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Abstract
Magnetic resonance imaging (MRI) is highly susceptible to subject’s motion and can signifi-

cantly degrade image quality. In brain MRI exams, involuntary head movements can affect the

sampled k-space data. Such unintended alterations may result in visible image artifacts such

as blurring, ghosting and others, and therefore potentially disqualify the image from diagnostic

purposes. Methods to characterize motion in order to mitigate its impact on image quality

exist and range from MR sequence based techniques to scanner independent tracking systems.

Although, many motion detection and correction strategies have been proposed in the past, a

universal solution to the problem does not exist yet. The work of this thesis was focused on the

exploitation of the motion information from a multi-channel Free Induction Decay Navigator

(FID) to develop and to optimize motion detection and correction methods in structural brain

MRI. After a short introduction to the motion problem in MRI the fundamental methodology

behind FID based motion detection is presented and used in this thesis. Considerable work

has already been done in the field of motion correction for MRI that is summarized by review-

ing the most recent literature, which allowed to reveal some pitfalls in the present approaches

and to demonstrate the motivation behind an FID-based method for motion correction in

MRI. The first study was conducted to demonstrate that substantial motion information is

contained in the multi-channel FID signal, whereby the FID signal is correlated with motion

parameters that were obtained from a highly accurate optical tracking system. This work was

able to confirm the theoretical foundations from the Biot-Savart law, however, also revealed

that a pure FID-based method is not sufficient to exactly calculate the underlying motion

trajectory. It is speculated that scanner and subject related information might lead to a closed

form solution, yet it was not possible to derive one due to a high dimensionality of the motion

problem. Therefore, two alternative approaches were developed to utilize the FID signal for

motion detection and correction in MRI. First, a prospective motion correction strategy for an

MP-RAGE sequence is demonstrated, whereby the FID signal is used to trigger a prospective

motion correction mechanism. The second alternative approach describes how the FID signal

can be used to evaluate the quality of an already acquired image and how the FID signal can

be used as an optimizer for an autofocusing based retrospective motion correction technique.

Key words: Structural MRI, FID navigator, motion detection, motion correction
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Zusammenfassung
Magnetresonanztomographie (MRT) ist sehr anfällig für Bewegung, wodurch die Bildquali-

tät erheblich beeinträchtigt werden kann. Unwillkürliche Kopfbewegungen während einer

MRT-Untersuchungen können sich negativ auf die gesammelten Daten auswirken. Solche

unbeabsichtigte Inkonsistenzen im k-Raum können als Bildartefakte wie Unschärfe oder

Geisterbilder in Erscheinung treten und das Bild von Diagnosezwecken disqualifizieren. Me-

thoden, um Bewegung und ihre Auswirkungen auf die Bildqualität zu mindern, existieren

und reichen von MR basierten Techniken zu sequenz- und scannerunabhängigen Trackings-

systemen. Obwohl viele Bewegungserkennungs- und Korrekturstrategien in der Vergangen-

heit vorgeschlagen worden sind, ist eine universelle Lösung für das Problem noch nicht in

Sicht. Diese Arbeit konzentrierte sich auf die Ausschöpfung der Bewegungsinformation eines

Mehrkanal-FID-Navigators (FID) mit dem Ziel eine entsprechende Methode zu entwickeln,

um Bewegungserkennungs- und Korrekturverfahren in struktureller MRT zu optimieren. Nach

einer kurzen Einführung in die Problematik von Bewegung in der Magnetresonanztomo-

graphie, wird die Methodologie der FID-basierten Bewegungserkennung dargestellt, welche

dieser Arbeit zur Grunde liegt. Substanzielle Arbeit auf dem Gebiet der Bewegungskorrek-

tur in der MRT wurde bereits durchgeführt, die wir durch eine Betrachtung der neuesten

Literatur sowie einiger erwähnenswerter, bereits etablierter Methoden präsentieren. Dies

ermöglichte einige Fallstricke in den vorliegenden Ansätzen zu offenbaren und die Motivation

für die Verwendung der FID-basierten Methode darzulegen. Um zu zeigen, dass beträchtli-

che Bewegungsinformation in dem Mehrkanal-FID-Signal enthalten ist, wurde eine Studie

durchgeführt, in der das FID-Signal mit Bewegungsparametern korreliert wurden, die von

einem hochgenauen optischen Trackingsystem stammen. Diese Studie hat es ermöglicht die

Theorie zu bestätigen, aber auch gezeigt, dass nur das FID-Signal alleine nicht ausreicht, um

die Bewegungsparameter exakt zu bestimmen. Es kann spekuliert werden, dass scanner- und

sequenzabhängige Informationen zu einer analytisch geschlossenen Lösung führen können,

aber es war noch nicht möglich solch eine Lösung zu präsentieren. Daher wurde untersucht

wie das FID-Signal auf eine andere Art verwendet werden kann, um Bewegung in der MRT

zu detektieren und zu korrigieren. Es wurde eine prospektive Bewegungskorrekturstrategie

für eine MP-RAGE-Sequenz vorgeschlagen, wo die FID-Signale verwendet werden, um einen

Bewegungskorrekturmechanismus zu triggern. In einem anderen Ansatz wird vorgeschlagen

die FID-Signals als Qualitätsmaß für bereits akquirierte Bilder zu verwenden. Ausserdem

konnte gezeigt werden, dass das FID-Signal auch zur Optimierung eines retrospektiven Bewe-

gungskorrekturverfahren verwendet werden kann.
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1 Preface

1.1 Objectives and Overview of this Thesis

Magnetic resonance imaging (MRI) is widely used in clinics to visualize the human body

noninvasively. Although, this imaging modality has many advantages in comparison to other

techniques as X-ray, computed tomography or ultrasound it poses some challenges to the

clinical routine as well. One of the major limitation of the technique is its acquisition time and

with it the high susceptibility to subject motion. Motion during an MRI examination leads

to artifacts and may degrade the image quality to a non-diagnostic level. In this thesis it was

investigated how the problem of motion can be tackled for head scans with the use of a very

simple MR signal - the free induction decay (FID) when acquired with a multi-channel head

coil array. The structure of the thesis is as follows.

Chapter 1 provides an overview of the thesis and summarizes its main contributions.

Chapter 2 gives a general introduction. First, the FID signal is explained and how it can be

used as the so called multi-channel FID navigator. Second, the effect of motion in MRI

is described and lastly the problem of motion in clinical MRI is presented.

Chapter 3 reviews the literature in the field of head motion correction in MRI and states the

current problems in the field, which motivates the use of the FID navigator.

Chapter 4 describes the relationship between head motion and a multi-channel FID signal.

Here, the results of a study are presented where the multi-channel FID signals are

correlated with motion parameters from a highly accurate optical motion tracking

system.

Chapter 5 presents a use of the FID signal as means for detection of motion corrupted images.

An FID based image quality metric is proposed and its performance is validated on a

clinical data set where the images were rated by expert radiologist. Further, the results

of a retrospective motion correction method based on autofocusing combined with the

FID signal information are shown.

1



Chapter 1. Preface

Chapter 6 describes a technique for prospective motion correction utilizing the FID signal

for motion detection. The FID signal is used here to trigger the acquisition of a low

resolution imaging navigator for obtaining the motion parameters through image regis-

tration. Brain volume segmentation results as well as an automated quality index were

used as a quality metric for images before and after correction.

Chapter 7 presents a study on how the host sequence influences the FID-signal and what

implications it might have on FID based motion detection methods.

Chapter 8 summarizes the thesis and provides a conclusion and an outlook on future work

and investigations.

1.2 Main Contributions

The main contributions of this thesis are:

• Implementation of the FID navigator acquisition module in a gradient-echo and in an

MP-RAGE sequence.

• Demonstration of the relationship between head motion and a multi-channel FID signal.

Results were published in Babayeva et al. (2013) and Babayeva et al. (2015b).

• Investigation of the potential of the FID signal to be used for a retrospective motion

correction method based on autofocusing. Results were published in Babayeva et al.

(2014b) and Loktyushin et al. (2015a).

• Presentation of a novel use of the FID signal to derive a quality index for motion artifacts.

• Presentation and implementation of an FID-based prospective motion correction tech-

nique for MP-RAGE sequences. Results were published in Babayeva et al. (2014a) and

Babayeva et al. (2015a).

2



2 Introduction

In this chapter the necessary basics of magnetic resonance signal and image formation are

described. The focus is put on the topics which are considered relevant for understanding

the problem of motion in magnetic resonance imaging (MRI) as well as the free induction

decay (FID) signal as a tool to tackle it. For further reference and for a detailed description of

physical phenomena and notation behind MR physics the reference to the books by Haacke

et al. (1999) and McRobbie et al. (2006) is proposed.

2.1 Free Induction Decay and Motion

The free induction decay (FID) signal is the basic signal in MRI (Haacke et al., 1999). It is

created by flipping the magnetization towards the transverse plane and is measured by a

receive coil which is sensitive to magnetization perpendicular to the main magnetic field B0 of

the scanner. The strong B0 field aligns the magnetic moment of the protons in the body of

a subject. To generate an MR signal, a pulse is generated by a radio frequency (RF) field and

tuned to the resonance frequency of a proton. The RF pulse is briefly applied forcing the nuclei

to flip their spins. After the RF field is turned off, the magnetization of the protons returns to

its initial state, where it aligns again with the B0 field. This process is called relaxation and is

called the free induction decay. This signal can be measured again with an RF receive coil.

This transverse magnetization oscillates at the Larmor frequency and its magnitude decays

rapidly in form of an exponential as shown in Fig. 2.1.

In accordance with the Biot-Savart law the relationship between the magnetic field B

generated by an electric current I in a thin wire is proportional to the position r as shown in

Eq. 2.1 (taken from Haacke et al. (1999)) with d l being the vector differential along the wire

and μ0 being the magnetic permeability constant. Or according to the principle of reciprocity
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Figure 2.1: The FID signal can be picked up by an analog digital converter (ADC) which measures the voltage in
a receiver coil. The measured voltage magnitude decays with a T2∗ damping. The FID signal is induced by an
excitation pulse also called radio frequency (RF) pulse.

the current in a wire is proportional to the magnetic field.

B(r) = μ0

4π

∫
wi r e

I d l×r

|r|3 (2.1)

When we apply the law of Biot-Savart to MR that means that the signal magnitude of

the FID depends on the distance of the measured object from the receiver coil element.

Nowadays, so called multi-channel coil arrays are used for MR imaging and with sufficiently

many coil elements positioned around the object of interest it should be theoretically possible

to determine the displacement of this object within the coil array.

(a) (b)

Figure 2.2: a: A multi-channel head coil with 32 coil elements (courtesy of Siemens). b: FID signal changes with
respect to its position within a multi-channel coil array.
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2.2 Motion Effects in Magnetic Resonance Imaging

To obtain a spatially encoded MR image, one of the orthogonally oriented gradients alters the

static magnetic field, such that the resonance frequency of the protons varies with position

and only protons in one layer (slice) are in resonance and can be flipped by the RF field. Shortly

after the RF excitation, another gradient is turned on. This induces a controlled dephasing

of the spins in a way that the precession phase of the proton spins is different at each line

of the slice. This gradient is the phase encoding gradient. A third gradient is responsible for

frequency encoding and makes the spins precess with different frequencies, such that again

only the signal from the ones in resonance can be detected by the RF coils. From here, the

origin of the MR signal can be recovered mathematically by means of its phase-frequency

relationship and transformed into image space by applying an inverse Fourier transform to

the acquired signal.

Figure 2.3: The effect of translational motion in the frequency encoding head-feet direction on image quality of an
MP-RAGE sequence. a: motion free image b: translational motion causing blurring and ghosting artifacts in the
image

The described principle relies on the assumption that the imaged object is rigid and its

position does not change significantly during the acquisition. However, an MR scan can

last from seconds to minutes, making this modality highly vulnerable to subject motion

(Malamateniou et al., 2013). Especially elderly patients and children have difficulties to remain

still throughout the procedure. Therefore, motion is the most common artifact cause in MRI

(Erasmus et al., 2004) leading to increased diagnosis costs and patient stress, due to necessary

repetition of the scan or even patient sedation.
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As the final image is created by an inverse Fourier transform of the raw data, where a

data point in image space corresponds to a weighted sum of all points in Fourier or k-space,

motion causes data inconsistencies. This means that alteration of one data point in k-space

results in changes of the whole image, manifesting themselves as image blurring, ghosting

or contrast changes (Wood and Henkelman, 1985) (Fig. 2.3). Consequently, many motion

correction strategies have been developed to minimize or eliminate motion artifacts. Besides

of bulk subject motion, physiologic motion (cardiac and respiratory motion, peristalsis etc.) is

another source of motion artifacts in MR imaging. However, the focus here is on correction of

bulk motion of the patient’s head.

2.3 Clinical Impact of Motion in MRI

Several extensive studies have been conducted to investigate the effect of motion in clinical

MRI. Especially elderly and pediatric patient cohorts often experience an elevated level of

distress and discomfort during the scan due to claustrophobia, anxiety and simply long scan

times. This might lead to agitation and patient motion during the data acquisition procedure

and affect the image quality such that a rescan or even patient sedation might be necessary.

In a study by (Maréchal et al., 2015) 764 clinical images have been reviewed by clinical

experts and 1.7% have been identified to be unusable. Another large multicenter study

reported that motion occurs in 40% of the medical examinations, in 10% being caused by

motoric unrest of the patient leading to severely impaired image quality (Oberstein et al.,

1990). Similar values of artifact occurrence in clinical MR scans were found in (Dantendorfer

et al., 1997) where 12.8% of the images were motion corrupted and 6.4% had a non-diagnostic

image quality. Thus, motion during MR examinations can be well considered to be the major

source of image artifacts with substantial financial implications (Andre et al., 2015).

6



3 State of the Art and Problem State-
ment

Here, recently proposed motion correction techniques are reviewed based on published

literature and its advantages and disadvantages are discussed in order to reveal the motivation

behind the use of the FID signal to address the problem arising from bulk subject motion

during an MRI acquisition.

In the past decades the number of publications addressing or discussing the problem of

motion increased each year (see Fig. 3.1). The methods to mitigate motion artifacts range

from MR signal based techniques to scanner independent (external sensor-based) tracking

systems.

MR Signal Based Methods: Some sequence or acquisition-based methods sample the

center of k-space in a redundant fashion to reduce the effects of motion. Other sequence

dependent methods use so-called navigators, where additional MR signal, apart from imaging

data, is acquired and subsequently utilized to obtain positional information. This information

is used either prospectively to tie the scanner coordinate system to the subject during the

measurement in order to make the sequence robust against motion artifacts or retrospectively,

where the motion artifacts are corrected after acquisition. Most sequence-based techniques

have in common that they increase the already long acquisition time, which is undesirable in

a clinical context.

External Sensor-Based Techniques: External tracking systems are largely independent of

the imaging sequence, thus the acquisition time is not affected. However, the use of additional

hardware is needed, whose system components must be designed in an MR-compatible way,

making it an expensive method. Also, calibration and set-up of the system, i.e., positioning

of external markers, in the beginning of the scan may be an obstacle for the use in clinical

applications.
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Figure 3.1: Number of publications by year as appeared on http://www.ncbi.nlm.nih.gov/pubmed (search was
performed with the keywords ’motion correction mri’ on Aug. 6th 2015). This list includes publications discussiong
rigid and non-rigid motion correction methods.

In the context of this thesis, we focus on structural brain imaging and for the purpose of

this thesis work the motion will be approximated as rigid and described with three transla-

tional and three rotational parameters. Depending on the type of motion, prospective or

retrospective correction strategies may be applied to reduce or to eliminate the artifacts.

Through-plane motion is more difficult to compensate for and causes severe image distor-

tions, whereas in-plane motion is less demanding and can be even corrected with image

post-processing methods. The most adequate way to correct for through-plane motion is by

means of prospective motion correction techniques, where the gradient coordinate system

follows the moving subject during the whole acquisition.

3.1 Prospective Motion Correction

Prospective motion correction schemes are traditionally based on navigators (Tisdall et al.,

2012), inter-volume (Thesen et al., 2000) or inter-slice (Kim et al., 1999) image registration or

external tracking systems (Ooi et al., 2009; Peshkovsky et al., 2003; Qin et al., 2013). External

optical tracking devices, where a marker is attached to the patient’s head and is tracked by

a camera (Aksoy et al., 2011; Herbst et al., 2012; Zaitsev et al., 2006), have a good tracking

accuracy and can correct for motion in real-time (Fig. 3.2a and Fig. 3.2b). An external

system, based on miniature RF coils, was also proposed recently (Ooi et al., 2013). Here,

active markers in form of little coils are placed on the head of a patient and can be tracked

with the scanner receive coils and gradients (Fig. 3.2c). Another, recently proposed motion
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correction technology is using field probes which are attached to subject’s head to track its

motion (Haeberlin et al., 2014) (Fig. 3.2d). Such systems provide sub millimeter accuracy and

very good tracking speed.

(a) (b) (c) (d)

Figure 3.2: External motion correction tracking systems.a: In-bore camera and self-encoded marker (Aksoy et al.,
2011) b: Retro-reflective markers with mouth piece (Zaitsev et al., 2006) c: Active markers (Ooi et al., 2009) d: Field
probes (Haeberlin et al., 2014)

MR-signal based i.e., navigator techniques for prospective motion correction are also be-

coming increasingly popular and sophisticated. Numerous strategies with various complexity

of the navigator have been proposed during the past years (Alhamud et al., 2012; Tisdall

et al., 2012; White et al., 2010). Depending on its design, the navigator can provide different

information about the occurred motion. The simplest one is the FID navigator (Kober et al.,

2011), which monitors the center of k-space and is not spatially encoded. Nevertheless, this

signal contains motion information and can be used to identify motion corrupted images

and trigger a correction mechanism (Kober et al., 2012). The FID navigator was first proposed

to reduce respiration- and system-induced B0 shifts (Hu and Kim, 1994; Pfeuffer et al., 2002)

and it was also used to correct for chest motion in abdominal acquisitions (Brau and Brittain,

2006). Spherical (Welch et al., 2002), Cloverleaf (van der Kouwe et al., 2006) or volumetric

navigators (Tisdall et al., 2012) are able to provide exact motion parameters for translation and

rotation and correct the coordinate system of the gradients for subsequent scans (Fig. 3.3).

Such navigators are acquired during the scan and can detect and quantify motion in real-time.

(a) (b) (c) (d)

Figure 3.3: Navigator based motion tracking techniques. a: Spherical (Welch et al., 2002) b: Cloverleaf (van der
Kouwe et al., 2006) c: vNAV (Tisdall et al., 2012) d: PROMO (White et al., 2010)
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3.2 Retrospective Motion Correction

Retrospective methods are applied after raw data acquisition during image reconstruction.

These correction schemes require information on the occurred motion, which is usually

delivered by the images themselves or based on some motion tracking mechanism during the

scan (e.g., navigators).

PROPELLER (Pipe, 1999) is a well-known self-navigating method and is routinely used in

clinical scans. It collects data in k-space on concentrically rotated strips (’blades’) of parallel

lines (Fig. 3.4a). The redundant k-space information from the center, holding most of the

image information, is exploited to conclude on the underlying motion to be able to correct for

it. Another technique uses spiral-shaped sampling of the k-space to offer robustness against

motion (Liao et al., 1997) (Fig. 3.4b). TRELLIS (Maclaren et al., 2008) uses a similar approach as

PROPELLER but it samples the k-space uniformly and uses the redundant parts of the ’blades’

to correct for motion before image reconstruction (Fig. 3.4c).

A different class of retrospective correction is based on autofocusing where chunks of

k-space data are adjusted such that an image based quality criterion i.e., cost-function is

optimized (Atkinson et al., 1999; Loktyushin et al., 2013). Such methods have the advantage of

not to require addition data and report adequate correction results for small motions. However,

their capability of correction for small motions is limited and the computation times are still

beyond clinical requirements.

(a) (b) (c)

Figure 3.4: Retrospective motion correction strategies using different k-space sampling trajectories to make the
acquisition more robust towards motion. a: PROPELLER (Pipe, 1999) b: SPIRAL (Liao et al., 1997) c: TRELLIS
(Maclaren et al., 2008)
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3.3 Problem Statement and Motivation

Reducing motion sensitivity of MR imaging would be a great asset for clinical and research

applications, increasing the efficacy of clinical studies as well as the patient throughput

by avoiding rescans of motion corrupted data sets. Even though many motion correction

strategies have been proposed and some of them are already used in clinical applications,

fundamental limitations remain and no ’one-size-fits-all’ solution could yet be found (Zaitsev

et al., 2015).

Retrospective techniques as for example PROPELLER or TRELLIS approaches require long

scan times due to redundant data acquisition, which is undesirable for clinical use. Also,

retrospective correction techniques don’t allow for thru-plane motion correction, thus the

need for prospective strategies as MR sequence independent external tracking devices. They

require, however, additional hardware, which is usually expensive, as it has to meet clinical

standards and be able to operate at high magnetic field strengths. In addition to that, when

a fiducial marker is used for tracking and placed on subject’s skin, skin slippage can be an

issue. Moreover, these approaches add to the complexity of an already elaborate MR scanner.

Navigators, on the other hand, do not rely on additional hardware, and with their use it is

possible to correct for motion prospectively. But still, additional scan time has to be sacrificed,

as more data needs to be acquired only for motion tracking.

In the context of structural brain MRI, little successful work has been done to compre-

hensively detect and correct for subject motion using the MR signal. This is despite the fact

that many of clinical scans are neuroimaging exams, most of them being structural MRI

exams. The reason for this mismatch is based on two aspects: a) structural brain scans are

performed with high spatial resolution (around 1 mm in-plane resolution or higher) and

motion characterization needs to provide a precision greater or equal to half of the voxel

dimension (Maclaren et al., 2013); b) the scan times are in the range of several minutes and

the object is not repetitively imaged as in other methods such as EPI. Hence, due to already

long acquisition times, additional scans for motion characterization are prohibitive in clinical

scenarios.

To meet the stringent MR sequence and imaging requirements on timing and accuracy, the

subject of this thesis is to explore in detail and to optimize a method for motion detection and

correction, which utilizes a multi-channel FID signal. An FID acquisition is unpretentious

in terms of timing requirements and can be easily added to any MR sequence, making it an

attractive solution for the motion problem. It has been recently shown that motion can be

reliably detected with an FID signal (Kober et al., 2011), however, no positional information

can be provided by this method without relying on other means to extract the underlying

motion parameters. Therefore, we propose to exploit the information of the FID signal when

acquired by a spatially distributed multi-channel coil array and also to explore other means of

obtaining the exact motion parameters.
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4 Accuracy and Precision of Head Mo-
tion Information in Multi-Channel
Free Induction Decay Navigators for
Magnetic Resonance Imaging

This chapter was published in Babayeva et al. (2015b).

Abstract Free-induction-decay (FID) navigators were found to qualitatively detect rigid-body

head movements, yet it is unknown to what extent they can provide quantitative motion

estimates. Here, we acquired FID navigators at different sampling rates and measured

simultaneously head movements using a highly accurate optical motion tracking system.

This strategy allowed us to estimate the accuracy of FID navigators for quantification of

rigid-body head movements. Five subjects were scanned with a 32-channel head coil ar-

ray on a clinical 3T MR scanner during several resting and guided head movement peri-

ods. For each subject we trained a linear regression model based on FID navigator and

optical motion tracking signals. FID-based motion model accuracy and precision was eval-

uated using cross-validation. FID-based prediction of rigid-body head motion was found

to be with a mean translational and rotational error of 0.14±0.21 mm and 0.08±0.13°, re-

spectively. Robust model training with sub-millimeter and sub-degree accuracy could be

achieved with 100 data points. The obtained linear models appeared to be subject-specific

as inter-subject application of a ’universal’ FID-based motion model resulted in weak pre-

diction accuracy. The results show that substantial rigid-body motion information is en-

coded in FID navigator signal time courses. Although the applied method currently requires

the simultaneous acquisition of FID signals and optical tracking data, the findings suggest

that multi-channel FID navigators have a potential to complement existing MR and camera

based tracking technology for accurate rigid-body motion detection and correction in MRI.

13



Chapter 4. Accuracy and Precision of Head Motion Information in Multi-Channel Free
Induction Decay Navigators for Magnetic Resonance Imaging

4.1 Introduction

Motion artifacts degrade the quality of MR images and may render them unsuitable for

diagnostic purposes or automated post-processing methods as in, for example, automated

brain segmentation (Maréchal et al., 2012). The implications of subject motion during an

MR examination have been extensively studied ((Ehman and Felmlee, 1989; Erasmus et al.,

2004; Gedamu and Gedamu, 2012; Malamateniou et al., 2013; Mortamet et al., 2009; Smith and

Nayak, 2010), among others). Intuitively, shortened acquisition times will reduce the likelihood

that motion occurs. However, despite substantial developments on faster acquisition methods,

sequence design and new reconstruction techniques during the past decades, scan times still

reach several minutes in clinical routine brain MRI protocols, leaving images susceptible to

motion artifacts. To address this problem, numerous methods have been proposed to track

subject motion and to reduce its consequential impact on image quality. These methods are

applied either retrospectively or prospectively.

One class of retrospective correction methods mitigates motion artifacts through dedicated

acquisition schemes (for example by oversampling the k-space center). These additional data

allow an estimation of motion parameters as performed in the PROPELLER method and its

variants (Johnson et al., 2011; Pipe, 1999). Such self-navigating techniques, however, reduce

scanning efficiency due to inherent oversampling. Other, image-based correction strategies

optimize a cost function which evaluates a specific image quality parameter (e.g., sharpness)

(Atkinson et al., 1997; Loktyushin et al., 2013; Manduca et al., 2000). Although these methods

do not require redundant sampling and report good correction results for small motion, they

have been shown to be of limited utility at greater motion amplitudes, have a high dependency

on the employed cost function (McGee et al., 2000) and require computation times which

are at present still beyond clinical requirements. Prospective motion correction schemes

present a more challenging task from an engineering viewpoint; however, these schemes are of

increasing popularity and have several advantages over retrospective techniques. They allow

for real-time adjustments of the scanner gradients and RF system, thus enabling consistent

sampling of the k-space in the presence of motion and suppress spin-history effects or signal

dropouts. Such correction strategies are either based on MR navigators (Alhamud et al., 2012;

Hess et al., 2011; Ordidge et al., 1994; Sachs et al., 1994; Thesen et al., 2000; Tisdall et al., 2012;

van der Kouwe et al., 2006; Welch et al., 2002; White et al., 2010) or external tracking systems

(Aksoy et al., 2011; Maclaren et al., 2012; Ooi et al., 2009; Peshkovsky et al., 2003; Qin et al.,

2013, 2009; Zaitsev et al., 2006).

Current optical tracking systems have been demonstrated to provide excellent precision in

the order of 10μm and 0.01° at high sampling rates (Qin et al., 2013), allowing for real-time

and sequence-independent motion correction of rigid-body motion. It is noteworthy that

all external tracking systems, however, require the integration of additional MR-compatible

hardware and need to perform reliably in clinical routine, especially when used for prospective

motion correction. Moreover, most of the currently existing MR-compatible optical tracking

systems are based on tracking a fiducial marker which must be physically attached to the
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body. This may compromise the clinical workflow and pose problems with patients who do

not tolerate the markers. Additionally, any marker motion which is not correlated to the head

motion for example due to face mimics will lead to motion artifacts.

MR-based navigator techniques, on the other hand, do not require dedicated hardware but

use portions of the image data or acquire supplementary data to derive positional information

of the examined body part during the MR acquisition. Numerous navigator strategies have

been proposed during the past years that allow for the adjustment of the coordinate system of

the gradients and excitation pulses in real-time (Brau and Brittain, 2006; Hu and Kim, 1994;

Kober et al., 2012, 2011; Pfeuffer et al., 2002).

The simplest possible navigator acquisition is the free induction decay navigator (FIDnav),

which monitors the MR signal without any spatial encoding. It was originally proposed to

reduce B0-field fluctuations (Hu and Kim, 1994; Pfeuffer et al., 2002). It also proved useful

for shimming (Splitthoff and Zaitsev, 2009) and for improvements in abdominal acquisitions

(Brau and Brittain, 2006). Recently, the FID signals have been explored in more detail to

qualitatively detect motion events and trigger correction mechanisms if the observed FIDnav

signal exceeds an empirical threshold value (Babayeva et al., 2014a; Kober et al., 2012, 2011).

In this work, we investigate the accuracy and precision of positional information contained in

multi-channel FID navigators beyond the previously reported simple qualitative detection

schemes.

4.2 Methods

4.2.1 Motion and FID Signals

Today, multi-channel coil arrays are routinely used in clinical MR imaging. These coils offer

good coverage of the imaged object, enable the employment of parallel imaging strategies,

and provide increased signal-to-noise ratio due to the close proximity of the coil elements

to the object. We hypothesize that complex FID navigators (FIDnav) signal-time courses

acquired with a receive coil array with a large number of channels can be used for motion

tracking of a rigid body under the assumption of a sufficient spatial coverage of the imaged

object. In the following experiments, we restrict our investigation to head imaging where the

motion can be assumed to be rigid. We postulate that head motion is systematically related to

changes in the multi-channel FIDnav signals. The position of the head in a three-dimensional

space is denoted as a response variable Y (t) ≡ (Y1(t);Y2(t); . . . ;Y6(t)) for three translational

and three rotational coordinates and different time points t = 1,2, . . . ,T . The position can

be then expressed by a combination of FIDnav signals from different coil elements, i.e., the

explanatory variables with intercept as the first entry X (t ) ≡ (X1(t ); X2(t ); . . . ; XN (t )) where N

is the number of coil elements and Xc is the FIDnav signal as detected by a single coil element

c = 1,2, . . . , N . Hereby, the FIDnav signal at time t is a scalar value calculated from samples in

a single read-out.

15



Chapter 4. Accuracy and Precision of Head Motion Information in Multi-Channel Free
Induction Decay Navigators for Magnetic Resonance Imaging

X ≡ (m∗
1 ,m∗

2 , . . . ,m∗
N )

X ≡ (m∗
1 ,m∗

2 , . . . ,m∗
N ) and γt = 0

X ≡ (φ∗
1 ,φ∗

2 , . . . ,φ∗
N )

X ≡ (φ∗
1 ,φ∗

2 , . . . ,φ∗
N ) and γt = 0

X ≡ (m∗
1 ,m∗

2 , . . . ,m∗
N ,φ∗

1 ,φ∗
2 , . . . ,φ∗

N )
X ≡ (m∗

1 ,m∗
2 , . . . ,m∗

N ,φ∗
1 ,φ∗

2 , . . . ,φ∗
N ) and γt = 0

X ≡ (r∗
1 ,r∗

2 , . . . ,r∗
N )

X ≡ (r∗
1 ,r∗

2 , . . . ,r∗
N ) and γt = 0

X ≡ (z∗
1 , z∗

2 , . . . , z∗
N )

X ≡ (z∗
1 , z∗

2 , . . . , z∗
N ) and γt = 0

X ≡ (r∗
1 ,r∗

2 , . . . ,r∗
N , z∗

1 , z∗
2 , . . . , z∗

N )
X ≡ (r∗

1 ,r∗
2 , . . . ,r∗

N , z∗
1 , z∗

2 , . . . , z∗
N ) and γt = 0

X ≡ (r∗
1 ,r∗

2 , . . . ,r∗
N , z∗

1 , z∗
2 , . . . , z∗

N m∗
1 ,m∗

2 , . . . ,m∗
N ,φ∗

1 ,φ∗
2 , . . . ,φ∗

N )
X ≡ (r ∗

1 ,r∗
2 , . . . ,r∗

N , z∗
1 , z∗

2 , . . . , z∗
N m∗

1 ,m∗
2 , . . . ,m∗

N ,φ∗
1 ,φ∗

2 , . . . ,φ∗
N ) and γt = 0

Table 4.1: Model input variants with and without the temporal component that have been tested.

Different selections of points are considered and are described in detail in the Results

section 4.3.1. The general form of the model is thenY j = f j (X )+ε j , where f j is a regression

function with a residual error ε j in the j th motion direction (translational and rotational

motion parameters). We will investigate a linear model of the form f (t ) j =α j +B j X (t )+γ j t for

the estimation of the motion parameters Y . The time component t is added as an explanatory

variable to account for possible linear, time-dependent signal changes of the FIDnav or

the camera data with γ being its estimated contribution to the model. Furthermore, α is

the intercept estimate and B j = (β j
1,β j

2, . . . ,β j
N ) is a vector with β

j
c as the unknown model

parameters for each of the channels c and motion directions j . The head position in the j th

dimension Y j (t ) is then related to the FID signal X (t ) from N channels as follows:

⎛
⎜⎜⎝

Y j (t1)
...

Y j (tT )

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

1 X1(t1) · · · XN (t1) t1
...

...
. . .

...
...

1 X1(tT ) · · · XN (tT ) tT

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α j

β
j
1

...

β
j
N

γ j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎝
ε j (t1)

...

ε j (tT )

⎞
⎟⎟⎠

We will evaluate the residual error ε j for different model inputs X . To achieve this, FIDnav

will be calculated from the complex FID signal as shown in Table 4.1 with

r∗
c (t ) = (rc (t )− rr e f ,c )

rr e f ,c
, z∗

c = (zc (t )− zr e f ,c )

zr e f ,c
,

m∗
c (t ) = (mc (t )−mr e f ,c )

mr e f ,c
,φ∗

c = (φc (t )−φr e f ,c )

φr e f ,c

16



4.2. Methods

Parameter 3D GRE + FIDnav FIDnav only

TR 25.0 ms 12.5 ms
TE 3.0 ms 3.0 ms
α 12◦ 8◦

TA 6:07 min 6:11 min
Band width 240 Hz/Px 240 Hz/Px
Matrix (RO×PE×PAR) 256×256×144 n.a.
Voxel size 1.0×1.0×1.2 mm3 n.a.
GRAPPA ×2, 24 ref. lines n.a.
Field of view in phase 87.5% n.a.
Slice partial Fourier 6/8 n.a.
Total number of FIDnav

1328 29568
samples during the scan

Table 4.2: Acquisition parameters.

where the real and imaginary components or the magnitude and the phase of the complex

FID signal sc from a coil element c at any time point are given by sc = rc + i zc = mc eiφc and

were normalized using a complex reference signal from the beginning of the scan sr e f ,c =
rr e f ,c + i zr e f ,c = mr e f ,c eiφr e f ,c . Note that only normalized signal changes, i.e., relative to the

reference position, were used for motion estimation. Both camera data and FIDnavs used

the same point in time as reference. The exact time point will be defined in the section 4.3

‘Results’.

Provided that X and Y are known, the model parameters α, β, and γ will be estimated

through least-squares optimization. In the following investigations, we assume a linear rela-

tionship between the multi-channel FIDnav signal changes and the underlying rigid-body

head movements as expressed in the definition of f j . To assess the quality of the estimates

we evaluate the mean absolute error (accuracy) and the standard deviation (precision) of the

error ε j . All calculations are performed using MATLAB (MathWorks, Natick, MA, USA).

4.2.2 Experimental Set-Up and Data Acquisition

To determine the model parameters α, β, and γ a sequence of experiments were conducted in

which the subjects were instructed to perform different head movements inside the scanner.

The FIDnavs were acquired and the motion was tracked simultaneously by an optical system

comprising a spatially encoded retro-reflective marker and an in-bore camera (Maclaren et al.,

2012). The tracking marker was placed on a customized mouth piece for rigid-coupling to the

skull.

After obtaining written consent, five healthy volunteers were scanned at 3T (Magnetom

Tim Trio, Siemens, Germany) using a 32-channel head coil array. Each subject underwent

the acquisition of six scans per session of which four involved voluntary head motion. The
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subjects were instructed to perform a sequence of head movements consisting of four different

motion patterns: nodding (’nod’), translation in the scanner z-direction (’z-tra’), head-shaking

(’shake’), and drawing a virtual eight with the nose tip (’fig 8’). Motion periods of 20 s in

duration were interleaved with 10 s periods without motion and were guided by commands

using the intercom system of the scanner. This sequence of motion patterns was repeated

three times during one scan. For two series with motion, a non-selective 3D gradient-echo

sequence was modified such that one FIDnav was acquired after ten imaging excitations (3D

GRE + FIDnav), i.e., every eleventh TR or every 275 ms, corresponding to a sampling rate of 3.6

Hz. During each FID readout, 512 complex data points were sampled. Another two datasets

were acquired with a protocol where solely the FID signal was sampled every TR without any

additional gradients for image formation (FIDnav only), matching the sampling frequency of

the optical system of 80 Hz in order to exploit the sampling capability of the FIDnav signal

(see Table 4.2 for an overview). Also, in addition to RF-spoiling a spoiling gradient has been

incorporated after each FID read-out to guarantee signal dephasing prior to the next RF-pulse.

Finally, each of the subjects underwent an additional scan with both sequences where they

were asked not to move. For this study the shimming condition was set only once in the

beginning of the scanning session for each subject.

In addition, phantom scans were performed to observe the stability of the FID navigator

signal in absence of physiological influences. Here, a spherical water phantom from Siemens

(175 mm diameter; 1.25g NiSO4 + 6H2O per 1000g H2O) was used and stabilized by padded

head cushions inside the coil. The optical marker was attached to the phantom and tracked

by the camera as in the human scans.

4.3 Results

4.3.1 FID Navigator Signal-to-Noise Ratio and Steady-State

One data point of the FIDnav signal intensity time course series from each coil element was

calculated by taking the average of all 512 data samples from a single, spatially non-encoded

read-out, to increase the signal-to-noise ratio of the FIDnav without any substantial loss in

temporal resolution of the FIDnav data. The decision of averaging over the whole FID read-out

was motivated by an initial evaluation where we compared the signal-to-noise ratio (SNR)

of the FIDnav time course depending on the utilized read-out samples i.e., samples from

the beginning, the middle, the end of the read-out and the average over all points. SNR is

hereby defined as the ratio between the mean of the signal over the whole time course and its

standard deviation. This evaluation was based on the data from the phantom experiments.

It was evident that taking the average over all points as well as taking only a single point

from the beginning of the read-out samples provided the highest SNR value (see Table 4.3). A

further evaluation of the volunteer motion prediction performance based on the used read-out

samples showed that using the average over the whole ADC provided the best accuracy and

precision and therefore motivated taking this setting for the FIDnav calculation.

18



4.3. Results

SNR**
read-out samples averaged over all coil elements translation rotation

used for the FIDnav r: real component error [mm]*** error [deg]***
z: imaginary component

middle (215) r: 206; z: 102 0.16±0.14 0.14±0.16
average over points 4 to 509 r: 268; z: 142 0.15±0.12 0.12±0.13

4th sample point* r: 257; z: 286 0.24±0.17 0.15±0.17
509th sample point* r: 106; z: 71 0.16±0.14 0.15±0.15

∗The three first and last points of the read-out do not contain any valid information due to digital filter
adjustments in the beginning and the end of the acquisition window
∗∗Evaluation was done on phantom data from a single 3D GRE + FIDnav scan
∗∗∗Results from cross validation on data from a single 3D GRE + FIDnav scan from a moving subject

Table 4.3: SNR and prediction power of the FIDnav.

The FID read-out in our experiment takes approximately 4 ms and it can be assumed that

during this time no significant positional changes of the head occur; therefore the reduction of

all read-out samples to a single data point is justified. Furthermore, we assumed that no signal

cancellation occurred, as could be caused by off-resonance, due to appropriate shimming.

The real and imaginary components as well as the magnitude and the phase of the complex

FIDnav signal from a coil element were normalized using a reference signal from the beginning

of the scan. The reference signal was calculated as the mean of all FIDnavs acquired during a 3

seconds time window starting after the steady-state was reached. Fig. 4.1 shows the magnitude

of the FIDnav signal for one coil element and for two different acquisitions, where the FIDnav

signal was acquired during a ’3D GRE + FIDnav’ sequence and where only the FIDnav signal

was acquired during the scan.

Steady-state was considered as achieved when the signal changes i.e., the partial derivative

over time was less than 1%, which, according to Bloch simulations, occurs after approximately

4.1 seconds or 165 excitations in the modified gradient-echo case and after approximately 3.7

seconds or 296 excitations in the FID only acquisition. For matters of consistency, the first 5

seconds of all data sets were discarded from the evaluations.

4.3.2 Accuracy and Precision of Motion Prediction Based on FID Navigator Data

One third of the measurement was used to compute the model parameters α, β, and γ by

performing a linear regression through least-squares optimization of FIDnav signals and

camera data (’training’. The training period corresponds to 442 and 9856 data points for

’3D GRE+FIDnav’ and ’FIDnav only’ acquisition, respectively. Subsequently, the model was

validated by predicting the head motion parameters during the remaining 2/3 (4 minutes) of

the measurement using the previously obtained model parameters (’validation’, see Fig. 4.2).

The training and validation was performed within each six-minute scan of the same subject.
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Figure 4.1: Normalized FIDnav signal magnitude time course from one subject acquired without voluntary motion
for the first 50 sec of the scan. The first 5 seconds of the FIDnav prior to steady-state are discarded. The following 3
seconds of the signal in steady-state are taken as reference. The difference in the magnitudes can be explained by
the different acquisition parameters with respect to repetition time and excitation angle in the 3D GRE+FIDnav
acquisition and the FIDnav only acquisition.

The prediction accuracy and precision of the model was evaluated using 4-fold-cross-

validation within one single scan (intra-scan) by shifting the training block to the beginning,

middle, and the end of the same scan (I-III) as well as by choosing the training and validation

data points at random (IV). Also, an inter-scan cross validation was performed by training the

model with data from one scan and performing the validation on motion data from another

scan but the same subject. The motion trajectories of one exemplary series with head motion

as obtained from the camera system and the FIDnav time course of a single coil element

are shown in Fig. 4.2. For the presented experiment, motion quantification with the camera

system revealed translational and rotational motion up to 24 mm and 11◦, respectively.

The validation over all subjects and scans showed that the linear model performs best when

using the real/imaginary parts or the magnitude/phase of the FIDnav as model input among

all tested input variants (Fig. 4.2). Such a model predicts the camera measurements for all six

motion parameters with an overall translational and rotational mean accuracy and precision

of 0.14±0.21 mm and 0.08±0.13◦ (Fig. 4.4). Notably, also for larger motion, the assumption of

linearity between the FIDnav signal changes and the motion parameters appears to be valid

(cf. Fig. 4.4).

Systematic differences in the prediction accuracy are visible for different motion directions

and scans (’3D GRE+FIDnav’ compared to ’FIDnav only’ sequence set-up) as can be seen in

Fig. 4.5. For some subjects and experiments (e.g., subject 5, 2nd scan, translation in x; subject

4, 1st scan, translation in z), the error variance is higher than for other experiments. The

differences in the prediction error for different scans and motion directions are significant,

however, on the order of magnitude of 10−2 mm or degrees for translational and rotational

motions respectively. Rotational motion in z direction and translational motion in y direction

can be predicted with lower errors as compared to the remaining directions.
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Figure 4.2: Translational and rotational motion parameters as captured by the camera system from a subject scan.
Real r * and imaginary parts z* as well as the magnitude m* and the phase φ* of the FIDnav time course for one
single coil elements; The subject was instructed to perform the 4 motion patterns nodding, z-translation, head
shaking and drawing a virtual eight with the nose during the training (green box) and the validation parts (red box).
Grey bars at the bottom mark the motion periods. During intermediate periods the subjects were asked to rest in one
position.

Further, the data from the ’3D GRE+FIDnav’ scans reveal a lower prediction power than

from the ’FIDnav only’ scans. This can be explained by the much denser sampling rate of the

’FIDnav only’ experiments and more robust regression results due to a bigger sample size.

Prediction errors larger than three times the standard deviation of the error were considered

as outliers and account for of the total data points. We observed maximal translational and

rotational errors of up to ∼3 mm and ∼3°.

4.3.3 FID Navigator Signal Stability

As described in (Babayeva et al., 2014a), an FID navigator signal may also be subject to changes

due to scanner-related signal fluctuations. Indeed, time-dependent FIDnav signal drifts were

observed, especially for the phase and the imaginary part of the FIDnav signal, as can be

seen in Fig. 4.6. However, these drifts are slow compared to FIDnav signal changes caused by

motion, which was confirmed by phantom scans. The differences in the slopes of the drifts in

different experiments could have been caused by the different warm-up times of the scanner

due to previous experiments and its temperature induced shim changes.
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and without the temporal component. The output is sorted according to the absolute mean prediction error. Using
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linear model.

Figure 4.4: Predicted FID-based translational (left) and rotational (right) motion versus camera-detected motion
from 20 scans of 5 volunteers (4 scans with motion per volunteer). As model input the real and the imaginary
component of the FIDnav signal was taken. The extent of the motion parameter error ε is coded with different colors
corresponding to multiples of the standard deviation σ (black ε< 2σ, red 2σ≤ ε< 3σ, and blue ε≥ 3σ) together with
their proportion relative to the data set. Line-of-identity is indicated in green.
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Figure 4.5: Prediction error for all 5 subjects and experiments (3D GRE+FID in green and FID only in orange) where
the subject was moving and motion directions with the respective maximal absolute error, absolute error mean and
the error standard deviation. The boxplot visualizes the distribution of the error with the mean and the median
where the box encapsulates the data between the 25th (Q1) and 75th (Q3) percentiles, the whiskers extend to the
most extreme data points not considered outliers. As outliers were considered data points further away from the
mean than 1.5(IQR) with IQR = Q3-Q1 being the inter quartile range.

Motivated by these time dependent FIDnav signal changes, an additional time component

was added to the model. However, as shown in Fig. 4.3, this does not contribute to a better

motion prediction in terms of accuracy and precision. Physiological effects from respiration

and cardiac cycles may introduce spurious signal fluctuations. The FIDnav signal exhibited

modulations due to breathing, which correlate with small head movements caused by res-

piratory motion, also detected by the camera system. A linear model can be trained with

these data without voluntary motion; the resulting model is able to predict also the small

periodic head displacements in the sub-millimeter range (Fig. 4.7). Cross-validation only

for data without voluntary motion revealed an accuracy and precision of 0.12±0.18 mm for

translational and 0.06±0.09° for rotational motion and r∗
c and z∗

c as model inputs.

4.3.4 The Ability of the Linear Model to Extrapolate Between Different Motion
Types

We propose the use of a linear model to show the correlation between subject head motion

and the multi-channel FIDnav signal. The employed subject head motion consisted of four
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Figure 4.6: Real and imaginary parts as well as the magnitude and the phase of the FIDnav signal time course from
a subject that performed motion (black) and at rest (red) as well as from a phantom scan (green). A time dependent
signal trend is visible in both human and phantom scans.

different motion patterns raising the question whether such a linear model is capable of

extrapolating to motion types which are different from the training data set. To evaluate this

ability, the model was trained with one motion type e.g., ’z-tra’ and validated on data from a

different motion type e.g., ’fig 8’ (Fig. 4.8) for all scans with motion. We evaluated the accuracy

and precision for all motion type combinations used for the training and validation procedure

(Fig. 4.9). Using head shaking and translational motion in the z-direction of the scanner for

training produces best prediction results. It is possible to predict translational and rotational

motion with an overall accuracy and precision of 0.21±0.31 mm and 0.12±0.18◦ (’shake’) and

0.24±0.39 mm and 0.14±0.28◦ (‘z-tra’).
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Figure 4.7: Ground-truth motion trajectory as provided by the camera system as well as FIDnav-based predicted
motion trajectories from acquisitions with the modified gradient-echo acquisition as well as FID only scans. Only 15
seconds of the total time course are shown. The subject was asked not to move. Breathing motion is clearly visible in
both predicted and ground-truth trajectories.

Furthermore, the analysis showed that prediction errors are comparably higher (0.41±0.84

mm and 0.19±0.39◦for translations and rotations) when training the model with nodding

motion and validating it on data from the ‘z-tra’ motion type.

Also, a model trained with data from ’fig 8’ motion performs with a lower accuracy and

precision when validated with the ’z-tra’ motion type (0.41±0.75 mm and 0.17±0.31◦). By

utilizing two different motion types such as nodding and shaking at the same time for training,

the prediction accuracy can be improved to and when performing the validation on ’z-tra’ and

’fig 8’ motion data.

4.3.5 Minimal Training Data Requirements

To assess the minimal data requirements in terms of the number of data points that are needed

to reliably train the linear model, the following analysis was performed. The training data

were randomly chosen from a single time series for all scans and subjects and varied between

5 and 250 data points. The validation data set was also chosen at random and consisted of

1000 data points that were different from the training data set but from the same scan. As

input the real/imaginary components of the FIDnav were taken. The described training and

validation procedure was repeated 400 times to ensure statistical significance based on the
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Figure 4.9: Mean absolute prediction error for all scans and different combinations of motion types used for model
training and validation. The color code represents the value of the prediction error.

Wilcoxon rank sum test. The test showed that the mean of the prediction error is the same

as with 1000 repetitions for a single data set. The accuracy and precision was evaluated to

assess the reliability of the predicted motion parameters. Fig. 4.10 shows that approximately

100 points are sufficient to train a model which is able to predict head movements with an

accuracy and precision of 0.21±0.31 mm and 0.12±0.18°. Using 240 samples as applied here

the accuracy can be improved by another 40% to and 0.13±0.17 mm and 0.07±0.10◦.
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Another analysis has been performed with regard to required motion shape or magnitude,

complementing the analysis performed in the previous section. We evaluated the prediction

power of models trained with 100 data samples of motions with different magnitudes. These

samples were selected to have a uniform distribution over a fixed range (i.e., uniform distri-

bution of motion samples in the interval [−2+2] mm). A 4-fold cross-validation was used

to assess the accuracy and the precision of the model by shifting the training and validation

blocks to the beginning, the middle and the end of the data set while randomly choosing the

samples. The training set was chosen from 1/3 of the data and the validation was done on the

remaining 2/3 of the data points.

The results from all experiments showed that already motion magnitudes of ±2 mm and

±1◦ for translations and rotations, respectively, allow the model to be trained and to predict

previously ’unseen’ motion of bigger amplitudes with an absolute error of 0.30±0.30 mm and

0.14±0.14◦ (see Fig. 4.10). Also, motion magnitudes > 2 mm and > 1◦ do not seem to improve

the model and only the number of samples has a significant effect on the prediction quality in

terms of prediction error.

0 1 2 3 4 5

0

0.5

1

1.5

Translational motion magnitude
 [mm]

Tr
an

sl
at

io
n

pr
ed

ic
tio

n 
er

ro
r [

m
m

] Data ( abs )

0 1 2 3 4 5

0

0.5

1

Rotational motion magnitude 
[deg]

R
ot

at
io

n
pr

ed
ic

tio
n 

er
ro

r [
de

g]

0 50 100 150 200 250
-1

0

1

2

3

4

Number of training data points

Tr
an

sl
at

io
n

pr
ed

ic
tio

n 
er

ro
r [

m
m

] Data ( abs )

0 50 100 150 200 250

0

1

2

Number of training data points

 R
ot

at
io

n
pr

ed
ic

tio
n 

er
ro

r [
de

g]

Figure 4.10: The mean prediction accuracy μabs and precision σ for linear models which have been trained with
different amount of sample points and motion magnitudes. The data is shown for translational and rotational
motion.

4.3.6 Inter-Scan and Inter-Subject Model Differences

Ideally, the motion model could be universally applied, i.e., would be applicable to all subjects

in a given head coil, which would enable the use of FIDnavs for motion correction without

using ground-truth motion parameter data (as obtained by the camera system here). With this

goal in mind, we investigated the prediction ability of the motion model between different

subjects and scans. However, a model which is trained on data from a different subject was not

able to provide good prediction results. In this case, a prediction error larger than the motion
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magnitude was observed. Consequently, we state that FIDnav signal changes are to a great

extent subject- and coil-specific due to different head and coil geometries, positioning, as

well as different coil loading and shimming conditions. This is currently the limiting factor for

extending this motion quantification technique to inter-subject use, i.e., for finding a generic

FIDnav-motion model. However, once a model has been trained for a certain subject and

session, it can be reused for different scans within this session as long as the subject remains

in the scanner and the FIDnav is acquired in the same manner. The prediction accuracy

and precision of inter-scan cross-validation was found to be 0.75±1.3 mm and 0.40±0.67◦ for

translational and rotational motion in comparison to 0.14±0.21 mm and 0.08±0.13◦ when

the training and validation was done within the data from the same scan. We found that the

scenario where training and validation is done with data from different scans is only possible

using the magnitude signal m∗
c as model input. This suggests that the phase is more sensitive

to changes between scans.

4.4 Discussion

4.4.1 Prediction Accuracy of the Multi-Channel FID Navigator

According to theory the tracking accuracy of a motion detection device has to be several times

higher than the image resolution in order to ensure successful motion correction with low

artifact-to-noise ratio (Maclaren et al., 2013, 2010). It was recently shown that translations

and rotations in the range of 0.5-1.5 mm or 0.5-1.5 degrees cause a loss of information in MRI

data with a voxel size of 1×1×3 mm3 of 23.7% and 11.8% respectively, leading to errors in

quantitative evaluations of brain lesions (Gedamu and Gedamu, 2012). However, another study

showed that slow, predominantly through-slice motion of 0.1 mm as caused by breathing does

not cause significant artifacts for high resolution RARE images with a voxel size of 0.27×0.27×2

mm3 (Herbst et al., 2014). Taking into account the aforementioned studies and the result

of our experimental work, we state that a multi-channel FID navigator technology with the

presented accuracy and precision of 0.14±0.21 mm and 0.08±0.13° for translation and rotation

could be considered sufficient for rigid-body motion correction in MR acquisitions with a

voxel size of up to ∼1 mm3. Despite the sufficient mean accuracy, the detected outliers of up

to 3 mm and degrees could potentially cause artifacts. Hence, it is important to understand

the exact source of such outliers in order to eliminate them. It is further to mention that for the

prediction performance the use of the real/imaginary signal representation is advantageous

to the magnitude/phase representation due to phase wraps occurring in the latter case.

However, even though with bigger prediction errors, the use of only the magnitude of

the FIDnav enables the model to be reusable for several scans within one session and the

same subject. In order to assess the real impact of the FIDnav prediction errors on the image

reconstruction, a strategy is needed where the FIDnav predicted trajectory is used to correct for

the occurred motion which is subject to future investigation. It was evident that the prediction

performance was better in certain motion directions as well as outliers (up to 3 mm and

28



4.4. Discussion

degrees for translations and rotations respectively) were detected. These rare outliers might

be caused by several effects: non-rigid motion as jaw or tongue movements, marker shifts of

the optical system, and the non-symmetrical geometry of the utilized head coil. The non-rigid

motion as well as the marker shifts lead to discrepancies in the FIDnav signal and optical

data. Missing coils in one specific direction of possible head movements might reduce the

performance of the proposed FIDnav based motion prediction approach.

4.4.2 FID Navigator Signal Stability

The phantom scans as well as human scans at rest were analyzed with respect to the effect

of gradient activity near the FIDnav sampling in the 3D GRE acquisition. We suspected that

thermal effects may have an influence on the FIDnav stability and possibly manifest them-

selves in higher temporal dependency of FIDnav signal in the ’3D GRE+FIDnav’ acquisition.

However, our data did not exhibit such effects. One might speculate that the eddy currents

were sufficiently canceled in the applied protocols or that a steady-state was reached; the

picture may however change in gradient-demanding acquisitions such as diffusion scans. Nev-

ertheless, the observed temporal dependency of the FIDnav signal motivated us to include the

time as an additional input parameter into the model. The evaluation of the residual motion

prediction error revealed, however, that the temporal component reduces the performance of

the model in terms of accuracy and precision. We thus assume that the model is intrinsically

capable of compensating for potential drifts by combining FIDnav signal from channels with

opposed temporal dependency. Another explanation might be that the model is not able to

find a correct relationship between the temporal component and the time-varying motion

trajectory, especially in experiments with intended subject movements.

The FIDnav-based model was also able to predict small head movements as caused by

respiration. This result indicates that the multi-channel FIDnav is very sensitive not only for

substantial head movements, but is also able to detect small signal changes originating from

involuntary physiological movements of the subject.

4.4.3 Advantages and Limitations of the FID Navigator Approach

The accuracy and precision assessments performed in this work were assuming that the

accuracy of the available camera system (reported precision: 10 μm / 0.01° (Maclaren et al.,

2012)) is to date the best possible measurement of head motion within an MR scanner. Relying

on the positional information as provided by the camera system, this work demonstrates that

substantial rigid-body motion information is encoded in multi-channel FIDnavs and can

be decoded with mean errors in the sub-millimeter and sub-degree range. The FIDnav uses

hereby the simplest form of MR-signal acquisition by rapidly measuring the FID and can be

added to practically any sequence without influencing the magnetization (e.g., by placing a

read-out after an excitation of the host-sequence) and thus does not affect the overall image

quality.
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As described previously, the first five seconds of the FIDnav are ignored since the magne-

tization is not yet in a steady-state in the employed gradient-echo sequence and additional

three seconds are used for normalization. This has to be taken into account as no motion

information is available during this time. Methods to accelerate the stabilization of the signal

as for example suggested in (Busse and Riederer, 2001) by introducing a saturation pulse can

be considered to reduce this dead time. In the performed experiments, we assume a simple

linear relationship between the FIDnav signal and the motion data provided by an in-bore

camera. With this in mind, it should be theoretically possible to extract the parameters of such

a linear model with only few data points of the ground-truth motion and the corresponding

FIDnav signal. We have shown that 100 data points of low motion magnitudes are sufficient

to train a linear model and still be able to obtain prediction results with an accuracy and

precision below 1 mm/1°.

Furthermore, although the proposed linear model is capable of extrapolating between

different motion types when different motion patterns were used for training and validation,

the best performance was obtained when using nodding and shaking motion together for

model training. Using only one motion type to predict before ’unseen’ motion types showed

considerably lower performance. Predicting translational motion along the scanner bore

proved to be most difficult if only one motion type was used for model training. We assume

that this is caused by the physiological shape of the head and the coil geometry (i.e., the

positioning of the different coil elements with respect to ’z-tra’ motion).

This raises the question of the practicability of the method as a ’standalone’ motion man-

agement approach. One strategy is to use the knowledge about the ability of the multi-channel

FIDnavs to provide accurate quantitative motion information for its applicability in robust

motion detection applications as proposed in (Kober et al., 2011). These techniques, where

the FIDnav is used to classify segments of acquired data as corrupted by motion and to trigger

a reacquisition, heavily rely on the sensitivity and specificity of the employed threshold of

the FIDnav evaluation. Such technologies could be improved by including the quantitative

knowledge about the motion magnitude in such a classifier.

Another way of using this information could be to establish a model training step without

the need of a camera system. From a theoretical point of view, such training ideally would

take place before an examination scan and should be significantly shorter than the imag-

ing sequence itself, as a re-scan might be otherwise more appealing than a long pre-scan.

The subject would be asked to change the head position during the prescan to acquire a

training data set specifically designed for the sequence targeted for motion correction. The

motion parameters for the model training would be obtained by co-registration of the image

navigators.

It can also be considered to collect a sufficient amount of data to train a universal motion

model, which takes into account the subject-specific model features such as head geometry,

initial head position inside the coil-array, and shim settings. However, as of now, we do not
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consider this approach promising, due to the vast parameter space which would have to

be covered. We could show that by considering only the magnitude of the FIDnav signal,

it is possible to train a subject-specific model that is able to provide prediction results in a

subsequent scan (inter-scan validation) with a mean accuracy below 1mm/1°. Although, the

prediction errors are larger compared to intra-scan validation and the different acquisitions

are within the same 3D GRE sequence, it is a promising result towards a model training strategy

which could yield a model for the entire scan session comprising different acquisitions. This,

however, would be compromised even further by different sequences with possible artefactual

effects on the incorporated FIDnav signal (e.g., diffusion weighting, turbo-spin-echo etc.)

and would require an appropriate strategy to render the FIDnav signal inter comparable

throughout the whole scan session.

Another limitation to the FIDnav technique concerns slice-selective imaging. Motion

detection relies on signal changes arising from different head positions relative to the receive

coil. With respect to slice-selective sequences the FIDnav signal is subject to changes as caused

by differences in the selected anatomy of the head in case the 2D pulse is used for the FIDnav

acquisition. Hence, the FIDnav will detect possibly counter balancing signal changes arising

not only from the head motion but also from the differences in the slice positions. Therefore,

additional investigations are needed in this regard to propose another FIDnav acquisition

strategy and to draw further conclusions.

Different coil geometries might present another challenge to the FIDnav ability to track mo-

tion reliably. It might be expected that missing coils in certain directions e.g., open cage coils

without an antennae in the z-direction of the scanner would lead to difficulties in predicting

motion in this specific direction based on the FIDnav signal.

Furthermore, non-rigid motion which is not necessary related to displacements in the

brain regions but would cause signal changes in the FIDnav is a limitation of the presented

technology. Certain coil elements which are located close to the jaw and neck region could be

excluded to reduce this effect.

4.4.4 Future Work

Future work should aim at extracting the subject-specific mapping from the FIDnav signal

changes to rigid head movements without relying on the optical tracking system.

One possible direction towards enabling the back-calculation of the motion parameters

from the FIDnav signals is to train a linear model by measuring the coil sensitivities of the

employed head coil and the subject-specific head geometry (e.g., low resolution head and body

coil images) as proposed in (Kober et al., 2010). This data could be used to simulate the FIDnav

signal by ’moving’ the MR image of the head in silico i.e., applying a mathematical matrix

transformation and weighting the ’moved’ image by the estimated coil sensitivity profiles to

subsequently translate FID signal changes during image acquisition in quantitative motion
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parameters for motion correction.

An alternative approach is to use the FIDnav for motion detection and to trigger a sub-

sequent motion quantification mechanism (e.g., imaging navigator) during the scan, if the

FIDnav exceeds a certain threshold indicating subject head movement as already proposed

in (Babayeva et al., 2014a; Kober et al., 2012). After several (≥ 100 data points as shown in

this work) triggering events, there should be enough data (positional information and the

corresponding FIDnav data from individual coil elements) to train a model and with it be able

to quantify the head movements based on the FIDnav signal alone.

Also, models of higher complexity than linear additive ones could be considered. However,

an initial investigation in employing quadratic and interaction terms or other machine learning

paradigms as neural networks, did not indicate improvements in the motion assessment and

a detailed investigation would go beyond the scope of this work.

Due to the simplicity of the FIDnav, it could be also used to complement existing motion

tracking methodologies by providing a means of validation or guiding mechanism through

additional information e.g., additional regularization of retrospective correction methods

based on autofocusing (Babayeva et al., 2014b) or validation of optical tracking technology

which is heavily relying on rigid coupling of the tracking marker with the skull and could be

perturbed by marker shifts.
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5 FID-based Motion Sensitive Qual-
ity Metric and Retrospective Motion
Correction for Clinical Magnetic Reso-
nance Images

This chapter is based on published work from Babayeva et al. (2014b) and

Loktyushin et al. (2013).

Abstract Motion is a major source of artifacts in clinical magnetic resonance imaging. We

have collected a representative data set of 109 clinical MP-RAGE images where the acquisition

sequence was equipped with FID navigators and applied a recently proposed retrospective

motion correction technique to all data. An expert radiologist then rated the images before and

after correction to assess the image quality improvement. It was shown that severely motion

corrupted images of non-diagnostic quality were improved to an extent that they were rated

as clinically useful after motion correction. The image quality of data with less severe artifacts

was also improved according to the rating. Additionally, we propose a novel image quality

index based on the FID signal, which can detect images according to the strength and extent

of its motion artifacts. The higher the FID-based quality index the higher is the probability

for the corresponding data to be motion corrupted. This study shows that substantial image

quality improvement can be achieved using the retrospective motion correction method and

indicates that the technique bears the potential to improve the way the problem of motion is

handled in the clinical context by providing automated means of motion artifact detection.

5.1 Introduction

Motion is prevalent in clinical magnetic resonance (MR) acquisitions especially with elderly

and pediatric cohorts. Patients often experience a high level of distress and discomfort due

to claustrophobia, anxiety and long scan times. This may lead to agitation and increased

patient motion during an MR examination and degrade the quality of acquired images to
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a non-diagnostic level such that a rescan and even patient sedation might be necessary

(Munn and Jordan, 2013). A large multicenter study reported that motion occurs in 40%

of the medical examinations, in 10% being caused by motoric unrest of the patient leading

to severely impaired image quality (Oberstein et al., 1990). Another study reported similar

values of artifact occurrence in clinical MR scans where 12.8% of the images were motion

corrupted and 6.4% had a non-diagnostic image quality (Dantendorfer et al., 1997). Thus, not

surprisingly, motion during MR examinations is considered to be the major source of image

artifacts with substantial financial implications (Andre et al., 2015).

Advances in quantitative interpretation of MR-based data using morphological brain seg-

mentation (Schmitter et al., 2014) require high-resolution and artifact free images. It was

recently shown that motion-related artifacts cause a significant bias in the estimates of the

cortical gray matter volume with an average apparent volume loss of roughly 0.7%/mm/min of

subject motion (Reuter et al., 2015). The high-resolution imaging is associated with prolonged

scan times, which again increases the risk of motion artifacts to be present.

Numerous motion detection and correction strategies have been proposed during the past

decades, however, no universal solution that fits all imaging paradigms could be identified so

far (Zaitsev et al., 2015). Most correction techniques are sequence specific or can only correct

for special types of motion as in-plane motion. The existing motion correction methodologies

can be split into two broad classes: prospective and retrospective motion correction tech-

niques. Prospective motion correction is applied during the scan time, whereas retrospective

correction is performed after the image is acquired. Most prospective correction techniques

require either equipping the imaging sequence with navigators (Tisdall et al., 2012; White

et al., 2010) or additional hard-ware to track the subject’s motion, for example, optical cameras

(Zaitsev et al., 2006). Both, prospective and retrospective motion correction techniques have

their advantages and limitations. Prospective methods can correct for spin-history effects

and prevent Nyquist violations due to inadequately sampled k-space. They require, however,

sequence modifications to include the acquisition of the navigator, and depending on the

navigator complexity these are not always easy to implement in all sequences. Prospective

methods also often rely on external motion tracking hardware, which might not be compatible

with the scanner setup i.e., because of an obstructed camera view due to a closed coil design.

Retrospective correction techniques, on the other hand, can be applied to the data acquired

with most of the sequences as the methods based on autofocusing (Atkinson et al., 1997;

Loktyushin et al., 2013) but they fail in cases with severe motion degradation, which causes

unrecoverable k-space data loss or can only be applied to in-plane motion as in case of the

PROPELLER method (Pipe, 1999).

Further, the high sensitivity of computer-based quantitative image evaluations to motion

artifacts motivates the development of automatic detection of even benign image degradations.

Thus the possibility to assess the image quality quantitatively has an increased value in

determination of the validity of morphological segmentation results. Such an automated

quality assessment methodology, which is capable of identifying images of non-diagnostic
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quality, can be based on background noise evaluation (Mortamet et al., 2009).

We have developed a novel motion artifact detection technique based on the recently

proposed free-induction-decay navigator (FIDnav) (Kober et al., 2011). The manifestations of

the motion artifacts depend on the affected k-space position (Maréchal et al., 2012; Zaitsev

et al., 2015). FIDnav-based motion detection provides a means of determining at what time i.e.,

k-space position during the acquisition, subject motion occurred. We utilize this information

to perform the FID-guided retrospective motion correction based on autofocusing (Babayeva

et al., 2014b; Loktyushin et al., 2013). Further, we evaluate the performance of the proposed

techniques with the use of the expert’s ratings and rankings of the corrected and uncorrected

clinical MP-RAGE images and also assess the rating correlation with FIDnav-based motion

artifact detection.

5.2 Methods

5.2.1 Data Acquisition

We have collected a data set of 109 MP-RAGE images (α/TI/TR/TA = 9◦/900ms/2300ms/5:12

min, GRAPPA 2× with 32 reference lines, different matrix and voxel sizes in the range of 1 mm)

acquired for clinical purposes at our site (CHUV, Lausanne, Switzerland) over a time period

of roughly 1 year. The images were acquired with five different scanners (Verio, Skyra, Aera,

Trio, Prisma from Siemens Healthcare, Erlangen, Germany) and different head-coils (see Table

5.1 for a detailed overview). The data was anonymized in correspondence with local ethics

regulations, hence, no information on demographics or disease diagnosis can be provided

here. The prototype MP-RAGE sequence was modified in such a way that at the end of the

read-out train in every TR an FIDnav acquisition was inserted (α = 5◦, 512 samples in 2 ms).

5.2.2 Retrospective Motion Correction

All images were retrospectively motion corrected using two different motion correction tech-

niques. First method used for correction was the recently proposed blind retrospective mo-

tion correction based on autofocusing (Loktyushin et al., 2013). This method relies on an

optimization-based search of unknown motion parameters, where the cost function involves

the image quality metric evaluated on intermediary motion corrected images. We call this

method ’blind’ due to the fact that the only source of information needed for optimization is

the k-space data itself. The second method was a modification of the blind correction tech-

nique, where the information from FIDnav is used to constrain the optimization by restricting

the set of explored motion trajectories (Babayeva et al., 2014b; Loktyushin et al., 2013). In

this study, we are going to call it FID-guided correction. Additionally, we also reconstruct our

data ’as is’ (no motion correction) resulting in a total of three different image sets: without

motion correction, with blind motion correction, and FID-guided motion correction. All

computations were performed in MATLAB (Mathworks, USA).
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Table 5.1: Overview of the clinical MPRAGE datasets collected for this study. The ’Utilized coils’ column shows a
description of the head coil as well as additional coils used for data acquisition. The number after the underscore
indicates how many coil elements in the selected coil matrix are available.

5.2.3 Qualitative Image Quality Assessment

Two different evaluations were performed to assess the image quality before and after cor-

rection. During both quality assessment procedures the rater was blinded to the respective

reconstruction method. First, the image quality was rated in terms of blurring, ringing and

ghosting artifacts inside (BGR inside) and outside (BGR outside) the brain region to be none,

mild, moderate, or severe in accordance with the image quality criteria within the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) study (Jack et al., 2008). Further, the images were

rated to be either useful for clinical analysis or to be non-diagnostic when extensively motion

corrupted. Second, the uncorrected images and those corrected with blind and with FID-

guided method were ranked against each other according to their perceived image quality

characterized in terms of blurring, ghosting, and ringing. The image with the best image

quality was ranked first and the one with the worst quality was ranked third. If the images

were perceived to be of the same quality they were assigned the same rank, i.e., if blind and

FID-guided corrections were perceived to be similar but better than the uncorrected image

then they both would be ranked first and the uncorrected image second.

One rater, a radiologist with 6 years of MR brain imaging experience, reviewed the images.

These qualitative results were used as the ’gold-standard’ for further FIDnav-based motion

detection assessments.
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5.2.4 FID-Based Motion Detection

It was shown that the FIDnav is able to detect motion events reliably (Kober et al., 2011)

and even allow prediction of the underlying rigid head motion with a submillimeter and

sub-degree precision (Babayeva et al., 2015b), when acquired with a multi-channel coil array.

However, so far it is not possible to extract the motion trajectory from the FID-signal without

the knowledge on its correlation with the underlying motion parameters.

Here, we would like to make use of the multi-channel FIDnav signal as means of quality

index estimation for motion artifact detection of the our data set. The FID signal from a

read-out is reduced to a single point for every channel by taking the complex average of all

read-out samples and consider just the magnitude mc (t ) of the complex signal as proposed in

(Babayeva et al., 2015b).

For motion detection we will consider several FIDnav-based metrics and evaluate their

performance with respect to their sensitivity and specificity to identify the images with none,

mild, moderate, and severe motion artifacts inside the brain region using the radiologist’s

ratings as ’gold-standard’. We will further consider images having no visible motion artifacts

as ’no motion’ scans and all the others as ’motion’ scans. Hereby, we excluded the FID signal

from the neck and spine region coils, as only bulk rigid head movements were of interest for

this study. Please note that for this classification problem it would be also possible to make

use of classical machine learning tools such as support vector machines. However, we decided

to show the differences between the artifact groups based only on selected FIDnav features

to avoid the ’black box’ problem caused by such tools making it difficult to draw a direct link

between the classifier and the data. Also the relatively small sample size restricts us to the use

of simple statistical methods.

We will call the first detector F I Dnav AllC , where ’AllC ’ stands for all channels. For this

metric we evaluate the relative finite difference FIDnav signal magnitude (mc (t)−mc (t −
1))/mc (tr e f ). First two samples from the FID time series were omitted to ensure that the signal

is in a steady-state meaning that tr e f = 3r d repetition. Also the mean μAllC and standard

deviation σAllC over the whole time course of the acquisition for every channel is calculated

separately. If a realitive signal change higher than 3σAllC in more than N channels then the

part of k-space acquired during this TR is considered to contain a motion event i.e, outlier. We

sought to find the optimal number of relevant channels N by correlating the FIDnav-based

artifact detection to the ’gold-standard’ visual evaluation of the image quality with respect to

best sensitivity and specificity. We will also consider another threshold mechanism that we

will call moving standard deviation σAllC mov , which is calculated based on the moving average

over the whole FIDnav time course and does not take the FIDnav values of the identified

motion events into consideration i.e., standard deviation for t is calculated from all data

points acquired up to t −1, if FID signal at t is higher than 3 times the standard deviation then

it is considered as a motion event and not taken into the calculation for the reference standard

deviation at the next time point. This detector will be referred to as F I Dnav AllC mov .
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We pose that the FID signal changes if motion is present during the acquisition this would

mean that the temporal variation of the signal would become higher and would be reflected by

the standard deviation of the signal. We propose to calculate the standard deviation over the

normalized finite difference of the FID signal (mc (t)−mc (t −1))/mc (tr e f ) over all channels

σF I Dnav and will investigate its performance as a potential motion detector.

Another FIDnav-based detector will be referred to as F I DnavNC max , where ’NC max’

stands for N number of channels with maximal signal change among the channels at every

time point. Here, we use the mean of the FIDnav finite difference signal (mc (t)−mc (t −
1))/mc (tr e f ) from NNC max channels where the absolute signal change was maximal as the

metric for each time point. The optimal number of the channels NNC max is estimated through

specificity and sensitivity measures of the proposed metric. If the obtained F I DnavNC max

value exceeds the empirical threshold τNC max then the corresponding time point is considered

to be a motion event as described in (Babayeva et al., 2015a). In contrast to F I Dnav AllC where

the threshold is calculated for each scan individually, here, the empirical threshold τNC max

is obtained from the three times the standard deviation 3σNC max of the ’no motion’ scans

over the whole scan time. Hence, it is also important to investigate which influence does the

field strength, scanner or coil type used for data acquisition has on this threshold, otherwise

τNC max needs to be calculated separately for each group (i.e., field strength, scanner or coil

type).

It is known that motion artifacts manifest themselves differently depending on the location

in k-space affected by motion (Maréchal et al., 2012; Zaitsev et al., 2015). If motion is present

during the acquisition of high frequencies then the artifacts are less visible and the image

quality may be less deteriorated than in cases where the central low-frequency parts of k-space

are affected by motion. We exploit this information in our FID-based motion detection by

applying larger weights to the FIDnav corresponding to the center of k-space. Again, the

optimal weighting curve parameters are found by correlating the FID-based detection and

qualitative ratings. Here, we evaluate a parabolic

wPar abol a(t ) = 1−
(

t −σk−space

μk−space /a

)2

(5.1)

and a Gaussian weight curve

wGauss(t ) = e

(t−μk−space )2

2σ2
k−space (5.2)

Both weight curves are centered at k-space center μk−space (i.e., corresponding to t where

the data from the center of k-space are acquired). The curves have also a ’width’ σk−space =
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Nl i n/a and Nli n being the total number of k-space lines. The variable a is set based on

sensitivity and specificity evaluations of the specific weighted FID-based motion detector. We

introduce the optimal FID-based quality index, which is calculated as a weighted sum over all

FIDnav values and which we call FIDI (Eq. 5.3). Finally, we propose FIDI bounds for different

artifact classes based on a logistic regression fit of the data.

F I D I =∑
t

w(t )F I Dnav(t ) (5.3)

Additionally, we have calculated the quality index (QI) proposed by (Mortamet et al., 2009)

for all uncorrected images in order to compare the results to the FIDnav-based quality metrics.

5.3 Results

5.3.1 Prevalence and Nature of Motion Artifacts in the Collected Data

The expert ratings revealed that 4% (4 cases) of the original (uncorrected) images had severe,

13% (14 cases) moderate, and 15% (17 cases) mild artifacts inside the brain region and 9% (10

cases) severe, 14% (15 cases) moderate, and 43% (47 cases) mild artifacts in the background.

6% (6 cases) of images were rated to be of non-diagnostic quality (Fig. 5.1).

Figure 5.1: Blurring, ghosting, and ringing (BGR) artifact prevalence inside and outside the brain region in the
images according to qualitative ratings as well as their clinical utility.

5.3.2 Image Quality Before and After Correction

Retrospective motion correction was found to improve the overall image quality (Fig. 5.2

and Fig. 5.3) as assessed by the expert’s ratings. When considering BGR artifacts inside the

brain the number of severely corrupted images was reduced with blind correction from 4 to 2

cases and eliminated in the FID-guided correction. Moderate artifacts inside the brain region

could be reduced through both correction algorithms from 14 to 8 cases and the number of

39



Chapter 5. FID-based Motion Sensitive Quality Metric and Retrospective Motion
Correction for Clinical Magnetic Resonance Images

cases with mild motion artifacts was changed from 17 to 26 by blind and to 21 by FID-guided

correction. Mild background artifacts (mainly N/2 GRAPPA related ghosts) were however

increased after applying the correction from 47 to 75 cases after blind and 68 cases after

FID-guided correction. Moderate background artifacts increased from 15 to 17 cases after

blind and decreased to 12 after FID-guided correction. Severe artifacts were reduced after

both corrections from 10 to 3 and to 2 cases for blind and FID-guided correction respectively.

After blind correction only 2 images were flagged as having no clinical utility, however after

FID-guided correction all images were found clinically useful.

FID-guided motion corrected images were ranked first in 83 cases compared to blind

correction (58 cases) and without any correction (60 cases). In a single case, the image quality

was found to deteriorate after FID-guided correction. In this case, moderate ringing artifacts

appeared inside the brain region, which were rated as mild in the original image before

correction, however were removed by blind correction (Fig. 5.3c). The images were assigned

the second rank in 51 cases after blind and in 25 cases after FID-guided correction compared

to 20 without correction.

Figure 5.2: Qualitative expert ratings results for blurring, ghosting, and ringing artifacts inside and outside of the
brain region as well as clinical utility before and after blind and FID-guided retrospective motion correction.

5.3.3 FIDnav Based Quality Metric Design

The FID signal is a multi-dimensional time series signal and it was prepared as described in

the Methods section in order to eventually be able to identify motion corrupted images based

on a single index derived from the FID data. In Fig. 5.4 it is shown how the FID signal and the

respective detector change depending on the underlying motion.

When using the motion detectors F I Dnav AllC and F I Dnav AllC mov several variables have

to be set. It was to determine what number of relevant coil elements N , as well as the amount

of detected motion events provide the best results to distinguish images with different artifact

severity. We have investigated the mentioned variables with respect to its influence on the

receiver operating characteristics (ROC) of the related F I Dnav AllC and F I Dnav AllC mov . The

specificity and sensitivity for different number of coil elements as well as detected motion

events are shown in Fig. 5.5.

The results show a low performance of the proposed detectors (F I Dnav AllC and

F I Dnav AllC mov ) due to the dependency of the FIDnav temporal variance on motion leading
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Figure 5.3: Images before and after blind and FID-guided retrospective motion correction from different subjects
with a zoom on a part of the brain and different severity of blurring, ghosting, ringing artifacts inside the brain
before correction: (a) severe; (b) moderate; (c) mild. Blind correction: (a) severe; (b) moderate; (c) none. FID-guided
correction: (a) moderate; (b) mild; (c) moderate;

to an increased number of false positives with a specificity close to 50%. Only when detecting

images with moderate artifacts among images with none artifacts a specificity of 87% and

sensitivity of 78% for N=2 and 4 motion events can be reached (see Fig. 5.5c). However, setting

the threshold empirically e.g., to the multiple of standard deviation of ’no motion’ FIDnav

data in the case of F I Dnav AllC mov , does not provide a compelling improvement in the ROC.

Hence, this finding leads us to investigate the temporal variability of the FIDnav from all

coil elements as a detector σF I Dnav . We noticed that only the field strength of the scanner

has a significant influence on the standard deviation of the FIDnav. Number of utilized coil
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Figure 5.4: FID signal in its raw form (a, e) after normalization mc (t)/mc (tr e f )(b, f) and after modification for
motion detection as F I Dnav3C max (c, g) and F I Dnav AllC (d, h) for data sets without any motion artifacts and
moderate motion.
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Figure 5.5: For F I Dnav AllC (a-d) and for F I Dnav AllC mov (e-h): show receiver operating characteristic (ROC)
curves for different settings of relevant channels N (N) and the number of detected motion events (#events) during
the scan and its respective specificity and sensitivity for identifying the level of motion corruption.

elements as well as the scanner type does not have a significant effect on the FIDnav variability.

Therefore, all following FIDnav evaluations will be performed separately for the 1.5 and 3T

data.

Going back to the FIDnav signal standard deviation σF I Dnav among all channels the
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motion detection capabilities were as following. Data from 1.5T scanners are detected to

be motion corrupted or not with a sensitivity of 82% and a specificity of 87% (Fig. 5.6a).

Images with mild motion corruption are identified with a sensitivity of 83% and a specificity

of 80%. Sensitivity and specificity of 89% and 87% respectively is observed for moderate

motion. Severely corrupted images can be detected with a 100% reliability. For 3T data

according to Fig. 5.6b images with mild artifacts can be identified with a sensitivity and

specificity of 73% and 81% respectively. Images with moderate artifacts can be detected with a

sensitivity and specificity of 80% and 90%. Images corrupted by severe motion are detected

with 100% sensitivity and specificity. Images with and without motion cluster at a sensitivity

and specificity rate of 78% and 81% respectively.
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Figure 5.6: Shows the receiver operating characteristic (ROC) curves for a range of the standard deviation chosen as
a detection limit [0.5 2.3] and its respective specificity and sensitivity for distinguishing groups of different artifact
severity for the scanners of 1.5T and 3T field strength.

A similar evaluation was performed to find an optimal design for a detector based on

F I DnavNC max with respect to the number of relevant coil elements NNC max (Fig. 5.7). The

results show that for NNC max = 3 and without any motion events the best sensitivity and

specificity can be achieved to identify images without artifacts. Here, a sensitivity of 69% and

a specificity of 92% were possible. Setting NNC max to 5 provided the best ROC for identifying

images with mild artifacts of 53% and 85% sensitivity and specificity respectively. To detect

images with moderate artifacts best results are achieved for NNC max = 3 with sensitivity at

93% and specificity at 92%. For identifying images with severe artifacts NNC max seems to

be irrelevant. Data with ≥20 motion events correspond to severe image degradations with

sensitivity and specificity equal to 100%. We could also observe that taking more than 6 coil

elements for the calculation of the F I DnavNC max did not improve the motion detection

results. Hence, for further analysis we will set the number of relevant coil elements to N = 3

and refer to this FIDnav based detector as F I Dnav3C max i.e., a mean of the maximal signal

change from three channels is taken for all further analysis.
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Figure 5.7: Receiver operating characteristic (ROC) curves for F I DnavNC max as motion detector with different
settings of relevant channels NNC max (N ) and number of detected motion events (#events) during the scan and its
respective specificity and sensitivity for distinguishing groups of different artifact severity.

5.3.4 FIDnav Based Motion Classification Based on k-space Location

To make use of the additional information in the FIDnav on the time where motion was present

during the acquisition we apply a weight to every motion event depending on its location in

k-space. We will investigate a parabolic as well as a Gaussian weight curve and will aim at

finding the optimal parameters for the respective curves. For the parabola we aim at finding

the optimal crossing with the horizontal axis and for the Gaussian at the optimal σ. For both

weight curves the vertex is fixed to be 1 for a motion event occurring at k-space center. The

final FIDnav motion score FIDI is then calculated as a sum of weighted F I Dnav3C max values

at the k–space location, where a motion event was identified. We investigated different weight

curves again with respect to sensitivity and specificity of the resulting weighted F I Dnav3C max

for its ability to detect motion in the underlying data set. Both, Gaussian and parabolic weight

curves present near to identical results (Fig. 5.8). For the Gauss weight curve the best setting

was identified to be σ= Nl i n/2.3 and the parabola to cross the horizontal axis at Nl i n/1.5 with

Nl i n being the total number of k–space lines. The Gauss weighting performs by 1% better than

the parabolic weighing in identifying the data with mild artifacts with a sensitivity of 53% and

a specificity of 86%. For other groups the performance is identical. Images with moderate

artifacts can be identified with a specificity of 100% and sensitivity of 92%. Severely motion

corrupted images can be detected with a 100% sensitivity and specificity rate.

Due to better performance of the Gaussian weight curve we continue our evaluation

with it. Now we aim at finding the optimal thresholds for the FIDnav based motion index

FIDI which divides the given data into the four artifact groups (none, mild, moderate, and

severe) by performing a logistic regression (Fig. 5.9). Based on the regression results we

identified the following FIDI thresholds for each of the groups: FIDImoti on ≥ 8, FIDImi l d ≥ 13,

FIDImoder ate ≥ 40, FIDIsever e ≥ 205. These are the values of FIDI where the regression curve

crosses the 0.5 probability value. The higher the FIDnav based index FIDI the higher the

chance of the image to be motion corrupted e.g., a FIDI higher or equal 8 may correspond to a

dataset with motion artifacts.

Also, a comparison with an existing quality metric QI as proposed by (Maréchal, 2011;

Mortamet et al., 2009) was performed (Fig. 5.10). Both, QI and FIDI perform well on the
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Figure 5.8: ROC curves for the weighted F I Dnav3C max with different shapes of the weight functions and its ability
to distinguish data sets of different artifacts groups: (a-d) Gaussian weights (f-i) parabolic weights. Color code
corresponds to the respective shape of the weight function in (e) and (j).
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Figure 5.9: Logistic regression for FIDI and its probability to correspond to a different artifact groups.

detection of data sets with severe and no motion artifacts. For mild and moderate motion

there is a discrepancy in both indexes.

5.4 Discussion

5.4.1 Advantages and Limitations of the Utilized Motion Correction

The recent studies have shown that motion in MRI examinations has a noticeable effect on

the clinical workflow and presents a non-negligible financial impact due to rescans or patient

sedation. In this study we further explore the problem of motion in a clinical setting by

analyzing 109 clinical MP–RAGE images. Based on the expert radiologist ratings we report

the estimates on the prevalence and severity of motion artifacts and find them similar to the
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Figure 5.10: FIDI with its threshold indicated by a dashed line at 8 for FIDI for detection motion corrupted images.
The lower the QI value the better the image quality.

previous studies. We also apply a retrospective motion correction technique to the collected

data and based on the expert ratings confirm the ability of the method to improve the image

quality.

We have evaluated blind and FID–guided motion correction methods in order to assess

their ability to handle the clinical data. We observed that FID-guided motion correction

approach performed better than blind correction except for a single case, where the correction

introduced spurious ringing to the image. Since the original image is preserved, however,

unlike after prospective motion correction, it would be still possible to use the uncorrected

data for a final diagnosis.

Although, after FID–guided motion correction the images were all rated to be of a clinically

useful quality, not all motion artifacts could be fully removed. This is due to a major limitation

of retrospective correction techniques when it comes to severe head motion that leads to

missing k-space data, which cannot be restored after the image has been acquired.

5.4.2 Advantages and Limitations of FIDnav-Based Motion Detection

Computer-aided disease prediction from quantitative image analysis requires high resolution

MR data which should not have artifacts due to motion. This opens a new field of automated

image quality calculations that assess the reliability of the quantitative results, for example

in brain volume segmentations. A reliable image quality index might be able to eliminate

the necessity to visually examine the image itself and for disease prediction just rely on the

reported volume numbers instead. To our knowledge, only few automated and reference free

motion sensitive quality criteria have been explored. Mortamet et al. (2009) rely on evaluations

of the background noise in the image to assess the image quality quantitatively. Lin et al. (2007)

and McGee et al. (2000) propose the use of a gradient entropy which evaluates the edges i.e.,

sharpness of an image. Another index for image quality is the signal-to-noise ratio (SNR) and
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is traditionally used for MR images (Kaufman et al., 1989).

We present a novel methodology to quantitatively assess the image quality based on the

recently proposed FID signal. Such FID signal or FIDnav can be added easily to a sequence

with only minimal timing requirements and be used to observe the signal fluctuations during

the scans. Since it is known that the FIDnav, as any MR signal, depends on the proximity of the

examined object to the receive coil it is possible to relate fluctuations in the acquired signal

directly to motion. By observing the FIDnav temporal behavior it is also possible to provide

information on the time when motion occurred during the acquisition and stop the scanning

if too many motion events are identified. We propose a novel formulation of an FID signal

based quality index FIDI and suggest an empirical threshold to identify motion corrupted

images for FIDI≥ 8. In this study we decided not to use any of the established classification

techniques from the field of machine learning and rather design a classifier ’by hand’ for better

understanding of the chosen classifier features. This ’white box’ approach, however, limits

us to fully investigate the reliability of the classifier as well as potentially more features that

could yield better performance. Further, the relatively low sample size of 109 cases might not

be sufficient to show robust statistical behavior of the classifier. However, due to the high time

effort for the rating and ranking of the images we consider the current data set adequate to

derive first conclusions from this pilot study. Although, our data set exhibits similar numbers

for prevalence of motion as in studies with higher sample size indicating representative results,

we assume that higher classification robustness would be achieved with more data sets.

The FIDnav signal is not only sensitive to rigid head motion, it can be also influenced

by any non-rigid motion as swallowing or other mouth movements. Such non-rigid motion

might not have a severe impact on the resulting image quality, hence, this would lead to a

discrepancy in the reported FIDI and the underlying, possibly nonexistent, motion artifacts in

the region of interest, i.e., anatomies relevant for diagnosis.

5.4.3 Future Work

Future work will focus on the integration the retrospective motion correction techniques as

well as the proposed quality index into the clinical workflow. This would make it possible to

conduct large scale studies and to assess the direct impact on the diagnosis. Other FIDnav-

based classifiers for the detection of motion corrupted images as well as classical data mining

methods such as random forests or support vector machines could be investigated to identify

motion relevant features of the FID signal and classify the data even more reliably.
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6 Prospective Head Motion Correction
with FID-Triggered Image Navigators

This chapter is based on published work from Babayeva et al. (2014a) and

Babayeva et al. (2015a).

Abstract Motion is still a major source of artifacts in clinical magnetic resonance imaging. To

manage motion we explore the utilization of a multi-channel FID signal for subject’s head

movement monitoring in order to employ an MR image navigator based correction only when

relevant motion occurred. The acquisition of the FID signal as well as the image navigator is

integrated into a three-dimensional MP-RAGE sequence to correct for rigid head motion dur-

ing the acquisition. We introduce two different methods to extract binary motion information

from the FID signal, which is highly sensitive to positional changes of the head and is used

to trigger the acquisition of the image navigator. The image navigator is then co-registered

to a reference image to obtain the motion parameters and to adjust the scanning orientation

respectively when needed. The image navigator is specifically designed to match the acoustic

and magnetization characteristics of the MP-RAGE sequence targeted for correction. We

perform brain volume segmentation and quality index calculations to quantitatively assess

the motion correction performance of the proposed approach.

6.1 Introduction

Reducing motion impact on brain MR imaging would be a great asset to routine and clinical

research applications, making studies more cost-efficient and leading to increased patient

throughput. Despite of many advances in the field of rigid motion correction in MRI no

general solution could yet be found (Zaitsev et al., 2015). All suggested correction techniques

target specific sequences or can correct for only specific motion types as for example only

in-plane motion.
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Motion correction methods are categorized into prospective and retrospective ones. Prospec-

tive methods are applied during the sequence run time by periodically adapting the acquisition

coordinate system to follow the imaged object and have the advantage to be able to com-

pensate even for considerably big motion magnitudes and also to correct for spin history

effects. The prospective motion correction strategies are traditionally based on MR-based

navigators of various complexity (Tisdall et al., 2012; van der Kouwe et al., 2006; White et al.,

2010), external tracking systems as an optical camera with a marker (Zaitsev et al., 2006), or

active coils (Ooi et al., 2013). External tracking hardware can provide very accurate motion

information, be integrated with various sequences, and correct for spin history effects. How-

ever it relies on fiducial markers that might not be well tolerated by the subject, and on an

unobstructed field of view, which can be compromised by a closed coil design. MR-based

navigators are potentially valuable complements for prospective motion correction as no

additional hardware for external devices is required but a tradeoff between tracking accuracy

and navigator complexity has to be considered. Higher navigator complexity provides better

tracking and hence correction results but may cost more additional scan time or be incompat-

ible with the target sequence design. Retrospective methods address the problem of motion

after the image has been acquired and are ideally independent of the MR imaging modality. A

famous retrospective correction method is called PROPELLER (Pipe, 1999) (also called BLADE

at Siemens context (Fries et al., 2009)), where the center of k-space is oversampled to have

redundant information that is then used to adjust k-space lines to achieve better image quality.

Another class of retrospective correction techniques is based on autofocusing (Atkinson et al.,

1997; Loktyushin et al., 2013). The advantage of these methods is that they can even correct

for non-rigid motion (Loktyushin et al., 2015b), however they are limited by their inability to

address large motion magnitudes, which lead to unrecoverable missing k-space data.

In this investigation, we explore the possibility of a new prospective motion correction

strategy, which utilizes the recently proposed free-induction-decay navigator (FIDnav) (Kober

et al., 2011) for motion monitoring and detection to drive the acquisition of a more complex

image navigator (IMGnav) for motion tracking and correction when needed. This helps to

reduce the scan time and/or gradient activity overhead as required for a repetitive acquisition

of an IMGnav. Moreover, the scan time for FIDnav is almost negligible and the time costly

IMGnav is triggered only if motion occurred.

In this study we focus on the MP-RAGE sequence and a dedicated, i.e., a specifically for

this sequence designed IMGnav. It needs one TR for its acquisition and has the same number

of RF-pulses in order to have minimum impact on the magnetization profile of the target

MP-RAGE sequence, and has a similar acoustic noise pattern. The FID signal, however, is

acquired every TR at the end of each read-out train during sequence runtime. Only if motion

is detected according to the changes in the FIDnav signal, an IMGnav acquisition is triggered,

followed by registering of the IMGnav to a reference IMGnav volume in order to obtain new

positional information and to change the orientation of the gradients prospectively.
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6.2 Methods

6.2.1 FIDnav Acquisition and Calculation

The purpose of this study was to

1. present different ways of combining the multi-channel FID signal from different coil

elements into a single scalar FIDnav, which is then used for motion detection as already

shown in Chapter 5 for retrospective labeling of motion events in clinical MP-RAGE

images. In order to detect motion events based on the FIDnav a threshold is necessary.

We propose two different ways of setting the threshold. One way is to set the value a

priory to be the same for all subjects and scans (F I D f ast
nav and F I Dsl ow

nav ). This approach

is considered to be more sensitive to motion than the method prosed in (Kober et al.,

2011) as only channels with maximal signal change are considered. The other way is to

set the threshold according to statistical characteristics of the signal which are estimated

during the scan based on few FIDnav samples from the beginning of the acquisition

(F I Dtheo
nav ) similar to the technique proposed in (Kober et al., 2011). Both threshold

setting scenarios have their advantages and disadvantages and will be discussed later.

2. investigate how well the FIDnav reacts to different types of motion (head nodding,

shaking, and head-feet translation)

The functionality was implemented in a prototype MP-RAGE sequence. An FID signal

was sampled (α = 9◦, 64 points in 0.2 ms, TI = 1532 ms) following an additional non-selective

excitation pulse at the end of the GRE block of the MP-RAGE sequence. The FIDnav was

evaluated in different ways to detect motion events. One modification of the FIDnav was

meant to be able to detect slow motion (e.g., muscle relaxation) and fast head motion (e.g.,

rapid head turning). To distinguish signal changes due to motion an empirical threshold was

chosen. These FID signal calculations we will refer to as F I D f ast
nav and F I Dsl ow

nav . The other

way of the FIDnav calculation relies on an adaptive threshold which was calculated based on

several FID signal values from the beginning of the scan to avoid the need for an empirical

setting of threshold. These values were used to calculate expected statistical properties i.e.,

mean and variance of the signal to detect outliers. Outliers were then classified as motion

events. We will refer to this FIDnav as F I Dtheo
nav .

For the detection of rapid and slow head movements with an empirical threshold, a scalar

FIDnav value was calculated by combining the signals from coil elements where the signal

change was maximal among all channels. Rapid motion at a time point t is observed by

signal changes as compared to the preceding repetition at (t −1), whereas slow movements

at time t are reflected by FIDnav changes as compared to the first repetition of the scan (see

Eq. 6.1). An empirically derived threshold of 5% increase in FID signal for slow movements

and 8% signal change for fast movements was chosen to trigger the acquisition of an IMGnav.

During pre-scans these thresholds proved appropriate with respect to non-motion related FID
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signal fluctuations, which cause higher scan run times due to unnecessary motion correction,

and sensitivity to detect real motion events. Here, |s(n)| is the absolute value of the complex

average of all points from one single FID read-out acquired in the t th repetition, and c denotes

the coil element. The av g3C max operator takes the FIDnav from those three coil elements

where the signal change is maximal and averages them and the av g AllC takes the average over

all coil elements. We used the average of three coils to minimize the effect of random signal

fluctuations. The first two signal time points (equals the first two TRs) were excluded from

the FIDnav calculation due to the signal not being in steady-state yet i.e., |s(3)| is used for

signal normalization. Hence the motion detection starts at the third TR. If either F I D f ast
nav or

F I Dsl ow
nav exceeded the empirical threshold then the respective TR was considered to contain a

motion event.

F I D f ast
nav (t ) = av g3C max

∣∣∣∣ |s(t )|− |s(t −1)|
|s(3)|

∣∣∣∣ F I Dsl ow
nav (t ) = av g AllC

∣∣∣∣ |s(t )|− |s(3)|
|s(3)|

∣∣∣∣ (6.1)

The adaptive threshold for the FIDnav with a theoretical value was calculated based on

statistical behavior of the signal. For this FIDnav we evaluated the FID signal by calculating its

temporal standard deviation σAllC for every channel separately (see Eq. 6.2). If the FIDnav

of any single time point t revealed a signal change higher than 3σAllC in comparison to the

previous repetition t −1 in more than one channel then this TR was considered to contain

a motion event similar to F I D f ast
nav . If only one channel detects a signal change no action is

taken as due the symmetry of the acquisition head coil it is considered not plausible that

signal changes in only one channel can be caused by rigid body motion. We assume that if

only one single channel detects FID signal changes, then these changes might be caused by

other effects than motion. The detected motion events were excluded from the calculation of

σAllC . The first two signal time points were again excluded from the evaluation as the signal

was not considered to be in steady state yet. The next two time points were used to calculate

the initial value of σAllC , such that motion detection could start only at the fifth signal point

or TR after the start of the scan. Once, the fifth TR is reached motion detection is possible at

any TR.

F I Dtheo
nav (t ,c) =

∣∣∣∣ |s(t ,c)|− |s(t −1,c)|
|s(3,c)|

∣∣∣∣ (6.2)
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6.2.2 MP-RAGE Data Acquisition and Experimental Design

The MP-RAGE images were acquired with the following parameters: TI/TR/TE/α/TA =

900ms/2300ms/2.86ms/9°/5:21min, echo-spacing 7 ms, matrix 256× 256× 176, 1.0 mm3

isotropic, 2×iPAT with 32 ref. lines.

Two datasets were collected using different modifications of the FIDnav (F I D f ast
nav , F I Dsl ow

nav

and F I Dtheo
nav ) as described in the previous section and different motion patterns were inves-

tigated. After obtaining written consent, 10 healthy volunteers were scanned - five for each

dataset. Based on the FIDnav, motion events were detected and the prospective acquisition

of the IMGnav was triggered. The IMGnav was then co-registered to its reference from the

beginning of the scan to derive new positional information of the head and to adjust the

acquisition orientation accordingly (Fig. 6.1). The motion corrupted repetition was reacquired

immediately after.

The first dataset A was acquired at 3T (MAGNETOM Verio, Siemens AG, Erlangen, Germany)

operating under the VB17 software version and using a commercial 32-channel head coil. The

subjects were instructed to change their head position three times during a scan upon verbal

commands and to follow frequently observed motion patterns (Gedamu and Gedamu, 2012):

translation in head-feet direction, head nodding, and shaking. The motion was performed as

a one-time-event by repositioning the head accordingly and remaining in this position until

the next verbal command. These scans were repeated by having the motion correction turned

on and off to see the image quality changes from the correction technique. Two additional

datasets (I, II) for scan – re scan comparison of images acquired without voluntary motion

and with motion correction turned off but with the acquisition of the IMGnav were acquired

for each subject, resulting in a total of 40 MP-RAGE volumes. To drive the motion correction

F I D f ast
nav and F I Dsl ow

nav were utilized for motion detection. To assess the effect of reacquisition

two sets of images were reconstructed. The first set by utilizing the reacquired repetition after

a motion event and the second set without the reacquired data.

The second dataset B was as well acquired a 3T (MAGNETOM Skyra, Siemens AG, Erlangen,

Germany) operating under the VD13 software version and using a commercial 32-channel

head coil and the subjects were again asked to change their head position three times during

the scan but now following a different motion pattern to save scan time due to an extended

experimental design (data acquisition for the evaluation from Chapter 6.2.3). The first po-

sitional change is rotating the head to the left side, the second is moving the head back to

center and down at the same time similar to nodding, and last is rotating the head to the right.

Before the next scan the subject was instructed to return its head to the initial position looking

straight up (left-down-right). Each subject was scanned by having the motion correction

mechanism turned on and the motion parameters were stored in a file. This recorded motion

trajectory was then used in order to recreate the motion artifacts that would appear if no

motion correction was applied as described in (Herbst et al., 2014). This was accomplished

by acquiring a dataset where the subject was instructed to remain still and the previously
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180°

MP-RAGE RO-train
FIDnav

TR

rigid registration

…

IMGnav ref

IMGnav

TAIMGnav

IMGnav 1

…

change orientation

no motion detected motion detected

Figure 6.1: Symbolic depiction of the proposed MP-RAGE acquisition strategy with motion correction based on
FIDnav triggered IMGnavs.

acquired motion trajectory was applied during the scan to change the coordinate system for

each TR. Two additional datasets without voluntary motion and without motion correction

were acquired for each subject for reference. For these datasets without motion no IMGnav

were acquired. This resulted in a total of 20 MP-RAGE volumes. This dataset was used to

explore the triggering reliability of F I Dtheo
nav . The images were reconstructed by utilizing the

reacquired repetitions.

We would like to mention here that the data was acquired unintentionally from different

scanners due to the unavailability of the Verio scanner during the study caused by a scanner

software upgrade. Please, refer to Tab. 6.1 for an overview of the acquisition settings and

utilized FIDnav calculation variants. Further, to reduce the scan time per subject due to

an additional experiment that is described in 6.2.3 only one motion scan per subject was

performed in the dataset B. Therefore, a heterogeneous motion pattern (left-down-right) was

introduced to cover different motion directions in a single scan.

6.2.3 IMGnav Acquisition and Image Registration Accuracy

For the IMGnav we used a modification of a recently proposed multi-echo segmented 3D-

GRE (Falkovskiy et al., 2016, 2013) but with a cylindrical k-space sampling pattern as shown

in Fig. 6.2b (α/TA = 9°/1.2sec, echo-spacing 7 ms, 6 echoes, matrix size 64×64×32, voxel

size 4.1×4.1×6.0 mm3). The standard MP-RAGE acquisition scheme was adapted to acquire

multiple echoes using bipolar readout gradients. Phase-encoding gradients were inserted

between the readout gradients to sample multiple portions of k-space per each excitation

pulse. The reordering scheme was modified to group first echoes in the center of k-space to
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dataset MoCo setting motion pattern
scanner type and FIDnav and
software version threshold variant

A.1-A.5

MoCo ON
nodding motion

Verio, 3T, VB17
F I Dslow

nav , F I D f ast
nav ,

empirical thresh-
old

shaking motion
z-translation

MoCo OFF

nodding motion
shaking motion

z-translation
no motion × 2

B.1-B.5

MoCo ON left-down-right
Skyra, 3T, VD13 F I Dtheo

nav , adaptive
thresholdMoCo OFF

inject motion
no motion × 2

Table 6.1: An overview of the acquired datasets with its respective settings for FIDnav variants and motion patterns.

ensure the intended contrast (see Fig. 6.2a). A phase correction algorithm similar to the one

used for EPI acquisitions was applied to remove phase inconsistencies between k-space lines

acquired in the echoes with differing polarity. This correction was computed based on the

lines acquired in the center of k-space.

The acquisition parameters of the IMGnav were specifically designed to acquire a whole-

brain volume with very similar properties as the GRE block of the host MP-RAGE with respect

to the acoustic noise and impact on longitudinal magnetization. The unacquired k-space

lines and partitions resulting from the cylindrical sampling pattern were zero filled for image

reconstruction (see Fig. 6.2b).

PAR

LI
N

5 10 15 20 25 30

10

20

30

40

50

60

Figure 6.2: a: Acquisition sequence of the IMGnav on an example with two echoes. b: Acquisition design of the
IMGnav; different colors label echo number (red 1st echo, orange 2nd echo, yellow 3r d echo, green 4th echo, blue 5th

echo and purple 6th echo), whereas in white unacquired k-space locations are labeled and are filled with zeroes for
reconstruction.
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To derive the motion parameters from an IMGnav image registration was used. For that we

utilized the 3D PACE registration algorithm used in the motion correction technique (Thesen

et al., 2000). In order to assess the image registration accuracy we performed a simulated

motion experiment. For that we acquired 100 IMGnavs volumes of a human subject in a row.

Each IMGnav was preceded by an inversion pulse resembling the acquisition settings as it

would be embedded into an MP-RAGE host sequence with a TR/TI of 2300/900 ms. For each of

the volumes we changed the orientation or the acquisition according to a prescribed motion

trajectory resembling frequently observed motion patterns (Gedamu and Gedamu, 2012) head

nodding, shaking, and translation along the head-feet direction. This trajectory was recorded

from a moving subject by an optical motion tracking system (Zaitsev et al., 2006) in an earlier

study (Babayeva et al., 2015b) and was provided to the sequence in form of a text file.

After obtaining written consent five healthy volunteers were scanned with this sequence at

3T (MAGNETOM Skyra, Siemens AG, Erlangen, Germany) operating under the VD13 software

and using a commercial 32-channel head coil. Subjects were instructed to remain motionless

during the whole experiment. Additionally, 60 IMGnav volumes of a volunteer were acquired

without changing the orientation, while the subject was again instructed to remain still during

the scan in order to assess the registration variance when the subject is at rest.

6.2.4 Quantitative Image Quality Assessment

Motivated by a recent studies in Maréchal et al. (2012); Reuter et al. (2015) the performance

of the proposed correction method was assessed by conducting brain volume segmentation

in three regions using an automated morphometry package (Schmitter et al., 2014). The

segmentation results of the scans with motion and correction, with motion but without

correction or simulated motion respectively, and without motion and without correction were

compared to the reference without motion and correction. We calculated the relative volume

differences between the ‘no motion’ Vnomoti on and ‘motion’ Vmoti on cases for total intracranial

volume (ΔT IV ), white matter (ΔW M ), and gray matter (ΔGM ).

Δ=
∣∣∣∣Vmoti on −Vnomoti on

Vnomoti on

∣∣∣∣∗100

Further, a quantitative image quality assessment based on the background noise evaluation as

described in (Maréchal, 2011; Mortamet et al., 2009) was performed on all MP-RAGE volumes

to assess the change in the quality index (QI) with and without correction quantitatively as

well with and without reacquisition on the dataset A.
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6.3 Results

6.3.1 IMGnav and Its Registration Accuracy

The proposed motion correction can be only as good as the image registration reliability of

the utilized IMGnav. Our experiments revealed that the employed registration framework

was able to extract the motion parameters with a mean absolute error of 0.27±0.38 mm and

0.19±0.24° for translational and rotational motion, however with maximal registration errors

of up to 2.0 mm and 1.3° (see Fig. 6.3c-d). The prescribed artificial trajectory was in the range

of up to 17.9 mm and 5.5° for translations and rotations respectively (Fig. 6.3b). In Fig. 6.3a the

IMGnav as acquired from one subject is shown and ghosting artifacts in the anterior-posterior

direction on the sagittal and axial view are visible. This is also the phase encoding direction

of the IMGnav acquisition. These artifacts are present in all IMGnav acquisitions from all

subjects. In the experiment where 60 IMGnavs were acquired sequentially and the subject

was asked to stay as still as possible the registration parameters showed motion around the

zero line with the mean absolute translation and rotation of 0.02±0.02 mm and 0.01±0.02°

respectively.
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Figure 6.3: a: Sagittal, coronal and axial view of the IMGnav. b: Prescribed motion trajectory for the assessment of
the registration reliability of the IMGnav. Artificial motion patterns for head nodding ‘nod’, head shaking ‘shake’, and
moving the head in the head-foot direction ‘z-tra’, as well as periods without motion are depicted for rotation and
translation in all six degrees of freedom. The resulting registration results for five different subjects are also shown. c:
Registration results from all subjects versus the applied motion trajectory for translation and rotation in x, y, and z
directions. d: Registration error for translations and rotations for all five subjects with its mean of the absolute error
and standard deviation. Also, the maxima of the detected registration errors are shown.
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6.3.2 FIDnav, Triggering Events, and Detected Motion

In our motion correction experiments we detected motion of up to 11 mm translation and

9° rotation as can be seen in Table 6.2. The motion correction took place only if the FIDnav

reported a motion event in the corresponding repetition as described in Chapter 6.2.1 i.e.,

deliberate positional changes of the head after verbal commands. Verbal commands were

given to the subjects three times during the acquisition of one MP-RAGE volume, however

more motion events were detected by the FIDnav indicating its high sensitivity to motion or

high amount of false positives (5%). During scans where the subject was asked to remain still

few triggering events occurred. In the case of the dataset A, where F I D f ast
nav and F I Dsl ow

nav was

used to detect motion, the acquisition of the IMGnav was sometimes (in 3 cases) initiated by

the F I Dsl ow
nav approximately after 2/3 of the total scan time as can be seen in Fig. 6.4a. Here,

the registration parameters indicated very small positional changes of the head in the range of

1 mm and 1°.

In the case of subject A.1 for the ‘no motion’ scan a high number of triggering events was

detected but the reported registration parameters did not indicate any significant positional

changes of the head and also the image did not show any obvious motion artifacts. For the

dataset B, where F I Dtheo
nav was driving the motion correction functionality, a higher amount

of triggering events was detected at the beginning of the scan indicating that the dynamic

threshold is inappropriate due to a low count of data points used for its calculation. True

motion events, which we assume to take place only after verbal commands, were detected in

all cases and the acquisition of the IMGnav was reliably triggered to provide the new positional

parameters to the sequence and to reacquire the motion corrupted repetition.

In some cases several triggering events were detected after a verbal command was given

to the subject to change its head position. In these cases the registration parameters showed

that indeed the subject could not hold the new position immediately and moved its head

even further or slightly back towards the original position (Fig. 6.4b, Fig. 6.5a, Fig. 6.6). This

behavior was also confirmed by the subject in a discussion after the experiment. Overall a

sensitivity of 100% and a specificity of 95% could be reported if the detected motion events

are considered to be true only after a verbal command. In total there are 139 repetitions and

3 expected motion events per scan (60 scans in total) for acquisitions with intended head

movements. Therefore, out of 8340 total repetitions there were 105 true positive and 395 false

positive motion events.
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Figure 6.4: The triggering events and the corresponding motion trajectories as well as the normalized FID signal
magnitude from all 32 coil elements are shown. The shown FID signal was shifted to zero for better visual represen-

tation. a: F I Dsl ow
nav and F I D

f ast
nav for a subject at rest and performing shaking motion. b: F I Dtheo

nav for a subject at
rest and changing head positions to the left, down, and right sides. The absolute FIDnav signal magnitude after
normalization by the moving average μ is shown for one channel. The triggering events, where the dynamic threshold
was exceeded in more than one channel, are also marked.

The proposed motion correction mechanism prolongs the scan time by two TRs after

each triggering event: one TR (2300 msec) for the acquisition of the IMGnav and one TR

for the reacquisition of presumably motion corrupted repetition. On average 8.3 motion

events per volume scan were detected (see Tab. 6.2). The mean extra time, which is spent

due to the enabled motion correction, was 41 seconds per volume scan if we consider all

acquired data sets. In the scans where the subject was asked to stay still on average 4.9 motion

events were detected by the F I Dnav f ast and F I Dnavsl ow that correspond to 25 sec extra

scan time per scan. The F I Dnavtheo detected on average 7.5 motion events in no motion

scans corresponding to 37 sec additional scan time per scan.

As shown in Fig. 6.5 and Fig. 6.6 artifacts are visible in images without motion correction.

Although, visual improvement of motion corrected compared to uncorrected images is ap-

parent, not all motion artifacts could be removed. In the motion corrected images residual

ringing artifacts or even blurring or ghosting was visible (Fig. 6.5b).
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subject experiment
number of extra time maximal maximal

QI [a.u.] TIV [ml] WM [%] GM [%]
trigger events [sec] translation [mm] rotation [deg]

A.1

MoCo ON, nodding motion 22 103.5 1.79 0.83 0.76 1420.1 27.70 52.67
MoCo OFF, nodding motion 41 190.9 1.20 0.80 0.94 1419.7 27.82 51.42
MoCo ON, shaking motion 18 85.1 2.42 3.50 0.83 1417.8 27.08 52.97
MoCo OFF, shaking motion 20 94.3 2.96 3.38 1.29 1419.7 28.40 51.70
MoCo ON, z-translation 32 149.5 2.87 1.81 0.78 1425.5 27.68 51.56
MoCo OFF, z-translation 17 80.5 3.15 0.30 1.02 1372.7 24.87 54.49
MoCo OFF, no motion I 16 75.9 0.68 0.43 0.69 1420.2 27.85 51.19
MoCo OFF, no motion II 23 108.1 1.17 0.22 0.70 1422.2 28.23 51.19

A.2

MoCo ON, nodding motion 10 48.3 7.03 2.52 0.76 1209.5 28.23 49.61
MoCo OFF, nodding motion 6 29.9 2.32 4.56 0.89 1183.3 27.34 51.72
MoCo ON, shaking motion 4 20.7 7.19 6.40 0.95 1184.3 27.47 51.42
MoCo OFF, shaking motion 5 25.3 10.97 9.26 1.34 1133.4 28.87 50.47
MoCo ON, z-translation 13 62.1 7.15 1.74 0.74 1204.4 28.16 48.57
MoCo OFF, z-translation 9 43.7 6.49 1.14 0.90 1145.5 27.09 51.07
MoCo OFF, no motion I 5 25.3 0.89 0.11 0.72 1204.9 28.15 48.97
MoCo OFF, no motion II 0 2.3 n.a. n.a. 0.73 1207.9 27.94 48.51

A.3

MoCo ON, nodding motion 4 20.7 2.83 8.09 0.89 1411.9 27.39 53.83
MoCo OFF, nodding motion 3 16.1 3.02 9.46 0.99 1385.8 26.63 52.89
MoCo ON, shaking motion 3 16.1 4.82 4.47 0.89 1410.1 28.08 51.27
MoCo OFF, shaking motion 3 16.1 4.52 4.07 1.11 1369.5 27.38 52.94
MoCo ON, z-translation 13 62.1 10.51 1.90 1.03 1405.8 29.24 49.94
MoCo OFF, z-translation 3 16.1 5.31 0.81 0.92 1373.1 26.04 53.16
MoCo OFF, no motion I 1 6.9 0.58 0.53 0.7 1426.6 29.15 50.05
MoCo OFF, no motion II 1 6.9 1.80 0.78 0.72 1426.4 29.16 49.71

A.4

MoCo ON, nodding motion 3 16.1 2.84 5.85 0.79 1447.9 27.49 55.94
MoCo OFF, nodding motion 4 20.7 3.34 6.00 0.97 1425.8 26.55 54.78
MoCo ON, shaking motion 5 25.3 3.78 6.46 0.92 1447.2 27.07 56.18
MoCo OFF, shaking motion 3 16.1 3.70 3.80 1.13 1423.9 25.44 56.68
MoCo ON, z-translation 4 20.7 2.25 0.16 1.08 1429.0 25.93 55.98
MoCo OFF, z-translation 5 25.3 3.96 0.86 1.18 1440.4 27.54 55.68
MoCo OFF, no motion I 2 11.5 0.83 0.07 0.80 1460.9 28.22 54.08
MoCo OFF, no motion II 1 6.9 0.23 0.03 0.82 1466.4 28.22 53.94

A.5

MoCo ON, nodding motion 4 20.7 6.61 9.30 0.79 1506.4 30.15 49.79
MoCo OFF, nodding motion 3 16.1 4.08 5.27 0.84 1454.2 29.03 50.47
MoCo ON, shaking motion 3 16.1 5.92 6.83 0.76 1500.6 31.15 45.38
MoCo OFF, shaking motion 3 16.1 6.28 7.51 0.79 1481.5 29.38 50.42
MoCo ON, z-translation 6 29.9 7.60 6.09 0.79 1498.3 32.09 46.92
MoCo OFF, z-translation 7 34.5 10.53 3.09 0.91 1476.8 31.88 48.01
MoCo OFF, no motion I 0 2.3 n.a. n.a. 0.75 1509.8 31.21 46.96
MoCo OFF, no motion II 0 2.3 n.a. n.a. 0.76 1510.5 31.65 47.40

B.1

MoCo ON, left-down-right motion 9 43.7 2.57 2.51 0.75 1647.0 27.11 54.22
inject motion 5 25.3 n.a. n.a. 0.81 1645.1 26.12 53.74
no motion I 13 62.1 n.a. n.a. 0.71 1650.2 27.83 53.57
no motion II 11 52.9 n.a. n.a. 0.73 1650.3 27.92 54.23

B.2

MoCo ON, left-down-right motion 13 62.1 2.60 3.05 0.68 1581.4 29.99 46.54
inject motion 4 20.7 n.a. n.a. 0.82 1579.5 28.30 49.95
no motion I 7 34.5 n.a. n.a. 0.63 1582.9 30.21 47.63
no motion II 11 52.9 n.a. n.a. 0.63 1584.5 30.10 47.90

B.3

MoCo ON, left-down-right motion 18 85.1 2.41 3.91 0.76 1738.3 27.57 55.28
inject motion 6 29.9 n.a. n.a. 0.76 1728.6 26.00 55.88
no motion I 4 20.7 n.a. n.a. 0.63 1753.4 33.00 50.70
no motion II 3 16.1 n.a. n.a. 0.64 1754.7 32.92 50.95

B.4

MoCo ON, left-down-right motion 9 43.7 3.23 4.31 0.69 1567.8 31.33 48.73
inject motion 12 57.5 n.a. n.a. 0.84 1553.1 29.08 52.99
no motion I 2 52.9 n.a. n.a. 0.71 1571.0 32.89 48.25
no motion II 10 25.3 n.a. n.a. 0.78 1570.4 29.32 52.15

B.5

MoCo ON, left-down-right motion 10 62.1 6.12 6.02 0.79 1855.3 29.98 51.64
inject motion 6 48.3 n.a. n.a. 0.88 1750.9 28.75 52.14
no motion I 9 29.9 n.a. n.a. 0.65 1744.9 33.65 48.77
no motion II 13 43.7 n.a. n.a. 0.64 1707.5 33.39 50.66

Table 6.2: An overview of all acquired data from all subjects with the corresponding number of detected motion
events and the extra scan time which is needed for a the acquisition of the IMGnav and the rescan of the previous
train-echo, which is considered motion corrupted. Also the maxima of the detected motion are shown together with
the results from quantitative image quality assessment through the quality index (QI) and morphological brain
segmentation results for total intracranial volume (TIV), relative white matter (WM), and gray matter (GM).
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Subject A.3
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Subject A.4
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Figure 6.5: Motion correction results from the dataset A together with the detected motion trajectory for different
subjects and motion patterns. An image acquired without any deliberate subject motion is shown for reference
compared to the images with and without the motion correction mechanism in place. Here, the F I Dsl ow

nav and

F I D
f ast
nav was used for the detection of motion events a: Subject A.2 with z-translation motion pattern b: Subject A.3

with shaking motion pattern c: Subject A.4 with nodding motion pattern.
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Subject B.2
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Subject B.4
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Figure 6.6: Motion correction results from the dataset B together with the detected motion trajectory for different
subjects and the left-down-right motion pattern. An image acquired without any deliberate subject motion is
shown for reference compared to the images with and without the motion correction mechanism in place. Here, the
F I Dtheo

nav was used for the detection of motion events for a: subject B.2 and b: subject B.4. No motion trajectory for
the ’no motion’ case is provided as no IMGnavs were acquired.
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6.3.3 Quantitative Assessment of Image Quality Improvements after Motion Cor-
rection

Quantitative evaluation comparing segmentation results showed a mean absolute segmenta-

tion discrepancy of the data without motion to be at ΔT IV =0.3%, ΔW M =1.6%, and ΔGM =1.7%

with a standard deviation at 0.7% for TIV, at 2.5% for gray matter, and at 3.3% for white matter.

This is similar to values reported in (Falkovskiy et al., 2016). By applying the proposed mo-

tion correction methodology the mean absolute discrepancy in volumes to the ’no motion’

measurements could be significantly reduced in our experiments from 2.2% to 0.9% for ΔT IV

and from 7.3% to 3.4% for ΔW M (wrt. the volumes acquired without motion) (Fig. 6.7). The

mean volume difference for gray matter ΔGM was changed from 4.9% to 3.2% but above the

significance level at p=0.06.

While, a visual image quality improvement was visible in all motion corrected data not in all

cases a ’no motion’ image quality could be achieved, which is also attested by the segmentation

and QI evaluations. The mean segmentation discrepancy between scan and re-scan data

(ΔT IV =0.3%, ΔW M =1.6%, and ΔGM =1.7%) was less than in the images with motion correction

(ΔT IV =0.9%, ΔW M =3.4%, and ΔGM =3.2%).

The mean QI could be reduced from 0.82 to 0.73 for the dataset B and from 1.01 to 0.86 for

the dataset A. The overall mean QI (datasets A and B) could be reduced significantly from 0.96

to 0.83. The lower the QI value the higher the image quality and a mean QI for ’no motion’

data was calculated to be at 0.71. The odd ratio reveals that by using the motion correction

mechanism it is seven times more likely to obtain high quality images according to QI (when

setting the threshold for motion corrupted images to be at QI≤0.82) than without motion

correction in place.

It could be observed that the method had increased difficulties with respect to the segmen-

tation discrepancies and QI values in correction for nodding and shaking motion, whereas the

correction of z-translation was providing better qualitative (visible artifacts) and quantitative

results (see Table 6.2).

Figure 6.7: Quantitative evaluation of the image quality metric QI and the morphological brain volume segmenta-
tion results for data acquired with and without any motion correction (MoCo) compared to data acquired without
motion (no motion) and without motion correction. Data from all subjects and experiments are shown. The stars
indicate the significance level p of a rank-sum test (no star represents p>0.05, * represents p≤0.05, ** represents
p≤ 10−2, *** represents p≤ 10−3.
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6.3.4 Effect of Reacquisition on Image Quality

We also investigated whether the reacquisition of presumably motion corrupted repetition

adds value to the images in terms of image quality and segmentation results. For that two

different reconstructions were compared for the dataset A where the reacquired k-space lines

were utilized or discarded. It could be observed that less ringing in the brain region as well as

in the background was visible for all inspected motion patterns in the reconstructions with

reacquisition (Fig. 6.8). This observation was also confirmed by the quantitative evaluation of

the quality index.

(a) (b) (c)

Figure 6.8: Reconstruction results from data with and without utilizing the reacquired repetitions as well as the
absolute difference image from the two different reconstructions. a: Subject A.1 performing nodding motion. b:
Subject A.3 performing motion in head-feet direction i.e., z-translation. c: Subject A.4 performing shaking motion.

As shown in Fig. 6.9 a mean QI of 1.07 was observed for images where no reacquisition

was applied that is not significantly different from the QI of images without any motion

correction (QI without correction: 1.01). This can be explained by QI’s sensitivity to remaining

background artifacts in images that were reconstructed without the use of reacquired lines.

However, no significant differences in the brain volume segmentation discrepancies between

motion corrected images with and without reacquisition was evident (Fig. 6.9).
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Figure 6.9: Quantitative evaluation of the image quality metric QI and the morphological brain volume segmenta-
tion results for data acquired with motion correction on but reconstructed with and without the use of the reacquired
repetitions. Data from all subjects from set A are shown. The stars indicate the significance level p of a rank-sum test
(no star represents p>0.05, * represents p≤0.05, ** represents p≤ 10−2, *** represents p≤ 10−3.
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6.4 Discussion

6.4.1 Registration Accuracy of IMGnav

To properly assess the motion estimation capabilities of the proposed method in the best

possible way would be the use of a physically moving object e.g., a moving phantom where

the motion coordinates are exactly known and can serve as ground truth. Such a device

must be furthermore MR compatible and the applied motion should be synchronous to

the sequence. Unfortunately, it is not trivial to create such a device. Hence, other ways of

estimating the accuracy of the correction method have to be established. Several motion

correction techniques utilizing an imaging navigator have been already proposed. For each

of the methods also the motion prediction performance of the navigator was assessed. The

registration parameters of the vNAV (Tisdall et al., 2012) were estimated through a stationary

phantom resembling a pineapple. The authors report registration accuracies in the μm and

10−5° range. Another study showed that the motion detected by the vNAV from a subject at rest

was below 1 mm and 1° (Alhamud et al., 2012) and did not influence the sequence targeted for

correction. PROMO (White et al., 2010) reports motion prediction errors below 10% of applied

ground truth motion and tNAV is able to provide motion parameters with an accuracy of ±0.5

mm and ±0.5° (Lin et al., 2014). In a study where the motion detection accuracy of PROMO

was compared to a camera system for motion tracking (Gumus et al., 2015) the authors report

a registration accuracy with a mean absolute error within 1 mm and 1 degree with maximal

errors up to approximately 2.2 mm and 2.9 degrees.

We proposed a novel approach to estimate the accuracy of the IMGnav by changing the

field of view position and orientation during the scanning process to simulate motion and

hence having ground truth motion trajectory for the registration. This enabled us to assess the

registration accuracy of our IMGnav and the reliability of the motion correction methodology.

This approach, however, does not resemble the real effects of motion within a scanner and its

implications on the image quality of the IMGnav. Positional changes during the acquisition

process might not only invalidate the shimming settings but also change the appearance of

the IMGnav or even introduce additional artifacts. These effects are not considered in this

simulated motion case. Therefore we consider our reported accuracy, which also congruent

with reviewed literature, to be the ’best case’ accuracy without taking into account the pos-

sible unintentional movements of the subject during the artificial application of the motion

trajectory.

The proposed IMGnav also shows ghosting artifacts in the anterior-posterior phase encod-

ing direction. These artifacts might be the reason for the reduced registration accuracy for

motion in this direction (translation in z, rotation in x).
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6.4.2 FIDnav Triggered Motion Detection and Correction

We proposed several ways to calculate an FIDnav from the multi-channel FID signal magnitude.

The FID signal can be added to practically any sequence without having an impact on scan

time or the magnetization profile of the host sequence. The F I Dsl ow
nav and F I D f ast

nav allow to

detect motion events reliably already after reaching a steady-state (after two repetitions in the

MP-RAGE case). However, the main challenge is the setting of the triggering threshold. Our

choice of the threshold was based on experience values (F I Dsl ow
nav , F I D f ast

nav ), although, setting

a fixed threshold for all subjects contradicts the reported finding from (Babayeva et al., 2015b).

Here, it was shown that nevertheless the FID-signal contains accurate motion information the

correlation to actual motion parameters is subject specific. Hence, the motivation to propose

another FIDnav F I Dtheo
nav , where the threshold is set dynamically during the acquisition. In

order to achieve this two data points from the beginning of the scan have to be sacrificed

to assess the statistical behavior of the FIDnav and to initialize the thresholding process.

Although, this method eliminates the need of an empirical value for the detection of the motion

events it highly relies on the fact that no motion is expected during the initialization time. If

motion would be present already at the beginning of the acquisition the dynamic threshold

would be set too high and the FIDnav would be blind towards true motion in subsequent scan.

Hence, the first approach with the use of a empirical threshold is considered advantageous

over the second proposal for reliable motion detection. This, however, would require a training

data set to establish such a threshold which includes patient, hardware and sequence specific

parameters as demonstrated in (Babayeva et al., 2015b). Nevertheless, it was possible to

detect all motion events reliably and also to trigger the motion correction functionality of the

sequence in our experiments. The relatively high number of false positive triggering events

indicate that our choice of the threshold was set too sensitive to apparently motion non-related

FIDnav signal fluctuations as no image artifacts were visible in the corresponding datasets.

These additional triggering events prolong the scan-time unnecessarily. For both FIDnav

variants false positive motion events occurred such that no conclusion on the sensitivity of

them can be derived.

Further, it is to mention that our experiments did not include all motion patterns as

continuous motion or non-rigid motion. Non-rigid motion as swallowing would have an

influence on the FIDnav and might lead to false positive triggering events. It would be possible

to detect slow continuous motion by the F I Dsl ow
nav but not by F I Dtheo

nav as it calculated based on

the first temporal derivative of the FID signal. Additionally, FID signal drifts, as also observed

in (Babayeva et al., 2015b), cause the F I Dsl ow
nav to detect a false positive motion event. We

observed this to be a rare scenario and the benefit of the ability to detect also slow motion

justifies its use.

In order to be able to set the optimal threshold for the chosen FIDnav it would be best to

start the sequence with a set of IMGnavs together with FIDnavs which is then used to assess

the possible presence of motion. If motion was present during the acquisition of the IMGnav

set, then the resulting motion parameters could be used to find the linear combination of the
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multi-channel FIDs and be able to predict the motion during the image acquisition without

the further need of the IMGnav but based only on the FID signal. Such an approach would

even benefit from a wide range of motion. Another, scenario would be when no motion was

present during the acquisition of the IMGnav set. This would then allow us to trust into the

calculated statistics of the FIDnav and to rely on the ’dynamic’ threshold.

6.4.3 Advantages and Limitation of the Proposed Motion Correction Method

The present approach extends recent work on MR-based motion correction (Tisdall et al., 2012)

in the sense, that motion is monitored with practically no penalty with fast and low-impact

FIDnavs and the imaging navigators are employed only when needed without influencing the

magnetization profile of the host sequence. We propose a novel IMGnav which is specifically

designed to match the properties of the host MP-RAGE sequence in terms of acoustic noise

and magnetization profile i.e., the same number of excitations during a read-out train. The

sound during the acquisition of the IMGnav differs slightly from the MP-RAGE read-out and

can be considered beneficial as a means of signalizing the subject that a motion event was

detected and the subject has to remain still. It could be shown that significant improvement

in image quality from scans with deliberate subject motion could be achieved. For that we

chose to use as markers for image quality the segmentation results as well as a quality index

based on image background evaluations. The segmentation discrepancies could be reduced

by the proposed motion correction for the total intracranial volume and for white matter but

not for grey matter.

While the motion related artifacts could be reduced in all cases achieving the quality of the

’no motion’ images was difficult. Residual ringing and ghosting artifacts were visible in images

with motion correction. We assume that it is caused by the limited registration accuracy of the

IMGnav due to ghosting artifacts in its anterior–posterior direction. We showed in simulated

motion experiments that the registration reliability of the IMGnav had a mean absolute error

of 0.24±0.34 mm and 0.18±0.22°. However, we assume that real motion within the scanner

bore could significantly impair this result. At the same time, this experiment was performed

on a human such that the reported registration accuracy also includes additional errors due

to physiological or unintentional motion of the subject’s head during the acquisition. As the

main design decision for the IMGnav was the same number of excitations as the MP-RAGE

host sequence the settings of the IMGnav have to change in case the number of partitions of

the MP-RAGE sequence needs to be adapted.

Also, in the current proof-of-concept implementation we did not set any limit to the

reacquisition of the presumably corrupted echo-trains. Theoretically if the subject would

continue moving there will be an infinite number of reacquisitions and the sequence would

never stop. In (Tisdall et al., 2012) the authors propose to move the reacquisition to the end

of the scan and limit it to a preset number of echo-trains with most severe motion. Another

reacquisition strategy might be to reacquire the corrupted repetitions immediately but limit
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it to a single reacquisition per repetition to ensure that the sequence would end eventually.

The simplest and most efficient solution would be not to reacquire any repetitions at all. Our

evaluations showed that reacquisition, while providing visually more appealing images, does

not add significant value in terms of volume segmentation discrepancies. Nevertheless, it was

possible to show that such a concept towards a motion correction method which utilized the

FID-signal can provide valuable improvement in image quality when motion is present during

the acquisition.

6.4.4 Future Work

Future work should aim at the implementation of an automated and subject specific FIDnav

threshold adaptation and at reducing the scan time overhead due to IMGnav acquisition

through a motion prediction approach as proposed in (Babayeva et al., 2013, 2015b). Also,

the implementation of an efficient reacquisition strategy would refine the motion correction

capability of the proposed method. Furthermore, additional experiments are needed to

reveal the reason for imperfect correction results and to set the limits for correctable motion

magnitudes similar to PACE (Thesen et al., 2000). It would be also interesting to extend the

proposed motion correction strategy, employing FIDnav driven triggering of IMGnavs, to

other sequences. Especially 2D might be of interest here (e.g., the turbo-spin-echo sequence

(TSE)).
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7 Host Sequence Influence on FID Sig-
nal

Abstract When acquiring a free induction decay (FID) signal within another sequence, also

called host sequence, the FID might be influenced by it. Here, we investigated two differ-

ent imaging sequences: the gradient–echo (GRE) and the magnetization–prepared rapid

gradient–echo (MP–RAGE) sequences and their effects on the FID signal on phantom scans in

comparison to an acquisition where only the FID signal (FIDnav only) was acquired without

embedding it into another sequence.

In this thesis work we have exploited the ability of the FID signal to detect subject’s motion.

Therefore, we investigated two different imaging sequences: GRE and the MP–RAGE sequences

where an FID acquisition was added to the normal imaging sequence. In this context it was

important to investigate to which extent the FID signal is affected by the surrounding gradients

and excitations pulses.

In the GRE case the FID acquisition was added every 10th repetition or TR (temporal

resolution of 100 ms) and in the MP–RAGE at the end of every read-out train every TR. The

acquisition parameters were as shown in Tab. 7.1. In the ’FIDnav only’ acquisition only the

FID signal was sampled every TR with an excitation pulse of 8◦ in order to have a reference

FIDnav signal without any influence of surrounding gradients of an imaging host sequence.

Further, embedded in the MP–RAGE acquisition, noise scans were performed by switching

the transmit/receive frequency to zero in order to just acquire the thermal noise without any

excitation pulse. All scans were performed on a phantom (spherical water phantom, 175 mm

diameter; 1.25g NiSO4 + 6H2O per 1000g H2O) but two ’MP–RAGE + FIDnav’ scans were taken

from a human subject at rest and while changing the head position three times during the

scan. The experiments were done at 3T and with a 32 channel head coil.

When the FID signal is acquired within a gradient-echo ’3D GRE+FIDnav’ sequence or

as a stand alone ’FIDnav only’ only a decay towards the steady-state as well as a slow time

dependent drift are visible as depicted in Fig. 7.1a and Fig. 4.6. On the other hand when the
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Parameter 3D GRE + FIDnav FIDnav only MP–RAGE + FIDnav

TI n.a. n.a. 900 ms
TR 25.0 ms 12.5 ms 2300 ms
TE 3.0 ms 3.0 ms 2.86 ms
α 12◦ 8◦ 18◦/9◦/0◦

TA 6:07 min 6:11 min 5:21 min
Band width 240 Hz/Px 240 Hz/Px
Matrix (ROxPExPAR) 256×256×144 n.a. 256×256×176
Voxel size 1.0×1.0×1.2 mm3 n.a. 1.0×1.0×1.0 mm3

GRAPPA ×2, 24 ref. lines n.a. ×2, 24 ref. lines
Field of view in phase 87.5% n.a. 100%
Slice partial Fourier 6/8 n.a. 1/1
Total number of FIDnav

1328 29568 139
samples during the scan

Table 7.1: Acquisition parameters.

FID signal is acquired within an MP–RAGE sequence then rapid temporal signal fluctuations

are noticeable. These signal variations are more prominent at higher excitation angles as can

be seen in Fig. 7.1b and then change their temporal frequency depending on the acquired line

number of the MP-RAGE image i.e., the FIDnav signals that are acquired with the TR number

belonging to reference lines have a different fluctuation pattern. By setting the excitation angle

to zero degrees for the ’MP–RAGE+FIDnav’ acquisition we aimed at acquiring just the thermal

noise. This signal variance is very small compared to the variance caused by the sequence

gradients i.e., eddy currents.
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Figure 7.1: a: FIDnav signal magnitude change in % for the different acquisition schemes; 140 TRs are shown. b:
FIDnav signal magnitude change for different excitation angles. Influence of the phase encoding gradients is visible.

Further, when looking at the FIDnav magnitude change from a human subject the signal

variation due to motion is much stronger compared to signal changes due to host signal

influence as seen in Fig. 4.6 and Fig. 7.2, which allows to establish a threshold based on

the standard deviation of the FIDnav signal to detect signal changes due to motion. Also,
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as already described in Chapter 4.3.3 a temporal signal drift can be observed in all FIDnav

acquisitions ’3D GRE + FIDnav’, ’FIDnav only’, and ’MP-RAGE + FIDnav’.
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Figure 7.2: FIDnav signal magnitude change in a single coil element for a phantom and human scan. For the
human scan the signal is shown for a subject at rest and performing head motion of around 3° rotation 3 mm
translation.

Here, we performed some experiments to reveal and describe the influence of the host

sequence on the FIDnav signal. We could show that when the FIDnav acquisition is imbedded

into an MP–RAGE sequence then signal fluctuations as caused by the phase encoding gradients

are visible. Also, we observed temporal signal drifts in all FIDnav acquisitions. As this slow

drift is also present in the ’FIDnav only’ scans we can conclude that they are not gradient

related as no gradients are present during the signal acquisition. The drift might be caused by

B0 drifts due to temperature induced shim changes of the scanner.

These observations are of interest for the use of the FIDnav signal to detect motion within a

host sequence. In order to do so, the FIDnav signal is observed over time and if a signal change

compared to a reference higher than a preset threshold is detected then the corresponding

part of k-space data acquired around the FIDnav signal acquisition can be considered as

motion corrupted. This threshold can be set in two ways: either to an empirical value based

on a set of scans with the same acquisition scheme but different subjects (training set) and

without motion or to a value obtained from FIDnav signal points from the beginning of the

acquisition. Both variants have their advantages and disadvantaged. In the first case it is hard

to trust an empirical value and false positive or negative motion events would be inevitable. In

the second case some FIDnav samples must be sacrificed to establish a trustworthy threshold

estimation. Moreover, this relies on the scenario that no motion occurs during the acquisition

of this threshold data otherwise the threshold would be set too high and the FID based motion

detection would be blind to motion events occurring at a later stage. Therefore, the first

approach with the use of a empirical threshold which is estimated based on previous scans

is considered advantageous over the second proposal for reliable motion detection. This,

however, would require a training data set to establish such a threshold which includes patient,

hardware and sequence specific parameters as demonstrated in (Babayeva et al., 2015b).
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8 Outlook and Conclusion

This is perhaps 5 per cent empirical

information and 95 per cent speculation,

some of it possibly tainted by wishful

thinking.

SIMON S KUZNETS

MRI is a powerful tool in medical imaging allowing to visualize the anatomy of a human

body non–invasively. This technology is however highly susceptible to motion as the scanning

times are usually on the order of minutes. As of today many motion mitigation strategies have

been proposed but with only little success in clinical use. Hence, there was a motivation to

examine a new approach to motion detection and correction utilizing the simplest MR signal –

a free induction decay (FID) – for motion tracking.

The physical theory behind the ability of the FID signal to react to motion seems natural

as stated by the Biot–Savart law: the closer an object is located to the receive coil the higher

will be the detected signal. Similar to any other sensor for distance detection e.g., ultrasound

or infrared in order to determine a location and its exact motion trajectory of an object in

the three dimensional space it is necessary to measure the motion trajectory in six degrees of

freedom (three translation and three rotational parameters). Therefore, at least six orthogonal

measures of the posture or rigid body motion are needed to determine the objects position

and orientation or positional changes. Here, we postulate that the limited motion ability of

the human head and a sufficient number of spatially distributed receive coil elements allows

us to perform such motion tracking.

In order to show the validity of our hypothesis we performed a set of experiments where

the accurate motion of a human head was tracked by a highly precise optical tracking device

while the FID signal was acquired with a 32–channel head coil. Five subjects participated

in this study performing various types of motions (head nodding, head shaking, moving the

head in the head foot direction and drawing a virtual eight with the nose tip). Our results
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as shown in Chapter 4 could show that the the FID signal is linearly correlated with the six

motion parameters with a sub–millimeter and sub–degree accuracy and precision. However,

we were not able to find a closed form solution which would apply to all subjects. Therefore,

we assume that in order to be able to find a universal mapping from FID signal changes to

exact motion parameters more information is required as the individual shape of the head

and its initial position within the head coil.

Computer aided quantitative evaluations of medical MR images have become more popular

in the recent years e.g., automatic disease prediction based on volumetric measurements

of the brain anatomy. Such techniques rely heavily on high image quality which may be

compromised by motion. If an image is corrupted by motion the validity of the segmentation

results is questionable. Therefore, it is important to be able to assess the image quality

quantitatively before the image is used for further computer based analysis. We proposed to

acquire the FID signal along the normal imaging sequence in order to calculate an FID based

motion sensitive quality metric. This metric has also the advantage of labeling the acquired

data as motion corrupted even if the scan is has not finalized yet in order to terminate the

exam to save time and possibly advise the subject to remain still. We called the proposed

quality index FIDI (FID index) and could show in Chapter 5 on 109 clinical data sets that it

could reliably identify motion corrupted images.

Further, also in Chapter 5, we could show that the FID signal could be used for a retro-

spective motion correction technique based on autofocusing. This correction method adjusts

the already acquired k-space data chunks such that a cost function is optimized according

to the underlying motion trajectory. We proposed to extent this cost function by the use of

the FID signal as an additional parameter to guide the optimization process. This FID guided

approach allows for faster convergence of the algorithm (Babayeva et al., 2014b; Loktyushin

et al., 2013). We could also show on clinical data sets which were evaluated by an expert that

the FID guided method leads to better correction results compared to the blind autofocusing

approach.

To show a method how the FID signal can be used for prospective motion correction in

MRI we proposed a technique where the FID is used for binary motion detection to drive

another motion estimation mechanism. On an example of an MP–RAGE sequence the FID

signal was periodically sampled (every TR) and if head motion was detected according to FID

signal changes then an acquisition of a low resolution image (IMGnav) of the whole head was

triggered. This IMGnav was used to determine the underlying motion parameters through

image registration to a reference IMGnav from the beginning of the scan. This acquisition

scheme provides an efficient way of motion correction during and MRI scan as the motion

correction mechanism is only active when motion happens. A disadvantage of this technique

is the temporal resolution with which the motion can be detected i.e., only every TR. Hence, it

is not possible to avoid the acquisition of uncorrected data that has to be discarded resulting in

additional scan time overhead. Another bottleneck of this technique is the limited registration

accuracy of the IMGnav as a trade–off between scan time and image resolution needs to be
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made. We evaluated the registration accuracy and precision of our IMGnav by acquiring

successively several volumes of the IMGnav from a human subject and by introducing an

artificial motion trajectory through a text file. This approach provided us with a notion of

the reliability of our motion correction method. This strategy, however, does not take into

account the possible real and involuntary motion of the subject during the experiment. Hence,

a moving phantom to prescribe an accurate motion trajectory or a precise motion tracking

device (i.e., optical camera system) to track real human subject movements would render this

experimental validation more realistic. Another challenge of this motion correction method

is the adjustment of the FID threshold when the signal change is considered high enough

to correspond to a potential head motion. One way is to set this threshold empirically or

to use few FID signal samples from the beginning of the scan as reference to calculate its

standard deviation and to set the threshold above a multiple of this value. The drawback of

the latter value is that it relies on the fact that no motion was present during the acquisition

of the reference FID signal values otherwise the method would be blind to eventual latter

motion events. The first approach to set the threshold may lead to many false positives or false

negatives if it is set too high or too low. Despite the evident drawbacks of the method we were

able to demonstrate the efficacy of our proposed technique with a study on 10 subjects and

different motion patterns and presented the results in Chapter 6.

Finally, we performed a study on how the FID signal may be influenced be the host se-

quence i.e., the imaging sequence which includes the acquisition of the FID. We could show

that it is important to consider the ’magnetic’ environment of the FID acquisition as it may

introduce additional non-motion related signal fluctuations.

8.1 Direction for Future Research

Future work should be focused on further understand which additional information is needed

to find a universal mapping of the multi-channel FID signal to exact motion parameters. This

could be achieved through collecting more data sets from different subjects but also acquired

by head coils of different geometry to extend the search space. Hereby, a clinical dataset

containing motion trajectory information, radiological image quality ratings, as well as the

FID signal would be of high interest. The motion trajectory could be assessed by introducing

the acquisition of an IMGnav throughout all clinical routine scans in either triggered approach

or by inserting a fixed number of acquired volumes e.g., every 10 seconds during the scan.

The FID signal acquisition could be added to virtually any sequence without or only a small

impact on its scan time and magnetization profile. The collection of image quality ratings

should be systematically included in all radiological readings as part of the clinical routine.

From our evaluations we think that the most promising approach towards a motion correc-

tion method would be to acquire a training data set prior the actual imaging scan to collect

the necessary information to obtain a subject, scanner, utilized coil, and sequence specific

model. Other models than linear ones can be considered here as well and might provide a
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different view on the problem. The acquisition of this training data should, however, take not

longer than the imaging scan itself as otherwise a reacquisition of a potentially corrupted data

set might be more appealing.

In this thesis we propose to use the FID as a novel technique to calculate a motion sensitive

quality index FIDI of the acquired data. In order to set the reliable limits for this index when to

label data as motion corrupted it would be advantageous to consider more clinical data sets.

These data sets have to be reviewed by experts for motion related artifacts such that these

ratings can be correlated to the FID based index FIDI. We investigated the application of FIDI

only on MP-RAGE scans. A valuable expansion of this study would be to introduce the FID

acquisition to other sequences and perform similar evaluations with expert ratings of clinical

images.

In order to understand the real benefit of the FID based prospective and retrospective

motion detection and correction as we proposed in Chapters 5 and 6 it is important to bring

the implementation to the clinical routine scans. The advantage of the retrospective technique

is that the original image is preserved such that the clinicians can choose which image is more

suitable for the diagnosis. Hence, introducing the retrospective method to the clinics can be

achieved by just providing an efficient implementation of the this retrospective correction

technology, which could be the next logical step. Also, such an implementation would allow

to conduct a clinical study to assess its potential. The prospective correction technique on

the other hand is more challenging in terms of integrating and testing it in a clinical context.

With this method it is not possible to retrieve the image without correction. Therefore, the

reliability of this methodology has to be assured such that no artifacts are introduced by the

method to the final image.

In this work we have gathered an understanding on how the FID signal can be used in two

3D sequences the gradient-echo and the MP-RAGE. To further facilitate the use of the FID

for motion detection in correction correction in MRI it is necessary to investigate also other

sequences especially the 2D ones. In brief the future research should focus on two orthogonal

topics. First the implementation of the proposed motion correction methodologies such that

they can be used in clinics to study the impact of motion correction in the daily routine as

well as to quantify the prevalence of motion in clinical examinations. Seconds, continue to

investigate how the FID signal can be introduced to other sequences as well as how it can

complement already existing motion correction methods by establishing a data base with

clinical images and corresponding motion trajectories as well as FID signals and radiologists’

image quality ratings.
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8.2 Conclusion

Motion detection and motion tracking based on the FID signal from a multi-channel head

coil array could provide an elegant solution for the motion problem in MRI. It was shown

that multi-channel FID signal correlates with underlying motion with sufficient accuracy and

several promising approaches on how this technique could be utilized for this purpose and

also provide a platform for further investigation was proposed. However, further research is

necessary to understand how the exact motion parameters can be extracted from the multi-

channel FID signal without relying on other motion tracking methodologies. Additionally,

the MR sequence where the acquisition of the FID signal is embedded, has to be taken into

consideration as it influences the FID signal. The take-home message of this work is that

accurate motion information is contained in the multi-channel FID signal and it can be

used in prospective and retrospective motion correction applications if combined with other

techniques but bears also the potential for more elaborate use.
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