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Abstract

Metamaterials are often defined as artificial compositions designed to exhibit desired physical

properties. These materials attract a lot of research attention due to unusual behavior that

may not yet have been seen in nature. Although there is no commonly accepted definition for

metamaterials, they are typically associated with peculiar macroscale properties resulting from

their substructure. The electromagnetic metamaterial concept was first developed in 1968. As

the wave theory is similar in every field, the achievements in optics were reflected in acoustics

several decades later. This allowed developing acoustic metamaterials with such extraordinary

properties as negative refractive index, negative bulk modulus and mass density, acoustic

lensing, sound wave spectral decomposition, and acoustic bandgaps. All of those features

are not only attractive scientifically, but are of interest for plenty of potential applications,

including sound and vibration insulation, waveguiding, audible and high-frequency filtering,

and even seismic absorption.

On the other hand, cellular solids and saturated porous media have been studied for a long

time. These media are abundant in nature as granular soils, wood, rocks, bones, and foams.

Wave analysis in such environments typically requires some crucial assumptions which do

not allow extending a theory to other configurations. An example of such a constraint is the

openness of the cells in a medium. Many porous media applications are found in geophysics -

particularly gas and oil extractions - the permeability of the cells plays an important role. The

ad-hoc dynamic models for such media operate only with open-cell configuration. Moreover,

the study is limited to the low-frequency analysis, omitting the influence of wave scattering.

The latter, however, is the key source of dispersion in acoustic metamaterials.

Scattering may have two origins, geometrical or resonant. Bragg’s scattering is determined

by the geometrical configuration, such that constructive interference occurs only when the

incident wave matches the characteristic size of a unit cell. This makes such systems practically

inconvenient. The concept of resonant scattering, introduced about a decade ago, has much

fewer limitations and is mostly determined by the dynamics of matrix inclusions.

In this thesis, a closed-cell cellular solid with thin vibrating walls and fluid-filled cells is
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proposed as a new class of acoustic metamaterials. First, the dynamics of a prototypical

square cell is investigated numerically considering periodic boundary conditions and taking

into account fluid-structure interaction. The results are compared to Biot’s theory of saturated

porous media in the limit of a closed-cells system. The proposed configuration is studied with

respect to dispersion sources, showing the presence of local resonant behavior for different

combinations of relative density and entrained fluid. Surprisingly, semi-analytical models can

be used to provide a bottom-up explanation of the structure’s dynamic behavior. The presence

of two pressure waves, slow and fast, is confirmed numerically and analytically. Finally, an

experimental proof-of-concept was carried out.

Periodic cellular solids represent a versatile acoustic metamaterial platform characterized by

low cost, simple, scalable design, which makes possible achieving the desired macroscopic

behavior using different types of fluids and bulk materials.

Keywords: acoustic metamaterials, wave propagation, cellular solids, locally resonant materi-

als, resonant scattering, homogenized models, FEM, fluid-structure interaction, experiment.
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Zusammenfassung

Unter dem Begriff Metamaterialien versteht man zumeist künstliche Strukturen, die so konzip-

iert sind, dass sie gewisse erwünschte physikalische Eigenschaften aufweisen. Aufgrund ihres

ungewöhnlichen Verhaltens, welches in manchen Fällen noch nicht in der Natur beobachtet

wurde, ziehen diese Materialien großes wissenschaftliches Interesse auf sich. Zwar gibt es

keine Übereinkunft darüber, was der Begriff Metamaterialien genau umfasst, doch werden

sie zumeist mit besonderen makroskopischen Eigenschaften assoziert, welche sich aus ihrer

Substruktur ergeben. Das Konzept der elektromagnetischen Metamaterialien wurde zuerst

1968 vorgestellt. Da die Wellentheorie in ihrer Anwendung auf verschiedene Felder sehr ähn-

lich ist, folgten auf die Errungenschaften in der Optik einige Jahrzehnte später entsprechende

Erfolge in der Akkustik. Sie ermöglichten die Entwicklung akkustischer Metamaterialien

mit solch außergewöhnlichen Eigenschaften wie einer negativen Brechzahl, einem nega-

tiven Kompressionsmodul, einer negativen effektiven Massendichte oder einer akkustischen

Bandlücke, ferner Materialien die einen akkustischen Linseneffekt erzeugen oder die Spek-

tralzerlegung von Schallwellen erlauben. All diese Eigenschaften sind nicht nur interessant für

die Wissenschaft, sondern auch für viele potentielle Anwendungen, wie Lärm- und Vibrations-

dämmung, Wellenleitung, Filterung im höhrbaren und im Hochfrequenzbereich und sogar

seismische Absorption.

Zelluläre Feststoffe und gesättigte poröse Medien wiederum sind schon seit langer Zeit Gegen-

stand der Forschung. Diese Medien sind reichlich in der Natur vorhanden, als granulare

Feststoffe, Holz, Stein, Knochen oder Schäume. Eine Analyse der Wellen in solchen Medien

erfordert zumeist einige kritische Annahmen, welche die Erweiterung einer Theorie auf an-

dere Konfigurationen unmöglich machen. Ein Beispiel für solcherlei Einschränkung ist die

Annahme offener Zellen im Medium. Viele Anwendungen poröser Materialien finden sich im

geophysikalischen Bereich, insbesondere in der Gas- und Erdölextraktion. Die Permeabilität

der Zellen spielt hier eine wichtige Rolle. Dynamische ’ad-hoc’-Modelle für solche Medien

arbeiten ausschließlich mit offenzelligen Konfigurationen. Des Weiteren ist die Analyse auf

den Niederfrequenzbereich beschränkt. Der Einfluss der Wellenstreuung wird vernachlässigt.
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Letztere ist jedoch die Hauptursache für Dispersion in akkustischen Metamaterialien.

Wellenstreuung hat ihren Ursprung entweder in der Geometrie oder im Resonanzverhalten.

Braggsche Streuung hängt von der Geometrie der jeweiligen Konfiguration ab. Konstruktive

Interferenz tritt nur auf, wenn die Größe der einfallenden Welle gleich der charakteristischen

Größe einer Einheitszelle ist. Das macht solche Systeme unpraktisch. Das Konzept der

resonanten Streuung, welches vor etwa einem Jahrzehnt eingeführt wurde, hat wesentlich

weniger Einschränkungen und hängt hauptsächlich von den dynamischen Eigenschaften der

Einschlüsse ab.

In dieser Arbeit wird eine neue Klasse von Metamaterialien vorgestellt. Es handelt sich dabei

um zelluläre Feststoffe mit geschlossenen, flüssigkeitsgefüllten Zellen und dünnen, schwin-

genden Zellwänden. Zunächst wird das dynamische Verhalten einer prototypischen quadratis-

chen Zelle numerisch untersucht, unter Annahme periodischer Randbedingungen und mit

Einbeziehung der Fluid-Struktur-Wechselwirkung. Die Ergebnisse werden mit der Biotschen

Theorie für gesättigte poröse Medien und den Grenzfall geschlossenzelliger Systeme ver-

glichen. Die vorgestellte Konfiguration wird auf Dispersionsquellen hin untersucht. Hier

zeigt sich für bestimmte Kombinationen von relativer Dichte und eingeschlossener Flüssigkeit

lokales Resonanzverhalten. Überraschenderweise können semianalytische Modelle das dy-

namische Verhalten der Struktur erklären. Das Vorhandensein zweier Druckwellen, einer

schnellen und einer langsamen, wird numerisch und analytisch bestätigt. Schließlich wurde

die Realisierbarkeit dieses Konzepts experimentell bestätigt.

Periodische zelluläre Feststoffe stellen eine vielseitige Basis für akkustische Metamaterialien.

Charakterisiert werden sie durch niedrige Kosten und einfaches, skalierbares Design, welches

die Einstellung gewünschter makroskopischer Eigenschaften durch Auswahl verschiedener

Fluide oder Matrix-Materialien ermöglicht.

Schlagwörter: akkustische Metamaterialien, Wellenausbreitung, zelluläre Feststoffe, lokales

Resonanzverhalten, resonante Streuung, homogenisierte Modelle, FEM, Fluid-Struktur-Wechselwirkung,

Experiment
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1 Introduction

1.1 Cellular and porous media

Cellular media are characterized by a mesoscale alignment of cells. The prefix ’meso-’ indicates

an intermediate extent between the microscopic material parameters and the macroscopic

behavior of the structure. The unusual mechanical properties caused by the substructure

in terms of both static and dynamic behavior have been studied intensively over the past

decades. Such media can be classified in various ways, however the most feasible one is to

differentiate first by material origin, natural or synthetic (man-made). A chart showing a

possible segmentation is shown in Fig. 1.1. Some examples of media of natural origin are

shown in Fig. 1.2(a-f), and of man-made origin in Fig. 1.2(g-l). The proposed classes and their

interrelations will be discussed further throughout this chapter.

Historically, a detailed study of mechanics of porous media began as a practical implication for

the extraction of natural resources (mostly of oil and gas). Soil typically contains two phases: a

solid phase (a granular structure such as ground or sand) and a compressible fluid phase filling

the pores. In some special occasions, it can even be a three-phase medium, such as an air-fluid-

sand system [Lenhard and Parker, 1987]. Porous media contain an interconnected network of

pores with fluid channels through which flows are allowed. The pioneer of the dynamic theory

of porous media is M.A. Biot, a consultant with the Shell Development Company. In 1955 Biot

introduced the theory of propagation of elastic waves in a saturated porous medium [Biot,

1956a,b], which was derived from a macroscale strain-energy functional based on averaged

microstructural quantities. Biot’s technique became fundamental in geophysics [Dutta and

Odé, 1979, Rice and Cleary, 1976] and poroelasticity [Dauchez et al., 2001, Sherwood, 1993],

and will be discussed in more detail in Sec. 1.3.2. Some examples of porous media are shown

1
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Figure 1.1 – Cellular and porous media classification. The fields of interest for this work are
highlighted.

in Fig. 1.2(a-b).

Foams form the next class in Fig. 1.1, a substance formed by trapping gas in a solid or liquid

matrix. It can be manufactured or found in nature. These media have fascinated mathemati-

cians, physicists and biologists by its topological, physical and functional behavior [Gibson

and Ashby, 1999]. For instance, William Thomson (better known as Lord Kelvin) studied the

packaging properties of the cells, Robert Hooke analyzed the foam’s formation, and Charles

Darwin tested its functionality. It is remarkable that even natural systems obtain a regular

structure with a mesoscale periodicity. One of the most compelling structures, perhaps, is the

honeycomb - a typical organic cellular architecture that has a hexagonal shape (Fig. 1.2(d)).

Every object in nature tends to occupy an energetically optimal state. Already in the 19th cen-

tury, Darwin noticed the honeycombs to be absolutely perfect in terms of economizing bees’

labor and wax. This phenomenon is explained by the mathematical problem of separation

2



1.1. Cellular and porous media

1 mm (g) 1 mm

(c)

(d)

(b)

Natural:

Man-made:

100 nm(h)

(l)

(i)

(j) (k)

(Gibson, 2005 J. Biomechanics).

(a)

(e) (f)

10 µm 10 µm 10 µm

Figure 1.2 – Overview of cellular materials by origin type. The Creative Commons license
is applied unless noted otherwise. (a) cross section of a granular soil, (b) organic fertilizers,
(c) fossil coral, (d) bee honeycomb, (e) air bubbles in foam, (f) soap foam, (g) open-cell
polyurethane foam [Gibson, 2005], (h) closed-cell polyethylene foam [Gibson and Shi, 1997], (i)
A carbon metamaterial created by carbonization of a polymer [Lee et al., 2012], (j)-(l) scanning
electron microscope images of cellular microarchitectures [Bauer et al., 2014]. Figures (g-l) are
reprinted with permission from respective references.
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Chapter 1. Introduction

of space into units of the same volume with the least interfacial area. In case of a 2D packed

medium, the hexagonal honeycomb represents an optimal solution.

In case of 3D space, the solution is still unknown. Plateau [Plateau, 1873] first studied the

geometry of solids in terms of the surface energy minimization, proposing a rhombic do-

decahedron as a possible solution. A decade later, Lord Kelvin proposed a 3D geometry of a

cell with slightly curved edges for the partitioning based on the body center cubic symmetry

[Thomson, 1887], which had less surface energy than Plateau’s solution. However, a century

after, computer capabilities allowed Weaire and Phelan to introduce a unit cell comprising

a dodecahedron and a polyhedron similar to what can be found in clathrate compounds,

polymeric substances represented by a lattice with trapped molecules [Weaire and Phelan,

1994]. The latter solution was recently overturned by Gabbrielli who employed a complex

topology optimization of 3D periodic point sets [Gabbrielli, 2009]. These studies eventu-

ally lead to numerous inspiring applications, like new manufacturing techniques of metal

nanohole arrays [Masuda and Fukuda, 1995], cutting edge graphene studies [Allen et al., 2009],

and self-organized micrometer-scale polymer films [Widawski et al., 1994].

Returning to foams, one can distinguish two subcategories: dry (no fluid, Fig. 1.2(g-h)) and wet

(with fluid, Fig. 1.2(e-f)) foams. The latter owe their existence to the presence of surfactants

or constituents which are concentrated and active on the surface [Weaire and Hutzler, 2001].

Generally, surfactants reduce the surface energy and stabilize the formation of Plateau’s

borders, which represent channels of finite width for fluid transportation between the cells.

The presence of Plateau’s borders distinguishes the foam type between two extremities of dry

and wet foam.

Dry foams are also called cellular solids, a lattice composed of an interconnected network

of solid plates or struts (third class in Fig. 1.1). Some examples of natural cellular solids are

shown in Fig. 1.2(c-d), and man-made with diverse unit cell typologies in Fig. 1.2(g-l). Even

though the manufacturing techniques for dry foams and cellular solids are different [Gibson

and Ashby, 1999], dry foams are still described within the same concept used for the cellular

solids, which makes the practical difference almost imperceptible.

Cellular solids can be distinguished from porous media in terms of relative density, the actual

solid fraction in a medium:

ρ∗ =Vs/V , (1.1)

where Vs is the portion of total volume V occupied by the solid fraction. Following the
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phenomenological rule by [Gibson and Ashby, 1999], the limit value is ρ∗ = 0.3: cellular solids

exist for ρ∗ < 0.3, otherwise it becomes a medium with pores. Cellular solids can be further

classified based on the openness of the pores. It might have an open-cell (Fig. 1.2(g)) or closed-

cell (Fig. 1.2(h)) configuration. In contrast to open-cell foam, the closed-cell configuration

implies cavities form in discrete pockets.

Adding fluid in cellular solids significantly complicates its static and dynamic behavior, as in

porous materials. As an additional complication, the macroscopic properties depend not only

on the solid and fluid bulk parameters, but also on the interaction of both phases. The low

relative density allows a strong interaction, so that the entrained fluid plays an important role

even in closed-cell materials.

1.2 Metamaterials

Metamaterials are the final class in Fig. 1.1. They are characterized as artificial compositions

designed to exhibit desired physical properties, and they are widely developing nowadays.

Materials with a tuned internal microstructure can even exhibit properties that have not yet

been found in nature. There is no general valid definition of a metamaterial, however it is

mostly associated with peculiar macroscale properties due to its substructure. Although mate-

rials with a periodic microstructure have been studied since the early 20th century [Darwin,

1914, Harkins, 1917], compound systems have attracted significant attention only over the

past two decades. Modern manufacturing techniques facilitate the production of applications

with predefined properties, both optical and mechanical. The underlying physics is often non-

intuitive, thus causing a lot of discussion and definitely having a high impact on applications

in various domains [Cui et al., 2014].

Metamaterials are always represented as structures with internal periodicity resulting in

properties beyond the well-studied response of a standard bulk material. Metamaterials

comprise two major families: electromagnetic/optic and mechanical. The latter can be studied

in the context of structural elasticity (static), and in the context of elastic wave propagation

(dynamic). A short discussion on electromagnetic metamaterials in Sec. 1.2.1 is followed by a

review of mechanical metamaterials in Sec. 1.2.2 with a specific focus on acoustic properties.
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1.2.1 Electromagnetic metamaterials

Most scientists agree that the metamaterials pioneer was Victor G. Veselago. In his work

from 1968 [Veselago, 1968] he developed a theory in which negative refraction occurs as a

consequence of electric permittivity and magnetic permeability both being negative. This pre-

diction was confirmed experimentally only in 2000, using an appropriate composite material

consisting of copper ring resonators [Smith et al., 2000]. One of the most important findings

was not the fact that such material can exist, but that it can be designed with any chosen

value of permittivity and permeability. This discovery gave birth to many related studies,

such as the planar "superlenses", which provide an improved resolution [Pendry, 2000], or an

electromagnetic invisibility cloak, in which scattering from an object is decreased [Schurig

et al., 2006].

1.2.2 Mechanical metamaterials

Static metamaterials

The concept of designed elasto-static materials (also known as extremal materials) was intro-

duced by [Milton and Cherkaev, 1995]. The idea which inspired the authors was to show that

it is possible to realize any given positive definite fourth order elasticity tensor (satisfying the

usual symmetries) using a two-phase composite. The proposed material was introduced as a

combination of sufficiently compliant and rigid isotropic phases. The suggested laminates

represent pentamode materials, 3D solid structures that can only support longitudinal but

not shear deformations. They therefore behave similar to an inviscid fluid. If such a material

is subjected to acoustic wave propagation analysis, it is sometimes referred to as an acoustic

metafluid [Norris, 2009].

Theoretically the pentamode material class assumes the combination of two constituents:

an absolutely rigid and an absolutely compliant one. Clearly, these limitations can only be

approximated. The mathematical description of a pentamode material uses the straightfor-

ward idea of obtaining an effective stiffness tensor which has five small eigenvalues (ideally

zero) and one large eigenvalue. The detailed mathematical derivations can be found in [Itskov,

2000]. It is worth mentioning that since the pentamode model was introduced, it took a

rather long time before the results were confirmed experimentally. Only in 2012, the theory

found a real-life counter part [Kadic et al., 2012]. The unit cells consisted of double-cone

elements arranged in a diamond-type crystal. The polymer structure was fabricated using

dip-in direct-laser-writing optical lithography. Even though the connection was not infinitely
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50 μm

5 μm

20 μm

(b) (c)(a)

0.55 μm

Figure 1.3 – Some examples of static metamaterials.(a) An experimentally realized pentamode
material [Kadic et al., 2012], (b) a cellular solid with negative Poisson’s ratio [Bückmann et al.,
2012], (c) the Buckliball [Shim et al., 2012]. All figures are reprinted with permission from
respective references.

small, it was sufficiently narrow to confirm the pentamode properties. The smallest realized

diameter of the connection region of adjacent cones was of order d = 0.55 µm, which can be

seen in the oblique-view electron micrograph shown in Fig. 1.3(a).

Other materials are branched off from foam properties. As was shown in [Lakes, 1987] a foam

comprised of 24-sided polyhedron cells exhibits a negative Poisson’s ratio, a characteristic

known as auxetics. The foam samples that were studied by Lakes have an organic origin,

whereas more recent works propose several approaches for an artificial cellular structure with

negative Poisson’s ratio. A cellular solid fabricated using multiphoton lithography [Bückmann

et al., 2012] (Fig. 1.3(b)), a microporous polyethylene structure manufactured with a laser

micromachining setup [Alderson and Evans, 1992], or even a porous spherical shell made

of a soft silicone-based rubber that due to the auxetic properties undergoes a structural

transformation induced by buckling under a pressure load ([Shim et al., 2012] Fig. 1.3(c)) are

some recent examples.
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Dynamic (acoustic) metamaterials

The revolutionary results of optical metamaterials were soon extrapolated to the mechanical

metamaterial domain. As the basic concept of wave theory is similar for every field, it was

an interesting exercise to translate the optics to elastodynamic acoustic waves. As a starting

point, the sound attenuation by a particular sculpture was observed by [Martinezsala et al.,

1995]. This sculpture by Eusebio Sempere is shown in Fig. 1.4(a). It is made of periodically

spaced hollow steel cylinders with a diameter of 2.9 cm, fixed on a rotatable platform. The

lattice has a simple cubic symmetry with a unit cell of 10 cm. Studying the propagation of

sound waves the authors demonstrated several attenuation peaks in the audible frequency

range up to 5 kHz.

Three years later, the phenomenon of elastic wave attenuation within certain frequency ranges

was described numerically and experimentally [Sánchez-Pérez et al., 1998]. This phenomenon

became known as the acoustic bandgap, analogous to photonic bandgaps occurring in crystals

at near-infrared wavelengths [Krauss et al., 1996].

Bandgaps are the most studied and desired phenomena for acoustic metamaterials due to

the wide application range. In principle, they can result from Bragg scattering at wavelengths

comparable to the characteristic size of a unit cell, or from resonant scattering due to in-lattice

resonators.

Bragg diffraction was first proposed by William Henry Bragg and William Lawrence Bragg,

father and son [Bragg and Bragg, 1913]. This article explored their discovery that crystalline

solids produce intense peaks of reflected X-ray radiation in a certain direction. The described

diffraction was limited to radiation with wavelengths λ comparable to the atomic spacing of

the crystalline system. The reflected wave is experiencing constructive interference at certain

angles of incidence θ for the interplanar distance d (Fig. 1.5(a)). Constructive interference

implies that waves reflected at different levels are in phase, so that the traveled distance of

each wave is an integer multiple of the wavelength. Thus constructive interference is reached

when:

2d sinθ = nλ, (1.2)

with n being a positive integer.

This concept has a geometrical origin and holds for every scale with a corresponding wavelength-

frequency combination: starting from subatomic-level lattices [Cowley, 1995] and reaching
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(a)

(c) (d)

(e) (f) (g)

Sound attenuation
 by sculpture
R. Martinez-Sala,
 J. Sancho

(b)

1 mm

Figure 1.4 – Overview of acoustic metamaterials. (a) sculpture by Eusebio Sempere [Mar-
tinezsala et al., 1995], (b) locally resonant acoustic metamaterial [Liu et al., 2000], (c) frequency-
dependent refractive index metamaterial acting as an acoustic prism [Esfahlani et al., 2016]
(the Creative Commons license is applied), (d) acoustic metamaterial with negative index
composed of Helmholtz resonators [Fok and Zhang, 2011], (e) soft 3D acoustic metamaterial
with negative index [Brunet et al., 2015], (f) acoustic metamaterial comprised of the Lego
blocks [Celli and Gonella, 2015] with its waveguide response at two different frequencies (g).
Figures are reprinted with permission from respective references.
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Bragg scattering: Resonant scattering:

� �d sin

Figure 1.5 – Two scattering sources: (a) Bragg diffraction, and (b) local resonant scattering.
Incident wave with corresponding wavevector k is shown with solid arrow, while reflected one
is in dash.

meter-sized structures [Martinezsala et al., 1995]. Therefore, an acoustic bandgap can only be

obtained if the lattice distance d is at least a wavelength. In the case of low-frequency acoustic

waves this requires structures of several meters, which is practically unfeasible.

Alternatively to Bragg scattering, a bandgap can result from resonant scattering (Fig. 1.5(b)).

In that case energy dissipates due to in-lattice resonators which are spaced at the distance

independent of the wavelength they interact with. Some authors identify resonant scattering

as a distinctive feature of acoustic metamaterials, while using the term phononic crystals in

case of Bragg scattering materials [Banerjee, 2011].

The pioneering work, describing wave propagation in the resonant-based system, was ex-

perimentally realized by [Liu et al., 2000]. The authors fabricated a lattice composed of

centimeter-sized lead balls, coated with a layer of silicone (shown in Fig. 1.4(b)). The assem-

bled structure exhibited bandgaps, strong dips of acoustic transmission in narrow frequency

bands, due to resonance of the inclusions whose spacing was two orders of magnitude smaller

than the relevant sonic wavelength.

Several more concepts discovered for electromagnetic metamaterials were reflected to the

acoustic domain, such as cloaking and lensing. Acoustic cloaking was studied by [Chen and

Chan, 2007], while lensing attracted ample research. Based on locally resonant behavior of

an alignment of triple-layered rods the acoustic magnifying hyperlense was introduced by

[Ao and Chan, 2008]. In [Molerón et al., 2014] the authors proposed a concept of acoustic

lenses based on the principle of extraordinary acoustic transmission using a rigid plate with
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subwavelength openings which guarantee the resonant scattering. Furthermore, as an ex-

tension to acoustic lenses, an acoustic analog of the optical dispersive prism was derived

very recently by [Esfahlani et al., 2016]. The dispersive nature of the proposed metamaterial

with frequency-dependent refractive index allowed the predicted splitting of sound waves

towards different and frequency-dependent directions in the audible domain. The fabricated

prototype was assembled from vibrating thin plates and open ducts combined in an acoustic

waveguide with circular cross section. The acoustic prism is shown in Fig. 1.4(c) (zoomed in

red frame with front and back sides in yellow and blue frames, respectively), a unit cell is also

magnified (green frame).

The negative refractive index or left-hand behavior, one of the key ideas of an acoustic prism,

represents another major research scope of mechanical metamaterials with local resonances.

A negative refractive index represents the property of a material to contain frequency bands

within which the phase and group velocities have different signs. Materials with left-hand

behavior may result in such unusual properties as negative mass density and negative bulk

modulus [Lee et al., 2009, Liu et al., 2011a]. The first experimental confirmation was done by

[Fok and Zhang, 2011], where a water-based 2D acoustic metamaterial operating in the 18–22

kHz range was presented. The resonant behavior was guaranteed by rod-spring and Helmholtz

resonators assembled into the system shown in Fig. 1.4(d) (rods are aligned horizontally, and

Helmholtz resonators are perpendicular to it). Very recently [Brunet et al., 2015] showed a

conceptually new 3D acoustic metamaterial with negative index which can be referred to as a

metafluid, since it consists of a concentrated suspension of microbeads (see Fig. 1.4(e)). This

soft metamaterial exhibits the left-hand behavior over a broad range of ultrasonic frequencies

between 140 kHz and 275 kHz.

Finally, waveguiding is an important reason for engineers to study acoustic metamaterials. An

interesting and easily reconfigurable concept, based on local resonant behavior, was proposed

by [Celli and Gonella, 2015]. The authors exploited regularly spaced Lego blocks to create the

desired substructures (see Fig. 1.4(f)). Spatial wave manipulation, such as waveguiding and

seismic isolation, was studied in detail at different wavelengths. For the topology shown in

Fig. 1.4(f), the waveguiding was achieved for wavelengths larger (Fig. 1.4(g) top) and shorter

(Fig. 1.4(g) bottom) than the unit cell. Such waveguiding is highly demanded in problems of

vibration analysis and seismic isolation [Kim and Das, 2012, Yan et al., 2014].
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1.3 Mechanical models

1.3.1 Numerical and homogenized models

Every class of materials in Fig. 1.1 has its own well developed means of mechanical analysis.

Due to the multiple scales, this results in a complicated mechanical and mathematical prob-

lem. For these purposes the employment of computational models is required. There are

dozens of numerical techniques, most of which are based on energy variational methods for a

discretized (meshed) geometry. Perhaps the most common technique used in almost every

domain is finite element modeling [Cook, 2001], which allows to conveniently describe the

mechanics of solids with complex geometry and boundary conditions. It is particularly useful

when a fluid phase is considered in addition to the solid one. In order to couple both phases

the fluid-structure interaction scheme can be employed [Belytschko, 1980]. For periodic

structures, the numeric effort can be reduced to a minimum using the Bloch theorem. In this

case, only one mesoscopic cell with appropriate boundary conditions is analyzed explicitly.

It can be reduced even to a portion smaller than a unit cell if in addition to translational

periodicity a structure has screw or glide symmetries [Maurin, 2016]. After employing the

Bloch theorem, equations of motion derived for a specific configuration can be reformulated

in terms of a generalized eigenvalue problem. The solution to it is often analyzed in terms

of the band-structures, a typical tool to describe the wave propagation in a periodic lattice,

originally emerged in solid state physics used to characterize the range of energies (bands)

that an electron within the solid is allowed to have [Kittel, 2004].

On the other hand, homogenized models can be considered to explain the complete but

possibly difficult to interpret result from a numerical analysis. A homogenized model is a

bottom-up approach, aiming to derive the macroscopic behavior from micro- and mesoscale

models. The latter are typically described in terms of effective parameters. The output of these

models is the required approximation of macroscopic characteristics, such as the equivalent

Young’s modulus or phase and group velocities. In case of statics, the cellular solids theory

for certain geometries provides very precise equivalent continuum formulations [Gibson and

Shi, 1997]. In case of dynamics, such models should retain the important properties of the

system and exhibit the same behavior in the considered frequency and wavenumber ranges.

These models are useful to understand the physical mechanism responsible for the wave

propagation. Comparing the energy stored in a unit cell and in an equivalent continuum

can provide an effective technique for cellular solids with low relative density [Bažant and

Christensen, 1972, Kumar and McDowell, 2004]. In case of porous structures, Biot’s theory for
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saturated media is used instead. This ad-hoc homogenization is briefly introduced in the next

section.

1.3.2 Biot’s theory for saturated porous media

In the case of saturated porous solids, wave propagation is described by Biot’s theory [Biot,

1956a,b] and many of its extensions [Brutsaert, 1964, Carcione et al., 2004, Santos et al., 1990].

The general idea is to disregard the microscopic behavior, but to describe the macroscopic

quantities from a continuum mechanics point of view. In order to derive the wave propagation

equations, the Lagrangian approach is then applied.

Main assumptions of the theory

Overall the following conditions are assumed:

(a) the analysis is restricted to linear elastic deformations,

(b) the solid structure is isotropic,

(c) the fluid is inviscid and its stress distribution is hydrostatic,

(d) the cells are open and the pore network is interconnected, i.e. each point from the fluid

phase has a continuous path connecting it to every other,

(e) all the processes are isothermal,

(f) the studied wavelengths are larger than the characteristic size of the cells, such that

scattering is neglected.

Stress-strain relations

Consider the displacements and strains in the solid and fluid phases to be the macroscopic

averages of its microscopic values in a certain region, a representative elementary volume

[Bachmat and Bear, 1987]. The solid phase can be conveniently described as ρ∗ρs , where ρs

is the bulk solid material density and ρ∗ is the relative density introduced in Eq. (1.1). Thus

the fluid phase is given as (1−ρ∗)ρ f , where ρ f is the density of the fluid. The stress tensor

of the fluid phase in the presence of a hydrostatic pressure p f can be written according to
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assumption (c) as:

σ
( f )
i j =−(1−ρ∗)p f δi j , (1.3)

where δi j is the Kronecker delta with indices i , j corresponding to spatial coordinates x1, x2, x3.

The strain energy density function of every isotropic medium can be described in terms of

the invariants of a corresponding strain tensor. Keeping in mind that fluid does not support

any shear, the strain-energy per unit volume for a continuum with effective macroscopic

parameters is postulated in the following form:

U = a1θ
2
m +a2d 2

m +a3θ
2
f +a4θmθ f . (1.4)

Here dm = ε(m)
i j − 1

3θmδi j is the deviatoric part of the solid frame (matrix) strain tensor, and

θp = tr(ε(p)
i j ) is the volumetric part of the solid frame (p = m) and fluid (p = f ) strain tensors.

The coupling of both phases is captured by the last term of Eq. (1.4).

The macroscopic coefficients ak can be found from static experiments: a pure shear test, a

jacketed compressibility test, and an unjacketed compressibility test. These parameters are

often unavailable analytically and require experimental determination [Chekkal et al., 2012,

Gravade et al., 2012, Gueven et al., 2012]. For some specific configurations these parameters

are listed in [Biot and Willis, 1957].

The stress-strain relations follow from Eq. (1.4):

σ(m)
i j = ∂U

∂ε(m)
i j

, σ( f ) = ∂U

∂θ f
. (1.5)

Equations of motion

The equations of motion can be obtained via Lagrange’s equations once the kinetic energy T

and potential energy U are defined. To find the kinetic energy, the macroscopic expression

is postulated in terms of three parameters to be determined using volumetric averages of

corresponding microscopic velocities.
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The macroscopic form is postulated [Biot, 1956a]:

T = 1

2
Vb

[
ρ11v (m)

i v (m)
i +2ρ12v (m)

i v ( f )
i +ρ22v ( f )

i v ( f )
i

]
, (1.6)

where the Einstein summation over the repeated indicies is used. Here v (p)
i = u̇(p)

i is the macro-

scopic velocity of corresponding phase (p) along the i th spatial coordinate in a representative

region Vb . The density constants ρab are determined by the system parameters.

On the other hand, the kinetic energy in the microscopic formulation can be written as a

combination of kinetic energies of the solid Vm =Vbρ
∗ and the fluid V f =Vb(1−ρ∗) portions:

T = 1

2

[∫
Vm

ρs w (m)
i w (m)

i dV +
∫

V f

ρ f w ( f )
i w ( f )

i dV

]
, (1.7)

where w (p)
i is the microscopic particle velocity. Homogenization implies the averaging of all

microscopically defined values. The average of (Eq. (1.7)) assuming the portion densities to

stay constant within Vb reads:

T = 1

2

[
ρsVm〈w (m)

i w (m)
i 〉m +ρ f V f 〈w ( f )

i w ( f )
i 〉 f

]
, (1.8)

with the usual notation 〈 . 〉 for volumetric average.

The equality of Eq. 1.6 and Eq. (1.8) yields:

ρ11v (m)
i v (m)

i +2ρ12v (m)
i v (m)

i +ρ22v ( f )
i v ( f )

i = ρsρ
∗〈w (m)

i w (m)
i 〉m+ρ f (1−ρ∗)〈w ( f )

i w ( f )
i 〉 f . (1.9)

Moreover, the condition of simultaneous motion of fluid and solid components in Eq. (1.9)

leads to the definition of the average density ρ̄ as:

ρ̄ = ρ∗ρs + (1−ρ∗)ρ f = ρ11 +2ρ12 +ρ22. (1.10)

The macroscopic linear momentum, ∂T /∂v (p)
i , can be straightforwardly found by differentiat-

ing Eq. (1.6). Similarly, the microscopic linear momentum, ∂T /∂w (p)
i , is found from Eq. (1.8).

Therefore the equality of both formulations leads to:

ρ11 +ρ12 = ρ∗ρs , (1.11)

ρ12 +ρ22 = (1−ρ∗)ρ f . (1.12)
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Substituting Eqs. (1.11),(1.12) into Eq. (1.9) yields [Nelson, 1988]:

ρ12 =−ρ
∗ρs(〈w (m)

i w (m)
i 〉m − v (m)

i v (m)
i )− (1−ρ∗)ρ f (〈w ( f )

i w ( f )
i 〉 f − v ( f )

i v ( f )
i )

(v ( f )
i − v (m)

i )(v ( f )
i − v (m)

i )
, (1.13)

which, for a nearly rigid matrix, can be simplified to:

ρ12 =−(1−ρ∗)ρ f (τ−1), (1.14)

where τ is defined via the following ratio:

τ=−〈(w ( f )
i − v (m)

i )(w ( f )
i − v (m)

i )〉 f

(v ( f )
i − v (m)

i )(v ( f )
i − v (m)

i )
. (1.15)

For the condition of a rigid frame Eq. (1.15) simplifies to:

τ=
(

l

L

)2

≥ 1, (1.16)

expressing the ratio of a curved path length l to the physical distance L between two points in

the fluid, which clearly cannot be less than one. The parameter τ is known as the tortuosity,

representing a degree to which the averaged path in the medium is curved (tortuous), a

common tool to describe diffusion in porous media [Epstein, 1989]. Eq. (1.16) implies that the

additional apparent density ρ12 ≤ 0.

Following [Berryman, 1980], the total effective density of the solid moving in the fluid, ρ11, can

be expressed as:

ρ11 = ρ∗(ρs + rρ f ), (1.17)

where r can be found from a microscopic formulation for the frame moving in the fluid

[Berryman, 1980]. Eq. (1.17) allows to update Eq. (1.15) as:

τ= 1+
(

ρ∗

1−ρ∗

)
r. (1.18)

Combining Eq. (1.17) and Eq. (1.18) yields:

ρ11 = ρ∗ρs + (1−ρ∗)(τ−1)ρ f . (1.19)

The only remaining unknown coefficient ρ22 is derived by substituting Eq. (1.14) into Eq. (1.12):
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ρ22 = (1−ρ∗)τρ f . (1.20)

Plugging Eq. (1.19), Eq. (1.14), and Eq. (1.20) into Eq. (1.6) allows finding the kinetic energy T .

The dynamic behavior of homogeneous systems in space can be specified by a Lagrangian

density function L , which is expressed in terms of generalized coordinates and their first time

and space derivatives. In the present case, the macroscopic particle displacements u(p)
i are

used as the generalized coordinates, which reads:

L =L
(
u(p)

i , u̇(p)
i ,∂ j u(p)

i

)
= T −U , where u̇(p)

i = ∂u(p)
i

∂t
, and ∂ j u(p)

i = ∂u(p)
i

∂x j
= ε(p)

i j . (1.21)

Hamilton’s principle states that the variation of the integral of L for any δ(u(p)
i ) over the

volume Vb vanishes (ch. 2.9 in [Achenbach, 2012]):

δ

∫ t2

t1

∫
Vb

L d x1d x2d x3 = 0. (1.22)

The stationary Eq. (1.22) is equivalent to the following Euler equations of motion (ch. 3.1 in

[Morse and Feshbach, 1953]):

∂

∂t

(
∂L

∂u̇(p)
i

)
+∂ j

 ∂L

∂
(
∂ j u(p)

i

)
− ∂L

∂u(p)
i

= 0, (1.23)

where the Einstein summation over the repeated indices is used.

Substitution of Eq. (1.21) into Eq. (1.23) yields:

∂

∂t

(
∂T

∂v (p)
i

)
−∂ j

 ∂U

∂
(
∂ j u(p)

i

)
= 0, (1.24)

Notice that due to Eq. (1.6) the kinetic energy does not depend explicitly on displacements.

Employing Eq. (1.5), the second term of Eq. (1.24) for (p)=(m) becomes:

∂ j

 ∂U

∂
(
∂ j u(m)

i

)
= ∂ j

 ∂U

∂ε(m)
i j

= ∂ j

(
σ(m)

i j

)
. (1.25)
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Similarly, in accordance with Eq. (1.3), (p)=(f) implies:

∂ j

 ∂U

∂
(
∂ j u( f )

i

)
= ∂ j

(
σ

( f )
i j

)
=−(1−ρ∗)∂i p f . (1.26)

The first term of Eq. (1.24) represents the generalized linear momentum per unit volume of a

corresponding phase, which can be found from Eq. (1.6):

∂T

∂v (m)
i

= ρ11v (m)
i +ρ12v ( f )

i , (1.27)

∂T

∂v ( f )
i

= ρ12v (m)
i +ρ22v ( f )

i . (1.28)

Combining Eqs. (1.25-1.28) and substituting it into Eq. (1.24), yields the following system of

equations:

∂ jσ
(m)
i j = ρ11ü(m)

i +ρ12ü( f )
i , (1.29)

−(1−ρ∗)∂i p f = ρ12ü(m)
i +ρ22ü( f )

i . (1.30)

These equations of motion are subjected to the plane harmonic wave analysis in the next

section.

Elastic wave propagation

In infinite isotropic media, two types of waves can occur: longitudinal (pressure) and lateral

(shear). The propagation characteristics of each wave type can be analyzed using the system

of Eqs. (1.29, 1.30).

Pressure waves are considered first. The analysis can be conveniently done rewriting the

equations of motion in terms of strain invariants. Taking the divergence from Eq. (1.29) yields:

∂i∂ jσ
(m)
i j = ρ11θ̈m +ρ12θ̈ f . (1.31)
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Notice that σ(m)
i j can be found from Eq. (1.5):

σ(m)
i j = ∂U

∂ε(m)
i j

= 2a2d (m)
i j + (2a1θm +a3θ f )δi j . (1.32)

Therefore, the left hand side of Eq. (1.31) can be expanded as:

∂i∂ jσ
(m)
i j = 2a2∂i∂ jε

(m)
i j +2(a1 − 1

3
a2)∂i∂iθm +a3∂i∂iθ f . (1.33)

Plugging Eq. (1.33) back into Eq. (1.29) and simplifying the tensor expressions leads to:

2(a1 + 2

3
a2)∂i∂iθm +a3∂i∂iθ f = ρ11θ̈m +ρ12θ̈ f . (1.34)

Similarly, the divergence of Eq. (1.30) yields:

a3∂i∂iθm +2a4∂i∂iθ f = ρ12θ̈m +ρ22θ̈ f . (1.35)

Assuming plane harmonic waves with angular frequency ω and wavevector k :

θ = θ0(k)e iωt , (1.36)

or in a vector form:θm(k)

θ f (k)

=
θ

(0)
m (k)

θ(0)
f (k)

e iωt , (1.37)

Eqs. (1.34,1.35) are reduced to the eigenvalue problem:

[B − c2
P D] ·θ0 = 0, (1.38)

where:

B =
2(a1 + 2

3 a2) a3

a3 2a4

 , D =
ρ11 ρ12

ρ12 ρ22

 . (1.39)

Two eigenvalues cP =ω/∥k∥ are the phase velocities of a slow and fast pressure waves.

A similar approach can be used to obtain the velocity of the shear wave. Taking the curl of the

sum of Eqs. (1.29, 1.30) under the assumption of plane harmonic waves, the phase velocity of
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Chapter 1. Introduction

shear waves in the low-frequency regime is [Biot, 1956a, Carcione, 2007]:

cS =
√

a2

ρ̄−ρ f (1−ρ∗)τ−1 =
√

a2

ρsρ∗+ρ f (1−ρ∗)(1−τ−1)
. (1.40)

These results are of great importance to describe the dynamic properties of open cell porous

materials in which two pressure and one shear waves exist. These waves are well studied

numerically [Carcione and Quiroga-Goode, 1995, Göransson, 1998] and experimentally [Gure-

vich et al., 1999, Smeulders and Van Dongen, 1997]. However, due to the initial assumptions,

and the introduction of tortuosity, the theory is not applicable to the dynamics of closed-cell

media. A major question arises as to what happens in this limit case of τ→ ∞, when the

inter-cell coupling becomes determined only by deformations of structure as a complex func-

tion of solid and fluid interaction. Moreover, under these conditions, scattering cannot be

neglected anymore since the interfacial walls and cavities may resonate introducing a strong

dispersion to the system, which naturally yields the analysis to the class of locally resonant

metamaterials.

1.4 Motivation and objectives of the thesis

Until now, the concept of acoustic metamaterials is closely associated with their optical

counterpart, as they were developed mainly to mimic electromagnetic outcomes. Therefore,

the numeric and experimental results are rather scattered, and the proposed substructures

are often complex and too expensive for real-life applications. It would be of scientific interest

to extend this stand-alone field to existing material classes with a regular architecture, taking

advantage of their well-developed theories.

Biot’s theory for saturated porous media should enable us to validate it from an acoustic

metamaterials point of view. A similar material class - although it does not fulfill some of Biot’s

assumptions - are fluid filled cellular materials. Considering a periodic cellular solid could

allow a significant simplification of the current concept of acoustic metamaterials. This work

investigates a closed-cell cellular solid with entrained fluid and soft vibrating walls within

the metamaterial framework. Such a system contains local resonators (the vibrating walls),

and could therefore find a wide application due its low cost, simplicity, versatility in terms of

scalability, and ability to design desired dynamic macroscopic behavior using different types

of fluids and bulk materials. Unit cells in natural cellular solids range from the micrometer

to centimeter scale. Regular man-made structures can be established within the same limits.
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This material class therefore provides an excellent outlook for applications from audible

frequencies to ultrasound. On the whole, there are four objectives of the current work:

� Develop a numerical model for the dynamics of a closed-cell cellular solid with entrained

fluid, using periodic boundary conditions, to describe the propagation of an elastic

wave explicitly considering the interaction of fluid and structure.

� Analyze the physics of the concept from an acoustic metamaterial point of view, i.e. to

consider its phononic properties with homogenized and fully analytical models.

� Extend Biot’s theory of saturated porous media in the context of a closed cell cellular

solid subjected to acoustic wave analysis.

� Confirm experimentally the proposed numerical and analytical models.

1.5 Organization of the work

The framework of the thesis follows the objectives listed above using the following structure.

In Chapter 2, the numerical model for wave propagation in cellular and porous solids with

entrained fluid is introduced. The results are compared to Biot’s theory, described in Sec. 1.3.2,

in terms of the phase velocity of pressure and shear waves.

In Chapter 3, the pressure waves are analyzed. Identifying the key parameters for the prop-

agation characteristics allows the derivation of effective mechanical models. Based on pro-

posed homogenized models the effective stiffness tensor of an equivalent continuum at the

macroscale is introduced. The analysis of dispersion surfaces is provided to indicate a single

isotropic pressure mode for frequencies below resonance of the lattice walls, unlike Biot’s

theory which predicts two pressure modes. The dependence of the solid and fluid phases on

the relative density and mass coupling is discussed via the microstructural deformations.

Chapter 4 describes the propagation of pressure waves analytically. Based on the vibration

analysis of loaded beams, all numerically predicted longitudinal waves are identified within

the studied frequency range. The analytical dispersion relation is compared to the full finite-

element solution. Furthermore, the co-existence of a slow and fast wave is proved using

Rayleigh’s energy approach.

Finally, in Chapter 5, an experimental proof-of-concept is given to validate the analytical and

numerical models for shear waves. This is done in three steps. First, the wavemode shapes

pertaining to the first three shear waves are analyzed with a steady-state analysis. Then, the
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numerical estimation of the group velocity is compared to experimental results. The analysis

of the partial bandgaps exhibited by the system concludes the thesis.
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2 Numerical Model of a 2D Square Lat-

tice With Entrained Fluid

The chapter is mainly reprinted from [Dorodnitsyn and Spadoni, 2014a] with authorization of

the publisher.

2.1 Introduction

The elasto-dynamics of cellular materials present a number of unique phenomena not found

in solid, single-phase materials. In the long-wavelength, low-frequency regime, cellular mate-

rials behave as effective solids, with high mass-specific stiffness, whose quasi-static behavior

can be described by homogenized models [Gibson and Ashby, 1999, Kumar and McDowell,

2004, Spadoni and Ruzzene, 2011]. The effective stiffness tensor derived from the static-

deformation mechanism of the microstructure is sufficient to describe the propagation of

linear-elastic waves [Eringen, 2001, Gonella and Ruzzene, 2008b, Martinsson and Movchan,

2003, Phani et al., 2006, Suiker et al., 2001]. Depending on the employed theory, various wave-

modes are found for an infinite medium: pressure and shear waves from classical elasticity

theory [Gonella and Ruzzene, 2008b, Phani et al., 2006], and additional rotational and coupled

modes from micro-continuum theories [Eringen, 2001, Martinsson and Movchan, 2003, Suiker

et al., 2001]. In the low-frequency regime, the anisotropy of the stiffness tensor is determined

purely by geometric symmetries of the microstructure [Gibson and Ashby, 1999, Kumar and

McDowell, 2004]. For frequency regimes above resonance of internal components, cellular

materials present numerous unusual phenomena. Band gaps [Gonella and Ruzzene, 2008a,

Martinsson and Movchan, 2003, Mead, 1996, Phani et al., 2006, Spadoni et al., 2009], frequency

regimes with evanescent waves, resonance-induced anisotropy [Casadei and Rimoli, 2013,

Spadoni et al., 2009], wave-beaming [Ruzzene et al., 2003], and caustics [Spadoni et al., 2009]

are characteristic of this regime. Stiff inclusions [Liu et al., 2011b] and hierarchical struc-
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ture [Martinsson and Movchan, 2003, Xu et al., 2012] enhance the unusual characteristics of

the resonant regime.

Less is known about elastic wave propagation in cellular solids with closed cells, and this

remains a topic of active research. In the case of porous solids with entrained fluid, wave

propagation is described by Biot’s theory [Allard and Atalla, 2009, Biot, 1956a, Carcione, 2007]

derived from a strain-energy functional defined at the macroscale, based on averaged mi-

crostructural quantities. The theoretical bridging between micro and macroscales in Biot’s

theory has since been validated with rigorous micromechanical models [Auriault and Sanchez-

Palencia, 1977, Burridge and Keller, 1981, Cheng, 1997, Chevillotte et al., 2010, Dormieux et al.,

2002, Perrot et al., 2008a, Thompson and Willis, 1991]. Biot’s theory, discussed in Sec. 1.3.2,

however requires the mechanical properties of the solid matrix for both drained and undrained

conditions, but these are often not available, and comparisons with specific configurations

are based on experiments [Chekkal et al., 2012, Gueven et al., 2012]. Parameters describing

the coupling between solid and fluid phases, such as the tortuosity for example, are still

topics of active research [Chekkal et al., 2012, Gueven et al., 2012]. Porous solids moreover

are distinguished from cellular solids based on their relative density ρ∗ = Vs/V (Eq. 1.1) or

the porosity φ=V f /V where V =Vs +V f , and Vs , V f are the volumes occupied by the solid

and fluid phases respectively. Cellular solids are defined by ρ∗ < 0.3 [Gibson and Ashby, 1999].

Biot’s theory predicts three bulk-wave modes: two pressure modes and a shear mode, but it is

not clear if these findings extend to cellular solids for which ρ∗ → 0 (φ→ 1).

In this chapter, we analyze elastic-wave propagation in a cellular solid with closed cells and

entrained compressible fluid, for which mechanical properties in drained conditions are

known analytically. We employ a periodic square lattice as a prototypical two-phase medium

to explore the applicability of Biot’s theory for low relative density ρ∗ → 0. We also investigate

high frequency regimes where the spectrum of elastic waves may include resonant frequencies

of the fluid cavities. We employ finite-element (FE) analysis, detailed in Sec. 2.2, which

explicitly considers the direct coupling of fluid and structural dynamics. In Sec. 2.3, we discuss

wave-propagation characteristics and sources of dispersion for a cellular solid with slender

internal components of aspect ratio 0.01 and relative density ρ∗ = 0.04. In Sec. 2.4, we compare

Biot’s theory for plane 2D conditions (introduced previously in Sec. 1.3.2) to homogenized

models obtained for drained conditions and computational results for varying relative density

0.0001 ≤ ρ∗ ≤ 1. We find excellent agreement between computational models and Biot’s theory

for pressure and shear wave velocities for almost the entire ρ∗ range. We also show that in the

limit of ρ∗ → 1, homogenized models for drained cellular solids and Biot’s theory overestimate
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2.2. Lattice Geometry and Computational Models

the velocities of shear and pressure waves.

2.2 Lattice Geometry and Computational Models

In the current work, we consider elastic wave propagation in an infinite-periodic cellular

medium with fluid-filled, closed cavities. As a result, we restrict ourselves to analyzing the

dynamics of a representative volume element (RVE) composed of both solid and fluid phases,

and with appropriate symmetry conditions.

2.2.1 Square-lattice geometry and RVE

We consider the fluid-filled square lattice in plane conditions shown in Fig. 2.1 defined in the

basis (i1, i2). The out-of-plane thickness is unity, while the RVE (shown in Fig. 2.2) is defined

by characteristic length L and wall thickness h/2. The lattice vectors e1 = Li1, e2 = Li2 define

the periodicity of an infinite medium. The relative density ρ∗ and porosity φ are defined as:

ρ∗ = 2
h

L
−

(
h

L

)2

= 1−φ. (2.1)

L

h

L
h/2

i1

i2

L

h

(a) (b)

Figure 2.1 – Square lattice with walls thickness h and cell length L with (a) ρ∗ < 0.3 and (b)
ρ∗ > 0.3. The superposed unit cell in (a) has thickness h/2.

In order to explore the range of applicability of Biot’s theory and analyze wave propagation for

ρ∗ → 0, we consider two computational models based on the finite-element method: (i) cell

walls discretized with Euler-Bernoulli beam elements to explore h,ρ∗ → 0 and (ii) cell walls

discretized with 2D plane-elements for large ρ∗. We employ the beam model for configurations

with very thin walls, which would require very small plane elements to maintain a reasonable

aspect ratio.
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2.2.2 RVE discretization

coupling
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Figure 2.2 – Discretized RVE: beam and 4-node plane elements are shown with appropriate
degrees of freedom. In both cases, coupling elements with both structural and pressure
degrees of freedom enforce fluid-structure interaction.

In the case (i) of beam elements of Fig. 2.2, we only account for stress distribution along

L resulting from both transverse w(xl ) and axial u(xl ) displacements, where xl is the local

coordinate along L. Then, the strain energy of the beam, which is employed to discretize the

walls of the cell is, accordingly [Cook, 2001]:

Ub =
∫ L

0

[
Es I33

(
∂2w(xl , t )

∂x2
l

)2

+Es A

(
∂u(xl , t )

∂xl

)2
]

d xl , (2.2)

where Es is the Young’s modulus of the walls material, A is the wall cross-sectional area, and

I33 is the area-moment of inertia. The corresponding kinetic energy is:

Tb =
∫ L

0
ρs A

[(
∂w(xl , t )

∂t

)2

+
(
∂u(xl , t )

∂t

)2]
d xl , (2.3)

where ρs is the density of the wall material. This discretization notably omits shear stress

within the walls, and the contribution of Poisson’s effects. The work done by the fluid pressure

is:

Wb =
∫ L

0
p(xl , t )w(xl , t )d xl , (2.4)

where p is the pressure exerted on the structure by the fluid. In order to preserve the bending

stiffness of the actual cell walls, the beam discretization for the RVE considers the thickness

h/2 to be doubled to correctly account for the mass of the RVE in Eq. (2.3) upon enforcing
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symmetry conditions (discussed in Sec. 2.2.3). The total energy in the case of beam elements

is simplyΠb =Ub +Tb −Wb .

In the case (ii) of 2D plane elements, we use the displacement formulation [Cook, 2001]

which accounts for in-plane displacement components u(xl , yl ), w(xl , yl ) in the local element

coordinates (xl , yl ) and plane-strain conditions. We use a formulation known as QM6 [Cook,

2001] to ameliorate shear locking and spurious behavior. The total energy in each element is:

Πs = 1

2

∫
Ωs

εTσdΩs + 1

2

∫
Ωs

ρs u̇2dΩs −
∫
∂Ωs

pu d ∂Ωs , (2.5)

where ε= {ε11, ε22, 2ε12}T is the solid strain tensor, σ= {σ11, σ22, σ12}T is the solid Cauchy

stress tensor, u = {u, w}T is the global displacement vector, andΩs is the element area.

We neglect convection (quiescent conditions) and we consider the fluid phase as inviscid so

that pressure in the cavities is governed by the wave equation:

∇2p = 1

c2
0

∂2p

∂t 2 (2.6)

with boundary conditions:

∂p

∂n
=−ρün , (2.7)

where c0 =
√

B f /ρ f is the speed of sound in the fluid, B f =−p/(dV /V ) is the bulk modulus,

and n is a unit normal vector outward from the fluid boundary. Accordingly, the total energy

in the fluid is [Cook, 2001]:

Π f =
∫
Ω f

1

2

[(
∂p

∂x

)2

+
(
∂p

∂y

)2

+
(
∂p

∂z

)2

+ 2

c2
0

p p̈

]
dΩ f +

∫
∂Ω f

ρ f ün p d ∂Ω f , (2.8)

where the last term denotes the work done by applied pressure due to acceleration of the

cavity walls. The fluid region is discretized with quadrilateral plane elements [Cook, 2001]

with area ∂Ω f . Enforcing that the total energy in the solidΠs (orΠb) and in the fluidΠ f are at

a minimum, one obtains: Ms 0

ρ f S M f

ü

p̈

+
Ks −ST

0 K f

u

p

=
Fext

0

 , (2.9)

where Fext is the vector of external forces acting on the structure, u and p are the global nodal

displacement and pressure arrays. The matrix [S] defines the asymmetric fluid-structure
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interaction:

R f = ρ f [S]ü, Rs = [S]T p , (2.10)

where vectors R f and Rs are the nodal loads acting on the structure and fluid respectively.

[Ks], [K f ], [Ms], [M f ] are the fluid and structural element matrices.

2.2.3 RVE analysis of plane harmonic waves

We are interested in the propagation of plane, harmonic waves in a periodic medium of infinite

extent; this can be analyzed considering the governing equations of motion for an appropriate

RVE with symmetry conditions provided by Bloch’s theorem [Kittel, 2004]. Bloch’s theorem

states that for an infinite medium with repetitive identical units, the evolution of waves across

cells does not depend on cell location within the periodic system, and can be fully identified

through the analysis of the RVE (Fig. 2.2).

The entire lattice-point system with a basis is referred to as a direct lattice and is obtained by

translation of the RVE by the basis vectors (i1, i2) (Fig. 2.3(a)). It can be shown that linear plane

waves in such media have spatially-periodic solution [Brillouin, 2003] and only a subset of

wavevector space is required to obtain the full solution. This wavevector subspace is most eas-

ily expressed in the reciprocal-lattice space (k-space), which is determined by i∗j · ik = 2πδ j k ,

where i∗j are the basis vectors of the reciprocal lattice (Fig. 2.3(a)). The wavevector subspace

defined in the basis i∗j is known as the first Brillouin Zone which can be further reduced by

symmetry arguments. The result is the irreducible Brillouin Zone (iBZ), the contour of which

provides information about maximum diffraction along high symmetry directions [Brillouin,

2003]. The size of the Brillouin zone is defined to exhibit all the wavevector combinations

with the wavelengths larger than the characteristic interunit distance. The symmetry points,

which define the iBZ in the nondimensional wavevector space for the given lattice, form a

triangle with the vertices positioned at Γ = (0,0), X = (π,0), M = (π,π) shown in Fig. 2.3(a).

The long-wavelength limit corresponds to the origin of first Brillouin Zone denoted by Γ. Paths

Γ−X and X −M represent the waves traveling in directions i1 and i2 respectively, while path

Γ−M describes waves with 45o orientation in direct space.

Assuming a plane harmonic wave with frequency ω, amplitude û, and position vector r , one

has:

u(r , t ) = ûe i (k ·r−ωt ) = û(k)e iωt , (2.11)
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Figure 2.3 – Transformation (a) from direct (i1, i2) to reciprocal basis (i∗1 , i∗2 ) with first and
irreducible Brillouin zones with symmetry points Γ= (0,0), X = (π,0), M = (π,π). RVE (b) with
associated master (light gray) and slave (dark gray) degrees of freedom.

where i 2 =−1. Given the lattice is infinite, we take the wavevector k = k1i1 +k2i2 to be real,

and we neglect attenuation. According to Bloch’s theorem, the displacement of the point

corresponding to P at location ρP = r +n1i1 +n2i2, where n1, n2 are integer numbers, can be

written in terms of the displacement of the reference unit cell as:

u(ρP , t ) = u(r , t )e i (n1kx+n2ky ), (2.12)

where kx = k · i1 and ky = k · i2. The same property can be used to define symmetry condi-

tions for the RVE: by denoting top, bottom, left, right, and internal regions with subscripts

( )T , ( )B , ( )L , ( )R , and ( )I (refer to Fig. 2.3b), the following conditions hold for vectors of nodal

displacements u and nodal forces f [Mead, 1996]:

uRB = e i kx uLB , uR = e i kx uL ,

uLT = e i ky uLB , uT = e i ky uB , uRT = e i (kx+ky )uLB ,

fR =−e i kx fL , fT =−e i ky fB ,

fRT +e i kx fLT +e i ky fRB +e i (kx+ky ) fLB = 0.

(2.13)

Denoting ur = {uLB , uL , uB , uI }T as the reduced degree of freedom (DOF) vector containing

only master DOFs, its relation to the vector u is:

u = [T ]ur , (2.14)

with [T ] expressing the symmetry conditions of Eq. (2.13). Symmetry conditions can be
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enforced as:

[T ]T ([K ∗]−ω2[M∗])[T ]ûr = [T ]T f = 0, (2.15)

where [M∗] and [K ∗] denote the coupled mass and stiffness matrices from the Eq. (2.9)

respectively. Eq. (2.15) constitutes a generalized eigenvalue problem:

([Kr ](k)−ω2[Mr ](k))ûr = 0, (2.16)

which relates the frequency ω to the wavevector k . For k restricted to the boundaries of the

irreducible Brillouin zone, one obtains the band structure providing the dispersion relation

for each wavemode.

2.3 Wave propagation in a Two-phase Square Lattice

2.3.1 Band structure and wavemodes

In this chapter, we consider a square lattice defined by solid density ρs = 1000 kg/m3, solid

Young’s modulus Es = 1000 Pa and Poisson’s ratio νs = 0.46, wall length L = 100 µm, and wall

thickness 10 nm ≤ h ≤ 100 µm. In this section we consider the fluid phase to be air with bulk

modulus B f = 142 kPa and density ρ f = 1.2 kg/m3, unless noted otherwise. The band structure

for a square lattice defined by ρ∗ = 0.04 is shown in Fig. 2.4, where dash lines denote the solu-

tion to the structure-only configuration (FE model neglecting pressure DOFs, only considering

the first of Eq. (2.9), and neglecting [S]), in agreement with previous studies [Phani et al., 2006],

while solid lines denote the solution to the fluid-structure-interaction (FSI) case. The corre-

sponding wavemodes are shown in Fig. 2.5. For both configurations, we use two normalized

frequencies in Fig. 2.4: on the left ordinate ω̄=ω/ω0, where ω0 = 4.732
√

Es I /(ρs A∗L4) is the

first natural frequency of a clamped-clamped beam (A is the cross-sectional area of the wall

of the cell, and I is the area moment of inertia) and on the right ordinate ω̂ = ω/ωc , where

ωc is the first natural frequency of the fluid cavity alone. Given the nonlinearity of the band

structure near ω/ω0 = 1, strong dispersion in this frequency regime is the result of resonances

of the lattice structure. The frequency range considered in Fig. 2.4 is well below the first natural

frequency of the fluid cavity.

The first difference between the two solutions is the presence of a high-speed, longitudinal

wavemode for the FSI configuration for 0 ≤ ω̄ ≤ 1. This indicates that the propagation of

pressure (longitudinal) waves is strongly affected by the presence of entrained fluid (discussed
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Figure 2.4 – Band structure for RVE with h/L = 0.02, ρ∗ = 0.04 discretized with beam elements
for the irreducible Brillouin Zone with high-symmetry points Γ, X , M . Left ordinate is nor-
malized by the first natural frequency of a clamped-clamped beam, ω0; the second ordinate
is normalized by the first natural frequency of the fluid cavity alone, ωc . Solid lines are the
solution to the coupled problem (FSI), dashed lines are the solution to the structure-only
case. Zoomed region around Γ-location is in blue dashed inset. Circled letters (a)-(i) denote
wavenumber combinations used to depict deformed configurations in Fig. 2.5
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Figure 2.5 – Fluid-structure (FSI) wavemodes corresponding to the wavenumber combinations
indicated by the labels (a-i) in Fig. 2.4. Solid lines denote the deformed configuration while
dashed lines denote the initial configuration.

in detail in Sec. 2.4). The deformed configuration of this mode are identical to that shown in

Fig. 2.5(a). Beyond the first natural frequency of internal members, (ω̄> 1.25), two dispersive

pressure modes are present: a fast and a slow mode. Although their deformation is nearly

identical, the fast mode has fluid and structure displacing in phase, while for the slow mode
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fluid and structure displace out of phase (Figs. 2.5(a,b) for Γ− X direction or kx ∈ [0,π] and

ky = 0). In addition to displacement phase of solid and fluid components, the difference

between the two pressure modes is their phase and group velocity. This is in agreement with

Biot’s theory [Carcione, 2007], which predicts a fast and a slow pressure mode, albeit in our

case, this happens above the first natural frequency of lattice members (clamped-clamped

beam). Similar conclusions can be drawn for plane waves propagating in the Γ−M direction

(kx = ky ∈ [0,π]), although in this case all four sides of the RVE deflect (Figs. 2.5(d-f)). For

frequencies ω̄> 3, the fast and slow pressure modes are characterized by a combination of

first and third mode shapes for a clamped-clamped beam (Fig. 2.5(c)). We do not find any

wavemodes characterized by even mode shapes of clamped-clamped beams as a result of

nearly-hydrostatic pressure loading below the first natural frequency of the fluid cavity (ω̂< 1).

An additional feature of the band structure in Fig. 2.4 is the fact that shear modes are not

affected by the entrained fluid for frequencies ω̂ < 1. The structure-only and FSI solutions

in fact overlap if the entrained fluid does not contribute significant mass, as for the case

of air considered here. Typical deformed configurations are shown in Figs. 2.5(g-i). These

wavemodes are equivoluminal and thus are not affected by the presence of fluid beyond

added-mass effects. This is in agreement with the assumption of inviscid entrained fluid, but

does not hold for ω̂ > 1 (discussed in Sec. 3.3). The branch denoted by label (i) in Figs. 2.4

and 2.5 is a hybrid pressure-shear mode for the FSI configuration, while it is a pure shear mode

for the structure-only case.

Results obtained with the plane-element, FE model in Fig. 2.6(a) for the same geometric and

material parameters are in agreement with those of Fig. 2.4 (superposed in Fig. 2.6(a) with blue

dotted lines) albeit with a small reduction in the predicted frequencies. This is to be attributed

to the naturally-deformable joints between sections of the unit cell, compared to rigid joints

in the case of beam elements. The agreement between Figs. 2.4 and 2.6(a) is encouraging as

we will employ the plane-element model to investigate wave propagation in configurations

with both thin and thick walls in Sec. 2.4. The contribution of added mass by the entrained

fluid affects both shear and pressure wavemodes. In Fig. 2.6(b), we superpose the first shear

mode in the Γ−X direction computed for entrained air and for entrained water (ρ f = 1000

kg/m3, B f = 2 GPa). For the same structural parameters (discussed in the next section), water

naturally leads to a slower shear mode.
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the structure-only configurations. The FSI configuration computed with beam elements
(Fig. 2.4) is superposed with the blue dotted lines. Superposition of FSI band structures (b)
with entrained air (1a) and water (1w) with detail view of first shear wavemode. Homogenized
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2.3.2 Dispersion source analysis

The structural lattice we investigate here is characterized by internal components with res-

onances within the frequency range of interest. Strong dispersion indeed coincides with

the first natural frequency of a clamped-clamped beam (Figs. 2.4 and 2.6(a)). An analysis of

the contribution of resonant frequencies of structure and cavity is in order. In Fig. 2.7(a) we

superpose the band structure of configuration FSI, for the parameters of Sec. 2.3, and the

first four natural frequencies of clamped-clamped beam. We conclude that, in addition to

Bragg scattering from wavelengths comparable to L, resonance of the lattice components

indeed is a strong source of dispersion. The fast pressure mode is only affected by odd modes

of the lattice ligaments, in agreement with the pressure loading imparted by the fluid. For

propagation in the Γ−X direction, the horizontal walls are undeformed (Fig. 2.5(a-b)) as this

guarantees minimum energy in the RVE. Shear wavemodes on the other hand are affected

by all resonances of the lattice components. The same behavior is exhibited by the plane

elements model.

The cavity resonant frequencies for air are much higher (ωc /ω0 = 1.7×104) than the considered

frequencies in Figs. 2.4, 2.6(a), and 2.7(a) and they do not contribute any dispersion. However,

if one reduces the cavity resonances (for example, by changing bulk modulus, or by changing
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the geometry of the structure) the fluid will also affect shear modes owing to strong pressure

gradients. In Fig. 2.7(b), we show the Γ− X portion of the band structure for an entrained

fluid with B f = 1.42 ·10−7 Pa, and ρ f = 1.2 kg/m3. In this case, both shear and pressure waves

are dispersed by resonances of the cavity, which couple efficiently with all mode shapes of

the lattice components. The dynamic stiffness of the cavity moreover is at a minimum near

resonances inducing phase changes between fluid and structural response.

2.4 Micro-Mechanical Pore Models and Comparison with FE Analy-

ses

Section 2.3 is devoted to the analysis of configurations with ρ∗ = 0.04 (L/h = 100) for which

the lattice structure can be correctly modeled with either beam or plane elements. However,

with increasing walls thickness h and aspect ratio of beam elements, beam theory becomes

unreliable and we employ quadrilateral plane elements instead (refer to Fig. 2.2).

A cellular solid with slender walls differs from a porous solid according to the relative den-

sity ρ∗ (Sec. 2.1). For increasing relative density ρ∗ > 0.3 (or h/L > 0.16), the lattice walls
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Figure 2.8 – Examples of the unit cell model with different walls thickness: (a) h/L = 0.16,
h/L = 0.2 (b), h/L = 0.5 (c), and h/L = 1 (d). Solid elements are shown in gray, fluid elements
in blue, and coupled elements in green.

become thick, the pores become small, and the cellular solid transforms into mostly solid

material with isolated pores[Gibson and Ashby, 1999]. We select the wall thickness values

h = 0.16L, 0.2L, 0.5L, and L to characterize wave propagation in a porous medium with

decreasing porosity φ (Fig. 2.8). Band structures corresponding to these configurations are

shown in Fig. 2.9. The first value from this set of walls thickness, h/L = 0.16, corresponds to

the transition between cellular and porous solids, whereas h/L = 1 represents a homogeneous

solid. For frequencies ω< 2 kHz (which represents a threshold of dispersion in Figs. 2.9(a-c)),

the pressure-wave velocity for the structure-only case is consistently lower than that of the FSI

configuration.

In the limit case ρ∗ → 1,φ→ 0 (Fig. 2.9(d)) dashed and solid lines coincide, which is the logical

confirmation of the absence of fluid cavities. Any dispersion in Fig. 2.9(d) is due to length

scales introduced by the RVE. Indeed, for h = L, the shear and longitudinal computational

wave velocities in the band structure are in excellent agreement with the analytical expressions:

cS =
√

Es

2ρs(1+νs)
, cL =

√
Es(1−νs)

ρs(1+νs)(1−2νs)
, (2.17)

The velocities cS , cL are shown in Fig. 2.9(d) in green dashed lines.

2.4.1 Equivalent continuum model for shear waves in a dry cellular solid

Shear waves propagating in the Γ− X direction ([1 0] direction in direct space) are equivo-

luminal and thus are not affected by the hydrostatic-like behavior of the entrained fluid for
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ω̂< 1. Accordingly, the strain energy in the RVE is only due to microstructural deformations

of the walls. Letting the microstructural strain energy be the same as that of an equivalent

continuum occupying the same volume as the RVE, one finds the relation between macroscale

shear stress and strain to be [Bažant and Christensen, 1972, Gibson and Ashby, 1999, Kumar

and McDowell, 2004]:

σ12 = Esh3

L2
1L2

ε12 = Es

(
1−√

1−ρ∗
)3
ε12 =C44ε12, (2.18)

where C44 is the coefficient of the corresponding homogenized elasticity tensor. L1, L2 are

the length and the width of the RVE, respectively (in our case L1 = L2 = L). The speed of the

shear wave in the low-frequency regime in the [1 0] direction for an equivalent medium with
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effective density ρ̄ = ρ∗ρs + (1−ρ∗)ρ f is:

cS =√
C44/ρ̄, (2.19)

which in terms of relative density is:

cS =
√√√√ Es

(
1−√

1−ρ∗)3(
1−ρ∗)

ρ f +ρ∗ρs
. (2.20)

The homogenized shear-wave velocity is well posed in that its limit exists:

lim
ρ∗→0

cS = 0, (2.21)

and Eq. (2.20) correctly captures the effects of added mass of the entrained fluid, in the long-

wavelength limit, in addition to the contribution of the micro-structural deformation. This

fact is shown in Fig. 2.6(b), which provides the model test conducted for both types of the

entrained fluid: air and water. Furthermore, as the wall thickness h increases, the phase

velocity of the shear mode S increases (Fig. 2.9). This is consistent with Eqs. (2.18) and (2.20).

We find the same agreement with the plane-element model.

2.4.2 Comparison with Biot’s theory

In the current section the numerical model is discussed in the context of Biot’s theory intro-

duced in detail in Sec. 1.3.2. The equilibrium Eqs. (1.29, 1.30) can be also written in terms of

porosity as:

∇ jσ
(m)
i j = ρ11ü(m)

i +ρ12ü( f )
i ,

−φ∇i p f = ρ12ü(m)
i +ρ22ü( f )

i .
(2.22)

In order to compare Biot’s theory to our idealized two-phase medium, we recast the constitu-

tive law for plane-strain conditions as:

{
σ(m)

11 σ(m)
22 σ(m)

12 σ( f )
}T = Ĉ

{
ε(m)

11 ε(m)
22 2ε(m)

12 θ f

}T
, (2.23)

where Ĉ is the plane-strain stiffness tensor given by matrix with components Ĉi j , obtained

from Eqs. (1.5). These components depend on the following mechanical parameters of the

frame (matrix): the Young’s modulus Em , the shear modulus µm , and the bulk modulus of the
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frame Km (or generalized drained modulus). The mechanical properties of isotropic foams

with closed cells can be approximated by [Gibson and Ashby, 1999]:

Em = 0.32Es
[
(ρ∗)2 +ρ∗]

,

µm = 3/8Es(ρ∗)2,
(2.24)

where Es is the Young’s modulus of the material composing the frame.

While the square lattice is not isotropic, and anisotropic formulations of Biot’s theory are avail-

able although require many constants, we restrict ourselves to analyzing waves propagating in

the [1 0] direction, and thus we consider an isotropic model. According to [Carcione, 2007],

the generalized drained bulk modulus can be represented as:

Km = 2

9
ρs

h

L
. (2.25)

With the mechanical properties for a 3D medium in hand, the stiffness tensor for plane

conditions is derived as usual. Taking the divergence of Eqs. (2.22) and considering plane

harmonic waves, one obtains:

(
Ĉ11 + Ĉ12 +2Ĉ33

)( ∂2

∂x2
1

+ ∂2

∂x2
2

)
θm + Ĉ14

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
θ f = ρ11θ̈m +ρ12θ̈ f (2.26)

Ĉ14

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
θm + Ĉ44

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
θ f = ρ12θ̈m +ρ22θ̈ f . (2.27)

Recall, that θm = tr(ϵ(m)
i j ), and θ f = tr(ϵ( f )

i j ).

The procedure used to derive the pressure wave velocities is identical to the one for Eq. (1.39),

thus assuming plane harmonic wave:

θ = θ̆(k)e iωt , (2.28)

Eq. (2.27) can be recast into the eigenvalue problem:

[B̂ − c2
P D] · θ̆ = 0, (2.29)

where the eigenvalue cP =ω/∥k∥ is the pressure wave phase velocity, θ̆ is the total vector of
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displacement and pressure amplitudes, and:

[B̂ ] =
Ĉ11 + Ĉ12 +2Ĉ33 Ĉ14

Ĉ14 Ĉ44

 , [D] =
ρ11 ρ12

ρ12 ρ22

 .

The solution to the eigenvalue problem Eq. (2.29) provides the phase velocity cB
P of pressure

waves in the long-wavelength regime under plane-strain conditions starting from the 3D

constitutive law. Of note, Eq. (2.29) predicts two pressure wavemodes: a fast one with fluid

and structure displacing in phase, and a slow one with fluid and structure displacing out of

phase.

The procedure to find the pressure wave velocity for the initially plane problem is the same as

the one used to derive Eq. (2.29). The approach in this case is to use mechanical parameters

derived in the drained case for the 2D square lattice [Kumar and McDowell, 2004]:

Em = Esh

L
,

µm = Esh3

L2
1L2

= Esh3

L3 , (2.30)

completed with the frame bulk modulus Km given by Eq. (2.25). We attribute this choice to

the fact that the shear modes in the band structure are unchanged (Sec. 2.3.1). If one denotes

the plane stiffness tensor by C̃ , then, assuming plane harmonic wave (Eq. (2.28)), the phase

velocity of the pressure wave in the long-wavelength regime is:

[B̃ − c2
P D] · θ̆ = 0, (2.31)

where:

[B̃ ] =
C̃11 + C̃12 +2C̃33 C̃14

C̃14 C̃44

 .

The difference between Eqs (2.29) and (2.31) is given in Table 2.1.

A similar approach can be used to derive the shear-wave velocity (refer to Eq. (1.40)). Taking

the curl of the sum of Eqs. (2.22) and assuming plane harmonic waves, the phase velocity of
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Plane strain (Eq. (2.29), initally 3D) Plane (Eq. (2.31), 2D)

Ĉ11 + Ĉ12 +2Ĉ33 = 4a1 +5/3a2 C̃11 + C̃12 +2C̃33 = 4a1 +a2

Ĉ14 = a3 C̃14 = a3

Ĉ44 = 2a4 C̃44 = 2a4

Table 2.1 – Relation between stiffness-tensor constants and parameters of the strain-energy
density (Eq. (1.4)) for plane strain and initially plane cases.

shear waves in the low-frequency regime is (refer to Eq. (1.40)):

cB
S =

√
µm

ρ̄−ρ f φτ−1 =
√

µm

ρs(1−φ)+ρ f φ(1−τ−1)
. (2.32)

We note that the phase velocities of shear wave for plane-strain and initially plain conditions

are the same, and match cB
S in the 3D case (Eq. (2.32)).

2.4.3 Comparison of analytical and FE models

Thin internal components in cellular solids, like the walls of the square lattice, may resonate

inducing strong dispersion even for wavelengths much smaller than the characteristic pore

length L. The thicker solid phase in porous materials does not resonate, at least for the first

several branches in the band structure, and dispersion is the result of Bragg scattering for

wavelengths near L. Biot’s theory was derived to describe the macroscopic behavior in the

latter regime. It is of interest to extend Biot’s theory to the case of cellular solids.

For this purpose, we analyze three configurations defined by (h/L = 0.02, ρ∗ = 0.04), (h/L =
0.4, ρ∗ = 0.64), and (h/L = 0.8, ρ∗ = 0.96) with entrained air. This first configuration is a

cellular solid, while the second and third are porous solids. As Biot’s theory describes the

elasto-static behavior of porous medium, we restrict our analysis to the acoustic branches of

the band structure near the Γ point for pressure modes (Fig. 2.10(a-c)), and Γ− X for shear

modes. The review of Biot’s theory in Sec. 1.3.2 pertains to isotropic materials, while the square

lattice has cubic symmetry. As a result, we restrict comparisons of Biot’s theory and numerical

results to wavenumbers in Γ− X direction. Biot’s theory predicts a fast and a slow pressure

mode; our calculations, on the other hand, predict the presence of the fast-pressure mode

only for frequencies below the first resonance of the lattice walls. The phase velocity of the fast

pressure mode predicted by Biot’s theory is in good agreement for ρ∗ . 0.5 (Fig. 2.10(a-c)).

In the absence of dissipation, the shear wave velocity from Biot’s theory is given by Eq. (2.32).
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Figure 2.10 – Band structures for a square lattice with entrained air with h/L = 0.02 (a,d),
h/L = 0.4 (b,e), and h/L = 0.8 (c,f). Panel (a-c) highlight pressure modes, while panels (d-f)
highlight shear modes. Red dashed lines denote shear and pressure phase velocities from
Biot’s theory. Thick green dashed lines denote the shear-wave velocity of Eq. (2.20). The insets
in (a-c) show the RVE for each configuration.

This equation differs from the homogenized model equation (2.20) by the coefficient (1−τ−1)

multiplying the term ρ f φ in Eq. (2.32). According to the definition of tortuosity introduced

above, and a closed-cells configuration, we employ τ→∞. One can also verify that this is

necessary for convergence of Eq. (2.32) to Eq. (2.20) which is in excellent agreement with our

computational models (Fig. 2.6).

Expanding the expressions (2.20) and (2.32) in Taylor series for two limit cases ofφ→ 0 (ρ∗ → 1)

and φ→ 1 (ρ∗ → 0), one obtains:

lim
φ→0

cS = lim
φ→0

cB
S =

√
Es

ρs
,

lim
φ→1

cS = lim
φ→1

cB
S = 0.

(2.33)

However, the rate of convergence differs and depends on the values of τ and ρ f . The latter

fact is further confirmed by Fig. 2.11(a,b). For φ→ 0, both models in error by 1/
p

1+νs with

respect to the first equation of Eq. (2.17), which for νs = 0.33 is 14%. Eq. (2.20) is derived

employing Bernoulli-beam theory, which does not take in account shear deformations of the

beam cross-section. Employing Timoshenko-beam theory [Kumar and McDowell, 2004] gives

cS =√
Es/2ρs(1+1.2(1+νs)) as ρ∗ → 1. This correction underestimates the shear velocity by
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27%.

Biot’s pressure wave velocities under the plane-strain conditions (Eq. (2.29)) and initially plane

conditions (Eq. (2.31)) in the solid limit:

lim
ρ∗→1

cB
P =

√
Es(11/6−2/3νs)

ρs(1−2νs)(1+νs)
(plane-strain),

lim
ρ∗→1

cB
P =

√
3/2Es

ρs(1−2νs)(1+νs)
(initially 2D)

(2.34)

overestimate the plane-strain value (Eq. (2.17)) for νs = 0.33 by 55.2% and 49.6%, respectively.

The latter difference is based on the fact that the strain energy density coefficients ak in Biot’s

theory are derived from the beam equations for the lattice walls. Therefore, as h/L increases,

these coefficients should be updated, but are not available analytically. Thus, we rely on the

beam theory given the fact that C44 from Eq. (2.19), when ρ∗ → 1, has small discrepancy with

values for a continuum.

In order to explore the bounds of applicability for Biot’s theory and the contribution of en-

trained fluid, we repeat the analyses of Fig. 2.10 for 1×10−4 ≤ ρ∗ ≤ 1 with both air and water.

We consider RVEs discretized with both beam and plane elements to explore very small and

very large values of ρ∗ but also to compare the performance of each element type. Beam

and plane elements are in agreement in predicting the shear-wave velocity for all considered

values of relative density. We find the same for air and water (Figs. 2.11(a-b)).

In the case of pressure waves, Biot’s theory well predicts the phase velocity for the considered

values of ρ∗. In the case of air (Fig. 2.11(c)) Biot’s estimation cB
P diverges from the computa-

tional model for values of ρ∗ smaller than for the case of water (Fig. 2.11(d)). In the case of air,

Biot’s theory overestimates the pressure-wave velocity and beam elements exceed the velocity

predicted by plane elements for ρ∗ > 0.1. In this case, the discrepancy between beam and

plane elements may partly be attributed to the fact that the size of the fluid cavity does not

vary for increasing ρ∗ for the former elements. We also note that the performance of Biot’s

theory with plane-strain and initially plane formulations is very similar. In the case of air,

plane elements exceed the values predicted by beam elements for ρ∗ < 0.03; this is reasonable

as plane elements are known to be stiffer than beam elements when modeling structures

with large aspect ratios [Cook, 2001]. Nonetheless, the agreement between plane-elements

and Biot’s theory is excellent for ρ∗ < 0.1. In the case of water, beam elements significantly

overestimate the pressure wave velocity for all values of ρ∗. We believe that this discrepancy

results from the perfect rigidity of beam-element cross section. Beam theory indeed neglects
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Figure 2.11 – Phase velocities for shear ((a) and (b)) and pressure ((c) and (d)) waves for
entrained air ((a) and (c)) and water ((b) and (d)) for increasing relative density. Solid and
dashed-dotted lines correspond to the RVE model discretized with plane and beam elements,
respectively. Red dashed lines denote Biot’s theory for plane conditions. Green dotted lines in
panels (a) and (b) correspond to the homogenized model for shear in drained conditions [Ku-
mar and McDowell, 2004]. All velocities correspond to wavenumbers in the Γ−X direction.

direct stress components perpendicular to the beam axis. The bulk modulus of water (B f = 2.2

GPa) is much larger than that of solid phase in our model (Bs = 6.25 kPa) while the densities

are the same. In this case, the fluid cavity can be considered as a rigid inclusion, and it is

reasonable to expect most deformations to take place in the solid phase. Despite the sus-

pected shortcomings of beam theory, Biot’s theory is nonetheless in reasonable agreement

(Fig. 2.11(d)).
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2.5 Conclusion

In the present chapter, we analyze elastic-wave propagation in cellular and porous solids

with entrained fluid and disjointed pores. We employ a periodic square lattice in plane-strain

conditions as the simplest porous solid, and we analyze the propagation of plane waves

by considering a representative volume element. We use finite-element models based on

beam and plane elements for the solid phase and plane elements for the fluid phase. Our

objective is to explore the applicability of Biot’s theory, originally devised for porous media,

to estimate the phase velocity of shear and pressure waves in the long-wavelength limit in

cellular solids. We compare analytical and numerical models for configurations with relative

density 1× 10−4 ≤ ρ∗ ≤ 1 considering both air and water as the fluid phase, for which we

neglect convection and viscosity.

For waves with frequency-spectra well below the first resonance frequency of the pores, we

find that the deformations and phase velocity of pressure wavemodes are strongly affected by

the entrained fluid unlike shear modes. The latter are altered by added mass effects only, and

their phase velocity is decreased by the presence of fluid. For waves with frequency spectra

exceeding the first resonance frequency of the cavity, the fluid effectively couples to both

shear and pressure wavemodes, owing to strong pressure gradients in the fluid domain. Biot’s

theory moreover predicts two pressure modes, a fast and a slow one, but for frequencies below

resonance of the lattice walls, we only find the fast mode. For higher frequencies, both pressure

modes are present.

We find that Biot’s theory based on mechanical properties derived from beam theory overesti-

mates the phase velocity of pressure waves in porous media as ρ∗ → 1, but it is otherwise in

excellent agreement with computational models. In the case of shear-wave velocities, we find

that homogenized models based on microstructural deformations for drained configurations

perform equally well as Biot’s model, at least for a square lattice.

An alternative theory of wave propagation in cellular solids with entrained compressible fluid,

based on dynamic deformations of the microstructure, will be discussed in Chapter 3. The

alternative equivalent continuum model for longitudinal waves will be introduced as well.
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3 Numerical and Homogenized Analysis

of Pressure Waves

The chapter is mainly reprinted from [Dorodnitsyn and Spadoni, 2014b] with authorization of

the publisher.

3.1 Introduction

The propagation of waves in a heterogeneous medium is determined by the character of the

heterogeneities, which may simply be impedance barriers immersed in a matrix. These can be

voids and inclusions with impedance jumps due to material properties or their own dynamics.

A typical example may be that of sound waves in water with bubbles, in which propagation

characteristics can be derived based on the resonance frequency of a single bubble isolated

in water [Feuillade, 1996], which is known as the Minnaert frequency [Minnaert, 1933]. A

similar approach may be adopted to describe the dynamics of a porous medium [Diebels and

Ehlers, 1996, Stinson and Champoux, 1992], composed of a solid matrix or skeleton bounding

fluid-filled pores. In [Stinson and Champoux, 1992], the skeleton is considered rigid and

the dynamics of the fluid in the pores, simplified as tubes of various cross sections, provide

an effective bulk modulus; refinements based on pore-shape factors provide reasonable

comparisons with experimental measurements. A similar approach is employed in [Wang and

Lu, 1999] to optimize absorption.

As the pore fraction – the porosity φ – increases, the skeleton should not be considered rigid

with respect to the pores, since the dynamics of both phases interact. These conditions

prove more difficult to describe with dynamic models for the pores alone and are modeled

by Biot’s theory instead [Biot, 1956a,b, Biot and Willis, 1957]. Biot’s theory is derived from a

macroscale-strain-energy functional based on averaged microstructural quantities [Allard
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and Atalla, 2009, Carcione, 2007]. The bridging between micro and macroscales has since

been validated with rigorous micromechanical models [Auriault and Sanchez-Palencia, 1977,

Burridge and Keller, 1981, Cheng, 1997, Dormieux et al., 2002, Thompson and Willis, 1991].

Biot’s theory, however, requires the knowledge of the equivalent-continuum properties of the

skeleton for both drained and undrained conditions; in addition to the tortuosity needed to

phenomenologically describe the geometric nature of the pores, these parameters are often

not analytically available and are experimentally obtained for specific configurations [Chekkal

et al., 2012, Gravade et al., 2012, Gueven et al., 2012]. More phenomenological parameters,

especially for fluid-solid inertia coupling, are required for anisotropic media [Carcione, 2007].

A more detailed analysis yet of microstructural behavior improves on Biot by considering

porosity as a field variable [Lopatnikov and Cheng, 2004].

As the porosity φ increases, the volume occupied by the solid phase, given by the relative

density ρ∗ = 1−φ, decreases, yielding a cellular solid. The distinction between porous and

cellular solids is phenomenological and is given by ρ∗ < 0.3 (Sec. 1.3.2). Similar to porous

solids, cellular solids may have open and closed-cell configurations. The former are used

for absorption of sound [Gibson and Ashby, 1999, Gravade et al., 2012, Hoang and Perrot,

2013, Lind-Nordgren and Göransson, 2010, Lu et al., 2000, Perrot et al., 2008b, Wang and

Lu, 1999] and energy [Dempsey et al., 2005, Evans et al., 1998, Wang and McDowell, 2005] .

Closed-cell configurations are more challenging to model analytically and are often described

by phenomenological models based on the effective properties of an equivalent continuum

[Chevillotte and Panneton, 2007, Doutres et al., 2011]. In this direction, theoretical models

based on frequency-dependent equivalent density and bulk modulus have recently been

proposed to evaluate methods to enhance sound absorption in partially-perforated closed-cell

foams [Chevillotte et al., 2010, Perrot et al., 2008a]. Alternatively, the stiffness tensor of an

equivalent continuum can be numerically evaluated from the dispersion relations of a unit cell:

numerical models for the acoustic absorption properties based on the effective density and

compressibility parameters are discussed in [Lee et al., 2009] for porous media with cubic and

hexagonal unit cells. Conversely, starting with numerical models for frequency-dependent

properties, wave propagation for a general periodic medium is discussed in [Stadler and

Schanz, 2010]. Analytically, however, even the static response is challenging to describe at the

microstructural level, and phenomenological models scaling with ρ∗ are common [Gibson

and Ashby, 1999, Roberts and Garboczi, 2001, Warner et al., 2000].

While Biot’s theory has been validated for porous media, less is known about its performance

for cellular solids with closed cells especially for ρ∗ → 0. In the case of the 2D periodic
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configurations accurate equivalent-continuum mechanical properties are available for drained

conditions [Gibson and Ashby, 1999, Gonella and Ruzzene, 2008b, Kumar and McDowell, 2004,

Spadoni and Ruzzene, 2012, Suiker et al., 2001]. Employing a numerical model accounting

for fluid-structure interaction (FSI) in a representative-volume element (RVE), an excellent

quantitative agreement with Biot’s theory and our numerical results for wave propagation in a

square lattice was shown in Chapter 2 (also in [Dorodnitsyn and Spadoni, 2014a]). Biot’s theory,

however, is based on complex expressions of geometric and material parameters and does not

lend itself to analyzing the physical origin of specific wave-propagation characteristics beyond

qualitative statements. In this chapter, we propose a much simpler model for equivalent-

continuum behavior, given the microstructural deformations computed from our numerical

models. Based on this model, we describe three fundamental frequencies denoting the

resonance of the skeleton, resonance of the pores, and resonance of the combination of

the two. We also describe three propagation regimes, in terms of ρ∗, determined by the

deformation mechanisms of the skeleton, as the bending,through-the-thickness deformations,

and hybrid modes.

We employ finite-element (FE) analysis, detailed in Sec. 2.2 and summarized in 3.2, that

explicitly considers the direct coupling of fluid and structural dynamics in an RVE to compute

dispersion surfaces and associated wavemodes. In Sec. 3.3, a tube-piston model that describes

the micro-mechanical behavior of pores for pressure waves is proposed. Such model is

compared with the numerical results and Biot’s theory. Sec. 3.4 introduces a macromechanical

equivalent-continuum model, which allows us to determine the effective stiffness tensor.

The phase velocity of wavemodes in the long-wavelength limit are evaluated from dispersion

surfaces computed with the FE models and are compared to phase velocities obtained from

the Christoffel matrix, based on the proposed equivalent-stiffness tensor. Typical deformation

mechanisms determined by the mass coupling and relative density are discussed in Sec. 3.4.

The analyses and findings are summarized in Sec. 3.5.

3.2 Geometry, RVE, and Numerical Results

In this section, we use the results from finite-element (FE) analysis, detailed in Sec. 2.2.3,

where the band structure (relation between the frequency ω and wavevector k = {kx , ky }T

along the boundaries of the irreducible Brillouin zone [Brillouin, 2003]) is obtained from the

eigenvalue problem Eq.(2.16). For L = 100 µm, ρ∗ = 0.04, skeleton Young’s modulus Es = 1

kPa, density ρs = 1000 kg/m3, and air as the entrained fluid with speed of sound c0 = 343

m/s, density ρ f = 1.225 kg/m3, and bulk modulus B f = 142 kPa, we obtain the band-structure
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Chapter 3. Numerical and Homogenized Analysis of Pressure Waves

shown in Fig. 3.1. Following the notation in Sec. 2.3, dashed lines in Fig. 3.1 denote the solution

to the structure-only configuration (simulations with no pressure dofs involved), while solid

lines denote the solution to the two-phase (FSI) configuration.
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Figure 3.1 – Band structure for RVE with L = 100 µm, ρ∗ = 0.04 discretized with beam ele-
ments for the irreducible Brillouin Zone with high-symmetry points Γ, X , M . Left ordinate
is normalized by the first natural frequency of a clamped-clamped beam, ω0; the second
ordinate is normalized by the first natural frequency of the fluid cavity alone, ωc . Solid lines
are the solution to the FSI problem, dashed lines are the solution to the structure-only case.
Circled letters (a-f) denote wavenumber combinations used to depict fluid-structure pressure-
wavemodes (in the right part), with solid and dashed lines denoting the deformed and initial
configurations respectively.

For the aforementioned properties, the following facts transpire. Cell-wall resonance ω̄ =
ω/ω0 = 1 is a strong source of dispersion. Note that if ρ f ≪ ρs ,ω0 is that of a clamped-clamped

beam in vacuum, otherwise the fluid added mass must be included. The shear response is not

affected by the entrained fluid for the square lattice. The FSI solution yields a fast pressure

mode for ω̄< 1 and two pressure modes for ω̄> 1. Wavemodes corresponding to the labels in

band-structure are shown in right-hand side of Fig. 3.1. The pressure wavemode (a) has the

same polarization for ω̄< 1 and ω̄> 1. For ω̂=ω/ωc < 1, the pressure distribution within the

pores is uniform and only odd modes of the cell walls are excited.

3.3 Micro-Mechanical Pore Models

The shear waves propagating in the Γ−X direction ([1 0]-direction in direct space) are equiv-

oluminal, thus, are not affected by the hydrostatic-like behavior of the entrained fluid for

ω̂< 1. Accordingly, the strain energy in the RVE is only due to microstructural deformations

48



3.3. Micro-Mechanical Pore Models

of the walls. Therefore, if one lets the microstructural strain energy be the same as that of an

equivalent continuum occupying the same volume as the RVE, a relation between macroscale

shear stress and strain is obtained in Chapter 2. The linearity of the longitudinal-wave velocity

near the Γ-point (see Fig. 3.1) suggests that homogenization techniques can describe low-

frequency longitudinal waves analogously to shear waves. Such models are only available for

the structure-only case [Kumar and McDowell, 2004] for which the propagation of longitudinal

waves in the [1 0]-direction is described by c∗L = √
C11/ρ̄, where C11 = Esh/L, and effective

density ρ̄ = ρ∗ρs + (1−ρ∗)ρ f . This model is in excellent agreement with our numerical results

for the structure-only case but significantly underestimates the pressure-wave velocity for

fluid-filled configurations. We proceed with a more appropriate homogenized-continuum

model for the FSI-case.

3.3.1 Equivalent continuum model for pressure waves

Pressure modes in the [1 0] direction (see Figs. 3.1(a-c)) present in-phase wall deflections

described by appropriate combinations of odd modeshapes of a clamped-clamped beam (the

joints between walls are rigid). This is consistent with the hydrostatic loading imparted by the

fluid. The horizontal walls are undeformed as this guarantees minimum energy in the RVE.

The simple deformed configuration of pressure modes in the [1 0]-direction (see Figs. 3.1(a-c))

suggests the analogy of a tube with one end constrained by a moving piston and closed end

on the other side. This model is depicted in Fig. 3.2. The modeling of cavities in porous media

as tubes with an effective cross-sectional area is a common technique (see [Carcione, 2007,

Stinson and Champoux, 1992] and references therein). Here, we extend this technique for

cavities with deformable walls.

p(x,t)u(t)

ks

Lf

closed endx
h

Figure 3.2 – 1D tube-piston model applicable in the linear pressure mode regime.

Infinitesimal pressure oscillations in the tube are governed by the one-dimensional (for waves
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keff keff keff keff
meff meff meff... ...

L L

Figure 3.3 – Representation of the aligned tube-piston unit cells as system of springs and
masses in series with effective stiffness and mass (ke f f , me f f ) for pressure wave propagation
near the Γ point.

in the [1 0] direction) wave equation:

∂2p

∂x2 = 1

c2
0

∂2p

∂t 2 , ∀ x ϵ[0, L f ] (3.1)

where L f = L−h. The boundary conditions are determined by the presence of the piston as:

∂p

∂x

∣∣∣∣
x=0

=−ρ f
∂2u

∂t 2 ,
∂p

∂x

∣∣∣∣
x=L f

= 0, (3.2)

where u is the displacement of the piston and is defined by:

ms
d 2u

d t 2 +ksu = −p(0, t )Ae f f , (3.3)

where ms , ks , and Ae f f denote the piston’s mass, stiffness and effective cross-sectional area.

Ae f f is determined as follows: for a given piston-displacement u the pressure within the tube

is p =∆V /V = Au/V , where V and A are the area and volume of the tube. For wall bending,

the change in volume is:

∆V =
∫ L

0
µ(x)d x ·1 = Ae f f u, (3.4)

where µ(x) is a spatial function that describes the deformation of the skeleton wall with

maximum amplitude u, that is, the first eigenfunction of a clamped-clamped beam. Then, for

a clamped-clamped beam Ae f f
∼= 0.5231A. Eqs. (3.1)-(3.3) are solved simultaneously [Martin,

2007] employing separation of variables p(x, t ) = X (x)T (t ): the characteristic equation for the

coupled system is:

cot
(
αr L f

)= msω0

ρ f c0 Ae f f

(
αr L f

α0L f

)[
1−

(
α0L f

αr L f

)2
]
=β−1

(
αr L f

α0L f

)[
1−

(
α0L f

αr L f

)2
]

, (3.5)

where αr =ωr /c0, whileωr andω0 are the rth natural frequency of the coupled system and the

natural frequency of the piston respectively. The coefficient β denotes the non-dimensional
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3.3. Micro-Mechanical Pore Models

Table 3.1 – Material and geometrical properties used in Cases 1, 2 and 3.

β α0L f c0, m/s ρ f , kg/m3 B f , Pa ρs , kg/m3 Es , kPa ρ∗

Case 1 ∀ ≪π/2 343 1.2 142000 1000 1 0.04
Case 2 ≪ 1 ≫π/2 0.01 1 0.0001 1000 1 0.08

≫ 1 ≫π/2 0.01 106 105.7 1000 1 0.2
Case 3 ≪ 1 ∼π/2 0.51 1 0.264 1000 1 0.2

fluid-loading parameter, describing the ratio of characteristic specific acoustic impedance of

the fluid to the magnitude of impedance of the piston mass per unit area at frequencyω0 [Fahy

and Gardonio, 2007]. Approximate solutions may be obtained for three cases: (1) α0L f ≪π/2,

(2) α0L f ≫π/2, and (3) α0L f
∼=π/2. The material and geometric properties for each case are

listed in Table 3.1.

Case 1

Let us begin with case 1, where we assume that the tube’s (cavity) natural frequency is much

larger than that of the pistons (cell walls) such that α0L f = ω0L f /c0 ≪ π/2, where π/2 =
α f L f =ωoc

f /c0L f is the non-dimensional wavelength at resonance for the tube open at one

end. With this assumption, the first argument of cotangent on the left-hand side of Eq. (3.5)

is α1L f =α0L f (ω1/ω0) ≪π/2, and cotangent can be expanded into Taylor series. Therefore,

Eq. (3.5) can be simplified by truncating the series expansions of the trigonometric terms: the

first natural frequency of the coupled system for truncation at the first two terms is:

ω2
1 = ω2

0(1+δ)+O
(
ω2

r

)
(3.6)

ω2
1 = ω2

0

(
3ms

3ms + Ae f f L f ρ f

)
(1+δ)+O

(
ω3

r

)
(3.7)

where δ= ρ f c2
0 Ae f f /(L f msω

2
0) is the added stiffness. While truncation at terms O

(
ω2

r

)
for the

trigonometric terms in Eq. (3.5) provides the canonical first natural frequency for a piston-tube

system [Fahy and Gardonio, 2007, Martin, 2007], it is not quantitatively correct as evident in

Eq. (3.6). Truncation at terms O
(
ω3

r

)
is instead necessary and we propose the first natural

frequency of Eq. (3.7). We show below that the truncation of Eq. (3.7) is sufficient.

Providedα0L f ≪π/2, the fluid behaves hydrostatically and the deflection of the lattice walls is

coupled by the added stiffness and mass of the fluid in the vicinity of the Γ-point. The effective
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stiffness of the tube-piston model can be written as:

ke f f =ω2
1(ms +m f ) =ω2

1me f f , (3.8)

where me f f is the effective mass of the RVE composed of the sum of structural and fluid

masses, ms and m f , where assuming the unit out-of-plane thickness:

ms = ρsL A/2, (3.9)

m f = ρ f L2
f . (3.10)

The propagation of pressure waves in the [1 0] direction is described by a 1D chain of springs

and masses in series (Fig. 3.3), with stiffness ke f f (Eq. (3.8)), and mass me f f . The canonical

dispersion relation for a chain of masses and springs [Brillouin, 2003] is adapted for our system

and the resulting phase velocity of pressure waves in the fluid-filled lattice is:

cP = ω

kx
= 2

kx

√
ke f f

me f f
sin

kx L

2
. (3.11)

In the vicinity of the Γ point:

lim
kx→0

cP = L f

√
1

2
ω2

0(1+δ) = L f

√
1

2
ω2

0

(
3ms

3ms + Ae f f L f ρ f

)
(1+δ), (3.12)

Let us compare the latter value of cP with the numerical model. Precisely, one can see that

the pressure-wave velocity of Eq. (3.12) well matches the slope of the pressure mode for

ρ∗ = 0.04 in both beam and plane-element models (Figs. 3.4(a-b)). The comparison with plane

elements [Dorodnitsyn and Spadoni, 2014a] is necessary as the deformation mechanism of

the cell walls depends on the type of entrained fluid, as will be discussed in Sec. 3.4.3. For the

solid and fluid properties described in Table 3.1 for case 1, beam and plane elements produce

the same results as Fig. 3.1. Moreover, one can generalize the result of Eq. (3.12) to the phase

velocity of the fast pressure mode in non-dispersive regimes away from resonance of the cell

walls (Fig. 3.4(c)). This follows from a simple consideration of uniform pressure loading which

only excites odd modes, which have the same stiffness, and thus the phase velocity of the fast

pressure mode is well captured by Eq. (3.12). It is also noteworthy that Eq. (3.12) captures the

phase velocity of the fast-pressure mode in the [1 1] direction (or Γ−M in Figs. 3.1 and 3.4).
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Figure 3.4 – Band structure detail about the Γ point with ρ∗ = 0.04 for beam (a) and plane-
element (b) models [Dorodnitsyn and Spadoni, 2014a]. Superposition of Eq. (3.12) to numeri-
cal band structure for high-frequency regimes (c). Circled label (1) denotes the FSI shear mode
in Γ−X direction.

We would like to explore the developments above from a different point of view. We depict

the left (black) and right-hand (red) sides of Eq. (3.5) in Fig. 3.5(a) for case 1 α0L f ≪π/2: the

two curves intersect for αr L f ≪ π/2. Two remarks are in order. The term
(
α0L f /

(
αr L f

))2

in Eq. (3.5) is negligible, therefore the solution becomes weakly dependent on β, and is

governed by the ratioαr L f /
(
α0L f

)
. The frequencyω1 represents a resonance with wavelength

much greater than the size of closed cells in the lattice. For the parameters chosen here,

2π/(ω1/c0) = 2.47 cm, or 247 times larger than L. This frequency is the equivalent of the

Minnaert frequency for an isolated bubble in water. We make an analogy with the Minnaert

frequency since pore resonance is a key scattering source: a volume of fluid enclosed by

deformable walls. Because of the deformability of the walls, much like compressible air

trapped in a bubble, this entity resonates at frequencies lower than those of fluid-volume

alone (with either open or closed/rigid boundaries). The resulting wavelength–considering

the speed of sound in the fluid phase–is much larger than the length L f of the tube in our

piston-tube model. Given the periodicity of the lattice moreover, ω1 describes the behavior of

the entire cellular solid in the long-wavelength regime.

The importance of the cell-walls natural frequency ω0 transcends Eq. (3.5). Given the period-

icity of the lattice, symmetry conditions given by Bloch theorem (refer to Sec. 2.2.3) dictate

that for wavevector (kL = (π,0)), corresponding to point X in the band structure, uR =−uL

and uT = uB where subscripts denote the right, left, top and bottom sides of the unit cell. The

energetically-favorable solution is identical to that of Fig. 3.1(a), with deformations encom-

passing the top and bottom sides instead. The entrained fluid is not compressed and simply

acts as added mass. Resonance of the cell walls is thus a strong dispersion source, regardless

of the type of entrained fluid, as shown in Fig. 3.5(b) where ρ f ≪ ρs . If ρ f ∼ ρs , ω0 is derived
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considering that the potential energy only comes from the structural deformations, whereas

the kinetic energy is composed of both structural and fluid contributions. The tube-piston

model of Sec. 3.3.1 only predicts natural frequencies of the coupled model based on a rigid

piston. In our case, the piston is really a deformable surface and thus can resonate for ω<ωr .

Since the stiffness of the cell walls is the same at all frequencies (away from resonances)

however, a theoretical model based on a rigid piston with appropriate stiffness is reasonable.

This conclusion will prove accurate in the prediction of the phase velocity also, discussed in

Sec. 3.4.
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Figure 3.5 – Case 1. Left (black line) and right-hand (red) sides (a) of Eq. (3.5), with correspond-
ing band structure (b) depicting the FSI solution in solid black lines, and the structure-only
case in red dashed lines. The ordinate is normalized with ω0. The solid green line highlights
the Γ−X pressure mode in the non-dispersive regime.

Case 2

For case 2
(
α0L f ≫π/2

)
, first-resonance of the pores is lower than that of the cell walls, and

α0L f /
(
αr L f

)
on the right-hand side of Eq. (3.5) is the leading term. In this case, β must

be taken into consideration. This leads to two sub-cases: β≪ 1, and β≫ 1 corresponding

to low and high-density entrained fluid, respectively. The solution to Eq. (3.5) for β≪ 1 is

shown in Fig. 3.6(a), and β≫ 1 in Fig. 3.6(b). The corresponding band structures are shown in

Figs. 3.6(c-d).

For β≪ 1, the left and right-hand sides of Eq. (3.5) intersect at αr L f =πr (Fig. 3.6(a)). Thus

we expect first dispersion at α1L f =π, which corresponds to the natural frequency of a closed-

closed tube, ωcc
f (Fig. 3.6(a)). For αr L f =πr , the left-hand side of Eq. (3.5) is infinity and the

only possibility to satisfy this condition is ω1 ≪ω0. However α1L f →π=ωcc
f /c0L f , therefore,

ω1 =ωcc
f ≪ω0, which leads the wave propagation to be direction-independent (Fig. 3.6(c)),
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Figure 3.6 – Case 2 (refer to Table 3.1). Left (black line) and right-hand (red) sides of Eq. (3.5)
for (a) β≪ 1 and (b) β≫ 1. Corresponding band structures (c), (d) where the FSI solution is
shown in solid lines, and the structure-only case is in red dashed lines. Ordinates in (c) and
(d) are normalized with ωcc

f and ωoc
f , respectively. The solid green lines highlight the Γ− X

pressure modes in the non-dispersive regime.

a clear indication of internal resonance independent of boundary conditions (wavevector)

imposed by Bloch theorem. For β≪ 1, moreover, the phase velocity of pressure waves for

the FSI case is the same as that of the structure only case, provided ρ f ≪ ρs indicating a

very compressible and light fluid. In this case, the contribution of the entrained fluid is

merely dispersion due to phase changes between structural and fluid motion near resonant

frequencies of a cavity with rigid walls.

On the other hand when β≫ 1, solutions to Eq. (3.5) areαr L f =π(2r +1)/2 (Fig. 3.6(b)), which

correspond to the natural frequencies of an open-closed tube, with the first denoted by ωoc
f .

The first of such solutions corresponds to ω1 =ωoc
f ≪ω0; the corresponding band structure

is shown in Fig. 3.6(d) where the ordinate axis is normalized by ωoc
f . This case corresponds

to a stiff structure with entrained nearly incompressible fluid with high density. In this case,
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added mass by the fluid decreases the phase velocity of pressure waves, and fluid resonances

introduce strong dispersion (Fig. 3.6(d)). Relative density for this configuration (Table 3.1) is

increased to ensure that ω0 ≫ωoc
f .

(a) (b)

X Г M X

ω/ωf
cc
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Figure 3.7 – Case 3 (refer to Table 3.1). Left (black line) and right-hand (red) sides (a) of Eq. (3.5),
with corresponding band structure (b) depicting the FSI solution in solid black lines, and the
structure-only case in red dashed lines. The ordinate is normalized with ωcc

f .

Case 3

For case 3, α0L f ∼π/2 and two sub-cases are mathematically meaningful: β≪ 1 and β≫ 1.

Physically however, the second case cannot be achieved while satisfying α0L f ∼π/2. The first

case represents the coupling of fluid and structure with similar resonance frequencies. The left

and right-hand sides of Eq. (3.5) intersect atα1L f <π/2, andαr L f = rπ for r = 2,3, . . .. The first

resonant frequency of the coupled system is smaller but comparable to π/2, corresponding to

ωoc
f , while the subsequent resonances are those of a closed-closed tube. This phenomenon is

well documented [Fahy and Gardonio, 2007] and is known as frequency splitting for enclosed

volumes of fluid by deformable structures [Fahy and Gardonio, 2007]. For higher frequencies,

the fluid contribution is significant only for resonant frequencies of the closed-closed tube

at αr L f = rπ, as shown in Fig. 3.7(b). The rigid-wall boundary conditions on the tube result

from antiresonances of the cell walls. Relative density for this configuration (Table 3.1) is also

increased to ensure that ω0 ≫ωoc
f .
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3.3.2 Comparison of analytical and FE models

Thin internal walls in cellular solids may resonate inducing strong dispersion even for wave-

lengths much smaller than the characteristic pore length L. The thicker solid phase in porous

materials does not resonate, at least for the first several branches in the band structure, and dis-

persion is the result of Bragg scattering for wavelengths near L. Biot’s theory has been validated

for the macroscopic behavior in the latter regime. In a previous chapter (also in [Dorodnitsyn

and Spadoni, 2014a]), we investigated the applicability of Biot’s theory for cellular solids with

ρ∗ → 0. We summarize our previous findings in Fig. 3.8 and we compare them with Eq. (3.12)

for the phase velocity of pressure waves. Two FE models, based on beam and 4-node plane

elements, are employed to investigate configurations with 1×10−4 ≤ ρ∗ ≤ 1. The differences

between the two element types are (i) plane elements are computationally very expensive

for ρ∗ < 0.04 while (ii) beam elements neglect deformations through the thickness (rigid

cross-sections).

Starting with shear waves in the low-frequency regime (below any resonance), homogenized

models for a square lattice without entrained fluid give [Dorodnitsyn and Spadoni, 2014a,

Kumar and McDowell, 2004] σ12 = Esh3/L3ε12 =C44ε12. The phase velocity of shear waves is

obtained as
√

C44/ρ̄, where ρ̄ = ρsρ
∗+(1−ρ∗)ρ f . This model is in excellent agreement with FE

results both for entrained air and water (Figs. 3.8(a-b)) which, for the properties selected here,

represent ρ f ≪ ρs and ρ f ∼ ρs respectively. This homogenized model is appropriate since

shear wavemodes in a square lattice are equivoluminal, and thus the contribution of the fluid is

simply added mass, which is captured by ρ̄. A comparison between Biot’s theory [Dorodnitsyn

and Spadoni, 2014a], FE results, and the homogenized model are in excellent agreement for

cellular solids with ρ∗ ≤ 0.3 as shown in Fig. 3.8. For ρ∗ > 0.3, the models diverge owing to the

fact that we employ elastic constants from beam theory for both Biot’s theory and the C44.

In the case of pressure waves, the homogenized tube-piston model of Eq. (3.12) is in excellent

agreement with the FE model based on beam elements for the entire range of ρ∗ (Fig. 3.8(c)),

but agreement deteriorates with the plane-element FE model and Biot’s theory for ρ∗ > 0.1

as a result of the limitations of beam theory. The FE model based on beam theory does not

correctly account for reduction of the pore size as ρ∗ increases (size h is just a parameter,

and L is unchanged), in addition to neglecting deformations through the thickness. The

limitations of beam theory become even more apparent if one considers water for which

ρ f ∼ ρs (Fig. 3.8(d)) where there is no agreement between beam-element FE model, Eq. (3.12),

and either Biot’s theory or plane-element FE model (Fig. 3.8(d)). We revisit and explain such

limitations below in Sec. 3.4 where we explore in detail microstructural deformations. A last
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Figure 3.8 – Phase velocities for shear ((a) and (b)) and pressure ((c) and (d)) waves for entrained
air ((a) and (c)) and water ((b) and (d)) for increasing relative density ρ∗. Solid, dashed-dotted,
and thick dashed lines correspond to the FE results based on the plane elements, beam
elements, and Biot’s theory for plane conditions, respectively. The dotted lines in panels (a)
and (b) correspond to equivalent-continuum models for shear waves based on C44, which
is defined in Sec. 3.3.2. The dotted lines in panels (c) and (d) correspond to the equivalent-
continuum model for the pressure waves given by Eq. 3.12. The thin dashed lines in panels
(c) and (d) denote the pressure-wave velocity obtained by employing Eq. 3.6. All velocity
correspond to wavenumbers in the Γ−X direction.

comment is due regarding the approximate solutions of Eqs. (3.6) and (3.7). Both perform very

well for 0.0001 ≥ ρ∗ ≤ 0.1 (Fig. 3.8(c)), while the phase velocity predicted by Eq. (3.6) diverges

for ρ∗ < 0.001 since:

lim
ρ∗→0

cP = ∞ based on Eq. (3.6), (3.13)

lim
ρ∗→0

cP = c0 based on Eq. (3.7). (3.14)
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The results for plane and beam-element FE models, as well as the results from tube-piston

and Biot’s models, converge in the fluid limit ρ∗ → 0. We attribute this behavior to the fact that

lattices with infinitesimal relative density are mostly determined by the fluid phase, where

only the bending of the walls contributes to the structural displacements.

3.4 Macro-Mechanical Equivalent Continuum Model

In this section, we propose an homogenized stiffness tensor C , describing the macrostructural

behavior of the closed-cell lattice, for the low-frequency regime corresponding to case 1 above

where α0L f ≪π/2. In general, we observe two wave modes (pressure and shear) below the

first resonance of the lattice walls (ω/ω0 < 1). This is the same as for a 2D continuum described

by classical elasticity theory [Graff, 1975], which is defined by a second-order tensor. The

closed cell lattice of Fig. 2.1 has simple cubic symmetry and the stiffness tensor is defined by

three independent constants:


σ11

σ22

σ12

=


C11 C12 0

C12 C11 0

0 0 C44




ε11

ε22

2ε12

 (3.15)

where Ci j are the effective stiffness constants. We develop next models for C11 and C12 required

to completely define Eq. (3.15). C44 is defined in Sec. 3.3.2.

3.4.1 Homogenized model for C11 and C12

We can once again employ a quasi-static model given that we are interested in the low-

frequency regime ω̄< 1. We propose the model of a cavity bounded by deformable, simply-

supported beams (Fig. 3.9).

The beams’ rotations are coupled at x1 = 0, x2 = L, and pressure Pb depends on transverse

deformations as:

Pb =−B f
∆V

V
=−B f

L2

(∫ L

0
w1(x1)d x1 +

∫ L

0
w2(x2)d x2

)
. (3.16)
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LPbw2

x2

x1

h

w1

Pt

Figure 3.9 – Static model of a square cavity enclosed by simply-supported beams of thickness
h, with internal Pb and external pressure Pt .

The coupled integro-differential equations governing beams’ deformations are:

E I
d 4w1

d x4
1

=−Pb +Pt ,

E I
d 4w2

d x4
2

=−Pb ,

(3.17)

with boundary conditions:

w1(0) = 0, w2(0) = 0,

w1(L) = 0, w2(L) = 0,

w ′′
1 (L) = 0, w ′′

2 (L) = 0,

w ′
1(L) = w ′

2(0), w ′′
1 (L) = w ′′

2 (0).

(3.18)

Eqs. (3.17) can be solved by considering that the right-hand side, Pb is a definite integral with

constant limits of integration. Differentiating Eqs. (3.17) by the corresponding spatial variable

leads to two homogeneous fifth-order ODEs, whose general solution contains ten unknown

constants. Substituting the general solution back into Eqs. (3.17) determines two constants.

The remaining constants are evaluated with Eqs.(3.18). We do not present this general solution

for brevity, however it is similar to the approach employed for solving the PDE in the next

chapter and detailed in the Appendix. We define the average strain along x1 and x2 as:

ϵ11 = 1

L2

∫ L

0
w1(x1)d x1,

ϵ22 = 1

L2

∫ L

0
w2(x2)d x2.

(3.19)
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From the stress-strain relation of Eq. (3.15), one has:

C12 = σ11ϵ22 −σ22ϵ11

(ϵ22)2 − (ϵ11)2 , (3.20)

which, evaluated for σ11 = 0 and σ22 = Pt , gives:

C12 = 102 Es I

L3 +B f = 102 Es

12
(1−√

1−ρ∗)3 +B f . (3.21)

The model is well posed for C12 as ρ∗ → 0.

The stiffness term C11 can simply be derived from the tube-piston homogenized model

(Sec. 3.3.1). Along high-symmetry directions, say [1 0], the phase velocity of pressure waves is

simply cP =√
C11/ρ̄ [Wolfe, 2005]. Then from Eq. (3.12), one obtains:

C11 = 5×102 Es I

L3 +B f = 5×102 Es

12
(1−√

1−ρ∗)3 +B f , (3.22)

where the only difference from C12 is the factor of 5 in the first term. For ρ∗ < 0.1 however,

the second term B f dominates. All coefficients derived in this section are applicable to case 1

where α0L f ≪π/2.

3.4.2 Dispersion surfaces and slowness curves

Dispersion surfaces are obtained from the eigenvalue problem of Eq. (2.16) for k ·er ∈ [−π, π],

r = 1,2 corresponding the the first Brillouin zone for a square lattice [Brillouin, 2003]. The

dispersion surfaces for ρ∗ = 0.04 (h = 0.02L) and ρ∗ = 0.75 (h = 0.5L) are shown in Figs. 3.10(a-

b) respectively. The dispersion surfaces which correspond to the case 2, studied in the Sec. 3.3.1

and depicted in Fig. 3.6, are provided in Fig. 3.11 for β≪ 1 (a), and β≫ 1 (b). We note the

cubic symmetry in dispersive regions, and the difference in gradients between the first surface

(shear mode) and the second surface (pressure mode). The band structure is represented by

black lines, confirming the validity of the results presented in previous sections.

Dispersion surfaces obtained from FE models allow the determination of anisotropy by defin-

ing the slowness vector s = k/ω
∣∣
ω0

at a given frequency ω0 [Wolfe, 2005]. The slowness vector

has magnitude ∥s∥ = 1/cα(k), with α= S, P indicating shear and pressure modes. Equilibrium

at the macroscale requires:

∇ jσi j = ρ̄üi , (3.23)
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Figure 3.10 – Dispersion surfaces (a) for ρ∗ = 0.04 (case 1 from Table 3.1), and (b) for ρ∗ = 0.75
in the (kx ,ky ,ω)-domain, where |kx | ≤π and |ky | ≤π. Shear mode surfaces are labeled with
circled numbers (1) and (3), while pressure mode surfaces with (2) and (4). Top view of each of
the surfaces is provided in the right side of the figure.

where the microstructural stress is defined in Eq. (3.15). Assuming plane harmonic waves with

amplitude û, one obtains [Wolfe, 2005]:

(Di l − c2
αδi l )û = 0 , (3.24)
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with circled numbers (1) and (3), while pressure mode surfaces with (2) and (4). Top view of
each of the surfaces is provided in the right side of the figure.

where:

Di l =
1

ρ̄
Ci j lm

k j

∥k∥
km

∥k∥ , (3.25)

is the Christoffel matrix (Einstein notation is used), ∥k∥ is the wavenumber, and k/∥k∥ are

components of the direction vector; Di l relates elastic constants to the phase velocities of
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wavemodes [Auld, 1973, Wolfe, 2005]. The eigenvalues of Eq. (3.24) define the phase velocity

cα, from which the slowness curve is obtained.

Eq. (3.24) can be solved analytically expressing the wavevector k in terms of magnitude and

angle γ:

k = ∥k∥{cosγ, sinγ}T . (3.26)

With this definition, the eigenvalue problem of Eq. (3.24) is solved for cα:

cα = 1

2ρ̄

(
C11 +C44 ∓

√
(C 2

11 −2C44C11)cos2 2γ+ (C 2
12 +2C44C12)sin2 2γ+C 2

44

)
(3.27)

Note that C11 ≫C44 (Eqs. (3.21) and (3.22)), consistent with the fact that longitudinal waves

produce greater restoring force due to local change of volume than shear waves, especially in

the presence of fluid. Eq. (3.27) can be simplified further:

cα = 1

2ρ̄

(
C11 ∓

√
(C11)2 cos2 2γ+ (C12)2 sin2 2γ

)
. (3.28)

This expression of the phase velocity is compared next to numerical estimates from our FE

models.

Slowness curves for shear and pressure modes for a square lattice with entrained air are

shown in Figs. 3.12(a-b) for ρ∗ = 0.04, and Figs. 3.12(c-d) for ρ∗ = 0.75. These values of

relative density represent a cellular and a porous medium respectively corresponding to case

1 α0L f ≪π/2. The agreement between numerical (dashed lines) and analytical results (solid

lines) is excellent for all angles (Figs. 3.12(a-d)). Furthermore, shear waves are anisotropic,

even in the low frequency regime, and their spatial characteristics depend on ρ∗. Pressure

waves, on the other hand are isotropic, and significantly faster than shear waves. This is in

agreement with Fig. 3.1 and C44 ≪ C11. Isotropic pressure waves are obtained if C11 ≃ C12,

which is certainly the case of Eqs. (3.21) and (3.22). The proposed tube-piston model is thus

applicable for any propagation direction.

For case 2 with α0L f ≫π/2, slowness curves are shown in Figs. 3.12(e-f) for β≪ 1 and β≫ 1

corresponding to low-density/soft and high-density/stiff entrained fluid respectively. In both

cases, the shear wave is highly directional, and much slower than the pressure wave.
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Figure 3.12 – Slowness curves (in s/m) for shear (green) and pressure waves (red). Case 1
α0L f ≪π/2 ρ∗ = 0.04 ((a) and (b)) and ρ∗ = 0.75 ((c) and (d)); Case 2 α0L f ≫π/2 with β≪ 1
(ρ∗ = 0.08) (e) and β≫ 1 (ρ∗ = 0.2) (f). All curves are evaluated for the constant frequency
ω0 = 10 Hz. In (a) and (c), green solid and dark blue dashed lines denote respectively the
shear slowness from Christoffel matrix (Eq. (3.24)) and from dispersion surfaces obtained with
plane elements. In (b) and (d), red solid and light blue dashed lines denote pressure slowness.
Panels (e) and (f) correspond to case 2 (Table 3.1) for β≪ 1 and β≫ 1, respectively. Enlarged
pressure slowness curves are superposed with insets in panels (e) and (f).
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3.4.3 Extreme behavior of the pressure wave phase velocity

The dependency of the phase velocity of the pressure wave on the relative density is discussed

in detail in [Dorodnitsyn and Spadoni, 2014a], and summarized in Sec. 3.3.2 for ω̄≪ 1. In

addition to having a relation between macrostructural behavior and geometric and material

properties, it is important to understand the deformation mechanisms of the microstructure.

For this reason, the phase velocity of pressure waves is computed for an extended range of

relative density 1×10−8 ≤ ρ∗ ≤ 1. We employ Biot’s theory given its excellent performance,

discussed in Sec. 3.3.2, to explore regimes of ρ∗ which would be challenging for FE models.

Air and water are considered as the entrained fluid to analyze the contribution of ρ f versus

ρs . In general for case 1
(
α0L f ≪π/2

)
, three distinct deformation-mechanism regimes exist

(Fig. 3.13). In the limit ρ∗ → 0, microstructural deformations are of bending type (Fig. 3.1(a)).

For the piston-tube model of Sec. 3.3.1, the structural natural frequency ω0 is simply that

of a clamped-clamped beam. The phase velocity in the bending regime, furthermore, is

logarithmically constant with respect to ρ∗ as ρ∗ → 0 and correctly converges to the speed of

sound in the fluid phase c0 =
√

B f /ρ f . This first regime is labeled by the circled number 1 in

Figs. 3.13(a-b).
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Figure 3.13 – Phase velocities for pressure waves for entrained air (a) and water (b) for 10−8 ≤
ρ∗ ≤ 1 in logarithmic scale. Thin red dashed line denotes Biot’s theory. Circled numbers
label logarithmically linear regimes of cP (black solid straight lines). Green dashed line is
the approximation of the pressure phase velocity (Eq. 3.29), given by spring-mass model
superposed in (b). The gray font labels schematically depict the ranges of different structural
deformation behaviors. Studied frequencies belong to non-dispersive range at each value of
ρ∗.

For intermediate values of ρ∗, microstructural deformations include bending and through-

the-thickness modes (Fig. 3.14(a)). We denote this as the hybrid regime for which simple

analytical models of ω0 do not exist. Among other shortcomings, beam theory neglects any

deformations through the thickness (rigid-cross-section assumption) and cannot predict

hybrid deformations. This limitation contributes to the discrepancy between analytical and
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beam-based FE models in Fig. 3.8. Since this regime takes place for different values of ρ∗

depending on the ratio ρs/ρ f , we conclude that microstructural deformation mechanisms

are determined by mass coupling. For light entrained fluid like a gas, mass coupling is small

and deformations are of bending-type for ρ∗ < 0.1 and hybrid-type for ρ∗ ≥ 0.1. For heavy

entrained fluid, the bending regime is confined to extremely small values of ρ∗.

Air

min(u)

max(u)

Water

(a) (b)

Figure 3.14 – Fluid-structure (FSI) wave modes of a square unit cell with ρ∗ = 0.75 for (a) air,
and (b) water, corresponding to the wavevector k along x-axis with kx = 0.03π, ky = 0. Solid
red lines denote the initial configuration. The change in color corresponds to the standard

Euclidean norm of the structural displacement vector u =
√

u2
x +u2

y .

For heavy entrained fluid, a third regime exists with through-the-thickness deformations.

For values of relative density ρ∗ > 1× 10−5, pressure waves produce the deformations of

Fig. 3.14(b). In this case, the entrained fluid can be considered as a heavy and stiff inclusion

contributing most of the kinetic energy of pressure waves, with strain energy confined to

the solid phase. A simple model for this regime is a chain of springs and masses (inset in

Fig. 3.13(b)), with mass and stiffness given by the considerations just above. Accordingly, the

spring stiffness is approximated as ke f f = Es A/h = EsL/h and the effective mass is that of the

fluid me f f = ρ f L2. Then, from Eqs. (3.11) and (3.12), the phase velocity of the pressure waves

in the long-wavelength limit is:

cP ∼
√

Es

ρ f

L

h
=

√
Es

ρ f

1(
1−√

1−ρ∗) . (3.29)

This model correctly captures the logarithmic dependence of the phase velocity in the third

regime for ρ∗ > 1×10−5 (green dashed line in Fig. 3.13(b) labeled with the circled number 2).
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The offset between Biot’s theory and Eq. (3.29) can be attributed to the fact that the solid phase

does contribute some mass and the portion of a cell face participating in the deformation is

smaller than L, increasing the effective stiffness.

3.5 Conclusion

Wave propagation in media with microstructure is characterized by strong scattering. In

porous media, periodic or not, dispersion arises when wavelengths match some characteristic

size of the pores or their distribution and not from the resonant frequency of the entrained

gas, at least in the acoustic branch. In cellular solids, the solid phase occupies a small portion

of the total volume and may resonate at relatively low frequency. In addition to the size of

cavities, resonant scattering contributes to wave dispersion. Significant research has been

devoted to wave propagation in cellular solids, but the contribution of entrained fluid has

been analyzed via phenomenological, macrostructural models such as Biot’s theory. In this

chapter, the contribution of entrained fluid is investigated with FE models of a representative

volume element, explicitly considering fluid-structure interactions. The entrained fluid is

considered inviscid, and both heat conduction and convection are neglected, leading to an

acoustic model for cavities. The analogy of a cavity with an equivalent tube is here extended to

consider the coupling with deformable boundaries given by structural walls. The periodicity

of the considered 2D square lattice allows the derivation of a homogenized model based on

computed microstructural deformations.

Wave propagation can be categorized in terms of wall, cavity, and coupled-system resonance

frequencies. When the cavity frequencies are higher than wall frequencies, the entrained

fluid increases effective stiffness and contributes added mass. A tube-piston model based

on computed microstructural deformations accurately describes propagation away from

resonances, so long as deformations are of bending type. The same tube model allows the

derivation of effective mechanical properties at the macroscale in terms of geometric and

material properties. For a square lattice, shear wavemodes are equivoluminal and thus can be

modeled with previously derived models. We find that pressure waves are isotropic both for

cellular ρ∗ < 0.3 and porous regimes ρ∗ ≥ 0.3, where ρ∗ is the relative density. We complete

the macrostructural stiffness description by deriving C12 relating stress σ11 to strain ε22, and

we find excellent agreement with computed phase velocities for shear and pressure modes for

all angles. Given the cubic symmetric of the square lattice, the shear wavemode is anisotropic

for all considered values of ρ∗ and type of entrained fluid.
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3.5. Conclusion

The proposed homogenized model requires knowledge of the wall resonance frequency. While

physically appropriate for ρ∗ ∈ [0,1), the proposed piston-tube model is not easily extended to

relatively large values of ρ∗, owing to the microstructure undergoing bending and through-

the-thickness deformations. In this regime, the resonance frequency of the walls cannot

be evaluated from beam theory. The onset of bending and through-the-thickness defor-

mation mechanisms is determined by mass coupling. For heavy entrained fluid, through-

the-thickness-only deformations are observed, while for light entrained fluid, hybrid modes

encompassing both deformation modes are possible. Accordingly, we employ both beam and

plane elements to discretize the solid phase of the lattice.

Wave dispersion is also affected by cavity resonances. In the case this is lower than wall

resonance, one has two scenarios: (i) cavity resonances described by a closed-closed tube for

a light and soft entrained fluid; (ii) cavity resonances described by an open-closed tube for a

heavy fluid. An additional regime is given by coincident cavity and wall-resonance frequency.

In this, the classic phenomenon of frequency splitting is observed. Finally, we find Biot’s theory

to be in excellent agreement with numerical models of both cellular and porous media. Biot’s

theory however requires effective mechanical properties for the solid phase with and without

entrained fluid; particularly the effective bulk and shear moduli. While these properties do

exist for a square lattice, this is not the case for more complex cellular solids, especially in 3D.

The piston-tube model we propose, on the other hand, only requires the resonant frequency

of the walls, and thus should easily be extended to 3D (refer to Sec. 6.2).

In the next chapter the limitation on the low, undisperced frequency ranges is removed by

introducing the full analytical model valid for any wavelengths. The analysis is devoted to the

pressure waves, with the specific focus on the coexistence of slow and fast P-waves within the

certain frequency bands. For that the Rayleigh energy approach is considered.
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4 Analytical Analysis of Slow and Fast

Pressure Waves

The material presented in the chapter are accepted for publication in JASA Special Issue on

Acoustic Metamaterials, 2016.

4.1 Introduction

This chapter presents an analytical study of pressure waves in the system investigated numeri-

cally in the previous chapter. The medium is considered as an acoustic metamaterial subjected

to plane-harmonic-waves analysis. As it was shown previously, three longitudinal waves are

identified from a finite element (FE) model: one slow and two fast pressure waves. The slow

one is one order of magnitude slower than the both fast ones, which propagate at the same

rate in the non-dispersive regimes. The slow pressure wave is only generated in case the cells

are filled with a fluid and propagates only in the high frequency range above the odd structural

resonant frequency. The goal is to derive an equivalent continuum which predicts behavior

found in the full numerical model for pressure waves in the Γ - X direction. The model predicts

the existence of both fast and slow longitudinal wavemodes and the correct deformations

of the walls. This is done in three steps. First, in Sec. 4.2, a simplified finite-element model

is introduced, in which the wave number is included in the material parameters. Second, a

fully analytical mechanical model of the microstructure is described in Sec. 4.3. Finally, in

Sec. 4.4, the pressure wave modes are investigated using Rayleigh’s energy approach. It is an

elegant method to characterize the difference between slow and fast longitudinal waves, and

to introduce the phase velocity analysis.

The full FE model displayed further echoes the one from Chapter 2. The band-structure shown

in Fig. 4.1(c), limited to the path Γ−X in the first Brillouin Zone (i1-direction of direct space
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Chapter 4. Analytical Analysis of Slow and Fast Pressure Waves

(Fig. 4.1(a))), is computed for two cases: drained (structure-only, STO) and filled with fluid

(fluid-structure interaction, FSI). The Γ−X limitation is sufficient due to the isotropic behavior

of pressure waves subjected to the current analysis (as was established in Sec. 3.4.2). An RVE

from Fig. 4.1(b) is consistent with the Timoshenko beam formulation studied previously

(Sec. 2.2.1). Material and geometrical parameters are listed in Tab. 4.1.
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Figure 4.1 – Square lattice with wall thickness h and cell length L and unit cell (a). RVE
with solid portion discretized by 3-dof beam elements (b). Coupling elements with both
structural and pressure dofs are used to model fluid-structure interaction. Band structure
(c) for an infinite cellular material along the Γ, X path in the iBZ. The angular frequency ω is
normalized by the first natural frequency of a clamped-clamped beam ω0. Circled letters a -

c and d - f denote wave number - frequency combinations used to depict the deformed
configurations of wave modes in STO and FSI cases, respectively.

The calculated cell deformations of some relevant pressure ( d - f , a - b ) and shear

waves ( c ) are shown in Fig. 4.1(c). It can be seen that the vertical wall deflections related to

pressure waves are described by modeshapes comparable a clamped-clamped beam. Due

to the hydrostatic loading imparted by the fluid, only symmetric (odd) mode shapes occur.
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4.2. Simplified Finite-Element Approach of P-waves

Table 4.1 – Material and geometrical properties are in accordance with Chapter 2 and [Dorod-
nitsyn and Spadoni, 2014a].

Relative
density

fluid bulk
modulus

fluid den-
sity

structural Young’s
modulus

structural
density

ρ∗ β (Pa) ρ f (kg/m3) Es (kPa) ρs (kg/m3)

FSI 0.04 142 000 1.2 1 1000
STO 0.04 0 0 1 1000

The horizontal walls are not bent. This has been proved in [Dorodnitsyn and Spadoni, 2014a],

where it is shown that a pure longitudinal compression of the walls guarantees minimum

energy in the RVE. On the other hand, shear modes require the bending of both horizontal

and vertical walls [Dorodnitsyn and Spadoni, 2014a]. For higher-energy shear waves ( c )

the antisymmetric (even) modes of a clamped-clamped beam are allowed [Dorodnitsyn and

Spadoni, 2014b].

In this chapter, we develop an analytical model to predict the pressure wave behavior in the

geometry previously studied numerically (Fig. 4.1 and Tab. 4.1). The goal is to understand the

origin of the slow pressure wave, by studying an equivalent continuum which matches the full

numerical model for pressure waves in the Γ, X direction. The analytical description has to

predict both the dispersion behavior and the cell deformations. This is done in three steps.

First, in Sec. 4.2, a simplified finite-element model is introduced. This shows that the explicit

fluid-structure interaction can be replaced by including the wave number in the material

parameters. Second, a fully analytical mechanical model of the microstructure is described

in Sec. 4.3. Finally, in Sec. 4.4, the pressure wave modes are investigated using Rayleigh’s

energy approach. It is an elegant method to characterize the difference between slow and fast

longitudinal waves, and to introduce the phase velocity analysis.

4.2 Simplified Finite-Element Approach of P-waves

This section introduces a simplification of the FE matrices of a representative model for

pressure waves (P-waves). In [Dorodnitsyn and Spadoni, 2014b] the authors extensively inves-

tigated P-waves using the Christoffel matrix, showing the longitudinal modes to propagate in

an isotropic way. Thus, we can limit the analytical study to the Γ−X direction without loss

of generality. Using the observations of the wall deformations given earlier, one can simplify

the considered RVE as follows: two beams are aligned perpendicularly to the direction of the

wave vector q . They are connected by an effective spring, employed to simulate a distributed
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Chapter 4. Analytical Analysis of Slow and Fast Pressure Waves

fluid force, and connecting each node in the left beam to every node in the right beam. Since

the horizontal walls of the square cell are only deformed longitudinally, they can be replaced

by a one dimensional spring with spring constant k = E A/L. A schematic model is shown in

Fig. 4.2(a).
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effective spring 
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fluid load 

- FE nodes

L

beam 2

  elastic spring 
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horizontal wall

W(x,t)

m
s

P
b

symmetric conditions applied

k

~

~
~

~

0

L

x

~

(a) (b)

beam 1

Figure 4.2 – (a): Simplified finite-element model (Ψ-model). The direction of the wave vector
q is depicted by the black solid arrow. Walls parallel to the wave propagation are modelled
by elastic springs, fluid load is replaced by a distributed effective spring. (b): Equivalent-
continuum model. An effective force Pb couples motion of fluid and structure phases. The
walls parallel to the direction of wave propagation are modeled by lumped masses ms and
springs with the wavevector-dependent stiffness k̂. The boundary conditions are forced to be
symmetric at x = 0 and x = L.

The stiffness matrix of this model (further referred to asΨ-model) can be written as

[K ] =
K11 +βΨn K12 −βΨn

K21 −βΨn K22 +βΨn

 , (4.1)

where K11 and K22 are the stiffness matrices of beams 1 and 2, and K12 = K T
21 stands for the

stiffness of the horizontal springs which represents the elastic coupling. The only nonzero

component in the coupling terms is k = E A/L representing the actual rigidity of the parallel

walls. Ψn is a square matrix of order n with all elements being equal to 1/n and n is the

number of dofs per beam. Introducing the fluid’s compression modulus β, this correction
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4.2. Simplified Finite-Element Approach of P-waves

for the STO stiffness matrix captures the hydrostatic pressure load. The effective elastic

connection replacing the fluid is chosen massless, therefore the mass matrix for theΨ-model

is identical to the one from the FE model. By plugging the stiffness and mass matrices into

Bloch’s theorem to impose periodic boundary conditions [Kittel, 2004], one finds the reduced

matrices

[Kr ] = T T [K ]T,

[Mr ] = T T [M ]T.
(4.2)

In this notation

T =
 In

In ·e j q

 (4.3)

is the transformation matrix expressing the symmetry conditions [Cook, 2001, Chapter 12]. In

is the identity square matrix of order n, q is the nondimensional wave number, and j 2 =−1.

Substituting the reduced stiffness and mass matrices into Eqs. (4.2) yields

[Kr ] = [K̃s]+βΨn(1−cos(q)) = [K̃s]+ β̂Ψn ,

[Mr ] = [M̃s],
(4.4)

where [K̃s] = K11 +K22 +2K12 cos(q) and [M̃s] = M11 +M22 +2M12 cos(q) are the reduced STO

matrices (corresponding to the case ofβ= 0). According to Eqs. (4.4), an effective bulk modulus

can now be defined as

β̂=β(
1−cos(q)

)
. (4.5)

This is an important finding since the influence of the fluid on the wave propagation is now

stored in just one additional term. This property will be used further to develop the analytical

model.

The resulting band-structure for theΨ-model is compared to the one for the full FE model

in Fig. 4.3. A good agreement in the low frequency ranges for both (a) STO and (b) FSI cases

can be verified. Moreover, from the comparison of STO and FSI band structures the existence

of the slow P-wave in the presence of the fluid is confirmed. The flat lines next to ω/ω0 = 3

indicate the propagation of the wave to be direction independent (captured by both full FE

andΨ-model), which points out the presence of resonance. TheΨ-model statement does not

capture the shear waves since the necessary horizontal wall bending is neglected. The higher
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Chapter 4. Analytical Analysis of Slow and Fast Pressure Waves

frequency discrepancy can be attributed to the way theΨ-model has been defined: the fluid

does not influence the model mass matrix, as it is the case in the full FE system. Therefore, the

effective mass of theΨ-model is lower which makes the P-waves to be slightly slower in the

high frequency regimes than in the full FE model.
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Figure 4.3 – Comparison of two band-structures in the direction Γ− X : full FE model from
Fig. 4.1(c) (black solid lines) andΨ-model (orange dashed lines). The STO case is depicted
in (a), FSI in (b). The ordinate ω is normalized by the first natural frequency of a clamped-
clamped beam, ω0.

4.3 Analytical dispersion relation of P-wave Propagation

In this section we develop an analytical model that matches the numerical models and allows

for a physical interpretation of the system behavior. The derivations in Sec. 4.2 are used to

develop a micro-mechanical model composed of a thin beam with elastic supports (Fig. 4.2(b)).

Based on the clamped-like modeshapes of the P-waves (Fig. 4.1), the rotation of the beam

ends is restricted. The skeleton members parallel to the direction of the wave propagation

are substituted by a combination of two lumped masses and elastic spring supports. These

springs allow the rigid body translation and are characterized by the effective wave-dependent

stiffness k̂ determined analogically to effective bulk modulus from Eq. (4.4)

k̂ = k̂(q) = k(1−cos(q)) = E A

L
(1−cos(q)). (4.6)

The masses ms = ρs AL take into account the coupling of two beams in the junction.
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4.3. Analytical dispersion relation of P-wave Propagation

Additionally, an effective hydrostatic fluid force Pb couples the motion of both phases: Pb

depends on the transverse deformations W (x, t ) of the beams. Therefore, in a cell with unitary

out-of-plane thickness, it can be described as an external distributed force

Pb =−β̂∆V

V
=− β̂

L2

∫ L

0
W (x, t )d x, (4.7)

where β̂= β̂(q) is given by Eq. (4.5). Eq. (4.7) can be immediately derived from the definition

of the bulk modulus taking into account that the change in volume is provided by the lateral

displacement of the beam.

From the aforesaid, the governing integro-differential equation becomes

E I
∂4W (x, t )

∂x4 +ρs A
∂2W (x, t )

∂t 2 −Pb = 0, (4.8)

Two physical boundary conditions, expressing the rotation-free behavior and the shear force

at x = 0 can be written as

W ′(0, t ) = 0,

E IW ′′′(0) =−k̂(q)W (0, t )−msẄ (0, t ).
(4.9)

Moreover, the symmetric deformation implies

W (0, t ) =W (L, t ),

W ′(0, t ) =W ′(L, t ).
(4.10)

Under these conditions, the shear force condition is automatically fulfilled in x = L.

Assuming a harmonic solution with amplitude w(x),

W (x, t ) = w(x)e iωt , (4.11)

the governing Eq. (4.8) becomes

w ′′′′(x)−α4w(x)+ β̂(q)

E I L2

∫ L

0
w(x)d x = 0, (4.12)

where α4 = ω2(ρs A)/(E I ), and α being the well-known wave number for bending waves in
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thin beams. The boundary conditions Eqs. (4.9-4.10) are transformed to

w(0) = w(L), (4.13a)

w ′(0) = w ′(L) = 0, (4.13b)

E I w ′′′(0) =−(k̂(q)−ω2(q)ms)w(0). (4.13c)

The equation of motion Eq. (4.12) can be solved using the standard technique for homoge-

neous differential equations with boundary conditions. Details are provided in Appendix A.1.

The resulting dispersion relation is shown in Fig. 4.4.
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Figure 4.4 – Comparison of two band-structures: full FE model from Fig. 4.1(c) (black solid
lines) and fully analytical model (blue dashed lines): (a) for STO and (b) for FSI.

At this end one notices the fact that Bloch’s theorem was not imposed explicitly whereas it is

embedded into the material parameters k̂(q) and β̂(q) in accordance with Sec. 4.2. Without

loss of generality, the wavenumber is further limited to 0 ≤ q ≤ 0.5 which is computationally

sensible and stays within the long-wavelength stipulation. As one can see from Fig. 4.4, the

resulting analytical band-structure agrees perfectly with the one from the FE model for both

cases: FSI (a) and STO (b). In the STO case, β̂= 0, Eq. (4.12) is reduced to the Euler-Bernoulli

beam equation for thin beams assuming no shear force variation through the thickness. The

resulting curves match the Euler beam solution with clamped boundaries [Hodges and Pierce,

2011, Chapter 2]. Altogether, this confirms that for the first modes, the analytical model can

be considered instead of the FE simulations.
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4.4. Rayleigh Quotient Analysis of the Analytical System

From the analytical model, the group velocity of the P-waves can be calculated explicitly. The

analytical characteristic equation can be denoted as f (α, q) = 0. Then its differentiation leads

correspondingly to the group velocity of the i th mode

c(i )
g (q) = ∂ωi

∂q
= ∂ωi

∂αi

dαi

d q
=−2αi L

√
E I

ρs A

∂ f

∂q

(
∂ f

∂α

∣∣∣∣
αi

)−1

. (4.14)

4.4 Rayleigh Quotient Analysis of the Analytical System

The derivation in the previous chapter has shown that an effective wavenumber-dependent

fluid compressibility and wall stiffness explains the existence of a fast P-wave over the entire

frequency range, and a much slower compression wave above the first beam resonance. We

will further investigate the difference between those two waves in terms of wall deformation

and group velocity using Rayleigh’s method. This approach also gives insight in the potential

energy of both waves. Only the FSI case is studied, the STO case can then be obtained directly

by setting β= 0.

Throughout this analysis, P-waves at three different wavenumbers are compared: A wave with

very long wavelength (q1), a wave with equal group velocity but for a frequency above the first

beam resonance (q3) and the slow P-wave at the same frequency (q2).

4.4.1 Differential eigenvalue problem

In the FSI case, Eq. (4.12) can be rewritten as a differential eigenvalue problem in a strong

form considering the integral term to be a function of q only

E I

ρs A

d 4wi (x, q)

d x4 + β̂(q)

ρs AL2

∫ L

0
wi (x, q)d x = ξi wi (x, q), where ξi =ω2

i ≥ 0, (4.15)

with the boundary condition Eqs. (4.13). The index i refers to the P-wavemode: i = 1 and

i = 3 for fast P-waves below and above the first beam resonance, and i = 2 for the slow P-wave.

This equation is written with respect to an undetermined eigenvalue ξi and a corresponding

eigenfunction wi (x, q). The weak form can be determined by employing any function vi (x, q)

which satisfies the geometric boundary conditions (Eqs. (4.13a,b)) [?, Chapter 8]. Integration
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by parts yields the weak formulation

E I

ρs A

(∫ L

0

d 2vi (x, q)

d x2

d 2wi (x, q)

d x2 d x + vi (x, q)
d 3wi (x, q)

d x3

∣∣∣∣L

0

)
+

β̂(q)

L2

(∫ L

0
vi (x, q)d x

)(∫ L

0
wi (x, q)d x

)
= ξi

∫ L

0
vi (x, q)wi (x, q)d x. (4.16)

The Rayleigh quotient determining ξi can be found by setting vi (x, q) = wi (x, q) in Eq. (4.16),

and by applying the natural boundary condition Eq. (4.13c):

ξi =
E I

∫ L

0

(
d 2wi (x, q)

d x2

)2

d x + β̂(q)

L2

(∫ L

0
wi (x, q)d x

)2

+2k̂(q)w2
i (0, q)

ρs A
∫ L

0
w2

i (x, q)d x +2ms w2
i (0, q)

= Vi (q)

Ki (q)
=

(
ω

(RQ)
i (q)

)2
. (4.17)

The numerator Vi (q) is the maximal potential energy and denominator Ki (q) is the reference

kinetic energy of the i th mode [?, Chapter 8]. Plugging wi (x, q), calculated from the analytical

model in the previous section, into Eq. (4.17) leads once again to the dispersion relation shown

in Fig. 4.5(a). A minor difference between the curves is dictated by the property of Rayleigh’s

quotient to be an upper bound for the lowest eigenvalue [?, Chapter 8].
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tained from the analytical model are given in dashed lines, whereas results based on Rayleigh
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of 0.5.
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4.4. Rayleigh Quotient Analysis of the Analytical System

4.4.2 Existence of two fast P-waves with same group velocity

From Rayleigh’s quotient Eq. (4.17), it is straightforward to calculate the group velocity c(i )
g (q)

of the pressure waves. Employing the chain rule yields

c(i )
g (q) = ∂ωi (q)

∂q
= ∂

∂q

(√
Vi (q)

Ki (q)

)
= 1

2

(
Vi (q)

Ki (q)

)− 1
2 · ∂
∂q

(
Vi (q)

Ki (q)

)
. (4.18)

If one compares the group velocity derived from Eq. (4.18) to the group velocity directly com-

puted from the analytical dispersion relation in Eq. (4.14), a fair agreement can be observed in

Fig. 4.5(b).

At low wavenumbers, the low frequency P-wave is undispersed and thus traveling at a constant

group velocity. The high frequency P-wave reaches the same group velocity well above the first

beam resonance. Two points fulfilling c(1)
g (q1) = c(3)

g (q3) are shown in Fig. 4.5(b). On the same

figure, it is clear that a wave pulse with frequency ω3 will be split into a fast and slow part, the

slow part having a considerably higher wavenumber and smaller wavelength.

The intersection of the velocity graphs shows a remarkable point where two waves with

different frequencies can travel at the same speed and with the same wavelength. This

happens at the closest approach of the red and blue dispersion curves in Fig. 4.5(a), thereby

minimizing the frequency difference.

4.4.3 Analysis of the existence of a slow and fast P-wave with equal frequency
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Figure 4.6 – Wavemodes w(x, q) derived from analytical model are visualized at q2 and q3

corresponding to frequencies ω2(q2) and ω3(q3): analytical solution (a), and w0(x, q) shifted
to zero of unit norm (b).

In this section, the simultaneous presence of two P-waves in the high frequency range is
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analyzed (green and blue lines in Fig. 4.5(a)). As stated before, the wall deformations are

only defined up to a constant. They can be rewritten with respect to this constant: wi (x, q) =
Aw i (x, q), where A is the undetermined amplitude equal for every i , and w is an analytically

known function. The slow P-wave deformation w2(x, q2) and the fast P-wave deformation

w3(x, q3) are shown in Fig. 4.6(a). The normalized bending deformations (denoted as w0(x, q))

at a certain frequency are equal, apart from the translation si , as can be verified from Fig. 4.6(b).

The Rayleigh quotient from Eq. (4.17) is now calculated by plugging in the test functions,

w0(x, q)+ s, in order to investigate the rigid body translation s. The dependency of ω(RQ)
i on

the shift s is shown in Fig. 4.7(a). It should be noted that the wavenumber dependency of β̂

and k̂ results in a completely different qualitative course of the RQ. The zoomed plot of (a)

focused on the extrema of ω(RQ)
2 and ω(RQ)

3 is shown in (b). Stars denote the absolute extrema

of both functions, where the RQ becomes stationary and is therefore equivalent to solving the

eigenvalue problem [?, Chapter 8]. The plot shows the only possibility for the system to exhibit

two unique P-waves at the same frequency: the slow P-wave RQ reaches its minimum and the

fast P-wave its maximum value. The extrema are reached in the translation values s = s2 for

ω2, and s = s3 for ω3. These values perfectly agree with the values of the tip displacements

depicted in Fig. 4.6(a). A similar behavior can be found for all other wavenumbers, as one can

verify in Fig. 4.6(c) for a lower frequency.

4.5 Conclusion

The presence of a slow and fast pressure wave in a saturated closed-cell material is an un-

expected result occurring in FE simulations of such media. In this chapter, we derived an

equivalent unit cell that permits the derivation of the dynamic behavior analytically. Basically,

the walls parallel to the wave propagation can be replaced by a wavenumber-dependent

mass-spring system. Moreover, the compression modulus of the fluid requires the same

wavenumber dependency to cover the fluid-structure interaction. Using these simplifications,

the beam equation of the walls perpendicular to the wave propagation can be derived and

solved.

The analytical dispersion relation perfectly matches the full FE model, thereby showing that

the simplifying assumptions are valid. From the model, one can show that a fast and a

slow pressure wave exist for frequencies above the first resonance of a single wall. The wall

deformation is equal for both wave modes, but the shift of the wall’s endpoints is different.

For the fast wave, the endpoints shift in the same direction as the wall deflection, whereas the
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boundaries during the slow p-wave passage move in the opposite direction. In the limit case

without fluid, setting the compression modulus β to zero, the slow wave disappears.

These observations are confirmed by Rayleigh’s method, which hints to the energetic behavior

of the system. Two waves with the same frequency but different wavenumbers can coexist if

the RQ of the slow mode reaches a minimum and the RQ of the fast mode shows a maximum.

In order to develop a metamaterial with desired p-wave properties, the analytical description

has clear advantages over the full FE simulation. The method is faster than the full FE im-

plementation, since thin walls typically require a large amount of very small elements in the

fluid domain. It is also more robust to certain known numerical issues such as shear locking.

For thicker walls, the Euler-Bernoulli equation for thin beams could be expanded to more

complete dynamic models such as the Timoshenko equation if through-the-thickness shear

effects become important.

In the next chapter, we present the experimental approach for shear waves. The numerical and

analytical analysis of this kind of waves gathered throughout the thesis is tested experimentally,

83



Chapter 4. Analytical Analysis of Slow and Fast Pressure Waves

allowing to consider the proposed configuration of a cellular solid with closed cells as an

alternative concept of acoustic metamaterials.
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5 An Acoustic Metamaterial with Nega-

tive Index: Experimental Validation

The chapter is mainly reprinted from [Dorodnitsyn and Van Damme, 2016] with authorization

of the publisher.

5.1 Introduction

The previous chapters were devoted to a careful analysis of pressure and shear waves using

the numerical and analytical approaches. The analytical models were employed to validate

the numerical results, which in turn demonstrated, that saturated porous media can act as

acoustic metamaterials and provided guidelines for the design of such systems including

their performance in the audible frequency range. Thus it would be important to confirm the

studies experimentally.

The chapter is structured as follows. First, an acoustic metamaterial with fluid-filled cells

is fabricated. We focus on shear waves in order to investigate the presence of bandgaps for

this wave type. According to the simulations, pressure waves are admitted for all frequencies,

therefore the bandgaps are called partial [Li et al., 1998]. We measure the shear wavemode

deformations, recorded at steady-state, we use a time of arrival analysis to measure the group

velocity of selected wavemodes, and finally we identify bandgaps and their frequency ranges.

All of our findings are qualitatively and quantitatively in agreement with predictions of the

prior theoretical analyses. Eventually, the confirmation with the previous numerical studies

is achieved in three steps. In Sec. 5.2 we first measure the wavemodes pertaining to three

qualitatively different shear waves in the frequency range below 3.5 kHz, in a steady-state

study. We then in Sec. 5.3 measure the group velocity and demonstrate waves with negative

group velocity, i.e. moving backwards, for a certain frequency interval, showing that this
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Chapter 5. An Acoustic Metamaterial with Negative Index: Experimental Validation

system acts as a negative-index metamaterial. Finally, in Sec. 5.4 we confirm the presence of

partial bandgaps due to the locally-resonant behavior of the thin structural components.

5.2 Deformation analysis

0

2

3

4
i
1
*

i
2
*

Г

М

Х

c

d

1

2h=1.0 mm

h

(a)

shear

pressure

f , kHz

(b) (c) (d)

k ,1/mm1 2 3
Г

0

(iBZ)

X

b

fluid

10 mm

coupling
solid

fluid

QM6 elem.

(RVE)

Figure 5.1 – Band-structure (a) for an infinite cellular material with wall thickness of 1 mm
along the Γ− X path in the iBZ, with discretization of an RVE to the right. Solid phase is
DuraformFlex with water as entrained fluid. The bandgap zones are shaded. Deformed
configurations of the first 3 shear wave modes (b,c,d). Numerical wavemodes are in gray, while
experimental data are superposed with dots (an undeformed configuration is shown with
purple frames).

The propagation of elastic waves is studied in a 2D square lattice shown in Fig. 5.1(a). The

presence of fluid in a representative volume element (RVE, shown in the right part of Fig. 5.1(a))

is implemented by employing a fluid-structure interaction scheme described in Sec.2.2. Im-
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5.2. Deformation analysis

posing periodic boundary conditions along the high symmetry directions in the irreducible

Brillouin zone (iBZ) allows for the computation of the band-structure [Kittel, 2004]. The cell

walls are discretized with two-dimensional plane QM6 elements, to avoid shear locking [Cook

et al., 2007, Chapter 6], and to capture thickness deformations of the solid material (refer to

Sec. 3.4.3). The band-structure is limited to the path Γ−X in the iBZ (horizontal direction of

direct space as shown in Fig. 5.1(a)), and corresponds to the case of water as an entrained fluid,

and a wall thickness of 1 mm. Typical cell deformations for the first three shear modes are

shown in gray in Fig. 5.1(b,c,d) for wavevector frequency-combinations corresponding to the

experiment described below. It can be seen that the low-frequency shear modes (b,c) require

much smaller bending of the vertical walls than of the horizontal walls. The first and third

modes (b-d) show an antisymmetric deformation of the horizontal walls. For the second shear

mode (c), the horizontal walls demonstrate a symmetric mode of a beam with rotation-fixed

ends. For each consecutive shear wave band, a higher bending mode is excited. The vertical

walls can only undergo antisymmetric deformations (with undeformed walls as a limit state)

due to the periodic boundary conditions.

The dispersion curves of even shear bands have a negative slope, a property linked to so-called

left-handed materials. In these frequency bands, the material has a negative effective mass

density and elastic modulus. As a result, the group and phase velocities have opposite signs.

Such effective material parameters can be achieved through an interaction of different res-

onance types [Liu et al., 2011a]. Although a full analytical treatment for cellular materials is

beyond the scope of this letter, we expect that the combination of symmetric and antisymmet-

ric cell wall deformations results in this peculiar dynamic behavior. When both cell walls show

antisymmetric modes, a right-handed material with positive effective parameters is obtained.

The design of an experimental cellular solid requires several practical considerations. The

structural material properties must be related to the properties of the entrained fluid. To

guarantee dispersion via resonant scattering, the resonance frequencies of the lattice walls

must be well below those of the cavities (refer to Chapter 3). To operate at acoustic wave-

lengths, the overall cell dimensions must also be chosen appropriately. Here, we use water

for the fluid phase (density ρ f = 1000 kg/m3, bulk modulus β= 2.2 GPa). We therefore chose

DuraForm®Flex (density ρs = 440 kg/m3) as the solid phase.

DuraForm®Flex is a micro-porous thermoplastic elastomer, i.e. a soft rubber-like material, that

is suitable for selective laser sintering (SLS), a high-accuracy 3D printing technique. However,

the material properties depend on the entrained fluid because some fluid is absorbed into the

pores. Elastic modulus and Poisson’s ratio of DuraForm®Flex in the water-wet condition were
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Figure 5.2 – Experimental setup. (a) The geometry of a sample with wall thickness 2h. (b)
Scheme of a setup with the rotatable 2D-SLDV scanning head.

obtained via standard stress-strain tests in accordance with the ASTM D638-14 method [ASTM

International, 2014], with deformations measured via Digital Image Correlation (DIC). In the

regime of small strains, for axial deformation εaxial less than 5%, the material response is nearly

linear, which is confirmed in Fig. 5.3(a). Here, the resulting stress σ is represented through

the ratio of the applied tensile load F and the cross-sectional area of a sample A = 0.42 mm2.

The 3D-printed dogbone sample, tensile test machine, and DIC area are shown in the inset to

Fig. 5.3(a). Young’s modulus and Poisson’s ratio can be found from the plateau values of the
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5.2. Deformation analysis

smooth fitting of the experimental data. Two sets of processed measurements along with both

fitting curves is shown in Fig. 5.3(b,c). The obtained numerical values are as follows, Es = 10.38

MPa and νs = 0.28 respectively. The mass density in soaked conditions was measured to be

ρs = 595 kg/m3.

Three cellular structures were fabricated having 10×10 square unit cells in the cross-section,

with cell dimensions of 1 cm × 1 cm and wall thicknesses 2h of 1 mm, 1.5 mm and 2 mm,

and a height of 10 cm, as shown in Fig. 5.2(a). This configuration is sufficient to approximate

periodic boundary conditions and plane-strain conditions. The cells in the sample are filled

with water to within several millimeters of the top of the sample, which remains open and

unconstrained. The bottom of the sample is fixed to avoid undesired rigid body shifts.

The experimental setup is shown schematically in Fig. 5.2(b). In order to measure wall de-

formations, we employed a Scanning Laser Doppler Vibrometer (SLDV) (Polytec® PSV-400,

operated with the Polytec® PSV-A-010 workstation). The SLDV allows for the reconstruction

of the out-of-plane motion of a preselected 2D grid of points. To measure the motion of the

walls both perpendicular and parallel to the direction of wave propagation, the SLDV was

located in two positions as shown in Fig. 5.2(b) ([dir.1] and [dir.2], respectively). Scanning was

performed on a 2×2 set of cells in the middle of the sample, ensuring retention of periodic

boundary conditions. The scanned area was coated with reflective tape (Fig. 5.2(a)) to increase

the quality of the laser beam reflection. The plane acoustic waves were generated with a LDS

V201 shaker. A force sensor was located at the junction of the stinger and percussive plate.

For the deformation analysis, we excite the 1 mm wall sample using a continuous excitation

at frequencies corresponding to different expected shear wavemodes (200 Hz, 700 Hz, and

1700 Hz) until the measured velocity reaches a constant level (steady-state regime). To remove

noise, the SLDV measurements were averaged 20 times. The resulting velocity signals give

an image of the wall deformation in time. Examining a single timeframe, we obtain a very

good match between experiment and theory, as shown in Fig. 5.1(b-d)). Note that, due to

the normal excitation, pressure waves are also predicted numerically. We expect the current

sample design with slender soft walls to be very compliant for shear waves, compared to the

stiffness in the longitudinal direction. Indeed, none of the experimental results shows any

trace of pressure waves.
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5.3 Group velocity analysis. Negative index behavior

Using the same cellular structures, we measured the group velocity based on a time of arrival

(TOA) analysis. The motion of a wall, away from the boundaries, is measured at a single point

of the selected wall using the SLDV in the [dir.1] alignment. For this analysis, the forcing signal

consists of a 4-cycle sinusoidal pulse modulated with a Hamming window in a frequency

range of 300-2700 Hz with 50 Hz steps. The waves are generated by the same shaker connected

to a waveform generator (National Instruments PXI 5402) controlled by LabView.
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Figure 5.4 – Group velocity analysis. (a) Thresholds for a TOA measurement for 2h = 1.5
mm and f = 1250 Hz. The wave propagation direction for 2h = 1.5 mm: (b1) at f = 1000 Hz
(backward, cg < 0), and (b2) at f = 3000 Hz (forward, cg > 0). The comparison of experimental
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velocities for 2h = 1.0 mm (c) and 2h = 1.5 mm (d).

The TOA is measured at the selected wall with respect to the initial force signal recorded by

the input force sensor. In order to compare both signals, the recorded wall velocities are

smoothened using Savitzky-Golay filtering and then differentiated to obtain the acceleration.

Both measured signals, force and acceleration, are wrapped with the envelope. Then, the

signals are normalized by the amplitude of the envelope’s first peak. Additional peaks might

occur in the vibrometer signal due to reflections. Finally, a threshold value is selected at which

the time difference is calculated. We chose a mid-range value of 0.5. In order to estimate the

error in this measurement, several threshold values were chosen as shown in Fig. 5.4(a) for
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2h = 1.5 mm at f = 1250 Hz. Knowing the TOA and the distance between the input force sensor

and the selected cell wall, the group velocity cg can be determined. The set of thresholds

defines the error bars as the standard deviation of the mean value at each excitation frequency.

The results for 2h = 1.5 mm and 2h = 2.0 mm are shown in Figs. 5.4(c,d), respectively. The

numerical estimation of the group velocity is gathered from the dispersion curves along [Γ−X ]

using the relation cg = 2π(∂ f /∂k).

Good agreement between experimental and numerical group velocities is achieved for 2h = 1.5

mm and 2h = 2.0 mm (Fig. 5.4(c,d)). The measured velocities show a clear dip for frequencies

in the first bandgap. In the second bandgap, the error bars become considerably larger. This is

due to the fact that the resulting pulse contains frequencies from both pass bands around the

bandgap, which are traveling at different velocities.

One can verify the presence of a left-handed behavior qualitatively based on phase considera-

tions. To do this, we point the laser vibrometer in the [dir.2] direction. Two sensing positions

on a single cell wall are shown in the inset of Fig. 5.4(b1,b2). Position 1 is closer to the shaker

while position 2 is located within the same cell but further from the source. The recorded

signals for both positions are shown in Fig. 5.4(b1, b2) (2h = 1.5 mm at f = 1000 Hz and

f = 3000 Hz). At the lower frequency, group and phase velocities are expected to have opposite

signs. The phase front measured closest to the source arrives later than the phase front at the

more-distant point. Although the wave package travels forward in time, the phase seems to go

in the opposite direction, meaning that cp and cg have a different sign. At the higher frequency,

a positive group and phase velocities are obtained: the direction of motion of the phase is

equal to the one of the wave package. The phenomenon of group and phase velocity having

opposite different signs is due to a negative refractive index, as has been reported for several

other types of acoustic metamaterial configurations [Brunet et al., 2015, Fok and Zhang, 2011].

5.4 Partial bandgaps analysis

Finally, we confirm experimentally the presence of the bandgaps predicted by the FE model. As

discussed earlier, these cellular structures are of the local resonant scattering type. Bandgaps

occur in the vicinity of the resonant frequencies of the beam-walls, where destructive in-

terference forbids the propagation of shear waves for any wavenumber; pressure waves do

propagate, however. The numerically predicted bandgaps are indicated by the shaded areas

in Fig. 5.4(c,d). The bandgaps here are narrow compared to other metamaterials [Delpero

et al., 2016, Krödel et al., 2014]. To uncover bandgaps experimentally, we study the response of
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5.4. Partial bandgaps analysis

the structure to both a 3-period burst and a sweep over the frequency range of interest. The

sweep signal is used to verify the bandgap zones whereas the burst measurements clarify the

signal deformation due to the dispersion. As an illustrative example, the case 2h = 1.5 mm at

f = 550 Hz is shown in Fig. 5.5(a). The force and wall response used in the TOA experiment

are processed via Fast Fourier Transforms (FFTs) in Matlab to determine the single-sided

spectrum. The spectra are plotted on top of each other, and a clear bandgap in the vicinity

of the selected frequency is observed (Fig. 5.5(a)). Since the gap is narrow, the remaining

frequency content of the pulse can travel through the structure.

The sweep response over an interval of 200-4000 Hz is measured via SLDV on 4 adjacent

walls perpendicular to the wave propagation, and located six cells away from the source,

using the SLDV in the [dir.1] orientation. In 20 evenly spaced points, the sweep transfer

function H( f ) is calculated as the ratio of the measured velocity spectrum and the input force

spectrum. The transfer functions for both samples are shown in Fig. 5.5(b,c) along with the

numerically estimated bandgaps. Good agreement between numerical and experimental

results is observed. Although the bandgaps are narrow and only valid for shear waves, a

clear dip in the transfer functions is present. The second band gap is measured at slightly

lower frequencies for 2h = 2.0 mm. This can be explained since no damping is applied in the

model, although viscoelastic damping becomes more important for thicker cell walls at high

frequencies.

The sweep response over an interval of 200-4000 Hz is measured via SLDV on 4 adjacent

walls perpendicular to the wave propagation, and located six cells away from the source. In

20 evenly spaced points, the sweep transfer function H( f ) is calculated as the ratio of the

measured velocity spectrum and the input force spectrum. The transfer functions for both

samples are shown in Fig. 5.5(b,c) along with the numerically estimated bandgaps. Very good

agreement between numerical and experimental results is observed. Although the bandgaps

are narrow and only valid for shear waves, a clear dip in the transfer functions is present. A

shift of numerical areas towards slightly larger frequencies for 2h = 1.0 mm can be explained

by inaccuracies in the material parameters and omission of damping in the model. Moreover,

1 mm is the minimal thickness for a structure laser-sintered using Duraform, thus making a

sample less precise than the larger one.
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5.5 Conclusion

In summary, we have presented an experimental study of shear wave propagation in an

acoustic metamaterial with entrained fluid, and confirmed predictions of a previous numerical

model. Comparisons were made for the steady-state modeshapes of the shear waves, for the

group velocity –in particular regimes of left-handed behavior– and for bandgaps in the band-
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5.5. Conclusion

structure. For different wall thicknesses, very good agreement with numerical estimates was

found for all three of the above features. Therefore, we believe that this work establishes a new

concept for acoustic metamaterials: a closed-cell cellular solid with entrained fluid. Such a

metamaterial should find wide application due to its low cost, simplicity, versatility in terms

of scalability, and ability to design desired macroscopic behavior using different types of fluids

and bulk materials.
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6 Conclusions

6.1 Summary of the results

This thesis introduces a novel concept for metamaterials inspired by peculiar properties of

periodic cellular solids. Although metamaterials are designed materials branched off from

the electromagnetic metamaterials, we suggest considering a closed-cell cellular solid with

entrained fluid and soft vibrating walls instead. Cellular solids have well-settled theoretical

models which so far were not linked to the acoustic metamaterials field.

A numerical model for the dynamics of the considered metamaterial was proposed first in

Chapter 2. A representative volume element was analyzed with the finite-element approach

with an explicitly implemented fluid-structure interaction scheme. Considering both beam

and plane elements allows for analyzing the propagation of elastic plane harmonic wave in

a wide range of relative densities 1× 10−4 ≤ ρ∗ ≤ 1, for both light and heavy fluid phases.

The analysis of such a range permits to explore the applicability of Biot’s theory, originally

developed for porous media with open cells. This theory predicts two pressure modes, a

fast and a slow one. However, under the closed-cell limit, it only foresees the fast pressure

wave. The numerical model indeed shows a single pressure wave only for frequencies below

the resonance of the lattice walls. Surprisingly, two pressure modes are present for higher

frequencies. In the case of a low-frequency shear wave, it was shown that the fluid merely acts

as an added mass. Thus the homogenized model based on microstructural deformations for

drained configurations can be employed. The latter has a simpler mathematical description

and meaningful physical basis, and shows a good agreement with both the numerical and Biot

formulations.

Wave propagation in the studied acoustic metamaterial is characterized by strong scattering,
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unlike porous media. In the latter case, dispersion only arises when the wavelengths match

a characteristic size of the pores. In Chapter 3 the dispersion sources were analyzed. In the

proposed cellular solid, the structure phase occupies a small portion of the total volume and

thus may resonate at a relatively low frequency, which affects the wave dispersion. Further-

more, the contribution of entrained fluid was analyzed using the analogy between a cavity

and an equivalent tube. A tube-piston model based on computed microstructural deforma-

tions showed an accurate description of the dynamic behavior away from resonances. The

effective tube and cavity models allowed the derivation of the effective stiffness tensor at the

macroscale in terms of the geometric and material properties. As an important conclusion, the

pressure waves were shown to be isotropic, while the shear wavemode was found anisotropic

for all considered values of relative density and regardless of whether the fluid is heavy or

light. Furthermore, for heavy entrained fluids, through-the-thickness wall deformations were

observed. This is opposed to light entrained fluids, where the deformations are of the hybrid

bending type only. Thus, when designing a metamaterial of this class it would be of significant

importance to take into account this phenomenon in order to benefit from the locally resonant

behavior.

Three distinct pressure waves can be identified in the frequency regime around the first

resonant frequency of the lattice walls. The slow pressure wave is shown to be one order of

magnitude slower than both fast ones. The latter propagate at the same speed in the non-

dispersive regimes away from the resonance. The slow pressure wave only occurs in case the

cells are filled with a fluid and it propagates only for frequencies above the first structural

resonant frequency. This exotic wave is not predicted by classical models of porous media.

In Chapter 4 an analytical description of pressure waves in this frequency range is derived.

As a preliminary step, a simplified finite-element model was used to integrate the fluid effect

into the structure dynamics. The resulting equivalent continuum does not need to account

for the fluid-structure interaction, yet the wave propagation showed a good agreement with

the original finite-element model governed by fluid-structure interaction. It was shown that

the bending deformation of the beams was the same for slow and fast longitudinal waves at a

given frequency, and that they only differ as regards the rigid body translation. The coexistence

condition for both waves was finally verified with Rayleigh’s variational approach. Altogether

the physics behind the propagation of pressure waves was derived from a bottom-up approach,

rather than from an ad hoc model as in Biot’s theory.

Finally, in Chapter 5 the proposed acoustic metamaterial was realized experimentally. The

shear wave propagation in a soft rubber-like cellular solid with water-filled cells was investi-
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gated. The results were compared to three numerical predictions: the steady-state analysis of

the wavemode shapes, the group velocity and in particular regimes of negative group velocity,

and the presence of narrow partial bandgaps in the band-structure. A very good agreement

with numerical estimations was found for all these features.

6.2 Further outlook and possible applications

2D geometries

Since the entire project was based on a 2D square lattice it would be essential to consider

other planar configurations. It is known that the change in unit cell geometry of a cellular

solid with no entrained fluid results in a significant alteration of the wave dynamics, which in

turn may introduce or affect the bandgaps and frequency-dependent anisotropy [Phani et al.,

2006]. The introduction of a fluid phase in e.g. a honeycomb structure is worth studying, due

to its abundant presence in many applications. The computational model requires a relatively

minor modification for different 2D geometries determined by an appropriate mapping of the

boundary conditions without any mathematical change in the system of governing equations.

3D extension

Once the 2D system is fully documented, the analysis of the 3D case needs to be studied.

Although the conceptual idea remains the same, the computational part needs to be updated

significantly. For instance, in order to describe a closed-cell configuration in 3D, the beam

elements no longer hold, and the use of special shell elements is necessary. As a takeoff, a

3D extension for a particular geometry has been already done [Spadoni et al., 2014]. The

discretization of a unit cell uses rigidly connected shells of uniform thickness with both mem-

brane and bending stiffness forming the solid phase. The composed material with entrained

fluid can be considered as a closed-cell crystalline foam. This is a prototypical 3D acoustic

metamaterial characterized by strong wave dispersion due to resonant scattering. The theo-

retical proposition becomes even more significant taking into account recent achievements in

manufacturing techniques of periodic crystalline closed-cell foams [Gabbrielli et al., 2012].

The studied configuration shows remarkable resemblance to pentamode behavior within

distinct frequency bands, resulting from the interaction of fluid and structure. Essentially, if

this study is practically realized it will represent a much simpler realization of the pentamode

material derived in [Kadic et al., 2012] (Sec. 1.2.2, Fig. 1.3(c)).
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Figure 6.1 – Band-structure for the fcc rhombic dodecahedron foam with entrained water
in (a) and the corresponding iBZ (b). Several simple deformed configurations are as follows:
(c) decapolar fast pressure ( f = 221.6 Hz, k1 = k2 = 24.6, k3 = 0 rad/m), (d) dipolar shear
( f = 434.5 Hz, k1 = k2 = 5122, k3 = 0 rad/m), (e) decapolar ballistic shear ( f = 1233.3 Hz,
k1 = k2 = 9220, k3 = 0 rad/m), and (f) resonant hexadecapolar shear mode ( f = 1630.9 Hz,
k1 = k2 = 15366, k3 = 0 rad/m) with the red and black arrows indicating the wavevector and
the polarization respectively. Figure is reprinted from [Spadoni et al., 2014] with publisher
permission.
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Three unit cells, typical for foams, were considered: the truncated octahedron (Kelvin foam),

the rhombic dodecahedron, and the Weaire-Phelan unit cell. The computed band-structure

for the rhombic dodecahedron is given in Fig. 6.1(a). The wide shear waves bandgap is shaded

in light blue. It is also notable that the velocity derived with the equivalent piston-tube

model described in details in Chapter 3 matches the numerical results (ϕP in the right part

of Fig. 6.1(a)). The velocity of the low frequency shear wave predicted with the equivalent

continuum described in Chapter 2 is also in good agreement with the numerical estimations

(ϕS in the right part of Fig. 6.1(a)). Several representative deformed configurations are shown

in Fig. 6.1(c) for a pressure wave, and in Fig. 6.1(d-f) for shear waves.

Experimental validation of pressure waves

Finally, the experiment described in Chapter 5 was carried out to investigate shear waves. A

logical follow-up is to prove experimentally the presence of both, fast and slow longitudinal

modes, predicted by the numerical model. Although the computational formulation has been

validated using several bottom-up models, the measurement of two pressure waves propa-

gating simultaneously within the common frequency range would be a great achievement.

The conducted experiment only allowed measurable shear waves due to the material and

fabrication limitations. Thus, a possible analysis of pressure waves could imply the prevention

of shear behavior, or at least characterized by an undispersed shear wavemode.

One of the possible configurations for a unit cell with reduced shear compliance, is using two

materials for the solid matrix. Preserving the same square geometry, the RVE is now updated as

follows: vertical walls are made of a soft thermo-plastic elastomer (such as Duraform), and hor-

izontal walls are made of a stiff material (such as a steel, for instance). This design is promising

due to the prior knowledge of the pressure wavemodes to pertain the particle motion in the

horizontal direction. The soft component of these unit cells can still be manufactured with the

laser sintering technique, where the steel parts can then be inserted into predesigned grooves.

The band-structure for such a system can be calculated using the existing FEM model, and is

provided in Fig. 6.2(a). Here, the geometry of an RVE is defined according to Fig. 6.2(b) with the

following mechanical properties for steel: ρsteel = 8027.2 kg/m3, νsteel = 0.33, Esteel = 193 GPa.

The derived band-structure confirms the presence of the single shear wavemode (Fig. 6.2(c)).

Therefore, slow and fast, pressure waves co-exist in certain frequency ranges highlighted in

gray in Fig. 6.2(a). Despite the different matrix, the desired resonance-based dispersion is

present. The deformed configurations are labeled in the dispersion curves accordingly to the

mode type: at f = 860 Hz the slow and fast longitudinal wavemodes (d,e), and at f = 2350 Hz
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along the Γ−X path in the iBZ. The solid phase consists of two bulk materials, Duraform and
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6.2. Further outlook and possible applications

the slow and fast ones (f,g), as expected, are characterized by horizontal displacement and by

bending-type deformation.

Possible applications

It was shown throughout the thesis that the studied concept provides the possibility to tune

the velocity of the waves, a key parameters for acoustic metamaterials. The frequency range

and resulting velocities are controlled by the actual cell size, wall thickness, bulk material

properties and the type of the entrained fluid. This concept should eventually find a wide

application, representing a versatile acoustic metamaterial platform characterized by low

cost, and a simple, scalable design. Therefore cellular solids with controlled macroscopic

parameters (bulk material and entrained fluid) might allow acoustic lensing and waveguiding,

as introduced in Chapter 1.

The resonant scattering in cellular fluid-filled structures may introduce a strong dispersion

source. The latter was analyzed in detail in the present work. Controlling the dispersion leads

to possible applications of frequency filtering due to partial or full bandgaps. The ability to

design a bandgap is interesting not only as a curious scientific problem but also as a highly

demanded feature in industrial applications of sound and vibration insulation of structures

[Goffaux et al., 2003, Zhu and Semperlotti, 2013], acoustic mirrors in selective frequency ranges

[Aliev et al., 2010, Ella, 1999], and even seismic absorbers [Brûlé et al., 2014, Kim and Das,

2012].
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A Appendix

A.1 Derivation of the analytical dispersion relation

In this appendix, mathematical procedure is provided to solve Eq. (4.12) using the four bound-

ary conditions stated in Eqs. (4.13a-c). The approach is structured in the following consecutive

order:

� Differentiate Eq. (4.12), keeping in mind that Pb is a definite integral with finite limits of

integration, and therefore independent of x:

w ′′′′′(x)−α4w ′(x) = 0. (A.1)

� Eq. (A.1) is a homogeneous fifth-order ODE, whose general solution contains five con-

stant coefficients Ci , for i = 1,2, ...,5. Solving it with respect to w ′(x) yields:

w ′(x) =C1 sin(αx)+C2 cos(αx)+C3 sinh(αx)+C4 cosh(αx). (A.2)

� Integrating once Eq. (A.2) reads:

w(x) = 1

α
[−C1 cos(αx)+C2 sin(αx)+C3 sinh(αx)+C4 cosh(αx)]+C5. (A.3)

� Notice, that taking four times derivative of Eq. (A.3) allows distinguishing C5 as:

w ′′′′(x) =α4 (w(x)−C5) . (A.4)

� Plugging Eq. (A.3) into Eq. (A.1) and using Eq. (A.4) allows defining C5 in terms of the
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Appendix A. Appendix

other four constants:

C5 = β̃

α2
(
α4 − β̃L

)︸ ︷︷ ︸
Λ

[
−C1 sin(αL)+C2 (cos(αL)−1)+

C3 sinh(αL)+C4 (cosh(αL)−1)

]
,

(A.5)

where:

β̃= β̂(q)

E I L2 . (A.6)

� Thus, the general solution to Eq. (4.12) is:

w(x) =C1

[
− 1

α
cos(αx)−Λsin(αL)

]
+C2

[
1

α
sin(αx)−Λ(cos(αL)−1)

]
+

C3

[
1

α
cosh(αx)+Λsinh(αL)

]
+C4

[
1

α
sinh(αx)+Λ(cosh(αL)−1)

] (A.7)

� The unknown coefficients in Eq. (A.7) can be found using the four boundary conditions

Eqs. (4.13a-c). The resulting homogeneous system of linear equations has a nontrivial

solution only if the determinant of the coefficient matrix is zero. This condition provides

the characteristic equation with respect to the nondimensional wavelengths αi L as

a function of q . We do not show the characteristic equation for brevity, however it

represents an elaborate trigonometric equation. The solution relates the frequency ωi

to a wavenumber q , employing the equality:

ωi (q) =α2
i (q)

√
E I

ρs A
. (A.8)

This allows the calculation of the dispersion relation which is plotted in Fig. 4.4.
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