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Abstract—Coordinated control strategies for multi-robot sys-
tems are necessary for tasks that cannot be executed by a
single robot. This encompasses tasks where the workspace of
the robot is too small or where the load is too heavy for one
robot to handle. Using multiple robots makes the task feasible
by extending the workspace and/or increase the payload of the
overall robotic system. In this paper, we consider two instances
of such tasks: a co-worker scenario in which a human hands over
a large object to a robot; intercepting a large flying object. The
problem is made difficult as the pick-up/intercept motions must
take place while the object is in motion and because the object’s
motion is not deterministic. The challenge is then to adapt the
motion of the robotic arms in coordination with one another
and with the object. Determining the pick-up/intercept point is
done by taking into account the workspace of the multi-arm
system. The point is continuously recomputed to adapt to change
in the object’s trajectory. We propose a virtual object based
dynamical systems (DS) control law to generate autonomous and
synchronized motions for a multi-arm robot system. We show
theoretically that the multi-arm + virtual object system converges
asymptotically to the moving object. We validate our approach
on a dual-arm robotic system and demonstrate that it can re-
synchronize and adapt the motion of each arm in a fraction of
a second, even when the motion of the object is fast and not
accurately predictable.

I. INTRODUCTION

Many daily activities involve tasks such as lifting, carrying
and reaching for large and heavy objects. To accomplish these
tasks, humans rely heavily on bi-manual reaching and, more
generally, on coordination between the hands [6]. Performing
these tasks with one arm is often infeasible, mainly because
a single arm has a limited workspace. Moreover, the dexterity
and flexibility required for such task is beyond a single arm’s
capabilities. This holds for robotic systems as well. A single
robot arm is simply incapable of meeting the requirements
of such complex tasks. A dual or multi-arm robotic system,
on the other hand, extends the workspace of a single robot
arm. It allows for highly complex manipulation of heavy or
large objects that would otherwise be infeasible for single-
arm systems. Most effort in the field of multi-arm control has
focused primarily on devising strategies for coordinated and
stable manipulation of static objects that are already partially
or fully grasped by the multi-arm system [1, 23, 5, 21, 33, 7].
Seldom work has focused on developing reaching strategies
that a multi-arm system can use to reach and grab moving
objects.

One can envision a plethora of applications in factories,
airports, or storage facilities that would benefit from such

Fig. 1: Illustration of a possible application where a multi-arm system has to
reach for large moving objects carried to them by humans. The arms move
in synchrony towards the coupled feasible reaching points of the object (e.g.
squares or ellipses). As the object approaches, the arms’ end-effectors align
their trajectories with that of the object.

strategies. Examples include, grabbing, catching, carrying,
lifting or re-orienting packages or large-sized parts traveling
on a cart or a running conveyor belt (Fig. 1), carried by humans
or even flying towards the multi-arm robot system. We posit
that, until now, these applications have not yet been explored,
due to the unsuitability of the state-of-the-art to tackle the
challenges of coordinating the motion of multiple arms while
reaching and adapting to the motion of a dynamic object in a
computationally efficient way.

According to studies in motor and cognitive development,
reaching for an object in a smooth and efficient manner
requires ones to deal simultaneously with different issues [27].
Each hand has to adjust to the orientation, shape and size
of the object while reaching for it. Moreover, the action of
grasping the object (i.e. closing the fingers of the hands) must
be timed prior to rather than as a reaction to intercepting
the object. Hence, bi-manual, and by extension, multi-manual
reaching require us to solve simultaneously several spatial and
temporal coordination constraints to move toward the object
in coordination and to intercept the object [27].

We propose an approach that generates coordinated trajec-
tories for a multi-arm robot system that ensures that the arms
will reach the moving object simultaneously. Most importantly,
the approach updates the arms’ motion continuously and in
synchrony to adapt to changes in the target object’s trajectory.
To validate the approach, we consider a scenario in which



an object with arbitrary shape and mass is moving towards
a multi-arm system. We do not assume a known model of
the dynamics of the object. To simulate an arbitrary object’s
motion, not easily predictable, our experiments have a human
carry the object toward the robot while being blindfolded.
The sole knowledge about the object is its coupled feasible
reaching points, which are the preferred reaching positions
and orientations on the object, specified by the user (see
Fig. 1). A multi-arm reach is thus deemed successful if and
only if all robot arms simultaneously intercept the object on
its feasible reaching points. To achieve this, we must solve
for the aforementioned constraints that constitute a multi-arm
reach. From a robotics point of view, these constraints can be
translated to object level constraints (i.e. task constraints) and
arm level constraints (i.e. coordination constraints).

Task constraints impose position and velocity constraints at
the object’s interception. Position constraints ensure that the
planned motion of each robot’s end-effector is coordinated
with the feasible reaching positions of the object. Whereas
the velocity constraints allow readjustments of the hand, palm
and fingers posture while there are uncertainties in the hand
orientation and position. On the other hand, coordination
constraints impose that the robots move in coordination with
each other. This is necessary not only to ensure that the arms
simultaneously intercept the object, but also to avoid collisions
between their end-effectors while they adapt to the moving
object’s motion. Handling multiple constraints simultaneously
is a problem that could be addressed by using standard optimal
control approaches. These, however, are time consuming and
will not converge within a few milliseconds, which is the
expected reaction time necessary for all arms to rapidly and
simultaneously reach and adapt to the moving object.

In this paper, we use autonomous dynamical systems (DSs)
to instantaneously re-plan the coordinated motion for each
Kr-th hand-arm robot in a multi-arm system [20, 11, 18].
The proposed dynamical system couples both task and co-
ordination constraints by modeling the motion of a virtual
object, which is expressed as a Linear Parameter Varying
(LPV) system subject to stability constraints to ensure that
the object is simultaneously intercepted by all the arms at
the desired time, position and velocity. A theoretical analysis
of the stability and convergence of this proposed DS based
control law is presented and empirically validated on a real-
world dual-arm experiment with a KUKA IIWA and a KUKA
LWR 4+, both 7 degree of freedom robot arms mounted with
a 16 DOF (Degree of Freedom) Allegro hand and a 4 DOF
Barret hand, respectively.

II. RELATED WORK

Although coordinating multiple robotic arms for object
manipulation has been extensively studied in robotics liter-
ature, planning the reach-to-grasp motion for a moving object
with a multi-arm robotic system, while keeping coordination
constraints, is a new field of research. Recently, Vahrenkamp
et al. [25, 24] proposed an RRT-based algorithm to gener-
ate collision free motions to grasp an object at rest with

a bi-manual platform. Given its search-based strategy, this
approach can guarantee feasible grasps by both arms and
self collision avoidance. However, due to its computational
complexity and the fact that it cannot guarantee simultaneous
interception of the object by all arms, it becomes inadequate
when trying to reach for a moving object. To the best of the
author’s knowledge, there is no related work in the field of
reaching for large moving object with multi-arm systems.

Extensive surveys on coordination strategies for dual/multi-
arm systems are presented in [21, 31]. Early approaches
addressed the coordination problem with master-slave strate-
gies. In the work of [16], the motion of the master robot
is planned and always known, whereas the slave robot must
follow the master’s motion while conforming with closed-
chain geometrical constraints. On the same track, Gams et al.
[9] proposed a control architecture that addresses the task
of lifting an unknown object with a dual-arm system. It
uses feedback errors constructed from position and velocity
components to synchronize the motion of one arm to a
predefined motion of the other arm. Even though this strategy
is computationally efficient, performance is adversely affected
when communication delays arise. Moreover, when dealing
with moving objects, a difficulty arises when the master and
slave roles have to be assigned to the arms.

Centralized controller strategies can address some of these
issues [1, 22, 28]. These strategies consider the robots and
the manipulated object as a closed kinematic chain. In this
line, Wimböck and Ott [32] proposed an impedance control
architecture for dual-arm manipulation, where the two end-
effectors and a virtual frame, which is a function of the end-
effectors’ poses, are coupled via spatial springs. Zhu [34]
proposed a motion synchronization controller to coordinate
the end-effectors of two robots when they are rigidly or
flexibly holding an object without payload. Likar et al. [14]
proposed a velocity level motion synchronization algorithm for
controlling a cooperative dual-arm system. They introduced an
augmented kinematic chain which is a representation of two
arms and the object. The corresponding Jacobian is calculated
to control the augmented kinematic chain by solving the
inverse kinematics problem at the velocity level. On the other
hand, some researchers have proposed decentralized control
architectures, where the robots are controlled separately by
their own local controllers [15]. Caccavale et al. [4] proposed
a combination of a centralized and decentralized impedance
control strategies to achieve a desired impedance at the object
and the end-effector level, respectively.

All previously mentioned works assume that the object is
firmly attached to the robots and modeled via a virtual object
frame or by closing the kinematic chain. In this work, we
adopt the idea of the virtual object to coordinate the motion
of the robots with each other and further, use it to coordinate
the robots to the real object, albeit it is not attached to the arms
until they reach it. The term virtual object is mostly used in
robotics literature to represent the internal forces of a grasping
task [29, 30]. In this paper, however, this term is used in the
framework of motion coordination. The motion of the virtual



Fig. 2: Block diagram for coordinated multi-arm motion planning for reaching
a large moving object. Where Kr represents the total number of robot arms.
In this paper, we assume that the low-level controller of the robot is a perfect
tracking controller.

object is coordinated and aligned to the motion of the real
object to satisfy the task constraints. Concurrently, it is used
to coordinate the motion of the robots through a centralized
controller, which is governed by the virtual object’s motion
and robust to perturbations from any of th Kr-th robot arms.

III. MULTI-ARM REACHING FOR MOVING OBJECTS

In order to achieve stable and coordinated reaching motions
for multiple arms when the target object is in motion, several
problems need to be solved simultaneously: (i) prediction of
the object’s trajectory; (ii) computing intercept points for each
arm and (iii) planning coordinated motion of the robot arms
towards their corresponding intercept points. An overview of
the proposed framework is illustrated in Fig. 2. As seen on
the illustration, sub-component (A) computes the intercept
point and plans the trajectory to the intercept point. It uses an
estimate of the reachable workspace of the multi-arm system
(learned off-line prior to experiment) and an on-line step
in which it continuously measures the object’s pose from a
visual tracking system. Sub-component (B) uses the intercept
points predicted from (A) and the current end-effector poses to
generate the desired end-effector poses of the Kr-robot multi-
arm system. It is based on a centralized controller that exploits
a forward model of the virtual object’s motion. A detailed
description of each of these sub-components is presented in
the following subsections. For simplicity and practicality, we
summarize the most relevant notation used throughout the
paper in Table I and illustrate them in Fig.3.

A. Object Trajectory and Intercept Point Prediction

As stated previously, the proposed control architecture coor-
dinates and aligns the motion of a virtual object attached to the
end-effectors of the Kr robots to the motion of a real object
(Fig.3). The real object is represented by a set of feasible
reaching points (ξ O

p1,ξ O
p2 ∈ R3), defined by the user. Their

resultant vector (ξ O
p (t) ∈ R3) corresponds to the position of

the object. Its orientation (ξ O
o (t) ∈ SO(3)) is estimated from

the positions of the reaching points. The virtual object is a
duplicate of these set of points, with the end-effectors of each
robot attached to the virtual reaching points (ξV

p1,ξ
V
p2 ∈ R3)

by zero length springs and dampers (Fig.3). Once the real
object starts moving towards the robots, carried or thrown by
an operator, the virtual object follows its motion. A forward

TABLE I: Notation

Variable Definition
ε A small positive number.
K A large constant positive number.
Kr Number of robot arms.
ξ R

j Pose of the jth end-effector for ∀ j ∈ 1, . . . ,Kr

ξV
p j jth reaching point (pose) on the virtual object.

ξV
p , ξV

o Position and orientation of the virtual object
ξ O

p ,ξ O
o Position/orientation of the real object.

ω Angular velocity of the virtual object
ξ O

p j jth feasible reaching point on the real object.
jξ ξ in the reference frame of jth robot base.
θ W Set of Kr workspace models θW = {θW

i ∀i ∈ 1, . . . ,Kr}
θW

i GMM parameters for each workspace θW
i = {πl i,µl i,Σl i}

πl i,µl i,Σl i Priors, means and covariance matrices for GMM
with l = 1 . . .Kw

i Gaussian functions.
xV

p (t),x
V
o (t) States of the virtual object’s dynamical system.

xR
j States of jth end-effector .

θAp ,θAp Scheduling parameters for pos./orient. dynamics.
Ai(θAi ) Affine dependent state-space matrices for ∀i ∈ {p,o}.
up(t),uo(t) Control input for the pos./orient. virtual object dynamics.
γp(t),γo(t) Coordination parameters for the virtual object dynamics.

model of the virtual object computes its progress ahead of time
and determines a point along this trajectory where the object
will become reachable by all robot arms. We name this point
the feasible intercept point. Using the planned position and
orientation of the virtual object at intercept point (ξV

p (t)∈R3,
ξV

o (t) ∈ SO(3)), we can then generate the desired reaching
motions for each arm.

If the motion of the object is predictable, one can use
a model-based prediction approach [13] and find feasible
intercept postures by extending a single-robot arm feasible
posture extraction algorithm (such as [12]) to Kr-robot arms.
In this case, a simple point-to-point motion can be devised
to intercept the object. As we assume that the motion of the
object is not accurately predictable (e.g when carried by a
blind-folded human operator as in our experiments); using
a model-based approach would be impractical and limiting.
Instead, we use a simple ballistic motion algorithm to predict
the motion of the real object and propose a controller (Sec.
III-B) that is compliant and robust to prediction inaccuracies.

To model the motion of the virtual object, we must first
make sure that the object travels through the workspace of the
robots; i.e. there is at least one feasible intercept point. In order
to find the feasible intercept point, the kinematic feasibility of
the predicted reaching points must be evaluated. The reach-
able workspace of each robot is modeled via a probabilistic
classification model p j(

jξ O
p j;θ W

j ) ∀ j ∈ {1, . . . ,Kr}, namely a
Gaussian Mixture Model as follows:

p j(
j
ξ

O
p j;θ

W
j ) =

Kw
j

∑
l=1

πl jN ( j
ξ

O
p j|µl j,Σl j) (1)

where πl j,µl j,Σl j correspond to the prior, mean and co-
variance matrix of the l = {1 . . .Kw

j } Gaussian functions,
respectively, estimated by using the Expectation-Maximization
algorithm [3]. In order to generate the training dataset, all
possible postures of each robot are simulated by testing all
possible displacements of their joints. δ j is the minimum like-
lihood threshold and it is determined such that the likelihood



Fig. 3: An illustration of the variables defined in the paper is presented. The
reachable areas are feasible areas for grasping the object. Except for 2ξ O

p 2
and 1ξ O

p 1, the variables are expressed in the reference frame located on the
desired intercept point; i.e. ξ O

i (T ∗) =
[
0 . . . 0

]T ∀i ∈ {p,o} . Note that
ω is the angular velocity of the virtual object, which is different from the
numerical differentiation of the virtual object orientation; i.e. ω 6= ξ̇V

o .

of 99% of the training points is higher than the threshold
δ j. If p j(

jξ O
p j;θ W

j ) exceeds it, jξ O
p j is classified as a feasible

configuration. As the reachable workspace of each robot is
statistically independent from the others, we can calculate the
joint distribution of all the models by computing the product
of all distributions:

p(1
ξ

O
p1, . . . ,

Kr ξ
O
pKr ;θ

W) =
Kr

∏
j=1

pi(
j
ξ

O
p j;θ

W
j ) (2)

Similarly the minimum joint likelihood threshold is δ =

∏
Kr
j=1 δ j and if p(1ξ O

p1(T
∗), . . . ,Kr ξ O

pKr
(T ∗);θ W) exceeds it,

(ξ O
p (T

∗) = 1
Kr

Kr
∑
j=1

jξ O
p j(T

∗)) is classified as the feasible in-

tercept point. As the motion of the object is not predicted
accurately, there is no guarantee that the object will pass
through the predicted point at T ∗, yet we can ensure that the
object is moving toward the robots.

B. Centralized Robot Coordinated Motion Generator

To model the position and the orientation of the virtual
object, we consider the following class of fully observable
continuous-time LPV based DSs [26]. LPV systems can be
considered as a non-linear combination of linear systems
which are valid at particular operating points. Formulating the
motion of the virtual object as a LPV system allows modeling
complex and nonlinear behaviors and the use of many tools
from the linear systems theory for analysis and control [8].1

ẋV
p (t) = Ap(θAp(x

V
p (t)))x

V
p (t)+up(t) (3a)

1As the states of the virtual object are fully observable, yp(t) = xV
p (t) and

yo(t) = xV
o (t) where yi(t) ∀i ∈ {p,o} are the outputs.

ẋV
o (t) = Ao(θAo(x

V
o (t)))x

V
o (t)+uo(t) (3b)

Where xV
p (t) =

[
ξV

p (t) ξ̇V
p (t)

]T
and xV

o (t) = ξV
o (t) are the

states of the dynamical system.2 θAi ∈ RKi×1 ∀i ∈ {p,o} are
vectors of scheduling parameters3;

θAi =
[
θAi1 . . . θAiKi

]T
∀i ∈ {p,o} (4)

Ai(.) :RKi×1→R j× j ∀(i, j)∈ {(p,6),(o,D)} are the affine de-
pendence of state-space matrices on the scheduling parameter
and the state vectors:

Ap(θAp) =
Kp

∑
k=1

θApk
Apk Apk ∈R

6×6
θApk
∈R1×1

Ao(θAo) =
Ko

∑
k=1

θAok Aok Aok ∈RD×D
θAok ∈R

1×1

(5)

One popular choice to approximate the parameters of
LPV systems is regression models; i.e. polynomial, periodic
functions [2] or Gaussian Mixture Regression (GMR) [19].
In this paper, an approach similar to that offered in [19]
is taken, which inherently results in normalized schedul-
ing parameters; i.e. 0 < θAi j ≤ 1, ∑

Ki
k=1 θAik = 1 ∀(i, j) ∈

(p,1), . . . ,(p,Kp),(o,1), . . . ,(o,Ko).
As discussed in Section III-A, the virtual object and con-

sequently the arms must simultaneously intercept the object
at the feasible reachable points. To achieve this, we define
the following control inputs (up,uo) for the position and
orientation of the virtual object:

up(t) =
1

Kr +1

(
ẋO
γp(t)−Ap(θAp)x

O
γp(t)+

Kr

∑
j=1

(U j−ω ?R j)

)
− Kr

Kr +1
Ap(θAp)x

V
p (t)

(6a)

uo(t) = γo(t)ẋO
o (t)+ γ̇o(t)xO

o (t)− γo(t)Ao(θAo)x
O
o (t) (6b)

Where xO
γp(t) =

[
γp(t)ξ O

p (t) γp(t)ξ̇ O
p (t)+ γ̇p(t)ξ O

p (t)
]T

4 and

xO
o (t) = ξ O

o (t). The origin is located on the desired intercept
point ξ O

i (T ∗)=
[
0 . . . 0

]T ∀i∈{p,o}. ẋO
o (t) is the numeri-

cal differentiation of xO
o (t). ω ?R j =

[
ω× r j ω× (ω× r j)

]T ,
where r j = ξV

p j(t)− ξV
p (t). 0 < γi(t) < 1 ∀i ∈ {p,o} are

the coordination parameters and are of class C1. U j is the
interaction effect of the tracking controller of the jth end-
effector on the virtual object:

U j = ẋR
j (t)+AR

j (x
V
p j(t)− xR

j (t)) (7)

2The dynamics of the position and orientation of the virtual object
are presented in the acceleration and velocity level due to implementation
constraints. However, the framework is not theoretically constrained to this.

3The scheduling parameters can be a function of time t, the states of the
system xV

i (t) ∀i ∈ {p,o} or external signals d(t), i.e. θA1 (t,ξ (t),d(t)). In the
rest of the paper, we assume that it is only function of the states of the system
xV

i (t) ∀i ∈ {p,o} and the arguments are dropped for simplicity.
4ẋO

γp(t) is the derivative of xO
γp(t) with respect to time; ẋO

γp(t) =[
γp(t)ξ̇ O

p (t)+ γ̇p(t)ξ O
p (t) γp(t)ξ̈ O

p (t)+2γ̇p(t)ξ̇ O
p (t)+ γ̈p(t)ξ O

p (t)
]T



Where AR
j ∈R6×6 is a constant matrix. The desired motion

of the jth end-effector (xR
j (t)) is calculated based on the

tracking error between the position of jth point on the virtual
object (xV

p j(t)) and the end-effector:

ẋR
j (t) = ẋV

p j
(t)−AR

j (x
V
p j(t)− xR

j (t)) (8)

By substituting, (6a) and (7) into (3a) and (6b) into (3b), we
have:

ẋV
p (t) =

1
Kr +1

(
ẋO
γp +Ap(θAp)(x

V
p (t)− xO

γp(t))

+
Kr

∑
j=1

(ẋR
j (t)+AR

i (x
V
p j(t)− xR

j (t))−ω ?R j)

) (9a)

ẋV
o (t) = γo(t)ẋO

o + γ̇o(t)xO
o (t)+Ao(θAo)(x

V
o (t)−γ(t)xO

o ) (9b)

Theorem 1: The dynamical systems given
by (9a) and (9b) asymptotically converge to[
γi(t)ξ O

i (t) γi(t)ξ̇ O(t)+ γ̇i(t)ξ O
i (t)

]T ∀i ∈ {p,o} and
the jth end-effector asymptotically converges to the jth

reaching area on the virtual object i.e.

lim
t→∞
‖xR

j (t)− xV
p j(t)‖= 0 (10)

lim
t→∞
‖ξV

i (t)− γi(t)ξ O
i (t)‖= 0 (11)

lim
t→∞
‖ξ̇V

i (t)− (γi(t)ξ̇ O
i (t)+ γ̇i(t)ξ O

i (t))‖= 0 (12)

if there are PV
i , PR

j , QV
i , QR

j such that:
0≺ PV

i 0≺ PR
j 0≺ QV

i 0≺ QR
j

PV
i Aik +Aik

T PV
i ≺−QV

i ∀k ∈ {1, . . . ,Ki}

PR
j AR

j +AR
j

T
PR

j ≺−QR
j ∀ j ∈ {1, . . . ,Kr}

0≤ θAik ≤ 1, ∀i ∈ {p,o}

(13)

where 0≺ and ≺ 0 refer to positive and negative definiteness
of a matrix, respectively.
Proof: see Appendix A.5

If we set the coordination parameters γi(t) = γ̇i(t) = 0 ∀i ∈
{p,o}, (9) generates asymptotically stable motions towards
the predicted intercept point: i.e. the coordination between the
robots is preserved, but the coordination between the robots
and the object is lost. On the other hand, if γi(t) = 1 and
γ̇i(t) = 0 ∀i ∈ {p,o}, (9) will generate asymptotically stable
motions towards the real object even though its motion is
not accurately predicted: i.e. perfect coordination with the
object.6 However, in this case, there is no guarantee that the
virtual object converges to the real object by following a path
which is kinematically feasible for all arms, i.e. due to the
robots constraints, the coordination between the robots is lost.
Thus, one can vary the values of the coordination parameters

5Due to space limitation, only the proof for the case i = p is presented.
Stability and convergence proof for i = o is similar to i = p.

6We assume that the dynamical system (9) is fast enough to converge to
an acceptable neighborhood around the desired trajectory γ

[
ξ O

i (t) ξ̇ O
i (t)

]T
before T ∗; i.e. ‖ξV

i (T ∗)− γξ O
i (T ∗)‖≤ ε ∀i ∈ {p,o}

between zero and one such that they are one at the vicinity of
the predicted intercept time; e.g.:

γ̇p =
1− γp

‖ξ O
p (t)−ξ O

p (T ∗)+ ε‖
=

1− γp

‖ξ O
p (t)+ ε‖

(14a)

γo =
1

1+ e−K(p(1ξ O
p1(t),...,

Kr ξ O
pKr (t);θ

W ))−δ )
(14b)

. (14a) improves the robustness of the multi-arm reaching
motion in face of inaccuracies in the object’s motion prediction
as it ensures that when the object is close enough to the
feasible reaching positions, the virtual object converges to the
real object and perfectly tracks it; i.e. γi(T ∗) = 1 ∀i ∈ {p,o}.
Hence, the robots can simultaneously track the desired reach-
ing points on the object in coordination. (14b) states that
the orientation of the virtual object tracks the orientation of
the object when the reaching points of the object are in the
workspace of the corresponding robot. (14b) is advantageous
in two ways. First, when the object is far from the robots, the
virtual object does not rotate around itself hence ω ≈ 0. This
significantly simplifies (9a). Second, if there are more than one
coupled reaching points, (14b) is advantageous in that each
robot only converges to the object by intercepting it from the
corresponding feasible reaching point, avoiding jumps in the
end-effector from one reaching point to another.

IV. EMPIRICAL VALIDATION

A. Experimental Setup

The proposed framework is implemented on a real dual-
arm platform, consisting of two 7 DOF robotic arms, namely
a KUKA LWR 4+ and a KUKA IIWA mounted with a 4
DOF Barrett hand and a 16 DOF Allegro hand. The distance
between the base of the two robots is

[
0.25 1.5 −0.1

]T m.
The robot implementation involves converting the output of
the dynamical system (8) (e.g. the desired motion of each Kr-
th end-effector) into a 7-DOF joint state (for each arm, see Fig.
2) using a velocity based control method without joint velocity
integration [17]. In order to avoid high torques, the resulting
joint angles are filtered by a critically damped filter. The robot
is controlled at a rate of 500 Hz. The fingers are controlled
with joint position controllers. All the hardware involved (e.g.
arms and hands) are connected to and controlled by one 3.4-
GHz i7 PC. The position of the feasible reaching points of the
objects are captured by an Optitrack motion capture system
from Natural point at 240 Hz. Since the control loop is faster
than the motion capture system, the predicted position of the
object is used as the object position in (6), when the current
position of the object is not available.

Our empirical validation is divided into three parts that
demonstrate the controller’s ability: (i) coordinate the multi-
arm systems; (ii) adapt the two arms’ motions in coordination
so as to reach to grab a large moving object, when introducing
unpredictability in the object’s motion (by having the object
be carried by a blindfolded human) and (iii) rapidly adapt bi-
manual coordination to intercept a flying object, without using
a pre-defined model of the object’s dynamics. A corresponding
video is available on-line: https://youtu.be/UfucwRGa7k8

https://youtu.be/UfucwRGa7k8
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Fig. 6: Different examples of the position of the end-effectors generated by the dynamical system (9a). Due to the space limit, only the trajectories along
y axis is presented. The illustrated object trajectory is the predicted trajectory of the uncaught object. The prediction of the box’s trajectory requires some
data to be initialized and uses almost all of the first 0.2 meter of the object in x. The initial value of γP is 0.0 and (14) is used to change it with respect to
the distance of the object to the robots. As expected, the outputs of (9a) first converges to desired intercept position, since γp is a small value, then it softly
intercepts the object’s trajectory and follow the object’s motion. The robots are stopped if the object is not moving or the fingers are closed.

(a) (b) (c)

Fig. 4: Snapshots of the video illustrating coordination of the arms in free
space. The real object is outside the workspace of the robots; hence, the
coordination parameter γi is close to 0 and arm-to-arm coordination is favored.
The human operator perturbs one of the arms, which leads the other arm to
move in synchrony following the motion of the virtual object attached to the
two end-effectors.

(a) (b) (c)

Fig. 5: Snapshots of the coordination capabilities between the arms and a
moving/rotating object. The real object is inside the workspace of the robots;
hence, the coordination parameter γi is close to 1 and the arms-to-object
coordination is favored. The bottom figures show the real-time visualization
of the robots, and the virtual (green) and real object (blue).

B. Coordination Capabilities

The first scenario is designed to illustrate the coordination
capabilities of the arms with each other and with the object. We
initially show arm-to-arm coordination capabilities by keeping
the real object outside the workspace of the robots, this will
force the coordination parameter γi to be 0, favoring arm-to-
arm coordination. As the human operator perturbs one of the
robot arms, the virtual object is perturbed as well, resulting
in a stable synchronous motion of the other unperturbed arm
(Fig. 4). Since we offer a centralized controller based on
the virtual object’s motion, there is no master/slave arm;
thus, when any of the robots are perturbed, the others will
synchronize their motions accordingly. We then present the
coordination of the arms with the object by moving it inside
the workspace of the robots. The object used is a large box
(60×60×40cm) held by a human operator. The edges of the

(a) (b) (c)

Fig. 7: Snapshots of the robots’ motion when reaching for a moving object,
carried by a blindfolded operator. (a) onset of object trajectory’s prediction.
(c) arms have intercepted the object and the fingers have closed on the object.

(a) −0.39s (b) −0.11s

(c) 0.00s

Fig. 8: Snapshots of the arms reaching for a fast moving object. In order to
not damage the robot’s hands, the robot hands do not close on the object when
the hands intercept the object. The robots follow the unperturbed trajectory
of the object predicted by the object trajectory prediction; see Section III-A
.

box are specified as the feasible reaching points. When the
box is inside the joint workspace of the robots, the operator
changes the orientation and the position of the box to show
the coordination capabilities between the robots and the object
(Fig. 5). Due to (14), successful tracking and coordination with
the object and with each other is achieved.
C. Reaching to Grab a Large Moving Object

In this second scenario, we use the same object as before.
Yet, now the operator holds the box while walking towards the
robots. Once the end-effectors are less than 2 cm away from



the feasible reaching points, finger closures of the hands are
triggered and the box is successfully grabbed from the human.
As can be seen in Fig.7, we blindfolded the operator to achieve
unpredictable trajectories and avoid the natural reactions of the
humans to help the robots. When the human operator carrying
the box is approaching the robots, the virtual object converges
to the box and follows it until the desired interception points
are reached. The fingers close and the box is grabbed from the
human. The initial values of γp and γo in (14) are set to 0. An
example of the desired robot trajectory and the box trajectory
are shown in Fig.6. As expected, the end-effectors converge
to the box and continue to track its motion. As initially γi =
0 ∀i ∈ {p,o}, the virtual object asymptotically converges to
the desired reaching position. While the box is approaching
the robots, γi ∀i ∈ {p,o} starts increasing and finally reaches
to γi = 1 when the object is in the workspace of the robots.
Hence, (6) generates asymptotically stable motions towards
the real object instead of the intercept point. Consequently,
the prediction of the intercept point does not play a vital role
in grabbing the box.
D. Reaching for Fast Flying Objects

The third scenario is designed to show the coordination
between the robots and a fast moving object, where a rod
(150×1cm) is thrown to the robots from 2.5m away, resulting
in approx. 0.56s flying time. The distance between the base of
the two robots is reduced to

[
0.25 1.26 −0.1

]T m. The first
0.4m of the object trajectory initializes the trajectory prediction
introduced in Section III-A. Due to inaccurate prediction of
the object trajectory, the feasible intercept points need to be
updated and redefined during the reach. The new feasible
intercept point is chosen in the vicinity of the previous one to
minimize the convergence time. As the motion of the object
is fast and the predicted reaching points are not accurate,
the initial values of γp and γo in (14) are set to 0.5 and
0.0, respectively. This decreases the convergence duration of
the robots to the real object. Snapshots of the real robot
experiments are shown in Fig. 8. Visual inspection of the data
and video confirmed that the robots coordinately follow the
motion of the object and intercept it at the vicinity of the
predicted feasible intercept point.

E. Systematic Assessment

The success rates of our experiments are measured by
defining a Boolean metric; i.e. success or failure. A trial is
classified as a success if the robot intercepts the object at
the desired point within less than 2cm error. The success rate
is 85% in the box scenario and 37.5% in the rod scenario.
Failures are due to either inaccuracies in the measurement of
the object’s state or the IK solver. To track the object, all the
markers must be visible to the cameras. In the box scenario,
the object’s tracking was obscured partly when the object
was covered by the robotic arms or the operator. In the rod
scenario, the vision system looses track of the markers approx.
55% of the time. This happens, for example, when the rod
rotates rapidly. To systematically assess the robustness of the
algorithm to unmeasured object positions, a set of simulations
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Fig. 9: The interception error is the average of the minimum distance between
the ball and the end-effectors. The throwing positions are randomly chosen
within the range of

[
−3.5±0.1 −1.0±0.1 −0.0±0.1

]T m. The initial
ball speeds for fast and slow motions are randomly chosen within range of
8.94±0.173 m

s and 1.63±0.173 m
s , respectively. We only consider trials when

the ball passes through the robots workspaces. The measurement noise is
simulated with pseudo-random values within the range of ±0.02m. The cut-
off success/failure assessment is illustrated by the back dashed line.

was designed to reach for a moving ball. The ball diameter
is 1.2m. The simulation is repeated 130 times in total for
two different object velocities; i.e. fast and slow motions. To
assess the effects of the unmeasured object positions on the
interception error, the desired and the real end-effectors’ states
are assumed equal. Results from this evaluation indicate that
the interception error is directly correlated to the percentage
of unmeasured object points and consequently, the velocity of
the moving object (see Fig. 9). Thus, the faster the object, the
more sensitive the system is to tracking inaccuracies.

Failures caused by the IK solver are mostly observed in the
flying rod scenario, where the inability to accurately calculate
joint-level motions corresponding to the desired end-effectors’
trajectories results in errors in the robots’ motions. In over 40
trials, the tracking error between the desired and the actual
end-effector position at the intercept point is approximately
1.42± 1.92cm. The large variance in the error indicates the
implemented IK Solvers sensitivity to the robot’s kinematic
configuration.

V. SUMMARY AND DISCUSSION

In this paper, we proposed a dynamical system based frame-
work to coordinate multiple robotic arms to reach a moving
object. If provided with robotic arms that can travel fast
enough, our algorithm ensures that the object is intercepted by
the robots in coordination and with the desired velocity aligned
to the object. To improve the robustness of the framework,
we define a parameter (i.e. the coordination parameter) and
modulate it, such that the robots converge and track the real
object when it is close enough.

The stability and convergence of the proposed
dynamical system depends on ensuring conditions
(13). As there are no constraint on the magni-
tude of the eigenvalues (|λAi

j
|) of Ai

j ∀(i, j) ∈
{(r,1), . . . ,(r,Kr),(, p1), . . . ,(, pKp),(,o1), . . . ,(,oKp)}, there
is no analytical proof that (6) is fast enough to converge to
γξ O in time. To address this challenge, a potential direction
would be to estimate the parameters of (6) with respect to



the stability and the convergence rate constraints. One way
to calculate the convergence rate of a dynamical system is to
prove that it is exponentially stable [10].

Throughout the proofs, we assume that the intercept point
is a fixed attractor. However, due to the imperfect prediction
of the object trajectory, the feasible intercept postures need to
be iteratively updated. Nevertheless, this does not affect the
convergence of the system for two main reasons. First, when
γp < 1 the new feasible intercept point is chosen in the vicinity
of the previous ones; i.e. the convergence rate is much faster
than the rate of update. Second, when the object is reachable,
γp = 1, the virtual object converges to the real object and the
position of the intercept point does not affect the convergence.

In this paper, we control the motion of the arm from initial
condition (palm open, robots far from the object) to the point
when the arms reach the object and the fingers are about to
close on the object. Hence, there are no interaction forces
(which would arise once in contact with the object). Once the
fingers close on the object, the robots-object system become
a closed kinematic chain. In this case, devising an appropriate
force controller is necessary to coordinate the robots. Future
work in multi-arm manipulation will be directed to address
the challenges of devising an appropriate force controller and
the transition between the position and force controller.

Since the control architecture is designed in terms of the
virtual object, the coordinated motion of the robots is ensured
during motion execution; furthermore, it can be guaranteed
that the end-effectors will not collide. However, the proposed
algorithm does not guarantee that the rest of the arms will not
collide with each other. One possible direction for avoiding
collision across the robots’ links is to define an IK (Inverse
Kinematics) null-space, which maximizes the arms distance,
and solve the IK problems with respect to this null-space. In
the implementation with the box and the flying bar, since the
min. distance between the base of the arms is 1.29m, there
is a max. of 30 cm intersection between the workspaces. Yet,
the distance between the coupled reaching area on the bar is
1.2m. Hence, the arms are ensured to not collide.

One of the main advantages of the proposed framework is
the computational cost. The implementation shows that the
overall computation is rapid, thus enabling us to not only
compute the feasible intercept point, the reaching motion and
solving IK problems, but also to control a 34 (7+7+14+4)
DOF system with one 3.4-GHz i7 PC. Even though the robot
control rate is 500Hz, the algorithm is capable of running at
a rate of up to 3300Hz.

Finally, we are currently working on improving the per-
formance of (6), by learning its parameters via a convex
optimization problem with respect to the workspace constraint
of the robots. With this approach, we could ensure that the
performance of the dynamical system is optimal and the
generated motion is not infeasible for the robots to follow.

APPENDIX A
PROOF OF THEOREM 1

The necessary condition for stability of (9) and asymptotically stability of
the tracking error (8); i.e. limt→∞‖xV

p j(t)− xR
j (t)‖= 0 ∀ j ∈ {1, ...,Kr}. (8) is

asymptotically stable if and only if there are 0≺ PR
j and 0≺QR

j such that 7

PR
j AR

j +AR
j

T
PR

j ≺−QR
j ∀ j ∈ {1, . . . ,Kr} (15)

If (8) is asymptotically stable, by substantiating (8) in (9a), we have:

ẋV
p (t) =

1
Kr +1

(
ẋO
γp(t)+Ap(θAp )(x

V
p (t)− xO

γp(t))+
Kr

∑
j=1

(ẋV
p j
(t)−ω ?R j)

)
(16)

The first and the second derivative of ξV
p j = r j + ξV

p with respect to time

are ξ̇V
p j = ω × r j + ξ̇V

p and ξ̈V
p j = ω × (ω × r j) + ξ̈V

p , respectively. Hence,
ẋV

p j
= ω ?R j + ẋV

p and (16) can be written as:

ẋV
p (t) =

1
Kr +1

(
ẋO
γp(t)+Ap(θAp )(x

V
p (t)− xO

γp(t))+
Kr

∑
j=1

ẋV
p (t)

)
=

1
Kr +1

(
ẋO
γp(t)+Ap(θAp )(x

V
p (t)− xO

γp(t))+Kr ẋV
p (t)

)
ẋV

p (t) = ẋO
γp(t)+Ap(θAp )(x

V
p (t)− xO

γp(t))

(17)

We propose a Lyapunov function as follows:

V =
1
2
(xV

p (t)− xO
γp(t))

T Pv
p(x

V
p (t)− xO

γp(t)) (18)

V is positive definite, radially unbounded, continuous and continuously
differentiable. The derivative of V with respect to time is as follows

V̇ =
dV
dt

=
1
2

(
(xV

p (t)− xO
γp(t))

T Pv
p(ẋ

V
p (t)− ẋO

γp(t))

+(ẋV
p (t)− ẋO

γp(t))
T Pv

p(x
V
p (t)− xO

γp(t))
) (19)

Substituting (5) and (17) into (19), we have:
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1
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(xV
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γp(t))
T Ap(θAp )

T Pv
p(x

V
p (t)− xO

γp(t))
)

=
1
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(20)

Therefore, dynamical system (17) and (9a) are globally stable; i.e. xV
p and ẋV

p
are bounded as xO

γp(t) and ẋO
γp(t) are bounded. Since V̈ is finite, Barbalat’s

lemma [10] indicates that the attractor is globally asymptotically stable; i.e:

lim
t→∞
‖xv

p− xO
γp(t)‖= 0 ⇒

lim
t→∞
‖ξ̇V

p − (γpξ̇
O
p + γ̇pξ

O
p )‖= 0, lim

t→∞
‖ξ v

p− γpξ
O
p ‖= 0

(21)

�, c.q.f.d.
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