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Abstract—Obstructive Sleep Apnea (OSA) is one of the main
sleep disorders, but only 10% of the cases are diagnosed.
Moreover, there is a lack of tools for long-term monitoring of
OSA, since current systems are too bulky and intrusive to be
used continuously. In this context, recent studies have shown
that it is possible to detect it automatically based on single-
lead ECG recordings. This approach can be used in non-invasive
smart wearable sensors which measure and process bio-signals
online. This work focuses on the implementation, optimization
and integration of an algorithm for OSA detection for preventive
health-care. It relies on a frequency-domain analysis while tar-
geting an ultra-low power embedded wearable device. As it must
share its resources usage with other computations, it must be
as lightweight as possible. Our current results based on publicly
available signals show a classification accuracy of up to 83.2%
for both the offline analysis and the embedded online one. This
system gives an even better classification accuracy than the best
offline algorithm when using the same features for classification

[1].

I. INTRODUCTION

Obstructive Sleep Apnea (OSA) is a common sleep dis-
order involving partial or complete obstruction of the upper
airway. Such events last typically from 20 to 40 seconds [2].
A patient is said to have OSA when experiencing at least
ten apneas in one hour and at least 100 minutes containing
an apnea during an overnight recording. This disorder is an
aggravating factor for different health conditions, including
cardiovascular disease [3], high blood pressure [4], stroke [5]
and clinical depression [6] because of sleep deprivation and
oxygen lack over long periods of time. Around 4% of adult
men and 2% of adult women are affected by this disorder [7].

In a context of preventive health-care, automatically detect-
ing and screening OSA is especially interesting when targeting
personalized welfare, as it can be done from home. Indeed
current systems are bulky and expensive, making them only
available in hospitals for the most severe cases. Thus, it
leaves most of the affected population left without any kind of
monitoring [8]. Detecting OSA with the lesser invasive ambu-
latory device, with an accessible price enables the patients to
free hospitals beds and benefit from better living conditions
at home, while still being monitored on the long term in
case of assistance need. Furthermore, a recent group study
shows a higher mortality rate on severe OSA population with
respiratory help compared to other patients [9]. This lowers the

incentive of a systematic external respiratory help for patients
with low to moderate OSA.

Due to the significant amount of the population affected
and the adverse effects of OSA on health conditions, many
studies have been recently conducted on this topic. In par-
ticular, one attempt to detect OSA by only using single-lead
electrocardiogram (ECG) recordings to find new and reliable
ways of screening OSA with a less invasive setup than current
solutions [10]. Indeed, the gold-standard measurement method
for OSA detection requires a careful setup of at least 16 elec-
trodes on the patient’s body connected. Therefore, a reference
database [11] has been publicly released, featuring the full
single-lead ECG recordings along with the OSA annotations
from a health professional.

Given the high cost of the existing medical equipment
combined with its bulkiness, we investigated a way to have
an efficient, cost effective and non-intrusive device for OSA
detection and screening. Our contributions are the following:

e Development of an online detection algorithm for
obstructive sleep apnea relying exclusively on ECG
data.

e Integration of the algorithm in a low-cost and low-
power embedded platform.

e  Optimization of the workload to free processing power
for other software tasks.

The rest of this paper is organized as follows. First, it
presents the state-of-the-art of automatic OSA detection in
Section II, followed by the dataset characteristics in Section
III. Section IV describes the algorithm implemented with each
individual part’s contribution detailed. Section V will detail the
target device for the algorithm integration. Section VI explains
the steps followed to port the algorithm to the target and then
a review of the power consumption is done in Section VII.

II. STATE OF THE ART

The traditional way to diagnose and monitor obstructive
sleep apnea is through the use of polysomnography (PSG)
along with electroencephalography (EEG), electrooculography
(EOQG), electromyography (EMG), electrocardiography (ECG),
oronasal airflow and respiratory effort and oxygen saturation
[12]. This requires a lot of medical attention and equipment for



usually two full nights of measurements, as well as a diagnostic
made by a doctor.

All the devices available commercially or at the research
state [13], [14], [15], [16], [17], only offer a simple recording
of the signals. The processing and identification of OSA comes
afterwards when downloading the data to a smartphone, a
computer or a web-service.

Because of the absence of online analysis of the recorded
signal, we aimed at researching and developing such a device,
using an already existing hardware architecture (c.f. Section
V).

The methods are developed based on a publicly available
database [11] providing full ECG recordings released for
stimulating research on detecting OSA using only signle-lead
ECG recordings. While the published works targeted an offline
analysis using a computer/cloud system, our main contribution
in this paper is to develop methods that can directly run on a
mobile device. In general, latest works [1], [18], [19] analyzed
the power spectrogram of heart-beat intervals series to classify
patients. This is due to the presence of a notable shift on the
power distribution as presented in the spectrum in shown in
Fig. 1. Indeed, during OSA events, the signal’s power in the
lowest frequencies of the spectrum rise significantly therefore
this feature is relevant for automatic OSA detection.

Feature extraction of the ECG morphology from the record-
ings such as the amplitude, pulse energy and duration of
specific deflections present in the ECG (R, S and T waves) has
also been investigated [1], [18], [19]. These characteristics are
useful as complementary features to improve the classification.
Time-domain feature extraction and processing has also been
considered [1], [20], [19]. The best accuracy [18] of 92.5%
is nevertheless obtained by a combination of different features
extracted from the frequency-domain (power spectral density
and time-frequency maps) as well as from the ECG morphol-
ogy (heart-rate, S-wave amplitude and pulse energy). The main
drawback of this solution is that it is a manual classification
and not an automatic one.

When considering a fully automatic classification algo-
rithm, the reference for comparison will be the one from [1]
because it is the one achieving the best results when using
only the spectrogram power and it is the one giving the most
details about its results in terms of accuracy, sensitivity and
specificity. When using only the frequency derived for the RR-
peaks, the final accuracy reported is 80.3% with a sensitivity
and specificity of respectively 73.9% and 84.2%. The other
publication mentioning the sensitivity and specificity is [20]
but it does not use any spectral analysis. It reached an accuracy
of 85.6% along with 72.1% sensitivity and 91.2% specificity.

As we aim at keeping the global software complexity and
processing workload as low as possible, we chose to use
only the frequency spectrum of the intervals between two R
peaks (RR) without paying the energy cost of extracting more
features. This specific case has been considered by [18] and [1]
where the reported accuracy is respectively 78.9% and 79.2%
for minute-by-minute classification. Combining this with other
features extracted from the ECG enabled the latter [1] to reach
the score of 89.8%. However, this solution requires a heavier
CPU active time which prevents the use of our device for long-
term screening.

To the best of our knowledge, this paper is the first to
propose an online solution for OSA detection on a wearable
device which is recording and processing the ECG before
analyzing it for the existence sleep-apnea events.
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Figure 1. Spectrogram of the log-power for the recording x32 with the
labeled OSA overlayed in white as a logic signal.

III. APNEA-ECG BENCHMARK RECORDINGS

The recordings used for comparing the results are publicly
available on Physionet in the apnea-ecg database [11]. The 70
single-lead ECG recordings were sampled at a frequency of
100Hz and manually labeled minute-by-minute by an expert
for sleep apnea and hypopnea events, without distinction
between both. The used beat annotations were provided along
with the files by Physionet, coming from an automatic delin-
eation without any specific correction.

The recordings come from a set of 32 subjects, healthy
and with obstructive sleep apnea. From those subjects, four
contributed to four recordings each, two contributed to three
recordings each and 22 contributed to two recordings each.
The dataset is divided in two groups of 35 recordings, one
for training and one for testing. In each group, the amount of
apnea events represents around 50% of the data.

The time range of the recordings goes from 6h 41min to
9h 38min, with an average duration of 8h 12min. The normal
breathing time varies between 11 and 535 minutes whereas for
the disordered breathing, it ranges from O to 534 minutes. The
amount of breathing-disordered minutes was used to classify
the patients in three different groups: the control group C
showed less than 5 minutes of disordered breathing, and the
apnea group A was defined as having 100 or more minutes of
disordered breathing. The remaining cases were classified in
the group B as being borderline.

The training set of 35 recordings has been used for tuning
the parameters and the test set for assessing the performance
of the algorithm. No files have been left out or were modified
in any way using an offline pre-processing.

IV. SLEEP-APNEA DETECTION ALGORITHM

We chose to build an algorithm suitable for embedded
processing, targeting a wearable device for non-invasive and



personalized health care. Therefore, as it is an low-power
device, the algorithm should be efficient, yet simple and easy
to integrate. It will be part of an existing data flow processing
already developed (Fig. 2) and must work online to raise an
alert whenever a problem occurs during the screening.

Compared to the state-of-the-art, we decided to lower the
overall algorithmic complexity while keeping good results by
focusing exclusively on a frequency-domain processing for two
reasons. First, this is the feature which yields the best results
when used alone. Second, a time-frequency conversion block
is already available in the considered device as shown in Fig.
2.

In the context of frequency analysis based algorithms, the
power in bands close to 10-40 mHz is always identified as an
important feature to monitor, so we based our development on
this specific feature, improving the results by adding one stage
of pre-processing and another of post-processing.

Our implementation follows the flowchart in Fig. 3: the
ECG is recorded by the device, then filtered and delineated
to retrieve the R-wave peak. There is an optional single-beat
correction step before the final ECG analyses. Each block of
the sleep apnea detection will be detailed hereafter. The blocks’
respective parameters have been optimized on the training set
one after another until reaching convergence.

Arthythmia
Sleep apnea

Figure 2.  Processing blocks integrated in the device. The OSA analysis
has been integrated within the ECG analysis block

A. Pre-processing: Thompson filtering

Detecting and removing outliers is important because they
have strong negative effects on the time-frequency conversion
[21]. We chose to do this data-validation thanks to a Thompson
filter, which is applied on the series of RR-intervals. The
Matlab implementation is provided by [22] whereas the C
version was developed specifically taking into account the
constraints of the platform and the specificity of the data.
This filtering is more generic than a single-beat correction,
such as [23], because it simply deletes the outliers without
any correction but does not adversely affect the results as the
amount of data removed is small.

We did an automatic parameter sweep to find the optimal
setting for the filtering varying its strength from 0% to 1% with
0.2% steps, and then up to 10% with 0.5% steps. The results
in Fig. 4 shows that small values give the best results. This
can be explained because of two phenomenons. First, a small
number of values have a significant impact on time-frequency
conversion so they need to be filtered out with a weak filtering.

| Record ECG

60 seconds of new o
ECG data available?

| Remove beat-to-beat outliers |

v

| Compute frequency spectrum |
< Enough apnea-score >"° »
| Apply unweighted moving average |
Is the result above the
apnea threshold?
| Label minute as apnea |

| Compute apnea score |
data available?
: no
Flowchart of the proposed OSA screening algorithm

Figure 3.

Second, using a strong filtering also removes meaningful data
by being over-selective thus decreasing the resulting accuracy.
Therefore, a balanced value between those two extremes can
improve the results up to 5%.
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Figure 4.  Evolution of the accuracy depending on the strength of the
Thompson filter.

B. Apnea scoring

Once the data has been filtered, the apnea-score can be
computed using the signal’s power spectrum. We define this
score as being the relative power in the apnea-band compared
to the total signal power when working on a five minutes
window. After an additional noise-filtering step, this score will
be the value used for discriminating an apnea-minute and a
non-apnea minute.

As there is no defined gold-standard of the frequencies of
the apnea-band to be used for estimating OSA events from an
ECG recording, we automatically tuned the frequency-band.



We tested the change of frequency-band bounds, focusing
on improving the classification accuracy. From an exhaustive
exploration of all possible frequency bands from OHz to 0.1Hz,
we obtained 2D-maps of accuracy such as the one displayed in
Fig. 5. The apnea frequency-band bounds are readable on the
axes, and the classification accuracy is linked to the color in
the graph. From the figure, we notice a clear frequency interval
regarding the lower bound of the band ranging from 10mHz
to 18mHz while the upper bound has more tolerance, from
45mHz to 75mHz. This whole area gives good classification
results which are reaching 76% in the illustrated case where
no data correction nor validation is integrated in the global
algorithm.
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Figure 5. Classification accuracy rate for OSA when varying frequency
band bounds. The circular dot is placed at the position of the best
frequency band.

C. Apnea-score smoothing

The reference minute-by-minute sleep-apnea labels reveal
that OSA is a signal which changes at a low frequency:
it is unlikely to have a single minute containing an apnea
event in a long period of non-apnea sleep and vice-versa.
Therefore, we need to track the evolution of the apnea-score
over several minutes. We implemented this feature using a
simple unweighted moving average.

In the same way we tuned the Thompson filtering strength,
we optimized the moving average window length. When using
a length of 15+4 minutes, there is classification accuracy
increase of 3% to 4% depending on the specific configuration
of the previous processing blocks.

V. TARGET DEVICE

We will be targeting a device developed by SmartCardia
(Fig. 6) [24]. It is an energy-effective wearable device
providing a single-lead ECG recording with a 24 bits depth
digitization at a frequency from 250Hz to 16kHz, skin-
conductance and respiration evolution. The latter is measured
using additional electrodes by impedance pneumography. The
impedance change due to chest movement and blood oxygen
saturation is captured using proprietary circuitry. The device is
equipped with the STM32L151RDT®6, an ultra-low-power 32-
bit microcontroller which can operate at a maximum frequency
of 32 MHz. It features 48 kB of RAM, 384 kB of flash storage
and analog peripherals including a 12-bit ADC.

Given the internal capabilities and connectivity possibili-
ties, it can work as a fully autonomous device for several hours

Formula

HRpqz = 208 — 0.7 X age

HR oz = 220 — age

HR'maz 205.8 — 0.685 x age
HRmao 1+ezp(0.03%‘1?(2967104.3)) 191 bpm (28]
HR oz = 2178 — 0.85 X age 200 bpm [29]
Table 1. MAXIMUM HEART-RATE GIVEN THE AGE

age = 20 Ref.
194 bpm [25]
200 bpm [26]
192 bpm [27]

Estimating the maximum heart-rate can be done using different formulas. We applied
each of them in the case of a healthy adult where the heart-rate reachable is the
highest, that is to say 20 years old.

of recording, uploading the recorded data to a base station
when one becomes available. For example, a Bluetooth® Low-
Energy compliant smartphone can be used for that, which can
afterwards be used to display the data on-screen, upload it
to a remote medical web-service or even raise an alarm if a
critical condition is detected. In case of a web-service, it can
be used by the patient’s attending physician to manually check
the data. Another use can be for anonymized population-wide
statistical studies.

Figure 6.  The target device has a credit-card form-factor and can be
used both hand-held or in a chest strap band.

VI. OPTIMIZATION AND INTEGRATION OF THE
ALGORITHM IN THE TARGET DEVICE

The algorithm has been ported from an offline Matlab
implementation to a online and embedded C one. The initial
classification accuracy is 83.4%.

To prevent runtime hardware faults triggered by dynamic
memory allocation, we dedicate enough memory at compile-
time for the arrays used to store and compute the data. As the
apnea-scoring block needs to work on five minutes of data, we
decided to allocate enough memory to store 1000 beat-to-beat
intervals. This is the theoretical maximum number of heart-
beats which can occur under normal conditions according to
the estimators available in Table 1.

A. Thompson filtering tuning

The original implementation of the Thompson filtering can
use different estimators for the averages and standard devia-
tions used in its internal processing. The default estimator,
biweight, is less prone to be much affected by erroneous
values but it comes at the price of an increased computational



load as it uses a more advanced statistical modeling of the
input. In the case of the biweight method, it requires finding
the median value of the input vector as well as the median
absolute deviation from the median value. In other terms, it
involves extra-memory for duplicating the input data, gener-
ating another vector derived from the input data and sorting
them both before computing the biweight mean and average.
When moving from biweight to the usual average and standard
deviation, the results are decreasing by only 0.4%, which is a
very good situation because the simplification of the internal
processing brings both comparable results and lowers the use
of both memory and CPU time.

Another improvement was applied thanks to the knowl-
edge we have on the dataset. Indeed, when computing the
Thompson filtering, we need an intermediate 7 variable which
is derived from the inverse cumulative distribution function
of the Student’s distribution. Fig 7 shows that for a filter
strength of 1% and an input length from 200 to 1000, the value
of 7 can be approximated as constant. For the variations of
strength considered, changing the filter strength only changes
the vertical scaling. This interval corresponds to our maximum
bounds of heart-rate from 40bpm to 220bpm for the required
five minutes window of apnea-scoring. We chose the constant
to be the 7 value given for a vector length of 325 as this is
the average number of beat-to-beat intervals in five minutes
of sleep [30]. This optimization has no effect on the final
classification outcome.

3

281

n
o

7 value for a filter strength of 1%
- = = RN
A » o v N B

S

400 600 800 1000
Input vector length

Figure 7. 7 value computed by the Thompson filtering for a strength
of 0.01. The relevant input vector length in our situation is from N=200
to N=1000.

B. Fast-Frourier Transform optimization

Computing the spectrum of the input signal is done using
the Lomb normalized periodogram. The implementation used
[31] is really lightweight and dedicated to processing heart-
beats on a low-power platform, albeit not really exact. It takes
a vector of RR intervals and timestamps as inputs, resamples
it, and fits the closest power of two required for the analysis.

The initial configuration required allocations of single-
precision floating-point arrays of length 2048 which exceeded
the target’s available memory. Compromises had to be made
regarding the oversampling factor and maximum frequency
to compute so it could fit in arrays half as long. Lowering
the oversampling factor by 25% as well as the maximum
frequency from 0.83Hz to 0.50Hz was enough to meet the
memory requirements. Thanks to several tuning iterations of
the parameters, the lowering of the precision of the FFT is

Operation Current (mA) Duty cycle (%) Average current (mA)

ECG acquisition 0.435 100 0.435

ECG delineation 10.5 1.67 0.175

Apnea processing 10.5 1.68 0.177

Idle time 2.10 96.65 2.030

Total 2.816

Table II. CURRENT USED FOR OSA DETECTION ON THE TARGET
DEVICE

balanced to keep as good results. The final accuracy reaches
83.2%, which is only 0.2% lower than our reference offline
implementation.

VII. ENERGY CONSUMPTION

After porting the algorithm on the device, measurement of
the processing time on the device shows that on 141 apnea
computations, the average time was 1.004 seconds and the
standard deviation was 0.025 seconds. As such processing
occurs at each time one full new minute of data is available,
the duty cycle is as low as 1.67% which leaves computational
power for other operations such as feature extraction of the
R-peaks from the ECG signal.

In the case where the device is only used for OSA detec-
tion, the energy consumption results are reported in Table II.
The ECG measurement is active 100% of the time, therefore it
is a constant current draw. Concerning the software, two main
parts are required: the ECG delineation to detect the heart-beat
and the OSA detection. In both cases, the microcontroller is in
its active state, consuming 10.5mA. The rest of the time, when
no computation is running, the CPU is in an energy-saving
mode drawing 2.10mA. Summing the individual consumptions
weighted according to their individual duty cycles gives an
average current consumption of 2.816mA. As the battery is
rated at 710mAh, the total lifetime to expect is 252 hours,
which is equivalent 10.5 days.

VIII. CONCLUSION

There is a high rate of OSA in the population combined
with a very low percentage of persons being monitored for
this condition. This is explained because this health problem
is under-diagnosed, expensive and bulky to monitor and has
no directly lethal consequences. Nevertheless, it is known to
be an aggravating factor for other life-threatening conditions
linked with the vascular system and it affects everyday’s life
because of sleep deprivation. All those points motivated the
work described in this paper with the research and development
of a non-intrusive wearable system for online detection of OSA
events which can be used for long-term screening.

The existing wearable devices dedicated to OSA always
record the data for an offline processing after having transmit-
ted the data to another device, whether it is a smartphone, a
computer or an online service. None of them have integrated
the full ECG recording, delineation and analysis on the same
low-power and low-energy device. As for the algorithms, the
literature recognized the importance of a frequency analysis
of the beat-to-beat series. The main drawback from our point
of view is that they focus on offline analysis, which means
that many more features can be extracted and used for the
classification of OSA. In the context of a wearable device,



each additional operation comes with a processing cost which
adversely affects the battery-life.

Considering the state-of-the-art, we decided to develop
a non-intrusive wearable and autonomous solution to record
and process ECG for OSA classification. Therefore, we
implemented and optimized an online algorithm for OSA
detection relying on a single feature extrated from the ECG.
We integrated it in an affordable ultra-low-power device and
we lowered the workload to save the battery life leave the
option of adding additional diagnostics algorithms.

In the end, we reached 83.2% accuracy for a minute-by-
minute classification while running on the device for more
than 10 days. This is 2.9% better than the existing offline
algorithms relying on the same ECG feature.
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