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Evaluating the (dis)similarity of crystalline, disordered and molecular compounds is a critical
step in the development of algorithms to navigate automatically the configuration space of com-
plex materials. For instance, a structural similarity metric is crucial for classifying structures,
searching chemical space for better compounds and materials, and to drive the next generation
of machine-learning techniques for predicting the stability and properties of molecules and mate-
rials. In the last few years several strategies have been designed to compare atomic coordination
environments. In particular, the Smooth Overlap of Atomic Positions (SOAP) has emerged as a
natural framework to obtain translation, rotation and permutation-invariant descriptors of groups
of atoms, driven by the design of various classes of machine-learned inter-atomic potentials. Here
we discuss how one can combine such local descriptors using a Regularized Entropy Match (RE-
Match) approach to describe the similarity of both whole molecular and bulk periodic structures,
introducing powerful metrics that allow the navigation of alchemical and structural complexity
within a unified framework. Furthermore, using this kernel and a ridge regression method we can
also predict atomization energies for a database of small organic molecules with a mean absolute
error below lkcal/mol, reaching an important milestone in the application of machine-learning
techniques to the evaluation of molecular properties.

Keywords: Structural fingerprints, machine-learning, materials and molecules, non-linear dimen-

sionality reduction

I. INTRODUCTION

The increase of available computational power,
together with the development of more accurate
and efficient simulation algorithms, have made it
possible to reliably predict the properties of mate-
rials and molecules of increasing levels of complex-
ity. Furthermore, high-throughput computational
screening of existing and hypothetical compounds
promises to dramatically accelerate the develop-
ment of materials with the better performances or
custom-tailored properties'©.

These developments have made even more ur-
gent the need for automated tools to analyze,
classify”™ ! and represent'? !¢ large amounts of
structural data, as well as techniques to leverage
this wealth of information to estimate inexpen-
sively the properties of materials using machine-
learning techniques, circumventing the need for
computationally demanding quantum mechanical
calculations!” 28,

At the most fundamental level, the crucial ingre-
dient for all these techniques is a mathematical for-
mulation of the concept of (dis)similarity between
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atomic configurations, that can take the form of
a distance - that can be used for dimensionality
reduction or clustering - or of a kernel function,
that could be used for ridge regression or auto-
mated classification.?? 32 The most obvious choice
for a metric to compare atomic structures would
involve the Euclidean distance between the Carte-
sian coordinates of the atoms, commonly known as
root mean square displacement (RMSD) distance,
that can be easily made invariant to relative trans-
lations and rotations. It is however highly non-
trivial to extend the RMSD to deal with situations
in which atoms in the two structures cannot be
mapped unequivocally with each other. The deter-
ministic evaluation of a “permutationally invari-
ant” RMSD scales combinatorially with the size
of the molecules to be compared33, and introduces
cusps at locations where the mapping of atom iden-
tities changes. Furthermore, as we will discuss later
on, the RMSD is perhaps the most straightfor-
ward, but not necessarily the most flexible or effec-
tive strategy to compare molecular and condensed-
phase configurations.

In the last few years, a large number of “finger-
print” functions have been developed to represent
the state of structures, or of groups of atoms within
a structure. Structural descriptors have been de-
veloped based on graph-theoretic procedures (e.g.
SPRINTs?!), as well as on analogies with elec-



tronic structrure methods (e.g. Hamiltonian ma-
trix, Hessian matrix, Overlap matrix of Gaussian
type Orbitals (GTO) or even Kohn-Sham eigen-
values fingerprints?). Most of these approaches
have been introduced to provide a fast and reli-
able estimate of the dissimilarity between struc-
tures. Several other descriptors have been also
used in machine learning, to predict properties of
materials and molecules circumventing the need
for an expensive electronic structure calculation.
A non-comprehensive list of such methods include
Coulomb matrices?2, bags of bonds?®, “symmetry
functions”3?, scattering transformation applied on
a linear superposition of atomic densities?3.

A particularly promising approach to compare
structures in a way that is invariant to rota-
tions, translations, and permutations of equiva-
lent atoms, is to start from descriptors designed to
represent local atomic environments and that ful-
fill these requirements, and combine them to yield
a global measure of similarity between structures.
This idea typically relies on finding the best match
between pairs of environments in the two config-
urations?233:36  and can also be traced back to
methods developed to compare images based on
the matching of local features”.

In the present work we start from a recently-
developed strategy to define a similarity kernel be-
tween local environments — the smooth overlap of
atomic positions (SOAP)?® — and discuss the dif-
ferent ways one can process the set of all possible
matchings between atomic environments to gen-
erate a global kernel to compare two structures.
In particular, we introduce a regularized entropy
match (REMatch) strategy that is based on tech-
niques in optimal-transport theory®?, and that is
both more efficient and tunable than previously-
applied methods. We discuss the relative merits of
different approaches, and generalize this strategy
to the comparison between structures with differ-
ent numbers and kinds of atoms. We demonstrate
the behavior of the different global kernels when
applied to completely different classes of problems,
ranging from elemental clusters, to bulk structures,
to the conformers of oligopeptides and to a hetero-
geneous database of small organic molecules. We
visualize the behavior of the distance associated
with these kernels using sketch-map'3, a non-linear
dimensionality reduction technique, and demon-
strate the great promise shown by the straightfor-
ward application of the REMatch-SOAP kernel to
the machine-learning of molecular properties. Fi-
nally, we present our conclusions.

Il. THEORY

Let us start by introducing the notation we will
employ in the rest of the paper. We will label
structures to be compared by capital letters, use

a lowercase Latin letter to indicate the index of an
atom, and when necessary use a Greek lowercase
letter to mark its chemical identity. For instance,
the position of the i-th atom within the structure
A will be labeled as x*. The environment of that
atom, i.e. the abstract descriptor of the arrange-
ment of atoms in its vicinity will be labelled with
a calligraphic upper case letter, e.g. XiA, and the
sub-set of such environment that singles out atoms
of species a will be indicated as XiA’o‘.

Among the many descriptors of local environ-
ments that have been developed in the recent
years! 3:56,17-22,24-28,33,36 ' e will refer in partic-
ular to the SOAP fingerprints?®, that have been
proven to be a very elegant and robust strategy to
describe coordination environments in a way that
is naturally invariant with respect to translations,
rotations and permutations of atoms. We will use
the notation k(X, X’) to indicate the similarity ker-
nel between two environments — which one would
use in a kernel ridge regression method3!3240 —
and d(X,X")? = 2 — 2k(X,X’) to indicate the
(squared) kernel distance between the environ-
ments — which one would use in a dimensionality
reduction method!®'6. In what follows we will dis-
cuss different ways by which environment kernels
can be combined to yield a a global similarity ker-
nel between two structures K (A, B), and the asso-
ciated squared distance D(A, B)? = 2 —2K (A, B).

A. SOAP similarity kernels and local environment
distance

We will first focus on the comparison between
the environment of two atoms in a pure compound
made up of single atomic species . The crucial
ingredient in making the comparison is a kernel
function based on the distribution of atoms in the
two environments. In the context of SOAP kernels
one represents the local density of atoms within
the environment X" as a sum of Gaussian functions
with variance o2, centered on each of the neighbors
of the central atom, as well as on the central atom
itself:
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The SOAP kernel is then defined as the overlap
of the two local atomic neighbour densities, inte-
grated over all three-dimensional rotations R,

n
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Note that in the n = 1 case the two integrals can
be switched, and therefore the kernel looses all an-
gular information, so we focus on the n = 2 case
exclusively. For most applications it is helpful to



normalise the kernel so that the self-similarity of
any environment is unity, giving the final kernel

B, &) = (X, X\ R, )R, 27 (3)

It is a remarkable property of the SOAP kernel
that the integration over all rotations can be car-
ried out analytically. First the atomic neighbour
density is expanded in a basis composed of spheri-
cal harmonics and a set of orthogonal radial basis
functions {gp(r)},

pa(r) = coimgs(|r])Yim(2), (4)
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then the rotationally invariant power spectrum is
given by

P(X)bibat = Y (Cout) e (5)
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Collecting the elements of the power spectrum into
a unit-length vector p(X), the SOAP kernel is
shown?® to be given by

(X, X) = p(X) - p(X) (6)

eventually leaving a definition of the distance as

d(X,X') = /2 - 2p(X) - p(X) (7)

The SOAP kernel can be written in the form of a
dot product, therefore it is manifestly positive def-
inite, which implies that the distance function (7)
is a proper metric.

B. From local descriptors to structure matching

The vectors that enter the definition of the en-
vironments are defined in such a way that their
dot product is the overlap of (smoothed) atomic
distributions. Given two structures with the same
number N of atoms, we can compute an environ-
ment covariance matriz that contains all the pos-
sible pairing of environments

Cij(A,B) =k (X, xP), (8)

This matrix contains the complete information on
the pair-wise similarity of all the environments be-
tween the two systems. Based on it, one can in-
troduce a global kernel to compare two structures
or molecules. We will discuss and compare four
different approaches. All of them are meant to be
normalized, i.e. the given expressions for K (A, B)
are to be divided by /K (A, A)K(B, B) whenever
such normalization is not automatically one.

a. Average structural kernel A first possibility
to compare two structures involves computing an
average kernel

_ 1
K(A,B) = > Cij(A,B) =
ij
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One sees that K can be computed inexpensively
by just storing the average SOAP fingerprint be-
tween all environments of the two structures. This
kernel is also positive-definite, being based on a
scalar product?!, and therefore induces a metric
D(A,B) = /2 —-2K(A,B). On the other hand,
it is not a very sensitive metric: two very differ-
ent structures can appear to be the same if they
are composed of environments that give the same
fingerprint upon averaging.

b. Best-match structural kernel Another pos-
sibility, that has been used previously with dif-
ferent kinds of structural fingerprints?>4244 is to
identify the best match between the environments
of the two structures,

K(A,B) = % mgxz Cir, (A, B). (10)

which can be accomplished with an O(N3) effort
using the Munkres algorithm®®. The correspond-
ing distance has the properties of a metric, which
means it can still be safely used to assess similarity
between structures and molecules. Unfortunately,
this “best-match” kernel is not guaranteed to be
positive-definite, which makes it less than ideal
for use in machine-learning applications. Further-
more, the distance obtained by a best-match strat-
egy is continuous, but has discontinuous derivatives
whenever the matching of environments changes.
These problems can be solved or alleviated by
matching the environments based on a different
strategy, that combines features of the average and
the best-match kernels.

c. Regularized entropy match kernel The best
match problem can be also stated in an alternative
form, namely

max

K(A,B) =
(4, B) PCEU(N,N)

> Ci(A,B)P;. (1)

j

where U(N, N) is the set of N x N (scaled) doubly
stochastic matrices, whose rows and columns sum
to 1/N,ie. Y P = Zj P;; =1/N. We can then
borrow an idea that was recently introduced in the
field of optimal transport® to regularize this prob-
lem, adding a penalty that instead aims at maxi-
mizing the information entropy for the matrix P
subject to the aforementioned constraints on its



marginals. Such “regularized-entropy match” (RE-
Match) kernel is defined as

K7(A,B) = TrP'C(A, B),

PY = argmin ZPM (1-Cij —yInPy) (12)

where the regularization is given by an entropy
term E(P) = } , P;jInP;. PY can be com-
puted very efficiently, with O(N?) effort, by the
Sinkhorn algorithm?®® (see Appendix). For vy —
0, the entropic penalty becomes negligible, and
K7(A,B) — K(A,B). For v — oo, one selects
the P with the least information content, that is
one with constant P;; = 1/N?. Hence, in this limit
K7(A,B) = K(A,B).

d. Permutation structural kernel For the sake
of completeness, we also discuss a fourth option:
rather than summing over all possible pairs of envi-
ronments, one can consider each pairing of environ-
ments separately, and sum over all the N! possible
permutations that define the pairings. In order to
kill off more rapidly the combinations of environ-
ments that contain bad matches, one can multiply
the kernels that appear in each pairing, and define
a permutation kernel

K(A,B) = % > ] Cin (A, B) = perm C(A, B).

(13)
This choice corresponds to the evaluation of the
permanent of the environment kernel matrix, and
has some appeal as it is guaranteed to yield a
positive-definite kernel*®. The evaluation of the
permanent of a matrix, however, has combinato-
rial computational complexity?”. Its application is
limited to small molecules, and we will not discuss
it further in the present work.

C. Matching structures containing multiple species

When comparing structures that contain differ-
ent atomic species, the first problem that has to
be addressed is that of extending the local envi-
ronment metric so that the presence of multiple
species is properly accounted for.

SOAP descriptors provide a very natural way to
do this: a separate density can be built for each
atomic species

s = 3 e (-2)
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and a (non-normalized) kernel be defined by

matching separately the different species:
2

F(X, X)) = / R
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Here we have introduced “partial” power spectra
that encode information on the relative arrange-
ment of pairs of species,

Pas(¥)  Paal¥') = [ dR \ [ )0 (e B

(16)
The species-resolved power spectrum p,g can be
written as

P = D (im) i (17)

m

and combines the expansion coefficients

PR(E) =D G gn(IT) Yo (8) (18)
blm

of the two densities. The kernel in Eq. (15) can
then be normalized as in Eq. (3).

Note that the SO(3) power spectrum vectors con-
tain mixed-species components due to the squaring
of the density overlap within the rotational aver-
age. These mixed terms guarantee that the kernel
is sensitive to the relative correlations of different
species, although the overlap between the environ-
ments of the different species is considered to be
zero. One could however introduce a notion of “al-
chemical similarity” between different species. For
instance, when comparing structures of III-V semi-
conductors one could disregard the chemical infor-
mation on the identity of an atom as long as it
belongs to the same column of the periodic table.
Such a notion can be readily implemented, defin-
ing an alchemical similarity kernel ko which is one
for pairs that should be considered interchangeable,
and tend to zero for pairs that one wants to con-
sider as completely unrelated. The expression then
becomes

2
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The original expression (15) can be recovered by
setting kag = dap. Global similarity kernels can
then be transparently introduced to compare struc-
tures composed of different atomic species, with
structure and alchemical composition treated on
the same footings and the possibility of adapting
the definition of similarity to the system and ap-
plication.



D. Matching structures with different numbers of
atoms

The definitions above can be readily extended to
compare structures containing different numbers of
atoms N4 and Np. We discuss two possible strate-
gies. When comparing crystalline, periodic struc-
tures, it may be the case that one of the structures
corresponds to a slight distortion of the other, that
needs a larger unit cell for a proper representation.
Comparing the structures using the average ker-
nel (9) does automatically the “right thing”, that
is performing the comparison in a way that is inde-
pendent of the number of times the two structures
have to be replicated to match atom counts. In
the case of the permutation kernel and of the best-
match kernel, the most effective way to perform
the comparison is to evaluate the least common
multiple N of N4 and Np, and replicate the envi-
ronment similarity matrix to form a square matrix.
One can then proceed to compute the permanent,
or the linear assignment problem, based on such
replicated matrix. The advantage of this proce-
dure is that one does not need to explicitly find
the relation between the shape of the two unit cells
and replicate them to perform the comparison: the
environment similarities can be evaluated includ-
ing periodic replicas, and the minimum number
of comparisons will be naturally performed among
any pairs of structures. However, the least com-
mon multiple can become very large, making even
the best-match kernel (10) impractically demand-
ing, although the cost can be reduced by exploit-
ing the redundancy in the extended environment
covariance matrix. As shown in the Appendix, the
REMatch kernel (12) can be computed easily also
for a rectangular matrix, which constitutes an ad-
ditional advantage of formulating the environment
matching problem in terms of a regularized trans-
port optimization.

When comparing molecules or molecular frag-
ments, it may be advisable to proceed differently.
One could consider an idealized pool (“kit”) of iso-
lated atoms from which a number of molecules will
be built, and use them to “top up” each molecule
so as to obtain a set of structures, all having the
same number of atomic environments. The “ref-
erence kit” could be chosen dynamically for each
pair of molecules, or — when working with a well
defined database — fixed globally as the smallest set
of atoms needed to generate all the relevant struc-
tures. One can then define the kernel between an
actual atomic environment and those within this
“virtual atom reservoir”, k(X,0) = e *, in terms
of a “chemical potential” parameter u. Since the
SO(3) fingerprints that underlie the definition of
the SOAP kernel can also be evaluated for isolated
atoms*®, it is also possible to introduce a natu-
ral definition of the covariance between an environ-
ment and an isolated atom, which has the advan-

tage that the global kernels will then vary smoothly
during an actual atomization process.

E. Representing (al)chemical landscapes

In this work we will demonstrate the flexibil-
ity, transferability and effectiveness of the frame-
work we have just introduced to compare molec-
ular and condensed-phase structures. To this
aim, we will build two dimensional maps that
represent proximity relations between the struc-
tures — as assessed by the kernel-induced metric
— using sketch-map'3, a non-linear dimensional-
ity reduction (NLDR) scheme specifically designed
to deal with atomistic simulation data. As we
will demonstrate, the combination of SOAP-based
structural metrics and NLDR, representation pro-
vides a broadly applicable protocol to generate
an insightful representation of the structural and
alchemical landscape of complex molecular and
condensed-phase systems. Of course, one could
use the SOAP-based global kernels, or the corre-
sponding distances, as the basis of other non-linear
dimensionality reduction techniques, such as multi-
dimensional scaling®® or diffusion maps'2:16:50,

We refer the reader to the relevant litera-
ture for a detailed explanation of the sketch-map
algorithm'3 ®. The main idea derives from multi-
dimensional scaling, and is based on optimizing a
non-linear objective function

§% =3 [FID(Xi, X)) = f ld(zi,25)]]° (20)

ij

where {X;} and {x;} correspond respectively to
high-dimensional reference structures and to vec-
tors in a low-dimensional space. The metric d
in low dimension is typically taken to be the Eu-
clidean distance, whereas the metric in high dimen-
sion could be more complex. In this case, X; can
be regarded as an abstract descriptor of a struc-
ture or molecule, and D is one of the kernel-based
distance metrics discussed above. F' and f are non-
linear sigmoid functions of the form

F(r)=1—(1+@2"" = 1)(r/o)*)~"  (21)

which serve to focus the optimization of (20) on
the most significant, intermediate distances, disre-
garding local distortion (e.g. induced by thermal
fluctuations) and the relation between completely
unrelated portions of configuration landscape. The
choice of the parameters in the sigmoid functions is
discussed in Ref.'®. Here we will label synthetically
each sketch-map representation using the notation
o-A_B-a_b where A and B denote the exponents
used for the high-dimensional function F', a and b
denote the exponents for the low-dimensional func-
tion f, and o the threshold for the switching func-
tion.
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FIG. 1. The figure compares the value of global structural similarities for different pairs of structures taken from

the 80 local energy minima of Cgo discussed in Ref.*?

The structural similarities considered include the absolute

difference in energy per atom, the (permutation invariant®) RMSD per atom, and the best-match combination
of SOAP kernels computed with different cutoff distances (2A, 3.5A, 7A). The correlation between RMSD and D
based on 2A-cutoff SOAP is enlarged, color-coded based on energy differences and annotated with selected pairs

of structures corresponding to different distances.

Ill. EXAMPLES AND APPLICATIONS

After having described the theoretical and al-
gorithmic background of our strategy to define a
structural similarity kernel, let us present a series
of applications. In order to demonstrate that our
approach can be seamlessly applied to the most di-
verse atomistic simulation problems, we have cho-
sen examples of increasing complexity, from clus-
ters, to crystalline and amorphous solids, to biolog-
ical molecules and a database of small organic com-
pounds, containing varying number of both atoms

and atomic species.

A. The energy landscape of Cgo clusters

Let us start with a relatively simple test case.
We consider the same set of 80 local minima for
Ceo discussed in Ref.#?, which were obtained by ex-
ploring the Density Functional Theory energy land-
scape of Cgp using the Minima Hopping °' global
structure search algorithm. Figure: 1 contrasts

different similarity matrices: the permutation-
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FIG. 2. The figure compares the value of global structural distances induced by the average, best-match, and
REMatch kernels discussed in Section II B, for 80 local-minimum structures of Cgo. On the diagonal we report the
sketch-map projections of the structural landscape based on the three metrics, colored according to the energy of
each structure, as obtained by Sandip et all *>. Eight representative structures and their positions on the Sketch-
maps have been indicated with alphabets on color coded disks. The numeric value on the top of each structure
represents their energy in eV, relative to the global minimum. SOAP descriptors were computed using a cutoff of
3.5A and the Sketch-map parameters are indicated on the map according to the syntax described in the text.

invariant RMSD#3, the absolute difference between
the potential energy, and the best-match distances
obtained from SOAP descriptors computed with
different environment cutoff. RMSD distance does
not correlate very well with SOAP-based met-
rics, particularly for the smaller cutoff value. The
D(2A)-RMSD correlation plot is enlarged, and al-
lows us to discuss the source of this discrepancy.

Hollow fullerene-like structures (A, with reference
to the labeling in the figure) and compact struc-
tures containing internal connections (A,G) are ex-
tremely different from the point of view of the
short-range connectivity, but differ comparatively
less in terms of RMSD, since they are both fairly
compact. On the other hand, flake-like structures
based on a honeycomb motif (F,E) have the same



basic first-neighbor connectivity as the defective
fullerene structures (C,D) but have much different
spatial extent. Then, one sees that the discrep-
ancy between RMSD and small-cutoff D indicates
just the focus on different structural features: the
global arrangement of atoms in the first case, and
the local connectivity in the latter. In the case of
SOAP-based metrics, however it is easy to extend
the sensitivity of the metric to longer distances just
by increasing the cutoff: by going from 2A to 3.5
and 7, one sees that D and RMSD become progres-
sively more correlated, as the focus shifts from the
nearest-neighbor coordination to the overall geom-
etry of the cluster.

It is worth stressing that the RMSD, albeit a
very natural measure of structural similarity, is not
necessarily the best metric to compare configura-
tions. To see why, consider the absolute energy dif-
ference as a measure of similarity: even though one
can obviously have configurations with very differ-
ent geometry and similar energies, in general one
would expect that on the contrary large energy dif-
ferences should be associated with highly dissimi-
lar structures in a given system — which is not the
case for RMSD. One sees that the intermediate-
cutoff D(3.5A) shows a nice correlation between
energetic and structural differences.

These considerations underline a theme that will
recur in other examples: SOAP-based structural
metrics offer a mathematically sound framework
that can be transparently adapted to focus on the
aspects that are most relevant to a given appli-
cation. For instance, power-spectrum based envi-
ronment kernels are invariant to mirror symmetry,
and therefore the derived metrics cannot distin-
guish enantiomers. If one needed to do so, however,
it would be sufficient to use a bispectrum-based
SOAP kernel®® — which corresponds to n = 3 in eq.
(2) and is invariant to rotations but not to mirror
symmetry operations — as the basis for obtaining a
global comparison that is sensitive to chirality.

Having established a connection between tradi-
tional structural similarity metrics and the best-
match SOAP kernel, let us use the example of Cgg
to compare the three main strategies we propose
to build a global kernel: the average kernel K, the
best-match kernel K, and the regularized entropy
match kernel K7 with an intermediate regulariza-
tion parameter v = 0.1.

The distance-distance correlation plot for each
pair of structures, that compares the distances in-
duced by the three kernels, is reported in Fig.2.
The D — D plot shows overall linear correlation ex-
cept for very small values of D. This is expected as
the average kernel is under-determined, and could
in principle label two structures as identical even
though they might composed of different environ-
ments. The best-match kernel, therefore, provides
better resolving power. As we will discuss in more
detail later on, the regularized best-match kernel

8

D7 can be tuned to interpolate between these two
extremes. As an example, we chose here an inter-
mediate value v = 0.1: as shown in Fig. 2, the
resulting distance correlates strongly with both D
and the conventional best-match distance D.

Fig.2 also shows annotated sketch-maps ob-
tained based on the three metrics. Once the sketch-
map parameters have been adjusted following the
guidelines in Ref.!%, the three maps are effectively
equivalent — indicating that the three kernels give
similar qualitative information on the similarity be-
tween different structures. Given the much lower
computational cost associated with the evaluation
of the average kernel, this observation suggests it
might conveniently be used to preliminarily screen
a dataset before proceeding to a more accurate
comparison of similar structures based on the best-
match, or REMatch distance.

B. Natural and hypothetical polymorphs of silicon

As a second example, let us move on to a
condensed-phase application. Here we start from
a database of 1274 bulk silicon structures contain-
ing ideal and distorted structures from the phase
diagram (e.g. diamond, simple hexagonal, S-tin,
liquid and quenched amorphous structures). SOAP
environment kernels with a 5 A cutoff distance were
used, and combined with a best-match strategy to
obtain the (dis)similarity matrix®* We selected 100
landmark configurations out of this data set (using
farthest point sampling based on kernel distance)
and built a sketch-map, on which the rest of con-
figurations were projected. The outcome of such
mapping procedure is shown in Fig. 3, where points
are colored according to the DFT atomic energy,
and point sizes are scaled to a size proportional to
volume per atom. As seen in the Fig. 3 the map is
extremely well correlated with both atomic energy
and density. Furthermore, structures that were ob-
tained by distorting and heating up structures com-
ing from different portions of the phase diagram are
clustered together: rough outlines have been drawn
on the map to indicate different phases.

Although the map has been built using only ref-
erence configurations from a few of the conven-
tional Si phases, we have also projected on it (using
out-of-sample embedding) two sets of hypothetical
configurations obtained by minima hopping®® and
by ab initio random structure search (AIRSS)%2:55.
These structures were not included in the land-
marks selection phase. Still, the out-of-sample
embedding procedure correctly identifies not only
that in most cases AIRSS structures differ signifi-
cantly from stable phases of silicon, but also clus-
ters together hypothetical polymorphs that share
common features. For instance, the AIRSS struc-
tures outlined in the lower portion of the map are
all taken from Ref.?®. The structures were pro-
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FIG. 3. Sketch-map of 1274 crystalline and amorphous silicon structures obtained by sampling different phases
from the phase diagram (disks), polymorphs obtained by ab initio random structure search®? (+ signs) and by
minima hopping®® (x signs). The color and size of the points varies according to their atomic energy and atomic
volumes respectively. Regions of the plot which represents different phases have been outlined with dotted contours.

posed as possible metastable polymorphs arising
as a result of microexplosion (powerful ultrashort
and tightly focused laser pulse) in crystalline cu-
bic diamond silicon phase, hence their structural
motif naturally carries resemblance with silicon di-
amond phase. It is interesting to see that they in-
deed are projected close to the diamond phase on
the map. All of the minima hopping low-density
Si polymorphs are also clustered together, which is
consistent with the fact that they are all based on
combinations of a few base motifs. Thus, Figure 3
shows not only that SOAP-based structural simi-
larity distances can be very effective in the study
of bulk crystalline structures, but also testify the
extrapolative power of a sketch-map representation
based on such a metric.

C. Arginine Dipeptide

Having shown that SOAP-based structural sim-
ilarity kernels are equally effective for clusters and
for bulk configurations of elemental materials, let
us consider a case of a multi-species chemical com-
pound. We selected a library of 5062 locally sta-
ble conformers of arginine dipeptide (845 with and
4217 without a Ca?* counterion) from a public
database of oligopeptides structures developed by
Matti Ropo et al®®. We used a cut-off of 3.5A
in the definition of environment SOAP kernels,
and combined them using a best-match strategy.
Since H atoms stay at almost fixed positions rela-
tive to their neighboring atoms, we decided to in-
clude them in the environment descriptors of other
atoms, but did not include them explicitly as cen-
ters of atomic environments. This is another ex-
ample of how SOAP-based structural metrics are
effective in a broad variety of contexts, but at the
same time can be easily and transparently refined
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FIG. 4. Sketch-map representation of locally stable arginine dipeptide conformers, without (top) and with (bottom)
a Ca’®" ion. Left-hand panels are colored according to the energy relative to the minimum energy form, while
the smaller maps on the right are colored according to the values of different dihedral angles, as indicated in the

legend.

based on intuition, prior experience, or a clear un-
derstanding of the objectives of the structural com-
parison.

In Fig. 4 we show the sketch-map representation
for these two sets of structures, highlighting the

correlation between the location on the map and
structural and energetic properties of the conform-
ers. In the absence of a complexing cation, the
dipeptide can exist in a very large number of lo-
cal minima, spanning a relatively narrow range of
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FIG. 5. Sketch-map representation of stable configura-
tions of Arginine dipeptide complexed with a Ca®" ion.
The structures that have undergone a proton trans-
fer reaction relative to the neutral molecule have been
highlighted, and a few representative snapshots of the
molecular structure are also reported.

energies. The map shows very clearly partitioning
of configuration space in four disconnected regions.
Conventional wisdom®” assumes that the C,, dihe-
dral angles ¢ and v are the most important de-
scriptors of oligopeptide structure. One quickly
realizes, however, that the order parameters cor-
responding to the four lobes are connected to the
cis-trans isomerization of the two peptide bonds.
Within each of the lobes, configurations with dif-
ferent ¢-1 dihedral angles are clearly clustered to-
gether, but in this case they constitute features of
secondary importance. This observation demon-
strates the advantages of using a general-purpose
descriptor, that does not rely on pre-conceived as-
sumptions on the behavior of the molecule being
studied, but instead captures automatically the in-
trinsic structural hierarchy of minima in the con-
figuration landscape.

The presence of a Ca?t cation has a dramatic
impact on the landscape for the dipeptide. The dis-
tribution of configurations becomes considerably
more sparse and span a broader range of energies.
The strong electrostatic interaction with the cation
means that there is not a clear separation any-
more between the energy scale for ¢-v¢ flexibility
of the backbone and the isomerization of the pep-
tide bonds.

A remarkable observation in this analysis is the
realization that the presence of the cation catalyzed
unexpected proton transfer reactions, that change
the chemical structure of the molecule. Configura-
tions that underwent a chemical reaction are clus-
tered on one side of the map (Fig. 5), with further
internal structure reflecting the fact that SOAP-
based structural metrics treat on the same foot-
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ing information on the chemical bonding and on
the conformational variability of the molecule. It
is again worth noting that by changing the cut-
off value for the SOAP descriptors, one can “fo-
cus” the structural metric on different molecular
features. A short cutoff of 2A makes the chem-
ically different structures stand out more as out-
liers — which would for instance be useful to detect
automatically this kind of unwanted transitions in
an automatically-generated data set — while on the
contrary a longer cutoff would give more impor-
tance to the difference between collapsed and ex-
tended molecular conformers.
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FIG. 6. Correlations between structural similarity dis-
tances induced by the average kernel K, the best-match
kernel K, and regularized best-match kernels K" with
different regularization parameters . Distances are
computed between pairs of 200 structures, randomly
selected from the QM7b database?458.

D. Mapping (al)chemical space

As a final example of the evaluation of a struc-
tural and alchemical similarity metric, and its use
to represent complex ensembles of compounds, let



032 626

Ko =€

E, = Electronegativity
of species &

0.4-2 62 6

12

1800

Energy (eV)

o

~

[o)]

B

Number of atoms
w

’\\.:/‘ \....'
w

= N

o

FIG. 7. Sketch-map representation of minimum-energy structures from a database of molecules containing up to
7 heavy atoms (C O N S Cl), and saturated with hydrogen to a different degree®!. Left-hand panels show the map
colored according to the atomization energy as computed by DFT. In the right-hand images, the points are colored
according to the number of constituent C, O, N, S atoms. The top row corresponds to an alchemical kernel that
treats all species as different, the middle row treats all the heavy atoms as the same species, whereas the bottom
row introduces an alchemical kernel that depends on the difference in electronegativity between species.

us consider the QMT7b database?*. This set of
compounds contains 7211 minimum-energy struc-
tures for small organic compounds containing up to
seven heavy atoms (C, N, O, S, Cl), saturated with
H to different degrees. This database constitutes a
small fraction of a larger chemical library that con-
tains millions of hypothetical structures screened
for accessible synthetic pathways®®.

This is an extremely challenging data set
to benchmark a structural similarity metric:

molecules differ by number of atoms, chemical com-
position, bonding and conformation. To simplify
the description, we decided to use SOAP descrip-
tors with a cutoff of 3A, and to include H atoms
in the environments but not as environment cen-
ters, to simplify the description — considering also
that in the case of arginine dipeptide this choice did
not prevent clear identification of isomers that only
differed by a proton transfer reaction. We used
a best-match strategy to compare configurations,



and topped them up with isolated atoms up to the
maximum number of each species that is present
in the database. This effectively corresponds to
choosing a “kit” (in other terms, a fully atomized
reference state) starting from which all of the com-
pounds can be assembled.

This is a fairly extreme case for the application of
our idea of compounding local structure matching
to obtain a global structural metric, so it is worth
returning on a comparison of the different strate-
gies we proposed. Fig. 6 compares average and
best-match distances, together with the REMatch
using different regularization parameters. Despite
the very different context, the outcome is similar to
what we observed in Figure 2 for Cgq clusters. The
average kernel is reasonably well correlated with
the more demanding best-match kernel, although
in most cases it has poorer resolution. By vary-
ing v, the regularized match distance D" varies
between these two extremes, and for v < 1 pro-
vides a smooth, inexpensive approximation to the
best-match distance.

For the sake of simplicity (and given we reduced
the size of the environment covariance matrix C by
considering only heavy atoms as environment cen-
ters) we used the conventional best-match distance
for the rest of our analyses. As shown in Fig. 7,
the SOAP-based metric nicely separates out “is-
lands” with homogeneous composition in terms of
the number of heavy atoms. Within each group of
atoms, one can recognize some sub-structure, with
configuration roughly arranged in terms of the at-
omization energy — which in turns strongly corre-
lates with the degree of H saturation. As it can
be seen from inspection of the database (see the
SI) in many cases one can notice that structures
with similar chemical skeleton (presence of cycles,
chemical groups, etc.) are clustered close to each
other in the map. However, it is of course very
difficult to quantitatively assess how well the map
corresponds to chemical intuition, and how much
departures from it are to be considered a failure of
the metric, of the sketch-map procedure or of the
notion of “chemical intuition”.

Our objective here is more to demonstrate how
the fingerprint-based structural metric we intro-
duced can cope with widely different classes of
problems, and how it can treat on the same footings
alchemical and structural variability. As an exam-
ple we have also computed the similarity matrix
and mapped the QMT7b landscape using a modi-
fied alchemical similarity metric between the heavy
atoms (we always take kKou = dom). First, we
set kKag = 1 (which means we are treating species
a and ( as the same species) for all of heavy
atoms. The clear separation of the map into is-
lands with the same stoichiometry is lost. How-
ever, there is now near-perfect correlation between
position on the map and atomization energy, and
at the same time one can see some residual clus-
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tering of molecules with similar composition. This
can be explained because information on the al-
chemical identity of the atoms is encoded in their
atomic coordination and bond lengths. This is
for instance evident for sulfur, that has consider-
ably larger bond lengths, leading to a clustering of
sulfur-containing compounds that is considerably
better than for instance in the case of oxygen or
nitrogen.

Obviously, assuming that all atom kinds are in-
terchangeable is an extreme choice, and it is hard
to imagine circumstances in which this “element
agnostic” metric would be advantageous over one
that exploited knowledge of the chemical identity
of atoms. On the other hand, one could foresee
to encode information on the “alchemical similar-
ity” using one of the many quantities chemists have
used historically to rationalize trends in reactivity
across the periodic table. As an example, we used
the electronegativity F, to define

KaB = ¢~ (Ba=FE3p)* /207 (22)
where A is a parameter that determines how sen-
sitive is the alchemical kernel to differences in elec-
tronegativities. We used A = 1 to generate the
last set of maps in Fig. 7. The map now separates
out quite accurately regions with homogeneous sto-
ichiometry. Whereas in the k.3 = dop the differ-
ent “islands” were roughly arranged according to
a square grid pattern corresponding to no and ny
along two orthogonal directions, now stripe-shaped
islands are arranged in 1D, following numbers of ng
and nc, with the number of nitrogen atoms coming
out clustered in adjacent “stripes”, but less clear-
cut partitioning than for the other two elements.
This is perhaps unsurprising given that nitrogen
has an intermediate electronegativity between that
of oxygen and carbon, and the metric tries to sep-
arate most efficiently the elements that differ most
based on the alchemical similarity kernel.

This last example gives perhaps the most com-
pelling demonstration of how a structural similar-
ity metric based on a combination of SOAP ker-
nels gives an effective, broadly applicable and eas-
ily customizable strategy to assess the similarity
of materials and molecules, and how a sketch-map
construction based on such metric provides an in-
sightful representation of structural and alchemical
landscapes.

E. Learning molecular properties

In this paper we focused mainly on the definition
of a compound structural similarity kernel, and
on characterizing its behavior by means of sketch-
map representations. It is however important to
keep in mind that an effective tool to compare
atomic structures can find application to a broad



range of problems - one of the most intriguing be-
ing the inexpensive prediction of physical-chemical
properties of materials and molecules. To demon-
strate the great promise of REMatch-SOAP ker-
nels for machine-learning of molecular properties,
we used a standard kernel-ridge regression (KRR)
method3? to reproduce the 14 properties that had
been reported in Ref.? for the 7211 molecules we
described in the previous paragraph.

We randomly selected 5000 training structures,
and used the remainder as an out-of-sample vali-
dation set. After having computed the REMatch-
SOAP kernel matrix K between all the structures,
using a cutoff of 3A and a regularization parame-
ter v = 0.5 — in this case including also H atoms in
the list of environments — we computed the KRR
weights vector

—1
w = (Kfrain + Jl) Ytrain- (23)

Here Kiyain and yirain are the kernel matrix and
property values restricted to the training set, & in-
dicates entry-wise exponentiation to tune the spa-
tial range of the kernel, and ¢ is a regularization hy-
perparameter. The prediction of the properties for
the test set can then be obtained as yiest = Kfestw,
where Kjg is the matrix containing the REMatch-
SOAP kernels between the test points and the
training points. The procedure was repeated 10
times, and the average mean absolute error (MAE)
and root mean square error (RMSE) on the test set
were computed.

We optimized the £ and o hyperparameters by
minimising the MAE on the atomization energy,
and then used the same values to perform a KRR
for all the other molecular properties. Since we
did not further adjust the choice of kernel and
the & exponent, all the properties could be esti-
mated at the same time, as discussed e.g. in®°.
The results of this procedure are reported in Ta-
ble I, and demonstrate the extraordinary perfor-
mance of REMatch-SOAP for machine-learning ap-
plications. For the atomization energy we can ob-
tain a MAE of less than lkcal/mol — a four-fold
improvement relative to previous results that were
based on a Coulomb matrix representation of struc-
tures and a deep-neural-network learning strategy.
What is more, even without separately tuning the
KRR hyperparameters, we can improve or match
the performance of prior methods for almost all of
the properties, the only exceptions being some of
the properties computed with semi-empirical meth-
ods. The fact we can obtain such a dramatic im-
provement using a standard regression technique is
a testament to the effectiveness of our kernel. The
crucial importance of the choice of descriptors is
also apparent by noting that a MAE of about 1.5
kcal/mol was recently obtained by regression based
on a “bag of bonds” description of molecules, cou-
pled with a Laplacian kernel?8.
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Property SD MAE RMSE MAE* RMSE*
E (PBED) 9.70 0.04 0.07 0.16 0.36
a (PBEO0) 1.34 0.05 0.07 0.11 0.18
a (SCS) 1.47 0.02 0.04 0.08 0.12

HOMO (GW)  0.70 0.12 0.17 016  0.22
HOMO (PBE0) 0.63 0.11 0.15 0.5  0.21
HOMO (ZINDO) 0.96 0.13 0.18 0.15  0.22
LUMO (GW) 048 0.12 0.17 013 021
LUMO (PBE0) 0.68 0.08 0.12 012  0.20
LUMO (ZINDO) 1.31 0.10 0.15 0.11  0.18
IP (ZINDO) 0.96 0.19 028 0.17  0.26
EA (ZINDO) 141 0.13 0.8 011  0.18

*. (ZINDO)  1.87 0.18 041 0.13  0.31
Ef.. (ZINDO) 2.82 156 216 106  1.76
Imae (ZINDO)  0.22 0.08 0.12 007  0.12

TABLE I. Mean absolute errors (MAEs) and root mean
square errors (RMSE) for the KRR estimation of 14
molecular properties, together with previously pub-
lished estimation®* for the same data set. The stan-
dard deviation of the values of the properties across
all 7211 molecules in the database is shown in the sec-
ond column. Errors in the KRR estimation refer to a
test set of 2200 randomly selected configurations, while
the remaining structures were used for training. Prop-
erty labels refer to the level of theory and molecular
property, i.e. atomization energy (E), averaged molec-
ular polarizability (o), HOMO and LUMO eigenvalues,
ionization potential (IP), electron affinity (EA), first
excitation energy (E,.:), excitation frequency of maxi-
mal absorption (E,,,,) and the corresponding maximal
absorption intensity (Imqsz). Energies, polarizabilities
and intensities are in eV, A% and arbitrary units, re-
spectively.

Reaching chemical accuracy in the automated
prediction of atomization energies is an impor-
tant milestone, and the fact that we could achieve
that without fully exploring the flexibility of the
REMatch-SOAP framework (e.g. by optimizing
the entropy regularization parameter, the envi-
ronment cutoff, eliminating the outliers, combin-
ing multiple layers of description or using a non-
diagonal alchemical similarity matrix) is a testa-
ment to the potential of our approach. Future
work will be devoted to analyzing the performance,
convergence and limits for the machine-learning
of molecular and materials’ properties using our
SOAP-based structural similarity kernel.

IV. CONCLUSIONS

Distances between atomic structures based on
combinations of local similarity kernels provide a
flexible framework to define a metric in structural
and alchemical space. Atom-centered environment
information can be combined to provide a global
measure of (dis)similarity. An average kernel K
provides an inexpensive strategy to do so, with a
cost that scales linearly with the size of the struc-



tures to be compared, but might under-estimate
the difference between two configurations — since
in principle two different structures might yield
zero D. Alternatively, one can compute the lo-
cal kernel between every possible pair of environ-
ments (which itself entails a cost scaling with the
square of the number of environments), and then
build a compound kernel K by finding the best-
match permutation of the environments — which
gives a metric with better resolving power, but en-
tails solving a cubic-scaling linear assignment prob-
lem. Introducing an entropy regularization makes
it possible at the same time to reduce the size-
scaling to quadratic, and to obtain a better be-
haved, smoothly varying metric, that interpolates
- depending on the regularization parameter - be-
tween the average and best-match limit.

This strategy to compare atomic configurations
builds on the very general notion that complex
bulk and molecular structures arise from the com-
bination of local building blocks, and can be ap-
plied seamlessly to systems as diverse as clus-
ters, bulk phases of an element, conformation of
a biomolecules and an assembly of small chemical
compounds with varying atom kinds and number.
At the same time, the structure of the underlying
SOAP kernels allows for very effective fine-tuning.
For instance, by choosing the cutoff radius over
which atomic densities are compared between envi-
ronments, one can make the metric more sensitive
to the first-neighbor chemical connectivity, or vice
versa, include information on the long-range con-
formation of flexible molecules. What is more, it
is possible to treat structural and alchemical com-
plexity on the same footing, by introducing an al-
chemical similarity kernel that makes it possible to
specify whether atoms of different species should
be considered completely separate, or whether a
notion of chemical distance (based e.g. on the dif-
ference in electronegativity) should be introduced
to give different weights to substitutions between
elements with similar reactivity.

We also demonstrate that straightforward ap-
plication of the REMatch-SOAP kernel to the
ridge-regression evaluation of molecular properties
matches or outperforms all previously-presented
approaches, reaching chemical accuracy in the pre-
diction of the atomization energies of a set of small
organic molecules. We believe that in this respect
we are only scratching the surface of the potential
applications of our approach to machine-learning,
since these results were obtained without using any
of the more sophisticated techniques (e.g. intro-
ducing a hierarchy of models to capture the vari-
ance of properties at different structural scales)
that have been shown to significantly improve this
kind of procedures when using different kinds of
structural descriptors.

The similarity metric we introduce could find ap-
plication as the workhorse of a number of simu-
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lation protocols, machine-learning algorithms and
data mining strategies. For instance, it could
be used to detect outliers in automated high-
throughput screenings of materials, to cluster simi-
lar configurations together, to accelerate the explo-
ration of chemical and conformational space of ma-
terials and molecules. Here, we show in particular
how it can be combined with a non-linear dimen-
sionality reduction technique such as sketch-map,
to give simple and insightful two-dimensional rep-
resentation of a given molecular or structural data
set. As atomistic modelling adventures into larger-
scale structures, and unsupervised exploration of
materials space, maps such as these can provide
a valuable tool to convey intuitive information on
complex structural and alchemical landscapes, to
rationalize structure-property relations, and to pre-
dict physical observables of novel compounds by
training machine-learning models to libraries of
known materials.
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Appendix: Sinkhorn distance for structural similarity

Let us discuss briefly how the REMatch can be
implemented in practice. Consider for generality
the N x M environment similarity matrix C(A4, B)
between two structures with N and M atoms re-
spectively. The expression (12) given in Section II
for the optimal-transport-inspired definition of K
generalizes straightforwardly to non-s quare matri-
ces3Y:

K7(A,B) = TrP"TC(A, B),

where P € U(N, M) is a (scaled) doubly-stochastic
N x M matrix for which ), P;; = 1/M and
> ;P =1 /N.

The Sinkhorn algorithm finds the optimal P? by
the decomposition P?7 = diagu Kdiagv = Ko
uv’, where o indicates the Hadamard product, and
K is the entry-wise exponential of (C — 1)/, i.e.
/A

Pl = wv;exp[(Cij — (A.2)



The balancing vectors u and v can be obtained by
the iteration

u+eyn/Kv
v/ - (A.3)
v ey /K u

where (ey); = 1/N are scaled stochastic vectors,
and the iteration can be initialized by setting v =
€enr.

One of the advantages of a regularized match
strategy is that the kernel becomes a smooth func-
tion of the environment kernels. Computing its
derivative 0, K" with respect to a parameter « (a
Cartesian coordinate, for instance), is however not
completely trivial. Such a derivative is in fact com-
posed of two terms

9.K7(A,B) = Tt P79,C + Tr9,P7C.  (A.4)
The first term is easy to compute — provided that
one can obtain 0,C, the derivative of all environ-
ment kernels with respect to a. The second term
can be further broken down based on the Sinkhorn
decomposition of P7:

0oP7 = 9K ouvl + K 0 9, (uv?) (A.5)
The critical issue here is that direct evaluation of
O (uvT) would involve performing a separate cal-
culation for each derivative «, which could make
the approach prohibitively expensive when, for in-
stance, one would want to compute derivatives with
respect to the coordinates of each atom.

By straightforward albeit tedious algebra, one
can reformulate the problem in such a way that the
derivative can be computed cheaply for any varia-
tional parameter, given 9,C:

9.K7(A,B) = TrQ"a,C, (A.6)

with

1
Qij = uiKijvj 1 + 5 (Cl] + a; — Nuzbz + MUjCj)
(A7)
The Q matrix can be fully evaluated based on
intermediate terms that do not depend on §,C:
a:vao(KoC)Tu
b=(1-W) " [(KoC)v+K(voa)
c=N (b o u2) K
W =diag (Nu?) K diag (Mv*) K",

(A.8)

were with u? = u o u we indicate the entry-wise
square. The only caveat here is that (1 — W) is
singular, and so it cannot be straightforwardly in-
verted. Nevertheless, b can be computed by the
fixed-point iteration b + W7Tb + y with y =
[(KoC)v+K(voa)]. Due to the potential in-
stability of the procedure, it is crucial however to
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check the convergence on the overall value of 0, K7,
and not to push the convergence to higher relative
accuracy levels than those used for the original so-
lution to the Sinkhorn balancing problem.
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