote a constant matrix and a constant vector for the ith constraint. C; denotes
the constraint on the variable o;. The matrices in the quadratic cost are given by
H =BT"QB+ R and h = AT OBz, where

B 0 - 0
[In®@P 0 5 AB B - 0
Q= 0 J2A - : : DU
AN-Ip AN-2B ... B
A = [AT ANT] and R = Iy ® R. T is the initial state measurement in

the MPC problem. Iy denotes the identity matrix in RY*N, and ® denotes the
Kronecker product. We assume that all state and input constraints in the MPC
problem in Problem 3.1 are polytopic or second-order cone constraints. Combining
the fact that the state at each time-step ¢ in Problem 3.1 can be expressed as an
affine function of the control sequence u and the initial state measurement z, i.e.,

4.2. Fast alternating minimization algorithm (FAMA) for MPC 30

xy = A'Z + BiMyu, with B, = [A"'B A"2B ... Bland M= [L,®1I,, 0]¢c
R x(N=1nu - a]] state and input constraints in the MPC problem in Problem 3.1
can be represented as C;u —¢; € C;, i« = 1,--- , M. The number M denotes the
total number of polytopic and second-order cone constraints in the state, input and
terminal state constraints in Problem 3.1. C; is given either by the non-negative
orthant, i.e., C; := {v | v > 0}, or simple second-order cone constraints, i.e., C; :=
{[v1,v2]| |Jv1]] < va}. Note that these definitions cover all polytopic and second-
order cone constraints on u by involving the affine coupling C;u — ¢; = 0;. Both the
non-negative orthant and the second-order cone are self-dual cones, a fact that will
be used in the proof of Theorem 4.3.

Assumption 4.1. A positive definite quadratic cost on the input sequence is chosen
in the MPC problem and the linear dynamical system is controllable.

Remark 4.1. If Assumption 4.1 holds, the first objective function f(u) is strongly
convex and the converity modulus oy is given by the minimum eigenvalue of the
matriz H, i.e., 0f = Apin(H). Since the second objective g(o) is an indicator
function of a convex cone, which is a convex function, then Problem /.1 satisfies
Assumption 2.3 required by FAMA.

Remark 4.2. We denote the current measured state by x. The matriz H is inde-
pendent of T and the vector h is a linear function of T.

Algorithm 9 Fast alternating minimization algorithm (FAMA) for Problem 4.1

Require: Initialize o = 1, o = (1 + /5)/2,) = 5\} e RNV, u =
TH-Y (M, CTN — h) and 7 < 04/p(C) = Apin(H) /p(C).
for k=1,2,--- do

1: u¥ = argmin, u”Hu+ hTu— vail)\fflTC’iu
2: 0F = uF (Pt +aF —1)/dF —uF P - 1) /aF
3t of = (14 4ok +1)/2
fori=1,---,M do
4: O'Zk = Pr(ci(CZ-ﬁk — %S\f — Ci)
5 N = NE (e — Ciak 4 oF)
6: X\ (aF — (A — XET) ok
end for
end for

We apply FAMA to the MPC Problem 4.1 resulting in Algorithm 9, where
C:=[C], - ,CT]T. The advantage of the splitting strategy in Problem 4.1 is that
the two objectives f(u) and g(o) are very easy to minimize separately. The solution
to the unconstrained minimization problem in Step 1 can be obtained analytically,
ie., uf = %H*I(Z?il C’iT)\f_l — h), where the inverse H~!, or an appropriate
factorization, can be computed off-line. Step 4 involves basic projections onto the
non-negative orthant and simplified second-order cone. We denote the projection
operator as Prc(+). For the non-negative orthant, the projection is defined as

Prc(v) = max{0,v} . (4.1)

4.2. Fast alternating minimization algorithm (FAMA) for MPC 31

For the second-order cone, the projection is defined as

[v1, v2] if [Jor]| < w2
Prc([vy, vo]) = { S oy, o] if fJorl] > va, v1 # 0 (4.2)
[0,0] if ”’UlH < —wvy .

The projections in (4.1) and (4.2) are computationally cheap. They reduce to simply
a clipping and a scaling operation.

Remark 4.3. Step 1 and 2 in Algorithm 9 are equivalent to 0¥ = argmin u” Hu+
hTua — Zi‘il j\fflTCZ-u, which is the standard first step of FAMA. By splitting this
step into two steps, we can represent u* as a function of ¥, i.e. u* = %Hil(CT)\k—
h). This allows us to derive the primal complexity bound on u* based on the dual
complexity bound on the Lagrange multipliers in Section 4.3.

Splitting Strategy 2

Consider again the MPC problems in Problem 3.1 with state and input constraints
in the form of polytopic and/or second-order cone constraints and quadratic stage
and terminal costs. We propose the second splitting strategy in Problem 4.2, which
maintains both the states and inputs as optimization variables and involves the
dynamics of the system as a constraint on the first objective f.

Problem 4.2.
M
min {2/ Qz+ ¢’z | Tz=1t}+ Z Ic, (o)
z
i=1
f(z) —_———
9(o)
s.t. DiZ—di:O'Z’, izl,'-‘,M,
where z = [a:OT, a:{, e ,x%, uOT, ulT, e ,u%_l] denotes the state and input sequences
over the control horizon, and ¢ = [0 , - - - ,Uf/[]T € RMe are auxiliary variables. The

matrices in the quadratic cost are given by

INji®P 0 0
Q= 0 pf 0 . q=0.
0 0 IN®R

The matrices 1" and ¢ represent the dynamical constraint, with

'_[mC 0 cee e 0 0 0
A —-I,, 0 0 B 0 0
T=1|0 . 0 B
: A —I,, 0 N |
| 0 0 A —I,, 0 -~ 0 Bj
and t = [z,0,---,0] € RWV+Dne - where Z is the initial state measurement in the

MPC problem. All state and input constraints in the MPC Problem 3.1 can be

4.2. Fast alternating minimization algorithm (FAMA) for MPC 32

represented as D;z — d; € C;, i = 1,--- , M, where D; and d; denote a constant
matrix and a constant vector for the ¢th constraint. The number M denotes the
total number of polytopic and second-order cone constraints in the state, input
and terminal state constraints in Problem 3.1. C; are given either by the non-
negative orthant, i.e., C; := {v | v > 0}, or simple second-order cone constraints,
i.e., (Cz = {[Ul,UQH ||’U1H < ’02}.

Assumption 4.2. The cost on the states and the inputs in the MPC problem are
chosen to be positive definite quadratic functions.

Assumption 4.2 is a relatively strong assumption on an MPC problem, but pos-
sible to be satisfied by setting the weight matrices in the stage cost functions to be
positive definite.

Remark 4.4. The first objective f(z) in Problem 4.2 consists of a quadratic function
and a conver constraint. If Assumption 4.2 is satisfied, the matriz @ is positive
definite. The convex constraint can be considered as an indicator function, which
1s convex. Due to the fact that the sum of a strongly convex and a convex function
is strongly convez, the objective f(z) is strongly convex and Problem 4.2 satisfies
Assumption 2.3 with the convexity modulus 0§ = Apin(Q).

We apply FAMA to MPC Problem 4.2 resulting in Algorithm 10, where D :=
[D?v e 7D%1/I]T‘

Algorithm 10 Fast alternating minimization algorithm (FAMA) for Problem 4.2
Require: Initialize o = 1, o' = (1 +56)/2, A0 = M e RV 20 =
argming,, 27 Qz+q"z— 3 N Diz and 7 < 07/p(D) = Amin(Q)/p(D).

for k=1,2,--- do
1: zF = argming,, 27Qz+q¢'z— Ef\il)\f_lTDiz
2: 7k = zk(ozk_1 +ak — 1)/0/C — zk_l(o/“_1 — 1)/0/“

30 of = (1 +V4ab +1)/2

fori=1,---,M do

4: oF = Prc,(DizF — L0\F —d;)
5 N =N\ 4 7 (d; — Dk + oF)
6: AFFL = X\F 4 (ak — 1)(\F — ME1) okttt
end for
end for

Remark 4.5. The projection and dual update loop, i.e., Steps 4-6 in Algorithm 9
and Algorithm 10 can be computed in parallel.

Remark 4.6. Similar to Algorithm 9, Steps 2 and 3 in Algorithm 10 are equivalent
to the first step of FAMA in Algorithm 4, i.e., 2" = argming,_, 2" Qz + ¢"z —
Zij\il i?ilTDiz. By splitting this step into two steps, we can represent z¥ as a
function of ¥, which permits to derive the complexity bound on ||z* —z*|| in Section

4.5.

4.3. Complexity Bounds of FAMA for MPC 33

Remark 4.7. In Problems 4.1 and 4.2, we presented two splitting strategies for solv-
ing MPC problems. These two splitting strategies have different advantages and dis-
advantages. For a given MPC problem, Problem 4.1 has less optimization variables
than Problems 4.2 and no equality constraints in the first objective, which reduces
the size and the complexity of the optimization problem, and makes the problem eas-
ier to solve, in principle. However, due to the fact that the matriz in the quadratic
function, as well as the matrices in the conic constraints, in Problem 4.1 are dense
matrices compared to Problems 4.2, the real computation task for each iteration for
Problem 4.1 is heavier than Problems 4.2.

4.3 Complexity Bounds of FAMA for MPC

Complexity upper-bounds of optimization algorithms are important for real-time
MPC, since they provide a certificate that a solution of pre-specified sub-optimality
can be obtained within the available computation time. In this section, we will
derive the complexity upper-bounds on the number of iterations to achieve a certain
solution accuracy for the sequences generated by Algorithm 9 and Algorithm 10.

4.3.1 Complexity upper-bounds for both the primal and dual sequences
{u*} and {)*} generated by Algorithm 9

Before we present the complexity upper-bounds on the primal and dual sequences in
Theorem 4.3, we claim two new lemmas showing properties of convex cones, which
will be used in the proof of Theorem 4.3.

Lemma 4.1. Let C be a convex cone. The conjugate function of the indicator
function of the set S := {v| —v € C} is equal to the indicator function of the dual
cone of C, i.e., I5(v) = Ic+(v).

Proof: By the definition of a convex cone, the set S is still a convex cone.
Example 7.3.5 in [24] shows I(v) = Ise(v), where S° denotes the polar cone of S.
By the definitions of the polar cone and the dual cone, we know S° = {w | w'v <
0, —veC} ={w|w'v >0, veC}=Cr and the result I§(v) = Ic«(v) follows. W

Lemma 4.2. Let C be the non-negative orthant C := {v | v > 0} or a second order
cone C := {[v1,v2]| ||v1]| € va}. For any v € RN¢, the point z = Prc(v) — v satisfies
z e C.

Proof: For the non-negative orthant, it is easy to show that z = Pr¢(v)—v =
max{0,v} — v > 0. For a second-order cone, we denote z = [z1, 23] and show that
||z1]| < 22 holds for the three cases in equation (4.2). For the first case, it can easily
be verified that ||z1]| < z2. For the second case, we have

vz £ ol vz = vl
Jal = |2l | = 2=l
[[v1]]
2y = UQ+HUI||HUIH_UZ: ”UIH_UQ '
2||v1 | 2

4.3. Complexity Bounds of FAMA for MPC 34

Since in this case it holds that [[v1] > v2, we get ||21]| < 2z2. For the third case, we
have ||z1]] = ||vi|| and z2 = —wva. Since ||v1| < —va, we prove ||z1| < z2.]

We are ready to present the complexity upper-bounds on the primal and dual
sequences in Theorem 4.3.

Theorem 4.3. Consider Problem 4.1. Let {u*} and {*} be generated by Algo-
rithm 9, where \F = [A’fT, e ,)\’f\;]T and \; are the Lagrange multipliers associated
with the constraint Cyu — ¢; = o; at iteration k. If Assumption 4.1 is satisfied, then
for any k> 1

« 2p(C)[IA° — A2
D()‘)_ D()‘k) <)\mzn(H)(k+ 1)2 ’

(4.3)

where \0 = [A?T, e ,)\?\;]T and X* denote the starting point and the optimizer,

respectively. If)\? € C; foralli = 1,---,M, then)\f € C; for all k > 1 and

1=1,---,M and

4p(C)|IA° — M|
N2 (H)k2

min

[u* —u*|* < (4.4)

Proof: The first objective in Problem 4.1 is equal to f(u) = u’ Hu + h'u,
and therefore oy = A\pnin(H). Since Assumption 4.1 holds, Problem 4.1 satisfies As-
sumption 2.3, and the complexity upper-bound in (2.18) holds by Theorem 2.5. This
directly implies the dual bound in (4.3) by considering the matrix A in Problem 2.2
to be the matrix C' = [CT,--- ,CL]T in Problem 4.1.

The second step is to prove that if A € C; for all 4 = 1,---, M, then)\f e C;
forall k e Nand i =1,..., M. From Steps 4 and 5 in Algorithm 9, we know that
M= A 4 7(e; — Ciuk + 0F) = 7(Prc, (Cub — 23} — ¢;) — (Coub — LA — ;). By
the fact that 7 > 0 and Lemma 4.2, we can conclude /\f € C; for all £k > 1 and
i=1,---, M. The last step is to prove inequality (4.4). From Step 1 in Algorithm
9 we have

uk _ %HiZI'(CTAkil . h) ’

which implies

1
= w2 = S HOT =)

1
< -)\k—l .)* T H—l T)\k—l . >*
_ 2 } k17T 1 A~Tyk—1 1 T =1 ~T T
= oo (L) 4)\ CH "C*) (2h HC" +d")\

1 1

- ZA*TCH”CT)* +(Gh"HCT wd)
1

+5(()TCETICTN A CH1CT)

1
+ (ihTH_lcT + dT)()* _ Ak_l)

4.3. Complexity Bounds of FAMA for MPC 35

The dual function of Problem 4.1 is
D(\) = —f*(CTX) +d" A — g* (=)
1 1 1 M
= =N CHTICIA+ ShTHTICTA = Sh T H ™ h+d T — d Iy
=1

Since we know that all C; are self-dual cones, i.e. C; = C;, Lemma 4.1 implies that
the dual function can be simplified as

M
1 1 1
D(\) = —Z)\TCH‘ICT)\ + (ihTH‘lCT +dM)\ - ZhT’H—lh) IDec,
=1

and the gradient of the dual function for \; € C; is

1 1
VD(\) = —§C(H‘1)TCT)\ + (§C(H‘1)Th +d) . (4.5)
Since we have shown that /\f e€C;forallk>0and¢=1,---, M, we obtain
2
lc_*2< *\ k—1\ Ty* * k-1)
ot —ut | < s (D) ~ DO — VDT (1~ X))

Since the dual function D is concave, by optimality, we conclude

o () ~ DO = TDON(NET) £ 2 (DY)~ D)
< 4p(O)A" — M2

Remark 4.8. The proof of inequality (4.4) exists for the case of polytopic constraints
in the context of distributed MPC problems [8]. We extend it to the case of general
self-dual conic constraints in the context of MPC problems.

4.3.2 Complexity upper-bounds for both the primal and dual sequences
{z*} and {)*} generated by Algorithm 10

Theorem 4.4. If Assumption 4.2 holds, the sequence {\;} generated by applying
FAMA to Problem 4.2 satisfies

2p(D)[[A° — A2

DO =D < 5 T DF

(4.6)

where \° and * denote the starting point and the optimizer, respectively. If)\? e C;
foralli=1,---,M, then)\f c€C; forallk>1andi=1,---, M and

|z —2*||2 < 2\ maz (M1)p(D)[|A° — A*||?

= Nl = MTQ) (@2 4.7)

where My is defined as in (4.8), and I is an identity matriz.

4.3. Complexity Bounds of FAMA for MPC 36

Proof: Since Assumption 4.2 is satisfied, Problem 4.2 satisfies Assumption 2.3.
It follows from Theorem 2.5 that the sequence {\¥} generated by Algorithm 10 sat-
isfies the complexity bound in (4.6). From Steps 4 and 5 in Algorithm 10, we know
that \¥ = A\F 4 7(d; — Diz" + oF) = 7(Prc,(Diz" — %5\5 —d;) — (Dz"* — %S\f —d;)).
Since 7 > 0 and /\? €C;foralli=1,---, M, from Lemma 4.2 we know)\f e C; for
allk>1andi=1,---, M. In the following, we prove the inequality in (4.7). From
Step 1 in Algorithm 10, we know

28 = My(DTN=1 —¢) + Mot |

where M; € R"=*"= My € R"#*" are defined as in (4.8).

My M) [2Q 1T
Mz My| |T 0
_[s@ ot (rQt)T~ Q' (rQ T TT) !
(TQ~'T")'TQ™" —3(TQ~'TT) !
(4.8)
12" — 2|
= [MiDT(A T —)7
)\ma:v(Ml)
o A’rnax(I - MlTQ)
)\mam(Ml) k—1T T Tyk—1
= — NV DMEQ — 1) My DT A
— (2DMq — DMyt + 2DME QMyt — 2DMEI QM q + d)N*1
+ M D(MTQ — T)M DT *
+ (2DM1q — DMyt + 2DM{ QMyt — 2DM] QMg + d)*

— 22X D(MTQ — DM DTN* +2X* D(MTQ — I)My DT A\F~1

(Nt 9T DT — MEQ)M DT (NF1 — \%)

— (2DMyq — DMyt + 2DM{ QMot — 2DM{ QMg + d)y(* — N1 | . (4.9)

Then we can derive an upper bound on ||z¥ — z*||? following the derivations in
(4.9). The dual function of Problem 4.2 is equal to
D() = — f(DTX) +d" A~ g"(=N)
=\TD(MTQM, — M)DT X + (2DM,q — DMyt + 2DM{ Q Moyt
—2DMTQMyq + d)' X + (Mg — Mot)T Q(Myq — Mot) — ¢ (Myq — Mot)

M
- Z I)\iE(Ci .
=1

Note that the matrix (I —M{ Q)M is positive semi-definite, which can be easily seen
from the concavity of the dual function D()), which contains the quadratic function
with weight matrix (M{'Q — I)M;. Then, the function —D()) is convex, which
implies that (I — M{ Q)M; is a positive semi-definite matrix. Since we have shown

4.4. Computation of complexity bounds 37

that A? €C; forall k>0andi=1,---, M, the indicator functions Zf\il Iy,ec; in
the dual function D can be omitted. Then from (4.9), we obtain
max M — — —
2+ — 22 < et () - D) - VDT () (- A

)\max(I - MiFQ)

By optimality, we conclude

Amaz (M1) * - 2)\maZ(M1)P(D)||)\O -)*H2
)\mam(I - MlTQ) (D(A) B D()\k 1)) = /\max(I -]\4{"162))\7:1111(62)]€2 .

l2* — 2| <

Remark 4.9. Theorem 4.8 and 4.4 can be directly extended to an MPC problem
with positive semi-definite cone constraints, since a positive semi-definite cone is
also a self-dual cone.

4.4 Computation of complexity bounds

Theorem 4.3 and Theorem 4.4 provide complexity bounds on the number of itera-
tions for FAMA applied to Problem 4.1 and 4.2, to reach a given accuracy. To use
these bounds to compute the number of iterations in a real-time MPC framework,
we need to know all quantities in the complexity bounds. For a given problem, all
quantities in the complexity bounds are known except for ||\ — A*||. This section
is devoted to computing or approximating the value of ||\ — A*||. Related work
includes [42] and [43], where the authors consider quadratic programming (QP)
problems and estimate ||\ — A*|| by solving an off-line mixed-integer linear pro-
gramming problem, which does, however, not cover second-order cone constraints.
In this section, we provide two methods for approximating ||\ — *||. We con-
sider the cold-starting strategy, i.e., A’ = 0, in which case the problem reduces to
computing the largest value of ||[* . (Z)|| for a given initial state set & € Xy, i.e.,

min

p = N (T 4.10
1Asmin | 1= max A ()] (4.10)

where *

»in(Z) denotes the minimal lo-norm solution

min(T) = argminyep«z) [Al (4.11)
and A*(Zz) denotes the set of optimal Lagrange multipliers of Problem 4.1 or Prob-
lem 4.2, respectively, for a given initial state . The constraint A € A*(Z) represents
the KKT conditions on the optimal Lagrange multipliers for Problem 4.1 or Prob-
lem 4.2. In the following, we focus on the computation of ||\’ . || for a given Xg for
Problem 4.1, and present two methods for its approximation. The methods can be
easily extended to Problem 4.2.

4.4.1 Upper-bound on ||\}

| using sum of squares (SOS) relaxations

From the description above, we know that |[Ar. || is the optimal solution of a

three-level non-convex optimization problem, i.e., Problem 4.1 and the two prob-
lems in (4.10) and (4.11). In this section, we propose a method for constructing a

4.4. Computation of complexity bounds 38

convex approximation and providing an upper bound of ||\ . |. Note that when
replacing ||A¥...|| by its upper bound, the complexity upper bounds in Theorem 4.3
still hold. The idea of the method is the following. We first rewrite the three-level
problem as one optimization problem by involving the KKT conditions of the inner
problems as constraints, i.e., we solve problem (4.10) subject to the KKT conditions
of Problem 4.1 and those of problem (4.11). The KKT conditions include conic con-
straints originating from the primal and dual feasibility and polynomial constraints
originating from the optimality and the complementary slackness conditions. Due
to the fact that polynomial constraints are nonconvex, we use the sum of squares re-
laxations to approximate the solution of the problem, resulting in an SDP problem.
See, e.g., [44] for previous work on using SOS relaxations for optimization problems
with polynomial constraints.

The KKT conditions of Problem 4.1 are obtained from the KKT conditions
derived for Problem 2.2 in Section 2.2.3 and Proposition 2.5. Since the constraint
A € A*(z) is equivalent to the KKT conditions of Problem 4.1, the problem (4.11)
can be represented by (4.12), where C7 denotes the polar cone of C;.

mmin(T) = argminy , 5. [|A]] (4.12)
M
s.t. 2Hu+h+ZCiT/\i =0,
i=1
C’iu — di = 0y, UZ-T)\,' = O,
0, € Ciy N E(C?, i=1,---, M.

Note that problem (4.12) is defined for one initial state Z, since the vectors h
and ¢; are affine functions of z. We derive the KKT conditions of problem (4.12),
which can be easily obtained by following the standard rules in [24] and [25], and
introduce these KKT conditions into problem (4.10). Due to the non-convexity of
the polynomial constraints originating from the optimality and the complementary
slackness conditions, we apply SOS relaxations [44] to the problem in order to com-
pute an upper bound of ||\ . ||. It is important to notice that according to the
results in [44], SOS relaxations always provide an upper-bound of the optimal solu-
tion [|[A% . || > || A% ||, and there exists a sufficiently high-order SOS relaxation such

‘man man
that [|[AX,.|| = IAx;,||. However, this method is limited to small-scale problems.

4.4.2 Sample-based estimation of |*, ||

min
We present a sample-based approach to estimate |[|[A% . ||, which can be easily applied
for medium- and large-scale problems. The optimization problem in (4.10) can be

reformulated as

Problem 4.5.
Noll = min
st. A (@)| =~ <0, Vz e X ,
where * . () is defined in (4.11). We consider Z as an uncertainty parameter, and

apply the approach proposed in [45], called the scenario approach, in to Problem 4.5.
We first introduce some required definitions.

4.4. Computation of complexity bounds 39

Definition 4.1 (Definition 1 in [45]). Let ¥ € R be a candidate solution for Prob-
lem 4.5. The probability that a better solution exists is defined as

V(y) =Pz eXo: 7 <A@}

Definition 4.2 (Definition 2 in [45]). Let € € [0,1]. We say that 7 € R is an e-level
robustly feasible solution if V() < e.

We collect Ng random samples {Z1, - ,Zn,} in Xp, and construct the sample-
based optimization problem

Problem 4.6.

Ns «-— 1
[Aminll == min ~

The following corollary states the probabilistic meaning of the optimal solution
IAN: || returned by Problem 4.6.
Corollary 4.1. (Corollary 1 in [45]) Fix two real numbers € € [0,1] (level parame-

ter) and B € [0,1] (confidence parameter) and let Ny > %—1. Then, with probability

no smaller than 1 — 3, H/\ﬁjnH returned by Problem 4.6 is an optimal solution with

e-level robust feasibility for Problem 4.5.

The remaining question is how to solve Problem 4.6, which is still non-convex, as
it involves the KKT conditions of the problem in (4.12). In the following, we provide
a method to compute an upper-bound of |])\]mV§nH, by solving Ny convex problems.
For a sample Z;, an optimal solution *(Z;) can be computed by applying FAMA to
Problem 4.1. Since the solution satisfies ||A*(Z;)| > [[A},;,,(Z:) [, then, we can easily

. min
compute HA%SMH := maxi<;<n,{||*(Z;)||}, which satisfies H)\%jnH > H/\NS II.

mn

The procedure of using the scenario approach in [45] to estimate a solution for
Problem 4.5 is summarized as follows: Choose € and (5, and take Ng > % - 1.
Randomly draw Ng samples {Z1, -+ ,Zn,} in Xy and run FAMA for Problem 4.1
to calculate the corresponding {[|A*(Z1)|,-- - , ||\ (Zn.)||}. Then compute [|AY: || =
max;<;<n,{||A*(Z;)||}, which is an upper-bound of an optimal solution with e-level
robust feasibility for Problem 4.5. Note that all computations can be done off-line,
and therefore a large number of samples can be potentially considered to compute

a good approximation of ||\, || with high confidence.

Remark 4.10. In this section, we proposed to use the SOS relaxation in [44] and
the scenario approach in [}5] to approzimate the optimal solution of ||\° — *|| for
a given MPC problem with a known initial state set. For small-scale problems, the
SOS relazation is suggested to use, since it always provides an upper-bound of the
optimal solution | A5, || > |A5:.|l, and there exists a sufficiently high-order SOS
relaxation such that real optimal solution can be achieved. However, this approach
18 computationally heavy and is limited to small-scale problems. For medium- and
large-scale problems, the scenario approach in [45] is suggested to use. This approach
does mnot guarantee any strict upper-bound, but it is more applicable due its low

computational requirement.

4.5. Preconditioning 40

4.5 Preconditioning

Preconditioning has been observed to offer significant compuational speedups in gra-
dient based methods in [3] and [46]. In [3] and [46], preconditioning methods for
solving linear MPC problem with polytopic constraints were presented. In this sec-
tion, we present a preconditioning technique to improve the performance of FAMA,
when applied to linear MPC problems with polytopic and ellipsoidal (a special case
of second-order cone) constraints. The goal of the method is to enlarge the step-size
and decrease the complexity bounds of the algorithms by minimizing the condition
number of the constraint matrices.

We again focus on the first splitting in Problem 4.1. The preconditioning method
can be easily extended to the second splitting in Problem 4.2 by replacing the
matrices H, C' and ¢ in Problem 4.1 in the following design procedure by the matrices
@, D and d in Problem 4.2. Recall the condition on the step-size 7 < Apin(H)/p(C)
and the complexity bound in Theorem 4.3. The value p(C) affects them in the
way that the smaller p(C), the larger the step-size and the smaller the complexity
bound. Therefore, we minimize the condition number of the matrix C' by imposing
preconditioning matrices to C' to enlarge the step-size and decrease the complexity
bounds. In order to simplify the notation, we assume that Problem 4.1 has only two
constraints, a polytopic constraint Ciu—c; > 0 and an ellipsoidal constraint |Cou —
c2| < 1. We introduce a positive-definite diagonal matrix P, and a positive-definite
matrix P, to precondition the constraints: P; to scale the polytopic constraints
P,Ciu—Pic; >0, and Py, € R"@2*"C to reshape the ellipsoidal constraint | P,Cou—
Pyeo| < 1, where ne, and ne, denote the number of rows of the matrices C1 and
Cs, respectively.

We first compute the optimal preconditioning matrices P; and P» minimizing
the condition number of CTC' by means of the following optimization problem (see
Chapter 3.1 in [47]). Let Wy = Pl P, and Wy = P]'P,.

Problem 4.7.
min o
a, Wi, Wa
at. pl=[CT C]] [Vgl ng] [gﬂ <ol

W1 = blkdiag(wy, - - - ,wncl) ,wi >0 ,i=1,--- ,ng, , Wa>=0,

where p is equal to the minimum eigenvalue of C7'C. It is important to point out that
by setting the preconditioning matrix P; to be a diagonal matrix, the preconditioned
polytopic constraint is equivalent to the original one. However, the preconditioning
matrix P» changes the ellipsoidal constraint, which means that the preconditioning
of the ellipsoidal constraint modifies the optimal solution. In order to guarantee that
the solution given by the preconditioned problem is still a sub-optimal and feasible
solution to Problem 4.1, one extra step is required to compute the maximal reshaped
ellipsoidal constraint contained in the original ellipsoidal constraint. Problem 4.8
computes the maximal inner approximation.

4.5. Preconditioning 41

Problem 4.8.
min
Byw b
—w+1 0 0
s.t. 0 wl B(P,Cy) | =0 ,w>0,3>0.

0 B(P,Co)~t (CFCy)7!

The LMI constraint in Problem 4.8 guarantees that the new scaled ellipsoidal con-
straint |P,Cou — Pycy| < [is contained in the original constraint |[Cou — co| < 1
(see Chapter 8.4.2 in [25]). Note that the matrix P, in Problem 4.8 is not an op-
timization variable but a constant computed by Problem 4.7. We summarize the
properties of the proposed preconditioning method in Problems 4.7 and 4.8 in the
following theorem.

Theorem 4.9. Let u* be an optimal solution of the original problem: min, u’ Hu+
hTu,s.t. Ciu—c¢; > 0 and |Cou — co| <1, and let u; be an optimal solution of the
preconditioned problem: miny,, ugHup—i—hTup, 5.t PLCiup—Pie1 > 0 and |PaCouy,—
Pyco| < B, where the matrices P1 and Py and the parameter B are computed by
Problem 4.7 and Problem 4.8. The following holds:

is a feasible solution of the original problem, i.e.
— CQ’ <1.

e The optimal solution u

Ciuy —c1 >0 and \Cgup

* 3

e The preconditioned constraint matriz C, = [C1 PL,CI PIT satisfies p(C,) <
p(C), where C = [CT,CT]T.

Proof: Since the matrix Wy is set to be a positive definite diagonal matrix,
the preconditioned polytopic constraint PiCiu, — Pic; > 0 is equivalent to the
original one Ciu—cy; > 0. Problem 4.8 guarantees that the preconditioned ellipsoidal
constraint |PyCouy, — Pacg| < B is an inner-approximation of the original ellipsoidal
constraint. Hence, the optimal solution uy is a feasible solution of the original
problem. By optimality of P, and P» for Problem 4.7, it follows immediately that
p(Cy) < p(C). o

In the following, we consider the special case that the ellipsoidal constraint |Cou—
co| < 1 originates from a terminal state constraint, which is a common problem type
in MPC. In this case, the preconditioning of the ellipsoidal constraint has not only
to maintain feasibility, but also stability properties. To address this problem, we
first present some notation and preliminaries about stability of an MPC controller.
Consider the discrete-time linear time-invariant system x;11 = Agx; + Bguy, where
x¢ and u; denote the state and input at time ¢, and Ay and By denote the dynamical
matrices of a discrete-time linear system. Let X and U be the state and input
constraints and K be a linear control law, such that Ay + ByK is stable.

Definition 4.3. (Positive invariant (PI) set): A set P C R"™ is a positively invariant
set of system xyy1 = Agri+BaKay, if Agvi+BaKxy € P and Kxy € U for all xy € P.

Let |Exxn —e| < 1 be the original ellipsoidal terminal constraint on the state, where
E > 0 and N is the horizon of the MPC problem. Since x can be represented by
a linear combination of the control sequence u and the initial state z, i.e., xy =
Siu + Sax, it follows that Cy = ES7 and ¢co = e — ESoT.

4.5. Preconditioning 42

According to the standard MPC theory, the original terminal constraint |Ezy —
e|] < 1 has to be a positively invariant set to guarantee stability of the closed-
loop system. In order to maintain this property for the preconditioned ellipsoidal
constraint, an additional invariance condition is imposed on W5 in Problem 4.7. We
exemplify this procedure for an ellipsoidal terminal constraint of the form Xy =
{zy]zXTzn < 1}, where I' = 0, ie. ' = ETE and e = 0. Invariance of the
preconditioned ellipsoid can be ensured by enforcing the constraint in (4.13) in
Problem 4.7, which can be written as an LMI by using Schur complements.

T T
(Aq+ ByK) T2 Wol'z(Ag+ ByK) — T2 Wol'z <0 (4.13)

Again, by solving Problem 4.8, we can compute the maximal inner approximation
in |[Fz; —e| < 1. If the state and input constraints X and U are polytopic sets, then
the inner approximation in Problem 4.8 can be relaxed by only requiring the scaled
new ellipsoid to be contained in X N KU.

The following theorem summarizes the properties of the preconditioned MPC
controller.

Theorem 4.10. Let u* be an optimal solution of the original problem: min, u’ Hu+
hTu, 5.t Cru—cy > 0 and |Cou—ca| < 1, in which the ellipsoidal constraint originates
from a quadratic invariant set, and let wy; be an optimal solution of the preconditioned
problem: miny,, ugHup + hTup, s.t PCiu, — Piep > 0 and |PoCouy, — Paca| < .
The matrices P and P» are computed by Problem 4.7 with the extra constraint in
(4.13). The parameter [is computed by Problem 4.8. The following holds:

e The optimal solution uy is a feasible solution of the original problem, i.e.
Ciuy —c1 >0 and |Cgu; — o < 1.
e The preconditioned constraint matriz C, = [C] PL,CT P17 satisfies p(C,) <

p(C), where C = [CT,CT]T.
e The new ellipsoidal constraint \PgCgup — Pyeo| < B is a positive invariant set.

Proof: The first two statements follow from the same proof of Theorem 4.9.

T T
The condition (A4 + BdK)TF% WQP%(AC[+ ByK) — s WQF% =< 0 guarantees the
new ellipsoidal constraint is a positive invariant set.]

Remark 4.11. Since the matrices C1, E and Sy are independent of the initial state
I, the computation of the preconditioning matrices P, and Py and the parameter 3
can be computed off-line.

Remark 4.12. The preconditioning method introduced in this section can be eas-
ily extended to the case with more than two constraints and with ellipsoidal input
constraints.

Remark 4.13. The preconditioning is enabled by the existence of the step-size rule
and the complexity bounds. Since ADMM and FADMM do not provide these prop-
erties, it is unclear how to provide a similar preconditioning method for them. The
derived theoretical properties of FAMA therefore also have practical implications by
allowing for tuning the algorithm and improving its performance for the particular
problem at hand.

4.6. Numerical example 43

4.6 Numerical example

This section illustrates the theoretical findings of the chapter and demonstrates the
performance of FAMA for solving MPC problems. We consider a quadroter model,
see [48], which is driven by four independently controlled rotors. In this experiment,
we use a cascaded control structure and design an MPC controller to control the
inner-loop, which is in charge of the derivative of the height of the quadroter, the roll,
pitch and yaw angles and the derivative of these angles, i.e x = [Z, o, 8,7, &, B,f'y]T.
The state of the system is subject to constraints on the maximum angle, maximum
angle velocity as well as maximum velocity in the z direction - these constraints are
mainly chosen to ensure validity of the linearized model and have been specified as:
12| < 1m/s, |a] < 10°, |B] < 10°, |&| < 15°, || < 15° and |4| < 60°. The input
constraint is 0 < u < 1. The horizon of the MPC controller is set to N = 25. The
terminal state x is subject to a positively invariant ellipsoidal terminal constraint.

In the simulations shown in Fig. 4.1 and Fig. 4.2, we collect 1000 randomly sam-
pled initial states in the set {Z|[—0.5m/s, —5°, —5°, —60°, —5°/s, —5° /s, —30°/s]T <
T < [0.5m/s,5°,5°,60°, 5°/s, 5°/s,30°/s]T} and compare the proposed FAMA al-
gorithms with ADMM and FADMM for the two splitting strategies in Problem 4.1
and Problem 4.2. For FAMA, the step-size is set to 0.99 * \yin(H)/p(C) and
0.99 * \pnin(Q)/p(D), respectively, while for ADMM and FADMM the step-size is
set to the best value obtained by manual tuning. Performance is measured by the
percentage of samples, for which |[u® — u*||/|[u*|| < § or ||z* — z*||/||z*| < & after
k iterations. For the first splitting strategy, FAMA with preconditioning shows the
best performance, fastest convergence speed and good accuracy after few iterations.
FAMA without preconditioning converges more slowly but still faster than ADMM
and FADMM. Fig. 4.1b shows that the solution accuracy given by ADMM and
FADMM is inferior to FAMA. They achieve a solution accuracy of § = 10~% in 1000
iterations for only 10% of the samples. In Fig. 4.2, it is shown that for the second
splitting strategy, FAMA similarly performs better than ADMM and FADMM, fast
convergence speed and good accuracy. The preconditioning is not shown for the sec-
ond splitting strategy, as it will not provide significant improvements due to the fact
that for this example the constraint matrix D is a block-diagonal matrix. Fig. 4.1
and Fig. 4.2 also show that for this example FAMA on the first splitting strategy
in Problem 4.1 requires less iterations and provides better accuracy than FAMA on
the second splitting in Problem 4.2.

Fig. 4.3 illustrates the primal sequences generated by Algorithm 9 and Algo-
rithm 10 and the corresponding complexity bounds in Theorem 4.3 and Theorem 4.4,
respectively, for the initial state = [0.5m/s,5°,5°,60°, 5°/s, 5°/5,20°/s]T. The
complexity bounds are computed by setting A\’ = 0 and assessing || A*|| by the sample-
based method in Section 4.4.2 using 3000 samples. According to Corollary 4.1, 3
and € are set to be 1.6 x 1072, In Fig. 4.3a, it can be clearly seen that the precon-
ditioning method improves the convergence speed of the algorithm and reduces the
complexity upper-bound. As the number of iterations k increases, the complexity
upper-bound of Algorithm 9 with preconditioning appears to be less tight, and the
practical convergence is faster than the bound. The complexity bound for the second
splitting in Fig. 4.3b shows similar behavior. We don’t apply the preconditioning
method to Problem 4.2, since the optimization problem for this example has well
conditioning already and the condition number of the optimization problem is very

4.7. Conclusion 44

<d

2
2

FAMA with pre

FAMA\

o
oo
T

T~FADMM

ADMM

\

10 10 10 10
iteration k

(a) 6 =104

persentage of samples satisfying u —u%|

<d

2
2

*:5
al-‘ 0.8 FAMA with pre
o
£
>
2 06 i
3 FAMA
7]
o
Q.
g€ 04r b
(4]
w
S
(0]
S 02 FADMM ADMM |
5
O_O L L L L i R R R R
10° 10’ 10° 10°
iteration k
(b) & = 10~6

Figure 4.1 — Performance of ADMM, FADMM, FAMA and FAMA with precondi-
tioning applied to Problem 4.1 for the quadroter example.

close to one.

4.7 Conclusion

In Chapter 4, we studied the fast alternating minimization algorithm and proposed
efficient implementations for solving MPC problems with polytopic and second-order
cone constraints. We derived complexity bounds on the number of iterations for both
dual and primal variables, which are of particular relevance in the context of real-
time MPC to bound the required online computation time, and further discussed
the computation of the complexity bounds. For MPC problems with polyhedral and

4.7. Conclusion

45

<o

2
2

persentage of samples satisfying |z, 2"

o.$00 15‘ | 162 10°
iteration k
(a) 6 =101
o 1 ‘
\"
o
N FADMM
X
N FAMA
(@]
£
>
k%)
3 ADMM
E 0.5F 1
Qo
€
©
w
kS
(0]
(@]
8
c
(0]
o
(0]
o L Lol L
10° 10’ 10° 10°
iteration k
(b) 6 =106

Figure 4.2 — Performance of ADMM, FADMM and FAMA applied to Problem 4.2

for the quadroter example

4.7. Conclusion 46

10 T
upper-bound on ||uk—u*||2 without pre

/ upper—bound on ||uk—u*||2 with pre

10 : :
10° 10’ 10° 10°
iteration k
(a)
10*
""""""""""""""""""""""" upper-bound on ||zk—z*||2 wiithout pre
""""""" i,
1 —_— 4
N:
T |lz,~2"|? with pre
N
107
-8
10 e e e e
10° 10’ 10° 10°
iteration k
(b)

Figure 4.3 — (a) Illustration of ||u* — u*||? by Algorithm 9 (with and without pre-
conditioning) and the complexity upper-boun in Theorem 4.3 (with and without
preconditioning), (b) Illustration of ||z*¥ — z*||?> generated by Algorithm 10 with-
out preconditioning and the complexity upper-bounds in Theorem 4.4 for without
preconditioning.

4.7. Conclusion 47

ellipsoidal constraints, we provided an off-line pre-conditioning method to further
improve the convergence speed of FAMA by decreasing the complexity upper-bounds
and enlarging the step-size of the algorithm.

Inexact Alternating Minimization
Algorithm for Distributed
Optimization

The majority of the text and content in Chapter 5 has appeared in [49] and [50].

5.1 Introduction

Splitting methods offer the ability to split the objective into multiple parts and min-
imize them in an alternating way, which provides an efficient technique for solving
distributed optimization problems arising in many engineering fields. See in [12].
By considering the local cost functions, as well as local constraints, as the multiple
objectives of a distributed optimization problem, splitting methods allow us to split
a global constrained optimization problem into sub-problems according to the struc-
ture of the network, and solve them in a distributed manner. The advantages of
using distributed optimization algorithms include the following three points: in con-
trast to centralized methods, they do not require full communication, but only local
communication, i.e., neighbour-to-neighbour communication; secondly, they paral-
lelize the computation tasks of solving the global optimization problem into small
sub-problems, which reduces the required computational power for each sub-system;
thirdly, distributed optimization algorithms preserve the privacy of each-subsystem
in the sense that each sub-system computes an optimal solution without sharing its
local cost function and local constraint with all the entities in the network.

In this chapter, we will consider a distributed Model Predictive Control problem
in Section 5.3.2 as the application for the distributed optimization to demonstrate
the proposed algorithms, as well as the theoretical findings. For distributed systems,
implementing an centralized MPC controller becomes challenging, since solving an
centralized MPC problem in a centralized way requires full communication to col-
lect information from each sub-system, and the computational power to solve the
global problem in one central entity. Distributed model predictive control [35] is
a promising tool to overcome the limiting computational complexity and commu-
nication requirements associated with centralized control of large-scale networked
systems. The research on distributed MPC has mainly focused on the impact of
distributed optimization on system properties such as stability and feasibility, and
on the development of efficient distributed optimization algorithms. See in [14], [§]

48

5.1. Introduction 49

and [36].

However, a key challenge in practice is that distributed optimization algorithms,
see e.g. [19], [12] and [8], may suffer from inexact local solutions and unreliable
communications. The resulting inexact updates in the distributed optimization al-
gorithms affect the convergence properties, and can even cause divergence of the
algorithm. The local inexact solution can be due to many causes, for instance lim-
ited local computation power and computation time, as well as inexact information
of the local cost functions and constraints. For example, in distributed MPC prob-
lems the inexactness may originate from noisy state measurements in each local
systems.

In this chapter, we study inexact splitting methods and aim at answering the
following questions: how these errors affect the algorithms and under which con-
ditions convergence can still be guaranteed. Seminal work on inexact optimization
algorithms includes [20], [21] and [22]. In [21], the authors propose an inexact de-
composition algorithm for solving distributed optimization problems by employing
smoothing techniques and an excessive gap condition. In [22], an inexact proximal-
gradient method, as well as its accelerated version, are introduced. The proxi-
mal gradient method, also known as the iterative shrinkage-thresholding algorithm
(ISTA) [28], has two main steps: the first one is to compute the gradient of the
smooth objective and the second one is to solve the proximal minimization. The
conceptual idea of the inexact proximal-gradient method is to allow errors in these
two steps, i.e. the error in the calculation of the gradient and the error in the
proximal minimization. The results in [22] show convergence properties of the in-
exact proximal-gradient method and provide conditions on the errors, under which
convergence of the algorithm can be guaranteed.

Building on the results in [22], we propose two new inexact splitting algorithms,
the inexact Alternating Minimization Algorithm (inexact AMA) and its accelerated
variant, inexact Fast Alternating Minimization Algorithm (inexact FAMA). The
contributions of this work are the following:

e We propose the inexact AMA and inexact FAMA algorithms, which are inexact
variants of the splitting methods, AMA and FAMA in [29] and [11]. We
show that applying inexact AMA and inexact FAMA to the primal problem is
equivalent to applying the inexact proximal-gradient method (inexact PGM)
and the inexact accelerated proximal-gradient method (inexact APGM) in [22]
to the dual problem. Based on this fact, we extend the results in [22], and show
the convergence properties of inexact AMA and inexact FAMA. We derive
complexity upper bounds on the number of iterations to achieve a certain
accuracy for the algorithms. By exploiting these complexity upper-bounds, we
present sufficient conditions on the errors for convergence of the algorithms.

e We study the special case where the error sequences do not satisfy the suffi-
cient conditions for convergence, but are bounded by constants. We show the
complexity upper bounds on the number of iterations for this special case.

e We apply inexact AMA and inexact FAMA for solving distributed optimization
problems with local computational errors. We present the complexity upper
bounds of the algorithms for this special case, and show sufficient conditions
on the local computational errors for convergence.

5.2. Inexact alternating minimization algorithm and its accelerated variant 50

e We study the special case of quadratic local objective functions, relating to
a standard form of distributed MPC problems. We show that if the local
quadratic functions are positive definite, then the algorithms converge to the
optimal solution with a linear rate. We propose to use gradient-based method
to solve the local problems. By exploiting the sufficient condition on the
local computational errors for the convergence together with a warm-starting
strategy, we provide an approach to certify the number of iterations for the
proximal gradient method to solve the local problems to the accuracy required
for convergence of the distributed algorithm. The proposed on-line certification
method only requires on-line local information.

e We demonstrate the performance and the theoretical results for inexact algo-
rithms by solving a randomly generated example of a distributed MPC problem
with 40 subsystems.

5.2 Inexact alternating minimization algorithm and its
accelerated variant

The inexact proximal gradient method, as well as its accelerated version, introduced
in Section 2.3, is limited to the case where both objectives are functions of the
same variable. However, many optimization problems from engineering fields, e.g.,
optimal control and machine learning [12], are not of this problem type. In or-
der to generalize the problem formulation, we employ the alternating minimization
algorithm (AMA) and its accelerated variant in [29] and [11], which cover optimiza-
tion problems of the form of Problem 5.1. In this section, we extend AMA and
its accelerated variant to the inexact case and present the theoretical convergence
properties.

Problem 5.1.

min f(v) + g(w)
s.t. Av+ Bw=-c

with variables v € R™ and w € R™, where A € R"*" B € R"*™ and ¢ € R".
f:R™ — Rand g : R"™ — R are convex functions. The Lagrangian of Problem 5.1
is:

L(v,w,\) = f(v) + g(w) — AT (Av + Bw — ¢) , (5.1)

and the dual function is:

D(\) = inf L(v,w,) (5.2a)
= —sup {ATAv = f(v)}

—sup {\"Bw — g(w)} + "¢ (5.2b)

= — fT(ATA) —g"(B"A) + e, (5.2¢)

where f* and ¢* are the conjugate functions of f and g. The dual problem of
Problem 5.1 is:

5.2. Inexact alternating minimization algorithm and its accelerated variant 51

Problem 5.2.
min —D(\) = f*(ATA) +¢*(BTA) — T\,
—_——— —/——

?(A) P(A)

5.2.1 Inexact alternating minimization algorithm (inexact AMA)

We propose the inexact alternating minimization algorithm (inexact AMA) pre-
sented in Algorithm 11 for solving Problem 5.1. The algorithm allows errors in
Step 1 and Step 2, i.e., both minimization problems are solved inexactly with errors
0% and 6%, respectively.

Algorithm 11 Inexact alternating minimization algorithm (Inexact AMA)

Require: Initialize \° € RV, and 7 < o7/p(A)
for k=1,2,--- do
1: 9% = argmin, {f(v) + (\F71, —Av)} + 6.
2: % = argmin,, {g(w) + (A1, —Bw) + e — A* — Buwl|2} + 6
3: AE = M=l g7 (e — AdF — Bub)
end for

In this section, we study the theoretical properties of inexact AMA under As-
sumption 5.1. If Assumption 5.1 holds, we show that inexact AMA in Algorithm 11
is equivalent to applying inexact PGM to the dual problem in Problem 5.2 with
the following correspondence: the gradient computation error in Algorithm 7 is
equal to ¥ = A§* and the error of solving the proximal minimization is equal to
e = 72L(y)|| BO*| + %2||B9k|\2. See in Lemma 5.1. With this equivalence, the com-
plexity bound in Proposition 2.6 can be extended for the inexact AMA algorithm
in Theorem 5.3.

Assumption 5.1. We assume that
o f is a strongly convex function with convewity modulus oy,
e g is a convex function, not necessarily smooth.

Lemma 5.1. If Assumption 5.1 is satisfied and inexact AMA and inexact PGM are
iitialized with the same dual and primal starting point, then applying the inexact
AMA in Algorithm 11 to Problem 5.1 is equivalent to applying inexact PGM in
Algorithm 7 to the dual problem defined in Problem 5.2 with the errors e* = AdF
and € = T2L(x)||BO¥|| + éHB@kHQ, where L(1) denotes the Lipschitz constant of
the function 1.

Proof: In order to show the equivalence, we prove that Step 1, 2 and 3 in
Algorithm 11 are equivalent to Step 1 in Algorithm 7, i.e. the following equality
holds:

M= PIOX,) ck (AL — (VA1) + b)) (5.3)

with e = A§¥ and €* = 72L(¢)|| BO*| + %HB@kHZ. Step 2 in Algorithm 11 implies:

BTN 4 7 BT (¢ — AvF — BuwP) € dg(w"),

5.2. Inexact alternating minimization algorithm and its accelerated variant 52

where w* = argmin,, {g(w)+ (A*~1, —Bw) + Z||c— At**! —Bw|*} = @* — 6*. From
the property of the conjugate function p € 9f(q) < g € df*(p), it follows:

wh € g* (BTN 4 7B (¢ — AD* — Buwh)).
By left-multiplying with B and subtracting ¢ on both sides, we obtain:
Bw"* — ¢ € Bag"(BT*' + 7BT (¢ — A% — Bu)) —c.
By multiplying with 7 and adding A*~! + 7(c — A%* — Bw*) on both sides, we get:
M=t 7 Ak € 1BAg* (BT AR + 7B (¢ — AD® — Buwh))
—1c4+ N4 7 (e — A — Bwh).
Since ¥(A) = g*(BT\) — cT'\, we have 9¢(\) = Bdg*(BT\) — ¢, which implies:
M7 ATR € 7o (A + 7(c — ADF — Buwh))
+ M7 (e — AR — Bwh).
Since w* = wF — 6%, it follows that:
ML 7 A% € Top (V! 4 1(c — ASF — Bw¥ + BOF))
+ M7 (e — AR — Ba® + BOY).
By Step 3 in Algorithm 11, the above equation results in:
Nl AR € 7o (AF + 7BOF) 4+ \F + 7 BOF.

From Step 1 in Algorithm 11 and the property of the conjugate function p € 9f(q) <
q € 0f*(p), we obtain:

Nl AV (AT 4 6%) € 700 (WF 4 7BO%) + \F + 7 BO”.
By definition of the function ¢, we get:
N — (VA1) + Ad*) € 7oy (A + 7B6%) + * + 78",
which is equivalent to:
P proxﬂ/j()\k*1 — 7(Vo(\ 1) + €F)) — 7 BoF,
with e¥ = Ad*. In order to complete the proof of equation (5.3), we need to show
that A* is an inexact solution of the proximal operator as defined in equation (2.23)
with the error ¢* = 72L(v))|| BO|| + %QHBG’CHQ, i.e., to prove:
1 1
THO) + A" = o] < €+ miny {wm +5lIA = u||2} :
where v = A1 — 7(Va(A\F~1) + AS%). Finally, using
1 1
TP +7BO) + SN+ 7B — v = rp(A") = SAF - p?
1
< T\ +7BO%) —p(\Y) + 5 |I7BYY?

2
.
< LB + - [1BO*|* = ¢,

5.2. Inexact alternating minimization algorithm and its accelerated variant 53

equation (5.3) is proved.]

The proof of Lemma 5.1 is an extension of the proof of Theorem 2 in [11] and
the proof in Section 3 in [29]. Based on the equivalence shown in Lemma 5.1 , we
can now derive an upper-bound on the difference of the dual function value of the
sequence {\¥} in Theorem 5.3.

Theorem 5.3. Let {*} be generated by the inexact AMA in Algorithm 11. If
Assumption 5.1 holds, then for any k > 1

1< L(V 2
D) =D |+ pzl M| < (2/:5) (H)\O — M| + 2% 4 \/2Ak) (5.4)

where L(V¢) = 0;1 -p(A),

k
B || AdP || 2L(x)||BOP|| + || BOP|2
= pzzl (L(ng) + T\/ L(Vo)) ’ (5:5)

k2 p P2
Ak = N TCL)| BO?|| + || BOP|")
2 JL(Vo)

(5.6)

and A\ and * denote the initial points of Algorithm 11 and the optimal solution of
Problem 5.1, respectively.

Proof: Lemma 5.1 shows the equivalence between Algorithm 11 and Algo-
rithm 7 with e = A6F and & = 72L(y)| BO¥| + é”BGkHQ. Then we need to
show that the dual defined in Problem 5.2 satisfies Assumption 2.1. ¢(\) and ()
are both convex, since the conjugate functions and linear functions as well as their
weighted sum are always convex (the conjugate function is the point-wise supremum
of a set of affine functions). Furthermore, since f is strongly convex with o; by As-
sumption 5.1, then we know f* has Lipschitz-continuous gradient with Lipschitz
constant:

L(Vf) =0t

It follows that the function ¢ has Lipschitz-continuous gradient V¢ with a Lipschitz
constant:

L(V$) =o' - p(A).

Hence, the functions ¢ and 1 satisfy Assumption 2.1. Proposition 2.6 completes the

proof of the upper-bound in inequality (5.4). [|
Using the complexity upper-bound in Theorem 5.3, we derive sufficient condi-

tions on the error sequences for the convergence of inexact AMA in Corollary 5.1.

Corollary 5.1. Let {\¥} be generated by the inexzact AMA in Algorithm 11. If As-
sumption 5.1 holds, and the constant L(v)) < oo, the following sufficient conditions
on the error sequences {0%} and {0} guarantee the convergence of Algorithm 11:

e The sequences {||0%||} and {||6%||} are finitely summable, i.e., > o [|6%| < oo
and Y37, |07 < co.

o The sequences {||6%||} and {||0%||} decrease at the rate O() for any k> 0.

5.2. Inexact alternating minimization algorithm and its accelerated variant 54

Proof: By Assumption 5.1, the dual Problem 5.2 satisfies Assumption 7 and
the complexity upper-bound in Proposition 2.6 holds. By extending the sufficient
conditions on the error sequences for the convergence of inexact proximal-gradient
method discussed after Proposition 2.6, we can derive sufficient conditions on the
error sequences for inexact AMA with the errors defined in Lemma 5.1 e = AdF
and €8 = T2L(Y)|| BO*| + %2H30k||2. Since L(v¢) < oo, we have that if the error
sequences {||6%||} and {||6*||} satisfy the conditions in Corollary 5.1, the complexity
upper-bound in Theorem 5.3 converges to zero, as the number of iterations k goes
to infinity, which further implies that the inexact AMA algorithm converges to the
optimal solution. [|

Remark 5.1. If the function 1 is an indicator function on a convex set, then the
constant L(1)) is equal to infinity, if for any iteration the inexact solution is infeasible
with respect to the convexr set. However, if it is guaranteed that for every iteration
k the solutions are feasible with respect to the convex set, then the constant L() is
equal to zero.

Linear convergence of inexact AMA for a quadratic cost

In this section, we study the convergence properties of inexact AMA with a stronger
assumption, i.e., the first objective f is a quadratic function and coupling matrix
A has full-row rank. We show that with this stronger assumption, the convergence
rate of inexact AMA is improved to be a linear rate. We study this special case,
since the quadratic functions are very common cost functions in distributed MPC
problems,

Assumption 5.2. We assume that
o fis a quadratic function f =vT Hv + hTv with H = 0,
e A has full-row rank.

Remark 5.2. If Assumption 5.2 holds, we know that the first objective ¢(\) in
the dual problem in Problem 5.2 is equal to ¢(N\) = $(ATA — R)TH=1(ATX — h).
Then, the Lipschitz constant L(NV @) is equal to the largest eigenvalue of the matrix
TAHTAT e, L(V) = Apaz(3AHTAT). In addition, the convexity modulus of
®(N) is equal to the smallest eigenvalue, i.e., o4 =)\mm(%AHflAT).

Theorem 5.4. Let {\F} be generated by inexact AMA in Algorithm 11. If Assump-
tion 5.1 and 5.2 hold, then for any k > 1

I = X< (@ =)F (A = A+ TF) (5.7)

with
B)\mln(AH_lAT)
7T Nvas(AH-TATY

k
_ L (1A% [L@)Ber + [Bev)?
rf=> (- '(L(Vqs)”\/ (Vo))

p=1

and \° and * denote the initial point of Algorithm 11 and the optimal solution of
Problem 5.1, respectively.

5.2. Inexact alternating minimization algorithm and its accelerated variant 55

By using the complexity upper-bounds in Theorem 5.4, we derive sufficient con-
ditions on the error sequences, which guarantee the convergence of the inexact AMA
algorithm.

Corollary 5.2. Let {*} be generated by the inexact AMA in Algorithm 11. If
Assumptions 5.1 and 5.2 hold, and the constant L(1)) < oo, the following suffi-

cient conditions on the error sequences {0*} and {#*} guarantee the convergence of
Algorithm 11:

o The sequences {||6%||} and {||6%||} are finitely summable, i.e., > o [|6%| < oo
and Y237, |07 < co.

o The sequences {||0%|} and {0*} decrease at O(kl%) for any k € Z.. For this
case the complexity upper-bound in (5.7) reduces to the same rate as the error
sequences.

o The sequences {||6%|} and {||6||} decrease at a linear rate.

Proof: By Assumption 5.1 and 5.2, the dual problem in Problem 5.2 satis-
fies Assumption 2.2 and the complexity upper-bound in Proposition 2.7 holds for
the dual problem. By extending the sufficient conditions on the error sequences
discussed after Proposition 2.7, we can derive sufficient conditions on the error se-
quences for inexact AMA with the errors defined in Lemma 5.1 e = A§* and
e = 72L(x)|| BO* ||+ %HB@’“H? Since L(1)) < oo, we have that if the error sequences
{/I6%]1} and {||0%||} satisfy the first and third conditions in Corollary 5.2, the com-
plexity upper-bound in Theorem 5.4 converges to zero, as the number of iterations k
goes to infinity, which further implies that the inexact AMA algorithm converges to
the optimal solution. For the second sufficient condition in Corollary 5.2, we provide
Lemma 5.2 to prove that the second sufficient condition guarantees the convergence
of the algorithm. [|

Lemma 5.2. Let o be a positive number 0 < o < 1. The following series S*
converges to zero, as the index k goes to infinity

a_p
lim S*:= lim ak-Z—:0 .
k—ro00 k—o00 o p

Furthermore, the series S* converges at the rate O(%)

The proof of Lemma 5.2 is provided in the appendix in Section 5.6.1. With
Lemma 5.2, we can easily show that if the sequences {||6*} and {||0*|} decrease at
O(%), the complexity upper-bound in (5.7) converges at the rate O(%) Note that
this result can be extended to the case where {||6%||} and {||0%||} decrease at O(ﬁ)
for any k € Z, by following a similar proof as for Lemma 5.2.

5.2.2 Inexact fast alternating minimization algorithm (inexact FAMA)

In this section, we present an accelerated variant of inexact AMA, named the in-
exact fast alternating minimization Algorithm (inexact FAMA), which is presented
in Algorithm 12. It addresses the same problem class as Problem 5.1 and requires

5.2. Inexact alternating minimization algorithm and its accelerated variant 56

the same assumption as Assumption 5.1 for convergence. Similar to inexact AMA,
inexact FAMA allows computation errors in the two minimization steps in the algo-
rithm. Differing from inexact AMA, inexact FAMA involves one extra linear update
in Step 4 in Algorithm 12, which improves the optimal convergence rate of the com-
plexity upper-bound of the algorithm from O(%) to O(k%) This is similar to the
relationship between the inexact PGM and inexact APGM. By extending the result
in Lemma 5.1, we show that inexact FAMA is equivalent to applying inexact APGM
to the dual problem. With this equivalence, we further show a complexity upper
bound for inexact FAMA by using the result in Proposition 2.8 for inexact APGM.

Algorithm 12 Inexact Fast alternating minimization algorithm (Inexact FAMA)

Require: Initialize A\ = A2 € RV, and 7 < or/p(A)
for k=1,2,--- do
1: oF = argmin, {f(v) + (\F=1, —Aw)} + 6%
2:0% = argmin,, {g(w) + (*~1, —=Bw) + I|c — AvF —Buwl?} + 6%
3: A = A1 4 7 (c — AR — Bab)
4: M= 2B Bl Wk — 2R
end for

Lemma 5.3. If Assumption 5.1 is satisfied and inexact FAMA and inexact APGM
are initialized with the same dual and primal starting sequence, respectively, then
applying the inexact FAMA in Algorithm 12 to Problem 5.1 is equivalent to applying
inexact APGM in Algorithm 8 to the dual problem defined in Problem 5.2 with
the errors e = AS* and 8 = T2L(y)|| BO*|| + %HBG’sz, where L(1)) denotes the
Lipschitz constant of the function .

Proof: The proof follows the same flow of the proof of Lemma 5.1 by replacing
N1 by A¥=1 computed in Step 4 in Algorithm 12 and showing the following equality

M\ = prolez,,Ek(;\k_l — 7(Vo(N1) + €F)) (5.8)

|

Based on the equivalence shown in Lemma 5.3 , we can now derive an upper-

bound on the difference of the dual function value of the sequence {*} for inexact
FAMA in Theorem 5.5.

Theorem 5.5. Let {*} be generated by the inexact FAMA in Algorithm 12. If
Assumption 5.1 holds, then for any k > 1

D(V) — D(VF) < m (H)\O — M|+ 2 4 vw)z (5.9)
where
k
_ || Ad”| 2L(y) || BOP| + || Bo? |2
rk pzlp (L(chﬁ) 4 T\/)) : (5.10)

k2 2 2
k_ Zp TE(2L()||BO”| + || BOP||7)
A _IH 2L(V¢) (5.11)

5.2. Inexact alternating minimization algorithm and its accelerated variant 57

and L(V¢) = 0]71 -p(A).

Proof: The proof is a similar to the proof of Theorem 5.3. Lemma 5.3 shows
the equivalence between Algorithm 12 and Algorithm 8. Proposition 2.8 completes
the proof of the upper-bound in inequality (5.9). [

With the results in Theorem 5.5, the sufficient conditions on the errors for the
convergence of inexact APGM presented in Section 2.3.1 can be extended to inexact
FAMA with the errors defined in Lemma 5.3.

Corollary 5.3. Let {*} be generated by the inexact FAMA in Algorithm 12. If As-
sumption 5.1 holds, and the constant L(v)) < oo, the following sufficient conditions
on the error sequences {0%} and {0} guarantee the convergence of Algorithm 12:

e The series {||0%||} and {||0||} are finitely summable, i.e., > 7o [|6%| < 0o and
> 16%]] < oo

o The sequences {||0%||} and {||0%||} decrease at the rate O(,@%) for any k > 0.

Proof: By Assumption 5.1, the dual Problem 5.2 satisfies Assumption 7 and
the complexity upper-bound in Proposition 2.8 holds. By extending the sufficient
conditions on the error sequences discussed after Proposition 2.8, we obtain suffi-
cient conditions on the error sequences for inexact FAMA with the errors defined in
Lemma 5.3. Since L(¢)) < oo, we have that if the error sequences {||6%||} and {||60%|}
satisfy the conditions in Corollary 5.3, the complexity upper-bound in Theorem 5.5
converges to zero, as the number of iterations k goes to infinity, which further implies
that the inexact FAMA algorithm converges to the optimal solution. [|

5.2.3 Discussion: inexact AMA and inexact FAMA with bounded errors

In this section, we study a special case where the error sequences {6*} and {#*}
are bounded by constants. This special case attracts a lot of attention, since it
appears in many engineering problems in practice, e.g. quantized distributed com-
putation and distributed optimization with constant local computation errors. Pre-
vious work includes [20], where the authors studied the complexity upper-bounds for
a distributed optimization algorithm with bounded noise on the solutions of local
problems. In this section, we will study the errors satisfying Assumption 5.3 and
derive the corresponding complexity upper-bounds for inexact AMA, as well as for
inexact FAMA, with different assumptions. We show that if the stronger assump-
tion in Assumption 5.2, i.e. the cost function f is a quadratic function, holds, then
the complexity bounds for the inexact algorithms with bounded errors converge to
a neighbourhood of the origin, as k increases. We show the detailed derivation of
the complexity bound for inexact AMA, and this result can be extended to inexact
FAMA. If only the basic conditions in Assumption 5.1 are satisfied, the complexity
upper-bounds for the inexact algorithms do not converge. We present the complex-
ity upper-bound of inexact FAMA in details for this case, and the result can be
easily extended to inexact AMA.

Assumption 5.3. We assume that the error sequences 5% and 0% are bounded by
6% < 6 and ||0%|| < @ for all k > 0, where § and 6 are positive constants.

5.2. Inexact alternating minimization algorithm and its accelerated variant 58

Corollary 5.4. Let {*} be generated by the inexact AMA in Algorithm 11. If
Assumption 5.1, 5.2 and 5.3 hold, then for any k > 1

INF =X < @ =) I = N+ A (5.12)

5 5 52 , —1yT
where A = % <L”(AV5Q|§|) + 7 —L(¢)||f(@;)||30“ , Y= —i;";’;((ﬁgfli% and \° and * de-

note the initial point of Algorithm 11 and the optimal solution of Problem 5.1, re-
spectively.

Proof: Since Assumption 5.1 and 5.2 are satisfied, then the results in Theo-
rem 5.4 hold. By Assumption 5.3, we know that the error sequences satisfy ||6%|| < &
and ||6%]| < @ for all £ > 0. Then the error function T'* in Theorem 5.4 is upper-
bounded by

1ol T\/L(w)IBGH + [BO|?

k
e 0= | o) L(Vo)

Due to the fact that 0 < v < 1 and the property of geometric series, we get

(1—y)F-1% < Zk:u)k 14| +T\/L(¢)!BGH + || B2
p=1

L(V) L(V)

_ ==k [1144 \/L(w)llBéll +[|B8)2
~y L(V¢) L(V¢)

SLo(d4sl [Lw)IBal + (B>
— v \L(Ve) L(V9)
Then the upper-bound in Theorem 5.4 implies the upper-bound in (5.12). m

Remark 5.3. The inexact AMA algorithm with bounded errors satisfying Assump-
tion 5.1 and 5.2 has one extra constant A in the complexity upper-bound in (5.12).
Note that due to the stronger assumption in Assumption 5.2, the term A remains
constant as k increases, the complezity bound in (5.12) converges to a neighbourhood
of the origin with the size of A, as k goes to infinity.

Remark 5.4. For the inexact FAMA in Algorithm 12, if Assumption 5.1 and As-
sumption 5.8 hold, i.e. the cost is not necessarily quadratic, we can also derive a
complexity upper bound as follows

0 _ y* 2
DOV — D(AF) < <2L(V(¢k)yl) il +k:-A> (5.13)

with

HAH‘5+3T_\/(2L<w)HBH-9+HBII-92)
L(V¢) ' 2 L(V¢)

5.3. Inexact algorithms for distributed optimization with an application to
distributed MPC 59

and L(V¢) = 0]71 - p(A). The proof follows the same flow of the proof for Corol-
lary 5.4 by replacing Theorem 5.4 with Theorem 5.5. Compared to the FAMA al-
gorithm without errors, we see that the inexact FAMA with bounded errors has one
extra term k- A in the complexity upper-bound in (5.13). Unfortunately, the term
k- A increases as k increases. Hence, the complexity bound for the inexact FAMA
with bounded errors does not converge to zero, as k goes to infinity.

5.3 Inexact AMA for distributed optimization with an
application to distributed MPC

5.3.1 Distributed optimization problem

In this section, we consider a distributed optimization problem on a network of M
sub-systems (nodes). The sub-systems communicate according to a fixed undirected
graph G = (V,€). We denote by N; = {j|(¢,5) € £} the set of the neighbours of
sub-system . The global optimization variable is denoted by z. The local variable
of sub-system i, namely the ith element of z and z = [2],---,27]T, is denoted

by [z];- The concatenation of the variable of sub-system i and the variables of its
neighbours is denoted by z;. We define the matrices F; € RZsen; MiXL1<isi ™ g
Fj € R™ 25N, ™ {0 be selection matrices with elements in {0,1}. With these
matrices, the variables have the following relationship: z; = E;z and [z]; = Fj;z;,
j € N;, which implies the relation between the local variable [z]; and the global
variable z, i.e.. [z]; = FjiEjz, j € N;. We consider the following distributed
optimization problem:

Problem 5.6.

M
min Z fi(zi)
=1

Z,0
st. z€C;,, z=FEv, i1=1,2---,M.

where f; is the local cost function for sub-system i, and the constraint C; represents
a convex local constraint on the local variables z;.

Assumption 5.4. Each local cost function f; in Problem 5.6 is a strongly convex
function with a convexity modulus oy, and has a Lipschitz continuous gradient with
Lipschitz constant L(V f;). The set C; is a convex set, for alli=1,---, M.

Remark 5.5. Recall the problem formulation of inexact AMA and FAMA defined
in Problem 5.1. For Problem 5.6, the two objectives are considered to be f(z) =
Zf\il fi(zi) subject to z; € C; for alli = 1,--- M and g = 0. The matrices are
A=1 B=—[ElEY ... ,E]:\F/[]T and ¢ = 0. The first objective f consists of a
strongly convex function on z and convex constraints. The convex constraints can be
considered as indicator functions, which are conver functions. Due to the fact that
the sum of a strongly convex and a convex function is strongly convez, the objective
[is strongly convex with the modulus oy and Problem 5.6 satisfies Assumption 5.1.

5.3. Inexact algorithms for distributed optimization with an application to
distributed MPC 60

5.3.2 Application: distributed model predictive control

In this section, we consider a distributed linear MPC problem with M sub-systems
given in Problem 3.2. We show that it can be written in the form of Problem 5.6.
We denote the concatenations of the state sequences and input sequences of agent
¢ and its neighbours by za; and up;,. The corresponding constraints are xp; €
Xy, and upy;, € Upn;. We define v = [27 2 2T T wd - ul]T to be the
global variable and z; = [xa;, un;] to be the local variables. Zy, = Xy, x Uy
denotes the local constraints on z;. We use H;z; = h; to represent the dynamical
constraint of sub-system ¢ in the distributed MPC problem. Then considering the
distributed problem in Problem 5.6, we see that the local cost function f; for agent 4
contains all the stage cost functions of the state and input sequences of agent 7 and
its neighbours. The constraint C; includes the constraint Zy; and the dynamical
constraint H;z; = h;. E; are the matrices selecting the local variables from the
global variable. The ith component of v is equal to [v]; = [x;, u;].

Remark 5.6. If the stage cost functions l;(-,-) and l{() are strictly convex func-
tions, and the state and input constraints X; and U; are convex sets, then the con-
ditions in Assumption 5.4 are all satisfied. Furthermore, if the state cost functions
li(+,+) and llf() are set to be strictly positive quadratic functions, then the distributed
optimization problem originating from the distributed MPC problem further satisfies
Assumption 5.2.

Remark 5.7. For the case where the distributed MPC problem has only input con-
straints and the state coupling matrices in the linear dynamics are A;j = 0 for any
i # 7, we can eliminate all the state variables in the distributed MPC problem and
only have the input variables as the optimization variables. For this case, if the stage
cost functions l;(+,-) and l{() are strictly convex functions with respect to the input
variables and the local linear dynamical system x;(t+1) = Ayuxi(t) + > e, Biju;(t)
s controllable, then the resulting distributed optimization problem satisfies Assump-
tion 5.2. The details of this formulation can be found in Problem 6.4.

5.3.3 Inexact AMA and Inexact FAMA for distributed optimization

In this section, we apply inexact AMA and inexact FAMA to the distributed op-
timization problem in Problem 5.6, originating from the distributed MPC problem
in Problem 3.2. The concept is to split the distributed optimization into small and
local problems according to the physical couplings of the sub-systems. Algorithm 13
and Algorithm 14 represent the algorithms. Note that Step 2 in inexact AMA and
inexact FAMA, i.e., Algorithm 11 and Algorithm 12, are simplified to be a con-
sensus step in Step 3 in Algorithm 13 and Algorithm 14, which requires only local
communication. In the algorithms, 65 represents the computation error of the local
problems.

Remark 5.8. Note that for every iteration k, Algorithms 13 and 14 only need
local communication and the computations can be performed in parallel for every
subsystem. For Algorithm 13 and 14, we assume that all the communication steps
are done in a synchronous way.

5.3. Inexact algorithms for distributed optimization with an application to
distributed MPC 61

Algorithm 13 Inexact Alternating Minimization Algorithm for DMPC

Require: Initialize \Y = 0 € R*, and 7 < minj<;<p{oy,}
for k=1,2,--- do
1: 2F = argmin, ec {fi(z) + (\] 1 —2)} + 0F
2: Send Zf to all the neighbours of agent i.
3: [0 = gy Ljens i
4: Send [#*]; to all the neighbours of agent i.
5 AP = M r(Ek - 2
end for

Algorithm 14 Inexact Fast alternating minimization algorithm for DMPC

Require: Initialize A} = 5\? € R%, and 7 < mini<j<p{oy}
for k=1,2,--- do
1: 2F = argmin, ¢ {fi(z) + (AL 20} + oF
Send 2f to all the neighbours of agent 1.
N M N
[0": = oy Zjens [
Send [}7’“]1 to all the neighbours of agent 1.
A= \E=1 7 (B0 —szl)
. A\k k—1 -
PN =N+ SO
end for

We provide a lemma showing that considering Algorithm 13 there exists a Lip-
schitz constant L(v) equal to zero. The results can be easily extended to Algo-
rithm 14. This result is required by the proofs of the complexity upper-bounds in
Theorem 5.3, 5.4 and 5.5.

Lemma 5.4. Let the sequence {\F} be generated by Algorithm 13. For all k > 0 it
holds that ETN¢ = 0 and the Lipschitz constant of the second objective in the dual
problem of Problem 5.6 L(1)) is equal to zero.

Proof: We first prove that for all k > 0, the sequence {\F} satisfies ETA\F = 0
for all & > 0. We know that Step 3 in Algorithm 13 is equivalent to the following
update

M
=M E-F=m-ET. 5,
=1

with M = blkzdiag(Wll' Iy, ’Wli\ Ly ,W - Iy) = (ETE)™!, where |V
denotes the number of the elements in the set N;, and I; denotes an identity matrix
with the dimension of the ith component of v, denoted as [v];. From Step 5 in
Algorithm 13, for all £ > 1 we have that

A=\ Bk - 2R
By multiplying the matrix ET to both sides, we have
ETXF = E"N ! 4 (BT BV — ETEY)
= BTN L r(ETEMETZE — ET3%) |

5.3. Inexact algorithms for distributed optimization with an application to
distributed MPC 62

Since M = (ETE)~!, the above equality becomes

ET)\k — ET)\k—l +T(ET2k —ET,%k) — ET)\k:—l)

From the initialization in Algorithm 13, we know ETX° = ET .0 = 0. Then by
induction, we can immediately prove that for all £ > 0 it holds that ET* = 0. We
can now show that for all ET\ = 0, a Lipschitz constant of the second objective in
the dual problem in Problem 5.2 L(%)) is equal to zero. Since g = 0, B = —E and
¢ = 0, then the second objective in the dual problem is equal to

Y(N) = g"(BTA) = c'x = g"(ETN)

{o if ETA=0

T T
=sup(v - E-X—0) =
p(= Voo it ETA20.

v

The function () is an indicator function on the nullspace of matrix E7. For all
A satisfying ET\ = 0, the function ¢(-) is equal to zero. Hence, zero is a Lipschitz
constant of the function ¢(-) for all ETX\ = 0.]

After proving Lemma 5.4, we are ready to show the main theoretical properties
of Algorithm 13 and 14.

Corollary 5.5. Let {\F = [)\kT ,)\’f\;]T} be generated by Algorithm 13. If As-
sumption 5.4 is satisfied and the inexact solutions Ef for all k > 1 are feasible, i.e.,
221‘3 € C;, then for any k > 1

2

LVO) |10 _ \» ||5 ||
ZA” <=5 I = +2Z (5.14)
where D(-) is the dual function of Problem 5.6, \0 = [\9" ... ,/\(])\;]T and * are the

starting sequence and the optimal sequence of the Lagmngzan multiplier, respectively,

and 6P = [0} |-+ ,5’;;]T denotes the global error sequence. The Lipschitz constant
L(V¢) is equal to 0]71, with oy = min{oys, -+ 04, }

Proof: As we presented in Remark 5.5, Problem 5.6 is split as follows: f =
Zf\il fi(z;) with the constraints z; € C; foralli =1,--- , M and g = 0. The matrices
are A=1, B=—F and ¢ = 0. If Assumption 5.4 holds, then this splitting problem
satisfies Assumption 5.1 with the convexity modulus oy. From Theorem 5.3, we
know that the sequence {*} generated by inexact AMA in Algorithm 13, satisfies
the complexity upper bound in (5.4) with I'* and A* in (5.5) and (5.6) with 6% =
(05" ,(511‘(;]T and 0¥ = 0. By Lemma 5.4, it follows that the constant L(¢) in A*
is equal to zero. The Lipschitz constant of the gradient of the dual objective is equal
to L(Vo¢) = 0;1 -p(A) = 0']?1 with oy = min{oy,,--- ,0y, }. Hence, we can simplify
the complexity upper bound in (5.4) for Algorithm 13 to be inequality (5.14). =
As we discussed in Remark 5.6, if the state cost functions /;(-,-) and llf (1) in
the distributed MPC problem are strictly positive quadratic functions, then the dis-
tributed optimization problem originating from the distributed MPC problem sat-
isfies Assumption 5.2, which according to Theorem 5.3 implies a linearly decreasing
upper-bound given in Corollary 5.6.

5.3. Inexact algorithms for distributed optimization with an application to
distributed MPC 63

Corollary 5.6. Let {\F = [)\IfT, e ,)\’fWT]T} be generated by Algorithm 13. If As-
sumption 5.4 is satisfied, the local cost function f; is a strictly positive quadratic
function, and the inexact solutions 25 for all k > 1 are feasible, i.e., 511“ € C;, then
for any k> 1

1671
L(Ve¢) |’

k
I =M< (=)M A =N+ - (5.15)
p=0

where ~ = 2minlf) , and \° and * are the starting point and the optimal solution
7= Xax(H) g

of the Lagrangian multiplier, respectively. The Lipschitz constant L(V¢) is equal to
0']71, where op = min{oy,, - , 04, }.

Proof: In Algorithm 14, the variable 5\? is a linear function of \¥ and)\f_l.
This preserves all properties shown in Lemma 5.4 for Algorithm 14. Then, Corol-
lary 5.6 can be easily proven by following the same steps as in the proof of Corol-
lary 5.5 by replacing Theorem 5.3 by Theorem 5.4. [|

Corollary 5.7. Let {\F = [)\IfT, e ,)\’fWT]T} be generated by Algorithm 14. If As-
sumption 5.4 is satisfied and the inevact solutions Z¥ for all k > 1 are feasible, i.e.
221“ € C;, then for any k > 1

2
p

L(V)

2L(V¢)

D(X*) = D(\") < [

k
IA° = X[+2M > p (5.16)
p=1

where D(-) is the dual function of Problem 5.6, \° and * are the starting point
and the optimal solution of the Lagrangian multiplier, respectively. The Lipschitz
constant L(V @) is equal to 0;1, where oy = min{oy, - ,0p,}.

Proof: It follows from the same proof as Corollary 5.5 by replacing Theo-
rem 5.3 by Theorem 5.5. [|

Remark 5.9. For the case that all the local problems are solved exactly, i.e., (5f =0
for all k > 1, Algorithm 13 and Algorithm 14 reduce to standard AMA and FAMA,
and converge to the optimal point at the rate of the complexity upper-bounds.

Remark 5.10. The sufficient conditions on the errors for convergence given in
Corollary 5.1, 5.2 and 5.3 can be directly extended to the error sequence {5*}.

5.3.4 An approach to certify the number of iterations for solving local
problems satisfying the global error conditions

We have shown that the inexact distributed optimization algorithms in Algorithm 13
and 14 allow one to solve the local problems, i.e. Step 1 in Algorithm 13 and
14, inexactly. In this section, we will address two questions: which algorithms are
suitable for solving the local problems; and what termination conditions for the local
algorithms guarantee that the computational error of the local solution satisfies the
sufficient conditions on the errors for the global distributed optimization algorithms.

5.3. Inexact algorithms for distributed optimization with an application to
distributed MPC 64

We apply the proximal gradient method for solving the local problems in Step 1
in Algorithm 13 and 14, and propose an approach to certify the number of iter-
ations for their solution, by employing a warm-start strategy and the complexity
upper-bounds of the proximal gradient method. The approach guarantees that the
local computational errors 65 decrease with a given rate, that satisfies the sufficient
conditions discussed in Remark 5.10, ensuring convergence of the inexact distributed
optimization algorithm to the optimal solution. We define a decrease function o
satisfying the sufficient conditions, for example of = o where o is a positive
number.

L
k??

Gradient-based method

The local problems in Step 1 in Algorithm 13 and 14 are optimization problems
with strongly convex cost functions and convex constraints. From Corollary 5.5,
5.6 and 5.7, we know that the inexact solution 2{“ needs to be a feasible solution
subject to the local constraint C;, i.e., 2f € C; for all kK > 1. Therefore, a good
candidate algorithm for solving the local problems should have the following three
properties: the algorithm can solve convex optimization problems efficiently; if the
algorithm is stopped early, i.e., only a few number of iterations are implemented,
the sub-optimal solution is feasible with respect to the local constraint C;; and there
exists a certificate on the number of iterations to achieve a given accuracy of the sub-
optimal solution. Gradient-based methods satisfy these requirements, have simple
and efficient implementations, and offer complexity upper-bounds on the number of
iterations [28]. These methods have been studied in the context of MPC in [3], [§]
and [37].

We apply the proximal gradient method in Algorithm 15 for solving the local
problems in Step 1 in Algorithm 13 and 14. The local optimization problems at
iteration k are parametric optimization problems with the parameter /\f_l. We
denote the optimal function as

z;(N\;) = argmin, cc,{fi(z:) + (A, —z)} - (5.17)

The solution of the optimal function at)\f_l is denoted as zf * = zl*()\f_l). The
function z7(-) has a Lipschitz constant L(z}) satisfying as ||z} (\i;) — zF(N\i)] <
L(z}) - ||Aiy — Aip|| for any A;, and \;,. Motivated by the fact that the difference
between the parameters)\ffl and)\f is limited and measurable for each k, i.e.
BE = |IAFTLNF|| = 7(E* ! — 2871, we use a warm-starting strategy to initialize
the local problems, i.e., we use the solution fol from the previous step k — 1 as the
initial solution for Algorithm 15 for step k.

Remark 5.11. Note that we initialize the vectors %=1, éf_l and 25_1 fork=11n
Algorithm 13 to be zero vectors.

Proposition 5.1 (Proposition 3 in [22]). Let zlk] be generated by Algorithm 15. If
Assumption 5.4 holds, then for any j > 0 we have:

ki _k, kO K, j
Iz = 2l < Ml = 27" - (1 =7) (5.18)

2

where v = % and zf’o and zf’* denote the initial sequence of Algorithm 7 and the
optimal solution of the problem in Step 6 in Algorithm 13 at iteration k, respectively.

5.3. Inexact algorithms for distributed optimization with an application to
distributed MPC 65

Algorithm 15 Gradient-based Method for solving Step 1 in Algorithm 13 at iter-
ation k
Require: Initialize o = o - &, g% = ||[7(E;oF ! - R, AL zf’o = 281 and
1

Ti < TV

Compute Jj, satisfying (5.19)

for j=1,2,---,Jr do

k.j . k-1 k-1 _
Z) = PTOJQ—(Z@' - T(Vfi(z R)‘f 1))
end for
Ef Tk

[

Termination condition on the number of iterations for solving local problems

The topic, i.e. to develop methods to on-line terminate the number of iterations
until a given accuracy is reached, has been studied in previous work, e.g. [51], [43]
and [21]. In [51] and [43], the authors proposed dual decomposition based optimiza-
tion methods for solving quadratic programming problems and presented termina-
tion conditions to guarantee a prespecified accuracy. However, for these methods, it
is quite difficult to guarantee the feasibility of a sub-optimal solution on-line, or it
requires to tighten the constraints on-line to guarantee the feasibility, which is quite
conservative in practice. Hence, though these methods provide interesting termina-
tion conditions to guarantee a prespecified accuracy, they are not good candidates
for solving our problem. In [21], the authors propose an inexact decomposition
algorithm for solving distributed optimization problems by employing smoothing
techniques and an excessive gap condition as the termination condition on the num-
ber of iterations to achieve a given accuracy. To certify the termination condition,
this method requires to measure the values of the global primal and dual functions
on-line, which requires full communication on the network and is not satisfied in our
distributed framework. In addition, this method does not provide any algorithms
for solving the local problems.

By employing the complexity upper-bounds in Proposition 5.1 for Algorithm 15,
derived from [22], we propose a termination condition in (5.19) to find the number of
iterations Jj for Algorithm 15, which guarantees that the local computational error
is upper-bounded by the predefined decrease function oF, i.e., ||6¥|| < a¥, shown in
Lemma 5.5.

Lemma 5.5. If the number of iterations Jy in Algorithm 15 satisfies

ok

F T L(Z)F
for all k > 1, then the computational error for solving the local problem in Step 6 in
Algorithm 13 ¥ satisfies ||6F| < o.

Proof: We will prove Lemma 5.5 by induction.

~k—1 Zk:—l

e Base case: When k = 1, the vectors o™+, 2/~ and Zf_l are initialized as zero

vectors. By Proposition 2.6 and the fact zil 0 = 2? = 0, we know
1,J 1, 1,0 1,
Iz =2 <z =27 - (L =)™

(2
1
=0 -z 1-m".

5.3. Inexact algorithms for distributed optimization with an application to
distributed MPC 66

Due to the definition of the function oF, it follows that the term above is
upper-bounded by o’ - (1 — 7)1, By the fact that 3° = ||[7(E;7° — 20)|| = 0
and J; satisfies (5.19), it is further upper-bounded by a!. Then we get that

184 = 128 — 2% = |27 = 27 < ot

e Induction step: Let g > 1 be given and suppose that |[69]] < 9. We will prove

that |69 < a9t! By Proposition 2.6 and the warm-starting strategy, i.e.
kO _ zk—1 _ k=1.Jk

2 =z =z , we know

6t = flof T — g

|
< g0 — 2 (1 =) Ten
= ||z — 2T (1 =)
7‘]) k] 17
< (287 = 227+ 128" — 27 - (1 —) Pons

< (094 L(z}) - B9 - (1 —) o+ |

Due to the induction assumption and the fact that J, satisfies (5.19), it follows
that [|0971| < a9t

We conclude that by the principle of induction, it holds that ||§¥|| < o for all k& > 1.
|

Corollary 5.8. If Assumption 5.4 holds and the decrease rate of the function o
satisfies the corresponding sufficient conditions presented in Corollary 5.1 and 5.3,
then Algorithm 13 and 14 converge to the optimal solution, with Algorithm 15 solving
the local problem in Step 1. Furthermore, If the local cost function f; is a strictly
positive quadratic function, and the decrease rate of the function oF satisfies the
sufficient conditions presented in Corollary 5.2, then Algorithm 13 converges to the
optimal solution, with Algorithm 15 solving the local problem in Step 1.

Proof: Lemma 5.5 shows that the computation error 6% = [6’fT, e ,5§/IT T
is upper-bounded by the function o. Since o decrease at a rate satisfying the
corresponding sufficient conditions discussed in Corollary 5.1, 5.2 and 5.3, then
Algorithms 13 and 14 converges to the optimal solution. [|

Remark 5.12. All the information required by the proposed on-line certification
method, i.e.,by Algorithm 15, as well as the condition for Jy in (5.19), can be ob-
tained on-line and locally.

Computation of the Lipschitz constant L(z})

In the above proposed on-line certification method, the Lipschitz constant of the
optimal solution function zf()\f_l), L(z}), plays an important role. While it is
generally difficult to compute this Lipschitz constant, it can be computed for special
cases, such as positive quadratic functions.

5.4. Numerical example 67

Lemma 5.6. Let the local cost function be a quadratic function, i.e. fi(z) =
%ZZTHZZZ + hZTzi with H; = 0. A Lipschitz constant of the function zf(\;) defined in
(5.17) is equal to %(H)’ i.e.

1
Pmin (Hz)

Proof: Since H; = 0, we get H; = D - DT with D invertible, which implies

125 (Aiy) — 2 (X,)| < i = Aa - (5.20)

. 1
zr(\) = argmin,, ¢, EZ;‘FHZ-Z@- + (h; —)\Z-)Tzi

(3

) 1 _
= argmin,, ., §HDTZZ' + D l(hi — Ai)\|2

Let v = DTz;. The optimization problem above becomes

v+ D7 (hi — NP,

. 1
v (\) = argmin -1, ¢ §|

which can be seen as the projection of the point D=Y(h; — \;) onto the set C; := {v |
Dy € C;}. Since C; is convex, then C; is convexr as well. It follows directly from
Proposition 2.2.1 in [24] that

19" (Aiy) = v i) S 1D (Mg = M) -
By z = DT v, we get

12 (Nay) = 2 i) | < IDTH - ID™H (N = Aay)

<ID7HZ - ey = A
1
< i = Al -

5.4 Numerical example

This section illustrates the theoretical findings of the chapter and demonstrates the
performance of inexact AMA by solving a randomly generated distributed MPC
problem with 40 sub-systems. For this example, we assume that the sub-systems
are coupled only in the control input:

JEN;

The input-coupled dynamics allow us to eliminate the states of the distributed MPC
problem, such that the optimization variable in the distributed optimization prob-
lems is the control sequence u = [uf, -+ ul T, with u; = [ul (0),u] (1), - ,ul (N)]T.
The input-coupled dynamics also allow us to simplify the projection step in Algo-
rithm 15. Examples with this structure include systems sharing one resource, e.g. a

water-tank system or an energy storage system.

5.4. Numerical example 68

We randomly generate a connected network with 40 agents. Each sub-system
has three states and two inputs. The dynamical matrices A;; and B;; are randomly
generated, i.e. generally dense, and the local systems are controllable. The input
constraint U; for sub-system 7 is set to be U; = {u;(t)] — 0.4 < u;(t) < 0.3}. The
horizon of the MPC problem is set to be N = 11. The local cost functions are
set to be quadratic functions, i.e. li(z;(t),ui(t)) = aF ()Qzi(t) + ul (t)Ru;(t) and
llf (z;(N)) = 2l (N)Pz;(N), where Q, R and P are identity matrices. Therefore,
the distributed optimization problem resulting from the distributed MPC satisfies
Assumption 5.4, and the local cost functions f; are strictly positive quadratic func-
tions. Hence, the results in Corollary 5.6 hold. The initial states Z; are chosen, such
that more than 70% of the elements of the vector u* are at the constraints.

In Fig. 5.1, we demonstrate the convergence performance of inexact AMA for
solving the distributed optimization problem in Problem 5.6, originating from the
randomly generated distributed MPC problem, applying Algorithm 13. In this sim-
ulation, we compare the performance of inexact AMA with three different kinds of
errors for 6% with exact AMA, for which the errors are equal to zero. Note that these
errors are synthetically constructed to specify different error properties. We solve
the local problems to optimality and then add the feasible errors with predefined
decreasing rates to the local optimal solution. The black line shows the performance
of exact AMA. The blue, red and green lines show the performance of inexact AMA,
where the errors 0" are set to be decreasing at the rates of O(3), O(k%) and O(k%)7
respectively. Note that all three errors satisfy the sufficient condition for conver-
gence in Corollary 5.2. We can observe that as the number of iterations k increases,
the differences ||u¥ — u*|| decrease for all the cases. However, the convergence speed
is quite different. For the exact AMA algorithm (black line), it decreases linearly,
which supports the results in Corollary 5.6. For the three cases for inexact AMA
(blue, red and green lines), we can see that the differences ||u* — u*| decrease more
slowly than for exact AMA, and the decrease rates are same as the decrease rate of
the errors, which supports the theoretical findings in Corollary 5.2.

The second simulation illustrates the convergence properties of inexact AMA,
where the proximal gradient method in Algorithm 15 is applied to solve the lo-
cal problems in Step 2 in Algorithm 13. Note that we initialize the vectors o1,
2571 and Zf“‘*l for kK = 1 in Algorithm 13 to be zero vectors. In this experiment
Algorithm 15 is stopped after the number of iterations providing that the local com-
putation error 55 decreases at a certain rate. The error decrease rate is selected to
be O(%), i.e., the decrease function o is set to be o = o - % This decrease rate
satisfies the second sufficient condition in Corollary 5.2. Hence, theoretically the
convergence of the inexact AMA is guaranteed. In order to satisfy ||0¥| < oF, the
number of iterations for the proximal gradient method Jx in Algorithm 15 is chosen
according to the certification method presented in Section 5.3.4 such that condition
(5.19) is satisfied. Note that we use a warm-starting strategy for the initialization
of Algorithm 15.

Fig. 5.2 shows the comparison of the performance of exact AMA and inexact
AMA. We can observe that the black (exact AMA) and red lines basically overlap
(inexact AMA with Algorithm 15 solving local problems with the numbers of iter-
ations Jj, satisfying (5.19)). Inexact AMA converges to the optimal solution as the
iterations increase, and shows almost the same performance as exact AMA.

5.4. Numerical example 69

Fig. 5.3 shows the local error sequence 5f for the case that the number of itera-
tions Jj for Algorithm 15 satisfies the condition in (5.19). We can observe that the
global error sequence §¥ = [6¥ ... 6%] is upper-bounded by the decrease function
a®. As k is small, the upper-bound o is tight to the error sequence. As k increases,
the error decreases faster and the bound becomes loose.

Fig. 5.4 shows the comparison of the numbers of iterations for Algorithm 15, com-
puted using two different approaches. Approach 1 uses the termination condition
proposed in Section 5.3.4. In Approach 2, we first compute the optimal solution
of the local problem zf * and then run the proximal gradient method to find the
smallest number of iterations providing that the difference of the local sub-optimal
solution satisfies the decrease function o k’*\ < of. Approach 2

, 1e. Hzfj — 2z
is therefore the exact minimal number, whereas Approach 1 uses a bound on the
minimal number. Note that the second approach guarantees |6¥|| < o for all k,
however, this method is not practically applicable, since the optimal solution zlk s
unknown. Its purpose is merely to compare with the proposed certification method
and to show how tight the theoretical bound in (5.19) is. For both techniques, we
use a warm-starting strategy for initialization of the proximal gradient method to
solve the local problems for each k£ in Algorithm 13. In Fig. 5.4, the green line and
region result from the termination condition proposed in Section 5.3.4, and the pink
line and region result from the second approach. The solid green and red lines show
the average value of the numbers of iterations for the proximal gradient method for
solving the local problems over the 40 sub-systems. The upper and lower boundaries
of the regions show the maximal and minimal number of iterations, respectively. We
can observe that the result given by the proposed certification method is worse than
the second method. The maximal number of iterations for the proposed certification
method(green region) is equal to 7, while for the second method (the red region) it is
equal to 4. However, Fig. 5.4 shows that the certification approach in (5.19), which
can be performed locally, is reasonably tight and the provided number of iterations
is close to the actual iterations required to satisfy the desired error.

10

lu® — u]

— IAMA, O(1/k)
10751 | =" 1AMA, O(1/k?)
= AMA, O(1/k%)
= AMA, no error

0 50 100 150 200 250 300 350
iteration k

Figure 5.1 — The comparison of the performance of AMA and inexact AMA (IAMA)
with the errors decreasing at pre-defined different rates.

5.4. Numerical example 70

—AMA‘without errofs
0 —IAMA using Approach 1 for local problems

0 100 200 300 400 500
iteration k

Figure 5.2 — The comparison of the performance of AMA and inexact AMA (IAMA)

with the proximal-gradient method to solve local problems, where the number of it-

erations is chosen according to two approaches: Approach 1 uses a bound on

the minimal number, i.e., the termination condition proposed in (5.19); and Ap-

proach 2 computes the exact minimal number, which requires the optimal solution
kox . .

of the local problem z;”" at each iteration.

““““ Decrease function o

== Error sequence R using (5.19)

Local computational errors

10 0 50 100 150 200 250 300 350
iteration k

Figure 5.3 — The error sequence 6* in inexact AMA using the proximal-gradient
method for solving the local problems with the numbers of iterations satisfying
(5.19).

5.5. Conclusion 71

~

Approach 1 (in Section 1V-D)
==AVG # for Approach 1

Approach 2 (ideal case)
==AVG # for Approach 2

»

(&)
1

N

w
1

[\
1

—

of iterations for local problems

TP PR S

100 200 300 400 500
iteration k

o

o

Figure 5.4 — The comparison of the numbers of iterations for Algorithm 15, using two
approaches: Approach 1 uses a bound on the minimal number, i.e. the termination

condition proposed in (5.19); and Approach 2 computes the exact minimal number,
k,x

which requires the optimal solution of the local problem z;" at each iteration.

5.5 Conclusion

In this chapter, we proposed the inexact alternating minimization algorithm (in-
exact AMA), which allows inexact iterations in the algorithm, and its accelerated
variant, called the inexact fast alternating minimization algorithm (inexact FAMA).
We showed that inexact AMA and inexact FAMA are equivalent to the inexact
proximal-gradient method and its accelerated variant applied to the dual problem.
Based on this equivalence, we derived complexity upper-bounds on the number of
iterations for the inexact algorithms. We apply inexact AMA and inexact FAMA to
distributed optimization problems, with an emphasis on distributed MPC applica-
tions, and showed the convergence properties for this special case. By employing the
complexity upper-bounds on the number of iterations, we provided sufficient con-
ditions on the inexact iterations for the convergence of the algorithms. We further
studied the special case of quadratic local objectives in the distributed optimiza-
tion problems, which is a standard form of distributed MPC problem. For this
special case, the algorithms allow local computational errors at each iteration. By
exploiting a warm-starting strategy and the sufficient conditions on the errors for
convergence, we proposed an approach to certify the number of iterations for solv-
ing local problems, which guarantees that the local computational errors satisfy the
sufficient condition and the inexact distributed optimization algorithm converges to
the optimal solution.

5.6. Appendix 72

5.6 Appendix

5.6.1 Proof of Lemma 5.2

Proof: We first prove that there exists an upper bound on the series b¥ =

Zk @ Since 0 < a < 1, there always exists a positive integer k' such that

p:]_ II; ;
—k — (k1) . .
0<% < %g— T We can write the series b* as

p=1 b p=FK P
Since k' satisfies 0 < O‘k;,k < % and 0 < a < 1, then we know that for any

t > k' the function O‘T_t is a non-decreasing function with respect to t. Due to the

fact that for any non-decreasing function f(t), the following inequality holds.
>)= [s+ s < [swas s
PEL:y<p<z Y Y
where | -] denotes the floor operator, the series b* can be upper-bounded by
—t —k

& Foar e o
b® < — —dt + —— .
<> —+ T

We know that the integral of the function % is equal to E;(—xzlog(a)), where E;(-)
denotes the Exponential Integral Function, defined as E;(x) := f_ojc eTitdt. By using

the fact that —E;(—z) = Eq(x), where Eq(z) := [eTftdt, and inequality (5.1.20)
in [52], it follows that the Exponential Integral Function E;(x) satisfies

—log(1 + %) < e’ Ei(—z) < —% -log(1 + %) .
Since e® > 0, we can rewrite the inequality as
e “log(l+ 1) < Eij(—z) < —le*’” log(1+ g) .
T 2 T

Hence, the series b¥ can be further upper-bounded by

W< Z - + J + E;i(—klog(a)) — Ej(—K log(a))

k/

a_p Cl_k 1 k1 g() 2
ST ZeRlog(@) (1 4 — 2
<p:1 D + k 2°¢ og(1+ klog(a))
/ 1
—k log(a)l 1
+e og(1+ k:’log(a))
K _ _k
a? o« 1 2
= — + —— — 5o "log(l+ ———)
=P k 2 klog(a)
/ 1
+a " log(1 +) .

k' log(c)

5.6. Appendix 73

We can now find the upper-bound for the series S* as

F=ak b < kia_p+1) (1+ 2)
s =a"- a —4+-—=1o —_
=P k2% klog(«)
/ 1
k—k
log(l14+ ———+—) .
+ o og(+k’log(a))

Since 0 < o < 1 and the integer &’ is a constant for a given «, the upper bound above
converges to zero, as k goes to infinity. In addition, we know that the two terms
ok Zl;=1 aT?P and o+ log(1 + ﬁg(a)) converge to zero linearly with the constant
a. From Taylor series expansion, we know that the term % log(1+ ﬁia)) converges

to zeros at the rate O(+). Note that since 0 < a < 1, the term 1 log(1 + #g(a))

is always negative for all & > 0. To summarize, we know that the upper bound
above converges to zero with the rate O(%) Therefore, we conclude that the series
sk converges to zero, as k goes to infinity. In addition, the convergence rate is O(%)

Quantization Design for Distributed
Optimization

The majority of the text and content in Chapter 6 has appeared in [53] and [54].

6.1 Introduction

Distributed optimization methods for networked systems that have many coupled
sub-systems and must act based on local information, are critical in many engineer-
ing problems, e.g. resource allocation, distributed estimation and distributed control
problems. The algorithms are required to solve a global optimization problem in a
distributed fashion subject to communication constraints.

In the framework of real-time distributed MPC, both local computation and
communication resources can be quite limited, due to the short sampling time. In
Chapter 5, we have developed distributed optimization algorithms with limited lo-
cal computation power for solving distributed MPC problems. In this chapter, we
consider a distributed optimization problem with communication constraints. In
the distributed framework, each sub-problem in a network has a local cost func-
tion that involves both local and neighbouring variables, and local constraints on
local variables. The first communication limitation is that the optimization problem
needs to be solved in a distributed manner with only local communication, i.e. be-
tween neighbouring sub-systems. Related work proposing distributed optimization
algorithms for different applications include, e.g. [55], [56] and [36]. The second
communication limitation is that the communication data-rate between neighbour-
ing sub-systems is limited. In order to meet the limited communication data-rate,
the information exchanged between the neighbouring sub-systems needs to be quan-
tized. The quantization process results in inexact iterations throughout the dis-
tributed optimization algorithm, which affects its convergence. Related work in-
cludes [57], [58], [59], [60] [61], [62] and [63], which study the effects of quantization
on the performance of averaging or distributed optimization algorithms. In prac-
tice, many applications may suffer from these communication limitations, e.g. the
implementation of predictive control algorithms for large-scale systems by utilizing
distributed optimization methods. Systems suffering from a significant limitation
in communication bandwidth include under-water vehicles and low-cost unmanned

74

6.1. Introduction 75

aerial vehicles.

We propose two distributed optimization algorithms with progressive quantiza-
tion design building on the work in [22] and [59]. The main challenge is that at
each iteration only a fixed number of bits can be transmitted between neighbouring
sub-systems. With a normal quantizer e.g. [64], the quantization process induces
quantization errors that do not decrease with an increasing number of iterations.
As a result, the distributed optimization algorithm may not converge or may only
converge to a neighbourhood of the optimal solution. The main idea of the proposed
techniques is to apply the inexact proximal gradient method to the distributed opti-
mization problem and to employ the error conditions, which guarantee convergence
to the global optimum, to design a progressive quantizer. Motivated by the linear
convergence upper-bound of the inexact optimization algorithm, the range of the
quantizer is set to reduce linearly at a rate smaller than one and larger than the rate
of the algorithm, in order to refine the information exchanged in the network with
each iteration and to achieve overall converge to the exact global optimum. The pro-
posed quantization method is computationally cheap and consistent throughout the
iterations as every node implements the same quantization procedure. In particular,
the work makes the following main contributions:

e Constrained optimization problems: We consider distributed optimization prob-
lems with convex local constraints. To handle the constraints, two projection
steps are required. One is applied before the information exchange, and the
other afterwards. The reason for the second projection is that after the in-
formation exchange, the quantized value received by each agent can be an
infeasible solution subject to the local constraints. The second projection step
therefore guarantees that at each iteration every agent has a feasible solution
for the computation of the gradient. We present conditions on the number of
bits and the initial quantization intervals, which guarantee convergence of the
algorithms. We show that after imposing the quantization scheme including
the two projections, the algorithms preserve the linear convergence rate, and
furthermore derive complexity upper-bounds on the number of iterations to
achieve a given accuracy. In addition, we provide conditions on the minimum
number of bits and the corresponding minimum initial quantization intervals
that can be computed.

e Accelerated algorithm: We propose an accelerated variant of the distributed
optimization algorithm with quantization refinement based on the inexact ac-
celerated proximal-gradient method. With the acceleration step, the algorithm
preserves the linear convergence rate, but the constant of the rate will be im-
proved.

e Distributed optimal control example: We demonstrate the performance of the
proposed method and the theoretical results for solving a distributed optimal
control example.

6.2. Uniform quantizer 76

6.2 Uniform quantizer

Let z be a real number. A uniform quantizer with a fixed number of bits n is defined
as

a’;—% ifxe(—oo,if—%)
Q(z)={z+sgn(z—7)-A- L”xf’”J +4 dftrefz-La+l], (6.1)
:E—I—% ifme(:f—%,oo)

where sgn(-) is the sign function. The parameter & denotes the mid-value of the uni-
form quantizer. The quantization step-size A is equal to A = 2%, where [represents
the size of the quantization interval. In this chapter, we assume that n is a fixed
number, which means that the quantization interval is set to be [z — %, T+ %] From
the definition in (6.1), we know that since the value x falls inside the quantization

interval x € [a? - %, T+ é], the quantization error is bounded as

A l
r—Qx) < 5 = onl (6.2)

For the case that the input of the quantizer and the mid-value are not real
numbers, but vectors with the same dimension n,, the quantizer @) is composed of
n, independent scalar quantizers in (6.1) with the same quantization interval [and
corresponding mid-value. In this chapter, we design a uniform quantizer denoted as
Q¥ (-) with changing quantization interval /¥ and mid-value z* at every iteration k
of the optimization algorithm. A similar definition for a uniform quantizer can be
found in [60] and [59].

The key challenge addressed in this work is to show that when applying a uniform
quantizer with a fixed number of bits n to a distributed optimization algorithm, we
can guarantee that at each iteration the value z* falls inside the quantization interval
and the quantization error is therefore bounded.

6.3 Distributed optimization with limited communication

In this section, we propose two distributed optimization algorithms with progres-
sive quantization design based on the inexact PGM algorithm and its accelerated
variant. The main challenge is that the communication in the distributed optimiza-
tion algorithms is limited and the information exchanged in the network needs to
be quantized. We propose a progressive quantizer with changing parameters, which
satisfies the communication limitations, while ensuring that the errors induced by
quantization satisfy the conditions for convergence.

6.3.1 Distributed optimization problem

In this chapter, we consider a distributed optimization problem on a network of M
sub-systems (nodes). The sub-systems communicate according to a fixed undirected
graph G = (V,€). We denote by N; = {j|(i,j) € £} the set of the neighbours
of sub-system 4. The optimization variable of sub-system i and the global variable

are denoted by x; and x = [xlT, e ,xﬂ]T, respectively. For each sub-system ¢, the

6.3. Distributed optimization with limited communication 77

local variable has a convex local constraint z; € C; C R™i. The constraint on the
global variable x is denoted by C = [[,-,-,; C;. The dimension of the local variable
z; is denoted by m; and the maximum dimension of the local variables is denoted
by m, i.e. m := maxj<;<pr m;. The concatenation of the variable of sub-system
¢ and the variables of its neighbours is denoted by z,;, and the corresponding
constraint on xy; is denoted by Cy; = [[;cn; Cj- We define the matrices E; €

R2sen; MiXXa<ism ™i g Fj; e R™ X35eN: ™3 to be selection matrices with elements
in {0,1}. With these matrices, the variables can be represented as zy;, = E;z and
T; = Fjiac/\/j, j € N;, which implies the relation between the local variable z; and
the global variable z, i.e. x; = Fj;Ejx, j € N;. Note that E; and F}; are selection
matrices, and therefore ||E;|| = ||Fj;|| = 1. We solve a distributed optimization
problem of the formulation in Problem 6.1:

Problem 6.1.

M
min - f(2) =) filen;)
=1

sit. wz; € C y Ty = LGaN; ,jeM ,
N, =Eix ,1=1,2,--- M .

Assumption 6.1. We assume that the global cost function f(-) is a twice differ-
entiable and strongly convex function with respect to x with a convexity modulus

O'f.

Assumption 6.2. The local constraint set C; is a closed, non-empty and convex
set, fori=1,--- M.

Assumption 6.3. We assume that every local cost function f;(-) has Lipschitz
continuous gradient with Lipschitz constant L;, and denote L,q. as the mazimum
Lipschitz constant of the local functions, i.e. Ly, := maxi<i<ir L.

Remark 6.1. If Assumption 6.3 holds, then the global cost function has a Lipschitz
continuous gradient with a Lipschitz constant L =", Li.

6.3.2 Qualitative description of the algorithm

In this section, we provide a qualitative description of the distributed optimization
algorithm with quantization refinement to introduce the main idea of the approach.
We apply the inexact PGM algorithm to the distributed optimization problem in
Problem 6.1, where the two objectives in Problem 2.1 are chosen as ¢ = Zf\i L filzag)
and ¢ = Zf\il Ic,(x;), where I¢, denotes the indicator function on the set C;, defined
in (2.2). According to Assumption 6.1, ¢ should be a differentiable and strongly
convex function with a convexity modulus oy, and Lipschitz continuous gradient
with a Lipschitz constant L. Due to the fact that the indicator function defined
in (2.2) is a convex function, v is a convex function. Hence, Assumption 2.1 for
the inexact PGM algorithm is satisfied for the optimization problem with the two
objectives ¢ and . The complexity upper-bound in Proposition 2.6 holds. The
parameter vy is equal to

_ 91
=+ (6.3)

6.3. Distributed optimization with limited communication 78

The communication in the network is limited: each sub-system in the network
can only communicate with its neighbours, and at each iteration, only a fixed num-
ber of bits can be transmitted. Only considering the first limitation, the distributed
optimization algorithm resulting from applying the inexact PGM algorithm to Prob-
lem 6.1 is represented by the blue boxes in Fig. 6.1. At iteration k, sub-system ¢
carries out four main steps:

1. Send the local variable to the neighbours;
2. Compute the local gradient;
3. Send the local gradient to the neighbours;

4. Update the local variable and compute the projection of the updated local
variable on the local constraint.

To handle the second limitation, we design two uniform quantizers (the pink
boxes) for the two communication steps for each sub-system wa- and Qfﬁ using a
varying quantization interval and mid-value to refine the exchanged information at
each iteration. Motivated by the second sufficient condition on the error sequences
{eF} and {€*} for the convergence of the inexact PGM algorithm discussed in Sec-
tion 2.3.1 (if the sequences {||¢*||} and {V/ek} decrease at a linear rate with the
constant (1 —v) < p < 1, then ||z* — 2*|| converges with the same rate), the quan-
tization intervals are set to be two linearly decreasing functions in the number of
iterations k, with a rate constant (1 —) < p < 1. We know that if for every k,
the values xf and V f; fall inside the quantization intervals, the quantization errors
converge at the same linear rate with the constant p. In Section 6.3.3, we will show
that by properly choosing the number of bits n and the initial intervals, it can be
guaranteed that xf and Vf; fall inside the quantization intervals at every iteration
and the quantization errors decrease linearly.

We want to highlight the re-projection step (green box in Fig. 6.1), because it
is the key step that allows us to solve distributed optimization problems with con-
straints. We set an extra re-projection step into the algorithm, because the quantized
value “%}C\G can be an infeasible solution subject to the constraints Cp;,. Recall that
we split Problem 6.1 as ¢ = le\il fi(zn) and ¢ = Zf\il Ic,(z;). If the quantized
value ﬁ;ﬁfz is an infeasible solution subject to Cy;, then the computation error of
the proximal operator with respect to v, defined in (2.23) is equal to infinity and
it thereby violates the sufficient conditions on the error sequences for convergence.
The re-projection step guarantees that at each iteration the gradient is computed
based on a feasible solution, and the computation error of the proximal operator is
finite. Using the convexity of the constraints, we can further show that the error
caused by the re-projected point i’f“\/l = Proj¢ N (aﬁjk\/l) is upper-bounded by the quan-
tization error. To summarize, all the errors induced by the limited communication
in the distributed algorithm are upper bounded by a linearly decreasing function
with the constant p, which implies that the distributed algorithm with quantization
converges to the global optimum and the linear convergence rate is preserved. These
results will be shown in detail in Section 6.3.3.

6.3. Distributed optimization with limited communication 79

2, . T)EXG - BN EH
1 : PrOJCNi(xM_) : Commumcatlon]—‘)[Qal(iﬂl)]—z>

; k E..N fF
Z F i Vf Jkﬂ‘ Communication]%[Qg) (szk)]&)
3. j€N1 ‘L

[xf-l—l = Projg, (zF — 7 Z Fji@ff)]

JEN;

Receive: ——> Send: —»

Figure 6.1 — Distributed algorithm with quantization refinement for subsystem ¢ at
iteration k.

6.3.3 Distributed algorithm with quantization refinement

In this section, we propose a distributed algorithm with a progressive quantization
design in Algorithm 16. For every sub-system ¢, we define two uniform quantizers
Qg}i and QZZ for transmitting xf’ and V fik at every iteration k. According to the

definition introduced in Section 6.2, the quantizers are defined by a fixed number
k

of bits n, changing quantization intervals l(’;i and (% ; and changing mid-values T, ;

and V fgi. At iteration k, the quantization intervals are set to be lgi = Cyp"
and lki = C’ﬁpk, and the mid-values are set to be the previous quantized values

a‘cﬁz = ! and ?fgﬂ- = V"1 The two parameters C,, = lo; and Cp = loﬂ-
denote the initial quantization intervals.
In the following, * is used to denote a quantized value, e.g. &¥ =]O“”(xf) and -

e.
is used to denote a re-projected value, e.g. ij“\/z = ProjCNi(A/]‘{/i). The quantization

errors are denoted by ozf = ik xf and Bf =V fik -V fik.

i —

Remark 6.2. Compared to the inexact PGM method in Algorithm 7, we modify
the index of the sequence from k to k + 1, such that in Section 7.3 the quantization
errors have the same index as the quantized sequences at each iteration.

In the following, we present four lemmas that link Algorithm 16 to the inexact
PGM algorithm and prove that Algorithm 16 converges linearly to the global opti-
mum despite the quantization errors. Lemma 6.1 states that due to the fact that
the constraints are convex, the error between the re-projected point and the origi-
nal point ||:i/]‘{/z - xf{[ZH < ||.%f\/z - xf\/ZH is upper-bounded by the quantization error.
Lemma 6.2 shows that the inexactness resulting from quantization in Algorithm 16
can be considered as the error in the gradient calculation {e*} and the error in
the computation of the proximal minimization {e*} in Algorithm 7. Lemma 6.3
states that if at each iteration the values :Uf and V fik fall inside the quantization
intervals, then the errors caused by quantization decrease linearly and the algorithm
converges to the global optimum at the same rate. Lemma 6.4 provides conditions
on the number of bits and the initial quantization intervals, which guarantee that

6.3. Distributed optimization with limited communication 80

Algorithm 16 Distributed algorithm with quantization refinement

Require: Initialize &; ' = 29 = 0, @fi_l = Vfi(Proj(cNi (0)), 1—7v) <p<1land
T< 1.
for k=0,1,2,--- do
For sub-system ¢, ¢ = 1,2,--- , M do in parallel:
Update the parameters of quantizer Q§7i: lﬁ = ap and :U =z
Quantize the local variable: ¥ = le(x’“) =k +ak

(]

Send ﬁzf to all the neighbours of sub-system i

Compute the projection of a%]’ifl fval = Projg,, (5552/1)

Compute VfF = sz(:i‘j“vl) L

Update the parameters of quantizer Qg}i: lg’i = C’gpk and vfgl = @fikfl
Quantize the gradient: VfF = QL (VIF) =V IF+pF

Send V 1 k to all the neighbours of sub- System i

9: Update the local variable: zF+! = Projc, (aF — 7 > jen; I Vf)
end for

xf and V fik fall inside the quantization intervals for each iteration. Once we prove
the three lemmas, we are ready to present the main result in Theorem 6.2.

Lemma 6.1. Let C be a convex subset of R™ and p € C. For any point v € R™,
the following holds:

[l = Projc()|| < llw—ol . (6.4)

Proof: Since pu € C, we have Projc(u) = p. Lemma 6.1 follows directly from
Proposition 2.2.1 in [24].]

Lemma 6.2. Consider the optimization problem with the two objectives ¢ = Z — filzan)
and) = Zi:l Ic,(x;). Applying Algorithm 7 to the optimization problem results in
Algorithm 16 with the error sequences defined as

eF = Z EI'V fi(ak) + Z Ef g} - Z EVfi(a}) |
=1

and € = $||z% — 2|, Purthermore, ||€*| and Vet are upper-bounded by

le¥| < ZL Z ol +Z IBEIl (6.5)

and

M
VE< LS ol (6.

6.3. Distributed optimization with limited communication 81

Proof: By definition, the gradient computation error e* in Algorithm 7 is
equal to

= Vf(@*) - V(")

M M
= ST EIV k) - Y ETVfial)
; =1

91

=N EIVfi(ih +ZETﬁk ZETsz
1=1

Then,
k k
le”]l < Z BTN - Li - 12k, — 2| +Z IELBEN -
1=1
Since the matrix E; is a selection matrix, ||ET|| = 1. Since xﬂ‘{/ € Cp;, and :E}“\f =

Proje,. (xN) Lemma 6.1 implies HxN - :UN | < ||:L‘N - :UN ||. Hence, we have

M M
leM < D Li- 13k, — 2k, +Z 1671 < ZL o llagl+ > 1BE -
i=1 =1

=1 JEN;

By definition in (2.23) and the fact that 2*¥ € C and #* = Proj.(2"), we know

ek = L||2% — 7¥||2. Lemma 6.1 again implies ||z* — || < ||2¥ — 2*||. Hence, we have

V2 V20 ko VIS K
Ve = X2)lak — k) <)2t - a4 < D el -
i=1

Remark 6.3. Lemma 6.2 shows that the errors ||| and Ve* are upper-bounded by
functions of the quantization errors ||af|| and ||8F|. We want to emphasize that the
quantization errors ||| and ||BF| are not necessarily bounded by a linear function
with the rate p. They are bounded only if the values x¥ and V f; fall inside the quan-
tization intervals that are decreasing at a linear rate. Otherwise, the quantization
errors ||aF|| and ||B¥|| can be arbitrarily large.

From the discussion in Section 2.3.1, we know that if ||e|| and Ve* decrease
linearly at a rate larger than (1 —«), then ||z* — 2*|| converges linearly at the same
rate as ||e¥||. Lemma 6.3 provides the first step towards achieving this goal. It shows
that if the values of xf and V fl-k always fall inside the quantization interval, then
the computational error of the gradient ||e¥|| and the computational error of the
proximal operator V¥ as well as ||zF — z*|| decrease linearly with the constant p.

Lemma 6.3. For any parameter p satisfying (1 —~) < p <1 and a k > 0, if for
all 0 < p < k the values of z¥' and V [generated by Algorithm 16 fall inside of

. . . . _ v
the quantization intervals of Qr, ; and Qg,w ie. ||z] — 2}, lloo < 55 and [|[Vf] -

_ "
V15l < 5%, then the error sequences ||€P|| and VP satisfy

e < CrpP, Ver < CopP (6.7)

6.3. Distributed optimization with limited communication 82

M~/m(LmazdCo+VdC 7 .
where Cy = XYM T +Y4C%) 4ng Cy = ? : Mﬁlca, and ||2PT — 2*|| satisfies

(C1+V2LCs)p
Lip+y—1)(1—=7)| ’

where M 1= maxi<;<y Mi, Lmae = maxi<j<y Li and d denotes the degree of the
graph of the distributed optimization problem.

2P — || < PP |l - 2] + (6.8)

Proof: From the property of the uniform quantizer, we know that if 2% and
V f{ fall inside of the quantization intervals of Q7, ; and Qgﬂ., then the quantization
errors af and Bf are upper-bounded by

p P

" .
ol < VT ol < V- gy < VT Q:jl ,

® .
P /8’
1821 <[5 mi 18l < [mee o2 < V- 5
JEN; JEN;

From Lemma 6.2, we have

M vk M dm -1
HepHSZLi'Z 2n+17]+2 2n+1’7

i=1 JEN: i=1

and

\F<WZ\FZ‘” .

2n+1
=1
Since the quantization intervals are set to lii = CupP and 1% = CppP, it implies
that

ML/ Cop? | Mvdim-Cop? _
on+1 on+1 lpp’

le?]] <

and

Vek < \[M\g;?app Cap?

with C; = Mﬁ(ngﬁ?aﬂfcﬁ) and Cy = ? . Mﬁlc‘*. Since (1 —7v) < p < 1,

Lemma 6.2 and Proposition 2.6 imply that for 0 <p <k

(c \/ LCY) &
la! — 2] < (1 — p)PHa® — | 4 (DT V2LCR) i et
q=
p
< pp—i-l [HJ;O _x*H + (ClL"é_lV CQ Z 1-— 7 p—i—l—q].
q=

Since 0 < (1 —) < p < 1, by using the property of geometric series, we get that
the expression above is equal to

= pPtt [Ilw0 — ¥ +

(Cl + \/ﬁCQ) ‘ 1- (%)erl
L(1 =) 1- 2

(C1 4+ V2LCy)p
Lip+~y—1)(1—-7)

< prt [Hwo -’ +

6.3. Distributed optimization with limited communication 83

Hence, inequality (6.8) is proven. [

From Lemma 6.3, we know that the last missing piece is to show that the values
Jrf and V ff fall inside the quantization interval at every iteration k. The following
assumption presents conditions on the number of bits n and the initial quantization
intervals C, and Cg, which guarantee that for each iteration xf and V ff in Algo-
rithm 16 fall inside the changing quantization intervals and the quantization errors
decrease linearly with the constant p, which further implies that the Algorithm 16
converges to the global optimum linearly with the same rate p.

Assumption 6.4. Consider the quantizers Q’;J- and Qg’i in Algorithm 16. We
assume that the parameters of the quantizers, i.e., the number of bits n and the
initial quantization intervals Co and Cg satisfy

(0% CO(
a1 + as St +a anil S5 (6.9)
Ca Cs _ Cp
b1+b2ﬁ+b32n+l S5 (6.10)
with
g Pt D)|2% — |
1 — ’
P
Lp(p+~—1)(1 =) Lp
MVdm(p+1) Linax(p + 1)[J2° — a*|
ag = , b1 = ;
Lip+~v-1)(1-7) P
p, — LmaxMv/mp(p + 1)(dLmaz + VL)
-
Lp(p+~—1)(1—7)
LinazdVmL(p + 1)
+)
Lp
b = LmaxMVdimp(p +1) + Lvdim(p +~ —1)(1 —)
3 = .

Lp(p+v—1)(1—1)

Remark 6.4. The parameters of the quantizers n, C, and Cg are all positive con-
stants. Assumption 6.4 can always be satisfied by increasing n, Co and Cg.

Remark 6.5. For a fived n, inequalities (6.9) and (6.10) represent two polyhedral
constraints on C, and Cg. Therefore, the minimal Cy and Cg can be computed by
solving a simple LP problem, i.e. minimizing Co + Cg subject to Co, > 0, Cg > 0,
and inequalities (6.9) and (6.10). Since the minimal n is actually the minimal one
guaranteeing that the LP problem has a feasible solution, the minimal n can be found
by testing feasibility of the LP problem.

Remark 6.6. Keeping the parameters d, L and L,q., m constant, the number of
bits n. goes to oo according to Assumption 6.4, as the size of the graph M goes to co.
A similar statement for quantized consensus problems with a fixed number of bits n
can be found in [60].

6.3. Distributed optimization with limited communication 84

Remark 6.7. Assumption 6.4 requires the knowledge of ||z° — 2*||. However, all
theoretical properties are maintained if the quantity || —x*|| is replaced by an upper-
bound of ||z°—x*||, which can be obtained by initializing the algorithms with a feasible

solution and estimating the size of the closed convex constraint C := Cy x -+ x Cyy.

Lemma 6.4. If Assumption 6.4 is satisfied and (1 —) < p < 1, then the values

of azf and fo in Algorithm 16 fall inside of the quantization intervals of Q’gé’z and
. — lZz‘ — U i
ngi, ie. ||xk — wngoo < % and |VfF - VféiiHC>O < B4, forallk > 0.

Proof: We will prove Lemma 6.4 by induction.

e Base case: When k = 0, since C,, and U3 are positive numbers and @—1 and =

are initialized to zero, it holds that Hx —:L“ Hoo = ||£L‘ —1:*1||Oo =0< fai _ %

and |V f) = V3l = IV} = VI 1Hoo = [IVfi(@};) — sz(PTOJCNZ.)l

Cs
2

l%.
0< 21—

e Induction step: Let g > 0 be given and suppose that ||z¥ — z& illeo < “ and
|V FF — Vfﬁ’z'Hoo < 62” for 0 < k < g. We will prove that

g+1

7"
lef = 225 oo < 55 (6.11)
and "
_ 9"
IVFH =V e < 25 (6.12)

fori=1,---, M. We first show (6.11). From Algorithm 16, we know

+1 .
! xgHoo

+1_ g+l
| i lloo = |1
< [+t =290
M
= |29t — 29 ZETFT oo
=1

M
< a9 = 2%loo + 1Y ET Fif ol
i=1

<2 = 2o + |27 — 2*loo + | ZETFT illoo -

Since E; and Fj; are selection matrices, then ||E;|| = ||Fi|| = 1. The term
above is upper-bounded by

M
S PR A PR W [P
i=1

By the assumption of the induction, we know ||z¥ — Z% .||

_ 1k
Vfgﬂ-Hoo < &t for 0 < k < g. Then, using Lemma 6.3, we obtain that the

6.3. Distributed optimization with limited communication 85

term above is upper-bounded by

(Ch + V2LCy)p]
Lip+~y-1)(1-")

(C1 +V2LCy)p } L MymCap?
Lip+y—-1(1-7) ot

By substituting C; = My/(LmasdCatV/dCp) and Cy = V2 MymC

<po! [uxo .

#0la? - o)+

T 5 Tonsr e and using
the parameters defined in Assumption 6.4, it follows that the expression above
is equal to

C
_ g+l B
=P [al + a2 2n+1 +as- 2n+1:| :

By inequality (6.9) in Assumption 6.4, the term above is bounded by % pdtL,
Thus, inequality (6.11) holds. In the following, we prove that inequality (6.12)
is true.
IVF =V oo = IV = Vo
= |VA@EED = VEEL) + 5l
<IVA@EEY) = V@)oo + 15 lloo
< IVAEE) = V@) ll2 + 187112
< Lillag — @l + 157
< Lill23f" — 2 | + L@ — =

+ Lill#f,, — x| + 1167

Sinceaz%ﬂL Ty ECNZ,:E?\;r1 :Proj(cN(N)ande PI‘OJCN (2:), Lemma 6.1

implies ||xngl gHH < ||Ang1 g+1|| and |25, — 2. || < ||}, — 27 [|. Hence,
the term above is upper- bounded by
+1 A +l +1
< Lillal,” — 2RIl + Lill2k, — 2 |+ Lallal, — 2111+ 157
+1 +1
< Lillz%, — 2,1l + L Z oM+ e I + 1167
JEN;
+1
< Ll =29+ Li Y (I + el + 157
JEN;
+1
< Linax (297 = 2| + 129 — 2*])) + Lunax Y (lad [+ [lad]) + 11871 -
JEN;

. . . . _ Ik,
Again by the assumption of the induction, we know ||z¥ — m’f”HOO < %' and

_ L
|V fF— Vfg’iﬂoo < &% for 0 < k < g. Then, Lemma 6.3 implies that the term

6.3. Distributed optimization with limited communication 86

above is upper-bounded by

V2L
SLnlax,Og+1 (H:CO o JU*H + (Cl + C2)p>

Lp+~-1)
Cl + \/ﬁCg)p
Lip+~v-1)

Lmax\/% Zje/\/i (lg:gl + lfy,j) v dml%;z
+ 2TL+1 + 2n+1

+ Lmaxpg (on - .%'*” + (

V2L
SLnlax,Og+1 (H:CO o JU*H + (Cl + CQ)p>

Lp+~-1)
Cl + \/ﬁCg)p
Lip+~v-1)

Linax VAMCo (p9Tt + p9) VdmCgp?
+ on+1 on+1

+ Lmaxpg (on - .%'*” + (

By substituting C7 = M\/E(Lm;ﬁ?“+\/acﬁ) and Cy = @ . Mﬁlc < and using

the parameters defined in Assumption 6.4, it follows that the expression above
is equal to

Ca Cs
g1 T bs - on+1

By inequality (6.10) in Assumption 6.4, the term above is bounded by % pIth =

g+1

2"
£~ Thus, inequality (6.12) holds.

We conclude that by the principle of induction, the values of azf and V fik in Algo-
rithm 16 fall inside of the quantization intervals of QF ; and Qg’i, Le. [laf —zk [l <

lk_ _ lk_
5t and ||V = Vfh il < 5 for all k > 0. u

After showing Lemma 6.2, Lemma 6.3 and Lemma 6.4, we are ready to present
the main theorem.

Theorem 6.2. If Assumptions 6.1, 6.3 and 6.4 hold and (1 —~v) < p < 1, then
for k > 0 the sequence {x*} generated by Algorithm 16 converges to the optimum
linearly with the constant p and satisfies

(C1 +V2LCy)p
Lp+y=11 =) |~

"t — 2| < P]|2® — 2]+ (6.13)

with Oy = MY LnasdCatVdCs) oy 01, — V2 . MymCa

on+1 2 on+1

Proof: Since Assumption 6.1, 6.3 and 6.4 hold, Lemma 6.4 states that for
each iteration the values :1:4C and V ff in Algorithm 16 fall inside of the quantization
intervals of Q'O“M- and Qg ;- Then from Lemma 6.3, we know that the error sequences
||| and VeF satisfy ||eF|| < C1pF and Ve < CypF, and by Lemma 6.2 the sequence
z¥ generated by Algorithm 16 satisfies inequality (6.13). [

6.3. Distributed optimization with limited communication 87

Remark 6.8. In Assumption 6.1, the function f is assumed to be twice differen-
tiable and strongly convexr. These conditions guarantee that the parameter v is a
positive value smaller than 1. In particular, the convexity modulus oy and the Lips-
chitz constant of the gradient L are the lower and upper-bound of the Hessian of f,
respectively. See [65] for details.

Recalling the complexity bound in Proposition 2.6, we know that for the case
without errors the algorithm converges linearly with the constant 1 — . After
imposing quantization on the algorithm, it still converges to the global optimum
linearly but with a larger constant p > 1 —~. We conclude that with the proposed
quantization design, the linear convergence of the algorithm is preserved, but the
constant of the convergence rate has to be enlarged in order to compensate for the
deficiencies from limited communication.

6.3.4 Accelerated distributed algorithm with quantization refinement

In this section, we propose an accelerated variant of the distributed algorithm with
quantization refinement in Algorithm 17 based on the inexact accelerated proximal
gradient method in Algorithm 8. Compared to Algorithm 16, Algorithm 17 has
an extra acceleration Step 5 gjﬁfl = 35}“\/1 + %(i‘}fv’ — 937\/:1), and at each iteration
the gradient V ff is computed based on g]j]{/i . The acceleration step improves the
constant of the linear convergence rate of the algorithms from 1 —~ to /1 — /7,
and changes the condition on the quantization parameter p to /1 — /v <p < 1.

Algorithm 17 Accelerated distributed algorithm with quantization refinement
Require: Initialize ;' = z;' = 2 = 0, 50;\/3 =0, @f;l = Vfi(Projg,, (0)),

K2
1—ﬁ<p<1and7’<%
for k=0,1,2,--- do
For sub-system ¢, 7 =1,2,--- , M do in parallel
1: Update the parameters of quantizer lk =

M = apkandf]; =a;

2: Quantize the local variable: 7% = gz(:rf) =aF +af
3: Send #¥ to all the neighbours of sub-system i
4: Compute the projection of ﬁ:f\/ i’f\/ = Projc,, (:fcj“\/)
1
1+§(ZL‘5€\/ :L’N) andyl =] —|—1+§(

5: Accelerating update: yN = :L’N +
k 1)
6 Compute V fF = sz(yN)
7: Update the parameters of quantizer Qgﬂ.: ZZ,Z- = Cgpk and ?fg’i = Vfik_l
8: Quantize the gradient: @fik = QEZ-(fo) = VfF+ gk
9: Send VfF to all the neighbours of sub-system i R
10: Update the local variable: zF+! = Projc, (yf — 7 D jeN; Fﬂfo)
end for

Lemma 6.5. Consider the optimization problem with the two objectives ¢ = Zf\il filznn)
and Y = Zf\il Ic,(x;). Applying Algorithm 8 to the optimization problem results in

6.3. Distributed optimization with limited communication 88

Algorithm 17 with the error sequences defined as

M
=" EIVE@h) + ZETBk ZEiTVfi(y/’i/i) :
i=1 i=1
and ¥ = L||z% — %2, and upper-bounded by

Jok]+ Y2 ok +ZWH (6.14)

"l S% Y =

i=1 JEN; 1 + \F
and

M
VE <2 oty (.15
=1

Proof: The proof follows the same flow of the proof of Lemma 6.2. The
only difference is that at each iteration the gradient V fi’C is computed based on gjj{@ ,

which is a linear combination of 5:5“\/1 and jﬁi 1. Hence, the upper-bound on the

computational error of the gradient ||e*|| is a function of the linear combination of
k—
llag ™I, llevf || and || 3F]]- =

Lemma 6.6. For any parameter p satisfying \/1— /vy < p <1 and k > 0, if for
all 0 < p < k the values of z¥' and V fF generated by Algorithm 17 fall inside of

L, . . _ I,
the quantization intervals of Q‘Zi and Qgi, ie. ||k — acgiHoo < % oand ||[VfF -

k
Vfﬁ oo < 455, then the error sequences satisfy

leP|| < Csp? , VeP < CypP (6.16)

M~/m(3LmazdCq dC 7
Vin(+pVdCp) and Cy = \/i_M\/ECa’ and prJrl_

where C3 = g G TR

Hmp—H *H<pp+1 QW 203+2\/7C'4+\/20'¢C4)p
%L —VI=V) V1=

Proof: The proof follows the same flow of the proof of Lemma 6.3 by replacing
the upper-bounds on ||¢*|| and V¥ in Lemma 6.2 and the upper-bound on ||z?*! —
x*|| in Proposition 2.6 by the ones in Lemma 6.5 and Proposition 2.9. In addition,
the proof requires the fact that /1 — /y<p<land 1 <1+ ,/7<2. []

x*|| satisfies

. (6.17)

Assumption 6.5. We assume that the number of bits n and the initial quantization
intervals Co, and Cg satisfy

s O,

a4+a52n+1 +a 62n+1 < o (6.18)
C, Cs Cp

by + bs—— ontl + bg o1 < 5 (6.19)

6.3. Distributed optimization with limited communication 89

with
~ 2(p+1)y/@(20) — D(a¥)
- N 7
e 2M Vdm(p +1)
VN RV
 6M/m(p + 1)dLinax + My/imp(p+ 1)(2VIL + /55)
o opp(p =1 =V7) V1=
L MV~ /T=) 1=/
aeplp—1=V7) V1I-7
by — 2Lmax(20% + 3p + 1)/ ®(20) — d(z)
P*\/Ts ’
by — Linaz V(20?4 3p + 1) | | N 6MdLmaz + Mp(2VL + \/75)
4 oolp = VIV VT=V |
by — 2Lax MVdim(2p% + 3p + 1) + opVdm(p — /T — 7)) - /T — VA

a6p(p = V1= V7) - V1=V7

Lemma 6.7. If Assumption 6.5 is satisfied and /1 — /v < p < 1, then for any

k > 0 the values of xf and fo in Algorithm 17 fall inside of the quantization
. . _ lg i _ lk i
intervals of QF . and Qfﬁ, ie. ||zF — JfZ,Hoo < % and ||VfF - Vfg’iHoo < B

.l

Proof: The proof is similar to the proof of Lemma 6.4. The difference is
that at each iteration the gradient V fik is computed based on g]ﬁfz , which is a linear

combination of ij‘:\/l and jf\/: 1 We therefore only show a brief proof for the second
. . = %, . .
step, i.e. the inequality ||V fF — Vfg}moo < &2 for any k > 0 by induction.

e Base case: When k = 0, since U is positive a number, 57;/} and a:? are initial-
ized to zero and Vf; ! = V fi(Projc,, (0)), it holds that ||V f — ?fg,iﬂoo =

il — ~ . lo i C
IVF? =V i oo = IV fi(5R) — V/i(Proje,, (0)] = 0 < 5 = 3.

la,i

e Induction step: Let g > 0 be given and suppose that |z¥ — SE];”HOO < % and
_ 1k
|V fF— Vféi,-”oo < &4 for 0 < k < g. We will prove

_ 19
IV =V e < B (6.21)

From the algorithm, we know
IV =V e = IV S = V£l
~ 1 ~
= IVA@) = VEG) + Bl
+1 ~g+1 +1
< Lillykr —yioll + Lillok — vl |
+ Lillgk, — o+ 18711 -

6.3. Distributed optimization with limited communication 90

1= 291 1— -1
By substituting yN = 1+\f g Hﬁxg N y/g\/ = 1+2\f:v§\/, — H\‘ﬁa}ﬂ\/ and

Lz = maxi<i<y L;, and using the fact that

expression above is upper-bounded by

< Linax (2[297 — 2% + 3|29 — 2*|| + |29~ — 2*[])

+1 -1
+ Lunax Y llad ™[+ 3[lad]| + o) + 11871 -
JEN;

By the assumption of the induction and Lemma 6.6, we obtain that the above
is upper-bounded by

2./3(0) — B(a)

SLmax@ngrl +3p7 + Pgil)

VO
n (203 +2v2LCy + 4 /20’¢C4)p
A
— +1 -1 —19
Lo A1 + 315 +1051) Vi,
2n+1 2n+1

M\/7(3Lmazdca+pfcﬁ) and C — \/5 M\/7TYLCQ

onTl 5 T > and using
the parameters defined in Assumption 6.5, the expression becomes

By substituting C3 =

Ca C
+1 B
P! by + b5 - on+1 +be - on+1

By inequality (6.19) in Assumption 6.5, the term above is bounded by B p9tl =

19“ ;
. Thus, the inequality |V {7 — V1] < ﬁ; holds. The proof of the
mductlon step is complete.

k
lm

By the principle of induction, we conclude that the inequality||V f¥ — V fﬁ illoo <
holds for any k > 0. l

Theorem 6.3. If Assumptions 6.1, 6.5 and 6.5 hold and \/1 — /v < p < 1, then

for k > 0 the sequence {x*} generated by Algorithm 17 converges to the optimum
linearly with the constant p and satisfies

ka—i—l _ w*“ - pk+1 2 (I)(xo) — q)(x*) (203 + 2V2LCy + \/20'(1504),0

. (6.22)
N 70— T=vD T= V7
with Cy = MYVmeedCatoViCs) 4pg 0, = o2 . MymCa,

Proof: The proof follows directly from the proof of Theorem 6.2 by replacing
Lemma 6.2, Lemma 6.3 and Lemma 6.4 by Lemma 6.5, Lemma 6.6 and Lemma 6.7.
|

6.4. Numerical Example 91

6.4 Numerical Example

This section illustrates the theoretical findings of the chapter and demonstrates the
performance of Algorithm 16 and Algorithm 17 for solving a distributed quadratic
programming (QP) problem originating from the problem of regulating constrained
distributed linear systems by model predictive control (MPC) in the form of Prob-
lem 3.2.

We use the same distributed MPC as in Section 5.4. The concatenation of the
initial states of subsystem 7 and its neighbours is denoted by Z,;. By eliminating
all state variables distributed MPC problems of this class can be reformulated as a
distributed QP of the form in Problem 6.4 with the local variables x; = u; and the
concatenations of the variables of subsystem ¢ and its neighbours .

Problem 6.4.
M M
min f(@) =) filan,) = Y _ak; Hiaw, + T hi o
v i—1 i—1
st. x; € C

The matrices are given by H; = BZ»TQiBi + R; and h; = AiTQZ-BZ—, where A; =
AT L. ANT],

B; 0 - 0
Qi: IN®QZZ 0 : Bl: “' ? 'Z ' ' ,
0 Py : : S
N-—1 N—-2
AN-1B, AN-2B; ... B

and R; = IN®R; with B; = [Bij“ e ’BijINi\] and R; = blkdiag(lejN s ’RjINi\j\MI)’
with Nj = {j1, -+ ,jn;|}- The constraint C; = UY is a polytopic set. Note that for
this example the matrix H; is dense and positive definite, and vector h; is dense.

Table 6.1 shows the parameters chosen in Algorithm 16 and Algorithm 17, in-
cluding the constants of the convergence rate of the algorithms, i.e. v = %f and
/1 — /7, the decrease rates of the quantization intervals p satisfying 1 —y < p <1
for Algorithm 16 and /1 — /v < p < 1 for Algorithm 17 and the minimum number
of bits required for convergence 7, -

Fig. 6.2 shows the relationship between the number of bits n and the minimum
initial quantization intervals C, and Cg, which satisfy Assumption 6.4 for Prob-
lem 6.4. We see that the minimum number of bits required for convergence is equal
to Nyin = 13, and as the number of bits n increases, the required minimum C\,, and
(g decrease.

Fig. 6.3 shows the performance of Algorithm 16 and Algorithm 17 for solving
the distributed QP problem in Problem 6.4 originating from the distributed MPC
problem. For Algorithm 16, n is set to 13 and 15, respectively, and the initial quan-
tization intervals C, and Cg are set to corresponding minimum values satisfying
Assumption 6.4. For Algorithm 17, n is set to 19 and 23, and C, and Cg to cor-
responding minimum values satisfying Assumption 6.5. In Fig. 6.3 we can observe
that the proposed distributed algorithms with quantization converges to the global

6.5. Conclusion 92

Parameters Algorithm 16 Algorithm 17
Rate constants | 1 —~ = 0.8093 \/1 — /7 =0.7505
P 0.9333 0.7991

Table 6.1 — The parameters in Algorithm 16 and 17 for solving Problem 6.4.

optimum linearly and the performance is improved when the number of bits n is
increased. Due to the acceleration step, Algorithm 17 converges faster than Algo-
rithm 16. However, Algorithm 17 requires a larger number of bits n to guarantee
the convergence.

1.8]
1.6
S 1.4

3

1.2

0.8c..._

S

0'612 14 16 n 18 20 22

Figure 6.2 — Relationship between the number of bits n and the minimum initial
quantization intervals C, and Cj satisfying Assumption 6.4 for Problem 6.4.

6.5 Conclusion

In Chapter 6, we considered distributed optimization problems with limited com-
munication rate and proposed two distributed optimization algorithms with an it-
eratively refining quantization based on the inexact proximal gradient method. It
is shown that if the parameters of the quantizers satisfy certain conditions, then
the quantization error decreases linearly and the convergence of the distributed al-
gorithms is guaranteed. Fig. 6.4 illustrates the proposed distributed optimization
algorithms with a iteratively refining quantization design.

6.5. Conclusion 93

10
N
107
-
B
==Algo. 16,n=13 |,
1010 ==Algo. 16, n=15 %,
== Algo. 16, no errors "0/'
»=Algo. 17, n=19 ‘e,
‘.‘.‘Algo' 17’ n=23 ‘/‘/I\l\
1071 mwAlgo. 17, no errors ‘
0 50 100 150

Iteration k

Figure 6.3 — Comparison of the performance of Algorithm 16 and 17 with different n
and corresponding minimum C, and Cg with the exact algorithms (no quantization
errors) for Problem 6.4.

>
k

Figure 6.4 — Illustration of the proposed distributed optimization algorithms with a
iteratively refining quantization design.

Quantization design for distributed
optimization with time-varying
parameters

The majority of the text and content in Chapter 7 has appeared in [66].

7.1 Introduction

In this chapter, we consider the problem of solving a sequence of distributed op-
timization problems parameterized by a time-varying parameter, which is central
to many engineering problems, e.g. on-line resource allocation, distributed estima-
tion and distributed optimal control problems. We develop distributed optimization
methods considering the following two challenges: 1. solution of each problem in
a distributed manner with only local communication, i.e. between neighbouring
sub-systems and with limited communication bandwidth, where at each iteration
only a limited number of bits can be transmitted; 2. optimization of the problems
to a given accuracy sequentially and efficiently, i.e., to reduce the computation and
communication required to achieve the desired level of accuracy.

We propose an optimization method with a progressive quantization scheme to
solve the distributed optimization problems sequentially. The idea is to extend the
progressive quantization scheme developed in Chapter 6 to a quantization design
for parametric distributed optimization. By employing a warm-starting strategy,
we leverage the solution at the previous time instance to improve the performance
of the algorithm and show that there exists a trade-off between the accuracy and
the number of iterations K. In particular, this chapter makes the following main
contributions:

e We extend the progressive quantization design for distributed optimization in
Chapter 6 to the problem of optimizing a sequence of distributed problems with
time-varying parameters and present the conditions on the quantizers, which
guarantee that for all steps the values exchanged in the network always fall
inside the quantization intervals and the quantization errors decrease linearly.

e By employing a warm-starting strategy, we improve the convergence speed of
the algorithm and present a relationship between the solution accuracy and
the cost of computation and communication represented by the number of

94

7.2. Preliminaries 95

iterations K. We show that for a given accuracy e, there always exists a
K guaranteeing that the sub-optimality of each solution in the sequence of
distributed optimization problems is upper-bounded by e.

e We demonstrate the proposed method for solving a distributed model pre-
dictive control problem by considering the initial state measurement at each
sampling time as the varying parameters and compare the simulation results
with the theoretical bound.

7.2 Preliminaries

7.2.1 Parametric distributed optimization problem

We consider a parametric distributed optimization problem on a network given in
Problem 7.1, which is an extended problem of Problem 6.1 with a time-dependent

parameter ! € Z; C R™i, for i =1,2,--- , M. We denote n' = WiTv e 777551]'
Problem 7.1.
M
min Flz,qh) = ; filxns,n?)

st. wz; € C ,xi:Fjix/\[j ,jE./\/‘Z‘ ,
N, =Eix ,1=1,2,--- M .

Assumption 7.1. We assume that for all n} € Z; the global cost function f(-,-) is
strongly convex with respect to x with a convexity modulus oy.

Assumption 7.2. We assume that for alln! € Z; every local cost function f;(-) has
Lipschitz continuous gradient with a Lipschitz constant L;, and denote Ly,q. as the
mazimum Lipschitz constant of the local functions, i.e. Lyqqe = maxi<i<ar Lj.

Remark 7.1. If Assumption 7.2 holds, then the global cost function has a Lipschitz
continuous gradient with a Lipschitz constant L == 1, Li.

Assumption 7.3. The local constraint C; is a convex set, fori=1,--- , M.

Model predictive control is one application resulting in a parametric optimiza-
tion problem, which generally satisfies Assumption 7.1, Assumption 7.2 and As-
sumption 7.3. This will be discussed in more detail in the example in Section 7.4.

7.2.2 Distributed optimization with limited communication

Algorithm 18 provides the distributed algorithm with the progressive quantization
design proposed in Algorithm 16 for Problem 7.1 with a fixed parameter n’. For every
sub-system i, there are two uniform quantizers Qfﬁ and Qtﬁlj using the formulation
introduced in (6.1) with a fixed number of bits n, changing quantization intervals
lik; and ltB’z and changing mid-values a’f;kz and V f/gl for transmitting affk and V fik at
every iteration k. At iteration k, the quantization intervals are set to be lgi = C’fl/{k

and lglz = Célfk, and the mid-values are set to be the previous quantized values

7.2. Preliminaries 96

bk = itk ! and @fgl = VfF1. The two parameters C%, = I" and Ch = lto

L, L,
denote the initial quantization intervals. Similar to Chapter 6, * is used to denote a
quantlzed value, e.g. At k= Qt k(tk) and ~ is used to denote a re-projected value,

7
e.g. ;rN = PI‘OJ(CN (xN) The quantization errors are denoted by ozt k= ghh _ gbk

and BiF =V k- vk

Algorithm 18 Distributed algorithm with quantization refinement

Require: Initialize 27" = 29(yt), V7! = VfZ(PTOJCN (@X. ("), A =7) <k <
1, 7< %, the initial quantization intervals C, and C’t and the number of iterations
K.
for k=0,1,2,--- ,K do

For sub-system ¢ = 1,2,--- , M (in parallel):

~tk—1

Update the parameters of quantizer ngl l;kZ = Ol k¥ and l’t ok =&y

Quantlze the state: ”; k= Qt k(tk) a:tk + aﬁ k.
Send xi ¥ to all the neighbours of sub-system 1
Compute the projection of i’j\}f jj\}j = ProjCNi (:%j\;j)
Compute V¥ = V fi ('})
Update the parameters of quantizer Qf@i lgkz = C’é/@k and ?féii = @fik_l
Quantize the gradient: V¥ = Qgﬁ(Vfik) =VfF+ Bfk
Send V f; ¥ to all the neighbours of sub-system 4
9: Update the state: :L't Rl = Proj¢, (:Efk — TN, Fjin]’-f)
end for

Assumption 7.4. Consider the quantizers Qka; and ngkz in Algorithm 18. We
assume that the parameters of the quantizers, i.e. the number of bits n and the
initial quantization intervals C and Cé satisfy

ct cy, ¢t
ar - l2°(n') = 2* ()| + a2 g Sy +as gy < (7.1)
0/ ¢ L Cy, Cé Cf%
bu-llz"(n") =" ()l + ba gty +bagig < 5 (7.2)

where the constants are defined as

o _(k+1)
. ~ Mv/mk(k+ 1)(dLmax + VL) + My/mL(k+ v — 1)(1 —)

o Li(s+~— 1)(1—7) ’
o My/dm(k +1)

ST Lty - DA

Liax(k+1)
by EE—
by _ LunaxM Vinti(k + 1)(dLmaz + VL) + LyazdyvmL(s +1)(k +~v — 1)(1 —)

Le(k+~v—1)(1—7) ’

7.3. Parametric distributed optimization with limited communication 97

 LyaxMVdmk(k+ 1) + LVdm(s + v — 1)(1 — 7)
: Lr(s+7 = D(1—7) -

b3

Remark 7.2. The parameters of the quantizers n, C* and Cé are all positive con-
stants. Assumption 7.4 can always be satisfied by increasing n, C% and CE.

Theorem 7.2. [Theorem 6.2 with parameter nt] For any t > 0, if Assumptions 7.1,
7.2 and 7.4 hold and (1 —~) < k < 1, then for 0 < k < K the sequence {x'*+1}
generated by Algorithm 18 converges to the optimum linearly with the constant k
and satisfies

th,k+1 . $*(Ut)|| < l{k+1 [on(nt) o x*(nt)H + 7 (Cl + \/ECE)K)])

(i - D17

, M/(LmazdC++/dC? =
with Ct = (ST) andCﬁzg-Mﬁ?‘l.

Proof. Tt follows directly from Theorem 6.2 by considering the parameter n' as a
constant in the optimization problem.]

Theorem 7.2 states that with the proposed quantization design, the linear con-
vergence of the algorithm is preserved, but the constant of the convergence rate has
to be enlarged from 1 — v to k in order to compensate for the deficiencies arising
from limited communication.

7.3 Parametric distributed optimization with limited
communication

We extend Algorithm 18 to solve the parametric distributed optimization Prob-
lem 7.1. For parametric optimization problems with a slowly time-varying param-
eter, so-called warm-starting strategies initializing the solution at each time step
with the solution obtained at the previous time-step have been observed to offer
significant computational speedups [3]. One example is the solution of optimal con-
trol problems that are parameterized by the state measurement. The solution from
the previous step offers a reasonable guess for the current solution, if the param-
eter, i.e. the state, does not change drastically from one time step to the next,
and therefore reduces the number of iterations to optimality compared to start-
ing from a fixed point, also known as cold-starting. In this section, we apply this
warm-starting strategy to initialize the starting sequence at time ¢ in Algorithm 19,
ie. 2°(n') = =% (")
we employ the warm-starting strategy from a theoretical perspective to show that
there exists a relationship between the number of iterations K and the accuracy e
of a suboptimal solution with respect to the optimal solution. For a given e, we
can always find a K guaranteeing that for all ¢ > 0 the sub-optimal solution 2 (")
satisfies the accuracy e, i.e. ||[z5(n!) — 2*(n!)|| < e. The distributed optimization
algorithm with quantization refinement for the parametric optimization problem is
presented in Algorithm 19.

. More importantly than improving practical performance,

Assumption 7.5. We assume that the optimal solution satisfies

la*(n") —2z* (") < p (7.3)

7.3. Parametric distributed optimization with limited communication 98

for allt > 0.

Assumption 7.6. We assume that at the first step t = 0 the initial solution of the
algorithm is a sub-optimal solution satisfying

12°(°) = 2* () < e . (7.4)

Assumption 7.5 states a condition on the difference between the optimal solutions
for time ¢ and ¢ 4+ 1. The difference is assumed to be upper-bounded by a constant
for all ¢ > 0. Assumption 7.6 shows a condition on the difference between the
initial solution and optimal solution at each time ¢t. The difference is required to be
upper-bounded by a constant. The applications satisfying these two assumptions
include distributed model predictive control problem and distributed moving horizon
estimation problems by considering the state measurement at each sampling time
as the time-varying parameter.

Remark 7.3. A sub-optimal solution 2°(n°) at time t = 0 satisfying Assumption 7.6
can be computed off-line.

Assumption 7.7. We assume that the two parameters C,, and Cg in Algorithms 19
satisfy

Ca | Cs _Ca

ar- (e+p) +azg g +asg iy < (7.5)
Ca , Cs _C

bi- (c+p) +bagy gy +bsgly < 7 (7.5b)

Remark 7.4. The two conditions on the initial quantization intervals C!, and CE in
Assumption 7.7 do not vary with t, i.e., they are independent of the parameters nt.
Therefore, we can compute the initial intervals Co, and Cg satisfying (7.5) off-line
and set C’g and C’é to the same values for all t > 0.

Algorithm 19 Parametric distributed algorithm with quantization refinement

Require: Initial solution z°(n?), the number of iterations K and the initial quan-
tization intervals C}; =C, and Ct, = Cp for all t > 0.
fort=0,1,2,--- do
1: Solve Problem 7.1 with the parameter n' by Algorithm 18 with the initial
solution 2°(n') and the number of iterations K.
2: 20(n'th) « 2K+ (n!) (warm-starting)
end for

Theorem 7.3. For a given € > 0, if Assumptions 7.1, 7.2, 7.5, 7.6 and 7.7 hold,
(1 —v) < k <1 and the number of iterations K satisfies

e(l — k)
K= [logﬁp+5+(1—m)(e+5)—‘ -1 (7.6)

with § = ~(C1+V2LC) C = My LmazdCa+V/dCp) and Cy = V2 M‘/EC“, then the

Tt =D (=) ot 3 LES!
sub-optimal solution x5+ (nt) satisfies:
|1z (") = 2* () < e (7.7)

for allt > 0.

7.3. Parametric distributed optimization with limited communication 99

Proof. We will prove Theorem 7.3 by induction.

e Base case: At t =0, Assumption 7.6 and Assumption 7.7 imply that Assump-
tion 7.4 holds. Then all assumptions required by Theorem 7.2 are satisfied
and it follows that o5 +(1%) — o ()| < KKHL(|20(0) — 2 ()| + 6) <
x5+ (e 4+ §). Using the condition in (7.6), we get k" +1(e +) < e. Hence, it
holds that [|z5+1(n%) — 2*(n°)|| < e.

e Induction step: Let g > 0 be given and suppose that ||#%+1(nt) —z*(n?)| < e
for t < g. We will prove that ||[z5+1(n9t1) — 2*(n9*1)|| < e. By the warm-
starting step in Step 3 in Algorithm 19, we know

2%+ — & ()| =l @) — 2 ()|

<2 H () — 2t ()| + [|l2* () — 2* ()] -
By the assumption of induction and Assumption 7.5 , we obtain
2%+ =2 < et p

Then Assumption 7.7 implies that Assumption 7.4 holds for g + 1. It follows
from Theorem 7.2 that

JE oY) — 2 ()| < REF(000) — (Y | + 6)

By the warm-starting step in Step 3 in Algorithm 19, the above is upper-
bounded by

<KEF(|[zFH (7)) — 2* () | + 6)
<K (R A () — 2)] + 1 () — 2)|+ 0)

Assumption 7.5 implies
< K (|5 () — 2O + o+ 0)

Again by the warm-starting step, Assumption 7.7 implies Assumption 7.4. It
follows from Theorem 7.2 that the above is upper-bounded by

Ko 48) + (2 (la(7) - o () + 0)
SR (p40) (R () a0)+ p+0)

Sequentially, we get that the above is upper-bounded by

g+1
<SOREFP - (p 4 6) + (RETH)TE (e 1 5)
p=1

By Assumption 7.6 and the property of geometric series, we have

1— (EK+1)g+1

K+1
<(p+9)-k e

+ (6+ 5) . </€K+1)g+2)

7.4. Numerical Example 100

Using the fact that 0 < x < 1, we get

[eK L oY) — ety < 280

~/€K+1+(6+5)~/€K+1)

Note that the inequality above holds for all ¢ > 0. By the condition in (7.6),
we obtain that
25+ o) = () < e

We conclude that by the principle of induction for all ¢ > 0 the solution 2%+ (nt)
satisfies |25+ (') — 2 ()| < e -

For a given accuracy € and parameter variation ¢, Theorem 7.3 provides a lower
bound on the number of iterations ensuring that for all ¢ > 0 the sub-optimal
solution provided by Algorithm 19 satisfies the accuracy e.

Remark 7.5. We add a brief discussion about why warm-starting is necessary for
Theorem 7.3. With both warm- and cold-starting, the algorithm converges to the
optimum at each step t, as the number of iterations k goes to infinity. Howewver,
warm-starting is required in order to derive an off-line condition on the number of
iterations K to achieve a given fized accuracy at all time steps. Without the warm-
starting strategy, the number of iterations to achieve a given accuracy varies with
the parameters and would need to be determined on-line.

Remark 7.6. By using the results in Theorem 7.3, we can also compute the best
accuracy € for a given number of iterations K, i.e., for a given communication
data-rate and a given number of bits per iteration.

7.4 Numerical Example

This section illustrates the theoretical findings of the chapter and demonstrates
the performance of Algorithm 19. We consider a parametric distributed quadratic
programming (QP) problem originating from the same problem of regulating con-
strained distributed linear systems by model predictive control (MPC) introduced
in Section 6.4. In addition, the initial state z! is considered to be the time-varying
parameter.

Problem 7.4.

zeR™x

M
min f(z,2') = Z filzn;, Zf\/)
i=1

M
T
:Zl‘ffiHiZL‘M +Zf\/ihiw/\/i
i=1
st. x; € C

The matrices H; and h; and the constraint C; can be found in Section 6.4. The
parameter appears in the linear term 2}\2 hiz ;.

For Problem 7.4, the constants in Algorithm 19 are v = %f = 0.1027, the decrease
rates of the quantization intervals 1 —v < x = 0.9692, and the minimum number of
bits required for convergence, i.e. the conditions in (6.10), np, = 13.

7.5. Conclusion 101

In the simulation Fig. 7.1, we set the number of steps to t = 50 and the number
of iterations K to 2, 10 and 30. The parameter z' is randomly generated and
satisfies ||z — z/+1|| < 3. Fig. 7.1 shows the accuracy achieved by Algorithm 19 and
Algorithm 19 without warm-starting strategy, i.e. setting Step 2 in Algorithm 19
to 29(n'™!) = 0 (cold-starting) for all + > 0. The results show that warm-starting
achieves significantly better accuracy for the same number of iterations.

In Fig. 7.2, we compute the average accuracy achieved by Algorithm 19 over all
steps tnae = 50 in Fig. 7.1 and calculate the corresponding number of iterations K
satisfying the bound in Theorem 7.3. Note that the parameter p in Assumption 77
is approximated by randomly sampling 500 initial states satisfying ||z¥ — 21| < 3,
for 1 < v < 500, computing the largest p = maxi<,<s00{||2*(2¥) — 2*(2°T1)||}. We
observe that the bound is relatively loose, when the accuracy requirement € is larger
than € > 1073, It gets tighter as the accuracy e decreases below € < 1073.

1

10
K =2, cold
100 Lmmm e e e
K=10, cold
107 K = 2, warm_ T K= 30C0|d o

10_27 []] [1]) n u Ay u B wIll-l.‘lll:E
W\M
K=10, warm]
10_3’—--me” PR

e i
K =30, warm

0 10 20 ; 30 40 50

10

Figure 7.1 — Comparison of the accuracy achieved by Algorithm 19 and Algorithm 19
with a modified Step 2, i.e. 2°(n'*1) = 0 (cold-starting), for solving Problem 7.4 for
different numbers of iterations K.

7.5 Conclusion

In this chapter, we proposed an on-line algorithm for solving distributed optimization
problems with time-varying parameters under two communication constraints, i.e.
only neighbour-to-neighbour communication and a limited communication data-rate
exchanged and show that there exists a trade-off between the number of iterations
(communication data-rate) for solving the problem with the parameter at each time
step and the accuracy achieved by the algorithm. We derived a lower-bound on the
number of iterations K, which guarantees that the sub-optimal solution given by
the algorithm at each time step satisfies a certain accuracy. We demonstrated the
proposed method and the theoretical findings for solving a distributed model predic-
tive control problem by considering the state measurement at each sampling time as

7.5. Conclusion 102

10

@K required by Theorem 7.3
@K in simulation

0
10
107 107° . 10 10

Figure 7.2 — Comparison of the number of iterations K required by Theorem 7.3
and obtained in simulation for solving Problem 7.4 for the same accuracy e.

the time-varying parameter. Fig. 7.3 illustrates the proposed distributed algorithms
with a iteratively refining quantization design for a distributed optimisation problem
with time-varying parameters.

Sub-optimality
Zl?k (T]H- 1) I

z*(n")

Rate of the
parameter

t- K (t+1) K

Figure 7.3 — Illustration of the proposed distributed algorithms with a iteratively re-
fining quantization design for a distributed optimisation problem with time-varying
parameters.

Conclusion and Outlook

In this work, we have focused on splitting methods, including their accelerated and
inexact variants, and applied them to MPC problems and distributed optimization
problems. The main contribution and future work are summarized in the following.

Splitting methods for fast MPC

Summary: In Chapter 4, we studied the fast alternating minimization algorithm
and proposed efficient implementations for solving MPC problems with polytopic
and second-order cone constraints. We derived complexity bounds on the number
of iterations for both dual and primal variables, which are of particular relevance in
the context of real-time MPC to bound the required online computation time, and
further discussed the computation of the complexity bounds. For MPC problems
with polyhedral and ellipsoidal constraints, we provided an off-line pre-conditioning
method to further improve the convergence speed of FAMA by decreasing the com-
plexity upper-bounds and enlarging the step-size of the algorithm.
Future research topics include:

e Preconditioning techniques: Splitting methods belong to the family of
first-order methods. In general, first-order methods offer simple iteration
schemes, but are very sensitive to the geometry data of an optimization prob-
lem, i.e., the Lipschitz continuity of the objective function and the shape of
the constraints. One important approach to improve the performance of the
algorithms is to use preconditioning techniques. In future work, an impor-
tant problem to be addressed is to develop preconditioning methods using the
complexity bounds for problems with general convex conic constraints, e.g.
polyhedron, second-order cone and positive semi-definite cone.

e Real-time MPC:

Complexity upper-bounds are of interest in the context of real-time MPC
problems, as the bound provides a means to certify the sub-optimality of the
solution resulting from the algorithms running for a fixed number of itera-
tions. In order to use this sub-optimal solution for control, future work is to

103

Conclusion and Outlook 104

consider the optimization algorithm as a dynamical system and apply system
and control theory to analyse the connection to the physical system.

Splitting methods for distributed optimization

Summary: In Chapter 5, 6 and 7, we proposed inexact splitting optimization algo-
rithms and utilized them to solve distributed optimization problems in the presence
of computation and communication errors. In Chapter 5, the inexact alternating
minimization algorithm, as well as its accelerated variant, was proposed to solve
distributed optimization problems, allowing for local computation. In Chapter 6,
we considered distributed optimization problems with limited communication rate
and proposed two distributed optimization algorithms with an iteratively refining
quantization based on the inexact proximal gradient method. It is shown that if
the parameters of the quantizers satisfy certain conditions, then the quantization
error decreases linearly and the convergence of the distributed algorithms is guaran-
teed. In Chapter 7, we extended the methods to distributed optimization problems
with time-varying parameters, and show the trade-off between the accuracy of the
sub-optimal solution given by the algorithm and the number of iterations for each
time-step in the sequential realization of the parameter.
Future research topics include:

e Complexity bound for distributed optimization: An important open
problem is to derive complexity upper-bounds for distributed algorithms and
utilize this bound to study the questions: how does the topology of the net-
work of a distributed optimization problem affect the convergence behavior
of a distributed algorithm, and knowing these properties how could we de-
sign an efficient algorithm, as well as redesigning the network, to improve the
convergence behavior? In a real-time framework, one open question is that
distributed MPC problems need to be solved within limited computation time
and communication source. Assuming that the computation time and com-
munication only allow for implementing the algorithms for a fixed number of
iterations, then how can we specify the sub-optimality of the solution by the
complexity bound and use this sub-optimal solution for the control task?

e Distributed optimization with synchronous updates: The second fu-
ture research topic is to develop a distributed algorithm with asynchronous
updates. Most available distributed algorithms are synchronous and assume
that computations at all nodes are performed simultaneously according to a
global clock. However, compared to asynchronous algorithms, synchronous
algorithms have drawbacks and are less flexible [67]. For asynchronous algo-
rithms, each processor does not need to communicate to each other processor
at each time instance. The processors may perform computations without
having to wait until they receive the messages that have been transmitted
to them. Such algorithms can relieve communication overloads and will not
be significantly affected by either communication delays or the differences in
computation time between different processors.

e Distributed optimization with random errors: An interesting field of
research is to conduct research on stochastic optimization methods to develop

Conclusion and Outlook 105

distributed algorithms admitting random errors in each iteration. In Chap-
ter 5, we proposed an inexact fast alternating direction minimization algo-
rithm, which allows inexact updates in each iteration. However, the condition
on the error sequence for convergence can be conservative. The error sequence
needs to converge to zero at a certain rate. It would be relevant to extend this
result to the case that the error sequence does not necessarily converge but
satisfies a certain distribution, in order to show probabilistic convergence of
the algorithm by using stochastic splitting methods. This sacrifices the deter-
ministic convergence of the algorithm, but relaxes the condition on the errors.
Considering the communication schemes in Chapter 6, one direct extension is
to show the required conditions on the quantization design for this case, or to
develop a new design procedure, that guarantees a probabilistic convergence
and allows for more general communication errors.

Bibliography

A. Alessio and A. Bemporad, “A survey on explicit model predictive control,”
in Nonlinear Model Predictive Control, ser. Lecture Notes in Control and Infor-
mation Sciences, L. Magni, D. M. Raimondo, and F. Allgower, Eds. Springer
Berlin Heidelberg, 2009, vol. 384, pp. 345-369.

M. Zeilinger, C. Jones, and M. Morari, “Real-time suboptimal model predictive
control using a combination of explicit MPC and online optimization,” IEEE
Trans. on Autom. Control, vol. 56, pp. 1524-1534, 2011.

R. Richter, C. N. Jones, and M. Morari, “Computational complexity certifi-
cation for real-time MPC with input constraints based on the fast gradient
method,” IEEE Transactions on Automatic Control, vol. 57(6), pp. 1391-1403,
2012.

Y. Nesterov, “A method of solving a convex programming problem with conver-
gence rate O(1/k?),” in Soviet Mathematics Doklady, vol. 27, 1983, pp. 372-376.

Y. Wang and S. Boyd, “Fast model predictive control using online optimiza-
tion,” IEEE Trans. on Control Systems Techn., vol. 18, pp. 267-278, 2010.

A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones,
“Efficient interior point methods for multistage problems arising in receding
horizon control,” in Proc. of the 51st IEEE Conf. on Decision and Control,
2012, pp. 668-674.

M. Kogel and R. Findeisen, “Fast predictive control of linear systems combining
nesterov’s gradient method and the method of multipliers,” in Proc. of the 50th
IEEE Conf. on Decision and Control, 2011, pp. 501-506.

P. Giselsson, M. D. Doan, T. Keviczky, B. D. Schutter, and A. Rantzer, “Ac-
celerated gradient methods and dual decomposition in distributed model pre-
dictive control,” Automatica, vol. 49, pp. 829-833, 2013.

H. I. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy to
overcome the limitations of explicit mpc,” International Journal of Robust and
Nonlinear Control, vol. 18, pp. 816-830, 2008.

R. A. Bartlett and L. T. Biegler, “QPSchur: a dual, active-set, schur-
complement method for large-scale and structured convex quadratic program-
ming,” Optimization and Engineering, vol. 7, pp. 5-32, 2006.

106

Bibliography 107

[11]

[12]

[13]

[21]

22]

23]

[24]

[25]

T. Goldstein, B. O’Donoghue, and S. Setzer, “Fast alternating direction opti-
mization methods,” CAM report, pp. 12-35, 2012.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine Learning, vol. 3, pp. 1-122, 2011.

P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal pro-
cessing,” in Fized-Point Algorithms for Inverse Problems in Science and Engi-
neering, ser. Springer Optimization and Its Applications. Springer New York,
2011, pp. 185-212.

C. Conte, N. R. Voellmy, M. N. Zeilinger, M. Morari, and C. N. Jones, “Dis-
tributed synthesis and control of constrained linear systems,” in American Con-
trol Conference, 2012, pp. 6017-6022.

W. B. Dunbar, “Distributed receding horizon control of dynamically coupled
non-linear systems,” IEEE Transactions on Automatic Control, vol. 52, no. 7,
pp- 1249-1263, 2007.

M. Farina and R. Scattolini, “Distributed non-cooperative MPC with neighbor-
to-neighbor communication,” in 18th World Congress of the International Fed-
eration of Automatic Control, 2011, pp. 404—409.

D. Westwick, Power plants and power systems control 2006. FElsevier, 2007.

A. Venkat, 1. Hiskens, J. Rawlings, and S. Wright, “Distributed mpc strategies
with application to power system automatic generation control,” IEEE Trans-
actions on Control Systems Technology, vol. 16, no. 6, pp. 1192-1206, 2008.

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, Belmont, Massachusetts, 1997.

I. Necoara and V. Nedelcu, “Rate analysis of inexact dual first order methods:
Application to distributed MPC for network systems,” arXiv:1302.3129 [math/,
Feb. 2013, arXiv: 1302.3129.

Q. T. Dinh, I. Necoara, and M. Diehl, “Fast inexact decomposition algorithms
for large-scale separable convex optimization,” Optimization, in press, 2015.

M. Schmidt, N. L. Roux, and F. Bach, “Convergence rates of inexact proximal-
gradient methods for convex optimization,” in 25th Annual Conference on Neu-
ral Information Processing Systems, 2011, pp. 6819-6824.

R. A. Horn and C. R. Johnson, Matriz Analysis. Cambridge University Press,
1990.

D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convexr analysis and optimiza-
tion. Athena Scientific Belmont, 2003.

S. Boyd and L. Vandenberghe, Conver Optimization. Cambridge University
Press, 2004.

Bibliography 108

[26]

[27]

28]

[29]

[30]

[31]

[37]

[38]

[39]

H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator
theory in Hilbert spaces. Springer, 2011.

J.-B. Hiriart-Urruty and C. Lemaréchal, Conver Analysis and Minimization
Algorithms II. Springer Berlin Heidelberg, 1993.

A. Beck and M. Teboulle, “A fast iterative shrinkage thresholding algorithm
for linear inverse problems,” SIAM Journal on Imaging Sciences, pp. 183-202,
2009.

P. Tseng, “Applications of a splitting algorithm to decomposition in convex
programming and variational inequalities,” SIAM Journal on Control and Op-
timization, vol. 29, pp. 119-138, 1991.

V. Acary, O. Bonnefon, and B. Brogliato, Nonsmooth Modeling and Simulation
for Switched Circuits, ser. Lecture Notes in Electrical Engineering. Springer
Netherlands, 2011, vol. 69.

R. Glowinski and A. Marrocco, “Sur Iapproximation par elements nis dordre
un, et la resolution par penalisation-dualite dune classe de problemes de dirich-
let nonlineaires,” Revue Francaise d’Automatique, Informatique, et Recherche
Operationelle, vol. R24176, 1975.

E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal parameter
selection for the alternating direction method of multipliers: Quadratic prob-
lems,” IEEE Trans. on Autom. Control, vol. 60, pp. 644-658, 2015.

J. M. Maciejowski, Predictive control: with constraints. Pearson Education,
2002.

J. B. Rawlings and D. Q. Mayne, Model predictive control: theory and design.
Nob Hill Pub., 2009.

R. Scattolini, “Architectures for distributed and hierarchical model predictive
control — a review,” Journal of Process Control, vol. 19, no. 5, pp. 723-731,
2009.

C. Conte, T. Summers, M. Zeilinger, M. Morari, and C. Jones, “Computational
aspects of distributed optimization in model predictive control,” in 51th IEEE
Conference on Decision and Control, 2012, pp. 6819-6824.

Y. Pu, M. N. Zeilinger, and C. N. Jones, “Fast alternating minimization algo-
rithm for model predictive control,” in 19th World Congress of the International
Federation of Automatic Control, 2014.

——, “Complexity certication of the fast alternating minimization algorithm
for linear model predictive control,” IEEE Transactions on Automatic
Control, accepted for publication in March 2016. [Online]. Available:
http://infoscience.epfl.ch/record /207029 /files/ FAMAMPC _jrnl.pdf?version=1

B. O’Donoghue, G. Stathopoulos, and S. Boyd, “A splitting method for optimal
control,” IEEE Trans. on Control Systems Techn., p. 1, 2013.

Bibliography 109

[40]

[41]

[42]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

B. He and X. Yuan, “On the o(1/n) convergence rate of the douglas-rachford
alternating direction method,” SIAM Journal on Numerical Analysis, vol. 50,
pp. 700-709, 2012.

P. Giselsson and S. Boyd, “Preconditioning in fast dual gradient methods,” in
IEEE 53rd Conf. on Decision and Control, 2014, pp. 5040-5045.

A. Bemporad and M. Panaglotis, “Simple and certifiable quadratic program-
ming algorithms for embedded linear model predictive control,” in 4th IFAC
Nonlinear Model Predictive Control Conf., 2012, pp. 14-20.

P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection algo-
rithm for embedded linear model predictive control,” IEEE Trans. on Auto-
matic Control, vol. 59, pp. 18-33, 2014.

J. Demmel, J. Nie, and V. Powers, “Representations of positive polynomials on
noncompact semialgebraic sets via KKT ideals,” Journal of Pure and Applied
Algebra, vol. 209, pp. 189-200, 2007.

G. Calafiore and M. C. Campi, “Uncertain convex programs: randomized solu-
tions and confidence levels,” Mathematical Programming, pp. 25-46, 2005.

P. Giselsson, “Optimal preconditioning and iteration complexity bounds for
gradient-based optimization in model predictive control,” in American Control
Conf., 2013, pp. 358-364.

S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matriz In-
equalities in System and Control Theory, ser. Studies in Applied Mathematics.
Philadelphia, PA: STAM, Jun. 1994, vol. 15.

D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control
for quadrotors,” in IEEE International Conf. on Robotics and Automation,
2011, pp. 2520-2525.

Y. Pu, M. Zeilinger, and C. N. Jones, “Inexact fast alternating minimization
algorithm for distributed model predictive control,” in 53th IEEE Conference
on Decision and Control, 2014, pp. 5915-5921.

——, “Inexact alternating minimization algorithm for distributed optimization
with an application to distributed mpc,” submitted in Mar. 2016.

P. Giselsson, “Execution time certification for gradient-based optimization in
model predictive control,” in 51th IEEE Conference on Decision and Control,
Dec. 2012, pp. 3165-3170.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs and Mathematical Tables. Dover Publications, Incorporated,
1974.

Y. Pu, M. Zeilinger, and C. N. Jones, “Quantization design for unconstrained
distributed optimization,” in American Control Conference, 2015.

Bibliography 110

[54]

[64]

[65]

[66]

—, “Quantization design for distributed optimization,,” IFEFE Transactions
on Automatic Control, accepted for publication in March 2016. [Online].
Available: http://infoscience.epfl.ch/record /207085 /files/pu_quantization.pdf?
version=1

T. Erseghe, “Distributed optimal power flow using admm,” IEEE Transactions
on Power Systems, vol. 29, pp. 23702380, 2014.

R. Carli and G. Notarstefano, “Distributed partition-based optimization via
dual decomposition,” in 2013 IEEE 52nd Annual Conference on Decision and
Control (CDC), 2013, pp. 2979-2984.

R. Carli, F. Fagnani, P. Frasca, T. Taylor, and R. Zampieri, “Average con-
sensus on networks with transmission noise or quantization,” in Proceedings of
European Control Conference, 2007.

A. Kashyap, T. Basar, and R. Srikant, “Quantized consensus,” Automatica,
vol. 43, pp. 1192-1203, 2007.

D. Thanou, E. Kokiopoulou, Y. Pu, and P. Frossard, “Distributed average con-
sensus with quantization refinement,” IEEE Transactions on Signal Processing,
vol. 61, pp. 194-205, 2013.

T. Li, M. Fu, L. Xie, and J.-F. Zhang, “Distributed consensus with limited
communication data rate,” IEEFE Transactions on Automatic Control, vol. 56,
pp- 279-292, 2011.

A. Nedic, A. Olshevsky, A. Ozdaglar, and J. Tsitsiklis, “On distributed aver-
aging algorithms and quantization effects,” IEEE Transactions on Automatic
Control, vol. 54, pp. 2506-2517, 2009.

——, “Distributed subgradient methods and quantization effects,” in /7th
IEEE Conference on Decision and Control, 2008, pp. 4177-4184.

M. Rabbat and R. Nowak, “Quantized incremental algorithms for distributed
optimization,” IEEE Journal on Selected Areas in Communications, vol. 23,
pp- 798-808, 2005.

M. El Chamie, L. J., and T. Basar, “Design and analysis of distributed averaging
with quantized communication,” in Proc. of the 53st IEEE Conf. on Decision
and Control, 2014, pp. 3860-3865.

Y. Nesterov, Introductory Lectures on Convexr Optimization: A Basic Course.
Springer, 2004.

Y. Pu, M. N. Zeilinger, and C. N. Jones, “Quantization design for distributed
optimization with time-varying parameters,” in 54th IEEE Conference on De-
cision and Control, 2015, pp. 2037-2042.

H. T. Kung, “Synchronized and asynchronous parallel algorithms for multipro-
cessors,” pp. 153-200, 1976.

Ye Pu

Address EPFL-STI-IGM-LA Station 9 website http://people.epfl.ch/y.pu
Lausanne 1015, Switzerland Email y.pu@epfl.ch
Education

02.2012 - present

04.2009 - 06.2011

09.2004 - 07.2008

PhD in progress, School of Electrical Engineering
Ecole Polytechnique Fédéral de Lausanne. Lausanne, Switzerland

Master of Science, Electrical Engincering
Technische Universitdt Berlin, Berlin, Germany

Bachelor of Science, Electronic, Information and Electrical Engineering
Shanghai Jiao Tong University, Shanghai, China

Research experience

02.2012- present

02.2014- 04.2014

09.2011- 01.2012

01.2011 - 06.2011

02.2010 - 03.2011

Automatic Control Lab, EPFL
Doctoral assistant. supervised by Prof. Colin Jones and Prof. Melanie Zeilinger

Hybrid System Lab, University of California at Berkeley
Visiting Researcher, supervised by Prof. Melanie Zeilinger and Prof. Claire Tomlin

Signal Processing Lab 4, EPFL
Intern, supervised by Prof. Pascal Frossard

Control Systems Group, TU Berlin
Master thesis, supervised by Dr. Naim Bajcinca and Prof. Joérg Raisch

Medical Technology Division Group
Fraunhofer Institute for Production Systems and Design Technology, Berlin
Research assistant, supervised by Dr. Christian Winne and Prof. Erwin Keeve

Honors

Excellent Scholarship of Shanghai Jiao Tong University 2005, 2006, 2007
Excellent Graduate of Shanghai Jiao Tong University 2008
Swiss National Science Foundation - Early Postdoc. Mobility Fellowship 09.2016 - 03.2018

1 of 2

Languages

Chinese Native

English Full professional proficiency
German Professional working proficiency
Publications

e Y. Pu, M. N. Zeilinger and C. N. Jones. Quantization Design for Distributed Optimization, March
2016, accepted for publication in IEEE Transactions on Automatic Control. http://infoscience.
epfl.ch/record/207085/files/pu_quantization.pdf?version=1

e Y. Pu, M. N. Zeilinger and C. N. Jones. Complexity Certification of the Fast Alternating Min-
imization Algorithm for Linear Model Predictive Control, March 2016, accepted for publication
in IEEE Transactions on Automatic Control. http://infoscience.epfl.ch/record/207029/
files/FAMAMPC_jrnl.pdf?version=1

e F. F. C. Rego, Y. Pu, A. Alessandretti, A. P. Agular and C. N. Jones. Design of a Distributed
Quantized Luenberger Filter for Bounded Noise. American Control Conference, 2016.

e Y. Pu, M. N. Zeilinger and C. N. Jones. Quantization Design for Distributed Optimization with
time-varying parameters. 54rd IEEE Conference on Decision and Control, Osaka, 2015.

o . F. C. Rego, Y. Pu, A. P. Aguiar and C. N. Jones. A Consensus Algorithm for Networks with
Process Noise and Quantization Error. 53rd Annual Allerton Conference 2015.

e Y. Pu, M. N. Zeilinger and C. N. Jones. Quantization Design for Unconstrained Distributed
Optimization. American Control Conference, Chicago, 2015.

e Y. Pu, M. N. Zeilinger and C. N. Jones. Fast Alternating Minimization Algorithm for Model
Predictive Control. 19th IFAC World Congress, Cape Town, 8-24, 2014.

¢ Y. Pu, M. N. Zeilinger and C. N. Jones. Inexact Fast Alternating Minimization Algorithm for
Distributed Model Predictive Control. 53rd IEEE Conference on Decision and Control, Los Angeles,
2014, December 15-17, 2014.

e G. Stathopoulos, A. Sziics, Y. Pu and C. N. Jones. Splitting methods in control. 13th European
Control Conference, Strasbourg, June 24-27 2014.

e M.N. Zeilinger, Y. Pu, S. Riverso, G. Ferrati-Trecate, C. N. Jones. Plug and Play Distributed
Model Predictive Control based on Distributed Invariance and Optimization. 52rd IEEE Conference
on Decision and Control, Florence, 2013

e D. Thanou, E. Kokiopoulou, Y. Pu and P. Frossard. Distributed Average Consensus with Quan-
tization Refinement. Transactions on Signal Processing, p. 194-205, 2013.

e N. Bajcinca and Y. Pu A Symbolic Approach to Decentralized Supervisory Control of Hybrid
Systems. accepted to 51st Annual Allerton Conference 2013

Preprints

e Y. Pu, M. N. Zeilinger and C. N. Jones. Inexact Alternating Minimization Algorithm for Dis-
tributed Optimization with an Application to Distributed MPC, March. 2016, submitted to IEEE
Transactions on Automatic Control

e L. Ferranti, Y. Pu, C. N. Jones, and T. Keviczky. Asynchronous Splitting Design for Model
Predictive Control. submitted to 55th IEEE Conference on Decision and Control, 2016

e G. Stathopoulos, H. Shukla, A. Sziics, Y. Pu and C. N. Jones. Operator splitting methods in
control. Sep. 2015 submitted to Foundations and Trends in Systems and Control.

2 of 2

