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Abstract

While both fundamental limits and system implementations are well understood
for the point-to-point communication system, much less is developed for general
communication networks. This thesis contributes towards the design and analysis
of advanced coding schemes for multi-user communication networks with structured
codes.

The first part of the thesis investigates the usefulness of lattice codes in Gaussian
networks with a generalized compute-and-forward scheme. As an application, we
introduce a novel multiple access technique — Compute-Forward Multiple Access
(CFMA), and show that it achieves the capacity region of the Gaussian multiple
access channel (MAC) with low receiver complexities. Similar coding schemes are
also devised for other multi-user networks, including the Gaussian MAC with states,
the two-way relay channel, the many-to-one interference channel, etc., demonstrating
improvements of system performance because of the good interference mitigation
property of lattice codes.

As a common theme in the thesis, computing the sum of codewords over a
Gaussian MAC is of particular theoretical importance. We study this problem with
nested linear codes, and improve upon the currently best known results obtained by
nested lattice codes.

Inspired by the advantages of linear and lattice codes in Gaussian networks, we
make a further step towards understanding intrinsic properties of the sum of linear
codes. The final part of the thesis introduces the notion of typical sumset and
presents asymptotic results on the typical sumset size of linear codes. The results
offer new insight to coding schemes with structured codes.

Keywords: Compute-and-forward, compute-forward multiple access, CFMA,
computation rate, Gaussian multiple access channel, Gaussian interference chan-
nel, lattice code, linear code, many-to-one interference channel, nested linear code,
typical sumset.
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Résumé

Si les limites fondamentales et les implémentations de systèmes de communication
point-à-point sont désormais bien mâıtrisées, les connaissances au sujet des réseaux
de communication à terminaux multiples sont quant à elles bien moins développées.
Cette thèse apporte de nouvelles contributions à la conception et à l’analyse de
schémas de codage avancés pour les réseaux de communication à utilisateurs multi-
ples employant des codes structurés.

La première partie de cette thèse étudie les avantages des schémas de calcul-et-
transmission (angl. compute-and-forward) basés sur des codes à réseau (angl. lattice
codes) dans les configurations à terminaux multiples de canaux gaussiens. Comme
exemple d’application, une technique novatrice d’accès multiple est présentée —
l’accès multiple par calcul-et-transmission (angl. Compute-Forward Multiple Access,
abrégé CFMA), et il est démontré que cette technique permet d’atteindre la région de
capacité du canal gaussien à accès multiple (angl. Multiple Access Channel, abrégé
MAC) avec un récepteur d’une faible complexité. Des schémas de codage similaires
sont aussi conçus pour d’autres configurations de canal à utilisateurs multiples, dont
le MAC gaussien avec états, le canal à relai bidirectionnel, le canal à interférence
plusieurs-à-un, etc., démontrant ainsi les améliorations de la performance du système
obtenues grâce aux propriétés avantageuses des codes à réseau pour la mitigation
des phénomènes d’interférence.

En tant que thème récurrent de cette thèse, le calcul de la somme de mots-code
au travers d’un MAC gaussien est d’une importance théorique particulière. Nous
étudions ce problème au moyen de codes linéaires imbriqués (angl. nested linear
codes), et parvenons à surpasser les meilleures résultats connus à ce jour et obtenus
grâce aux codes à réseau.

En nous inspirant des avantages que présentent les codes linéaires et les codes
à réseau dans les configurations à terminaux multiples de canaux gaussiens, nous
faisons un pas supplémentaire vers une compréhension complète des caractéristiques
propres à la somme de codes linéaires. La dernière partie de cette thèse introduit
la notion de somme d’ensembles typique et présente des résultats asymptotiques
concernant la cardinalité de l’ensemble-somme typique pour les codes linéaires. Les
resultats offrent un nouvel angle de vue sur les schémas de codage basés sur les codes
structurés.

Mots-clés : calcul-et-transmission, CFMA, canal gaussien à accès multiple, canal
gaussien à interférence, code à réseau, code linéaire, canal à interférence plusieurs-
à-un, codes linéaires imbriqués, somme d’ensembles typique.
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Introduction 1
With rapid progress on wireless communication technologies and the growing de-
mands of multimedia applications, the number of wireless devices has increased
drastically in recent years along with ever increasing request for higher data rates.
These changes have shifted the challenges of communications in network: from com-
bating noise to mitigating interference.

The classical Information Theory established by Shannon [1] provides definite
answers to fundamental limits of point-to-point communications, where the main
challenge is to deal with noise in the channel. After the birth of the mathematical
theory of communication, it has taken several decades for researchers to find practical
error-correcting codes along with efficient encoding and decoding algorithms. In
particular, Turbo codes [2], LDPC codes [3] and recently proposed polar codes [4]
are exemplary results of capacity-approaching/achieving codes amenable to practical
implementations. After six decades of research, it can be argued that the simple
point-to-point communication systems are well understood and the theory developed
sofar is sufficient to guide the design for commercial communication systems.

On the other hand, communication systems in real life are far more complicated
than idealized point-to-point models. We often deal with situations where a large
number of mobile devices are active simultaneously in a relatively small space, such
as wireless hotspots. In these scenarios there exist complicated interactions among
different devices and we do not yet have a satisfying theory for such complex systems.
Network Information Theory, also started by Shannon in [5], is an extension of
classical Information Theory to communication networks, and allows us to study the
fundamental limits of communication in networks to some degree [6]. However, most
communication problems in networks are still wide open, including the very basic
system consisting of two transceiver pairs which models the simplest interference
channel.

Despite the fact that the optimal communication scheme for most multi-user
communication systems are unknown, recent progress in Network Information The-
ory shows that certain classes of codes are particularly suited for some communi-
cation networks. These are the so-called Gaussian networks where the transmitted
signals are linearly added up at receivers along with additive noises. The codes of
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2 Introduction

interest have certain algebraic structure (hence referred to as structured codes in
the sequel) which matches the additive channel well and makes it much easier for
receivers to mitigate interference. Furthermore, recent research shows that for com-
munications in a network, it is essential to let intermediate devices (or “relays” in a
network) process the information in an intelligent way. For example the celebrated
Network Coding [7] result shows that in a wired (noiseless) network, mixing two
information flows in intermediate relays (for example performing summation of two
information symbols) can increase data throughput in the network, if there exist
more than one transceiver pair in the network. For a general noisy communication
network, structured codes are shown to be very useful for such intermediate informa-
tion processing. Specialized to the Gaussian network, lattice codes and associated
new schemes give new perspectives of channel coding in communication networks.
Roughly speaking, instead of directly decoding transmitted codewords reliably, re-
lays can choose to decode the sum of codewords, or more generally, to compute a
function of codewords from different users reliably, and this function will be used in
subsequent steps for further process.

A noticeable contribution towards computation over network is the compute-
and-forward scheme introduced in [8]. The idea is to let intermediate nodes decode
integer combinations of codewords, and in the end if receivers obtain enough inte-
ger combinations, its desired message can be extracted by solving a set of linear
equations. As one of the main topics in this thesis, we will introduce a general-
ized compute-and-forward scheme which incorporates channel state information at
transmitters (CSIT) in a meaningful way, and show that it gives new perspectives
for multiple access problems. More specifically, a novel technique called Compute-
Forward Multiple Access (CFMA) is introduced for the Gaussian multiple access
channel (MAC) with the advantage of achieving the capacity of Gaussian MAC
with relatively simple receiver structures.

Contributions

• Generalized Compute-and-Forward scheme. We develop a generalized
compute-and-forward scheme using nested lattice codes which can utilize the
channel state information (CSI) at transmitters in a beneficial way [9]. In
particular, instead of using fixed lattice codes at every transmitters, we pro-
posed to use differently scaled lattices at different transmitters. The scaling is
chosen according the channel coefficients in the network so that the channel
gain is fully exploited. This could enlarge the computation rate considerably
in networks with asymmetric channel gains and has immediately applications
on many scenario.

• Applications: CFMA and lattice codes in Gaussian networks. As
an application of the generalized compute-and-forward scheme, a multiple ac-
cess technique is developed for the classical Gaussian multiple access channel
(MAC) [10] [11]. In this scheme, the receiver will first recover integer combina-
tions of messages and solve each message individually afterwards. One attrac-
tive feature of this multiple access technique is that the receiver is equipped
with a single-user decoder of low-complexity. This is compared to the conven-
tional optimal decoder for Gaussian MAC, which either performs multi-user



Introduction 3

detection (high complexity) on the received signal, or requires time-sharing
between two users (extra constraints on transmitters). With the recent grow-
ing interests on non-orthogonal multiple access techniques, this novel approach
may attract interests in industry-related research and help innovate the next
generation communication technologies. A similar coding scheme is proposed
for Gaussian MAC with states non-causally known to transmitters (the Gaus-
sian Dirty MAC) and shown to give new achievable rate regions [11]. Various
coding schemes based on lattice codes are also studied on other networks.
For the Gaussian many-to-one interference channel, a lattice based scheme is
shown to outperform conventional coding strategies, and establishes new con-
stant gap or capacity results which are independent of the number of users
[12]. Novel coding schemes are developed for two-user interference channels,
two-way relay channels and MIMO channels, which either improve upon best
known results, or recover known results with simpler decoder architectures.

• Nested linear codes for computation. Like lattice codes to Gaussian net-
works, the recently proposed nested linear codes can be used for computation
over general discrete-time memoryless networks, including the well studied
Gaussian networks. We investigate the achievable computation rates with this
code for a simple two-user Gaussian MAC [13]. The results not only recover
the best known results with nested lattice codes, but also show theoretical
improvements with nested linear codes.

• Typical sumsets of linear codes. Motivated by the applications of lattice
codes in wireless networks, we study the sumset of linear codes. Given two
identical linear codes C over Fq of length n, we independently pick one code-
word from each codebook uniformly at random. A sumset is formed by adding
these two codewords entry-wise as integer vectors and a sumset is called typi-
cal, if the sum falls inside this set with high probability. We ask the question:
how large is the typical sumset for most codes? We show that when the rate
R of the linear code is below a certain threshold D, the typical sumset size
is roughly |C|2 = 22nR for most codes while when R is above this threshold,
most codes have a typical sumset whose size is roughly |C| · 2nD = 2n(R+D)

due to the linear structure of the codes. The threshold D depends solely on
the alphabet size q and takes value in [1/2, log

√
e).

Notations
Vectors and matrices are denoted using bold letters such as a andA, respectively.

The i-th entry of a vector a is denoted as ai and Ai denotes the i-th column of the
matrix A. We often use [a : b] to denote the set of integers {a, a + 1, . . . , b −
1, b}. Logarithm log is with base 2 and we use the shorthand notation log+(x) :=
max{0, log(x)} for x > 0. Sets are usually denoted using calligraphic letters such as
A and their cardinality are denoted by |A|. We often deal with quantities depending
on the codeword length n. The notation on(1) denotes a quantity that approaches
0 as n → ∞. We say a

.
= 2nb for some constant b if there exists some εn ↘ 0 such

that 2n(b−εn) ≤ a ≤ 2n(b+εn). We also consider the probability of events in the limit
when the codeword length n goes to infinity. For any event H, we say the event H
occurs asymptotically almost surely (a.a.s.) if P {H} → 1 as n → ∞.



4 Introduction

Given a probability distribution PU over the alphabet U , we use A(n)
[U ] to denote

the set of typical sequences defined as:

A(n)
[U ] :=

{
m :

∣∣∣∣PU (a)− 1

n
N(a|m)

∣∣∣∣ ≤ δ, for all a ∈ U
}

(1.1)

whereN(a|m) is the occurrence count of the symbol a in sequencem = (m1, . . . ,mn).

Similarly we can define the conditional typical sequences A(n)
[Z|U ](u) as well as the

typical sequences A(n)
[ZU ] determined by a joint distribution PZU as in [14, Ch. 2].



Preliminaries 2
Lattices and lattice codes are important ingredients to communication schemes stud-
ied in this thesis. This chapter is devoted to give necessary background on lattices
in Euclidean space and nested lattice codes built out of it. Materials in this chapter
can be found in the comprehensive treatment [15] on this topic. In particular all
definitions in this chapter follow those in [15]. At the end of this chapter we also
review the fundamental tool to many of the advanced communication schemes, the
compute-and-forward scheme [8].

2.1 Lattices and Lattice Codes

A lattice Λ is a discrete subgroup of Rn with the property that if t1, t2 ∈ Λ, then
t1+ t2 ∈ Λ. An n-dimensional lattice Λ can be generated by n linearly independent
basis vectors g1,g2, . . . ,gn in R

n as

Λ =

{
t =

n∑
i=1

aigi : ai ∈ Z

}
.

The lattice quantizer QΛ : R
n → Λ is defined as

QΛ(x) = argmint∈Λ ||t− x|| . (2.1)

The fundamental Voronoi region of a lattice Λ is defined to be

V := {x ∈ R
n : QΛ(x) = 0}. (2.2)

The modulo operation gives the quantization error with respect to the lattice:

[x]mod Λ := x−QΛ(x). (2.3)

The following definitions describe properties of a lattice.

Definition 2.1 (Second moment). The second moment of the lattice Λ with Voronoi
region V is defined to be

σ2(Λ) :=
1

nVol (V)
∫
V
||x||2 dx. (2.4)

5



6 Preliminaries

Definition 2.2 (Normalized second moment). The normalized second moment of a
lattice Λ with Voronoi region V is defined to be

G(Λ) :=
σ2(Λ)

(Vol (V))2/n .

Later in this chapter, we will construct codes using lattices for the additive
white-Gaussian noise (AWGN) channel of the form

Y = X+ Z (2.5)

where X,Y,Z ∈ R
n are the channel input, channel output and additive noise,

respectively. The Gaussian noise Z is assumed to be independent from the channel
input X and its probability density function is given by

fZ(z) =
1

(2πN0)n/2
e
− ‖z‖2

2N0

where N0 is the variance per dimension. Given Y, an estimation of X can be given
by simply quantizing Y with respect to the lattice Λ. This is called lattice decoding
(or nearest-neighbor decoding) in the literature and the estimate is given as

X̂ = QΛ(Y) = argmint∈Λ ||Y − t|| .

The following definitions are important for measuring the performance of lattice
codes in an AWGN channel.

Definition 2.3 (Error probability). The error probability in lattice decoding of the
lattice Λ, in the presence of AWGN Z with variance N0, is defined as

Pe(Λ, N0) := P {Z /∈ V}

where V is the Voronoi region of Λ.

Definition 2.4 (Normalized volume to noise ratio). The normalized volume to noise
ratio (NVNR) of a lattice Λ, at a target error probability 0 < Pe < 1, is defined as

μ(Λ, Pe) :=
(Vol (V))2/n

N0(Pe)

where N0(ε) is the value of N0 such that Pe(Λ, N0) is equal to ε.

Notice that NVNR is a dimensionless number and is invariant to scaling or
rotation of the lattice. Now we are ready to define the asymptotic goodness of
lattices.

Definition 2.5 (Good for AWGN channel). A sequence of n-dimensional lattices
Λ(n) is said to be good for AWGN channel if for all Pe > 0, the normalized volume
to noise ratios satisfy

lim
n→∞μ(Λ(n), Pe) = 2πe
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Definition 2.6 (Good for quantization). A sequence of n-dimensional lattices Λ(n)

is said to be good for quantization if the normalized second moments satisfy

lim
n→∞G(Λ(n)) =

1

2πe
(2.6)

We will see later that these goodness properties are desirable for constructing
lattice codes with good performance. An important result from [16] shows that
there exists a sequence of lattices such that they are asymptotically good both for
quantization and AWGN channel.

Theorem 2.1 (Simultaneous goodness [16]). There exists a sequence of lattices of
increasing dimension Λ(n) which satisfy μ(Λ(n),Pe) → 2πe and G(Λn) → 1/2πe as
n → ∞ for all Pe > 0.

Two lattices Λ and Λ′ are said to be nested if Λ′ ⊆ Λ. A nested lattice code C can
be constructed using the coarse Λ′ for shaping and the fine lattice Λ as codewords:

C := {t ∈ R
n : t ∈ Λ ∩ V ′} (2.7)

where V ′ is the Voronoi region of Λ′. It can be shown [15, Cor. 8.2.1] that the size
of the codebook |C| is given by Γn := Vol (V ′)/Vol (V) where Γ is called the nesting
ratio and the rate of this nested lattice code is defined to be

R :=
1

n
log

Vol (V ′)
Vol (V) . (2.8)

The following result shows that there also exists a sequences of nested lattices
which are simultaneously good.

Theorem 2.2 (Good nested lattices). For any nesting ratio Γ, there exists a se-
quence of nested lattices (Λ(n),Λ

′(n)) with Λ
′(n) ⊆ Λ(n), such that each lattice is good

for quantization and good for AWGN channel.

A proof of the above result can be found in Erez and Zamir [17] or [15, Thm.
8.5.1]. Nam et al. [18, Theorem 2] extend the results to the case when there are
multiple nested lattice codes.

Given a lattice code belonging to a lattice Λ, it is shown in [19] that the code can
be used (with a spherical shaping region) to achieve the capacity of AWGN channels
with ML decoding. A more interesting question is if lattice codes can achieve the
capacity of AWGN channels with lattice decoding. That is, the decoder estimates
the transmitted codeword by simply quantizing the (possibly pre-processed) channel
output with respect to the lattice Λ. This question is studied in [20] and finally
settled by Erez and Zamir [17] using nested lattice codes.

Theorem 2.3 (Capacity-achieving lattice codes with lattice decoding [17]). Con-
sider the AWGN channel in (2.5) with capacity C = 1

2 log(1 + P ). For any ε > 0,
there exists a sequence of nested lattice codes with rate defined in (2.8) grater than
C − ε, that achieve the capacity of this channel using lattice decoding.

This theorem, in particular the performance of lattice codes under lattice decod-
ing, is a key result to many advanced coding schemes to be studied in the rest of
the thesis.



8 Preliminaries

2.2 Multiple Access Channels

The multiple access channel (MAC) is a basic building block for many communi-
cation networks. It is also one of the few examples in network information theory
whose optimal transmission strategy is known. In this section we review the results
for a general K-user discrete memoryless MAC.

A multiple access channel with K users is specified by a conditional probabil-
ity mass function pY |X1X2...,XK

(y|x1, x2, . . . , xk) with channel inputs xk ∈ Xk, k =
1, . . . ,K and channel output y ∈ Y. Each transmitter is equipped with an encoder
Ek which maps a message Mk from the set Mk := {1, . . . , 2nRk} to a channel input
in X n

k with length n, and the receiver is equipped with a decoder D which maps
the channel output in Yn to K estimated messages. The receiver is interested in
decoding all messages from all transmitters reliably. More specifically, letMk denote
the randomly chosen message in the message set Mk of user K, the average error
probability of decoding all messages is given by

P (n)
e :=

K⋃
k=1

P

{
M̂k 
=Mk

}

where M̂k denotes the estimated messages at the receiver. We say the achievable
message rate tuple1 (R1, . . . , RK) is achievable, if there exist encoders and a decoder
such that the above error probability Pe can be made arbitrarily small for large
enough n. The capacity region of the MAC is the closure of the set of achievable
rate tuples.

The capacity region of the multiple access channel is found in [21] [22].

Theorem 2.4. The capacity region of the K-user discrete memoryless multiple ac-
cess channel is the set of rate tuples (R1, R2, . . . , Rk) such that∑

j∈J
Rj ≤ I(X(J ), Y |X(J c), Q) for every J ⊆ [1 : K]

for some pmf pQ(q)
∏K

j=1 pj(xj |q) with the cardinality of Q bounded as |Q| ≤ K.
Furthermore X(J ) denotes the set {Xj , j ∈ J } and J c is the complement set of J .

In particular, the capacity region of the 2-user MAC is the set of rate pairs
(R1, R2) such that

R1 ≤ I(X1;Y |X2, Q)

R2 ≤ I(X2;Y |X1, Q)

R1 +R2 ≤ I(X1, X2;Y |Q)
for some pmf pQ(q)pq(x1|q)p2(x2|q) with |Q| ≤ 2.

2.3 Achievable Computation Rates

The term “achievable rate” is widely used in the information and communication
theory literature and has a straightforward meaning in the context of conventional

1or simply achievable rate tuple.
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communication networks, where messages of source nodes are to be decoded reliably
at the intended destinations as in the previous section. But some interesting (or even
optimal) communication schemes in network will require the receiver not to decode
individual messages, but to process the incoming information in some other way.
Hence if the goal of a communication scheme is not to decode (individual) messages,
the term “achievable rate” should be used with caution. The purpose of this section
to make clear distinctions between these concepts. In this section, definitions are
given with multiple access channels for the sake of simplicity, but the ideas carry
over easily to general networks.

Now we consider a K-user MAC where the receiver wishes to decode a function
of incoming messages reliably. In its most general form, let g be a function which
maps K messages from M1 × . . . ×MK to an element in a set G. The goal at the
receiver is not to decode individual messages Mk, but to decode a function of the
messages. Then the error probability of this coding scheme is given by

P (n)
e,g := P

{
Ĝ(Y n) 
= g(M1, . . . ,MK)

}
where Ĝ(Y n) denotes the estimated function value using channel output Y n. For
computing such a function of messages, the achievable computation rates are defined
as follows.

Definition 2.7 (Computation rate tuple). Consider a K-user multiple access chan-
nel. We say a computation rate tuple (R1, . . . , RK) with respect to the function
g : M1 × · · · ×MK �→ G is achievable, if there exist encoders and a decoder, such

that the decoding error probability P
(n)
e,g can be made arbitrarily small for large enough

n.

Notice that the achievable computation rates depend not only on the channel,
but also on the function to be computed. But in slight abuse of notation, the
dependence on the function g is suppressed in the notation for the computation rate
Rk. The term computation rates are also often used without explicitly mentioning
the function to be computed, tacitly assuming that it is clear from the context. We
should point out that the concept of achievable computation rates can be viewed
as a generalization of the conventional achievable (message) rates. Indeed, if we let
g to be the identity function, i.e., g(M1,M2) = (M1,M2), then the two definitions
coincide. However we shall see in subsequent chapters that for a given channel, the
achievable computation rates (for certain function) can be higher than achievable
message rates.

2.4 The Compute-and-Forward Scheme

We will briefly review the compute-and-forward scheme proposed by Nazer and
Gastpar in [8], which considers computing the sum of codewords via a Gaussian
network. Although the scheme discussed in [8] is applicable to a general Gaussian
network with multiple transmitters and multiple receivers, we will only restrict our
attention to the Gaussian multiple access channel in this section for the sake of
brevity. Applications in later chapter will consider more general settings.
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To illustrate the basic idea of the compute-and-forward scheme, we consider the
canonical K-user Gaussian MAC. The discrete-time real Gaussian MAC has the
following vector representation

y =
K∑
k=1

hkxk + z (2.9)

with y,xk ∈ R
n denoting the channel output at the receiver and channel input of

transmitter k. The white Gaussian noise with unit variance per entry is denoted by
z ∈ R

n. A fixed real number hk denotes the channel coefficient from user k. Notice
that in the original compute-and-forward scheme, transmitters do not need to have
the knowledge of channel coefficients. We can assume without loss of generality that
every user has the same power constraints on the channel input as E{||xk||2} ≤ nP .

As described in Section 2.1, given two simultaneously good lattices Λ′ ⊆ Λ, and
a nested lattice code is constructed as C := Λ ∩ V ′. For user k, each message Mk is
mapped to a codeword tk(Mk) in C in a one-to-one fashion. The way to construct
this mapping is called Construction A and is discussed in details in [8]. The function
to be computed at the receiver is of the form:

g(M1, . . . ,Mk) :=

[
K∑
k=1

aktk(Mk)

]
mod Λ′ (2.10)

where ak are integers for all k = 1, . . . ,K.

Theorem 2.5 (Compute-and-forward [8]). For the K-user Gaussian MAC in (2.9),
the computation rate tuple (r1, . . . , rK) with respect to the modulo sum g(M1, . . . ,Mk)
defined in (2.10) is achievable if

rk < log+
(
||a|| − P (hTa)2

1 + P ||h||2
)−1

, k = 1, . . .K

where a := [a1, . . . , aK ] ∈ Z
K and h := (h1, . . . , hK).

The key property that the sum of two lattice points is still a lattice point is the
rational behind choosing lattice codes for computation. Namely, the possible sums
of codewords from a structured code (lattice code for example) are much fewer than
that from an unstructured (randomly chosen) code. Hence intuitively it should be
easier to decode the sum with structured codes. More concrete results on the sum
of codes will be presented in Chapter 7.

We point out that in the original formulation of the compute-and-forward scheme
[8], the achievable computation rates are the same for all users if the power con-
straints are the same, regardless of the channel coefficients (notice that the expres-
sion in Theorem 2.5 does not depend on k). For the case when power constraints are
different, the authors in [23] have shown achievable computation rate tuples with
different rates for different users, using similar nested lattice codes construction (al-
though the ratio of the rates is determined by their power constraints). However it
is known that for a Gaussian MAC, one can always absorb the power constraints
into the channel coefficients and assume without loss of generality that the power
constraints are the same. This suggests that the results in [8] and [23] are special
cases of a more general scheme, which we shall discuss in the next chapter.



Computation with Lattice Codes over
Gaussian Networks 3
In this chapter we will extend the compute-and-forward strategy to the scenario
where the channel state information is known at transmitters (CSIT)1. We will show
that with this information, a modified compute-and-forward scheme incorporating
CSIT will significantly enlarge the computation rate regions in some cases.

3.1 A General Compute-and-Forward Scheme

We first introduce the generalized compute-and-forward scheme for theK-user Gaus-
sian MAC

y =

K∑
k=1

hkxk + z (3.1)

with y,xk ∈ R
n denoting the channel output at the receiver and channel input of

transmitter k, respectively. The channel coefficient from user k to the receiver is
denoted by hk, and is assumed to be known at the transmitter k. We can assume
without loss of generality that every user has the same power constraints on the
channel input as E{||xk||2} ≤ nP .

To construct the nested lattice codes in our scheme, let βk, k = 1, . . . ,K be K
nonzero real numbers. For each user we choose a lattice Λk which is simultaneously
good in the sense of Definition 2.5 and 2.6. These K lattices Λk, k = 1, . . . ,K
are chosen to form a nested lattice chain according to a certain order which will
be determined later (We do not exclude the possibility that these K lattices are
the same). We let Λc denote the coarsest lattice among them, i.e., Λc ⊆ Λk for all
k = 1, . . . ,K. We will construct another K nested lattices Λs

k ⊆ Λc where all lattices
are also simultaneously good, and with second moment

1

nVol (Vs
k)

∫
Vs
k

||x||2 dx = β2
kP

1The material of this chapter has appeared in
J. Zhu and M. Gastpar, “Asymmetric Compute-and-Forward with CSIT”, in Proc. International

Zurich Seminar on Communications, Zurich, Switzerland, Mar. 2014

11
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where Vs
k denotes the Voronoi region of the lattice Λ

s
k. The lattice Λ

s
k is used as the

shaping region for the codebook of user k. For each transmitter k, we construct the
codebook as

Ck = Λk ∩ Vs
k (3.2)

and the rate of the codebook Ck is defined to be

rk :=
1

n
log |Ck| = 1

n
log

Vol (Vs
k)

Vol (Vk)
(3.3)

Furthermore, messages Mk of user k are bijectively mapped to codewords in Ck.
Similar to the original compute-and-forward scheme, the function to be computed

at the receiver is given by

g(M1, . . . ,Mk) :=

[
K∑
k=1

aktk(Mk)

]
mod Λs

f (3.4)

where tk(Mk) is the codeword from user k and Λs
f denotes the finest lattice among

Λs
k, k = 1, . . . ,K and ak are integers for all k = 1, . . . ,K.

Theorem 3.1 (General compute-and-forward for the Gaussian MAC). Consider a
K-user Gaussian MAC with channel coefficients h = (h1, . . . , hK) and equal power
constraint P . Let β1, . . . , βK be K nonzero real numbers, the computation rate tuple
(r1, . . . , rK) with respect to the modulo sum in (3.4) is achievable if

rk <

[
1

2
log

(
||ã||2 − P (hT ã)2

1 + P ||h||2
)−1

+
1

2
log β2

k

]+
(3.5)

for all k where ã := [β1a1, ..., βKaK ] and ak ∈ Z for all k ∈ [1 : K].

Proof. A proof is given in the Appendix of this chapter.

We have the following remarks regarding this general compute-and-forward scheme.

• By setting βk = 1 for all k we recover the original compute-and-forward for-
mula given in Theorem 2.5.

• The usefulness of the parameters β1, . . . , βK lies in the fact that they can be
chosen according to the channel coefficients hk and power P .

• In the case that each transmitter has power Pk, replace hk by h′k :=
√

Pk/Phk
for all k in (3.5).

Before moving on, it is instructive to inspect formula (3.5) in some details. We
rewrite (3.5) in the following expression

1

2
log
(
βi(1 + P‖h‖2))− 1

2
log
(‖ã‖2 + P (‖h‖2‖ã‖2 − (hT ã)2)

)
. (3.6)

As already pointed out in [24], the term ‖h‖2‖ã‖2 − (hT ã)2 in the second log has a
natural interpretation – it measures how the coefficient ã differs from the channel h,
in other words the rate loss occurred because of the mismatch between the chosen
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coefficient and channel gains. Cauchy-Schwartz Inequality implies that this term is
always nonnegative and is zero if and only if ã is colinear with the channel coefficient
h. Notice that in the original compute-and-forward scheme, where ã = a by setting
all βk to be 1, this term is not necessarily zero because a is an integer vector while h
can take all possible values in R

K . However in this generalized scheme we are given
the freedom to tune parameters βk ∈ R

K , and the rate loss due to the mismatch can
be completely eliminated by choosing βk to align ã with h. In general, the lattice
scaling coefficients βk allow us to adjust the codebook rate freely and is essential to
our coding scheme for Gaussian MAC discussed in the sequel.

Lastly we comment again on the difference between achievable (message) rates
and achievable computation rates defined in Definition 2.7. We give an example
of computation rate pairs for a 2-user Gaussian MAC in Figure 3.1. It is worth
noting that the achievable computation rate region can be strictly larger than the
achievable message rate region.

Figure 3.1 – In this figure we show an achievable computation rate region for comput-
ing the sum [t1 + t2] mod Λs

f over a 2-user Gaussian MAC where h1 = 1, h2 =
√
2

and P = 4. The dotted black line shows the capacity region of this MAC. The
dashed blue line depicts the computation rate pairs given by (3.5) in Theorem 3.1.
Points along this curve are obtained by choosing different β1, β2. The shaded region
shows the whole computation rate region, in which all the computation rate pairs
are achievable. Notice that in this case the computation rate region contains the
whole capacity region of this Gaussian MAC and is strictly larger than the latter.

As studied in [8], the compute-and-forward scheme can be used in a Gaussian
network with more than one receivers. More precisely, we can consider a Gaussian
network with K transmitters and M relays as

ym =
K∑
k=1

hmkxk + zm,m = 1, . . . ,M (3.7)
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where each relay wants to decode one integer combination of codewords in the form

gm(M1, . . . ,MK) :=

[
K∑
k=1

amktk(Mk)

]
mod Λs

f ,m = 1, . . .M (3.8)

with amk ∈ Z for all m, k. As before Λs
f denotes the finest lattice among Λs

k, k =
1, . . . ,K. Notice that in this case, the computation rate tuple is defined under the
condition that all modulo sum gm,m = 1, . . . ,M should be decoded reliably at the
intended relay.

Theorem 3.2 (General compute-and-forward with multiple receivers). Consider a
network with K transmitters and M relays in (3.7) with channel coefficients hm :=
(hm1, . . . , hmK) and equal power constraints P . Let β1, . . . , βK be K nonzero real
numbers, the computation rate tuple (r1, . . . , rK) with respect to the M modulo sums
in (3.8) is achievable if

rk < min
m∈[1:M ]

Rk(am,hm)

where Rk(am,hm) is defined as

Rk(am,hm) :=

[
1

2
log

(
||ãm||2 − P (hT

mãm)
2

1 + P ||hm||2
)−1

+
1

2
log β2

k

]+

with ãm := [am1β1, . . . , amKβK ].

Proof. The codes constructions are given in (3.2). Unlike the special case of Gaussian
MAC with one receiver, the fine lattices Λk, k = 1, . . . ,K in this network are in
general different (but still nested). We use Λf to denote the finest lattice among
Λk, k = 1, . . .K, and each relay m decodes the function gm with respect to Λf in
the same way as in the proof of Theorem 3.1. The decoding procedure at relay
m imposes a constraint on the rate of the codebook Ck, i.e., it should hold that
rk ≤ Rk(am,hm) for all k. If all relays want to decode the sum successfully, each
transmitter has to construct its codebook such that it meets the above constraints at
all relays. Therefore when the codebook is constructed as in (3.2), the fine lattice Λk

for Ck should be chosen such that the message rate Rk does not exceed Rk(am,hm)
for any m, hence the rate of the codebook Ck is given by minm∈[1:M ]Rk(am,hm).

3.2 Appendix

We give the proof of Theorem 3.1.

Proof of Theorem 3.1. The codes constructions are given in (3.2). In fact for the
Gaussian MAC with one receiver, we can choose all the fine lattices Λk, k = 1, . . . ,K
to be the same lattice, denoted as Λ. Its Voronoi region is denoted by V. When the
message Mk of user k is chosen, the encoder finds the corresponding codeword tk
and forms its channel input as follows

xk = [tk/βk + dk] mod Λ
s
k/βk (3.9)
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where the dither dk is a random vector uniformly distributed in the scaled Voronoi
region Vs

k/βk. As pointed out in [17], xk is independent from tk and also uniformly
in Λs

k/βk hence has average power P for all k.
At the decoder we form

ỹ := αy −
∑
k

akβkdk

=
∑
k

ak

(
βk(tk/βk + dk)− βkQΛs

k/βk
(tk/βk + dk)

)
−
∑
k

akβkdk + z̃

(a)
= z̃+

∑
k

ak(tk −QΛs
k
(tk + βkdk))

:= z̃+
∑
k

akt̃k

with t̃k := tk −QΛs
k
(tk + βkdk) and the equivalent noise

z̃ :=
∑
k

(αhk − akβk)xk + αz (3.10)

which is independent of
∑

k akt̃k since all xk are independent of
∑

k akt̃k thanks to
the dithers dk. The step (a) follows because it holds QΛ(βX) = βQΛ

β
(X) for any

β 
= 0.
The decoder obtains the sum

∑
k akt̃k using lattice decoding with respect to the

lattice Λ. That is, the decoder quantizes ỹ to its nearest neighbor in Λ. Notice
we have t̃k ∈ Λ for all k because tk ∈ Λ and Λs

k ⊆ Λ due to the nested codes
construction. Hence the sum

∑
k akt̃k also belongs to the lattice Λ. The decoding

error probability is equal to the probability that the equivalent noise z̃ leaves the
Voronoi region surrounding the lattice point

∑
k akt̃k. Since the fine lattice Λ is

good for AWGN channel, the probability Pr (z̃ /∈ V) goes to zero exponentially as
long as

Vol (V)2/n
N(α)

> 2πe (3.11)

where

N(α) := E ||z̃||2 /n = ||αh− ã||2 P + α2 (3.12)

denotes the average power per dimension of the equivalent noise. Recall that the
shaping lattice Λs

k is good for quantization hence we have

G(Λs
k)2πe < (1 + δ) (3.13)

for any δ > 0 if n is large enough. Together with the rate expression in (3.3) we can
see that lattice decoding is successful if

β2
kP2

−2rk/G(Λs
k) > 2πeN

for every k, or equivalently

rk <
1

2
log

(
P

N(α)

)
+
1

2
log β2

k −
1

2
log(1 + δ)
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By choosing δ arbitrarily small and optimizing over α we conclude that the lattice
decoding of

∑
k akt̃k will be successful if

rk <max
α

1

2
log

(
P

N(α)

)
+
1

2
log β2

k (3.14)

=
1

2
log

(
||ã||2 − P (hT ã)2

1 + P ||h||2
)−1

+
1

2
log β2

k (3.15)

Lastly the modulo sum is obtained by[∑
k

ak t̃k

]
mod Λs

f =

[∑
k

aktk −
∑
k

akQΛs
k
(tk + βkdk)

]
mod Λs

f

=

[∑
k

aktk

]
mod Λs

f

where the last equality holds because Λs
f is the finest lattice among Λ

s
k, k = 1, . . . ,K.



Application: Compute-Forward
Multiple Access (CFMA) 4
Lattice codes used under the compute-and-forward paradigm suggest an alternative
strategy for the standard Gaussian multiple-access channel (MAC): The receiver
successively decodes integer linear combinations of the messages until it can invert
and recover all messages.1 As it is entirely based on the compute-forward scheme,
this type of multiple-access technique will be called compute-forward multiple access
(CFMA). In this chapter, we will show that how CFMA can achieve the capacity
region of the two-user Gaussian MAC, with the advantage that simple single-user
decoders can be used at the receiver. Coding strategies with the general compute-
and-forward scheme are also applied to other networks, including the general K-user
Gaussian MAC, the two-user Gaussian MAC with states non-causally known to
transmitters, the Gaussian two-way relay channel, and the point-to-point Gaussian
MIMO channel.

4.1 The Two-user Gaussian MAC

The Gaussian multiple access channel is a well-understood communication system.
To achieve its entire capacity region, the receiver can either use joint decoding (a
multi-user decoder), or a single-user decoder combined with successive cancellation
decoding and time-sharing [25, Ch. 15]. An extension of the successive cancellation
decoding called Rate-Splitting Multiple Access is developed in [26] where only single-
user decoders are used to achieve the whole capacity region without time-sharing,
but at the price that messages have to be split to create more virtual users.

In this section we show that without time-sharing, the entire capacity region
can be attained with a single-user decoder with CFMA as soon as the signal-to-
noise ratios are above 1 +

√
2. For the 2-user Gaussian MAC, the receiver first

1The material of this chapter has appeared in
1. J. Zhu and M. Gastpar, “Asymmetric Compute-and-Forward with CSIT”, in Proc. Interna-

tional Zurich Seminar on Communications, Zurich, Switzerland, Mar. 2014
2. J. Zhu and M. Gastpar, “Gaussian (dirty) multiple access channels: A compute-and-forward

perspective”, in Proc. 2014 IEEE International Symposium on Information Theory (ISIT), Hon-
olulu, HI, USA, Jul. 2014

3. J. Zhu and M. Gastpar, “Multiple Access via Compute-and-Forward”, in arXiv: 1407.8463.
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Figure 4.1 – An illustration of an achievable rate region for a 2-user Gaussian MAC
with the proposed scheme. The rate pairs in the shaded region can be achieved using
a single-user decoder without time-sharing. As SNR increases, the end points of the
line segment approach the corner points and the whole capacity region becomes
achievable. A sufficient condition for achieving the whole capacity region is that the
SNR of both users are above 1 +

√
2.

decodes the sum of the two transmitted codewords, and then decodes either one of
the codewords, using the sum as side information. As an example, Figure 4.1 gives
an illustration of an achievable rate region for a symmetric 2-user Gaussian MAC
with our proposed scheme. When the signal-to-noise ratio (SNR) of both users is
below 1.5, the proposed scheme cannot attain rate pairs on the dominant face of the
capacity region. If the SNR exceeds 1.5, a line segment on the capacity boundary
is achievable. As SNR increases, the end points of the line segment approach the
corner points, and the whole capacity region is achievable as soon as the SNR of
both users is larger than 1+

√
2. We point out that the decoder used in our scheme is

a single-user decoder since it merely performs lattice quantizations on the received
signal. Hence this novel approach allows us to achieve rate pairs in the capacity
region using only a single-user decoder without time-sharing or rate splitting.

We should point out that a related result in [27] shows that using a similar idea
of decoding multiple integer sums, the sum capacity of the Gaussian MAC can be
achieved within a constant gap. Furthermore, it is also shown in [28] that under
certain conditions, some isolated (non-corner) points of the capacity region can be
attained. To prove these results, the authors use fixed lattices which are independent
of channel gains. Here we close these gaps by showing that if the lattices are properly
scaled in accordance with the channel gains, the full capacity region can be attained.

Recall that the 2-user Gaussian MAC is given by

y = h1x1 + h2x2 + z (4.1)

with equal power constraints ||xk||2 ≤ nP, k = 1, 2. We use nested lattice codes for
two users with the same construction described in Section 3.1. The encoding and
decoding procedures are given as follows.

• Encoding: For user k, given the message and the unique corresponding code-
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word tk, the channel input is generated as

xk = [tk/βk + dk]mod Λ
s
k/βk, k = 1, 2. (4.2)

where dk is called a dither which is a random vector uniformly distributed in
the scaled Voronoi region Vs

k/βk.

• Decoding: To decode the first sum with coefficient (a1, a2), let Λf denote the
finer lattice between Λ1,Λ2 if a1, a2 
= 0. Otherwise set Λf = Λ1 if a2 = 0,
or Λf = Λ2 if a1 = 0. Let α1 be a real number to be determined later and
form ỹ1 := α1y −∑k akβkdk, the first sum with coefficient a is decoded by
performing the lattice quantization

QΛf
(ỹ1) (4.3)

Define Λ′
f in the similarly way for the second sum with coefficient (b1, b2), the

second sum is obtained by performing the lattice quantization

QΛ′
f
(ỹ2) (4.4)

where the construction of ỹ2 is given the proof of the following theorem.

Theorem 4.1 (Achievable message rate pairs for the 2-user Gaussian MAC). Con-
sider the 2-user multiple access channel in (4.1). Let β1, β2 be two nonzero real
numbers and we collect them into one vector β := (β1, β2). The following message
rate pair is achievable

Rk =

⎧⎪⎨
⎪⎩
rk(a, β) if bk = 0

rk(b|a, β) if ak = 0

min{rk(a, β), rk(b|a, β)} otherwise

for any linearly independent a,b ∈ Z
2 and β ∈ R

2 if it holds rk(a, β), rk(b|a, β) ≥ 0
for k = 1, 2, where we define

rk(a, β) :=
1

2
log

β2
k(1 + h21P + h22P )

K(a, β)
(4.5)

rk(b|a, β) := 1

2
log

β2
kK(a, β)

β2
1β

2
2(a2b1 − a1b2)2

(4.6)

with

K(a, β) :=
∑
k

a2kβ
2
k + P (a1β1h2 − a2β2h1)

2 (4.7)

Proof. Recall that the transmitted signal for user k is given by

xk = [tk/βk + dk]mod Λ
s
k/βk (4.8)

Notice that xk is independent of tk and uniformly distributed in Λ
s
k/βk hence has

average power Pk for k = 1, 2.
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Given two integers a1, a2 and some real number α1, we can form

ỹ1 := α1y −
∑
k

akβkdk

=
∑
k

(α1hk − akβk)xk + α1z1︸ ︷︷ ︸
z̃1

+
∑
k

akβkxk −
∑
k

akβkdk

(a)
= z̃1 +

∑
k

ak

(
βk(tk/βk + dk)− βkQΛs

k/βk
(tk/βk + dk)

)
−
∑
k

akβkdk

(b)
= z̃1 +

∑
k

ak(tk −QΛs
k
(tk + βkdk))

= z̃1 +
∑
k

akt̃k (4.9)

with the notation

z̃1 :=
∑
k

(α1hk − βkak)xk + α1z (4.10)

t̃k := tk −QΛs
k
(tk + βkdk) (4.11)

Step (a) follows from the definition of xk and step (b) uses the identity QΛ(βx) =
βQΛ/β(x) for any real number β 
= 0. Note that t̃k lies in Λ due to the nested
construction Λs

k ⊆ Λ. The term z̃1 acts as an equivalent noise independent of∑
k akt̃k (thanks to the dithers) and has an average variance per dimension

N1(α1) =
∑
k

(α1h1 − βkak)
2P + α2

1 (4.12)

The decoder obtains the sum
∑

k akt̃k from ỹ1 using lattice decoding : it quantizes ỹ1

to its closest lattice point in Λ. Using the same argument in the proof of Theorem
3.1, we can show this decoding process is successful if the rate of the transmitter k
satisfies

rk < rk(a, β) := max
α1

1

2
log+

β2
kP

N1(α1)
(4.13)

Optimizing over α1 we obtain the claimed expression in (4.5). In other words we have
the computation rate pair (r1(a, β), r2(a, β)) for computing the sum

2 a1t̃1 + a2t̃2.
We remark that the expression (4.5) is exactly the general compute-and-forward
formula given in Theorem 3.1 for K = 2.

To decode a second integer sum with coefficients b we use the idea of successive
cancellation [8][29]. If rk(a, β) > 0 for k = 1, 2, i.e., the sum

∑
k akt̃k can be decoded,

we can reconstruct the term
∑

k akβkxk as
∑

k akβkxk =
∑

k akt̃k +
∑

k akβkdk.

2Notice that in Theorem 3.1, the computation rate tuple is defined with respect to the modulo
sum [

∑
k aktk] mod Λs

f . Here we decode the sum
∑

k ak t̃k without the modulo operation. However
this will not affect the achievable message rate pair, because we can also recover the two codewords
t1 and t2 using the two sums

∑
k ak t̃k and

∑
k bk t̃k, as shown in the proof.
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Similar to the derivation of (4.9), we can use
∑

k akβkxk to form

ỹ2 := α2y + λ(
∑
k

akβkxk)−
∑
k

bkβkdk (4.14)

=
∑
k

(α2hk − (bk + λak)βk)xk + α2z+
∑
k

bkt̃k (4.15)

= z̃2 +
∑
k

bkt̃k (4.16)

where the equivalent noise

z̃2 :=
∑
k

(α2hk − (bk + λak)βk)xk + α2z (4.17)

has average power per dimension

N2(α2, λ) =
∑
k

(α2hk − (bk + λak)βk)
2P + α2

2. (4.18)

Under lattice decoding, the term
∑

k bkt̃k can be decoded if for k = 1, 2 we have

rk < rk(b|a, β) = max
α2,λ

1

2
log+

β2
kP

N2(α2, λ)
(4.19)

Optimizing over α2 and λ gives the claimed expression in (4.6). In other words
we have the computation rate pair (r1(b|a, β), r2(b|a, β)) for computing the sum
b1t̃1 + b2t̃2.

A simple yet important observation is that if a,b are two linearly independent
vectors, then t̃1 and t̃2 can be solved using the two decoded sums, and consequently
two messages t1, t2 are found by

tk = [t̃k] mod Λs
k

This means that if two vectors a and b are linearly independent, the message rate
pair (R1, R2) is achievable with

Rk = min{rk(a, β), rk(b|a, β)} (4.20)

Another important observation is that when we decode a sum
∑

k akt̃k with the
coefficient ai = 0, the lattice point t̃i does not participate in the sum

∑
k akt̃k hence

the rate Ri will not be constrained by this decoding procedure as in (4.13). For
example if we decode a1t̃1+ a2t̃2 with a1 = 0, the computation rate pair is actually
(∞, r1(a, β)), since the rate of user 1 in this case can be arbitrarily large. The same
argument holds for the case bk = 0. Combining (4.20) and the special cases when
ak or bk equals zero, we have the claimed result.

The achievability scheme described in the above theorem is based on the compute-
and-forward scheme hence is called compute-forward multiple access (CFMA). Now
we state the main theorem in this section showing it is possible to use CFMA to
achieve non-trivial rate pairs satisfying R1 + R2 = Csum := 1

2 log(1 + h21P + h22P ).
Furthermore, we show that the whole capacity region is achievable under certain
conditions on h1, h2 and P .
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Theorem 4.2 (Capacity achieving for the 2-user Gaussian MAC). We consider
the two-user Gaussian MAC in (4.1) where two sums with coefficients a and b are
decoded. We assume that ak 
= 0 for k = 1, 2 and define

A :=
h1h2P√

1 + h21P + h22P
. (4.21)

Case I): If it holds that

A < 3/4, (4.22)

the sum capacity cannot be achieved with CFMA.
Case II): If it holds that

A ≥ 3/4, (4.23)

the sum rate capacity can be achieved by decoding two integer sums using a =
(1, 1),b = (0, 1) with message rate pairs

R1 = r1(a, β2), R2 = r2(b|a, β2), with some β2 ∈ [β′
2, β

′′
2 ] (4.24)

or using a = (1, 1),b = (1, 0) with message rate pairs

R1 = r1(b|a, β2), R2 = r2(a, β2), with some β2 ∈ [β′
2, β

′′
2 ] (4.25)

where β′
2, β

′′
2 are two real roots of the quadratic equation

f(β2) := K(a, β2)− β2

√
1 + h21P + h21P = 0 (4.26)

The expressions rk(a, β2), rk(b|a, β2)and K(a, β2) are given in (4.5), (4.6) and (4.7)
by setting β1 = 1, respectively.

Case III: If it holds that

A ≥ 1, (4.27)

by choosing a = (1, 1) and b = (0, 1) or b = (1, 0), the achievable rate pairs in
(4.24) and (4.25) cover the whole dominant face of the capacity region.

Proof. It is easy to see from the rate expressions (4.5) and (4.6) that we can without
loss of generality assume β1 = 1 in the following derivations. We do not consider
the case when ak = 0 for k = 1 or k = 2, which is just the classical interference
cancellation decoding. Also notice that it holds:

r1(a, β2) + r2(b|a, β2) = r2(a, β2) + r1(b|a, β2) = 1

2
log

1 + (h21 + h22)P

(a2b1 − a1b2)2
(4.28)

= Csum − log |a2b1 − a1b2| (4.29)

We start with Case I) when the sum capacity cannot be achieved. This happens
when

rk(a, β2) < rk(b|a, β2), k = 1, 2 (4.30)
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for any choice of β2, which is equivalent to

f(β2) > 0 (4.31)

where f(β2) is given in (4.26). To see this, notice that Theorem 4.1 implies that in
this case the sum message rate is

R1 +R2 = r1(a, β2) + r2(a, β2) (4.32)

for ak 
= 0. Due to Eqn. (4.29) we can upper bound the sum message rate by

R1 +R2 < r1(a) + r2(b|a, β2) ≤ Csum (4.33)

R1 +R2 < r2(a) + r1(b|a, β2) ≤ Csum, (4.34)

meaning the sum capacity is not achievable. It remains to characterize the condition
under which the inequality f(β2) > 0 holds. It is easy to see the expression f(β2) is
a quadratic function of β2 with the leading coefficient a

2
2(1+h21P ). Hence f(β2) > 0

always holds if the equation f(β2) = 0 does not have any real root. The solutions
of f(β2) = 0 are given by

β′
2 :=

2a1a2h1h2P + S −√
SD

2(a22 + a22h
2
1P )

(4.35a)

β′′
2 :=

2a1a2h1h2P + S +
√
SD

2(a22 + a22h
2
1P )

(4.35b)

with

S :=
√
1 + (h21 + h22)P (4.36)

D := S(1− 4a21a
2
2) + 4Pa1a2h1h2 (4.37)

Inequality f(β2) > 0 holds for all real β2 if D < 0 or equivalently

h1h2P√
1 + (h21 + h22)P

<
4a21a

2
2 − 1

4a1a2
(4.38)

The R.H.S. of the above inequality is minimized by choosing a1 = a2 = 1 which yields
the condition (4.22). This is shown in Figure 4.2a: in this case the computation rate
pair of the first sum t̃1 + t̃2 is too small and it cannot reach the sum capacity.

In Case II) we require rk(a, β2) ≥ rk(b|a, β2) or equivalently f(β2) ≤ 0 for some
β2. By the derivation above, this is possible if D ≥ 0 or equivalently

h1h2P√
1 + (h21 + h22)P

≥ 4a21a
2
2 − 1

4a1a2
(4.39)

If we choose the coefficients to be a = (a1, a2) and b = (0, b2) for some nonzero
integers a1, a2, b2, Theorem 4.1 implies the sum rate is

R1 +R2 = r1(a, β2) + r2(b|a, β2) = Csum − log |a2b1 − a1b2| (4.40)

If the coefficients satisfy |a2b1−a1b2| = 1, the sum capacity is achievable by choosing
β2 ∈ [β′

2, β
′′
2 ], with which the inequality (4.39) holds. Notice that if we choose
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β2 /∈ [β′
2, β

′′
2 ], then rk(a, β2) < rk(b|a, β2) and we are back to Case I). The condition

|a2b1 − a1b2| = 1 is satisfied if the coefficients are chosen to be a = (1, 1),b = (0, 1).
For simplicity we collect these two vectors and denote them as A1 := (aT ,bT )T .

In general, not the whole dominant face of the capacity region can be achieved

by varying β2 ∈ [β′
2, β

′′
2 ]. One important choice of β2 is β

(1)
2 := h1h2P

1+h2
1P
. With this

choice of β2 and coefficients A1 we have

R1 = r1(a, β
(1)
2 ) =

1

2
log(1 + h21P ) (4.41)

R2 = r2(b|a, β(1)
2 ) =

1

2
log(1 +

h22P

1 + h21P
) (4.42)

which is one corner point of the capacity region. Similarly with β
(2)
2 :=

1+h2
2P

h1h2P
and

coefficients A2 we have

R2 = r2(a, β
(2)
2 ) =

1

2
log(1 + h22P ) (4.43)

R1 = r1(b|a, β(2)
2 ) =

1

2
log(1 +

h21P

1 + h22P
) (4.44)

which is another corner point of the capacity region. If the condition β
(1)
2 , β

(2)
2 /∈

[β′
2, β

′′
2 ] is not fulfilled, we cannot choose β2 to be β

(1)
2 or β

(2)
2 hence cannot achieve

the corner points of the capacity region. In Figure 4.2b we give an example in this
case where only part of rate pairs on the dominant face can be achieved.

In Case III) we require β
(1)
2 , β

(2)
2 ∈ [β′

2, β
′′
2 ]. In Appendix 4.6.1 we show that

β
(1)
2 , β

(2)
2 ∈ [β′

2, β
′′
2 ] if and only if the condition (4.27) is satisfied. With the coeffi-

cients A1, the achievable rate pairs (r1(a, β2), r2(b|a, β2)) lies on the dominant face
by varying β2 in the interval [β

(1)
2 , β′′

2 ] and in this case we do not need to choose

β2 in the interval [β′
2, β

(1)
2 ), see Figure 4.3a for an example. Similarly with coeffi-

cients A2, the achievable rate pairs (r1(b|a, β2), r2(a, β2)) lie on the dominant face
by varying β2 in the interval [β′

2, β
(2)
2 ] and we do not need to let β2 take values

in the interval (β
(2)
2 , β′′

2 ], see Figure 4.3b for an example. Since we always have
r1(a, β

′
2) ≥ r1(b|a, β′′

2 ) and r2(b|a, β′
2) ≥ r2(a, β

′′
2 ), the achievable rate pairs with

coefficients A1 and A2 cover the whole dominant face of the capacity region.

As mentioned previously, a similar idea is developed in [28] showing that certain
isolated points on the capacity boundary are achievable under certain condition.
Before ending the proof, we comment on two main pints in the proposed scheme,
which also us to improve upon the previous result. The first point is the introduction
of the scaling parameters βk which allow us to adjust the rates of two users. More
precisely, equations (4.13) and (4.19) show that the scaling parameters not only affect
the equivalent noise N1(α1) and N2(α2, λ), but also balance the rates of different
users (as they also appear in the numerators). We need to adjust the rates of two
users carefully through these parameters to make sure that the rate pair lie on the
capacity boundary. The second point is that in order to achieve the whole capacity
boundary, it is very important to choose the right coefficient of the sum. In particular
for the two-user Gaussian MAC, the coefficient for the second sum should be (1, 0)
or (0, 1). More discussions on this point is given in the next section.
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2, P = 1.2

Figure 4.2 – Plot (a) shows the achievable rate pairs in Case I. In this case the
condition (4.22) is satisfied and the computation rate pair of the first sum is too
small. It has no intersection with the dominant face hence cannot achieve sum
rate capacity. Notice that the (message) rate pairs contained in the computation
rate region are achievable. Plot (b) shows the situation in Case II. In this case the
condition (4.23) is fulfilled and the computation rate pair of the first sum is larger.
It intersects with the dominant face. hence the sum capacity is achievable. In this
example the condition (4.27) is not satisfied hence only part of the dominant face
can be achieved, as depicted in the plot. The rate pair segement on the dominant
face can be achieved by choosing a = (1, 1), b = (1, 0) or b = (0, 1) and varying
β2 ∈ [β′

2, β
′′
2 ]. Choosing β2 to be β′

2, β
′′
2 gives the end points of the segement. We

emphesize that if we choose a = (1, 0),b = (0, 1) or a = (0, 1),b = (1, 0), i.e.,
the conventional successive cancellation decoding, we can always achieve the whole
capacity region, irrespective of the condition (4.22) or (4.23).

Figure 4.4 shows the achievability of our scheme for different values of received
signal-to-noise ratio h2kP . In Region III (a sufficient condition is h

2
kP ≥ 1 +

√
2 for

k = 1, 2), we can achieve any point in the capacity region. In Region I and II the pro-
posed scheme is not able to achieve the entire region. However, we should point out
that if we choose the coefficients to be a = (1, 0),b = (0, 1) or a = (0, 1),b = (1, 0),
the CFMA scheme reduces to the conventional successive cancellation decoding, and
is always able to achieve the corner point of the capacity region, irrespective of the
values of h1, h2 and P .

4.1.1 On the choice of coefficients

In Theorem 4.2 we only considered the coefficients a = (1, 1), b = (1, 0) or b = (0, 1).
It is natural to ask whether choosing other coefficients could be advantageous. We
first consider the case when the coefficients a of the first sum is chosen differently.

Lemma 4.1 (Achieving capacity with a different a). Consider a 2-user Gaussian
MAC where the receiver decodes two integer sums of the codewords with coefficients
a = (a1, a2) and b = (0, 1) or b = (1, 0). Certain rate pairs on the dominant face
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(a) Case III with h1 = 1, h2 =
√
2, P = 4 (b) Case III with h1 = 1, h2 =

√
2, P = 4

Figure 4.3 – Achievable rate pairs in Case III. The capacity region and the compu-
tation rate pairs in the two plots are the same. In this case the condition (4.27) is
satisfied hence the computation rate pair of the first sum is large enough to achieve
the whole capacity region by decoding two nontrivial integer sums. Plot (a) shows

the achievable rate pairs by choosing a = (1, 1),b = (0, 1) and varying β2 ∈ [β
(1)
2 , β′′

2 ].
Plot (b) shows the achievable rate pairs by choosing a = (1, 1),b = (1, 0) and vary-

ing β2 ∈ [β′
2, β

(2)
2 ]. The union of the achievable rate pairs with coefficients cover

the whole dominant face of the capacity region. Recall that we have studied the
achievable computation rate region for this channel in Figure 3.1.
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Figure 4.4 – The plane of the received SNR h21P, h
2
2P is divided into three regions.

Region I corresponds to Case I when the condition (4.22) holds and the scheme
cannot achieve points on the boundary of the capacity region. In Region II the
condition (4.23) is met but the condition (4.27) is not, hence only part of the points
on the capacity boundary can be achieved. Region III corresponds to Case III where
(4.27) are satisfied and the proposed scheme can achieve any point in the capacity
region.
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are achievable if it holds that

h1h2P√
1 + (h21 + h22)P

≥ 4a21a
2
2 − 1

4a1a2
(4.45)

Furthermore the corner points of the capacity region are achievable if it holds that

h1h2P√
1 + (h21 + h22)P

≥ a1a2 (4.46)

Proof. The proof of the first statement is given in the proof of Theorem 4.2, see
Eqn. (4.38). The proof of the second statement is omitted as it is the same as the
proof of Case III in Theorem 4.2 with a general a.

This result suggests that for any a, it is always possible to achieve the sum
capacity if the SNR of users are large enough. However the choice a = (1, 1) is the
best, in the sense that it requires the lowest SNR threshold, above which the sum
capacity or the whole capacity region is achievable.

To illustrate this, let us reconsider the setting of Figure 4.3, but with coefficients
a different from (1, 1). As can be seen in Figure 4.5a, it is not possible to achieve
the sum capacity with a = (1, 2) or a = (2, 1). If we increase the power from P = 4
to P = 10, a part of the capacity boundary is achieved, as shown in Figure 4.5b. We
remark that in this case we cannot achieve the whole capacity region with a = (1, 2)
and a = (2, 1).

Now we consider a different choice on the coefficients b of the second sum. Al-
though from the perspective of solving equations, having two sums with coefficients
a = (1, 1),b = (1, 0) or a = (1, 1),b = (1, 2) is equivalent, here it is very important
to choose b such that it has one zero entry. Recall the result in Theorem 4.1 that
if bk 
= 0 for k = 1, 2, both message rates R1, R2 will have two constraints, resulting
from the two sums decoded. This extra constraint will diminish the achievable rate
region, and in particular it only achieves some isolated points on the dominant face.
This is illustrated by the example in Figure 4.6.

As a rule of thumb, the receiver should always decode the sums whose coefficients
are as small as possible in a Gaussian MAC.

4.1.2 A comparison with other multiple access techniques

Here we lay out the limitations and possible advantages of CFMA, and compare it
with other existing multiple access techniques.

• We have mentioned that one advantage of CFMA scheme is that the decoder
used for lattice decoding is a single-user decoder since it only requires perform-
ing lattice quantizations on the received signal. Compared to a MAC decoder
with joint-decoding, it permits a simpler receiver architecture. In other words,
a lattice codes decoder for a point-to-point Gaussian channel can be directly
used for a Gaussian MAC with a simple modification. But a joint-decoder
needs to perform estimations simultaneously on both messages hence gener-
ally has higher complexity.
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Figure 4.5 – In the left plot we show the computation rate pairs with parameters
h1 = 1, h2 =

√
2, P = 4 where the coefficients of the first sum are chosen to be

a = (1, 2) or a = (2, 1). In this case the condition (4.45) is not satisfied hence
no point on the dominant face can be achieved for the first sum. Compare it to
the example in Figure 4.3a or 4.3b where a = (1, 1) and the whole capacity region
is achievable. We also note that the achievable computation rate pairs depicted
in the Figure are also achievable message rate pairs, which can be shown using
Theorem 4.1. In the right plot we show the achievable rate pairs with parameters
h1 = 1, h2 =

√
2, P = 10 where the coefficient of the first sum is chosen to be

a = (1, 2) or a = (2, 1). It can be checked with Lemma 4.1 that we can achieve
the sum capacity with the given system parameters. Notice that only parts of the
capacity boundary are achievable and we cannot obtain the whole dominant face in
this case. In contrast, choosing a = (1, 1) achieves the whole dominant face.

• Compared to the successive cancellation decoding scheme with time sharing,
CFMA also performs successive cancellation decoding but does not require
time-sharing for achieving the desired rate pairs in the capacity region (pro-
vided that the mild condition on SNR is fulfilled).

• The rate-splitting scheme also permits a single-user decoder at the receiver.
As shown in [26], 2K− 1 single-user decoders are enough for the rate-splitting
scheme in a K-user Gaussian MAC. One disadvantage of this approach is that
the messages need to be split into smaller sub-messages and then re-emerged at
the receiver. On the other hand, CFMA requires a matrix inversion operation
to solve individual messages after collecting different sums which could be
computationally expensive. However as shown in an example in Section 4.2.2,
we can often choose the matrix to have very special structure and make it very
easy to solve for individual messages. Furthermore, CFMA can be combined
with rate-splitting where sums of several splitted messages can be decoded.
However the combination is not needed in this particular case.

• We also point out that in certain communication scenarios, conventional single-
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Figure 4.6 – The achievable rate pairs with parameters h1 = 1, h2 =
√
2, P = 4.

In this case the condition (4.27) is satisfied hence the first sum is chosen properly.
But as we choose b = (1, 2), only two isolated points (indicated by arrows) on the
dominant face can be achieved. This is due to the fact non-zero entries in b will
give an extra constraint on the rate, cf. Theorem 4.1. Compare it with the example
in Figure 4.3b.

user decoding with time-sharing or rate splitting is not able to achieve the op-
timal performance. An example for such scenario is the Gaussian interference
channel with strong interference. Detailed discussions will be given in the next
chapter.

4.2 The K-user Gaussian MAC

In this section, we extend the CFMA scheme to the general K-user Gaussian MAC
of the form

y =
K∑
k=1

hkxk + z (4.47)

with power constraints ||xk||2 ≤ nP . Continuing with the coding scheme for the 2-
user Gaussian MAC, in this case the receiver decodes K integer sums with linearly
independent coefficients and uses them to solve for the individual messages. The
coefficients of the K sums will be denoted by a coefficient matrix A ∈ Z

K×K

A := (aT1 . . .aTK)
T =

⎛
⎜⎜⎝

a11 a12 . . . a1K
a22 a22 . . . a2K
. . . . . . . . . . . .
aK1 aK2 . . . aKK

⎞
⎟⎟⎠ (4.48)

where the row vector a� := (a�1, . . . , a�K) ∈ Z
1×K denotes the coefficients of the 	-th

sum,
∑K

k=1 a�kt̃k.
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The following theorem gives an achievable message rate tuple for the general
K-user Gaussian MAC. It is an extension of [28, Thm. 2] as the scaling parameters
βk in CFMA allow a larger achievable rate region.

Theorem 4.3 (Achievable message rate tuples for the K-user Gaussian MAC).
Consider the K-user Gaussian MAC in (4.47). Let A be a full-rank integer matrix
and β1, . . . , βK be K non-zero real numbers. We define B := diag(β1, . . . , βK) and

KZ′ := PAB(I+ PhhT )−1BTAT (4.49)

Let the matrix L be the unique Cholesky factor of the matrix AB(I+PhhT )−1BTAT ,
i.e.

KZ′ = PLLT (4.50)

The message rate tuple (R1, . . . , RK) is achievable with

Rk = min
�∈[1:K]

{
1

2
log+

(
β2
k

L2
��

)
· χ(a�k)

}
, k = 1, . . . ,K (4.51)

where we define

χ(x) =

{
+∞ if x = 0,

1 otherwise.
(4.52)

Furthermore if A is a unimodular (|A| = 1) and Rk is of the form

Rk =
1

2
log

(
β2
k

L2
Π(k)Π(k)

)
, k = 1, . . . ,K (4.53)

for some permutation Π of the set {1, . . . ,K}, then the sum rate satisfies

∑
k

Rk = Csum :=
1

2
log(1 +

∑
k

h2kP ) (4.54)

Proof. To proof this result, we will adopt a more compact representation and follow
the proof technique given in [28]. We rewrite the system in (4.47) as

Y = hX+ z (4.55)

with h = (h1, . . . , hK) ∈ R
1×K and X = (xT

1 . . .xT
K)

T ∈ R
K×n where each xk ∈

R1×n is the transmitted signal sequence of user k given by

xk = [tk/βk + dk]mod Λk/βk (4.56)

Similar to the derivation for the 2-user case, we multiply the channel output by a
matrix F ∈ R

K×1 and it can be shown that the following equivalent output can be
obtained

Ỹ = AT+ Z̃ (4.57)
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where T := (t̃T1 . . . t̃TK)
T ∈ R

K×n and the lattice codeword t̃k ∈ Rn×1 of user k is
the same as defined in (4.11). Furthermore the noise Z̃ ∈ R

K×n is given by

Z̃ = (Fh−AB)X+ Fz (4.58)

where B := diag(β1, . . . , βK). The matrix F is chosen to minimize the variance of
the noise:

F := PABhT

(
1

P
I+ hhT

)−1

(4.59)

As shown in the proof of [8, Thm. 5], when analyzing the lattice decoding for
the system given in (4.57), we can consider the system

Ỹ = AT+ Z′ (4.60)

where Z′ ∈ R
K×n is the equivalent noise and each row zk is a n-sequence of i.i.d

Gaussian random variables zk for k = 1, . . . ,K. The covariance matrix of the
Gaussians z1, . . . , zK is the same as that of the original noise Z̃ in (4.57). It is easy
to show that the covariance matrix of the equivalent noise z1, . . . , zK is given in Eq.
(4.49).

Now instead of doing the successive interference cancellation as in the 2-user
case, we use an equivalent formulation which is called “noise prediction” in [28]. Be-
cause the matrix AB(I+PhhT )−1BTAT is positive definite, it admits the Cholesky
factorization hence the covariance matrix KZ′ can be rewritten as

KZ′ = PLLT (4.61)

where L is a lower triangular matrix.
Using the Cholesky decomposition of KZ̃, the system (4.60) can be represented

as

Ỹ = AT+
√
PLW

=

⎛
⎜⎜⎜⎝

a11 a12 . . . a1K
a21 a22 . . . a2K
...

...
...

...
aK1 aK2 . . . aKK

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

t̃1
t̃2
...
t̃K

⎞
⎟⎟⎟⎠+

√
P

⎛
⎜⎜⎜⎝

L11 0 0 . . . 0
L21 L22 0 . . . 0
...

...
...

...
...

LK1 LK2 LK3 . . . LKK

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

w1

w2
...

wK

⎞
⎟⎟⎟⎠

(4.62)

with W = [wT
1 , . . . ,w

T
K ] ∈ R

K×n where wi ∈ R
n×1 is an n-length sequence whose

components are i.i.d. zero-mean white Gaussian random variables with unit vari-
ance. This is possible by noticing that

√
PLW and Z′ have the same covariance

matrix. Now we apply lattice decoding to each row of the above linear system. The
first row of the equivalent system in (4.62) is given by

ỹ1 := a1T+
√
PL11w1 (4.63)

Using lattice decoding, the first integer sum a1T =
∑

k a1kt̃k can be decoded reliably
if

rk <
1

2
log+

β2
kP

PL2
11

=
1

2
log+

β2
k

L2
11

, k = 1, . . . ,K (4.64)
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Notice that if a1k equals zero, the lattice point t̃k does not participate in the sum
a1T hence rk is not constrained as above.

The important observation is that knowing a1T allows us to recover the noise
term w1 from ỹ1. This “noise prediction” is equivalent to the successive interference
cancellation, see also [28]. Hence we could eliminate the term w1 in the second row
of the system (4.62) to obtain

ỹ2 := a2T+
√
PL22w2 (4.65)

The lattice decoding of a2T is successful if

rk <
1

2
log+

β2
kP

PL2
22

=
1

2
log+

β2
k

L2
22

, k = 1, . . . ,K (4.66)

Using the same idea we can eliminate all noise terms w1, . . . ,w�−1 when decode the
	-th sum. Hence the rate constraints on k-th user when decoding the sum a�T is
given by

rk <
1

2
log+

β2
kP

PL2
��

=
1

2
log+

β2
k

L2
��

, k = 1, . . . ,K (4.67)

When decoding the 	-th sum, the constraint on rk will be active only if the coefficient
of t̃k is not zero. Otherwise this decoding will not constraint rk. This fact is captured
by introducing the χ function in the statement of this theorem.

In the case when the achievable message rate Rk is of the form

Rk =
1

2
log

(
β2
k

L2
Π(k)Π(k)

)
(4.68)

The sum rate is∑
k

Rk =
∑
k

1

2
log

β2
k

L2
Π(k)Π(k)

=
1

2
log
∏
k

β2
k

L2
kk

(4.69)

=
1

2
log

∏
k β

2
k

|LLT | =
1

2
log

∏
k β

2
k

|AB(I+ PhhT )−1BTAT | (4.70)

=
1

2
log |I+ PhhT |+ 1

2
log
∏
k

β2
k − log |A| − 1

2
log |BTB| (4.71)

=
1

2
log |I+ PhhT | − log |A| (4.72)

= Csum − log |A| (4.73)

If A is unimodular, i.e., |A| = 1, the sum rate is equal to the sum capacity.

The above theorem says that to achieve the sum capacity, A needs to be uni-

modular and Rk should have the form Rk = 1
2 log

β2
k

L2
Π(k)Π(k)

, whose validity also

depends on the choice of A. It is difficult to characterize the class of A for which
this holds. In the case when A is upper triangular with non-zero diagonal en-
tries and L2

11 ≤ . . . ≤ L2
KK , this condition holds and in fact in this case we have

Rk =
1
2 log

β2
k

L2
kk
. It can be seen that we are exactly in this situation when we study

the 2-user MAC in Theorem 4.2.
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4.2.1 An example of a 3-user MAC

It is in general difficult to analytically characterize the achievable rate using our
scheme of the K-user MAC. We give an example of a 3-user MAC in Figure 4.7 to
help visualize the achievable region. The channel has the form y =

∑3
k=1 x3+z and

the receiver decodes three sums with coefficients of the form

A =

⎛
⎝1 1 1

ei
ej

⎞
⎠ (4.74)

for i, j = 1, 2, 3 and i 
= j where ei is a row vector with 1 in its i-th and zero
otherwise. It is easy to see that there are in total 6 matrices of this form and they
all satisfy |A| = 1 hence it is possible to achieve the capacity of this MAC according
to Theorem 4.3. For power P = 8, most parts of the dominant face are achievable
except for three triangular regions. For smaller power P = 2, the achievable part
of the dominant face shrinks and particularly the symmetric capacity point is not
achievable. It can be checked that in this example, no other coefficients will give a
larger achievable region.

Unlike the 2-user case, even with a large power, not the whole dominant face can
be obtained in this symmetric 3-user MAC. To obtain some intuition why it is the
case, we consider one edge of the dominant face indicated by the arrow in Figure
4.7a. If we want to achieve the rate tuple on this edge, we need to decode user 1
last because R1 attains its maximum. Hence a reasonable choice of the coefficients
matrix would be

A′ =

⎛
⎝0 1 1
0 1 0
1 0 0

⎞
⎠ or A′ =

⎛
⎝0 1 1
0 0 1
1 0 0

⎞
⎠ (4.75)

Namely we first decode two sums to solve both t2 and t3, and then decode t1 without
any interference. When decoding the first two sums, we are effectively dealing with
a 2-user MAC while treating t1 as noise. But the problem is that with t1 as noise,
the signal-to-noise ratio of user 2 and 3 are too high, such that computation rate
pair cannot reach the dominant face of the effective 2-user MAC with t1 being noise.
This is the same situation as the Case I considered in Theorem 4.2. In Figure 4.7a
we also plot the achievable rates with the coefficients A′ above, on the side face. On
the side face where R1 attains its maximal value, we see the achievable rates cannot
reach the dominant face, as a reminiscence of the 2-user example in Figure 4.2a.

4.2.2 The symmetric capacity for the symmetric Gaussian MAC

As it is difficult to obtain a complete description of the achievable rate region for a
K-user MAC, in this section we investigate the simple symmetric channel where all
the channel gains are the same. In this case we can absorb the channel gain into
the power constraint and assume without loss of generality the channel model to be

y =
∑
k

xk + z (4.76)
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(a) hk = 1, P = 8 (b) hk = 1, P = 2

Figure 4.7 – The achievable rate region (red part) in Theorem 4.3 for a symmetric
3-user Gaussian MAC with hk = 1 for k = 1, 2, 3 and different powers P .

where the transmitted signal xk has an average power constraint P . We want to see
if CFMA can achieve the symmetric capacity

Csym =
1

2K
log(1 +KP ) (4.77)

For this specific goal, we will fix our coefficient matrix to be

A :=

⎛
⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ (4.78)

Namely we first decode a sum involving all codewords
∑

k tk, then decode the indi-
vidual codewords one by one. Due to symmetry the order of the decoding procedure
is irrelevant and we fix it to be t2, . . . , tK . As shown in Theorem 4.3, the analysis
of this problem is closely connected to the Cholesky factor L defined in (4.50). This
connection can be made more explicit if we are interested in the symmetric capacity
for the symmetric channel.

We define

C :=

⎛
⎜⎜⎜⎜⎜⎝
1 β2 β3 . . . βK
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ (4.79)

and E to be the all-one matrix. Let the lower triangular matrix L̃ denote the unique
Cholesky factorization of the matrix C(I− P

1+KP E)C
T , i.e.,

C

(
I− P

1 +KP
E

)
CT = L̃L̃T (4.80)
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Proposition 4.1 (Symmetric capacity). If there exist real numbers β2, . . . , βK ≥
1 with |βk| ≥ 1 such that the diagonal entries of L̃ given in (4.80) are equal in
amplitude i.e., |L̃kk| = |L̃jj | for all k, j, then the symmetric capacity, i.e., Rk = Csym

for all k, is achievable for the symmetric K-user Gaussian MAC.

Proof. Recall we have B = diag(β1, β2, . . . , βK). Let A be as given in (4.78) and the
channel coefficients h be the all-one vector. Substituting them into (4.49), (4.50)
gives

P C̃

(
I− P

1 +KP
E

)
C̃T = PLLT (4.81)

where

C̃ =

⎛
⎜⎜⎜⎜⎜⎝
β1 β2 β3 . . . βK
0 β2 0 . . . 0
0 0 β3 . . . 0
...

...
... . . .

...
0 0 0 0 βK

⎞
⎟⎟⎟⎟⎟⎠ (4.82)

In this case the we are interested in the Cholesky factorization L above. Due to the
special structure of A chosen in (4.78), Theorem 4.3 implies that the following rates
are achievable

R1 =
1

2
log

β2
1

L2
11

(4.83)

Rk = min

{
1

2
log

β2
k

L2
11

,
1

2
log

β2
k

L2
kk

}
, k ≥ 2 (4.84)

Using the same argument in the proof of Theorem 4.3, it is easy to show that the
sum capacity is achievable if L2

kk ≥ L2
11 for all k ≥ 2. In the case of symmetric

capacity we further require that

β2
k

L2
kk

=
β2
j

L2
jj

(4.85)

for all k, j. This is the same as requiring B−1L to have diagonals equal in am-
plitude with L given in (4.81), or equivalently requiring the matrix B−1AB(I +
PhhT )−1BTATB−T having Cholesky factorization whose diagonals are equal in
amplitude. We can let β1 = 1 without loss of generality and it is straightforward
to check that in this case B−1AB = C. Now the condition in (4.85) is equivalently
represented as

L̃2
kk = L̃2

jj (4.86)

and the requirement L2
kk ≥ L2

11 for k ≥ 2 can be equivalently written as β2
k ≥ β2

1 =
1.

We point out that the value of power P plays a key role in Proposition 4.1. It
is not true that for any power constraint P , there exists β2, . . . , βK such that the
equality condition in Proposition 4.1 can be fulfilled. For the two user case analyzed
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in Section 4.1, we can show that for the symmetric channel, the equality condition in
Proposition 4.1 can be fulfilled if the condition (4.23) holds, which in turn requires
P ≥ 1.5 for the symmetric channel. In general for a given K, we expect that there
exists a threshold P ∗(K) such that for P ≥ P ∗(K), we can always find β2, . . . , βK
which satisfy the equality condition in Proposition 4.1 hence achieve the symmetric
capacity. This can be formulated as follows.

Conjecture 4.1 (Achievablity of the symmetric capacity). For any K ≥ 2, there
exists a positive number P ∗(K), such that for P ≥ P ∗(K), we can find real numbers
β2, . . . , βK , where |βk| ≥ 1 with which the diagonal entries of L̃ given in (4.80) are
equal in amplitude i.e., |L̃kk| = |L̃jj | for all k, j.

We have not been able to prove this claim. Table 4.1 gives some numerical results
for the choices of β which achieve the symmetric capacity in a K-user Gaussian
MAC with power constraint P = 15 and different values of K. With this power
constraint the claim in Conjecture 4.1 is numerically verified with K up to 6. Notice
that the value βk decreases with the index k for k ≥ 2. This is because with the
coefficient matrix A in (4.78), the decoding order of the individual users is from 2
to K (and user 1 is decoded last). The earlier the message is decoded, the larger
the corresponding β will be.

Table 4.1 – The choice of β for a K-user Gaussian MAC with power P = 15.

K β1 β2 β3 β4 β5 β6

2 1 1.1438

3 1 1.5853 1.2582

4 1 1.6609 1.3933 1.1690

5 1 1.6909 1.4626 1.2796 1.1034

6 1 1.6947 1.4958 1.3361 1.1980 1.0445

Some numerical results for P ∗(K) for K up to 5 is given in Table 4.2. As we
have seen P ∗(2) = 1.5. For other K we give the interval which contains P ∗(K) by
numerical evaluations.

Table 4.2 – The intervals containing P ∗(K)

K P ∗(K)

2 1.5

3 [2.23, 2.24]

4 [3.74, 3.75]

5 [7.07, 7.08]
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4.3 The Two-user Gaussian Dirty MAC

We have shown in previous sections that as an alternative multiple access technique,
CFMA enjoys the advantage of being able to achieve the capacity region with low-
complexity decoders. In this and subsequent sections we show that CFMA is also
useful for others communication systems besides usual multiple access channels.

We first consider the Gaussian MAC with interfering signals which are non-
causally known at the transmitters. This channel model is called Gaussian “dirty
MAC” and is studied in [30]. Some related results are given in [31], [32], [33]. A
two-user Gaussian dirty MAC is given by

y = x1 + x2 + s1 + s2 + z (4.87)

where the channel input x1,x2 are required to satisfy the power constraints E{||xk||}2 ≤
Pk, k = 1, 2 and z is the white Gaussian noise with unit variance per entry. The
interference sk is a zero-mean i.i.d. Gaussian random sequence with variance Qk

for each entry, k = 1, 2. An important assumption is that the interference signal
sk is only non-causally known to transmitter k. Two users need to mitigate two
interference signals in a distributed manner, which makes this problem challenging.
By letting Q1 = Q2 = 0 we recover the standard Gaussian MAC.

This problem can be seen as an extension of the well-known dirty-paper coding
problem [34] to the multiple-access channels. However as shown in [30], a straight-
forward extension of the usual Gelfand-Pinsker scheme [35] is not optimal and in
the limiting case when interference is very strong, the achievable rates are zero. Al-
though the capacity region of this channel is unknown in general, it is shown in [30]
that lattice codes are well-suited for this problem and give better performance than
the usual random coding scheme.

Now we will extend our coding scheme in previous sections to the dirty MAC.
The basic idea is still to decode two linearly independent sums of the codewords.
The new ingredient is to mitigate the interference s1, s2 in the context of lattice
codes. For a point-to-point AWGN channel with interference known non-causally at
the transmitter, it has been shown that capacity can be attained with lattice codes
[36]. Our coding scheme is an extension of the schemes in [36] and [30].

Theorem 4.4 (Achievability for the Gaussian dirty MAC). For the dirty multiple
access channel given in (4.87), the following message rate pair is achievable

Rk =

⎧⎪⎨
⎪⎩
rk(a, γ, β) if bk = 0

rk(b|a, γ, β) if ak = 0

min{rk(a, γ, β), rk(b|a, γ, β)} otherwise

(4.88)

for any linearly independent integer vectors a,b ∈ Z
2 and γ, β ∈ R

2 if rk(a, γ, β) > 0
and rk(b|a, γ, β) > 0 for k = 1, 2, whose expressions are given as

rk(a, γ, β) := max
α1

1

2
log+

β2
kPk

N1(α1, γ, β)
(4.89)

rk(b|a, γ, β) := max
α2,λ

1

2
log+

β2
kPk

N2(α2, γ, β, λ)
(4.90)
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with

N1(α1, γ, β) = α2
1 +
∑
k

(
(α1 − akβk)

2Pk + (α1 − akγk)
2Qk

)
(4.91)

N2(α2, γ, β, λ) = α2
2 +
∑
k

(
(α2 − λakγk − bkγk)

2Qk + (α2 − λakβk − bkβk)
2Pk

)
(4.92)

Proof. Let tk be the lattice codeword of user k and dk the dither uniformly dis-
tributed in Vs

k/βk. The channel input is given as

xk = [tk/βk + dk − γksk/βk] mod Λs
k/βk

for some γk to be determined later. In Appendix 4.6.2 we show that with the channel
output y we can form

ỹ1 := z̃1 +
∑
k

akt̃k +
∑
k

(α1 − akγk)sk (4.93)

where α1 is some real numbers to be optimized later and we define t̃k := tk−QΛs
k
(tk+

βkdk−γksk) and z̃1 :=
∑

k(α1−akβk)xk+α1z. Due to the nested lattice construction
we have t̃k ∈ Λ. Furthermore the term z̃1 +

∑
k(α1 − akγk)sk is independent of the

sum
∑

k akt̃k thanks to the dither and can be seen as the equivalent noise having
average power per dimension N1(α, γ, β) in (4.91) for k = 1, 2.

In order to decode the integer sum
∑

k akt̃k we require

rk < rk(a, γ, β) := max
α1

1

2
log+

β2
kPk

N1(α1, γ, β)
(4.94)

Notice this constraint on Rk is applicable only if ak 
= 0.

If we can decode
∑

k akt̃k with positive rate, the idea of successive interference
cancellation can be applied. We show in Appendix 4.6.2 that for decoding the second
sum we can form

ỹ2 := z̃2 +
∑
k

(α2 − λakγk − bkγk)sk +
∑
k

bkt̃k (4.95)

where α2 and λ are two real numbers to be optimized later and we define z̃2 :=∑
k(α2 − λakβk − bkβk)xk + α2z. Now the equivalent noise z̃2 +

∑
k(α2 − λakγk −

bkγk)sk has average power per dimensionN2(α2, γ, β, λ) given in (4.92). Using lattice

decoding we can show the following rate pair for decoding
∑

k bkt̃k is achievable

rk < rk(b|a, γ, β) := max
α2,λ

1

2
log+

β2
kPk

N2(α2, γ, β, λ)
(4.96)

Again the lattice points t̃k can be solved from the two sums if a and b are linearly
independent, and tk is recovered by the modulo operation tk = [t̃k]mod Λ

s
k even if

sk is not known at the receiver. If we have bk = 0, the above constraint does not
apply to Rk.
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4.3.1 Decoding one integer sum

We revisit the results obtained in [30] and show they can be obtained in our frame-
work in a unified way.

Theorem 4.5 ([30] Theorem 2, 3). For the dirty multiple access channel given in
(4.87), we have the following achievable rate region:

R1+R2 =

{
1
2 log(1 + min{P1, P2}) if

√
P1P2 −min{P1, P2} ≥ 1

1
2 log

+
(

P1+P2+1
2+(

√
P1−

√
P2)2

)
otherwise

Proof. A proof is given in Appendix 4.6.3.

In [30], the above rate region was obtained by considering the transmitting
scheme where only one user transmits at a time. In our framework, it is the same
as assuming one transmitted signal, say t1, is set to be 0 and known to the decoder.
In this case we need only one integer sum to decode t2. Here we give a proof to
show the achievability for

R2 =

⎧⎪⎪⎨
⎪⎪⎩

1
2 log(1 + P2) for P1 ≥ (P2+1)2

P2

1
2 log(1 + P1) for P2 ≥ (P1+1)2

P1

1
2 log

+
(

P1+P2+1
2+(

√
P1−

√
P2)2

)
otherwise

(4.97)

while R1 = 0. Theorem 4.5 is obtained by showing the same result holds when we
switch the two users and a time-sharing argument.

An outer bound on the capacity region given in [30, Corollary 2] states that the
sum rate capacity should satisfy

R1 +R2 ≤ 1

2
log(1 + min{P1, P2}) (4.98)

for strong interference (both Q1, Q2 go to infinity). Hence in the strong interference
case, the above achievability result is either optimal (when P1, P2 are not too close)
or only a constant away from the capacity region (when P1, P2 are close, see [30,
Lemma 3]). However the rates in Theorem 4.5 are strictly suboptimal for general
interference strength as we will show in the sequel.

4.3.2 Decoding two integer sums

Now we consider decoding two sums for the Gaussian dirty MAC by evaluating the
achievable rates stated in Theorem 4.4. Unlike the case of the clean MAC studied
in Section 4.1, here we need to optimize over γ for given a,b and β, which does not
have a closed-form solution due to the min{·} operation. Hence in this section we
resort to numerical methods for evaluations. To give an example of the advantage
for decoding two sums, we show achievable rate regions in Figure 4.8 for a dirty
MAC where P1 = Q1 = 10 and P2 = Q2 = 2. We see in the case when the
transmitting power and interference strength are comparable, decoding two sums
gives a significantly larger achievable rate region. In this example we choose the
coefficients to be a = (a1, 1),b = (1, 0) or a = (1, a2),b = (1, 0) for a1, a2 = 1, . . . , 5
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and optimize over parameters γ. We also point out that unlike the case of the clean
MAC where it is best to choose a1, a2 to be 1, here choosing coefficients a1, a2 other
than 1 gives larger achievable rate regions in general.

0 0.5 1 1.5
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Decoding two sums
Capacity of clean MAC
Decoding one sum

Figure 4.8 – We consider a dirty MAC with P1 = Q1 = 10 and P2 = Q2 = 2.
The dashed line is the achievable rate region given in Theorem 4.5 from [30] which
corresponds to decoding only one sum. The solid line gives the achievable rate region
in Theorem 4.4 by decoding two sums with the coefficients a = (a1, 1),b = (1, 0) or
a = (1, a2),b = (1, 0) for a1, a2 = 1, . . . , 5 and optimizing over parameters γ.

Different from the point-to-point Gaussian channel with interference known at
the transmitter, it is no longer possible to eliminate all interference completely with-
out diminishing the capacity region for the dirty MAC. The proposed scheme pro-
vides us with a way of trading off between eliminating the interference and treating
it as noise. Figure 4.9 shows the symmetric rate of the dirty MAC as a function of
interference strength. When the interference is weak, the proposed scheme balances
the residual interference s1, s2 in N1 and N2 by optimizing the parameters γ, see
Eqn. (4.91) and Eqn. (4.92). This is better than only decoding one sum in which
we completely cancel out the interference.

As mentioned in the previous subsection, decoding one integer sum is near-
optimal in the limiting case when both interference signals s1, s2 are very strong,
i.e., Q1, Q2 → ∞. It is natural to ask if we can do even better by decoding two sums
in this case. It turns out in the limiting case we are not able to decode two linearly
independent sums with this scheme.

Lemma 4.2 (Only one sum for high interference). For the 2-user dirty MAC in
(4.87) with Q1, Q2 → ∞, we have rk(a, γ, β) = rk(b|a, γ, β) = 0, k = 1, 2 for any
linearly independent a,b where ak 
= 0, k = 1, 2.

Proof. The rate expressions in (4.94) and (4.96) show that we need to eliminate all
terms involving Qk in the equivalent noise N1 in (4.91) and N2 in (4.92), in order to
have a positive rate when Q1, Q2 → ∞. Consequently we need α1 − akγk = 0 and
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Figure 4.9 – We consider a dirty MAC with P1 = P2 = 1 and Q1 = Q2 = αP1 with
different α varying from [0, 4.5]. The vertical axis denotes the maximum symmetric
rateR1 = R2. The dotted line is the maximum symmetric rate 1/4 log(1+P1+P2) for
a clean MAC as an upper bound. The dashed line gives the achievable symmetric
rate in Theorem 4.5 from [30] and the solid line depicts the symmetric rate in
Theorem 4.4 by decoding two sums.

α2 − λakγk − bkγk = 0 for k = 1, 2. or equivalently⎛
⎜⎜⎝
1 0 −a1 0
0 1 −λa1 − b1 0
1 0 0 −a2
0 1 0 −λa2 − b2

⎞
⎟⎟⎠
⎛
⎜⎜⎝
α1

α2

γ1
γ2

⎞
⎟⎟⎠ = 0 (4.99)

Performing elementary row operations gives the following equivalent system⎛
⎜⎜⎝
1 0 −a1 0
0 1 −λa1 − b1 0
0 0 a1 −a2

0 0 0 a2(λa1+b1)
a1

− λa2 − b2

⎞
⎟⎟⎠
⎛
⎜⎜⎝
α1

α2

γ1
γ2

⎞
⎟⎟⎠ = 0 (4.100)

To have non-trivial solutions of α and γ with a1 
= 0, we must have a2(λa1+b1)
a1

−λa2−
b2 = 0, which simplifies to a2b1 = a1b2, meaning a and b are linearly dependent.

This observation suggests that when both interference signals are very strong,
the strategy in [30] to let only one user transmit at a time (section 4.3.1) is the best
thing to do within this framework. However we point out that in the case when
only one interference is very strong (either Q1 or Q2 goes to infinity), we can still
decode two independent sums with positive rates. For example consider the system
in (4.87) with s2 being identically zero, s1 only known to User 1 and Q1 → ∞. In
this case we can decode two linearly independent sums with a = (1, 1),b = (1, 0) or
a = (1, 0),b = (0, 1). The resulting achievable rates with Theorem 4.4 is the same
as that given in [30, Lemma 9]. Moreover, the capacity region of the dirty MAC
with only one interference signal commonly known to both users [30, VIII] can also
be achieved using Theorem 4.4, by choosing a = (1, 0),b = (0, 1) for example.
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4.4 The Gaussian Two-Way Relay Channel

In this section we consider the Gaussian two-way relay channel shown in Figure 4.10
where two transceivers wish to send their messages to each other via a relay, with a
similar approach studied in [23], [37]. Two encoders have different power constraints
P1 and P2 and the channel gain from both transmitters is 1. The relay has power
constraint PR. All noises are Gaussian with unit variance.

Figure 4.10 – A Gaussian two-way relay channel.

Already shown in [23], [37], it can be beneficial for the relay to decode a linear
combination of the two messages rather than decoding the two messages individually.
They give the following achievable rate for this network

R1 ≤min

{
1

2
log+

(
P1

P1 + P2
+ P1

)
,
1

2
log(1 + PR)

}
(4.101a)

R2 ≤min

{
1

2
log+

(
P2

P1 + P2
+ P2

)
,
1

2
log(1 + PR)

}
(4.101b)

where the relay decodes the function t1+t2 and broadcasts it to two decoders. With
the general compute-and-forward scheme we also ask the relay to decode a linear
combination of the form

∑2
k=1 aktk where a1, a2 
= 0, with which each decoder can

solve for the desired message.

Theorem 4.6. For the Gaussian two-way relay channel where user k has power Pk

and relay has power PR, the following rate pair is achievable:

R1 ≤ min

{
1

2
log+

(
P1β

2
1

Ñ(β1, β2)

)
,
1

2
log

β2
1P1(1 + PR)

PR
}
}

R2 ≤ min

{
1

2
log+

(
P2β

2
2

Ñ(β1, β2)

)
,
1

2
log

β2
2P2(1 + PR)

PR
}
}

where

Ñ(β1, β2) :=
P1P2(a1β1 − a2β2)

2 + (a1β1)
2P1 + (a2β2)

2P2

P1 + P2 + 1

for any positive β1, β2 satisfying max{β2
1P1, β

2
2P2} ≤ PR.

Proof. A proof of this theorem is given in Appendix 4.6.4.

Now we show the achievable rate region in Theorem 4.6 and compare to the
existing results in [23], [37] with the help of an example in Figure 4.11.
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Figure 4.11 – Achievable rate region for the Gaussian two-way relay in Figure 4.10
with unequal power constraints P1 = 1, P2 = 20 and equal channel gain h = [1, 1].
The relay has power PR = 20. Color curves show different achievable rate region
when the relay decodes different linear functions as marked in the plot. The red dot
denotes the achievable rate pair given in (4.101) when relay decodes t1 + t2 using
regular compute-and-forward (other function will give worse rate pair). Notice this
point is not sum-rate optimal. The achievable rate region given by the black convex
hull is strictly larger than the regular scheme since the CSI can be used at the
transmitters.

4.5 Linear Integer-Forcing Receivers for MIMO Channels

We now apply the same idea to the MIMO system with an integer-forcing linear
receiver [38]. We consider a point-to-point MIMO system with channel matrix H ∈
R
M×K which is full rank. It is shown in [38] that the following rate is achievable

using an integer-forcing receiver

RIF ≤ min
m∈[1:k]

−K

2
log aTmVDVTam

for any full rank integer matrix A ∈ Z
K×K with its m-th row as am and V ∈ R

K×K

is composed of the eigenvectors of HTH. The matrix D ∈ R
K×K is diagonal with

element Dk,k = 1/(Pλ2
k + 1) and λk is the k-th singular value of H.

Applying the general compute-and-forward to the integer-forcing receiver gives
the following result. We note that a similar idea also appears in [39] where a pre-
coding matrix is used at the encoder.

Theorem 4.7. For a K × M real MIMO system with full rank channel matrix
H ∈ R

M×K , the following rate is achievable using an integer-forcing linear receiver
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for any β1, . . . , βK

R < ≤
K∑
k=1

min
m∈[1:K]

(
− 1

2
log

ãTmVDVT ãm
β2
k

)
(4.102)

for any full rank A ∈ Z
K×K with its m-th row being am. ã is defined as ãm :=

[β1am1, ..., βKamK ] for m = 1, . . . ,K and V,D are defined as above.

In Figure 4.12 we compare the achievable rates of two schemes on a 2×2 MIMO

system with the channel matrix H =

[
0.7 1.3
0.8 1.5

]
.
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Figure 4.12 – Achievable rates for a 2 × 2 MIMO system H = [0.7, 1.3; 0.8, 1.5].
At SNR = 40dB, the best coefficients for regular scheme are a1 = [1, 2] and a2 =
[7, 13], while for the modified scheme we have the best parameters as β1 = 1, β2 =
4.887,a1 = [8, 3] and a2 = [13, 5].

Lastly we give another example where the integer-forcing receiver with the
general compute-and-forward scheme performs arbitrarily better than the original

scheme. Consider the 2× 2 MIMO channel with channel matrix H =

[
1 1
0 ε

]
where

0 < ε < 1. It has been shown in [38, Section V, C] that the achievable rate of integer
forcing is upper bounded as RIF ≤ log(ε2P ) which is of order O(1) if ε ∼ 1√

P
while

the joint ML decoding can achieve a rate at least 1
2 log(1 + 2P ). With the modified

scheme we can show the following result.

Lemma 4.3. For the channel H above, the rate expression R in (4.102) scales as
logP for any ε > 0.

To see this, we can show (assuming w. l. o. g. β1 = 1)

RmIF ≥ min
m=1,2

1

2
log+

(
P

a2m1 + (am2β2 − am1)2
1
ε2

)

+ min
m=1,2

1

2
log+

(
β2
2P

a2m1 + (am2β2 − am1)2
1
ε2

)
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Based on the standard results on simultaneous Diophantine approximation [40], for
any given am2 and Q > 0 there exists β2 < Q and am1 such that |am2β2 − am1| <
Q−1/2 for m = 1, 2. Hence the we have the achievable rate

min
m=1,2

1

2
log+

(
P

a2m1 +Q−1 1
ε2

)
+ min

m=1,2

1

2
log+

(
β2
2P

a2m1 +Q−1 1
ε2

)

If we choose Q ∼ ε−2, and notice that we also have β2, am1 ∼ Q, then the second
term above scales as 1

2 logP for P large. Consequently RmIF also scales as 1
2 logP

for any ε, hence can be arbitrarily better than the regular scheme.

4.6 Appendix

4.6.1 Derivations in the proof of Theorem 4.2

Here we prove the claim in Theorem 4.2 that β
(1)
2 , β

(2)
2 ∈ [β′

2, β
′′
2 ] if and only if the

Condition (4.27) holds. Recall we have defined β
(1)
2 := h1h2P

1+h2
1P
, β

(2)
2 :=

1+h2
2P

h1h2P
and

β′
2, β

′′
2 in Eqn. (4.35).
With the choice a = (1, 1) we can rewrite (4.35) as

β′
2 :=

2h1h2P + S −√
SD

2(1 + h21P )
(4.103)

β′′
2 :=

2h1h2P + S +
√
SD

2(1 + h21P )
(4.104)

with S :=
√
1 + h21P + h22P and D := 4Ph1h2−3S. Clearly the inequality β′

2 ≤ β
(1)
2

holds if and only if S −√
SD ≤ 0 or equivalently

Ph1h2√
1 + h21P + h22P

≥ 1 (4.105)

which is just Condition (4.27). Furthermore notice that β
(1)
2 < h2

h1
P < β

(2)
2 hence

it remains to prove that β
(2)
2 ≤ β′′

2 if and only if (4.27) holds. But this follows

immediately by noticing that β
(2)
2 ≤ β′′

2 can be rewritten as

2S2 ≤ h1h2P (S +
√
SD) (4.106)

which is satisfied if and only if S ≤ D, or equivalently Condition (4.27) holds.

4.6.2 Derivations in the proof of Theorem 4.4

In this section we give the derivation of the expressions of ỹ1 in (4.93) and ỹ2 in
(4.95). To obtain ỹ1, we process the channel output y as

ỹ1 := α1y −
∑
k

akβkdk

=
∑
k

(α1 − akβk)xk + α1z︸ ︷︷ ︸
z̃1

+α1

∑
k

sk +
∑
k

akβkxk −
∑
k

akβkdk
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= z̃1 + α1

∑
k

sk +
∑
k

akβk(tk/βk + dk − γksk/βk)

−
∑
k

akβkQΛs
k/βk

(tk/βk + dk − γksk/βk)−
∑
k

akβkdk

= z̃1 +
∑
k

ak(tk −QΛs
k
(tk + βkdk − α1sk)) +

∑
k

(α1 − akγk)sk

= z̃1 +
∑
k

akt̃k +
∑
k

(α1 − akγk)sk

When the sum
∑

k akt̃k is decoded, the term z̃1 +
∑

k(α1 − akγk)sk which can
be calculated using ỹ1 and

∑
k akt̃k. For decoding the second sum we form the

following with some numbers α′
2 and λ:

ỹ2 := α′
2y + λ

(
z̃1 +

∑
k

(α1 − akγk)sk

)
−
∑
k

bkβkdk

= α′
2(h1x1 + h2x2 + s1 + s2 + z) +

∑
k

(λα1hk − λakβk)xk + λα1z+ λ
∑
k

(α1 − akγk)sk

=
∑
k

(α′
2 + λα1 − λakβk)xk + (α′

2 + λα1)z+
∑
k

(α′
2 + λα1 − λakγk)sk −

∑
k

bkβkdk

:=
∑
k

(α2 − λakβk)xk + α2z+
∑
k

(α2 − λakγk)sk − bkβkdk

by defining α2 := α′
2 + λα1. In the same way as deriving ỹ1, we can show

ỹ2 =
∑
k

(α2 − λakβk − bkβk)xk + α2z︸ ︷︷ ︸
z̃2

+
∑
k

(α2 − λakγk)sk +
∑
k

bkβkxk −
∑
k

bkβkdk

= z̃2 +
∑
k

(α2 − akγk)sk

+
∑
k

bk

(
βk(tk/βk + dk − γksk/βk)− βkQΛs

k/βk
(tk/βk + dk − γksk/βk)

)
−
∑
k

bkβkdk

= z̃2 +
∑
k

(α2 − λakγk − bkγk)sk +
∑
k

bkt̃k

by defining α2 := α′
2 + λα1 and z̃2 :=

∑
k(α2 − λakβk − bkβk)xk + α2z.

4.6.3 Proof of Theorem 4.5

Proof. Choosing a = (1, 1) and γ1 = γ2 = α1 in (4.94), we can decode the integer
sum

∑
k t̃k if

r2 < r2(a, β) =
1

2
log

P2(1 + P1 + P2)

r2P1 + P2 + P1P2(r − 1)2
(4.107)

by choosing the optimal α∗
1 =

β1P1+β2P2

P1+P2+1 and defining r := β1/β2. An important
observation is that in order to extract t2 from the integer sum (assuming t1 = 0)∑

k

t̃k = t2 −QΛs
2
(t2 + β2d2 − γ2s2)−QΛs

1
(β1d1 − γ1s1),
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one sufficient condition is Λs
1 ⊆ Λs

2. Indeed, due to the fact that [x]mod Λs
2 = 0

for any x ∈ Λs
1 ⊆ Λs

2, we are able to recover t2 by performing [
∑

k t̃k]mod Λ
s
2 if

Λs
1 ⊆ Λs

2. This requirement amounts to the condition β2
1P1 ≥ β2

2P2 or equivalently
r ≥√P2/P1. Notice if we can extract t2 from just one sum

∑
k t̃k (with t1 known),

then the computation rate Ra
2 = r2(a, β) will also be the message rate R2 = r2(a, β).

Taking derivative w. r. t. r in (4.107) gives the critical point

r∗ =
P2

P2 + 1
(4.108)

If r∗ ≥√P2/P1 or equivalently P1 ≥ (P2+1)2

P2
, substituting r∗ in (4.107) gives

R2 =
1

2
log(1 + P2)

If r∗ ≤ √P2/P1 or equivalently P1 ≤ (P2+1)2

P2
, R2 is non-increasing in r hence we

should choose r =
√
P2/P1 to get

R2 =
1

2
log+

(
1 + P1 + P2

2 + (
√
P2 −

√
P1)2

)
(4.109)

To show the result for the case P2 ≥ (P1+1)2

P1
, we set the transmitting power of

user 2 to be P ′
2 =

(P1+1)2

P1
which is smaller or equal to its full power P2 under this

condition. In order to satisfy the nested lattice constraint Λs
1 ⊆ Λs

2 we also need
β2
1P1 ≤ β2

2P
′
2 or equivalently r ≥ √P ′

2/P1. By replacing P2 by the above P ′
2 and

choosing r =
√
P ′
2/P1 in (4.107) we get

R2 =
1

2
log(1 + P1) (4.110)

Interestingly under this scheme, letting the transmitting power to be P ′
2 gives a

larger achievable rate than using the full power P2 in this power regime.

4.6.4 Proof of Theorem 4.6

Proof. Let Λs
1,Λ

s
2 be simultaneously good nested lattices with second moment β

2
1P1, β

2
2P2,

respectively, which are nested in another simultaneously good lattice Λ. The lattice
codes for user k, k = 1, 2 is constructed as Ck = Λ∩Vs

k with Vs
k denoting the Voronoi

region of Λs
k. The channel input is given by

xk = [tk/βk + dk] mod Λs
k/βk (4.111)

=
1

βk
[tk + dkβk] mod Λs

k (4.112)

Using lattice decoding with respect to Λ, the relay obtains the sum t̃1 + t̃2 where

t̃k := tk −QΛs
k
(tk + βkdk), k = 1, 2 (4.113)

with the computation rate

Rs
k :=

1

2
log+

(
Pkβ

2
k

Ñ(β1, β2)

)
, k = 1, 2
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where

Ñ(β1, β2) :=
P1P2(a1β1 − a2β2)

2 + (a1β1)
2P1 + (a2β2)

2P2

P1 + P2 + 1
.

If the computation rate pair (Rs
1, R

s
2) satisfies R

s
1 ≥ Rs

2, we should have Vol (Vs
1) ≥

Vol (Vs
2) because of the relationship Rs

k =
1
n log

V (Vs
k)

V (V) . Hence if Λ
s
1, Λ

s
2 are nested

lattice, then the nesting relationship is that

Λs
1 ⊆ Λs

2. (4.114)

Let ΛR be the shaping lattice at the relay which satisfies ΛR ⊆ Λs
1 ⊆ Λs

2. The
Voronoi region VR of ΛR is denoted by VR which has second moment PR, in order
to satisfy the power constraint of the relay. This implies we need to choose β1 such
that it holds

PR ≥ β2
1P1, (4.115)

so that the lattice chain above can be formed. Similarly if it holds that Rs
2 ≥ Rs

1,
then we will construct the lattice such that ΛR ⊆ Λs

2 ⊆ Λs
1. Combining these two

cases we require β1, β2 are chosen such that

PR ≥ max{β2
1P1, β

2
2P2} (4.116)

After decoding t̃1 + t̃2, the relay will form

xR = [t̃1 + t̃2 + dr] mod ΛR (4.117)

where dr is a dither uniformly distributed in VR. The received signal yk at Rx k is
processed to form

ỹk := (αzk + (α− 1)xR) + xR (4.118)

= z̃k + t̃1 + t̃2 −QΛR
(t̃1 + t̃2 + dr) (4.119)

where z̃k is equivalent noise with average power N = PR/(1 + PR) for k = 1, 2
(assuming both noises at two receivers have unit variance). Rx k quantizes ỹk with
respect to Λ to get

u := t̃1 + t̃2 −QΛR
(t̃1 + t̃2 + dr) (4.120)

Notice that u ∈ Λ due to the construction. This decoding will be successful if

V ol(V)2/n
N

> 2πe (4.121)

which is equivalent to

Rk ≤ 1

2
log

β2
kPk(1 + PR)

PR
(4.122)

Now we need to show that with u, each receiver can decode the desired signal. We
will only analyze the case when Rs

1 ≥ Rs
2. The other situation follows similarly. The

main observation is that if we have ΛA ⊆ ΛB, then it holds that

[[x] mod ΛA] mod ΛB = [x] mod ΛB (4.123)
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For the case ΛR ⊆ Λs
1 ⊆ Λs

2, Rx 1 proceeds as

[u− t1] mod Λs
1 = [t̃1 + t̃2 − t1] mod Λs

1 (4.124)

= [t̃2] mod Λs
1 (4.125)

Performing [·] mod Λs
2 again on the above quantity gives t2. Rx 2 proceeds as

[u− t̃2] mod Λs
1 = t1 (4.126)

Combining all rate constrains we have the following achievable rate pair

R1 ≤ min

{
Rs

1,
1

2
log

β2
1P1(1 + PR)

PR

}
(4.127)

R2 ≤ min

{
Rs

2,
1

2
log

β2
2P2(1 + PR)

PR

}
(4.128)

with the constraint PR ≥ max{β2
1P1, β

2
2P2}.





Application: Lattice Codes on
Interference Channels 5
The usefulness of lattice codes are investigated in this chapter for various models
based on the interference channel.1 The celebrated results on interference alignment
[41] show that if a receiver experiences interference from more than one undesired
transmitters, the optimal transmission strategy should confine all undesired inter-
ference signals in a subspace. With examples in this chapter, we wish to convey the
point that using structured codes is a form of interference alignment. When the
interfering codewords are summed up linearly by the channels, the interference sig-
nal (more precisely, the sumset of the interfering codewords) seen by the unintended
receiver is much “smaller” when structured codes are used than when the codewords
are chosen randomly. Hence the interference is “aligned” due to the linear structure
of the codebook. This property gives powerful interference mitigation ability at the
signal level.

5.1 The Many-to-One Channel with Cognitive Messages

The concept of cognitive radio has been intensively studied and as one of its information-
theoretic abstractions, a model of the cognitive radio channel of two users was pro-
posed and analyzed in [42], [43], [44]. In this model, the cognitive user is assumed to
know the message of the primary user non-causally before transmissions take place.
The capacity region of this channel with additive white Gaussian noise is known for
most of the parameter region, see for example [45] for an overview of the results.

Here we extend this cognitive radio channel model to include many cognitive
users. We consider the simple many-to-one interference scenario with K cognitive

1The material of this chapter has appeared
1. J. Zhu and M. Gastpar, “Lattice Codes for Many-to-One Interference Channels With and

Without Cognitive Messages”, in IEEE Transactions on Information Theory, vol. 61, no. 3, 2015.
2. J. Zhu and M. Gastpar, “Lattice codes for many-to-one cognitive interference networks”, in

Proc. 2013 IEEE International Symposium on Information Theory (ISIT), Istanbul, Turkey, Jun.
2013.

3. J. Zhu and M. Gastpar, “On lattice codes for Gaussian interference channels”, in Proc. 2015
IEEE International Symposium on Information Theory (ISIT), HongKong, China, Jun. 2015.

51
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users illustrated in Figure 5.1. The message W0 (also called the cognitive message)
of the primary user is given to all other K users, who could help the transmission
of the primary user.

Existing coding schemes for the cognitive interference channel exploit the use-
fulness of cognitive messages. For the case K = 1, i.e., a single cognitive user, the
strategy consists in letting the cognitive user spend part of its resources to help the
transmission of this message to the primary receiver. At the same time, this also
appears as interference at the cognitive receiver, but dirty-paper coding can be used
at the cognitive transmitter to cancel (part of) this interference. A new challenge
arises when there are many cognitive users. The primary user now benefits from
the help of all cognitive users, but at the same time suffers from their collective
interference. This inherent tension is more pronounced when the channels from
cognitive transmitters to the primary receiver are strong. In the existing coding
scheme, the interference from cognitive users is either decoded or treated as noise.
As we will show later, direct extensions of this strategy to the many-to-one channel
have significant shortcomings, especially when the interference is relatively strong.

Similar systems have been studied in the literature. For the case K = 2, the
system under consideration is studied in [46]. A similar cognitive interference chan-
nel with so-called cumulative message sharing is also studied in [47] where each
cognitive user has messages of multiple users. We note that those existing results
have not exploited the possibility of using structured codes in cognitive interference
networks. The many-to-one channel without cognitive message is studied in [48],
where a similar idea of aligning interference based on lattice codes was used. We
also point out that the method of compute-and-forward is versatile and beneficial
in many network scenarios. For example it has been used in [23], [37] to study the
Gaussian two-way relay channel, in [49] to study the K-user symmetric interference
channel and in [38] to study the multiple-antenna system.

5.1.1 System model and problem statement

Figure 5.1 – A many-to-one interference channel. The message of the first user W0

(called cognitive message) may or may not be present at other user’s transmitter.

We consider a multi-user channel consisting of K+1 transmitter-receiver pairs as
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shown in Figure 5.1. The real-valued channel has the following vector representation:

y0 = x0 +
K∑
k=1

bkxk + z0, (5.1)

yk = hkxk + zk, k ∈ [1 : K], (5.2)

where xk, yk ∈ R
n denote the channel input and output of the transmitter-receiver

pair k, respectively. The noise zk ∈ R
n is assumed to be i.i.d. Gaussian with

zero mean and unit variance for each entry. Let bk ≥ 0 denote the channel gain
from Transmitter k to the Receiver 0 and hk denote the direct channel gain from
Transmitter k to its corresponding receiver for k ∈ [1 : K]. We assume a unit
channel gain for the first user without loss of generality. This system is sometimes
referred to as the many-to-one interference channel (or many-to-one channel for
simplicity), since only Receiver 0 experiences interference from other transmitters.

We assume that all users have the same power constraint, i.e., the channel input
xk is subject to the power constraint

E{||xk||2} ≤ nP, k ∈ [1 : 0]. (5.3)

Since channel gains are arbitrary, this assumption is without loss of generality. We
also assume that all transmitters and receivers know their own channel coefficients;
that is, bk, hk are known at Transmitter k, hk is known at Receiver k, and bk, k ≥ 1
are known at Receiver 0.

Now we introduce two variants of this channel according to different message
configurations.

Definition 5.1 (Cognitive many-to-one channel). User 0 is called the primary user
and User k a cognitive user (for k ≥ 1). Each user has a message Wk from a set
Wk to send to its corresponding receiver. Furthermore, all the cognitive users also
have access to the primary user’s message W0 (also called cognitive message).

Definition 5.2 (Non-cognitive many-to-one channel). Each user k has a message
Wk from a set Wk to send to its corresponding receiver. The messages are not shared
among users.

For the cognitive many-to-one channel, each transmitter has an encoder Ek :
Wk → R

n which maps the message to its channel input as

x0 = Ek(W0) (5.4)

xk = Ek(Wk,W0), k ∈ [1 : K]. (5.5)

Each receiver has a decoder Dk : R
n → Wk which estimates message Ŵk from

yk as

Ŵk = Dk(yk), k ∈ [1 : K]. (5.6)

The rate of each user is

Rk =
1

n
log |Wk| (5.7)
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under the average error probability requirement

Pr

(
K⋃
k=0

{Ŵk 
=Wk}
)

→ ε (5.8)

for any ε > 0.

For the non-cognitive many-to-one channel, the encoder takes the form

xk = Ek(Wk), k ∈ [0 : K] (5.9)

and other conditions are the same as in the cognitive channel.

As mentioned earlier, we find it convenient to first treat the general model—
the cognitive many-to-one channel where we derive a novel coding scheme which
outperforms conventional strategies. We will show that the coding scheme for the
cognitive channel can be extended straightforwardly to the non-cognitive channel,
which also gives new results for this channel.

5.1.2 Extensions of conventional coding schemes

In this section we revisit existing coding schemes for the two-user cognitive interfer-
ence channel and extend them to our cognitive many-to-one channel. The extensions
are straightforward from the schemes which can be found, for example, in [42], [50]
and [45] proposed for the two-user cognitive channel. Throughout the paper, many
schemes can be parametrized by letting cognitive transmitters split their power. For
each cognitive user, we introduce a power splitting parameter 0 ≤ λk ≤ 1. For
convenience, we also define the vector λ := {λ1, . . . , λK}.

In the first coding scheme, the cognitive users split the power and use part of it
to transmit the message of the primary user. Luckily this part of the signal will not
cause interference to the cognitive receiver since it can be completely canceled out
using dirty-paper coding (DPC). We briefly describe this coding scheme:

• Primary encoder. For each possible message W0, User 0 generates a code-
word x0 with i.i.d. entries according to the Gaussian distribution N (0, P ).

• Cognitive encoders. User k generates a sequence x̂k with i.i.d. entry ac-
cording to the Gaussian distribution N (0, λ̄kP ) for any given λk and form

uk = hkx̂k + γhk
√
λkx0 (5.10)

with γ = λ̄kh
2
kP/(1 + λ̄kh

2
kP ), k ≥ 1. The channel input is given by

xk =
√
λkx0 + x̂k, k ∈ [1 : K]. (5.11)

• Primary decoder. Decoder 0 decodes x0 from y0 using typicality decoding.

• Cognitive decoders. Decoder k (k ≥ 1) decodes uk from yk using typicality
decoding.

This coding scheme gives the following achievable rate region.
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Proposition 5.1 (DPC). For the cognitive many-to-one channel, the above dirty
paper coding scheme achieves the rate region:

R0 ≤ 1

2
log

(
1 +

(
√
P +

∑
k≥1 bk

√
λkP )

2∑
k≥1 b

2
kλ̄kP + 1

)
(5.12)

Rk ≤ 1

2
log
(
1 + λ̄kh

2
kP
)
, k ∈ [1 : K] (5.13)

for any power-splitting parameter λ.

It is worth noting that this scheme achieves the capacity in the two-user case
(K = 1) when |b1| ≤ 1, see [50, Theorem 3.7] for example.

Another coding scheme which performs well in the two-user case when |b1| > 1,
is to let the primary user decode the message of the cognitive user as well [45]. We
extend this scheme by enabling simultaneous nonunique decoding (SND) [6, Ch. 6]
at the primary decoder. SND improves the cognitive rates over uniquely decoding
the messages Wk, k ≥ 1 at primary decoder. We briefly describe the coding scheme

• Primary encoder. For each possible message W0, User 0 generates a code-
words x0 with i.i.d. entries according to the distribution N (0, P ).

• Cognitive encoders. Given the power splitting parameters λk, user k gener-
ates x̂k with i.i.d. entry according to the distributionN (0, λ̄kP ) for its message
Wk, k ≥ 1. The channel input is given by

xk =
√
λkx0 + x̂k (5.14)

• Primary decoder. Decoder 0 simultaneously decodes x0, x̂1, . . . , x̂K from y1

using typicality decoding. More precisely, let T (n)(Y0, X0, X̂1 . . . , X̂K) denotes
the set of n-length typical sequences (see, for example [6, Ch. 2]) of the
joint distribution (

∏K
i=1 PX̂i

)PX0PY0|X0...X̂K
. The primary decoder decodes its

message x0 such that

(x0, x̂1, . . . , x̂K) ∈ T (n)(Y0, X0, X̂1 . . . , X̂K) (5.15)

for unique x0 and some x̂k, k ≥ 1.

• Cognitive decoders. Decoder k decodes x̂k from yk for k ≥ 1.

We have the following achievable rate region for the above coding scheme.

Proposition 5.2 (SND at Rx 0). For the cognitive many-to-one channel, the above
simultaneous nonunique decoding scheme achieves the rate region:

R0 ≤ 1

2
log

⎛
⎝1 + (√P +

∑
k≥1

bk
√
λkP

)2
⎞
⎠ , (5.16)

R0 +
∑
k∈J

Rk ≤ 1

2
log

(
1 +

∑
k∈J

b2kλ̄kP +

(√
P +

∑
k≥1

bk
√
λkP

)2
)

(5.17)

Rk ≤ 1

2
log

(
1 +

λ̄kh
2
kPk

1 + λkh
2
kPk

)
(5.18)

for any power-splitting parameter λ and every subset J ⊆ [1 : K].
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We point out that if instead of using simultaneous nonunique decoding at the
primary decoder but require it to decode all messages of the cognitive users Wk, k ≥
1, we would have the extra constraints

∑
k∈J

Rk ≤ 1

2
log

(
1 +

∑
k∈J

b2kλ̄kP

)
(5.19)

for every subset J ⊆ [1 : K], which may further reduce the achievable rate region.
For the two-user case (K = 1), the above scheme achieves the capacity when

|b1| ≥
√
1 + P + P 2 + P , see [45, Theorem V.2] for example.

We can further extend the above coding schemes by combining both dirty paper
coding and SND at Rx 0, as it is done in [45, Theorem IV.1]. However this results in
a very cumbersome rate expression in the multiple-user system but gives little insight
to the problem. We will show in the sequel that our proposed scheme combines the
ideas in the above two schemes in a unified framework.

5.1.3 Lattice codes for cognitive many-to-one channels

We first describe how to construct lattice codes for the cognitive many-to-one chan-
nels. The lattice codes constructions are similar to the construction given in Chapter
3. Let β := {β0, . . . , βK} denotes a set of positive numbers. For each user, we choose
a lattice Λk which is good for AWGN channel. These K +1 fine lattices will form a
nested lattice chain [18] according to a certain order which will be determined later.
We let Λc denote the coarsest lattice among them, i.e., Λc ⊆ Λk for all k ∈ [0 : K].
As shown in [18, Thm. 2], we can find another K + 1 simultaneously good nested
lattices such that Λs

k ⊆ Λc for all k ∈ [0 : K] whose second moments satisfy

σ2
0 := σ2(Λs

0) = β2
0P (5.20a)

σ2
k := σ2(Λs

k) = (1− λk)β
2
kP, k ∈ [1 : K] (5.20b)

with given power-splitting parameters λ. Introducing the scaling coefficients β
enables us to flexibly balance the rates of different users and utilize the channel
state information in a natural way. This point is made clear in the next section
when we describe the coding scheme.

The codebook for user k is constructed as

Ck := {tk ∈ R
n : tk ∈ Λk ∩ Vs

k}, k ∈ [0 : K] (5.21)

where Vs
k denotes the Voronoi region of the shaping lattice Λs

k used to enforce the
power constraints. With this lattice code, the message rate of user k is also given
by

Rk =
1

n
log

Vol (Vs
k)

Vol (Vk)
(5.22)

with Vk denoting the Voronoi region of the fine lattice Λk.
Equipped with the nested lattice codes constructed above, we are ready to specify

the coding scheme. Each cognitive user splits its power and uses one part to help the
primary receiver. Messages Wk ∈ Wk of user k are mapped surjectively to lattice
points tk ∈ Ck for all k.
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Let γ = {γ1, . . . , γK} be K real numbers to be determined later. Given all
messages Wk and their corresponding lattice points tk, transmitters form

x0 =

[
t0
β0

+ d0

]
mod Λs

0/β0 (5.23a)

x̂k =

[
tk
βk

+ dk − γkx0

βk

]
mod Λs

k/βk, k ∈ [1 : K] (5.23b)

where dk (called dither) is a random vector independent of tk and uniformly
distributed in Vs

k/βk. It follows that x0 is also uniformly distributed in Vs
0/β0 hence

has average power β2
0P/β

2
0 = P and is independent from t0 [17, Lemma 1]. Similarly

x̂k has average power λ̄kP and is independent from tk for all k ≥ 1.
Although x0 will act as interference at cognitive receivers, it is possible to cancel

its effect at the receivers since it is known to cognitive transmitters. The dirty-paper
coding idea in the previous section can also be implemented within the framework
of lattice codes, see for example [36]. The parameters γ are used to cancel the x0

partially or completely at the cognitive receivers.
The channel input for the primary transmitter is x0 defined above and the chan-

nel input for each cognitive transmitter is

xk =
√
λkx0 + x̂k, k ∈ [1 : K]. (5.24)

Notice that E{||xk||2}/n = λkP + λ̄kP = P hence power constraints are satisfied for
all cognitive users.

We first give an informal description of the coding scheme and then present the
main theorem. Let a := [a0, . . . , aK ] ∈ Z

K+1 be a vector of integers. We shall show
that the integer sum of the lattice codewords

∑
k≥0 aktk can be decoded reliably

at the primary user for certain rates Rk. As mentioned earlier, we will continue
decoding further integer sums with judiciously chosen coefficients and solve for the
desired codeword using these sums at the end. An important observation (also
made in [8] and [29]) is that the integer sums we have decoded can be used to
decode the subsequent integer sums. We also point out the new ingredients in our
proposed scheme compared to the existing successive compute-and-forward schemes
as in [29] and [8]. Firstly the scaling parameters introduced in (5.20) allow users
to adjust there rates according to the channel gains and generally achieve larger
rate regions (see [9] for more applications). They will be important for deriving
constant gap and capacity results for the non-cognitive channel in Section 5.1.7.
Secondly as the cognitive message acts as interference at cognitive receivers, using
dirty-paper-coding against the cognitive message in general improves the cognitive
rates. But its implementation within successive compute-and-forward framework is
not straightforward and requires careful treatment, as shown later in our analysis.

In general, let L ∈ [1 : K + 1] be the total number of integer sums2 the primary
user decodes and we represent the L sets of coefficients in the following coefficient
matrix :

A =

⎛
⎜⎝a0(1) a1(1) a2(1) . . . aK(1)

...
...

...
...

...
a0(L) a1(L) a2(L) . . . aK(L)

⎞
⎟⎠ , (5.25)

2There is no need to decode more than K + 1 sums since there are K + 1 users in total.
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where the 	-th row a(	) := [a0(	), . . . , aK(	)] represents the coefficients for the 	-th
integer sum

∑
k ak(	)tk. We will show all L integer sums can be decoded reliably if

the rate of user k satisfies

Rk ≤ min
�

rk(a�|1:�−1, λ, β, γ) (5.26)

with

rk(a�|1:�−1, λ, β, γ) := max
α1,...,α�∈R

1

2
log+

(
σ2
k

N0(	)

)
. (5.27)

The notation a�|1:�−1 emphasizes the fact that when the primary decoder decodes
the 	-th sum with coefficients a(	), all previously decoded sums with coefficients
a(1), . . . ,a(	− 1) are used. Recall that σ2

k is given in (5.20) and N0(	) is defined as

N0(	):= α2
� +
∑
k≥1

⎛
⎝α�bk − ak(	)βk −

�−1∑
j=1

αjak(j)βk

⎞
⎠2

λ̄kP

+

⎛
⎝α�b0 − a0(	)β0 −

�−1∑
j=1

αja0(j)β0 − g(	)

⎞
⎠2

P (5.28)

with

b0 := 1 +
∑
k≥1

bk
√

λk (5.29)

g(	) :=
∑
k≥1

⎛
⎝�−1∑

j=1

αjak(j) + ak(	)

⎞
⎠ γk. (5.30)

For any matrix A ∈ F
L×(K+1)
p , let A′ ∈ F

L×K
p denote the matrix A without the

first column. We define a set of matrices as

A(L) := {A ∈ F
L×(K+1)
p : rank(A) = m, rank(A′) = m− 1

for some integer m, 1 ≤ m ≤ L}. (5.31)

We will show that if the coefficients matrix A of the L integer sums is in this set,
the desired codeword t0 can be reconstructed at the primary decoder. For cognitive
receivers, the decoding procedure is much simpler. They will decode the desired
codewords directly using lattice decoding.

Now we state the main theorem of this section.

Theorem 5.1. For any given set of power-splitting parameters λ, positive numbers
β, γ and any coefficient matrix A ∈ A(L) defined in (5.31) with L ∈ [1 : K + 1],
define Lk := {	 ∈ [1 : L]|ak(	) 
= 0}. If rk(a�|1:�−1, λ, β, γ) > 0 for all 	 ∈ Lk,
k ∈ [0 : K], then the following rate is achievable for the cognitive many-to-one
interference channel

R0 ≤ min
�∈L0

r0(a�|1:�−1, λ, β, γ) (5.31a)

Rk ≤ min

{
min
�∈Lk

rk(a�|1:�−1, λ, β, γ),max
νk∈R

1

2
log+

σ2
k

Nk(γk)

}
for k ≥ 1.(5.31b)
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The expressions rk(a�|1:�−1, λ, β, γ) and σ2
k are defined in (5.27) and (5.20) respec-

tively, and Nk(γk) is defined as

Nk(γk) := ν2k + (νkhk − βk)
2λ̄kP + (νk

√
λkhk − γk)

2P (5.32)

Proof. A proof is given in Appendix 5.5.1.

Several comments are made on the above theorem. We use rk(a�|1:�−1) to denote
rk(a�|1:�−1, λ, β, γ) for brevity.

• In our coding scheme the primary user may decode more than one integer
sums. In general, decoding the 	-th sum gives a constraint on Rk:

Rk ≤ rk(a�|1:�−1). (5.33)

However notice that if ak(	) = 0, i.e., the codeword tk is not in the 	-th sum,
then Rk does not have to be constrained by rk(a�|1:�−1) since this decoding
does not concern Tx k. This explains the minimization of 	 over the set Lk

in (5.31a) and (5.31b): the set Lk denotes all sums in which the codeword tk
participates and Rk is given by the minimum of rk(a�|1:�−1) over 	 in Lk.

• Notice that rk(a�|1:�−1) is not necessarily positive and a negative value means
that the 	-th sum cannot be decoded reliably. The whole decoding procedure
will succeed only if all sums can be decoded successfully. Hence in the theorem
we require rk(a�|1:�−1) > 0 for all 	 ∈ Lk to ensure that all sums can be decoded.

• The primary user can choose which integer sums to decode, hence can maxi-
mize the rate over the number of integer sums L and the coefficients matrix
A in the set A(L):

Rk ≤ max
L∈[1:K+1]

max
A∈A(L)

min
�∈Lk

rk(a�|1:�−1, λ, β, γ). (5.34)

The optimal A is the same for all k. To see this, notice that the denominator
inside the log of the expression rk(a�|1:�−1) in (5.27) is the same for all k and
the numerator depends only on k but does not involve the coefficient matrix
A, hence the maximizing A will be the same for all k.

• In the expression of rk(a�|1:�−1) in (5.27) we should optimize over 	 parameters
α1, . . . , α�. The reason for involving these scaling factors is that there are
two sources for the effective noise N0(	) at the lattice decoding stage, one
is the non-integer channel gain and the other is the additive Gaussian noise
in the channel. These scaling factors are used to balance these two effects
and find the best trade-off between them, see [8, Section III] for a detailed
explanation. The optimal α� can be given explicitly but the expressions are
very complicated hence we will not state it here. We note that the expression
rk(a1) with the optimized α1, βk = 1 and γk = 0 is the computation rate of
compute-and-forward in [8, Theorem 2].
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• For the cognitive users, their rates are constrained both by their direct channel
to the corresponding receiver, and by the decoding procedure at the primary
user. The two terms in (5.31b) reflect these two constraints. The parameters γ
are used to (partially) cancel the interference x0 at the cognitive receivers. For
example if we set γk = νk

√
λkhk, the cognitive receiver k will not experience

any interference caused by x0. However this affects the computation rate at
the primary user in a non-trivial way through rk(a�|1:�−1) (cf. Equations (5.27)
and (5.28)).

This proposed scheme can be viewed as an extension of the techniques used in
the conventional schemes discussed in section 5.1.2. First of all it includes the dirty-
paper coding within the lattice codes framework and we can show the following
lemma.

Lemma 5.1. The achievable rates in Proposition 5.1 can be recovered using Theorem
5.2 by decoding one trivial sum with the coefficient a(1) = [1, 0, . . . , 0].

Proof. For given power-splitting parameters λ we decode only one trivial sum at
the primary user by choosing a(1) such that a0(1) = 1 and ak(1) = 0 for k ≥ 1,
which is the same as decoding t0. First consider decoding at the primary user.
Using the expression (5.27) we have Rk ≤ rk(a(1)) =

1
2 log(σ

2
k/N0(1)) with N0(1) =

α2
1

(
1 +
∑

k≥1 b
2
kλ̄kP

)
+(α1b0 − β0)

2P and g(1) = 0 with this choice of a(1) for any

γ. After optimizing α1 we have

R0 ≤ 1

2
log

(
1 +

b20P

1 +
∑

k≥1 b
2
kλ̄kP

)
. (5.35)

Notice that this decoding does not impose any constraint on Rk for k ≥ 1.
Now we consider the decoding process at the cognitive users. Choosing γk =

νk
√
λkhk in (5.32) will give Nk(γk) = ν2k + (νkhk − βk)

2λ̄kP and

max
νk∈R

1

2
log+

σ2
k

Nk(γk)
=
1

2
log(1 + h2kλ̄kP ) (5.36)

with the optimal ν∗k =
βkhkλ̄kP
λ̄kh

2
kP+1

. This proves the claim.

The proposed scheme can also be viewed as an extension of simultaneous nonunique
decoding (Proposition 5.2). Indeed, as observed in [51], SND can be replaced by
either performing the usual joint (unique) decoding to decode all messages or treat-
ing interference as noise. The former case corresponds to decoding K + 1 integer
sums with a full rank coefficient matrix and the latter case corresponds to decoding
just one integer sum with the coefficients of cognitive users’ messages being zero.
Obviously our scheme includes these two cases. As a generalization, the proposed
scheme decodes just enough sums of codewords without decoding the individual
messages. Unfortunately it is difficult to show analytically that the achievable rates
in Proposition 5.2 can be recovered using Theorem 5.1, since it would require the
primary receiver to decode several non-trivial sums and the achievable rates are not
analytically tractable for general channel gains. However the numerical examples
in Section 5.1.5 will show that the proposed scheme generally performs better than
the conventional schemes.
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5.1.4 On the optimal coefficient matrix A

From Theorem 5.1 and its following comments we see that the main difficulty in
evaluating the expression rk(a�|1:�−1) in (5.31a) and (5.31b) is the maximization
over all possible integer coefficient matrices in the set A(L). This is an integer pro-
gramming problem and is analytically intractable for a system with general channel
gains b1, . . . , bK . In this section we give an explicit formulation of this problem and
an example of the choice of the coefficient matrix.

The expression rk(a�|1:�−1) in (5.27) is not directly amenable to analysis because
finding the optimal solutions for the parameters {α�} in (5.28) is prohibitively com-
plex. Now we give an alternative formulation of the problem. We write N0(	) from
Eq. (5.28) as in (5.37).

N0(	) := α2
� +
∑
k≥1

⎛
⎝α�bk

√
λ̄k − ak(	)βk

√
λ̄k −

�−1∑
j=1

αjak(j)βk
√
λ̄k

⎞
⎠2

P

+

⎛
⎝α�b0 − a0(	)β0 −

∑
k≥1

ak(	)γk −
�−1∑
j=1

αj

⎛
⎝a0(j)β0 +

∑
k≥1

ak(j)γk

⎞
⎠
⎞
⎠2

P.(5.37)

It can be further rewritten compactly as

N0(	) = α2
� +

∣∣∣∣∣∣
∣∣∣∣∣∣α�h− ã� −

�−1∑
j=1

αj ãj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

P (5.38)

where we define h, ãj ∈ R
K for j ∈ [1 : 	] as follows:

h =
[
b0, b1

√
λ̄1, . . . , bK

√
λ̄k

]
ãj =

⎡
⎣a0(j)β0 +∑

k≥1

ak(j)γk, a1(j)β1
√
λ̄1, . . . , aK(j)βK

√
λ̄K

⎤
⎦ . (5.39)

We will reformulate the above expression in such a way that the optimal pa-
rameters {αj} have simple expressions and the optimization problem on A can be
stated explicitly. This is shown in the following proposition.

Proposition 5.3. Given ãj , j ∈ [1 : 	− 1] and h in (5.39), define

uj = ãj −
j−1∑
i=1

ãj |ui , j = 1, . . . 	− 1

u� = h−
�−1∑
i=1

h|ui (5.40)

where x|ui :=
xTui

||ui||2ui denotes the projection of a vector x on ui. The problem of

finding the optimal coefficient matrix A maximizing rk(a�|1:�−1) in Theorem 5.1 can
be equivalently formulated as the following optimization problem

min
L∈[1:K+1]
A∈A(L)

max
�∈Lk

∣∣∣∣∣∣B1/2
� a(	)

∣∣∣∣∣∣ (5.41)
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where a(	) is the coefficient vector of the 	-th integer sum. The set A(L) is defined

in (5.31) and Lk := {	 ∈ [1 : L]|ak(	) 
= 0}. The notation B
1/2
� denotes a matrix

satisfying3 B
1/2
� B

1/2
� = B�, where B� is given by

B� := C

(
I−

�−1∑
i=1

uju
T
j

||uj ||2
− (u�u

T
� )P

1 + P ||u�||2
)
CT . (5.42)

The matrix C is defined as

C :=

⎛
⎜⎜⎜⎜⎜⎜⎝

β0 0 0 . . . 0

γ1 β1
√
λ̄1 0 . . . 0

γ2 0 β2
√
λ̄2 . . . 0

...
...

...
...

...

γK 0 0 . . . βK
√
λ̄K

⎞
⎟⎟⎟⎟⎟⎟⎠ . (5.43)

Proof: The proof is given in Appendix 5.5.3.

The above proposition makes the optimization of A explicit, although solving
this problem is still a computationally expensive task. We should point out that
this problem is related to the shortest vector problem (SVP) where one is to find the
shortest non-zero vector in a lattice. In particular let B ∈ R

K×K be a matrix whose
columns constitute one set of basis vectors of the lattice, the SVP can be written as

min
a∈Zk,a	=0

||Ba|| . (5.44)

Our problem in Proposition 5.3 is more complicated than solving L shortest vector

problems. Because the L matrices B
1/2
� are related through the optimal integer

vectors a(	) in a nontrivial manner and the objective in our problem is to minimize

the maximal vector length max�

∣∣∣∣∣∣B1/2
� a(	)

∣∣∣∣∣∣ of the L lattices. Furthermore the

vectors a(1), . . . ,a(	) should lie in the set A(L) and the number of sums L is also
an optimization variable. A low complexity algorithm has been found to solve this
instance of SVP for the compute-and-forward problem in simple cases, see [52].

Here we provide an example on the optimal number of sums we need to decode.
Consider a many-to-one channel with three cognitive users. We assume b1 = 3.5
and vary b2 and b3 in the range [0, 6]. We set the direct channel gains hk = 1 and
consider four different power constraints. Now the goal is to maximize the sum rate

max
L∈[1:4]
A∈A(L)

4∑
k=0

min
�∈Lk

rk(a1:�−1, λ, β, γ) (5.45)

with respect to L ∈ [1 : 4], A ∈ A(L) and β ∈ R
4. For simplicity we assume

λk = γk = 0 for k ≥ 1. Here we search for all possible A and are interested in the
optimal L: the optimal number of sums that need to be decoded.

3It is shown that N0 = Pa(�)TB�a(�) hence B� is positive semi-definite because N0 ≥ 0. The

guarantees the existence of B
1/2
� .
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Figure 5.2 – We consider a many-to-one channel with three cognitive users and
b1 = 3.5. The horizontal and vertical axes are the range of b2 and b3, respectively.
The objective is to maximize the sum rate. The red, white, black and blue areas
denote the region of different channel gains, in which the number of the best integer
sums (the optimal L) is one, two, three and four respectively. Here the patterns are
shown for four different power constraints.

The four plots in Figure 5.2 show the optimal number of integer sums that the
primary user will decode for different power constraints where P equals 1, 3, 5 or 10.
The red area denotes the channel gains where the optimal L equals 1, meaning we
need only decode one sum to optimize the sum rate, and so on. Notice that the sign
of the channel coefficients b2, b3 will not change the optimization problem hence the
patterns should be symmetric over both horizontal and vertical axes. When power
is small (P = 1) we need to decode more than two sums in most channel conditions.
The patterns for P equals 3, 5 or 10 look similar but otherwise rather arbitrary–
reflecting the complex nature of the solution to an integer programming problem.
One observation from the plots is that for P relatively large, with most channel
conditions we only need to decode two sums and we do not decode four sums, which
is equivalent to solving for all messages. This confirms the point we made in the
previous section: the proposed scheme generalizes the conventional scheme such as
Proposition 5.2 to decode just enough information for its purpose, but not more.

5.1.5 Symmetric cognitive many-to-one channels

As we have seen in Section 5.1.4, it is in general difficult to describe the optimal
coefficient matrix A. However we can give a partial answer to this question if we
focus on one simple class of many-to-one channels. In this section we consider a
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symmetric system with bk = b and hk = h for all k ≥ 1 and the case when all
cognitive users have the same rate, i.e., Rk = R for k ≥ 1. By symmetry the
parameters λk, βk and γk should be the same for all k ≥ 1. In this symmetric setup,
one simple observation can be made regarding the optimal number of integer sums
L and the coefficient matrix A.

Lemma 5.2. For the symmetric many-to-one cognitive interference channel, we
need to decode at most two integer sums, L ≤ 2. Furthermore, the optimal coefficient
matrix is one of the following two matrices:

A1 =
(
1 0 . . . 0

)
(5.46)

or

A2 =

(
c0 c . . . c
0 1 . . . 1

)
(5.47)

for some integer c0 and nonzero integer c.

Proof. For given λ, β and γ, to maximize the rate Rk with respect to A is the same
as to minimize the equivalent noise variance N0(	) in (5.28). We write out N0(1) for
decoding the first equation (	 = 1) with βk = β, λk = λ and γk = γ for all k ≥ 1:

N0(1) = α2
1 +
∑
k≥1

(α1b− ak(1)β)
2 λ̄P + (α1b0 − a0(1)β0 − γ

∑
k≥1

ak(1))
2P

The above expression is symmetric on ak(1) for all k ≥ 1 hence the minimum is
obtained by letting all ak(1) be the same. It is easy to see that the same argument
holds when we induct on 	, i.e., for any 	 ∈ [1 : L], the minimizing ak(	) is the same
for k ≥ 1. Clearly A1 and A2 satisfy this property.

To see why we need at most two integer sums: the case with A1 when the
primary decoder decodes one sum is trivial; now consider when it decodes two sums
with the coefficients matrix A2. First observe that A2 is in the set A(2), meaning
we can solve for t0. Furthermore, there is no need to decode a third sum with ak(3)
all equal for k ≥ 1, because any other sums of this form can be constructed by using
the two sums we already have. We also mention that the coefficient matrix

A3 =

(
c0 c . . . c
1 0 . . . 0

)
(5.48)

is also a valid choice and will give the same result as A2.

Now we give some numerical results comparing the proposed scheme with the
conventional schemes proposed in Section 5.1.2 for the symmetric cognitive many-
to-one channels.

Figure 5.3 shows the achievable rate region for a symmetric cognitive many-
to-one channel. The dashed and dot-dash lines are achievable regions with DPC
in Proposition 5.1 and SND at Rx 0 in Proposition 5.2, respectively. The solid
line depicts the rate region using the proposed scheme in Theorem 5.1. Notice the
achievable rates based on the simple conventional schemes in Proposition 5.1 and 5.1
are not much better than the trivial time sharing scheme in the multi-user scenario,
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due to their inherent inefficiencies on interference suppression. On the other hand,
the proposed scheme based on structured codes performs a kind of interference
alignment in the signal level, which gives better interference mitigation ability at
the primary receiver. The effect is emphasized more when we study the non-cognitive
system in Section 5.1.6. The outer bound in Figure 5.3 is obtained by considering
the system as a two-user multiple-antenna broadcast channel whose capacity region
is known. A brief description to this outer bound is given in Appendix 5.5.4.
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Figure 5.3 – Achievable rate region for a many-to-one symmetric cognitive many-to-
one channel with power P = 10, channel gain bk = 4, hk = 1.5 for k ≥ 1 and K = 3
cognitive users.The plot compares the different achievable rates for the cognitive
many-to-one channel. The horizontal and vertical axis represents the primary rate
R0 and cognitive rate Rk, k ≥ 1, respectively.

It is also instructive to study the system performance as a function of the channel
gain b. We consider a symmetric channel with h fixed and varying value of b. For
different values of b, we maximize the symmetric rate Rsym := min{R0, R} where
R = Rk for k ≥ 1 by choosing optimal A, λ and β, i.e.,

max
A∈A(2)

λ,β

min

{
min
�∈L0

r0(a�|1:�−1),min
�∈Lk

rk(a�|1:�−1),max
νk∈R

1

2
log+

σ2
k

Nk(γk)

}
(5.49)

where the first term is the rate of the primary user and the minimum of the second
and the third term is the rate of cognitive users. Notice λk, βk, rk(a�|1:�−1) are
the same for all k ≥ 1 in this symmetric setup. Figure 5.4 shows the maximum
symmetric rate of different schemes with increasing b.

5.1.6 Non-cognitive many-to-one channels

As an interesting special case of the cognitive many-to-one channel, in this section
we will study the non-cognitive many-to-one channels where user 1, . . . ,K do not
have access to the message W0 of User 0. The many-to-one interference channel
has also been studied, for example, in [48], where several constant-gap results are
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Figure 5.4 – The maximum symmetric rates Rsym of different schemes for a many-
to-one cognitive interference network with power P = 5 and K = 3 cognitive users
where Rk = R for k ≥ 1. We set h = 1 and vary the cross channel gain b in the
interval [0 : 10]. Notice the maximum symmetric rate is upper bounded by 1

2 log(1+
h2P ). We see the proposed scheme performs better than the other two schemes in
general. When the interference becomes larger, the proposed scheme quickly attains
the maximum symmetric rate. The joint decoding method approaches the maximum
symmetric rate much slower, since it requires the cross channel gain to be sufficiently
large such that the primary decoder can (nonuniquely) decode all the messages of
the cognitive users. The dirty paper coding approach cannot attain the maximum
symmetric rate since the primary decoder treats interference as noise.

obtained. Using the coding scheme introduced here, we are able to give some refined
result to this channel in some special cases.

It is straightforward to extend the coding scheme of the cognitive channel to the
non-cognitive channel by letting users 1, . . .K not split the power for the message
W0 but to transmit their own messages only. The achievable rates are the same
as in Theorem 5.1 by setting all power splitting parameters λk to be zero and γk
to be zero because x0 will not be interference to cognitive users.. Although it is a
straightforward exercise to write out the achievable rates, we still state the result
formally here.

Theorem 5.2. For any given positive numbers β and coefficient matrix A ∈ A(L) in
(5.31) with L ∈ [1 : K+1], define Lk := {	 ∈ [1 : L]|ak(	) 
= 0}. If rk(a�|1:�−1, λ, β, γ) >
0 for all 	 ∈ Lk, k ∈ [0 : K], then the following rate is achievable for the many-to-one
interference channel

R0 ≤ min
�∈L0

r̃0(a�|1:�−1, β) (5.49a)

Rk ≤ min

{
1

2
log
(
1 + h2kP

)
,min
�∈Lk

r̃k(a�|1:�−1, β)

}
for k ∈ [1 : K], (5.49b)

with

r̃k(a�|1:�−1, β) := max
α1,...,α�∈R

1

2
log+

(
β2
kP

Ñ0(	)

)
(5.50)
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where Ñ0(	) is defined as

Ñ0(	) := α2
� +
∑
k≥1

⎛
⎝α�bk − ak(	)βk −

�−1∑
j=1

αjak(j)βk

⎞
⎠2

P

+

⎛
⎝α� − a0(	)β0 −

�−1∑
j=1

αja0(j)β0

⎞
⎠2

P. (5.51)

Proof. The proof of this result is almost the same as the proof of Theorem 5.1 in
Section 5.5.1. The only change in this proof is that the user 1, . . . ,K do not split
the power to transmit for the primary user and all γk are set to be zero since x0

will not act as interference to cognitive receivers. We will make slight adjustment
to the codes constructions. Given positive numbers β and a simultaneously good
fine lattice Λ, we choose K+1 simultaneously good lattices such that Λs

k ⊆ Λk with
second moments σ2(Λs

k) = β2
kP for all k ∈ [0 : K].

Each user forms the transmitted signal as

xk =

[
tk
βk

+ dk

]
mod Λs

k/βk, k ∈ [0 : K] (5.52)

The analysis of the decoding procedure at all receivers is the same as in Section 5.5.1.
User 0 decodes integer sums to recover t0 and other users decode their message tk
directly from the channel output using lattice decoding. In fact, the expression
r̃k(a�|1:�−1, β) in (5.50) is the same as rk(a�|1:�−1, λ, β, γ) in (5.27) by letting λk =
γk = 0 in the later expression. Furthermore we have

max
νk∈R

1

2
log

σ2
k

Nk(γk = 0)
=
1

2
log(1 + h2kP ) (5.53)

for any choice of βk, k ≥ 1.

For a simple symmetric example, we compare the achievable rate region of the
cognitive many-to-one channel (Theorem 5.1) with the achievable rate region of the
non-cognitive many-to-one channel (Theorem 5.2) in Figure 5.5. The parameters
are the same for both channel. This shows the usefulness of the cognitive messages
in the system.

5.1.7 Capacity results for non-cognitive symmetric channels

Now we consider a symmetric non-cognitive many-to-one channel where bk = b and
hk = h for k ≥ 1. In [48], an approximate capacity result is established within a gap
of (3K+3)(1+log(K+1)) bits per user for any channel gain. In this section we will
give refined results for the symmetric many-to-one channel. The reason we restrict
ourselves to the symmetric case is that, for general channel gains the optimization
problem involving the coefficient matrix A is analytically intractable as discussed
in Section 5.1.4, hence it is also difficult to give explicit expressions for achievable
rates. But for the symmetric many-to-one channel we are able to give a constant
gap result as well as a capacity result when the interference is strong. First notice
that the optimal form of the coefficient matrix for the cognitive symmetric channel
given in Lemma 5.2 also applies in this non-cognitive symmetric setting.
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Figure 5.5 – A many-to-one symmetric interference channel with power P = 10,
channel gain bk = 4, hk = 1.5 for k ≥ 1 and K = 3 cognitive users. This plot
compares the different achievable rate regions for the cognitive and non-cognitive
channel. The horizontal and vertical axis represents the primary rate R0 and cog-
nitive rate Rk, k ≥ 1, respectively. The rate region for the cognitive channel given
by Theorem 5.1 is plotted in solid line. The dashed line gives the achievable rate
region in Theorem 5.2 for the non-cognitive many-to-one channel.

Theorem 5.3. Consider a symmetric (non-cognitive) many-to-one interference chan-

nel with K + 1 users. If |b| ≥ |h|
⌈√

P
⌉
, then each user is less than 0.5 bit from the

capacity for any number of users. Furthermore, if |b| ≥
√

(1+P )(1+h2P )
P , each user

can achieve the capacity, i.e., R0 =
1
2 log(1 + P ) and Rk =

1
2 log(1 + h2P ) for all

k ≥ 1.

Proof. A proof is given in Appendix 5.5.5.

Comparing to the constant gap result in [48], our result only concerns a special
class of many-to-one channel, but gives a gap which does not depend on the number
of users K. We also point out that in [53], a K-user symmetric interference channel

is studied where it was shown that if the cross channel gain b satisfies |b| ≥
√

(1+P )2

P ,

then every user achieves the capacity 1
2 log(1+P ). This result is very similar to our

result obtained here and is actually obtained using the same coding technique.

5.2 The Gaussian Interference Channel with Strong
Interference

Consider a two-user Gaussian IC

y1 = x1 + g1x2 + z1 (5.54a)

y2 = x2 + g2x1 + z2 (5.54b)

with xk,yk ∈ R
n denoting the channel input at transmitter (Tx) k and the channel

output at receiver (Rx) k, k = 1, 2. The noises z1, z2 ∈ R
n are assumed to be
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Figure 5.6 – The shaded region is the capacity region of a two-user IC under strong
interference as the intersection of capacity regions of two Gaussian MAC: solid line
for MAC 1 and dashed line for MAC 2. This example shows the case when S2+I2 ≥
S1 + I1, i.e., MAC 2 has a higher sum rate capacity.

Gaussian with unit variance per entry. Power constraints are imposed on the channel
input as ||xk||2 ≤ nPk for k = 1, 2. Transmitter k has a message Wk from the set
{1, . . . , 2nRk} to send to the corresponding Rx k and it is required that both receivers
can decode their intended message reliably. We denote the received signal-to-noise
ratio as Sk := Pk, k = 1, 2 and the received interference-to-noise ratio as I1 := g21P2,
I2 := g22P1.

The capacity region of this channel is known under the strong interference con-
dition, i.e. when it holds that

I1 ≥ S2, I2 ≥ S1. (5.55)

In this case the capacity region of the two-user Gaussian with strong interference is
given by [54]

R1 ≤ C(S1), R2 ≤ C(S2) (5.56a)

R1 +R2 ≤ Cmin := min{C(S1 + I1),C(S2 + I2)} (5.56b)

where C(x) := 1
2 log(1 + x). An illustration is shown in Figure 5.6. The capacity

region in this case is the intersection of capacity regions of two Gaussian multiple
access channels (MAC): one composed of two Txs and Rx 1 as the receiver (call it
MAC 1); and one composed of two Txs and Rx 2 as the receiver (call it MAC 2).

It is well known that for such a Gaussian IC, the capacity region can be achieved
by letting both receivers perform joint decoding (also called simultaneous decoding)
to decode both messages. For a Gaussian MAC, it is also well known that in addition
to joint decoding, two other decoding schemes, successive cancellation decoding
(SCD) with time-sharing and rate-splitting scheme [26], can achieve the capacity
region with a single-user decoder. A single-user decoder is sometimes preferred in
practice for various reasons including complexity issues. Since the capacity region
of Gaussian IC with strong interference is the intersection of capacity regions of
two MACs, we could ask if the above two low complexity methods also achieve
the capacity region of a Gaussian IC. However, as it is shown in [55], the standard
rate-splitting scheme is not able to achieve the whole capacity region, regardless
the number of layers and the code distribution of each layer. It is also easy to
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see that SCD with time-sharing fails to achieve the capacity region. To overcome
this difficulty, a sliding-window superposition coding scheme is proposed in [55]
which achieves the joint decoding inner bound for general interference channels.
Combined with time-sharing, it achieves the capacity region of Gaussian IC with
strong interference.

Here we show that for the Gaussian IC with strong interference, CFMA always
achieves the corner points of the capacity region, and for some parameters, achieves
the whole capacity region.

5.2.1 CFMA for the two-user Gaussian IC

In this section we show how to apply CFMA to the Gaussian interference channel.
Rx k decodes two sums of the codewords in the form:

uk1 = ak1t1 + ak2t2, uk2 = bk1t1 + bk2t2

with the coefficient matrix Ak =

(
ak1 ak2
bk1 bk2

)
satisfying the requirement that Ak is

a full rank integer matrix. Let ûkj , j = 1, 2 denote the two decoded integer sums at
Rx k and define the error probability of decoding as

P
(n)
e,k := P({ûk1 
= uk1} ∪ {ûk2 
= uk2}), k = 1, 2 (5.57)

where n is the length of the codewords. Formally we have the following definition.

Definition 5.3 (Achievability with CFMA). For a two-user Gaussian IC, we say a
rate pair (R1, R2) is achievable with compute-and-forward multiple access (CFMA),

if the rate of codebook Ck is Rk and the error probability P
(n)
e,k , k = 1, 2 in (5.57) can

be made arbitrarily small for large enough n.

Notice that we do not include time-sharing in the above definition. This means
if we say a certain rate pair is achievable using CFMA, only a single-user decoder is
used at each receiver without time-sharing.

We focus on the Gaussian IC with strong but not very strong interference, i.e.,
in addition to (5.55), the sum rate constraint in (5.56b) is active. In this case the
capacity region in (5.56) is a pentagon and we can identify two corner points (R1, R2)
as

(Cmin − C(S2),C(S2)) and (C(S1),Cmin − C(S1)). (5.58)

Theorem 5.4 (CFMA for the Gaussian IC). Consider the two-user Gaussian IC
in (5.54) with strong but not very strong interference. If it holds that

min

{√
S1I1

1 + S1 + I1
,

√
S2I2

1 + S2 + I2

}
≥ 1 (5.59)

the corner points (5.58) of the capacity region are achievable using CFMA. Further-
more if it holds that

I1 ≥ S2(1 + S1) or I2 ≥ S1(1 + S2), (5.60)

the whole capacity region is achievable with CFMA.
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Proof. The codes construction and encoding/decoding procedure are exactly the
same as in two-user Gaussian MAC studied in Theorem 4.2. We give the proof for
the case when it holds that S2+ I2 ≥ S1+ I1, i.e., MAC 2 has a higher sum capacity
than MAC 1. The other case can be proved similarly. In this case the capacity of
this Gaussian IC is depicted in Figure 5.7 as the intersection of capacity regions of
two Gaussian MACs. The two corner points of the IC capacity region are marked
as A and B, and the upper corner point of the MAC 2 capacity region is marked
as C. We use A1 and A2 to denote point A’s coordinates on horizontal and vertical
axes, respectively, and so on.

We first consider the subcase 1 on the left side of Figure 5.7 , where C1 ≤ B1.
This means (1 + S2 + I2)/(1 + S2) < 1 + S1, or equivalently I2 < S1(1 + S2).

In order to achieve the corner point A, Rx 1 decodes two sums with coefficient
matrix A1 = (1 1

1 0) or A1 = (1 1
0 1). According to Theorem 4.2, depending on the

position of A, at least one of the two coefficient matrices A1 allows Rx 1 to decode
both messages at the rate (R1, R2) = (A1, A2), if the condition (5.59) holds. Rx 2
decodes two sums with the coefficient matrix A2 = (1 0

0 1) namely the usual successive
cancellation decoding. This allows Rx 2 to recover both messages if the rates satisfy
R1 ≤ C1 and R2 ≤ C2. We point out that in order to let Rx 1 operate at point A,
the scaling parameter β1, β2 should satisfy β1/β2 = c for some value c depending on
A. However, the usual SCD at Rx 2 works for any values of β1, β2. Furthermore
notice that A1 ≤ C1 and A2 ≤ C2 due to our assumption that MAC 2 has a higher
sum capacity, this guarantees that both receivers can decode both messages reliably
for the rate pair A.

To achieve the corner point B, we let Rx 2 decode two sums with coefficient
matrix A2 = (1 1

1 0) or A2 = (1 1
0 1). Due to Theorem 4.2, at least one of the two

choices on coefficient matrix A allows Rx 2 to decode both messages at the rate
R1 ≤ B′

1 and R2 ≤ B′
2, if the condition (5.59) holds and parameters β1, β2 are

chosen accordingly. Here B′ is the projection of point B on the dominant face of
the MAC 2 capacity region along the vertical axis. Now Rx 1 performs the SCD to
decode t2 and t1 at the rate R1 = B1, R2 = B2. Since B′

1 = B1 and B′
2 ≥ B2, both

decoders can decode both messages reliably, hence achieve the corner point B.

Now we consider the subcase 2 on the right side of Figure 5.7 when I2 ≥ S1(1 +
S2). In this case we have C1 ≥ B1. The same as achieving point A, we let Rx 1 to
decode two sums with coefficient matrix A1 = (1 1

1 0) or A1 = (1 1
0 1). Due to Theorem

4.2, all points on the segment AB are achievable if β1, β2 are chosen accordingly.
Rx 2 uses SCD (equivalently A2 = (1 0

0 1)) which allows it to decode both messages if
the rate pair (R1, R2) satisfies R1 ≤ C1 and R2 ≤ C2. However, this is true for all
rate pairs on the segment AB in this case. This means all points on the dominant
face of the capacity region can be achieved using CFMA in this case.

For the case when MAC 1 has a higher sum rate, the results can be proved in
the same way and we summarize the decoding operation in Table 5.1 and 5.2. Table
5.1 shows how receivers should decode to obtain the corner points. Table 5.2 shows
in the case when either one of the receivers experience very strong interference, the
decoding operation at receivers for achieving the whole capacity region.

It is well known that if it holds that

I1 ≥ S2(1 + S1) and I2 ≥ S1(1 + S2), (5.61)
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Figure 5.7 – The figure depicts the capacity region of a Gaussian IC with strong
but not very strong interference as the intersection of two MAC capacity regions.
The shaded regions in two subcases are achievable using CFMA (without time-
sharing). In subcase 1, the line segment AC ′ and the point B are achievable using
CFMA. Time-sharing can be used to achieve the whole capacity region. In subcase
2, CFMA can achieve the line segment AB, hence the whole capacity region without
time-sharing.

the sum rate constraint in (5.56b) is inactive and the channel is said to be in very
strong interference regime. The optimal point in its capacity region Rk = C(Sk), k =
1, 2 can be achieved by using SCD at both receivers to first decode the other user’s
message. Our results show that under a weaker condition (5.60), where interference
from only one transmitter is very strong, the proposed scheme can already achieve
the whole capacity region using a single-user decoder without time-sharing.

We also point out that even when the one-sided very strong interference condition
in (5.60) is not fulfilled, we can still achieve points other than the corner points on
the capacity region with CFMA. As marked in Figure 5.7 subcase 1, using the same
argument we can show that all points on segment AC ′ are achievable using CFMA,
where C ′ is the projection of C along the vertical axis on the dominant face of MAC
1.

Another special case where CFMA achieves the whole capacity region without
time-sharing is when g1 = g2 = 1 (equivalently I1 = S2 and I2 = S1), which is not
covered in the above theorem. In this case both decoders choose the same coefficient
matrix Ak = (1 1

1 0) or Ak = (1 1
0 1), k = 1, 2.

5.3 The Gaussian Z-Interference Channel

As a special case of the Gaussian IC, the so-called Gaussian Z-interference channel
has also been studied in, for example, [56] and [57]. In this model, the channel gain
g2 in (5.54) is set to be zero (hence I2 = 0) and other setup is the same for the
Gaussian IC channel. In the case I1 ≥ S2 (notice it does not satisfy the strong
interference condition in (5.55)), the capacity region of this channel is known to be

R1 ≤ C(S1), R2 ≤ C(S2), R1 +R2 ≤ C(S1 + I1) (5.62)

We use a similar argument to show that this capacity region is achievable with
CFMA.
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Table 5.1 – strong but not very strong interference: Choice of coefficients for achiev-
ing corner points with CFMA

Corner point (R1, R2) A1 at Rx 1 A2 at Rx 2

Cmin − C(S2),C(S2)

(
1 1

1 0

)
or

(
1 1

0 1

) (
1 0

0 1

)

C(S1),Cmin − C(S1)

(
0 1

1 0

) (
1 1

1 0

)
or

(
1 1

0 1

)

Table 5.2 – One-sided very strong interference: choice of coefficients for achieving
the whole capacity region with CFMA

Condition A1 at Rx 1 A2 at Rx 2

I2 ≥ S1(1 + S2)

(
1 1

1 0

)
or

(
1 1

0 1

) (
1 0

0 1

)

I1 ≥ S2(1 + S1)

(
0 1

1 0

) (
1 1

1 0

)
or

(
1 1

0 1

)

Theorem 5.5 (CFMA for Gaussian Z-interference channels). Consider the Gaus-
sian Z-interference channel with strong interference, i.e., I1 ≥ S2. If it holds that√

S1I1
1 + S1 + I1

≥ 1, (5.63)

the whole capacity region is achievable using CFMA (without time-sharing).

Proof. The capacity region (5.62) of a Gaussian Z-interference channel with strong
interference is given in Figure 5.8. The solid line depicts the capacity region of
MAC 1. The dominant face is the line segment AB where A denotes the rate pair
(R1 = C(S1+I1)−C(S2), R2 = C(S2)) andB denotes the rate pair (R1 = C(S1), R2 =
C(S1+ I1)−C(S1)). To achieve any point on this line, Rx 1 decodes two sums with
coefficient matrix A1 = (1 1

1 0) or A1 = (1 1
0 1). According to Theorem 4.2, given any

rate pair on the line AB, at least one of the two coefficient matrices A1 allows
Rx 1 to decode both messages if the condition (5.63) holds and parameters β1, β2
are chosen accordingly. Rx 2 performs usual lattice decoding as in a point-to-point
channel and the decoding will be successful if R2 ≤ C(S2), which is the case for any
rate pair on the line AB.

Different from the Gaussian IC, rate pairs on the dominant face of the Z-
interference channel capacity region can be achieved using the rate-splitting scheme
[26]. It can be seen that if Tx 1 splits its message into two parts (with an appropriate
power allocation) and lets Rx 1 decode all three messages (two messages from Tx 1
and the message from Tx 2) in an appropriate order, any rate pair on the dominant
face can be achieved.
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A B′

B

R2

R1

A
C(S2)

C(I1)

C(S1)

Figure 5.8 – The shaded region is the capacity region of a Gaussian Z-interference
channel, which is achievable using CFMA without time-sharing.

5.4 The Two-user Gaussian IC with States

As the last example in the family of Gaussian interference channels, we consider a
two-user Gaussian IC of the form

y1 = x1 + g1x2 + c1s+ z1 (5.64a)

y2 = x2 + g2x1 + c2s+ z2 (5.64b)

where s ∈ R
n is a state sequence non-causally known to two transmitters but not to

receivers. Each entry of s is an i.i.d. random variable with a given distribution (not
necessarily Gaussian) and variance E ||si||2 = Q for i = 1, . . . , n. The other setup
is the same as for the normal Gaussian IC in (5.54). To make the model slightly
more general, we use two real numbers c1, c2 to represent the fact that two channels
may suffer from differently scaled versions of the same interference s. This model
has been studied in, for example, [58] [59] where various coding schemes are given.

In our scheme, the channel input for this channel is given by

xk = [tk/βk + dk − γks/βk] mod Λs
k/βk, k = 1, 2

for some real numbers γk to be chosen later. In addition to the Gaussian IC where
βk are used to control the rates of two users, the extra parameters γk are used to
eliminate (partially or completely) the interference s. For given βk, γk and Ak, the
optimal αk1, αk2 and λk which maximize the

We can show that Rx k, k = 1, 2 can form

ỹk1 := z̃k1 +
2∑

i=1

akit̃i, ỹk2 := z̃k2 +
2∑

i=1

bkit̃i

with t̃k := tk − QΛs
k
(tk + βkdk − γks). The variance Nk1 per dimension for noise

z̃k1, and variance Nk2 for noise z̃k2 at Rx k are given as follows

N11 = (α11 − a11β1)
2P1 + (α11g1 − a12β2)

2P2 + α2
11 + (α11c1 −

2∑
i=1

a1iγi)
2Q

(5.65a)

N12 = (α12 − λ1a11β1 − b11β1)
2P1 + (α12g1 − λ1a12β2 − b12β2)

2P2 + α2
12

+ (α12c1 −
2∑

i=1

(λ1a1i + b1i)γi)
2Q (5.65b)
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Figure 5.9 – The achievable rate regions for the a state-dependent Gaussian IC. In
the case when interfering state s has very large power Q, the proposed scheme can
outperform the best known results.

N21 = (α21g2 − a21β1)
2P1 + (α21 − a22β2)

2P2 + α2
21 + (α21c2 −

2∑
i=1

a2iγi)
2Q

(5.65c)

N22 = (α22g2 − λ2a21β1 − b21β1)
2P1 + (α22 − λ2a22β2 − b22β2)

2P2 + α2
22

+ (α22c2 −
2∑

i=1

(λ2a2i + b2i)γi)
2Q (5.65d)

Using lattice decoding, we can show the following achievable rate region for the
2-user Gaussian IC with state.

Proposition 5.4. The following rates are achievable for the Gaussian IC with states
in (5.64):

Rk =
1

2
log+

β2
kPk

max{N11 · 1a1k , N12 · 1b1k , N21 · 1a2k , N22 · 1b2k}

for any αk1, αk2, λk, γk, βk and full rank integer coefficient matrices Ak =

(
ak1 ak2
bk1 bk2

)
in (5.65), k = 1, 2. The indicator function 1a evaluates to 1 if a 
= 0 and to 0 oth-
erwise. We define log+ x := max{0, log x}.

Depending on system parameters , the lattice-based scheme for the Gaussian IC
with state can outperform the best known schemes, especially when the interference
s is very strong. We show such an example in Figure 5.9. We consider a symmetric
Gaussian IC with state in (5.64) with parameters P1 = P2 = 5, g1 = g2 = 1.5, Q =
6000 and compare our achievable rate region with the best known result from [58,
Thm. 3]. We use the capacity region in (5.56) as an outer bound.

The capacity region for this channel is characterized in [59] for certain parameter
regimes. However the capacity result for the following special case seems not to be
present in the literature.
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Lemma 5.3 (Capacity for a special case). For the Gaussian IC with states given

in (5.64) with g1 = g2 = 1 and c1 = c2, if it holds that
√

P1P2
1+P1+P2

≥ 1, the capacity

region is given by

R1 ≤ C(P1), R2 ≤ C(P2), R1 +R2 ≤ C(P1 + P2)

Proof. The converse is obvious. For the achivability part, note that if it holds that
g1 = g2 = 1 and c1 = c2, the system is equivalent to two Gaussian MACs which
are exactly the same. Indeed, notice that in this case the noises Nk1, Nk2 in (5.65)
at two receivers k = 1, 2 are identical if we choose αk1, αk2, λk and Ak to be the
same for k = 1, 2. Further notice that for any αk1, αk2 and λk we can choose γ1, γ2
such that the terms in (5.65) involving Q vanish. Hence the interference s can be
canceled out completely and the system is equivalent to two identical usual Gaussian
MAC (without interference). Using the result in Theorem 4.2, we know that the
entire capacity region of the corresponding Gaussian MAC can be achieved with the
coefficient matrices Ak = (1 1

1 0) or Ak = (1 1
0 1), k = 1, 2.

5.5 Appendix

5.5.1 Proof of Theorem 5.1

In this section we provide a detailed proof for Theorem 5.1. We also discuss the
choice of the fine lattices Λk in the codes constructions. The encoding procedure
has been discussed in section 5.1.3, now we consider the decoding procedure at the
primary user. The received signal y0 at the primary decoder is

y0 = x0 +
∑
k≥1

bkxk + z0 (5.66)

= (1 +
∑
k≥1

bk
√

λk)x0 +
∑
k≥1

bkx̂k + z0 (5.67)

= b0x0 +
∑
k≥1

bkx̂k + z0 (5.68)

where we define b0 := 1 +
∑

k≥1 bk
√
λk.

Given a set of integers a(1) := {ak(1) ∈ Z, k ∈ [0 : K]} and some scalar α1 ∈ R,
the primary decoder can form the following:

ỹ
(1)
0 = α1y0 −

∑
k≥0

ak(1)βkdk (5.69)

= (α1b0 − a0(1)β0)x0 +
∑
k≥1

(α1bk − ak(1)βk)x̂k + α1z0 (5.70)

+
∑
k≥1

ak(1)βkx̂k + a0(1)β0x0 −
∑
k≥0

ak(1)βkdk. (5.71)
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Rewrite the last three terms in the above expression as∑
k≥1

ak(1)βkx̂k + a0(1)β0x0 −
∑
k≥0

ak(1)βkdk (5.72)

(b)
=
∑
k≥1

ak(1)

(
βk(

tk
βk

− γkx0

βk
)− βkQΛs

k
βk

(
tk
βk

+ dk − γkx0

βk
)

)

+a0(1)

(
β0t0 − β0QΛs

0
β0

(
t0
β0

+ d0)

)
(c)
= −

∑
k≥1

ak(1)γkx0 + a0(1)(t0 −QΛs
0
(t0 + β0d0))

+
∑
k≥1

ak(1)
(
tk −QΛs

k
(tk + βkdk − γkx0)

)
(d)
= −

∑
k≥1

ak(1)γkx0 +
∑
k≥0

ak(1)̃tk. (5.73)

In step (b) we used the definition of the signals x0 and x̂k from Eqn. (5.23). Step
(c) uses the identity QΛ(βx) = βQΛ

β
(x) for any real number β 
= 0. In step (d) we

define t̃k for user k as

t̃0 := t0 −QΛs
0
(t0 + βkd0) (5.74)

t̃k := tk −QΛs
k
(tk + βkdk − γkx0) k ∈ [1 : K]. (5.75)

Define g(1) :=
∑

k≥1 ak(1)γk and substitute the expression (5.73) into ỹ
(1)
0 to get

ỹ
(1)
0 = (α1b0 − a0(1)β0 − g(1))x0 +

∑
k≥1

(α1bk − ak(1)βk)x̂k + α1z0 +
∑
k≥0

ak(1)t̃k

= z̃0(1) +
∑
k≥0

ak(1)t̃k (5.76)

where we define the equivalent noise z̃0(1) at the primary receiver as:

z̃0(1) := α1z0 + (α1b0 − a0(1)β0 − g(1))x0 +
∑
k≥1

(α1bk − ak(1)βk)x̂k (5.77)

where b0 := 1 +
∑

k≥1 bk
√
λk.

Notice that we have t̃k ∈ Λk since tk ∈ Λk and Λ
s
k ⊆ Λc due to the lattice code

construction (recall that Λc denotes the coarsest lattice among Λk). Furthermore
because all Λk are chosen to form a nested lattice chain, the integer combination∑

k≥0 ak(1)̃tk also belongs to a Λk for some k ∈ [0 : K]. Furthermore, the equivalent

noise z̃0(1) is independent of the signal
∑

k≥0 ak(1)̃tk thanks to the dithers dk.

The primary decoder uses lattice decoding to decode the integer sum
∑

k≥0 ak(1)̃tk

by quantizing ỹ
(1)
0 to its nearest neighbor in Λ. A decoding error occurs when ỹ

(1)
0

falls outside the Voronoi region around the lattice point
∑

k≥0 ak(1)̃tk. The proba-
bility of this event is equal to the probability that the equivalent noise z̃0(1) leaves
the Voronoi region of the fine lattice, i.e., Pr(z̃0(1) /∈ V). The same as in the proof
of [8, Theorem 5], the probability Pr(z̃0(1) /∈ V) goes to zero if the probability
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Pr(z∗0(1) /∈ V) goes to zero where z∗0(1) is a zero-mean Gaussian vector with i.i.d
entries whose variance equals the variance of the noise z̃0(1):

N0(1) = α2
1 + (α1b0 − a0(1)β0 − g(1))2P +

∑
k≥1

(α1bk − ak(1)βk)
2λ̄kP. (5.78)

Lattice decoding will be successful if

Rk < rk(a1, λ, β, γ) :=
1

2
log

(
σ2
k

N0(1)

)
− 1

2
log(1 + δ) (5.79)

that is

R0 <
1

2
log+

(
β2
0P

α2
1 + P ||α1h− ã||2

)
(5.80a)

Rk <
1

2
log+

(
(1− λk)β

2
kP

α2
1 + P ||α1h− ã||2

)
k ∈ [1 : K] (5.80b)

if we choose δ arbitrarily small and define

h := [b0, b1
√
λ̄1, . . . , bK

√
λ̄K ] (5.81)

ã := [a0(1)β0 + g(1), a1(1)β1
√
λ̄1, . . . , aK(1)βK

√
λ̄K ]. (5.82)

Notice we can optimize over α1 to maximize the above rates.
At this point, the primary user has successfully decoded one integer sum of the

lattice points
∑

k≥0 akt̃k. As mentioned earlier, we may continue decoding other in-
teger sums with the help of this sum. The method of performing successive compute-
and-forward in [29] is to first recover a linear combination of all transmitted signals
x̃k from the decoded integer sum and use it for subsequent decoding. Here we are
not able to do this because the cognitive channel input x̂k contains x0 which is not
known at Receiver 0. In order to proceed, we use the observation that if

∑
k≥0 akt̃k

can be decoded reliably, then we know the equivalent noise z̃0(1) and can use it for
the subsequent decoding.

In general assume the primary user has decoded 	− 1 integer sums
∑

k ak(j)tk,
j ∈ [1 : 	 − 1], 	 ≥ 2 with positive rates, and about to decode another integer
sum with coefficients a(	). We show separately in Appendix 5.5.2 that with the
previously known z̃0(	− 1) for 	 ≥ 2, the primary decoder can form

ỹ
(�)
0 = z̃0(	) +

∑
k≥0

ak(	)̃tk (5.83)

with the equivalent noise z̃0(	)

z̃0(	):= α�z0 +
∑
k≥1

⎛
⎝α�bk − ak(	)βk −

�−1∑
j=1

αjak(j)βk

⎞
⎠ x̂k

+

⎛
⎝α�b0 − a0(	)β0 −

�−1∑
j=1

αja0(j)β0 − g(	)

⎞
⎠x0 (5.84)

where g(	) is defined in (5.30) and the scaling factors α1, . . . , α� are to be optimized.
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In the same vein as we derived (5.79), using ỹ
(l)
0 we can decode the integer sums of

the lattice codewords
∑

k≥0 ak(	)̃t0 reliably using lattice decoding if the fine lattice
satisfy

(Vol (Vk))
2/n

N0(	)
> 2πe (5.85)

for k satisfying ak(	) 
= 0 and we use N0(	) to denote the variance of the equivalent
noise z̃0(	) per dimension given in (5.28). Equivalently we require the rate Rk to be
smaller than

rk(a�|1:�−1, λ, β, γ) := max
α1,...,α�∈R

1

2
log+

(
σ2
k

N0(	)

)
(5.86)

where σ2
k is given in (5.20). Thus we arrive at the same expression in (5.27) as

claimed.
Recalling the definition of the set A(L) in (5.31), we now show that if the coef-

ficient matrix A is in this set, the term t̃0 can be solved using the L integer sums
with coefficients a(1), . . . ,a(L).

For the case rank(A) = K + 1 the statement is trivial. For the case rank(A) =
m ≤ L < K + 1, we know that by performing Gaussian elimination on A′ ∈ Z

L×K

with rank m − 1, we obtain a matrix whose last L −m + 1 rows are zeros. Notice
that A ∈ Z

L×K+1 is a matrix formed by adding one more column in front of A′.
So if we perform exactly the same Gaussian elimination procedure on the matrix
A, there must be at least one row in the last L − m + 1 row whose first entry is
non-zero, since rank(A) = rank(A′) + 1. This row will give the value of t̃0. Finally
the true codeword t0 can be recovered as

t0 = [t̃0]mod Λ
s
0. (5.87)

Now we consider the decoding procedure at the cognitive receivers, for whom
it is just a point-to-point transmission problem over Gaussian channel using lattice
codes. The cognitive user k can process its received signal for some νk as

ỹk = νkyk − βkdk

= νk(zk +
√
λkhkx0) + (νkhk − βk)x̂k + βkx̂k − βkdk

= νk(zk +
√
λkhkx0) + (νkhk − βk)x̂k − βkdk

+QΛs
k
(tk + βkdk − γkx0) + βk(

tk
βk

+ dk − γk
βk

x0)

= z̃k + t̃k.

In the last step we define the equivalent noise as

z̃k := νkzk + (νkhk − βk)x̂k + (νk
√
λkhk − γk)x0 (5.88)

and t̃k as in (5.75).
Using the same argument as before, we can show that the codeword t̃k can be

decoded reliably using lattice decoding if

(Vol (Vk))
2/n

Nk(γk)
> 2πe (5.89)
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for all k ≥ 1 where Nk(γ) is the variance of the equivalent noise z̃k per dimension
given in (5.32). Equivalently the cognitive rate Rk should satisfy

Rk < max
νk

1

2
log

σ2
k

Nk(γk)
. (5.90)

Similarly we can obtain tk from t̃k as tk = [t̃k]mod Λ
s
k. This completes the proof of

Theorem 5.1.

We also determined how to choose the fine lattice Λk. Summarizing the require-
ments in (5.89) and (5.85) on Λk for successful decoding, the fine lattice Λ0 of the
primary user satisfies

(Vol (V0))
2/n > 2πeN0(	) (5.91)

for all 	 where a0(	) 
= 0 and the fine lattice Λk of the cognitive user k, k ∈ [1 : K],
satisfies

(Vol (Vk))
2/n > max{2πeN0(	), 2πeNk(γk)} (5.92)

for all 	 where ak(	) 
= 0. Recall that the fine lattices Λk are chosen to form a nested
lattice chain. Now the order of this chain can be determined by the volumes of Vk

given above.

5.5.2 Derivations in the proof of Theorem 5.1

We give the details for the claim made in Appendix 5.5.1 that we could form the
equivalent channel

ỹ
(�)
0 = z̃0(	) +

∑
k≥0

ak(	)t̃k

with z̃0(	) defined in (5.84) when the primary decoder decodes the 	-th integer sum∑
k≥0 ak(	)t̃k for 	 ≥ 2.

We first show the base case for 	 = 2. Since
∑

k≥0 ak(1)t̃k is decoded, the
equivalent noise z̃0(1) in Eqn. (5.77) can be inferred from ỹ0. Given α20, α21 we
form the following with y0 in (5.68) and z̃0(1)

ỹ
(2)
0 := α20y0 + α21z̃0(1)

= (α20 + α21α1)z0 +
∑
k≥1

((α20 + α20α1)bk − α21ak(1)βk)x̂k

+((α20 + α21α1)b0 − α21a0(1)β0 − α21g(1))x0

= α′
2z0 +

∑
k≥1

(α′
2bk − α′

1ak(1)βk)x̂k + (α′
2b0 − α′

1a0(1)β0 − α′
1g(1))x0

by defining α′
1 := α21 and α′

2 := α20 + α21α1. Now following the same step for

deriving ỹ
(1)
0 in (5.76), we can rewrite ỹ

(2)
0 as

ỹ
(2)
0 =

∑
k≥0

ak(2)t̃k + z̃0(2) (5.93)
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with

z̃0(2) := α′
2z0 +

∑
k≥1

(α′
2bk − ak(2)βk − α′

1ak(1)βk)x̂k (5.94)

+(α′
2b0 − a0(2)β0 − α′

1a0(1)β0 − g(2))x0 (5.95)

This establishes the base case by identifying α′
i = αi for i = 1, 2.

Now assume the expression (5.84) is true for 	− 1 (	 ≥ 3) and we have inferred

z̃0(m) from ỹ
(m)
0 using the decoded sum

∑
k≥0 ak(m)t̃k for all m ≤ 1, . . . , 	− 1, we

will form ỹ
(�)
0 with 	 numbers α�0, . . . , α��−1 as

ỹ
(�)
0 := α�0y0 +

�−1∑
m=1

α�mz̃0(m)

= α′
�z0 +

∑
k≥1

(
α′
�bk − βkC�−1(k)

)
x̂k +

(
α′
�b0 − β0C�−1(0)−

�−1∑
m=1

α�mg(m)

)
x0

with

α′
� := α�0 +

�−1∑
m=1

α�mαm (5.96)

C�−1(k) :=
�−1∑
m=1

α�m

⎛
⎝ak(m) +

m−1∑
j=1

αjak(j)

⎞
⎠ . (5.97)

Algebraic manipulations allow us to rewrite C�−1(k) as

C�−1(k) =

�−1∑
m=1

⎛
⎝α�m + αm

�−1∑
j=m+1

α�j

⎞
⎠ ak(m) (5.98)

=

�−1∑
m=1

α′
mak(m) (5.99)

by defining α′
m := α�m + αm

∑�−1
j=m+1 α�j for m = 1, . . . , 	 − 1. Substituting the

above into ỹ
(�)
0 we get

ỹ
(�)
0 = α′

�z0 +
∑
k≥1

(
α′
�bk − βk

�−1∑
m=1

α′
mak(m)

)
x̂k (5.100)

+

(
α′
�b0 − β0

�−1∑
m=1

α′
ma0(m)−

�−1∑
m=1

α�mg(m)

)
x0. (5.101)

Together with the definition of g(m) in (5.30) and some algebra we can show

�−1∑
m=1

a�mg(m) =

K∑
k=1

γkC�−1(k) (5.102)

=

K∑
k=1

(
�−1∑
m=1

α′
mak(m)

)
γk. (5.103)
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Finally using the same steps for deriving ỹ
(1)
0 in (5.76) and identifying α′

m = αm for
m = 1, . . . , 	, it is easy to see that we have

ỹ
(�)
0 =

∑
k≥0

ak(	)t̃k + z̃0(	) (5.104)

with z̃0(	) claimed in (5.84).

5.5.3 Proof of Proposition 5.3

For any given set of parameters {αj , j ∈ [1 : 	]} in the expression N0(	) in (5.38) ,
we can always find another set of parameters {α′

j , j ∈ [1 : 	]} and a set of vectors
{uj , j ∈ [1 : 	]}, such that

α�h+
�−1∑
j=1

αj ãj =
�∑

j=1

α′
juj (5.105)

as long as the two sets of vectors, {h, ãj , j ∈ [1 : 	 − 1]} and {uj , j ∈ [1 : 	]}
span the same subspace. If we choose an appropriate set of basis vectors {uj}, the
minimization problem of N0(	) can be equivalently formulated with the set {uj}
and new parameters {α′

j} where the optimal {α′
j} have simple solutions. Notice

that {uj , j ∈ [1 : 	]} in Eqn. (5.40) are obtained by performing the Gram-Schmidt
procedure on the set {h, ãj , j ∈ [1 : 	 − 1]}. Hence the set {uj , j ∈ [1 : 	]} contains
orthogonal vectors and spans the same subspace as the set {h, ãj , j ∈ [1 : 	 − 1]}
does. For any 	 ≥ 1, the expression N0(	) in (5.38) can be equivalently rewritten as

N0(	) = α′2
� +

∣∣∣∣∣∣
∣∣∣∣∣∣

�∑
j=1

α′
juj − ã�

∣∣∣∣∣∣
∣∣∣∣∣∣
2

P (5.106)

with {uj} defined above and some {α′
j}. Due to the orthogonality of vectors {uj},

we have the following simple optimal solutions for {α′∗
j } which minimize N0(	):

α′∗
j =

ãT� uj

||uj ||2
, j ∈ [1 : 	− 1] (5.107)

α′∗
� =

P ãT� u�

P ||u�||2 + 1
. (5.108)

Substituting them back to N0(	) in (5.106) we have

N0(	) = P ||ã�||2 −
�−1∑
j=1

(ãT� uj)
2P

||uj ||2
− P 2(uT

� ã�)
2

1 + P ||u�||2
(5.109)

= P ãT�

(
I−

�−1∑
i=1

uju
T
j

||uj ||2
− (u�u

T
� )P

1 + P ||u�||2
)
ã� (5.110)

= Pa(	)TB�a(	) (5.111)

with B� given in (5.42). As we discussed before, maximizing rk(a�|1:�−1) is equivalent
to minimizing N0(	) and the optimal coefficients a(	), 	 ∈ [1 : L] are the same for all
users. This proves the claim.
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5.5.4 An outer bound on the capacity region

In this section we give a simple outer bound on the capacity region of the cognitive
many-to-one channel, which is used for the numerical evaluation in Figure 5.3, Sec-
tion 5.1.5. Notice that if we allow all transmitters k = 0, . . . ,K to cooperate, and
allow the cognitive receivers k = 1, . . . ,K to cooperate, then the system can be seen
as a 2-user broadcast channel where the transmitter has K + 1 antennas. The two
users are the primary receiver and the aggregation of all cognitive receivers with K
antennas. Obviously the capacity region of this resulting 2-user MIMO broadcast
channel will be a valid outer bound on the capacity region of the cognitive many-
to-one channel. The capacity region CBC of the broadcast channel is given by (see
[6, Ch. 9] for example)

CBC = R1

⋃
R2 (5.112)

where R1 is defined as

R1 ≤ 1

2
log

|H1(K1 +K2)H
T
1 + I|

|H1K2HT
2 + I| (5.113)

R2 ≤ 1

2
log |H2K2G

T
2 + I| (5.114)

and R2 defined similarly with all subscripts 1 and 2 in R1 swapped. The channel
matrices H1 ∈ R

1×(K+1) and H2 ∈ R
K×(K+1) are defined as

H1 =
[
1 b1 . . . bK

]
(5.115)

H2 =

⎡
⎢⎢⎢⎣
0 h1 0 . . . 0
0 0 h2 . . . 0
...

...
...

. . .
...

0 0 0 . . . hK

⎤
⎥⎥⎥⎦ (5.116)

where H1 denotes the channel from the aggregated transmitters to the primary re-
ceiver and H2 denotes the channel to all cognitive receivers. The variables K1,K2 ∈
R
(K+1)×(K+1) should satisfy the condition

tr(K1 +K2) ≤ (K + 1)P (5.117)

which represents the power constraint for the corresponding broadcast channel4. As
explained in [6, Ch. 9], the problem of finding the region CBC can be rewritten
as convex optimization problems which are readily solvable using standard convex
optimization tools.

5.5.5 Proof of Theorem 5.3

Proof. For the symmetric non-cognitive many-to-one channel, we have the following
trivial capacity bound

R0 ≤ 1

2
log(1 + P ) (5.118)

Rk ≤ 1

2
log(1 + h2P ). (5.119)

4Since each transmitter has its individual power constraint, we could give a slightly tighter outer
bound by imposing a per-antenna power constraint. Namely the matrices K1,K2 should satisfy
(K1 +K2)ii ≤ P for i ∈ [1 : K + 1] where (X)ii denotes the (i, i) entry of matrix X. However this
is not the focus of this paper and we will not pursue it here.
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To show the constant gap result, we choose the coefficients matrix of the two
sums to be

A =

(
1 c . . . c
0 1 . . . 1

)
(5.120)

for some nonzero integer c. Furthermore we choose β0 = 1 and βk = b/c for all k ≥ 1.
In Appendix 5.5.6 we use Theorem 5.2 to show the following rates are achievable:

R0 =
1

2
log+ P (5.121)

Rk = min

{
1

2
log+

b2P

c2
,
1

2
log+ b2,

1

2
log(1 + h2P )

}
. (5.122)

If |b| ≥ |h|
⌈√

P
⌉
, choosing c =

⌈√
P
⌉
will ensure Rk ≥ 1

2 log
+ h2P .

Notice that for P ≤ 1, then 1
2 log(1+P ) ≤ 0.5 hence the claim is vacuously true.

For P ≥ 1, we have

1

2
log(1 + P )−R0 ≤ 1

2
log

1 + P

P
≤ 1

2
log 2 = 0.5 bit (5.123)

With the same argument we have

1

2
log(1 + h2P )−Rk ≤ 0.5 bit (5.124)

To show the capacity result, we set β0 = 1 and βk = β for all k ≥ 1. The receiver
0 decodes two sums with the coefficients matrix

A =

(
0 1 . . . 1
1 0 . . . 0

)
. (5.125)

The achievable rates using Theorem 5.2 is shown in Appendix 5.5.6 to be

R0 =
1

2
log(1 + P ) (5.126)

Rk = min

{
1

2
log

(
Pb2

1 + P

)
,
1

2
log(1 + h2P )

}
. (5.127)

The inequality

Pb2

1 + P
≥ 1 + h2P (5.128)

is satisfied if it holds that

b2 ≥ (1 + P )(1 + h2P )

P
. (5.129)

This completes the proof.
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5.5.6 Derivations in the proof of Theorem 5.3

We give detailed derivations of the achievable rates in Theorem 5.3 with two chosen
coefficient matrices.

When the primary user decodes the first equation (	 = 1) in a symmetric channel,
the expression (5.51) for the variance of the equivalent noise simplifies to (denoting
βk = β for k ≥ 1)

Ñ0(1) = ᾱ2
1 +K(ᾱ1b− ak(1)β)

2P + (ᾱ1 − a0(1)β0)
2P. (5.130)

For decoding the second integer sum, the variance of the equivalent noise (5.51) is
given as

Ñ0(2) = α2
2 +K(α2b− ak(2)β − α1ak(1)β)

2P

+(α2 − a0(2)β0 − α1a0(1)β0)
2P. (5.131)

We first evaluate the achievable rate for the coefficient matrix in (5.120). We
choose β0 = 1 and β = b/c. Using Theorem 5.2, substituting a(1) = [1, c, . . . , c] and
the optimal ᾱ∗

1 = 1− 1
P (Kb2+1)

into (5.130) will give us a rate constraint on R0

r̃0(a1, β) =
1

2
log+

(
1

1 +Kb2
+ P

)
>
1

2
log+ P (5.132)

r̃k(a1, β) =
1

2
log+

(
b2P (Kb2P + P + 1)

c2(Kb2P + P )

)
>
1

2
log+

b2P

c2
. (5.133)

Notice here we have replaced the achievable rates with smaller values to make the
result simple. We will do the same in the following derivation.

For decoding the second sum with coefficients a(2) = [0, 1, . . . , 1], we use Theo-
rem 5.2 and (5.131) to obtain rate constraints for Rk

r̃k(a2|1, β) =
1

2
log+

(
b2 +

1

K

)
>
1

2
log+ b2 (5.134)

with the optimal α∗
1 =

−b2K
c(Kb2+1)

and α∗
2 = 0. Notice that a0(1) = 0 hence decoding

this sum will not impose any rate constraint on R0. Therefore we omit the expression
r̃0(a2|1, β). Combining the results above with Theorem 5.2 we get the claimed rates
in the proof of Theorem 5.3.

Now we evaluate the achievable rate for the coefficient matrix in (5.125). We
substitute β0 = 1, βk = β for any β and a(1) = [0, 1, . . . , 1] in (5.130) with the
optimal ᾱ∗

1 =
Kbβp

Kb2P+P+1
. Notice again R0 is not constrained by decoding this sum

hence we only have the constraint on Rk as

r̃k(a1, β) =
1

2
log+

(
1

K
+

P

1 + P
b2
)

>
1

2
log+

Pb2

1 + P
. (5.135)

For the second decoding, using a(2) = [1, 0, . . . , 0] in (5.131) gives

r̃0(a2|1, β) =
1

2
log (1 + P ) (5.136)

with the optimal scaling factors α∗
1 =

bP
β(P+1) and α∗

2 =
P

P+1 . Combining the achiev-
able rates above with Theorem 5.2 gives the claimed result.





Intermezzo: on Computation Rates
for the Gaussian MAC 6
We have seen in previous chapters, that the key element to all applications with
lattice codes is to decode the sum of codewords via a Gaussian network.1 In its
simplest form, the receiver in a 2-user Gaussian MAC wishes to decode the sum of
two codewords from the two users. This problem is of particular interests, because
any improvement on the computation rates for the 2-user Gaussian MAC could
immediately imply better achievable rates for many other communication networks.
Unfortunately, the best computation rate region is not known even for this simple
system. In this chapter we will study this problem with the help of nested linear
codes.

6.1 Sum Decoding with Nested Linear Codes

Consider again the 2-user Gaussian MAC of the form

y = x1 + x2 + z (6.1)

where both users are assumed to have the power constraint E ||xk||2 ≤ nP . The
white Gaussian noise with unit variance per entry is denoted by z ∈ R

n.

Instead of using nested lattice codes, we will equip two users with nested linear
codes defined as follows. Let q be a prime number, we use vectors in F

�
q to denote

the messages. The codebooks are constructed with the following steps.

• For user k. select a random variable Uk defined on Fq with an arbitrary
probability distribution.

• Generates two matrices H ∈ F
n×�
q ,G ∈ F

n×h
q and two vectors dk ∈ F

n
q whose

entries are chosen i.i.d. uniformly from Fq.

1The material of this chapter has appeared in
J. Zhu and M. Gastpar, “Compute-and-Forward using nested linear codes for the Gaussian

MAC”, Proc. Information Theory Workshop (ITW) 2015, Jerusalam, Israel.
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• For any message wk ∈ F
�
q, user k tries to find some ak ∈ F

h
q and form

uk = Hwk ⊕Gak ⊕ dk

such that uk ∈ A(n)
[Uk]

. (Recall that A(n)
[Uk]

denotes the set of typical sequences

with the distribution of Uk.) If this is possible, this uk is included in the
codebook Ck as the codeword for the message wk, otherwise an error occurs.
Consequently the rate of this codebook is 1

n log |Ck| = k
n log q.

We will first consider the case when the two users use the same codebook, hence
have the same rate. The goal of the receiver is to decode the sum of two codewords
s := u1⊕u2 from the channel output y where the sum is performed component-wise
in the finite field. Let ŝ denote the decoded sum. The error event is defined as

P (n)
e,sum := P(ŝ 
= s) (6.2)

where n is the length of codewords.

Let us recall two other known schemes to this problem. With the compute-and-
forward scheme, the symmetric computation rate2

Rs
CF (P ) :=

1

2
log(1/2 + P ) (6.3)

is achievable. With power allocations, the symmetric computation rate

αRs
CF (P/α) =

α

2
log(1/2 + P/α) (6.4)

is achievable for any α ∈ [0, 1]. This result is obtained using Theorem 2.5 by setting
channel coefficients to be 1. Notice that the generalized result in Theorem 3.1 does
not give a higher symmetric computation rate in the symmetric case.

We should also point out that the compute-and-forward scheme discussed in
Chapter 2 and 3 concerns with decoding the modulo sum of the lattice codewords of
the form [

∑
k aktk] mod Λ, where tk are lattice points in R

n as in Theorem 2.5 and
3.1. In this approach the receiver wishes to decode the sum of the codewords u1⊕u2,
where uk are codewords in F

n
q . Nevertheless these two sums are equivalent as far as

our applications are concerned. Moreover, it is also shown in [8] that if Construction
A is used for generating the nested lattice codes, then sum of the lattice codewords
[
∑

k aktk] mod Λ permits us to recover the modulo sum of messages w1 ⊕w2, and
u1 ⊕ u2 is readily obtainable since u1 ⊕ u2 = H(w ⊕w2) ⊕ G(a1 ⊕ a2) ⊕ d1 ⊕ d2

(ak,dk are known at the receiver).

Although asymptotically optimal in the high SNR regime, the result in the low
SNR regime can be improved using a simple separation scheme. Namely let the
receiver decode both codewords and add them up. From the results on the capacity
region of the Gaussian MAC, we know that

Rs
SEP (P ) :=

1

4
log(1 + 2P ). (6.5)

2For a two-user Gaussian MAC, achievable symmetric computation rate R simply means that
the computation rate pair (R,R) is achievable.
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is an achievable symmetric computation rate. Comparing to the upper bound
1
2 log(1 + P ), this achievable computation rate is good at low SNR but subopti-
mal at high SNR regime. We can further improve the rate by time-sharing the two
above schemes.

Proposition 6.1 (Time-sharing). For any P1, P2 ≥ 0, β ∈ [0, 1], α ∈ [0, 1] such that
βP1 + (1 − β)P2 = P , an achievable symmetric computation rate for the Gaussian
MAC in (6.1) is

Rs
TS(P ) := βαRs

CF (P1/α) + (1− β)Rs
SEP (P2) (6.6)

where Rs
CF , R

s
SEP are defined in (6.3) and (6.5).

In the following we show that with nested linear codes, we can give an alternative
codes construction for the compute-and-forward scheme. This construction recovers
the original compute-and-forward result and more importantly, it improves upon
the best known results. The encoding and decoding procedure with nested linear
codes for the two-user Gaussian MAC are given as follows.

• Encoding: User k selects a conditional probability distribution pX|U : Fq →
R. Given the codewords uk, it generates the channel input xk element-wise
according to pX|U (xk,i|uk,i) where uk,i denotes the i-th entry of uk for i =
1, . . . , n.

• Decoding: Define u(ws,a) := Hws⊕Ga⊕d1⊕d2. Given the channel output
y, the decoder finds a unique ŵs such that

(y,u(ŵs, a)) ∈ A(n)
[Y,U1⊕U2]

for some a ∈ F
h
q . The estimated sum codeword is then formed as ŝ = u(ŵs, a).

3

With the procedure above we can show the following result.

Theorem 6.1. Consider the 2-user MAC in (6.1). Let random variables U1, U2

have the same distribution pU over the finite field Fq with a prime q. The symmetric
computation rate

Rs
NL(P ) := I(U1 ⊕ U2;Y )− (H(U1 ⊕ U2)−H(U1)) (6.7)

is achievable where Xk ∈ R is generated through a conditional probability distribution
pX|U satisfying E ||Xk||2 ≤ P .

Proof. The main idea of the construction can be found in [60, Thm. 1], which deals
with a joint source-channel coding problem. A proof of this theorem can be deduced
from [61] for the case when Y is a discrete random variable. Using a quantization
argument on Y as in [6, Ch. 3], it is straightforward to extend the result for the
Gaussian case with continuous output alphabet.

3Here Y is understood to be a discrete random variable such that the typical sets are well-
defined. Using a quantization argument on Y [6, Ch. 3.4], this construction can be extended to the
Gaussian case when Y is continuous.
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For simplicity of presentation, we will represent the elements in the finite field
Fq using the set

4

U := {−(q − 1)/2, . . . , (q − 1)/2} (6.8)

The sum of two elements is given by U1 ⊕ U2 := (U1 + U2) mod q, i.e. the usual
modular arithmetic for integers. We also define U+ := {1, . . . , (q− 1)/2} and U− :=
{−(q − 1)/2, . . . ,−1}.

The achievable computation rate given in Theorem 6.1 depends on the con-
ditional distribution pX|U which we have the freedom to choose according to the
channel in consideration. For the Gaussian MAC, we study a simple (deterministic)
function which takes the form

Xk = Uk ·Δ for k = 1, 2 (6.9)

with some real number Δ > 0 satisfying the power constraint

(q−1)/2∑
u=−(q−1)/2

pU (u)(Δu)2 = P. (6.10)

Given the distribution of U1, U2, we need the distribution of U1 ⊕ U2 and the
equivalent channel from U1⊕U2 to Y in order to evaluate the expression in Theorem
6.1.

Proposition 6.2. Assume U1, U2 have the distribution pU over the finite field Fq

represented using the set U in (6.8). Define S := U1 ⊕ U2 and

A(s) :=

−(q+1)/2+s∑
i=−(q−1)/2

pU (i)pU (s− i− q)

B(s) :=

(q−1)/2∑
i=−(q−1)/2+s

pU (i)pU (s− i)

D(s) :=

(q−1)/2+s∑
i=−(q−1)/2

pU (i)pU (s− i)

E(s) :=

(q−1)/2∑
i=(q+1)/2+s

pU (i)pU (s− i+ q).

The distribution of S is given by

pS(s) = A(s) +B(s)

for s ∈ U+ ∪ {0} and

pS(s) = D(s) + E(s)

4This choice of U is feasible for a prime number q ≥ 3. For q = 2 we can choose U := {0, 1}
and the results in this paper can be adapted accordingly.
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for s ∈ U−. If Xk is generated as in (6.9), the conditional density function fY |S is
given by

fY |S(y|s) =
A(s)

pS(s)
N (y; Δ(s− q), 1) +

B(s)

pS(s)
N (y; Δs, 1)

for s ∈ U+,

fY |S(y|s) =
D(s)

pS(s)
N (y; Δs, 1) +

E(s)

pS(s)
N (y; Δ(s+ q), 1)

for s ∈ U− and

fY |S(y|0) = N (y; 0, 1)

where N (y;m,σ2) := 1√
2πσ2

e−(y−m)2/(2σ2).

The proof is straightforward but tedious hence omitted. In fact the distribution
pS is the circular convolution of pU with period q. It is easy to show that if pU is
symmetric, i.e., pU (u) = pU (−u) for u ∈ U , pS is also symmetric. The achievable
computation rate in Theorem 6.1 can be readily evaluated for any given distribution
pU . We give a few examples in the sequel.

Example 1 (Uniform distribution.) We assign a uniform distribution to U1, U2,
i.e., pU (u) = 1/q for all u ∈ U . It is easy to see that S is also uniformly distributed
in U . We can find fY |S using Proposition 6.2 and evaluate the achievable rates
using Theorem 6.1. Figure 6.1 shows the achievable rates with different choices of q.
Notice that in this case H(U1 ⊕ U2) = H(U1) = log q hence Rs

NL is always positive.
In high SNR regime, we can show that the rate only scales as 1

2 log
6P
πe due to the

shaping loss.
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Figure 6.1 – Achievable computation rate RNL with uniform input distribution and
different q. It is interesting to notice that for the low SNR regime, the uniform
distribution with a smaller q results in a better rate than a larger q.

Example 2 (Discretized Gaussian distribution.) In this example we show that
with a proper choice of the distribution on U , the symmetric computation rate
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log(1/2+P ) with compute-and-forward can be recovered using Theorem 6.1. Given
a prime number q and A > 0, we consider the following distribution on U

pU (u) =
1

α(q−1)/2
e−(Δu)2/2A (6.11)

with

α(q−1)/2 :=

(q−1)/2∑
u=−(q−1)/2

e−(Δu)2/2A

and Δ is chosen such that (6.10) is satisfied. In this example we will only focus on
the limits

q → ∞,Δ→ 0 and qΔ2 → ∞ (6.12)

with which pU approaches a Gaussian distribution.

Proposition 6.3 (Discretized Gaussian). Consider the 2-user Gaussian MAC in
(6.1). Let pU be the distribution given in (6.11) and choose A = P . In the limits of
(6.12), we have the achievable symmetric computation rate

Rs
NL =

1

2
log(1/2 + P ) (6.13)

where Rs
NL is given in (6.7).

Proof. In this proof we use natural logarithm for simplicity. Choosing pU in (6.11),
the entropy of U1 is calculated to be

H(U1) = logα(q−1)/2 +
1

2
(6.14)

We set A = P and use the lower bound on α(q−1)/2 in Lemma 6.1 in the Appendix
to obtain:

H(U1) > log(
√
2πP − (1 + ε)Δ)− logΔ + 1/2 (6.15)

where ε → 0 in the limits (6.12). In Lemma 6.2 we show that the distribution pS of
S := U1 ⊕ U2 approaches a discretized Gaussian distribution with power 2P , i.e.

pS(s) −→ Δ√
4πP

e−
(Δs)2

4P (6.16)

hence we have [25, Ch. 8]

H(S) −→ 1

2
log(4πeP )− logΔ (6.17)

It is also shown in Lemma 6.2 that the channel fY |S approaches a point-to-point
Gaussian channel in the limits (6.12)

fY |S(y|s) −→
1√
2π

e−(y−sΔ)2/2 (6.18)
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hence we have [6, Ch. 3]

I(Y ;S) −→ 1

2
log(1 + 2P ) (6.19)

This is expected because the distribution pS is a circular convolution of pU , and in
the limit (6.12) the circular convolution approaches a usual convolution because the
support size of U tends to infinity and the convolution of two Gaussian distributions
is Gaussian. Finally we have our achievable computation rate

R = I(Y ;S)−H(S) +H(U)

> I(Y ;S)−H(S) + log(
√
2πPe− (1 + ε)Δ

√
e)− logΔ

−→ 1

2
log(1/2 + P )

in the limit (6.12).

Example 3 (Achievable rates with optimized distributions.) In this example
we show that new achievable rates can be obtained with good input distributions.
They are in general better than Rs

CF in (6.4) and are better than Rs
SEP in (6.5)

when SNR exceeds a certain value. For example choosing q = 3 and U = {−1, 0, 1}
gives

pU (0) = p0 (6.20a)

pU (1) = pU (−1) = (1− p0)/2 := p1. (6.20b)

To satisfy the power constraint, the constant Δ is chosen to be Δ =
√
P/(1− p0)

and Xk takes values in the set {−Δ, 0,Δ}. Using Proposition 6.2, it is easy to
calculate the distribution on S := U1 ⊕ U2

pS(0) = p20 + 2p21

pS(1) = pS(−1) = 2p0p1 + p21

and density function for the equivalent channel from S to Y

fY |S(y|0) = N (y; 0, 1)

fY |S(y|1) =
p21

pS(1)
N (y;−2Δ, 1) +

2p0p1
PS(1)

N (y; Δ, 1)

fY |S(y| − 1) =
p21

pS(−1)N (y; 2Δ, 1) +
2p0p1
PS(−1)N (y;−Δ, 1)

This can be extended directly to other values of q. To evaluate the achievable
rate, a procedure based on the classical Blahut-Arimoto algorithm is developed
in [62] to find the optimal distribution pU which maximizes Rs

NL. Figure 6.2a
shows that in low SNR regime, the nested linear codes with even a small value of
q can outperform the compute-and-forward scheme in (6.4), which, according to
Proposition 6.3, is equivalent to choosing a Gaussian distribution for nested linear
codes. This in particular implies that a (discretized) Gaussian distribution is in
general suboptimal for the computation problem with nested linear codes. The
choice of power P = 1.5 is interesting with which the two known schemes give the
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Figure 6.2 – The left plot gives achievable symmetric computation rates Rs
NL using

nested linear codes with constellation size q = 3 and q = 11. They are better than
the compute-and-forward rate Rs

CF in low SNR regime as shown in the zoomed-in
plot. As SNR increases, Rs

NL can be at least as good as Rs
CF by choosing a large

enough q and an optimized input distribution. In this plot Rs
CF almost coincides

with Rs
NL using q = 11 for relatively high SNR. As an example, the upper plot on

the right shows the optimal input distribution pU which maximizes Rs
NL in (6.7)

with q = 11 for SNR= 9. The input distribution with q = 3 can be characterized
by a number p0 as in (6.20). The lower plot on the right shows the optimal choice
of p0 for different SNR.

same computation rate Rs
CF = Rs

SEP = 0.5 bit and the optimized compute-and-
forward gives Rs

CF (α
∗) ≈ 0.5020 bit. The linear nested code gives a rate about

0.5112 bit with q = 3 and a rate about 0.5120 bit with q = 11 under the simple
channel input mapping (6.9).

We do not have a complete characterization of the optimal input distribution.
In the limit when P approaches zero, we have the following observation.

Proposition 6.4. In the limit P → 0, the optimal distribution pU with the channel
input mapping (6.9) which maximizes RNL in (6.7) approaches a Delta function,
i.e., pU (0) = 1− σ where σ → 0 as P → 0.

Proof sketch. First observe that as P → 0, we have I(U1 ⊕ U2;Y ) → 0 hence the
optimal distribution should satisfy the property H(U1⊕U2)−H(U1)→ 0. However
this is only possible if pU either approaches a uniform distribution (or pU is a uni-
form distribution) or approaches a Delta function with all its mass on u = 0. We
show that the uniform distribution cannot be optimal. Starting with a uniform dis-
tribution pU (u) = 1/q for all u ∈ U , we consider the perturbation pU (0) = 1/q+2δ,
pU ((q − 1)/2) = pU (−(q − 1)/2) = 1/q − δ with small δ > 0. Let Rs

NL(P, δ) denote
the achievable computation rate in (6.7) with the power P and a uniform input
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distribution with perturbation δ, we have the approximation

Rs
NL(P, δ) ≈ Rs

NL(0, 0) + P
∂Rs

NL

∂P
(0, 0) + δ

∂Rs
NL

∂δ
(0, 0)

for small P and δ. We can show that
∂Rs

NL
∂δ (0, 0) is strictly positive, hence a pertur-

bation to the uniform distribution increases the achievable rates in the limit.

Notice that the Figure 6.2b agrees with the above observation. As SNR de-
creases, the optimal value p0 approaches 1. Equivalently the optimal distribution
pU approaches the Delta function.

The above result has immediate application on the Gaussian TWRC. In the
symmetric setting when two transmitters have power P and the relay has power PR,
the best known symmetric rate is

min

{
Rs

TS(P ),
1

2
log(1 + PR)

}
with Rs

TS(P ) defined in (6.6). Theorem 6.1 shows the possibility of increasing the
first term in the min expression. Namely we can achieve the symmetric rate

min

{
R̃s

TS(P ),
1

2
log(1 + PR)

}
where R̃s

TS(P ) := βαRs
NL(P1/α) + (1− β)Rs

SEP (P2) for any α, β ∈ [0, 1], P1, P2 ≥ 0
satisfying βP1+(1−β)P2 = P . Since we can always ensure Rs

NL > Rs
CF by choosing

the optimal input distribution pU , we will obtain a higher rate R̃
s
TS(P ) than Rs

TS(P ).
However the improvement is minor.

6.2 Appendix

We study the discrete random variable U given in (6.11). Natural logarithm is used
in the derivation for simplicity. Recall that the discrete random variable U taken
integer values in the set U := {−(q−1)/2, . . . , (q−1)/2} with a prime number q. Let
A be some given positive real number, the probability distribution pU on U depends
on three parameters q, A, P and is defined as

PU (U = i) =
1

α
e−(Δi)2/2A (6.21)

with

α(q−1)/2 :=
∑
i∈U

e−(Δi)2/2A (6.22)

and Δ is chosen such that we have∑
i∈U

(Δi)2PU (i) = P (6.23)

for some given positive number P .
This probability distribution can be viewed as a discretized Gaussian rv and

some special choices of A could be A = 1 or A = P . We are interested in the
entropy of U and how it behaves in the limiting cases when q is large and P is small.
A direct calculation shows that
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Lemma 6.1 (Bounds on α). Let M,A > 0 and define

αM,A :=
M∑

i=−M

e−(Δi)2/2A.

We have the bounds

max{1,
√
2πA

Δ
− 1− ε′M,Δ} < αM,A < 1 +

√
2πA

Δ

where ε′M,Δ > 0 depends on M,Δ in the way

ε′M,Δ → 0 as M → ∞ and MΔ2 → ∞.

Proof. Let SM,A :=
∑M

i=1
1√
2πA

e−
(Δi)2

2A Δ, we rewrite

αM,A = 1 +
2
√
2πA

Δ
SM,A

The bound αM,A > 1 is obvious. Let fA(x) :=
1√
2πA

e−
x2

2A . Then SM,A is the (right)

Riemann sum of fA(x) in the interval [0,MΔ]. Hence we have

SM,A >

∫ MΔ

0
fA(x)dx−Δ(fA(0)− fA(MΔ))

=
1

2
−Q(

MΔ√
A
)− Δ√

2πA
(1− e−

(MΔ)2

2A )

Using the bound on the Q-function Q(x) < 1
x

1√
2π
e−x2/2 we have

SM,A >
1

2
− Δ√

2πA
−

√
A

MΔ
√
2π

e−
M2Δ2

2A +
Δ√
2πA

e−
(MΔ)2

2A

and

αM,A >

√
2πA

Δ
− 1 + (2− 2A

MΔ2
)e−

M2Δ2

2A (6.24)

The lower bound follows in the limit MΔ2 → ∞. Similarly we have

SM,A <

∫ MΔ

0
fA(x)dx =

1

2
−Q(

MΔ√
A
) (6.25)

Invoking the lower bound Q(x) > x
1+x2

1√
2π
e−x2/2 we have

SM,A <
1

2
− MΔ

√
A√

2π(A+M2Δ2)
e−

M2Δ2

2A (6.26)

and hence

αM,A < 1 +

√
2πA

Δ
− 2MA

A+M2Δ2
e−

M2Δ2

2A (6.27)

The upper bound follows directly.
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Lemma 6.2 (Distribution of the sum and the channel). Let U1, U2 have the proba-
bility distribution pU in (6.11) and S := U1⊕U2. In the limit (6.12), the distribution
of S is

pS(s) =
Δ√
2πA

e−
Δ2s2

4A + o(Δ) (6.28)

and the equivalent channel fY |S in Proposition 6.2 is

fY |S(y|s) =
B(s)

B(s) + o(Δ)

1

2π
e−(y−Δs)2/2 + o(Δ) (6.29)

Proof sketch. Due to the symmetry of pS we only need to consider the case s ∈
{0} ∪ U+. Choosing pU in (6.11), A(s) and B(s) defined in Proposition 6.2 can be
rewritten as

A(s) =
α(s−1)/2,A/2

α2
(q−1)/2,A

e−
Δ2(s−q)2

4A

B(s) =
α(q−s−1)/2,A/2

α2
(q−1)/2,A

e−
Δ2s2

4A

For s ∈ {0} ∪ U+, we can use Lemma 6.1 to show

A(s) < (1 +

√
πA

Δ
)e−

Δ2(−q/2)2

4A (6.30)

hence A(s) = o(Δ). Implied by Lemma 6.1, we can write αM,A as αM,A =
√
2πA
Δ + a

for some a with |a| ≤ 2 in the limit (6.12). With some a1, a2 with |a1|, |a2| ≤ 2 and
the Taylor expansion we can show

α(q−s−1)/2,A/2

α2
(q−1)/2,A

=

√
πA/Δ+ a1

(
√
2πA/Δ+ a2)2

=
Δ√
4πA

+ o(Δ)

It follows that

pS(s) = A(s) +B(s)

= o(Δ) + (
Δ√
4πA

+ o(Δ))e−
Δ2s2

4A

For the equivalent channel fY |S given in Proposition 6.2, we can bound the ratio

A(s)

A(s) +B(s)
<

A(s)

B(s)
<
(1 +

√
πA
Δ )e−

Δ2(s−q)2

4A

B(s)

<
(Δ +

√
πA)

√
4πA

Δ2
e−

Δ2

4A
(q2−2qs)

≤ (Δ +
√
πA)

√
4πA

Δ2
e−

Δ2q
4A = o(Δ)

Hence

fY |S(y|s) = o(Δ)N (y; Δ(s− q), 1) +
B(s)

o(Δ) +B(s)
N (y; Δs, 1)

which proves the claim.





Typical Sumsets of Linear Codes 7
In previous chapters we have studied the problem of computing the sum of codewords
via the Gaussian MAC with nested lattice codes and nested linear codes.1 With
nested lattice codes, two codewords in R

n are added as real-valued vectors by the
Gaussian MAC directly. With nested linear codes, after lifting linear codes from
the finite field to R

n, the channel also adds two vectors in F
n
q as real-valued vectors

instead of in a finite field. This motivates our question: what does the sum of two
codebooks look like?

To put our study in perspective, it is worth pointing out that our problem is
closely connected to sumset theory, which studies the size of the set A + B :=
{a+ b : a ∈ A, b ∈ B} where A,B are two finite sets taking values in some additive
group. One objective of the sumset theory is to use sumset inequalities to relate the
cardinality of sets |A|, |B| and |A + B|. As a simple example, for A = {0, 1, 2, 3, 4}
with 5 elements we have |A+A| = 9 elements. But if let A′ = {0, 0.2, 0.8, 1.1, 2.1}
with 5 elements we have |A′ +A′| = 15 elements. This shows that the sumset size
|A + B| depends heavily on structures of the sets. As a rule of thumb, the sumset
size will be small if and only if the individual sets are “structured”. Some classical
results of sumset theory and inverse sumset theory can be found in, e.g. [63].

Our problem is slightly different: given two linear codes of two users, we indepen-
dently pick one codeword from each codebook uniformly at random and add them
as integer vectors. We would like to know how large is the sumset? This problem
concerns with sums of random variables defined over a certain set, hence can be
viewed as a sumset problem in a probabilistic setting. It shares similarity with the
classical sumset problem while has its own feature. We first point out the main dif-
ference between the two problems. Given a set of integers U = {0, 1, . . . , q− 1}, the
sumset U +U contains 2q− 1 elements. Now let U1, U2 be two independent random
variables uniformly distributed in the set U , a natural connection between the size
of the set U and the random variables U1, U2 is that H(U1) = H(U2) = log |U|, i.e.,
the entropy of the random variable is equal to the logarithmic size of U . On the

1The material of this chapter has appeared in
J. Zhu and M. Gastpar, “Typical sumsets of linear codes”, in arXiv: 1511.08435, Nov, 2015.
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other hand, although the sum variable W := U1 + U2 takes all possible values in
U +U , it is “smaller” than log |U +U| because the distribution of W is non-uniform
over U + U . Indeed we have H(W ) < log |U + U| in this case but the difference
between H(W ) and log |U + U| is small. However this phenomenon is much more
pronounced in high dimensional spaces as we shall see later in this paper. Never-
theless, it is also important to realize that in the probabilistic setting, the structure
of the random variable still has decisive impact on the sumset “size”, which can be
partially characterized by the entropy of the sum variable. Using the examples in
the preceding paragraph, if the identical independent random variables U1, U2 are
uniformly distributed in A, we have H(U1+U2) ≈ 2.99 bit while if U ′

1, U
′
2 uniformly

distributed in A′, it gives H(U ′
1 + U ′

2) ≈ 3.84 bit.

7.1 Typical Sumsets of Linear Codes

In this section we formally define and study typical sumsets of linear codes. We
use [a : b] to denote the set of integers {a, a + 1, . . . , b − 1, b} and define two sets
U := [0 : q−1] andW := [0 : 2q−2]. We also define PU to be the uniform probability
distribution over the set U i.e.,

PU (a) = 1/q for all a ∈ U . (7.1)

If U1, U2 are two independent random variables with distribution PU , the sum W :=
U1 + U2 is a random variable distributed over the set W. Let PW denote the
probability distribution of this random variable. A direct calculation shows that

PW (a) =

{
a+1
q2

a ∈ [0 : q − 1]
2q−1−a

q2
a ∈ [q : 2q − 2]

(7.2)

and the entropy of W is given as

H(W ) = 2 log q − 1

q2
(2

q∑
i=1

i log i− q log q). (7.3)

Recall the definition of typical sequences in Chapter 1 and the standard results
regarding the typical sequences.

Lemma 7.1 (Typical sequences [14]). Let Un be a n-length random vector with each
entry i.i.d. according to PU . Then for every δ > 0 in (1.1), it holds that

P

{
Un ∈ A(n)

[U ]

}
≥ 1− 2|U|e−2nδ2 (7.4)

Furthermore, the size of set of typical sequences is bounded as

2n(H(U)−εn) ≤ |A(n)
[U ] | ≤ 2n(H(U)+εn) (7.5)

for some εn ↘ 0 as n → ∞.

In this chapter, the notationsAb or aTb are understood as matrix multiplication
modulo q, or the matrix multiplication over the corresponding finite field. Modulo
addition is denoted with ⊕ and + means the usual addition over integers.
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7.1.1 Problem statement and main results

Given two positive integers k, n satisfying k < n, a (n, k) linear code over Fq is a
k-dimensional subspace in F

n
q where q is a prime number. The rate of this code is

given by R := k
n log q. Any (n, k) linear code can be constructed as

C =
{
t : t = Gm, for all m ∈ F

k
q

}
(7.6)

with a generator matrix G ∈ F
n×k
q . A (n, k) linear code C over Fq is called systematic

if it can be constructed as

C =
{
t : t =

[
Ik×k

Q

]
m, for all m ∈ F

k
q

}
(7.7)

with some Q ∈ F
(n−k)×k
q where Ik×k is the k × k identity matrix.

From now on we will view C as a set of n-length vectors taking values in Un

where U := {0, . . . , q − 1}. The sumset of two linear codes is

C + C := {t+ v : t,v ∈ C} (7.8)

where the sum is performed element-wise between the two n-length vectors as integer
addition. Namely each element in C+C takes value inWn whereW := {0, . . . , 2q−2}.
When the code C is systematic, the sumset contains sums of two codewords t,v ∈ C
of the form

t+ v =

(
m+ n

Qm+Qn

)
:=

(
s(m,n)
p(m,n)

)
(7.9)

for some m,n ∈ Uk. We call s(m,n) and p(m,n) defined above as the information-
sum and parity-sum, respectively. We shall omit their dependence on m,n and use
s,p if the context is clear. For a systematic code, m and n can be viewed as two
messages taking all possible values in Uk from two users.

We are interested in the scenario where two independent users are equipped with
the same linear code C and they choose their messages uniformly at random. To
model this situation, we use T to denote the random variable taking values in the
code C with uniform distribution, i.e.

P {Tn = t} = q−k for all t ∈ C (7.10)

Now let Tn
1 , T

n
2 be two independent copies of Tn, the sum codewords Tn

1 +Tn
2 is also

a random variable taking values in C + C. There is a natural distribution on C + C
induced by Tn

1 , T
n
2 , which is formally defined as follows.

Definition 7.1 (Induced distribution on C1 + C2). Given a codebook C and assume
Tn
1 , T

n
2 are two independent random vectors which are uniformly distributed as in

(7.10). We use PS to denote the distribution on C + C which is induced from the
distribution of Tn

1 , T
n
2 .

The object of interest in this chapter is given in the following definition.
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Definition 7.2 (Typical sumset). Let C(n) be a sequence of linear codes indexed
by their dimension. Let Tn

1 , T
n
2 be two independent random variables uniformly

distributed in C(n) as in (7.10). A sequence of subsets K(n) ⊆ C(n) + C(n) is called
typical sumsets of C(n), if Tn

1 + Tn
2 ∈ K(n) asymptotically almost surely, i.e.,

P

{
Tn
1 + Tn

2 ∈ K(n)
}
→ 1 as n → ∞.

To make notations easier, we will often drop the dimension n and say K is a
typical sumset of C, with the understanding that a sequence of codes are considered
as in Definition 7.2. Clearly the sumset C + C is always a typical sumset according
to the above definition because all possible Tn

1 + Tn
2 must fall inside it. However

we will show that for almost all linear codes, most sum codewords Tn
1 + Tn

2 will fall
into a subset K which could be much smaller than C + C by taking the probability
distribution of Tn

1 and Tn
2 into account.

Theorem 7.1 (Normal typical sumsets). Let C(n) be a sequence of linear codes in
the form (7.6) indexed by their dimension. The rate of the code is given by R =
limn→∞ 1

n log |C(n)| and let Tn
1 , T

n
2 be two independent random variables uniformly

distributed on C(n). We assume each entry of the generator matrix G is independent
and identically distributed according to the uniform distribution in Fq. Then a.a.s.
there exists a sequence of typical sumsets KN ⊆ C(n) + C(n) whose size satisfies

|K(n)
N | .

=

{
22nR R ≤ D(q)

2n(R+D(q)) R > D(q)
(7.11)

D(q) := H(U1 + U2)− log q. (7.12)

where U1, U2 are independent with distribution PU . Furthermore for all w ∈ KN

PS(w)
.
=

{
2−2nR R ≤ D(q)

2−n(R+D(q)) R > D(q)
(7.13)

where PS is the induced distribution defined in Definition 7.1.

Proof. A proof of the theorem is given in Section 7.1.4. In Appendix 7.2.1 we show
that D(q) is an increasing function of q and

1/2 ≤ D(q) < log
√
e ≈ 0.7213 (7.14)

where the lower bound holds for q = 2 and the upper bound is approached with
q → ∞.

Remark: For any fixed vector d ∈ F
n
q and define C′(n) := C(n)⊕d = {t⊕d|t ∈

C(n)}. We can show that the same results hold for C(n) + C′(n).
Figure 7.2 provides a generic plot showing the code rate R vs. normalized size

1
n log |KN | of the normal typical sumset size. We see there exists a threshold D(q) on
the rate R of the code, above or below which the typical sumsetK behave differently.
First notice that for the low rate regime R < D(q), almost every different codeword
pair Tn

1 , T
n
2 gives a distinct sum codeword, hence the sumset size |KN | is essentially
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|C|2 (up to the exponent), corresponding to the part of the linear function in Figure
7.2 with slope 2. This result shows that for almost all codes, the linear structure of
the code does not manifest itself in this low rate regime.

For the high rate regime R ≥ D(q), due to the linear structure of the code,
there are (exponentially) many different codeword pairs Tn

1 , T
n
2 giving the same

sum codeword, and the normal typical sumset size |KN | grows only as 2nD(q)|C|
where D(q) does not depend on R, corresponding to the part of the affine function
in Figure 7.2 with slope 1. In this regime the code C has a typical sumset which is
exponentially smaller than C+C. The interesting fact is that, on contrary to the low
dimension cases, the codewords are uniformly distributed in the typical sumset KN

as shown by (7.13) in Theorem 7.1. This is reminiscent of classical typical sequences
with asymptotic equipartition property (AEP), i.e., the typical sumset occurs a.a.s.
but is uniformly filled up with a small subset of all possible sequences. Now we can
also give a pictorial description of the sum codewords Tn

1 +Tn
2 in Figure 7.1. Notice

that the sum codewords Tn
1 +Tn

2 are essentially uniformly distributed in the typical
sumset KN in high dimensional spaces.

Figure 7.1 – An illustration of the sum codewords Tn
1 + Tn

2 . For rate R ≤ D(q),
each pair (Tn

1 , T
n
2 ) will give a different sum and typical sumset KN is essentially the

same as C + C. The sum codeword is hence uniformly distributed in C + C. For
rate R > D(q), many pairs (Tn

1 , T
n
2 ) give the same sum codeword and the typical

sumset KN is much smaller than C + C. Interestingly in the n-dimensional space
with n → ∞, the sum codewords Tn

1 + Tn
2 is basically uniformly distributed in the

typical sumset KN (represented by thick dots in the plot). The other sum codewords
in (C + C) \ KN (represented by the small dots) have only negligible probability.

7.1.2 Comparison with |C + C|
To emphasize the distinction between the classical sumset theory and our study of
typical sumsets in probabilistic setting, we compare the size of a normal typical
sumset KN with the size of the usual sumset C + C. Before doing this, we first
introduce a useful result relating the sumsets of general linear codes with that of
systematic linear codes.
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Figure 7.2 – An illustration of the size of normal typical sumsets of linear codes.
H(W ) and D(q) are given in (7.3) and (7.12), respectively. The piece-wise linear
function has slope 2 for low rate regime and slope 1 for medium-to-high rate regime.

Lemma 7.2 (Equivalence between systematic and non-systematic codes). Given
any linear code C, there exists a systematic linear code C′ with a one-to-one mapping
φ : C −→ C′ such that for any pair t,v ∈ C satisfying t+v = s, we have φ(t)+φ(v) =
φ(s).

Proof. Let π denote a permutation over the set {1, . . . , n}. A code C is said to be
equivalent to another code C′ if every codeword t′ in C′ can be obtained by permuting
the coordinates of some codeword in C using π, i.e.,

t′ := (t′1, t
′
2, . . . , t

′
n) = (tπ(1), tπ(2), . . . , tπ(n)) (7.15)

for some t := (t1, t2, . . . , tn) ∈ C. It is known that any linear code C is equivalent to
some systematic linear code (see [64, Ch. 4.3] for example). We define the mapping
φ to be the permutation needed to transform the given linear code C to its systematic
counterpart C′. Clearly this permutation is a one-to-one mapping.

For two different pairs (t,v) and (t̃, ṽ) from code C such that t+v = t̃+ ṽ = s,
it holds that

φ(t) + φ(v) = (tπ(1) + vπ(1), tπ(2) + vπ(2), . . . , tπ(n) + vπ(n)) (7.16)

= (t̃π(1) + ṽπ(1), t̃π(2) + ṽπ(2), . . . , t̃π(n) + ṽπ(n)) (7.17)

= φ(t̃) + φ(ṽ) = φ(s) (7.18)

This lemma shows that for any linear code C, there exists a corresponding sys-
tematic code C′ whose sumset structure is the same as the former. Now we can show
the following simple bounds on the size of the sumset C + C.
Lemma 7.3 (Simple sumset estimates). Let C be a (n, k) linear code over Fq. The
size of the sumset C + C is upper bounded as

|C + C| ≤ q2k (7.19)
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and lower bounded as

|C + C| ≥ (2q − 2)k (7.20)

Proof. The upper bound follows simply from the fact that |C + C| ≤ |C|2 for any set
C. To establish the lower bound, Lemma 7.2 shows that for any linear code C, we
can find a corresponding systematic linear codes C′ whose sumset size |C′+C′| equals
to |C + C|. Then the lower bound holds by noticing that the information-sums s in
(7.9) take all possible values in Wk with cardianality (2q − 2)k.

Notice that |KN | can be smaller than the cheap lower bound given in (7.20)
for certain rate range. The intuition for this phenomenon is clear: some of the sum
codewords Tn

1 +Tn
2 occurs very rarely if Tn

1 and Tn
2 are chosen uniformly. Those sum

codewords will be counted in the sumset C + C but are probabilistically negligible.
Particularly in the case R > D(q), |KN | can be exponentially smaller than |C + C|.
For a comparison, we see the lower bound in (7.20) states that

|C + C| ≥ 2nR log(2q−2)/ log q. (7.21)

Then Eq. (7.11) implies that |KN | is smaller than |C + C| for the rate range

R >
D(q)

log(2q − 2)/ log q − 1
, (7.22)

(Notice that the RHS is always larger than D(q) for q ≥ 2 but is only meaningful if
it is smaller than log q). For example |KN | is smaller than the lower bound in (7.20)
for R > 2.85 bits with q = 11 and for R > 4.87 bits for q = 101.

7.1.3 Entropy of sumsets

Often we are interested in inequalities involving entropy of a random variablesX and
entropy of the sum of two i.i.d. random variables X1+X2. One classical result is the
entropy power inequality involving differential entropy. There are recent results on
entropy sumset inequalities which relate the entropy H(X) of some random variable
X with the entropy of the sum H(X + X), see [65] [66] for example. If a code C
has a normal typical sumset and let Tn be a random variable uniformly distributed
in C, we are able to relate H(Tn) to H(Tn

1 + Tn
2 ) directly where Tn

1 , T
n
2 are two

independent copies of Tn.

Theorem 7.2 (Entropy of sumsets). Let C(n) be a sequence of linear codes with
normal typical sumsets KN as in Theorem 7.1. Let Tn be a random n-length vector
uniformly distributed in the code C(n) and Tn

1 , T
n
2 two independent copies of Tn. In

the limit n → ∞ we have

lim
n→∞H(Tn

1 + Tn
2 )/n =

{
2H(Tn)/n = 2R if R ≤ D(q)

H(Tn)/n+D(q) = R+D(q) if R > D(q)
(7.23)

where as before, D(q) := H(W )− log q with W distributed according to PW in (7.2).
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Proof. As Tn is uniformly distributed in the (n, k) linear code C with rate R, we
have H(Tn) = nR. Recall that PS denote the distribution on C + C induced by
Tn
1 , T

n
2 , we have

H(Tn
1 + Tn

2 ) = −
∑

w∈C+C

PS(w) logPS(w) (7.24)

≥ −
∑

w∈KN

PS(w) logPS(w) (7.25)

As Theorem 7.1 shows that for w ∈ KN it holds that PS(w) ≤ 2−2n(R−εn) for
R ≤ D(q), hence

H(Tn
1 + Tn

2 ) ≥ − log 2−2n(R−εn)
∑
w∈K

PS(w) (7.26)

= 2n(R− εn)(1− δn) (7.27)

with δn → 0 because KN is a typical sumset. It follows that

lim
n→∞H(Tn

1 + Tn
2 )/n ≥ lim

n→∞ 2(R− εn)(1− δn) (7.28)

= 2R = 2H(T )/n (7.29)

as both δn, εn → 0.
On the other hand, we have

H(Tn
1 + Tn

2 ) = −
∑

w∈KN

PS(w) logPS(w)−
∑

w/∈KN

PS(w) logP2C(w) (7.30)

For w ∈ KN it holds PS(w) ≥ 2−2n(R+εn) in the case R ≤ D(q) as shown in Theorem
7.1, hence the first term above is bounded as

−
∑

w∈KN

PS(w) logPS(w) ≤ − log 2−2n(R+εn)
∑

w∈KN

PS(w) (7.31)

≤ 2n(R+ εn) (7.32)

To bound the second term, using log sum inequatliy [14, Lemma 3.1] gives

−
∑

w/∈KN

PS(w) logPS(w) ≤ −
⎛
⎝ ∑

w/∈KN

PS(w)

⎞
⎠ log

∑
w/∈KN

PS(w)
|KN | (7.33)

= −PS(KN ) logPS(KN ) + PS(KN ) log |KN | (7.34)

where KN denotes the complementary set of K∗. We use the fact that PS(KN ) ≤
Ae−n(2δ2/ log q) in proved later in Lemma 7.4, Eq. (7.43). For n → ∞, the first term
above approaches zero as PS(KN )→ 0. The second term is bounded as

PS(KN ) log |KN | ≤ Ae−n(2Rδ2/ log q) log 22nR (7.35)

= 2nRAe−n(2Rδ2/ log q) (7.36)

approaches zero as well for large enough n. Overall we have

lim
n→∞H(Tn

1 + Tn
2 ) ≤ lim

n→∞ 2(R+ εn) + on(1) (7.37)

= 2nR = 2H(Tn)/n (7.38)

This shows in the limit we have H(Tn
1 + Tn

2 ) → 2H(Y n)/n for R ≤ D(q) and the
claim for the case R > D(q) can be proved in the same way.
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7.1.4 Proof of Theorem 7.1

We prove Theorem 7.1 in a few steps. Lemma 7.2 already shows that for any linear
code C, there exists a corresponding systematic code C′ whose sumset structure is
the same as the former. Hence we first concentrate on systematic linear codes and
establish a similar result.

Theorem 7.3 (Normal typical sumset - systematic linear codes). Let C(n) be a se-
quence of systematic linear codes in the form (7.7). We assume each entry of the
matrix Q is independent and identically distributed according the uniform distribu-

tion in Fq. Then a.a.s. there exists a sequence of typical sumsets K(n)
N ⊆ C(n)+ C(n)

with size given in (7.11). Furthermore, the induced probability distribution PS on
C(n) + C(n) satisfies (7.13).

We point out that there exist linear codes with a smaller typical sumset than
|KN |. As a simple example consider a systematic linear codes with generator matrix
[I;0], i.e., the Q matrix is the zero matrix. Since the sum codewords are essentially
k-length sequences with each entry i.i.d. with distribution PW , it is easy to see that
the set of typical sequences Ak

[W ] is actually a typical sumset for this code with size

2kH(W ) = 2nRH(W )/ log q where W has the distribution in (7.2). This code has a
typical sumset which is smaller than the normal typical sumset as demonstrated in
Figure 7.3. However this kind of codes are rare and the above theorem states that
a randomly picked systematic linear code has a normal typical sumset a.a.s..

Figure 7.3 – Linear code with a typical sumset which is not normal: The solid line
shows the size of the normal typical sumset and the dot-dashed line shows the size of
a typical sumset of the example given above. This code has a small typical sumset
with size 2nRH(W )/ log q but is uninteresting for error correction.

We first prove Theorem 7.3. Let Tn
1 , T

n
2 be two independent random variables

uniformly distributed in a systematic linear code C generated by the generator matrix
[I;Q], and t and v realizations of Tn

1 and Tn
2 , respectively. We choose the set KN

to contain sum codewords whose information-sums s defined in (7.9) are typical:

KN :=

{
t+ v

∣∣∣∣t+ v =

[
s
p

]
where s ∈ A(k)

[W ]

}
(7.39)
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For all pairs of codewords (t,v) whose information-sum equals to a common value
s we define the set of all possible parity-sums as

PQ(s) := {Qm+Qn :m,n ∈ Uk such that m+ n = s}. (7.40)

Lemma 7.4. (Simple estimates of |KN |) Let Tn
1 , T

n
2 be two independent copies of

Tn uniformly distributed in a systematic linear code C as in (7.7) with any matrix
Q. Asymptotically almost surely, we have

Tn
1 + Tn

2 ∈ KN (7.41)

with KN defined in (7.39). Furthermore we have

2k(H(U1+U2)+o(1)) · min
s∈A(k)

[W ]

|PQ(s)| ≤ |KN | ≤ 2k(H(U1+U2)+o(1)) · max
s∈A(k)

[W ]

|PQ(s)| (7.42)

where U1, U2 are two independent random variables with distribution pU in (7.1).

Proof. Recall that we defined KN to be the set containing all sum codewords whose

information-sum s is a typical sequence in A(k)
[W ]. As T

n
1 and Tn

2 are independently
and uniformly chosen from C, the first k entries of both Tn

1 and Tn
2 are independent

and they are in fact i.i.d. random variables with distribution PU , due the the
systematic form of the code C. Hence by definition of KN we have

P {Tn
1 + Tn

2 ∈ KN} = P

{
Sk ∈ A(k)

[W ]

}
≥ 1− 2|W|e−2kδ2 = 1− 2(2q − 2)e−n(2δ2/ log q)

(7.43)

where Sk is a k-length random vector with each entry i.i.d. according to PW and
the inequality follows from the property of typical sequences in Lemma 7.1. For the
choice δ ensuring nδ2 → ∞, we have that Tn

1 + Tn
2 ∈ KN a.a.s. for n large enough,

and particularly

P {Tn
1 + Tn

2 ∈ KN} ≥ 1−Ae−n(2δ2/ log q). (7.44)

if we define A := 2(2q − 2). To bound the size of KN , we can write the set KN as
the disjoint union

KN =
⋃

s∈A(k)
[W ]

PQ(s).

Then the claim follows from the fact that |A(k)
[W ]| = 2k(H(U1+U2)+o(1)), also shown in

Lemma 7.1.

Now we are only interested in message pairs (m,n) if they sum up to a typical

sequence s ∈ A(k)
[W ]. For a fixed such sequence s, we can explicitly characterize all

the pairs (m,n) such that m+ n = s.

Lemma 7.5 (Characterization of information-sum). Given a k-length sequence s ∈
A(k)

[W ], there are L different pairs (m,n) satisfying m+ n = s where

L = 2k(log q−D(q)+o(1)) (7.45)
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Proof. Observe that for a given entry si ∈ W, we can write out all possible (mi,ni)
explicitly as the following

si :(mi,ni) such that mi + ni = si

0 :(0, 0)

1 :(0, 1), (1, 0)

2 :(1, 1), (2, 0), (0, 2)

3 :(0, 3), (3, 0), (1, 2), (2, 1)

...

q − 1 :(0, q − 1), (q − 1, 0), (1, q − 2), (q − 2, 1), . . . , ((q − 1)/2, (q − 1)/2)

...

2q − 3 :(q − 1, q − 2), (q − 2, q − 1)

2q − 2 :(q − 1, q − 1)

To prove the claim, we show that the number of different pairs m,n satisfying
m+ n = s is

L = ·2(2/q2+o(1))k3(3/q
2+o(1))k . . . q(q/q

2+o(1))k(q − 1)((q−1)/q2+o(1))k . . . 2(2/q
2+o(1))k

(7.46)

=
1

2

q∏
a=1

a(a/q
2+o(1))k

q−1∏
a=1

a(a/q
2+o(1))k (7.47)

= 2k(log q−D(q)+o(1)) (7.48)

To see why this is the case, there are for example (2/q2+ o(1))k entries (denoted by
I(s, 1)) in s taking value 1, as implied by the definition of typical sequences in (1.1).
The pair (mi,ni) can take value (1, 0) or (0, 1) for the indices i ∈ I(s, 1). Hence
there are 2(2/q

2+o(1))k different choices on the pair (m,n) for those entries i ∈ I(s, 1).
The same argument goes for other entries taking values 2, . . . , 2q − 2 using number
of possible values of (mi,ni) shown in the above list.

As there are L different pairs (m,n) for a given s, we use p(	) to denote the
parity-sum in (7.9) resulting from the 	-th pair (m,n)(	), i.e.

p(	) := Qm+Qn for the 	-th pair (m,n),m+ n = s, 	 ∈ [1 : L] (7.49)

Now we set out to characterize the parity-sum p(m,n). One key observation is
that for a fixed Q and any pair (m,n) sum up to s, the i-th entry of all parity-sums
p(m,n) takes only one or two values.

Lemma 7.6. (Key property of parity-sums) For any given Q, let pi(	) be the i-th
entry of p(	) defined in (7.49) with m+ n = s. We have

pi(	) ∈ {a, a+ q} with some a ∈ [0 : q − 1] for all 	 ∈ [1 : L] (7.50)

Equivalently, define a subset in Wn−k with a vector a ∈ Un−k as

F(a) := {h : hi ∈ {ai, ai + q}, i ∈ [1 : n− k]}, (7.51)
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we always have

PQ(s) ⊆ F(a) (7.52)

with some a ∈ Un−k depending only on s and Q.

Proof. Using the notation 〈m,n〉 to denote the inner product of two vectors in R
k

and Qi to denote the i-th column of Q, we have

pi(	) = QT
i m+QT

i n (7.53)

= 〈Qi,m〉+ qn1 + 〈Qi,n〉+ qn2 (7.54)

(a)
= 〈Qi, s〉+ q(n1 + n2) (7.55)

= qn3 + a+ q(n1 + n2) (7.56)

= a+ q(n1 + n2 + n3) (7.57)

for some n1, n2, n3 ∈ Z and a ∈ [0 : q−1]. In step (a) we used the fact thatm+n = s
in the assumption. On the other hand we know pi(	) only takes value in [0 : 2q−2],
the above expression implies pi can only equal to a or a+ q for some a ∈ [0, q − 1],
namely n1 + n2 + n3 can only equal to 0 or 1. In particular if a = q − 1, we must
have n1+n2+n3 = 0 and pi = q− 1. We can use the same argument for all entries
pi(	), i = 1, . . . , n − k and show that the entry pi(	) can take at most two different
values for any 	. As a consequence for a fixed s and any given Q, all the parity-sums
PQ(s) belong to the set F(a) with a depending on s and Q.

Since there are qn−k different choice of a, we can partition the whole space
Wn−k into qn−k disjoint subsets F(a). For a given Q and information sum s, all
the parity-sums PQ(s) are confined in a subset F(a). This is the key property for
characterizing the sumset structure. To lighten the notation, for a given s we define

F (a) := {PQ(s) ⊆ F(a)} (7.58)

to denote the event when all parity-sums are contained in the set F(a) due to the
choice of Q. As each row Qi of Q is chosen independently, we have

P {F (a)} = P {pi(	) ∈ {ai, ai + q} for all i ∈ [1 : n− k]} (7.59)

=
n−k∏
i=1

P {pi(	) ∈ {ai,ai + q}} (7.60)

= q−(n−k) (7.61)

where the last step uses Lemma 7.9 on the distribution of pi(	). Notice that P {F (a)}
is independent from the actual value a. Also notice that the notations p(	), F (a)
and the notations in the sequel all concern the parity sums of a given information
sum s, which is omitted in the notations for the sake of brevity. The results should
hold for all typical s.

The estimates in Lemma 7.4 do not depend on the specific choice of the matrix
Q, namely the code C. Now we study |PQ(s)| with randomly chosen Q. In this case
we use P(s) to denote a random set resulting from a randomly chosen matrix Q.
We need more notations to facilitate our arguments. Notice that the dependence
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on the sum s is omitted in the notation. For a given vector h ∈ W(n−k), we define
random variables Z�,i(h), i ∈ [1 : n− k] to be the indicator function

Z�,i(h) := 1pi(�)=hi
(7.62)

i.e., Z�,i(h) equals 1 when the i-th entry of the parity-sum p(	) is equal to the entry
hi. Furthermore we define

Z�(h) :=

n−k∏
i=1

Z�,i(h), (7.63)

Z(h) :=
L∑

�=1

Z�(h). (7.64)

We see Z�(h) is also an indicator function and is equal to 1 if the 	-th pair sum up
to the parity-sum h. Furthermore Z(h) counts the number of different pairs (m,n)
summing up to s which give a parity-sum p(m,n) equal to h. With this notation
the event {p(	) = h} is equivalent to the event {Z�(h) = 1} and the two following
events

{h ∈ P(s)} = {p(	) = h for some 	 ∈ [1 : L]} (7.65)

are equivalent to the event {Z(h) ≥ 1}.
Lemma 7.7 (Size of parity-sums for R ≤ D(q)). Consider a systematic linear code
C in (7.7) with rate R. We assume that each entry for its matrix Q is i.i.d. according

to PU . For any information-sum s ∈ A(k)
[W ], the size of the parity-sums P(s) defined

in (7.40) satisfies

|P(s)| .
= 2k(log q−D(q)) a.a.s. (7.66)

if R ≤ D(q).

Proof. We show in Appendix 7.2.2 that each entry of any parity-sum p in P(s) is
i.i.d. according to PW hence the probability that a parity-sum p being atypical is
negligible.

In Lemma 7.5 we showed that there are L different pairs (m,n) pairs sum up
to s. Here we show that each pair will give a different parity sum Qm+Qn a.a.s.,
hence the size of the set P(s) is equal to L. This is done by showing that given
the fact that the information sum is equal to some s, P {Z(h) > 1} can be made
arbitrarily small for any typical h. In Appendix 7.2.3, we claim that for a typical
sequence h ∈ F(a), the expectation and variance of Z(h) conditioned on the event
F (a) have the form

IE [Z(h)|F (a)] = 2n(R−D(q)+o(1)) (7.67a)

Var [Z(h)|F (a)] < IE [Z(h)|F (a)] (7.67b)

This implies that we have

IE [Z(h)|F (a)] ≤ 2n(R−D(q)+εn) (7.68)
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with εn ↘ 0 as n → ∞.

Recall that Z(h) denotes the number of pairs (m,n′) which sum up to the
sequence h. By Markov inequality we have

P {Z(h) > 1|F (a)} ≤ IE [Z(h)|F (a)] ≤ 2n(R−D(q)+εn)

which can be arbitrarily small with sufficiently large n ensuring that R < D(q)− εn.
As Z(h) denotes the number of pairs (m,n) which give a parity-sum part equal to h.
This means a.a.s. any typical sequence h can be formed by at most one pair (m,n)
conditioned on F (a). In other words, every pair gives a distinct p a.a.s. hence the
size of P(s) equals the total number of pairs L.

Lemma 7.8 (Size of parity-sums for R > D(q)). Consider a systematic linear code
C in (7.7) with rate R. We assume that each entry for its matrix Q is i.i.d. according

to PU . For any information-sum s ∈ A(k)
[W ], asymptotically almost surely the size of

the parity-sums P(s) defined in (7.40) satisfies

|P(s)| .
= 2(n−k)D(q)

if R > D(q).

Proof. The same as in the proof of Lemma 7.7, we will only concentrate on typical
sequence as the probability of parity-sum p being atypical is negligible. We first
show that for rate R > D(q) and a typical sequence h, the random variable Z(h)
concentrates around IE [Z(h)|F (a)] conditioned on the event F (a). Recall from
(7.67) that we have

2n(R−D(q)−εn) ≤ IE [Z(h)|F (a)] ≤ 2n(R−D(q)+εn) (7.69)

with some εn ↘ 0 as n → ∞. Hence for some ε′n > 0 depending on n, by (conditional
version of the) Chebyshev inequality (see [67, Ch. 23.4] for example) we have

P

{
|Z(h)− IE [Z(h)|F (a)] ≥ 2

n
2
(R−D(q)+ε′n)|F (a)

}
≤ Var [Z(h)|F (a)]

22·
n
2
(R−D(q)+ε′n)

(7.70)

≤ IE [Z(h)|F (a)]
2n(R−D(q)+ε′n)

(7.71)

≤ 2−n(ε′n−εn) (7.72)

where we used the inequality Var [Z(h)|F (a)] ≤ IE [Z(h)|F (a)] proved in Appendix
7.2.3. If we choose ε′n > εn and n such that n(ε′n − εn) → ∞ and ε′n → 0 (this is
possible because εn ↘ 0), then a.a.s. Z(h) satisfies

IE [Z(h)|F (a)]− 2
n
2
(R−D(q)+ε′n) ≤ Z(h) ≤ IE [Z(h)|F (a)] + 2

n
2
(R−D(q)+ε′n) (7.73)

conditioned on the event F (a). Furthermore we have the following identity regarding
the total number of pairs (m,n) sum up to s:∑

h∈P(s)

Z(h) = L (7.74)
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Combining (7.73) and (7.74), conditioned on the event F (a) for any a ∈ Un−k, the
following estimates hold a.a.s.

L

IE [Z(h)|F (a)] + 2
n
2
(R−D(q)+ε′n)

≤ |P(s)| ≤ L

IE [Z(h)|F (a)]− 2
n
2
(R−D(q)+ε′n)

(7.75)

Using L from Lemma 7.5, Eq. (7.69) and the above expression, P(s) is bounded
a.a.s. as

2(n−k)(D(q)+o(1))

1 + 2−
n
2
(R−D(q)+2εn−ε′n)

≤ |P(s)| ≤ 2(n−k)(D(q)+o(1))

1− 2−
n
2
(R−D(q)−2εn−ε′n)

(7.76)

Assume R = D(q) + σ for some σ > 0 for now, we have

2−
n
2
(R−D(q)+2εn−ε′n) = 2−

n
2
(σ+2εn−ε′) (7.77)

2−
n
2
(R−D(q)−2εn−ε′n) = 2−

n
2
(σ−2εn−ε′n) (7.78)

and both terms approaches 0 if σ > 2εn + ε′n. Since both εn and ε′n are chosen
to approach 0, we can have σ arbitrarily close to 0 as well. This proves that for
R > D(q) and n large enough we have a.a.s.

2(n−k)(D(q)+o(1))

1 + on(1)
≤ |P(s)| ≤ 2(n−k)(D(q)+o(1))

1− on(1)
(7.79)

or equivalently P(s) .
= 2(n−k)D(q) for R > D(q) a.a.s. if n is sufficiently large. As

this estimates holds conditioned a.a.s. under any event F (a), and each F (a) occurs
with the same probability for all a (see Eq. (7.61)), we conclude that the claimed
estimate holds a.a.s. unconditionally.

With the foregoing lemmas we can finalize the proof of Theorem 7.3.

Proof of Theorem 7.3. Notice that the asymptotic estimates on P(s) in Lemma 7.7
and 7.8 hold for all information-sum s ∈ A(k)

[W ], in particular they also hold for

min
s∈A(k)

[W ]

P(s) and max
s∈A(k)

[W ]

P(s). Hence combining Lemma 7.4, 7.7 and 7.8, we
conclude that for R ≤ D(q) we have

|KN | .
= 2k(H(U1+U2)) · 2k(log q−D(q)) (7.80)

= 22k log q = 22nR a.a.s. (7.81)

and for R > D(q) we have

|KN | .
= 2k(H(U1+U2)) · 2(n−k)D(q) (7.82)

= 2nD(q)+k log q = 2n(R+D(q)) a.a.s. (7.83)

Now we prove the asymptotic equipartion property (AEP) of the normal typical
sumset KN in (7.13). Assume the code C has a normal typical sumset KN and define
Mk, Nk to be two independent random variables uniformly distributed on Uk. If
we view Mk, Nk as two independent messages and let Tn

1 = GMk, Tn
2 = GNk

where G is a generator matrix in the form (7.7), then Tn
1 , T

n
2 are two independent
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random variables uniformly distributed on C. Recall that PS denotes the probability
distribution on the sumset C + C induced by Tn

1 , T
n
2 .

We first consider the low rate regime when R ≤ D(q). Recall that a sum code-
word in KN has the form w = (sp) where s is a typical sequence in Ak

[W ]. Lemma

7.5 shows that there are L different pairs (m,n) sum up to s and Lemma 7.7 shows
that each pair gives a unique parity-sum p. In other words any w = (sp) ∈ KN is
formed by a unique pair (m0,n0), i.e., s =m0 + n0 and p = Qm0 +Qn0. Hence

PS(w) = P

{
Mk =m0, N

k = n0

}
(7.84)

= P

{
Mk =m0

}
P

{
Nk = n0

}
(7.85)

= q−2k = 2−2nR (7.86)

Now consider the case when R > D(q). For any w = (sp) ∈ KN , Lemma 7.5
shows that there are L different pairs (m,n) sum up to s and Lemma 7.8 shows that
within these L pairs, many pairs give the same parity-sum p. More precisely, the
number of pairs sum up to a particular parity-sum p in P(s) is bounded in (7.73)
as

2n(R−D−εn) − 2
n
2
(R−D(q)+ε′n) ≤ Z(p) ≤ 2n(R−D+εn) + 2

n
2
(R−D(q)+ε′n) (7.87)

for some εn, ε
′
n → ∞. Hence for a sum codeword w = (sp) ∈ KN , we have

PS(w) =
∑
(m,n)

m+n=s,Qm+Qn=p

P

{
Mk =m, Nk = n

}
(7.88)

=
∑
(m,n)

m+n=s,Qm+Qn=p

q−2k (7.89)

≤ (2n(R−D(q)+εn) + 2
n
2
(R−D(q)+ε′n))2−2k log q (7.90)

= 2−n(R+D(q)−εn)(1 + 2−
n
2
(R−D(q)−ε′n+2εn)) (7.91)

≤ 2−n(R+D(q)−εn)(1 + 2−n(−ε′n/2+εn)) (7.92)

for R > D(q). If we furthermore require ε′n ≤ 2εn (notice in the proof of Lemma
7.8 we required that ε′n > εn), then we can find a σn ↘ 0 such that 2nσn ≥ 1 +
2−n(−ε′n/2+εn) → 1 for n large enough. Hence we have

PS(w) ≤ 2−n(R+D(q)−εn−σn) (7.93)

On the other hand we have

PS(w) =
∑
(m,n)

m+n=s,Qm+Qn=p

P {M =m, N = n} (7.94)

=
∑
(m,n)

m+n=s,Qm+Qn=p

q−2k (7.95)

≥ (2n(R−D(q)−εn) + 2
n
2
(R−D(q)+ε′n))2−2k log q (7.96)

= 2−n(R+D(q)+εn)(1 + 2−
n
2
(R−D(q)−ε′n−2εn)) (7.97)

≥ 2−n(R+D(q)+εn) (7.98)
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This proves that for R > D(q) we have

PS(w)
.
= 2−n(R+D(q)) (7.99)

and concludes the proof Theorem 7.3.

With the results established for systematic linear codes, we can finally prove the
results for general linear codes.

Proof of Theorem 7.1. In Theorem 7.3 we considered the ensemble of codes where
all possible full-rank systematic generator matrices [I;Q] is chosen with equal proba-
bility. It is known that the systematic generator matrix for a systematic linear code
is unique. Furthermore, as we can identify a linear code with the k-dimensional
subspace spanned by its generator matrix, each systematic generator matrix thus
gives a distinct code hence a distinct k-dimensional subspace. It is known that the
total number of k-dimensional subspaces in F

n
q is given by the so-called Gaussian

binomial coefficient (see [68] for example):

(
n

k

)
q

:=
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
(7.100)

As shown by Lemma 7.2 there is a one-to-one mapping between two codes and
their sumsets if two codes are equivalent, hence if a code C is equivalent to some
systematic linear code C′ with a normal typical sumset KN , the code C also has a
normal typical sumset. But since every linear code (equivalently every k-dimensional
subspace) is equivalent to some systematic code, Theorem 7.3 then shows that almost
all of the k-dimensional subspaces correspond to (n, k) codes who have a normal
typical sumset. Formally the number of codes which have a normal typical sumset
is (1− o(1))

(
n
k

)
q
.

Now consider the codes ensemble in Theorem 7.1 where we choose all possible qnk

generator matrices with equal probability. Clearly some of the generator matrices
give the same code if they span the same k-dimensional subspace. We will show most
of these generator matrices will give codes which have a normal typical sumsets. To
show this, notice that each distinct k-dimensional subspace can be generated by
(qk − 1)(qk − q) · · · (qk − qk−1) different generator matrices (because there are this
many different choices of basis in a k-dimensional subspace). Hence the fraction of
the generator matrices with a normal typical sumset is

ρ :=
(1− o(1))

(
n
k

)
q
· (qk − 1)(qk − q) · · · (qk − qk−1)

qnk

= (1− o(1))
(qn − 1)(qn − q) · · · (qn − qk−1)

qnk

= (1− o(1))(1− q−n)(1− q−n+1) · · · (1− q−n+k−1)

> (1− o(1))(1− q−n+k)k
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Assume k = βn for some β ∈ [0, 1), L’Hôpital’s rule shows the logarithm of the term
(1− q−n+k)k has limit

lim
n→∞βn ln(1− q−n(1+β)) = lim

n→∞
ln(1− q−n(1+β)

1/βn
(7.101)

= lim
n→∞

−βn2

1− q−n(1+β)
q−n(1+β)(1 + β) ln q (7.102)

= 0 (7.103)

Hence the fraction ρ of codes with a normal typical sumset is arbitrarily close to 1
for sufficiently large n. This proves that for the code ensemble in Theorem 7.1, codes
will have a normal typical sumset a.a.s.. The proof of AEP property of the normal
typical sumset is the same as in the proof of Theorem 7.3 by noticing that every
linear code is equivalent to some systematic linear code, and we shall not repeat
it.

7.1.5 The weakness of certain structured codes

The results on typical sumsets can offer enlightening results in certain multi-user
communication scenarios. We give a simple example in this section by considering
the following multiple access channel

Y = X1 +X2 (7.104)

where X1, X2 take values in the set of integers {0, . . . , q−1} for some prime number
q. As formally described in Section 2.2, the decoder wishes to decode both messages
of the two users.

The sum capacity of this channel is easily shown to be

Csum := max
PX1

,PX2

I(X1, X2;Y ) = log(2q − 2) (7.105)

which can be achieved if both users independently generate their codes.
What is the achievable rates if linear codes are used? Here we assume that linear

codes C1, C2 ⊆ F
n
q are generated, and the codewords (vectors in {0, . . . , q − 1}n)

are directly inserted to the channel. It is not hard to show that, if both users
independently generate linear codes C1, C2, the achievable sum rate is give by

Rsum = I(X1,U , X2,U ;Y ) = log q + c

with some constant c ≥ 0.5. Here X1,U , X2,U are two independent random variables
which are uniformly distributed in the set {0, . . . , q−1}. The restriction to a uniform
channel input distribution is due the fact that linear codes are used.

Now we ask the question: what is the achievable rates if two users use the same
linear code C? For simplicity we consider the symmetric case when R1 = R2 = R.

Let P
(n)
e denote the decoding error probability, Fano’s inequality states

H(Xn
1 , X

n
2 |Y n) ≤ 2nRP (n)

e + 1,

and it can be rewritten for the example in (7.104) as

P (n)
e ≥ 1− H(Xn

1 +Xn
2 )

2nR
− εn
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The above expression shows that for large n, the error probability P
(n)
e is bounded

away from zero ifH(Xn
1 +Xn

2 ) is smaller than 2nR. Theorem 7.2 shows that for most
linear codes, H(Xn

1 + Xn
2 ) is equal to 2R for R ≤ D(q) and is equal to R + D(q)

(hence smaller than 2R) in the regime R > D(q), if Xn
1 , X

n
2 are drawn from the

same linear codes. This means that if the same linear codes are used by both users,

P
(n)
e is bounded away from 0 for R > D(q), hence the symmetric achievable rate

for the channel (7.104) cannot be higher D(q). Furthermore the same results on
H(Xn

1 + Xn
2 ) hold for the case when Xn

1 , X
n
2 are independently chosen from two

codes which is coset to each other, i.e., C1 = C2 ⊕ d for any d ∈ F
n
q . We then

conclude that the symmetric achievable rate cannot be higher than D(q) if both
users use the same linear codes (up to cosets).

Recall that we have D(q) < log
√
e, which is in contrast to the achievable rates

in (7.105) and (7.106), which scale with q.

7.2 Appendix

7.2.1 Properties of D(q)

The sum
∑q

i=1 i log i can be bounded as

∫ q

1
x log xdx+ 1 · log 1 ≤

q∑
i=1

i log i ≤
∫ q

1
x log xdx+ q · log q (7.106)

which evaluates to

q2

2
log q − log e(q2/4 + 1/4) ≤

q∑
i=1

i log i ≤ q2

2
log q − log e(q2/4 + 1/4) + q log q

Using the expression in (7.3) we have

log q + log
√
e− 1 + q log q

q2
≤ H(U1 + U2) ≤ log q + log

√
e− 1− q log q

q2
.

This shows that for q → ∞ we have H(U1+U2)→ log q+log
√
e and D(q)→ log

√
e.

The fact that D(q) is increasing with q can be checked straightforwardly.

7.2.2 On the distribution of parity-sums

For a message pair (m,n), we want to analyze the distribution of the parity-sum
p := Qm+Qn with randomly chosen generator matrix Q. Since each column of Q
is chosen independently, we can without loss of generality study only one entry of
p.

Lemma 7.9 (Distribution of parity-sum). Let q be a k-length vectors taking values

in F
k
q and p := qTm + qTn for any pair (m,n) such that m + n ∈ A(k)

[W ]. If each
entry of q is i.i.d. random variable with distribution pU , then p has distribution PW

defined in (7.2).



118 Typical Sumsets of Linear Codes

Proof. For any m+ n ∈ A(k)
[W ], we write out the expressions explicitly

qTm = q1m1 ⊕ · · · ⊕ qkmk (7.107)

qTn = q1n1 ⊕ · · · ⊕ qknk. (7.108)

First observe that since each entry qi is chosen independently with the uniform dis-
tribution pU , each term qimi and qini also have a uniform distribution for nonzero
mi,ni. Hence both qTm and qTn have distribution pU as long as m,n are not zero
vectors, which is always the case here.

We can also show that qTm and qTn are independent. We denote s := m + n

and since s ∈ A(k)
[W ], there are about 2k/q

2 entries of s taking value 1. Let I(s, 1)
denote the set of indices of these entries. As shown in Lemma 7.5, we should have
(mi,ni) = (0, 1) or (mi,ni) = (1, 0) for all i ∈ I(s, 1). Hence qTm and qTn always
have the form

qTm = q1m1 ⊕ · · · ⊕ qimi ⊕ · · · ⊕ qkmk (7.109)

qTn = q1m1 ⊕ · · · ⊕ qini ⊕ · · · ⊕ qknk (7.110)

with (mi,ni) equals (0, 1) or (1, 0) for i ∈ I(s, 1). Hence there exists at least one term
qi which is either in the summation of q

Tm or in the summation of qTn, but not in
both. As each qi is chosen independently according to the uniform distribution pU ,
we conclude that qTm and qTn are independent with distribution pU . It follows
immediately that the sum p has the distribution pW .

7.2.3 Conditional expectation and variance

We calculate the conditional expectation IE [Z(h)|F (a)] and conditional variance
Var [Z(h)|F (a)] for typical sequence h ∈ F(a). Notice we have hi ∈ {ai,ai + q}
conditioned on the event F (a) where ai ∈ [0 : q − 1].

Now for a sequence h ∈ F(a), by definition we have

IE [Z(h)|F (a)] =
L∑

�=1

IE

[
n−k∏
i=1

Z�,i(h)

∣∣∣∣∣F (a)
]

(7.111)

(a)
=

L∑
�=1

n−k∏
i=1

IE [Z�,i(h)|F (a)] (7.112)

=

L∑
�=1

n−k∏
i=1

P {pi(	) = hi|F (a)} (7.113)

where step (a) follows since each row Qi is picked independently, hence Z�,i are also
independent for different i.

Recall that the set I(h, a) contains all indices of entries of h taking value a. For
a given h, we can rewrite the product term as:

n−k∏
i

P {pi(	) = hi|F (a)} =
2q−2∏
a=0

∏
i∈I(h,a)

P {pi(	) = hi = a|F (a)} (7.114)
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From Lemma 7.9 we know that each pi(	) has distribution PW . Hence for any
i ∈ I(h, b) and any 	 ∈ [1 : L]:

P {pi(	) = hi = a|F (a)}
=

P {pi(	) = hi = a, F (a)}
P {F (a)}

=
P {pi(	) = hi = a,pj(	) ∈ {aj ,aj + q} for all j ∈ [1 : n− k]}

P {pj(	) ∈ {aj , aj + q} for all j ∈ [1 : n− k]}
(a)
=

P {pi(	) = hi = a,pi(	) ∈ {ai,ai + q}}
P {pi(	) ∈ {ai,ai + q}} · P {pj(	) ∈ {aj , aj + q} for all j 
= i}

P {pj(	) ∈ {aj , aj + q} for all j 
= i}
=

P {pi(	) = a}
P {pi(	) ∈ {a, a+ q}}

= PW (a) · q

where step (a) follows from the fact that h ∈ F(a) and Z�,i are independent for
different i. The last step follows from the fact that pi(	) has distribution PW (es-
tablished in Lemma 7.9) and it is easy to see that P {pi(	) ∈ {a, a+ q}} = 1/q for
all a ∈ [0 : q − 1].

The interesting case is when h is a typical sequence in A(n−k)
[W ] hence |I(h, a)| =

(n− k)(PW (a) + o(1)). We can continue as

E(Z�(h)|F (a)) =
n−k∏
i=1

P {pi(	) = hi|F (a)} (7.115)

=

2q−2∏
a=0

P {pi(	) = hi = a|F (a)}|I(h,a)| (7.116)

=

2q−2∏
a=0

(PW (a) · q)|I(h,a)| (7.117)

= q
∑2q−2

a=0 |I(h,a)|
2q−2∏
a=0

PW (a)(n−k)(PW (a)+o(1)) (7.118)

= qn−k2(n−k)(−H(W )+o(1)) (7.119)

= 2(n−k)(log q−H(W )+o(1)) (7.120)

Notice that IE [Z�(h)|F (a)] does not depend on 	 asymptotically. Using Lemma 7.5
we have:

IE [Z(h)|F (a)] =
L∑

�=1

IE [Z�(h)|F (a)] (7.121)

= L2(n−k)(log q−H(W )+o(1)) (7.122)

= 2k(2 log q−H(W )+o(1))+(n−k)(log q−H(W )+o(1)) (7.123)

= 2n(R−H(W )+log q+o(1)) (7.124)

= 2n(R−D(q)+o(1)) (7.125)
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To evaluate the variance, we first observe that (here we drop h for simplicity)

Z2 =

(
L∑

�=1

Z�

)2

(7.126)

=

L∑
�=1

Z2
� +
∑
�	=j

Z�Zj (7.127)

=

L∑
�=1

Z� +
∑
�	=j

Z�Zj (7.128)

= Z +
∑
�	=j

Z�Zj (7.129)

as Z2
� =

∏
i Z

2
�,i =

∏
i Z�,i = Z� for indicator functions. Furthermore

IE
[
Z2
∣∣F (a)] = IE [Z|F (a)] +

∑
�	=j

IE [Z�Zj |F (a)] (7.130)

(a)
= IE [Z|F (a)] +

∑
�	=j

IE [Z�|F (a)] IE [Zj |F (a)] (7.131)

≤ IE [Z|F (a)] + IE [Z|F (a)]2 (7.132)

where step (a) follows since Z�, Zj are conditionally independent for 	 
= j, condi-
tioned on the event F (a). Hence we have

IE
[
(Z − IE [Z|F (a)])2|F (a)] = IE

[
Z2|F (a)]− IE [Z|F (a)]2 (7.133)

≤ IE [Z|F (a)] + IE [Z|F (a)]2 − IE [Z|F (a)]2 (7.134)

= E(Z|F (a)) (7.135)
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In this thesis, we studied coding techniques with structured codes in communication
networks. For Gaussian networks, we generalized the compute-and-forward scheme
to incorporated CSI at transmitters, and proposed the novel compute-forward multi-
ple access (CFMA) scheme, as a low-complexity alternative to other multiple access
techniques. Various coding schemes based on lattice codes are also devised for several
communication networks. These schemes either improve upon best known results for
such networks, or recover known results with simpler decoder architectures. Since
the main theme of the thesis concerns with decoding the sum of codewords of struc-
tured codes, the typical sumset of linear codes is introduced and several asymptotic
results are given.

We conclude the thesis with two general research directions:

• Beyond linear functions. Computing the sum of codewords is a natural
choice for additive channels with linear codes, but it is by no means the only
meaningful choice for general communication networks. For example, comput-
ing the product of two codewords could be a preferred choice, if the channel is
multiplicative than additive. Based on the existing results on typical sumsets
of linear codes and proof techniques, we could characterize the asymptotic size
of “typical images” under other (more general) functions. These results could
be useful when we analyze possible coding schemes which involve computing
nonlinear functions.

• Converse on computation rates. The definition of computation rates is
subtle because it involves the function to be computed, making this concept
more complicated (and less elegant) compared to the usual definition of achiev-
able rates. In particular, a subset of functions should be specified, if we want
to give any meaningful outer bound (or converse results) on the computation
rates (otherwise computing a constant function always has infinite computa-
tion rates). However, which subset of functions should be chosen is an open-
ended question and has not been studied carefully. Even with a specific set of
functions, there is no standard technique to prove converse results for achiev-
able computation rates. In particular, new inequalities relating the entropy of

121
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random variables and entropy of functions should be established and will be
crucial to the problem.
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