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Abstract
A numerical method based on an adaptive octree space discretization for the simulation of

3D free-surface fluid flows is proposed. The Navier-Stokes equations are solved with a time-

splitting scheme, which decouples advection from diffusion/incompressibility. The advection

step is solved with a semi-Lagrangian VOF-based scheme on the octree.

An interface prediction algorithm is used to refine the octree at the predicted location of the

interface in order to ensure detail preservation. Subsequently, the fluid is advected and a

coarsening algorithm adapts the mesh to avoid excess refinement in non-interfacial regions.

SLIC and decompression algorithms are used for post-processing to limit numerical diffusion

and correct numerical compression of the VOF function. The octree scheme allows anisotropy,

refinement of interfacial cells to an arbitrary level and supports arbitrary complex domains.

It does not require a 2:1 cell size ratio condition between adjacent cells. The octree is then

coupled with a tetrahedral mesh on which we solve the second step of the splitting algorithm,

the Stokes’ equations. Numerical validation is done on both advection benchmark test cases

and results are compared with the uniform cell grid scheme. Paddle-generated water waves are

also simulated and results are compared with experimental water wave profile measurements.

First order finite element stabilization schemes for the time-dependent Stokes’ equations

are studied. A unified proof of stability and convergence of velocity and pressure for consis-

tent and non-consistent PSPG schemes for the time-dependent Stokes’ equations is given

with explicit dependence on viscosity and stabilization parameter. The link between bub-

ble enrichment and Pressure Stabilized Petrov-Galerkin (PSPG) schemes in the context of

time-dependent Stokes’ equations is discussed and two bubble-based PSPG-type schemes

are studied. Different possibilities for stabilization parameters are discussed. Numerical

comparisons are done to determine stability, convergence and conditioning issues associated

with different PSPG schemes, bubble-based schemes and local pressure projection schemes

in different settings.

Key words: Finite elements, octree, semi-Lagrangian, free surface flows, VOF, SLIC, advec-

tion, time-splitting, Stokes, Navier-Stokes, transient, time-dependent, PSPG, local pressure

projection, bubble
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Résumé
Une méthode numérique basée sur une discrétisation adaptative en espace de type octree est

proposée et appliquée à des simulations à surface libre en 3D. Les équations de Navier-Stokes

sont résolues avec un algorithme de splitting en temps qui découple l’advection de la diffu-

sion/incompressibilité. L’advection est résolue avec un schéma numérique semi-Lagrangien

avec discrétisation de type VOF sur l’octree.

Un algorithme de prédiction d’interface est utilisé pour raffiner l’octree à la position prédite

de l’interface pour conserver les détails. Ensuite, le fluide est transporté et un algorithme de

déraffinage adapte le maillage pour éviter un raffinement trop important dans les régions

non-interfaciales. Des algorithmes SLIC et de décompression sont utilisés pour faire un post-

processing qui a pour but de limiter la diffusion numérique et la compression numérique. Le

schéma basé sur l’octree supporte l’anisotropie, le raffinage jusqu’à un niveau arbitraire et

les domaines complexes. Il ne requiert pas de ratio de taille 2 : 1 entre les cellules adjacentes.

L’octree est ensuite couplé à un maillage en tetraèdres pour résoudre la deuxième partie de

l’algorithme de splitting, les équations de Stokes. Une partie de la validation numérique est

faite sur des cas tests de transport pur et les résultats sont comparés avec le schéma avec grille

uniforme structurée. Des vagues générées par un piston pneumatique sont aussi simulées et

les résultats sont comparés avec des données expérimentales en cuves réelles.

Des méthodes de stabilisation du premier ordre pour les équations de Stokes évolutives sont

étudiées. Une preuve de stabilité et de convergence de la vitesse et de la pression pour les

schémas PSPG consistents et non-consistents pour les équations de Stokes évolutives est

donnée en détaillant les dépendances de la viscosité et du paramètre de stabilisation. Un

lien entre l’élément bulle et les schémas PSPG est explicité dans le cadre des équations de

Stokes évolutives et deux schémas de type PSPG basés sur l’élément bulle sont étudiés. Diffé-

rentes possibilités pour le paramètre de stabilisation sont mentionnées. Des comparaisons

numériques sont faites pour déterminer la stabilité, la convergence et les problèmes de condi-

tionnement associés avec les schémas PSPG, bulle et Local Pressure Projection pour plusieurs

cas tests.

Mots clefs : Eléments finis, octree, semi-Lagrangien, surface libre, VOF, SLIC, advection, trans-

port, time-splitting, Stokes, Navier-Stokes, évolutif, PSPG, local pressure projection, bulle
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Introduction

It is no accident that such a wide variety of researchers and engineers, from hydrologists,

nuclear engineers to computer graphics researchers at movie studios all share the common

interest of simulating three dimensional liquid behaviour. Indeed, the complexity of free

surface fluid flows and difficulty of simulating them accurately make it an active area of

research.

The goal here is to be able to accurately simulate three dimensional free surface flows and

in particular, the generation, propagation and possibly breaking of water waves. Efficient

methods are required to describe the transport of the liquid-air interface and to preserve its

topological complexity throughout the simulation. This challenging task has been investigated

using several different approaches yielding different tradeoffs between robustness, speed,

stability and accuracy. Most schemes take either a particulate Lagrangian or a grid-based

Eulerian approach.

Some Lagrangian methods such as smoothed particle hydrodynamics (SPH) [1, 2], grid based

particle method (GBPM) [3] and moving least squares approximations (MLS) [4, 5] avoid

explicitly describing the free surface altogether by using a particle-based approach which

leads to a natural handling of topological changes in the fluid bulk. The free surface then has

to be reconstructed for instance using the marching cubes algorithm [6, 7]. Other Lagrangian

schemes such as front-tracking algorithms [8, 9] track the free surface with connected marker

particles at the interface whereas the flow field is computed on a stationary grid. As a con-

sequence, the interface is tracked accurately but topological changes in the interface can

require complex algorithms to reconnect the marker particles correctly. The more recent

Remeshed Particle Methods (RPM) [10] are semi-Lagrangian schemes based on following

trajectories originating at grid points and projection is based on explicit remeshing kernels

yielding arbitrary order methods.

Level set methods [11, 12, 13, 14] are Eulerian methods which describe the interface implicitly

by handling a function called the level set function. The level set function takes positive values

inside the liquid, negative values outside the liquid and the interface is then given by the zero

level set of that function. The setting yields a smooth description of the interface and accurate

normals but the original algorithm suffers from a fluid mass loss when solving the advection

equation [15]. Subsequent works have significantly improved that aspect using e.g. massless

1



Introduction

marker particles [16]. A review of many of these methods can also be found in [17, 18, 19].

Another Eulerian approach for resolving free surface flows consists in using a two-phase flow

model where the flow is resolved both in the liquid and the air. The efficient capturing of a

discontinuous interface by a continuous field then requires mesh-adaptive methods such as

in [20, 21].

Volume of fluid (VOF) methods [22, 23, 24] are popular Eulerian schemes that track the fluid

volume on a grid using a discretization of the discontinuous characteristic function. This

function ϕ, called the volume fraction or color function, takes value one inside the liquid

and zero outside and interfacial cells satisfy 0 <ϕ< 1. Interface breakup and reconnection

require no ad hoc treatment with this approach. Volume conservation is naturally maintained

through the advection of ϕ given by the equation

∂ϕ

∂t
+ v ·∇ϕ= 0

where v is the velocity of the fluid. Since only a scalar volume fraction is stored for interfacial

cells, the geometric reconstruction of the interface requires specific treatment. The simple

line interface calculation (SLIC) algorithm introduced in [25] consists in reconstructing the

interface with axis-aligned segments (2D) or rectangles (3D). Improved versions were devel-

oped in [22, 26]. Several higher order reconstruction techniques were subsequently developed

[27, 24, 28].Although it has been shown that SLIC algorithms generate spurious flotsam in

some scenarios [29], higher order reconstructions such as PLIC typically require computing a

normal for the reconstructed plane and its location. Finding the location of the plane involves

solving an inverse problem with the constraint that the volume enclosed by the plane and the

interfacial cell should equal ϕh3 where h is the cell size (3D) [30, 28].

The use of a fine structured cartesian grid for fluid tracking requires a prohibitive amount

of cells for fine-scale simulations. This limitation can be overcome using dynamic adaptive

meshing. A natural and efficient approach to achieve this is with an octree structure [31]. An

octree structure is a hierarchical 3D structure based on an axis-aligned hexahedron which is

split into eight hexahedra and where each hexahedron can be split into eight further hexahedra

or remain unsplit, resulting in a tree-like structure. The octree structure allows efficient

refining, coarsening, access to neighbour, parent and children cells, as well as traversal of all

cells and retrieval of a cell containing a specified point. Free surface flow octrees solvers have

been combined either with the level set method [32, 33, 34] or with a VOF approach [35].

In Chapter 1 we describe a 3D numerical scheme for solving the time dependent advection

equation using a VOF discretization on an adaptive structured grid. The solver differs from

standard VOF solvers in the sense that instead of a flux-based advection, we use an explicit

unconditionally stable semi-Lagrangian scheme. The scheme was introduced in [36] for fixed

structured grids and has successfully been used to simulate bubbles with surface tension

computation [37] and viscoelastic fluid flows [38] when coupled with the mass and momentum

equations. The semi-Lagrangian nature of the scheme bears some similarity with RPM [10]
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and Vortex methods [39]. In our scheme, cells are advected along their characteristics and

projected back on the grid after a refinement step designed to preserve detail at the interface.

The characteristics based time-stepping scheme is not subject to the usual CFL condition but

allows for CFL numbers larger than one. Interfacial cells are refined up to an arbitrary level

of accuracy at every timestep, hence preserving detail at the interface while coarsening cells

away from the interface. This new scheme allows a more accurate capture of the free surface

and does not require a 2 : 1 cell size ratio between neighbours (or equivalently at most one

hanging node per cell face) as some operator discretization schemes require, see for instance

[34].

A SLIC algorithm is used to avoid costly reconstruction computations at the interface and

enable fast projection on the octree. An improved smoothing based decompression scheme

is implemented to limit numerical compression which occurs during projection. Given a

complex domain description, the octree can be refined to capture the domain boundary

accurately using flags to indicate which cells are inside the computational domain. Handling

of anisotropic cells with arbitrary aspect ratio is also supported in our implementation.

In order to simulate free surface fluid flows, we then solve the full Navier Stokes equations cou-

pled with the previously described advection equation on ϕ which describes the movement of

the fluid particles with the fluid velocity. To do this, we use the splitting scheme described in

[40] and we decouple the advection part from other phenomena, such as diffusion, incom-

pressibility and effect of external forces. This time splitting with a structured cartesian mesh

has been successfully used in [41, 36, 42, 37, 38, 43, 44] and we adapt the scheme to replace

the structured grid with an adaptive octree.

We solve advection equations for both ϕ and the velocity on the octree and the Stokes equa-

tions on a tetrahedral mesh. This choice is motivated by the ease of capturing complex

domains and boundary normals with tetrahedral meshes and it also allows coarse elements

for solving the Stokes equation and fine interfacial cells for capturing the liquid domain accu-

rately. Interpolation of the liquid characteristic function ϕ from the octree to the tetrahedral

mesh is performed in order to determine which tetrahedra are liquid and therefore included in

the solution of the Stokes problem. Velocity is interpolated as well and the Stokes equations are

then solved. Only the velocity field is interpolated back onto the octree for the next timestep.

Chapter 2 shows numerical results for the octree scheme. The first part validates the free

surface displacement scheme for the transport equation given a velocity field using standard

benchmarks. For the second part, paddle-generated water waves in a tilted cavity are simulated

and compared agains experimental data kindly provided by the VAW at ETH Zürich available

in [45]. Wave generation, propagation and breaking are all simulated. It is then shown that

fully three-dimensional waves can be simulated with the octree scheme.

Solving Stokes’ equations with finite elements requires an inf-sup stable velocity-pressure

finite element space pair. We are specifically interested in solving the time-dependent Stokes’

equations. P2 −P1 and the bubble-enriched P1b −P1 space pairs are known to be inf-sup
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stable unlike the P1 −P1 space pair [46]. They however also yield larger linear systems and

consume more memory than using simply P1 −P1 finite elements, therefore it is of interest to

study P1 −P1 stabilization procedures. Many of them have been described and we attempt to

answer the question of which one should be preferably used and when. Streamline Upwind

Galerkin (SUPG) stabilization [47], the Brezzi-Pitkäranta stabilization [48] and the Galerkin

Least Squares (GLS) stabilization [46] have been used for the stationary Stokes’ equations

and many possibilities exist to extend their use to time-dependent Stokes equations. They

fall into a category that is also called Petrov-Galerkin Pressure Stabilized (PSPG) methods

that encompasses stabilizations where a possibly truncated momentum equation residual

is integrated against the pressure test function gradient and possibly also the velocity test

function, then multiplied by a stabilization parameter.

We choose to study residual-based PSPG schemes with or without the time derivative term

which we call consistent and non-consistent PSPG schemes respectively and with or without

the same contribution to the momentum equation. Another question we shall attempt to

answer is the question of the choice of the stabilization parameter. In [49, 50], a link has

been established between bubble enriched stabilization and PSPG schemes in the context of

the stationary Stokes equations by eliminating the bubble variable. For the time-dependent

Stokes’ equations, it is not strictly possible to eliminate the bubble as far as we know but

we propose two possible schemes to solve a smaller linear system. The bubble elimination

scheme is proposed, in which we ignore the bubble terms from the previous timestep. A

bubble reconstruction scheme is also proposed, in which we keep the bubble terms from the

previous timestep, and reconstruct them for the current timestep after solving the linear sys-

tem. By eliminating the bubble we recover a PSPG-type scheme with a stabilization parameter

involving the timestep called the transient stabilization parameter. Making the quasi-static

assumption [51] on the bubbles, we recover the classic H 2

ν stabilization parameter, that we call

the spatial stabilization parameter, where H is mesh size and ν the viscosity. Note that this

link differs from the work in [51] since no assumption is made on the expression of the bubble

term.

Other types of stabilizations, including orthogonal subscales stabilization [52, 53] and local

pressure projection [54, 55] have been introduced as well.

In [56], a proof of stability and convergence of a general class of symmetric stabilizations for

the time-dependent Stokes’ equations including the Brezzi-Pitkäranta stabilization has been

given. It resembles a non-consistent PSPG scheme although the force term is absent. In [57],

stability and convergence for the velocity in the fully discrete case has been proven for the

consistent PSPG stabilization. Stability of the pressure is also proven and the L2 convergence

is mentioned but the proof is omitted. In [58], a semi-discrete analysis proves stability and

convergence for both velocity and pressure in the L2 norm for the consistent PSPG scheme

and for the velocity in the fully discrete case. We give a unified proof for both consistent

and non-consistent PSPG stabilization schemes assuming the stability condition Δt ≥ αK

where Δt is the timestep and αK the stabilization coefficient. In the proof it is also assumed
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that the stabilization coefficient is larger than H 2 where H is the mesh size to ensure spatial

stability. We keep track of the viscosity and stabilization parameters and express stability and

convergence bounds with respect to them.

At the end of Chapter 3, we provide a comparison of consistent and non-consistent PSPG

schemes for different stabilization parameters, local pressure projection and bubble enriched

schemes on two time-dependent Stokes test cases and one full Navier-Stokes wave simulation

from Chapter 2. It is determined that transient stabilization parameters provide spatially

unstable solutions although they seem to allow the correct time evolution of the solution

otherwise. With a spatial stabilization parameter in the large timestep case, it seems that both

consistent and non-consistent PSPG schemes converge in a similar fashion as is proven in

the Chapter 3. In the small timestep case, it seems that the non-consistent PSPG scheme

converges to the wrong solution and the consistent one yields a singular matrix. Bubble

enrichment and local pressure projection both provide stable and convergent solutions. In

the context of full Navier-Stokes equations, it seems that stabilization parameters should be

divided by the local Reynolds number and the local pressure projection scheme also requires

a parameter to set for correct results. Bubble enrichment, bubble elimination and bubble

reconstruction all give good results. The bubble reconstruction scheme seems to be the most

reliable and performant method overall. Indeed, the linear system to solve is of the same size

as a P1 −P1 scheme at the cost of storing one extra memory word per element and a negligible

running time overhead of reconstructing the bubble terms for which we have an explicit form.
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1 Octree-based numerical scheme for
Navier Stokes free surface flows

In [36], a time splitting method on two grids was proposed to solve the time-dependent

incompressible Navier Stokes equations for free surface flows. The advection is handled by a

semi-Lagrangian scheme on a structured grid. In this Chapter, we propose a more efficient

octree scheme to solve advection. A description of the scheme along with numerical results

has also been published in [59]. This octree scheme can be coupled with a Stokes solver in

order to solve the time-dependent incompressible Navier Stokes equations with free surface

flows.

1.1 The advection equation

A VOF approach is introduced for the description of the liquid domain. Let Λ ⊂ R3 be the

bounded computational domain containing the liquid at all times t ∈ [0,T ] where T > 0 is the

final time of simulation. Let Ω(t ) ⊂Λ be the region occupied by the liquid at time t .

Letϕ : Λ×[0,T ] →R the characteristic function of the liquid, in other words the volume fraction

of liquid which equals one if liquid is present and zero if not. Let v : Λ× [0,T ] →R3 be a given

velocity field. At this point it is assumed that v is known for all x ∈Λ. Later, in Section 1.6, v

is known only in the liquid domain. As an initial condition, we set the initial liquid domain

Ω(0) = {
x ∈Λ : ϕ(x,0) = 1

}
. The liquid domain Ω(t ) is then defined as

{
x ∈Λ : ϕ(x, t ) = 1

}
.

Since the fluid particles move at velocity v , the time evolution of ϕ is given by the transport

equation

∂ϕ

∂t
+ v ·∇ϕ= 0 in Λ× [0,T ]. (1.1)

Let X : [0,T ] →R3 be the characteristics (trajectories of the fluid particles) defined by

Ẋ (t ) = v(X (t ), t ) ∀t ∈ [0,T ], (1.2)
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Chapter 1. Octree-based numerical scheme for Navier Stokes free surface flows

the solution of (1.1) then satisfies

ϕ(X (t ), t ) =ϕ(X (0),0) ∀t ∈ [0,T ].

Let Δt = T
N be the timestep with N > 0 an integer. The time discretization points are t n =

nΔt , n = 0,1, ..., N . Let X (t ; x, s) be the solution of (1.2) with X (s) = x. We then have

ϕ(X (t n+1 ; x, t n), t n+1) =ϕ(x, t n) ∀x ∈Λ. (1.3)

X (t n+1; x, t n) will be approached by a p-th order numerical approximation X n+1
p (x, t n). We

can use for example an explicit first order Euler method

X n+1
1 (x, t n) = x +Δt v(x, t n) (1.4)

or a more accurate classical 4-th order Runge Kutta method noted X n+1
4 (x, t n).

X n+1
4 (x, t n) = x + 1

6
k1 + 1

3
k2 + 1

3
k3 + 1

6
k4 (1.5)

where

k1 = Δt v(x, t n)

k2 = Δt v(x + k1

2
, t n + Δt

2
)

k3 = Δt v(x + k2

2
, t n + Δt

2
)

k4 = Δt v(x +k3, t n +Δt ).

Let ϕn and Ωn be approximations of ϕ and Ω respectively at time t n . The time discretization

is as follows; we solve the advection problem (1.1) between t n and t n+1 by translation of cells

with the method of characteristics and a projection detailed in Section 1.2 to obtain ϕn+1

which yields a new liquid domain Ωn+1 = {
x ∈Λ : ϕn+1(x) = 1

}
.

Given an approximation X n+1
p (x, t n) of X (t n+1; x, t n) and an approximation of ϕ(· , t n), we

compute ϕn+1 with an approximation of (1.3) given by

ϕn+1(X n+1
p (x, t n)) =ϕ(x, t n). (1.6)

The difficulty resides in conciliating the Lagrangian approach of the approximation (1.6)

with a Eulerian spatial discretization. This will be achieved by translating cells of the spatial

discretization along their characteristics and projecting them on the mesh. In the sequel the

projection of (1.6) is presented on a structured grid and then on the octree.
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1.2. Advection on structured grid

(a) Advection of ϕn
i j (b) Projection onto the grid

Figure 1.1: ϕn
i j is transported along the characteristics and then projected back on the grid.

1.2 Advection on structured grid

The implementation of (1.6) on a uniform cartesian grid as in [36] is recalled. It consists in

decomposing the domain into an axis-aligned cartesian structured grid with cell size h. Each

cell is indexed by a 3-dimensional index i j k. The characteristic function ϕ at the center of

cell i j k and at time t n is denoted ϕn
i j k . Using (1.6), the advection step for cell i j k consists in

advecting ϕn
i j k by X n+1

p (ci j k , t n) and projecting it back on the grid where ci j k is the center of

cell i j k. For any receiver cell D in the structured grid its ϕ value after projection is given by

ϕn+1(D) = ∑
i , j ,k

vol ume(D ∩X n+1
4 (C̃i j k , t n))

vol ume(D)

where C̃i j k represents the cell Ci j k shifted by X n+1
p (ci j k , t n) with ci j k the cell center of Ci j k .

Using (1.4), the advection step for cell i j k consists in advecting ϕn
i j k by Δt v(ci j k , t n) and

projecting it back on the grid where ci j k is the center of cell i j k. A 2-dimensional illustration

is given in Figure 1.1.

The CFL (Courant-Friedrichs-Levy) number is then the number of cells traversed by the fluid

in one iteration. Given a velocity v , the CFL number is then given by C F L = ‖v‖Δt

h
. Typically

in explicit finite volume solvers for the transport equation, a CFL condition is assumed [60],

meaning that a restriction is imposed on the timestep to satisfy
‖v‖Δt

h
≤ 1. Thanks to the

semi-Lagrangian nature of the scheme, no such condition is assumed here. Moreover the

accuracy of the scheme clearly depends on the value of the CFL number, as reported in Section

2. Accurate simulations are obtained with CFL numbers ranging from below 1 to 20.

Let us analyze a simplified one-dimensional analog of the proposed scheme. Assume that the
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{{
Figure 1.2: ϕn

i is transported along the characteristics and then projected back on the grid.

velocity is a constant β> 0. Assume that ϕ is continuously differentiable in space and in time.

The problem is then the following. Find ϕ such that

∂ϕ

∂t
+β

∂ϕ

∂x
= 0 in R× [0,T ] (1.7)

with ϕ(·,0) =ϕ0 a given initial condition.

Consider the numerical scheme illustrated in Figure 1.2. Each cell is translated along the

characteristics for one timestep and projected on the intersecting cells. Let us decompose

the spatial domain R into cells [xi−1/2, xi+1/2[ of uniform length h = xi+1/2 − xi−1/2 for i ∈ Z.

Cell centers are denoted xi = (xi+1/2 + xi−1/2)/2 for i ∈ Z and k = �C F L
 =
⌊
βΔt

h

⌋
. In the

illustration, C F L = 2.5, k = 2 and the projection of ϕn
i then contributes to ϕn+1

i+2 and ϕn+1
i+3 with

weights of respectively 1−
(
βΔt

h
−k

)
and

βΔt

h
−k. The numerical scheme can thus be written

as⎧⎪⎨
⎪⎩
ϕn+1

i =
(
1−

(
βΔt

h
−k

))
ϕn

i−k +
(
βΔt

h
−k

)
ϕn

i−k−1 ∀n ≥ 0, ∀i ∈Z with k =
⌊
βΔt

h

⌋
ϕ0

i =ϕ0(xi ) ∀i ∈Z.
(1.8)

The following convergence result is classical, its proof is repeated for the sake of clarity.

Proposition 1. Let ϕ be the exact solution to the problem (1.7) and ϕn
i given by the numerical

scheme (1.8) with initial condition ϕ0 ∈C 2(R). Then, there exists C independent of h and Δt

such that

sup
i∈Z

∣∣ϕ(xi , tn)−ϕn
i

∣∣≤ T C

(
Δt +h + h2

Δt

)

Proof. The exact solution to equation (1.7) is given by

ϕ(x +βt , t ) =ϕ0(x) ∀x ∈R, ∀t ∈ [0,T ]

10



1.2. Advection on structured grid

and is therefore twice continuously differentiable in space and time. Using a Taylor expansion,

we get

(
1−

(
βΔt

h
−k

))
ϕ(xi−k , tn)+

(
βΔt

h
−k

)
ϕ(xi−k−1, tn)

=
(
1−

(
βΔt

h
−k

))
ϕ(xi−k , tn)+

(
βΔt

h
−k

)(
ϕ(xi−k , tn)−h

∂ϕ

∂x
(xi−k , tn)+ h2

2

∂2ϕ

∂x2 (ξ, tn) d x

)

=ϕ(xi−k , tn)− (
Δtβ−kh

) ∂ϕ
∂x

(xi−k , tn)+
(
βΔt

h
−k

)
h2

2

∂2ϕ

∂x2 (ξ, tn) (1.9)

for some ξ ∈ [xi−k−1, xi−k ]. Using another Taylor expansion and then (1.7), we also obtain

ϕ(xi , tn+1) =ϕ(xi−k , tn)+Δt
∂ϕ

∂t
(xi−k , tn)+kh

∂ϕ

∂x
(xi−k , tn)+ r̃h,Δt ,ϕ

=ϕ(xi−k , tn)− (
Δtβ−kh

) ∂ϕ
∂x

(xi−k , tn)+ r̃h,Δt ,ϕ (1.10)

where r̃h,Δt ,ϕ is a remainder such that
∣∣r̃h,Δt ,ϕ

∣∣≤C (Δt 2 +Δth +h2) where C depends only on

the second derivatives of ϕ. Combining (1.9) and (1.10), we get

ϕ(xi , tn+1) =
(
1−

(
βΔt

h
−k

))
ϕ(xi−k , tn)+

(
βΔt

h
−k

)
ϕ(xi−k−1, tn)+ rh,Δt ,ϕ (1.11)

where rh,Δt ,ϕ is a remainder such that
∣∣rh,Δt ,ϕ

∣∣≤C (Δt 2 +Δth +h2) where C is a constant that

depends on ϕ. Let en
i =ϕ(xi , tn)−ϕn

i for i ∈Z and n ≥ 0. From (1.12) and (1.8), we get

en+1
i =

(
1−

(
βΔt

h
−k

))
en

i−k +
(
βΔt

h
−k

)
en

i−k−1 + rh,Δt ,ϕ (1.12)

By induction, we can prove that for any n > 0,

en
i =

n∑
j=0

(
n

j

)(
1−

(
βΔt

h
−k

))n− j (βΔt

h
−k

) j

e0
i−nk− j +n rh,Δt ,ϕ (1.13)

and since we have
∑n

j=0

(n
j

)(
1−

(
βΔt

h
−k

))n− j (βΔt

h
−k

) j

= 1 and nΔt = T , (1.13) implies that

∣∣en
i

∣∣≤ sup
l∈Z

∣∣e0
l

∣∣+TC

(
Δt +h + h2

Δt

)
. (1.14)

Choosing ϕ0
i =ϕ(xi ,0) concludes the proof.

Remark 1. This convergence result shows that to get the optimal order, Δt needs to decrease as h.

The error bounds are consistent with the
(
Δt +h + h2

Δt

)
error bound in [61] for the characteristics

method in the context of finite elements.

It is assumed for this result that ϕ is smooth, which will not be the case when transporting
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the volume of fluid characteristic function, however the timestep Δt with respect to h will be

chosen based on this result. In Chapter 2, we will perform numerical validation of the scheme

and show evidence of convergence of the scheme even in a non-smooth context with interface

reconstruction and non-constant velocity field. Note that the scheme error is a linear function

of the maximal initial error and of final time.

The proof sheds some light as to how the error depends on the error previous timesteps.

Indeed, the induction result (1.13) shows that for any k,n > 0 the error at time n + k is a

weighted sum of errors at timestep k where the coefficients are given by the probability mass

function of a binomial distribution B

(
n,

βΔt

h
−
⌊
βΔt

h

⌋)
.

Another parallel can be drawn with convolution kernels in image processing. Convolution

kernels are a well-known technique in image processing, see for instance [62]. Given an

image represented as an array of pixels and a matrix of weights called the kernel, the image is

processed by replacing each pixel with a linear combination of the original pixels with weights

given by the kernel centered at the pixel of interest. Different choices of the kernel can yield

for instance to Gaussian blur or edge detection effects on the image. For constant velocity

in a 2 dimensional setting, one step of the numerical scheme above is then exactly a kernel

convolution with a kernel containing decentered weights. With non-constant velocity, the

kernel would depend on the location of the pixel. Although this has not been studied here, this

parallel opens new possibilities for fast GPU implementations since pre-existing fast kernel

convolution codes can be used, such as described in [63].

The large memory consumption of the structured grid is a drawback that becomes apparent

when running large scale simulations. These high memory requirements motivate the switch

from a structured Cartesian grid to a more flexible adaptive structure. Nonetheless, we would

like to have an axis-aligned structure in order to preserve the computational speed of the

projection step.

1.3 Octree definition

Structured adaptive grids have been successfully used in computational fluid dynamics. The

Adaptive Mesh Refinement (AMR) framework described in [64] uses a base structured grid

and overlays hierarchical patches of finer structured grids over regions with large error. Free-

surface flow simulations have been performed at first on a 2-dimensional adaptive structure

called quadtree [65], of which the octree is the 3D equivalent. Octree structures [31], [66]

consist in embedding the computational domain in an axis-aligned hexahedron and splitting

it into 8 hexahedral cells of equal dimensions. Each cell can then be recursively split into 8

further cells or kept as is. This structure allows full flexibility in the refinement level of each

cell while satisfying our requirement to have an axis-aligned structured mesh. As illustrated in

Figure 1.3, the process yields a graph which has the property of being a tree [67], hence the

name octree. Previous works have used octree structures to solve the Euler and the Navier-
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1.3. Octree definition

Stokes equations using either finite volume methods [68] or more commonly, finite difference

methods [35], [69]. Implementations of octree-based Navier-Stokes free-surface flow solvers

using finite differences have also been developed, either coupled with a level set method [33],

[34] for surface-tracking or with a Volume Of Fluid (VOF) method [70]. Our scheme will also

be using a VOF-type discretization but a semi-Lagrangian method for time-stepping instead

of a classic VOF method.

Each node of the graph which is split in 8 further nodes will be called a parent node of its 8

children nodes. The 8 children nodes are numbered according to their Morton ordering [71]

illustrated in Figure 1.3. Nodes that have no children are called leaf nodes and correspond to

computational cells in the mesh.

We will derive a new scheme by replacing the structured hexahedral grid with an octree

structure with VOF-type fluid tracking which will allow both accurate capture of the interface

and coarsening of the mesh away from the interface, hence decreasing memory usage of the

scheme. We eventually want to implement a transport equation solver on a non-structured

grid using an explicit semi-Lagrangian scheme based on (1.6). Illustrations are done in 2D for

simplicity but the numerical scheme is implemented in 3D.

The octree graph is illustrated along with its corresponding octree mesh in Figure 1.3. The

base axis-aligned hexahedron corresponding to the base node in the octree graph is chosen to

be the bounding box of the computational domain.

In the Figure 1.3, the level 0 consists of a grouping of 8 cells which we call an oct. In order

to avoid having the bounding box dictate the anisotropy of cells, we instead subdivide the

bounding box into an array of level 0 octs with respectively Bx ,By ,Bz octs in directions x, y, z

as illustrated in 2D in Figure 1.4. This way, the aspect ratio of the cells can be selected and

remains constant throughout the simulation. The array of level 0 cells defines the level 0

cell grid. Each subsequent subdivision adds one to the level of the corresponding cell. More

formally, the level of a cell C is defined as m where m is the number of edges in the octree

graph separating the node corresponding to C from a level 0 node as seen in Figure 1.3.

We choose the maximum refinement level of the octree lmax according to the desired accuracy

of the spatial discretization at the interface. We also choose the level ll i qui d which is the mini-

mal level of liquid cells defined below according to the desired accuracy of the discretization

of the velocity field.

The parameters Bx ,By ,Bz , lmax and ll i qui d fully specify the cell aspect ratio, the smallest cell

size and maximal liquid cell size and remain constant throughout the simulation. An example

of advection with the octree with the chosen parameters Bx = By = 1, ll i qui d = 1 and lmax = 3

is shown in Figure 1.5.

Numerical experiments have indicated that the choice ll i qui d = lmax −2 (i.e. the edge length

of liquid cells is at most 4 times larger than the edge length of smallest cells) seems to be a
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Figure 1.3: The octree structure as a mesh (left) and as a graph (right) with Morton ordering.
Everytime a cell in the octree is split into 8 cells, the corresponding node in the graph gets 8
children nodes. The leaf nodes in the graph, shown in purple, are the computational cells in
the mesh.
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1.4. Advection on octree grid

(a) Five base octs, Bx = 5, By = 1

Level 0Level 1

(b) One base oct, Bx = 1, By = 1

Figure 1.4: Choosing Bx , By and Bz allows adjusting of cell anisotropy.
The level 0 corresponds to an oct divided in 8 in 3D, here in 4 in 2D for illustration purposes.

good one in the sense that it yields a good tradeoff between efficiency and error. This choice is

discussed further in Section 2.

In Section 1.6.5 we will explain how complex domains can be represented by refining the

octree at the boundary and using flags to set cells to inside or outside the domain.

1.4 Advection on octree grid

Our goal is to implement (1.6) on an octree rather than a structured grid. Let us denote by

Dn the octree mesh at time t n which we will see how to initialize. At time t n , to each cell

of the octree mesh C ∈ Dn are associated the fields ϕn(C ) and vn(C ) which are piecewise

constant approximations of respectively ϕ(·, t n) and v(·, t n) at the center of the cell C . An

octree advection step starts with the octree grid Dn . A prediction algorithm refines the octree

so as to preserve interfacial detail and yields the refined grid Dn+1/2. In the advection step,

ϕ is advected and ϕn+1 is defined on the grid Dn+1/2. ϕn+1 is then post-processed in the

decompression step to ensure 0 ≤ϕn+1 ≤ 1. Finally, the octree is coarsened which yields the

grid Dn+1.

Algorithm 1 gives an outline of the scheme which we will detail in the following subsections.
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Chapter 1. Octree-based numerical scheme for Navier Stokes free surface flows

(a) Time t = 0

(b) Time t

Figure 1.5: Example of octree refinement around the interface Γ(t ). Interfacial cells are level
lmax = 3, liquid cells are level ll i qui d = 1 and empty cells are level l = 0.

Algorithm 1 Summary of the octree advection

1. Initializing the octree

2. Iterate for n = 0,1,2, ...

(a) Interface prediction refinement

(b) Advection

(c) Decompression

(d) Coarsening
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1.4. Advection on octree grid

(a) The given function ϕ(· ,0) and level 0
cells

(b) First octree refinement to level ll i qui d =
1

(c) Second octree refinement at the inter-
face to level 2

(d) Interfacial cells reach level lmax = 3 and
ϕ0 is defined

Figure 1.6: 2D representation of the octree initialization with ll i qui d = 1 and lmax = 3.

1.4.1 Initialization

Given the initial conditionϕ(· ,0) : Λ→R, we define the initial liquid domainΩ(0) = {
x ∈Λ|ϕ(x,0) = 1

}
.

At first the initial octree mesh D0 consists of the bounding box subdivided into a user-specified

grid of level 0 cells as explained in Figure 1.4. For now, we suppose that the bounding box of

the computational domain is the computational domain itself but it is possible to extend the

formulation to more complex domains, see end of Section 1.5.

The initialization process is illustrated in Figure 1.6. Let us denote by xC
i the i -th vertex of

cell C , i = 0, ...,7, and by xC
m the center of cell C . We recursively refine cells intersecting the

region of the space L+ = {
x ∈Λ | ϕ(x,0) > 0.5

}
(superlevel set) until every such cell C is at level

ll i qui d as shown in Figure 1.6b. We say that a cell is intersecting L+ if at least one of its vertices

xC
i , i = 0, ...,7 satisfies ϕ(xC

i ,0) > 0.5.
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Chapter 1. Octree-based numerical scheme for Navier Stokes free surface flows

Figure 1.7: Case when the liquid domain fails to be detected by simple evaluation of ϕ0 at the
cell vertices.

Now that all liquid cells are refined to a desired level ll i qui d , we refine to level lmax the cells

intersecting the interface as shown in Figures 1.6c and 1.6d. Let us define the level set which

corresponds to the initial interface

L = {
x ∈Λ | ϕ(x,0) = 0.5

}
.

We say that a cell is intersecting the level set L if at least one of its vertices xC
i , i = 0, ..,7 satisfies

ϕ(xC
i ,0) ≥ 0.5 and another vertex xC

j satisfies ϕ(xC
j ,0) < 0.5. We recursively refine all cells in

D0 intersecting L until all such cells are at level lmax .

After the octree refinement, we define ϕ0(C ) for each cell C ∈ D0. We set ϕ0(C ) = 1 if C

intersects L+ and is at level ll i qui d , we set ϕ0(C ) = 0.5 if C intersects L and otherwise we set

ϕ0(C ) = 0. This initialization method is a choice and we have not observed major differences

with initializing interfacial cells to ϕ0(C ) = 0 or ϕ0(C ) = 1.

Evaluating ϕ(· ,0) on the vertices might not be sufficient to capture the interface if the fluid

region does not contain any vertex of any level 0 cell as illustrated in Figure 1.7. The user can

specify a finer initial grid with larger parameters Bx ,By ,Bz to capture the initial liquid region.

Alternatively it is also possible to sample a larger number of points inside a cell to determine if

it intersects L+.

1.4.2 Prediction

A crucial feature of the numerical scheme is detail preservation at the interface and we present

a procedure to ensure that the interface is always captured by fine cells. Note that it is possible

to extend the algorithm to refine the octree in the bulk of the fluid in regions of high velocity

gradients for better accuracy which could arise for instance in bottleneck situations. No such
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1.4. Advection on octree grid

extension is considered in this work since we focus on detail preservation at the interface but

this could be implemented given a refinement criterion. We first define precisely what we

mean by liquid and interfacial cells. A cell C ∈Dn is called liquid if ϕn(C ) ≥ 0.5. A cell C ∈Dn

will be called interfacial if it is at level lmax and shares a face with a neighbouring cell Cn such

that one of the following conditions is satisfied. Either C is liquid while Cn is non-liquid, or C

is non-liquid while Cn is liquid.

Before transporting ϕ, it is necessary to refine the octree in regions that will receive interfacial

cells. We achieve this by doing a first prediction pass as follows.

Dn will be modified to ascertain sufficient refinement of receiver cells in the advection process

and yield the refined grid Dn+1/2. Dn+1/2 will be receiving advected cells but we still need Dn

to advect cells from. Let C ∈Dn , lC the level of cell C , xC
m the center of C and xC

i for i = 0, ...,7

the vertices of C . Again, X n+1
4 : Λ× [0,T ] →R3 gives an approximation of the displacement of a

fluid particle by following the characteristics for one timestep with velocity v using a classical

4th order Runge Kutta method, see Section 1.2. The refinement algorithm is illustrated in

Figure 1.8 and described in Algorithm 2 which yields Dn+1/2, the refined octree.

Algorithm 2 Interface prediction refinement at time t n

Dn+1/2 ←Dn

for all cell C ∈Dn do
for all vertex xC

i of C do
set receiver cell Cr to cell in Dn+1/2 which

contains xC
i +X n+1

4 (xC
m , t n)

while level (Cr ) < level (C ) do
split Cr in Dn+1/2

set Cr to cell in Dn+1/2 containing
xC

i +X n+1
4 (xC

m , t n)
end while

end for
end for

This algorithm ensures that receiver cells in Dn+1/2 are at least of same level as the cells in Dn

to be projected. Note that the displacement vector X n+1
4 (xC

m , t n) which approximates a piece

of the characteristics is computed from cell center xC
m and not from the vertex xC

i in order to

refine the mesh at the points where the cell will be projected during the advection phase. It is

necessary to perform this refining algorithm on liquid cells and on non-liquid interfacial cells.

Non-liquid interfacial cells need to be treated for the following reason. When the interface

coincides with cell faces (or cell edges in 2D), a full cell is neighbouring an empty cell. During

initialization, if the initial ϕ function returns 0 when evaluated on vertices exactly on the

interface, the full cell will be refined to lmax . However, if the evaluation returns 1, only the

empty cell will be refined to lmax . If the empty cell is refined up to lmax and the full cell is

coarse, we need to treat the empty cell to ensure that at the next step, interfacial cells remain
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(a) Cell C in dashed lines, xC
0 the first vertex of

C . We locate the cell containing xC
0 + X n+1

4 (xC
m , t n )

where xC
m is the center of C

(b) We recursively refine the receiver cells in Dn+1/2.
Dotted lines indicate new refined cells up to level lC
in Dn+1/2

(c) Result after repeating the process for each vertex of
C

(d) Dn+1/2 after applying the refining algorithm to C

Figure 1.8: Interface prediction refinement. Each vertex is translated with the displacement
computed from the center of its associated cell with the Runge Kutta scheme. The cell con-
taining the resulting point is refined until it has same level as the original cell.
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1.4. Advection on octree grid

at level lmax . This case can also arise during the simulation in rare cases.

1.4.3 Advection

In the refinement step we have ensured that cells from the octree Dn will be advected on

cells of at least same level of refinement of the refined octree Dn+1/2. All that is left to do is to

translate cell hexahedra of Dn along characteristics and project them on Dn+1/2. This scheme

implements (1.6) on the octree and is used in [36] on structured grids.

In a Eulerian setting such as ours, we use a semi-Lagrangian scheme where cells are trans-

ported using the velocity at their center and projected onto the octree. The projection scheme

is necessary since the advected cell will rarely if ever coincide exactly with another cell. Let

C ∈Dn be a cell to be transported and projected. The scheme consists in transporting C first

treated with a SLIC algorithm described below and finding the cells of Dn+1/2 intersecting

the transported cell. Each such cell will receive a contribution to its ϕ value weighted by the

volume of the intersection.

Note that the scheme is unconditionally stable with respect to the Courant (or CFL) number

and so we can choose arbitrarily large timesteps as long as the Runge Kutta scheme captures

the characteristics to a desired level of accuracy. Some numerical schemes such as [35, 34]

make use of a graded octree which requires a 2 : 1 cell size ratio between neighbouring cells

to simplify gradient and flux calculations. This requirement is not necessary here due to the

natural handling of different cell sizes via projection.

The SLIC algorithm that we apply is a simple generalization of the SLIC algorithm presented

in [36] which was adapted from [26]. Recall that the algorithm reduces numerical diffusion

and consists in redistributing the fluid inside cells C with 0 <ϕ(C ) < 1 such that the fluid is

“pushed” against faces shared with neighbouring liquid cells. We retrieve the values of ϕn(Ca)

where Ca are adjacent cells and according to the distribution of the values ϕn(Ca) around the

cell, we select the “pushing” pattern.

The choice of the SLIC algorithm and not one of the higher order reconstruction techniques

such as PLIC [27, 24, 28] is motivated by computational speed. Indeed, computing the recon-

structed hexahedral shape is straightforward for SLIC as is projecting the axis-aligned hexa-

hedron on an axis-aligned hexahedral grid during the advection phase. For more advanced

algorithms such as PLIC, an inverse problem has to be solved to compute the reconstruction

[30, 28]. We may try to compensate the loss of accuracy for not using a PLIC-type method by

refining the octree further, increasing lmax .

We can apply the same algorithm in the octree for cells having only adjacent cells of same

level. The “pushing” patterns remain the same. Two more scenarios are possible however. The

adjacent cells can either be of lower or of greater level. Note that the latter case can occur even

though large cells are not interfacial. Indeed, due to the discretization error and the projection

described in this Section, it can happen that 0 <ϕ(C ) < 1 for cells C with level l < lmax .
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Chapter 1. Octree-based numerical scheme for Navier Stokes free surface flows

(a) SLIC with larger neighbour cells (b) SLIC with smaller neighbour
cells

Figure 1.9: SLIC algorithm on the dashed cell, neighbour cells in bold

(a) Shift a full cell C according to the velocity at its
cell center and project its ϕ value on the receiver cells
Pi (C ), i = 1, ...,4

(b) Case of a cell C with ϕn (C ) < 1. The cell is treated
with SLIC and the smaller cell C̃ is advected

Figure 1.10: Octree advection
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1.4. Advection on octree grid

Figure 1.11: Advection of a large cell

If the adjacent cell is of lower level (i.e. the adjacent cell is larger in size), we can use the same

procedure as for equal size cells. However, if an adjacent cell is of greater level (i.e. the adjacent

cell is smaller in size), we have multiple adjacent cells in that particular direction and it is not

clear which pattern to choose. In this case, we choose the pushing pattern as if there were a

unique adjacent cell Cu such that ϕn(Cu) =ϕu , where ϕu is as follows.

• If all adjacent cells Ca satisfy ϕ(Ca) > 1−εSLIC , set ϕu = 1

• If all adjacent cells Ca satisfy ϕ(Ca) < εSLIC , set ϕu = 0

• Otherwise set ϕu = 0.5

where εSLIC = 0.05.

We now introduce the core of the advection scheme that solves (1.3) on the octree. The

translation of the cells and projection on the octree are analogous to the scheme on the

uniform structured grid illustrated in Figure 1.1.

Let us call X n+1
4 (C , t n) the translation of cell C ∈ Dn by vector X n+1

4 (xC
m , t n) where xC

m is the

center of cell C . X n+1
4 (C , t n) shall be the resulting transported hexahedron. For each cell C ,

let us define C̃ as the fraction of C resulting from applying the SLIC algorithm to the cell C .

If C is a full cell, we simply have C̃ =C as shown in Figure 1.10a. Instead of advecting cell C ,

we instead advect C̃ as shown in Figure 1.10b and denote by X n+1
4 (C̃ , t n) the translation of C̃

with vector X n+1
4 (xC

m , t n). In the case of small fluid volumes, a translation of C̃ by X n+1(xC̃
m , t n)

could also be considered since xC
m can fail to belong to C̃ .

To project the hexahedron X n+1
4 (C̃ , t n) onto the octree, we look for all cells in Dn+1/2 intersect-

ing it. Let us denote Pi (C̃ ) ∈Dn+1/2 the i -th cell intersecting X n+1
4 (C̃ , t n) where i ranges from

1 to the number of cells in the intersection.
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Figure 1.12: When the timestep is large, numerical compression can occur and a cell gets a ϕ

value greater than 1.

For each non-empty cell C , a contribution of

vol ume(Pi (C̃ )∩X n+1
4 (C̃ , t n))

vol ume(Pi (C̃ ))

will be added to ϕn+1(Pi (C̃ )). An illustration of this process is shown in Figure 1.10. Projecting

large cells is done exactly the same way as illustrated in Figure 1.11.

Another equivalent formulation arises when we consider the receiver cell instead of the cell to

be projected. For each cell D ∈Dn+1/2, ϕn+1(D) is given by

ϕn+1(D) = ∑
C∈Dn

vol ume(D ∩X n+1
4 (C̃ , t n))

vol ume(D)
.

If fluid is projected outside the computational domain, it is stored in a buffer and redistributed

later in the cavity using the decompression algorithm. ϕn+1 has now been defined on Dn+1/2

and will be post-processed to ensure 0 ≤ϕn+1 ≤ 1.

1.4.4 Decompression

When the timestep is large, a cell D ∈ Dn+1/2 can have a VOF value ϕn+1(D) > 1 after the

advection step as illustrated in Figure 1.12. This is meaningless since ϕ is a marker quantity

designed to define the fluid domain with ϕ= 0 in the absence of fluid or ϕ= 1 in its presence.

We will therefore set ϕn+1(D) = 1 for those cells and redistribute the excess fluid in the cavity

in order to enforce mass conservation. Heuristic decompression algorithms such as in [36] are

proposed to accomplish this task. These heuristic algorithms consist in choosing a priority

function θ : Dn+1/2 → R and redistributing the total excess fluid to the cells in Dn+1/2 in
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1.4. Advection on octree grid

decreasing order of their θ values. Algorithm 3 describes this process more formally. V (C )

indicates the volume of C where C ∈Dn+1/2. The decompression algorithm ends when the

buffer is empty or when there are no more cells to decompress to. In the latter case, we keep

the buffer for the next iteration so as to conserve mass.

Algorithm 3 Decompression algorithm with priority function θ

b ← 0 � b is a buffer storing the excess fluid
for all cell C ∈Dn+1/2 do

if ϕn+1(C ) > 1 then
b ← b + (ϕn+1(C )−1) V (C )
ϕn+1(C ) ← 1

end if
end for
Ah ← {

C ∈Dn+1/2 | 0 <ϕn+1(C ) < 1
}

while b > 0 and |Ah | > 0 do
choose C in Ah which maximizes θ(C )
remove C from Ah

s ← 1−ϕn+1(C ) � Fraction of non-liquid space in cell

ϕn+1(C ) ← min(1,ϕn+1(C )+ b

V (C )
)

b ← max(0,b − s V (C ))
end while

Classic decompression We call the classic decompression the one used in [36] which con-

sists in choosing θ =ϕn+1. This means that we redistribute the fluid first to cells with highest

ϕn+1 values.

Median filter smoothing decompression This algorithm is similar to the classic decompres-

sion but instead of choosing θ =ϕn+1, we choose for θ a smoothing of ϕn+1. The motivation

behind this is to redistribute excess fluid on the cells which have highest ϕn+1 values and

whose neighbours also have high ϕn+1 values. Thus, we hope to first redistribute excess

fluid in the bulk of the fluid and only then on the interface. We choose the median filter [72]

as a smoothing operator for two main reasons. First, the filter only requires the ϕ values

of the adjacent cells to the one we want to apply the smoothing to, which makes the over-

head for neighbour search in the octree relatively low. Second, the filter has some desirable

noise-suppressing properties (see e.g. [73] ).

The median filter works by retrieving the median value of a compact stencil. Suppose that we

have a two-dimensional structured grid Gs of cells Ci , j and a field ϕ : Gs →R that we want to

filter. Let ϕs : Gs →R be the filtered field. It is defined as the median of a multiset as follows

ϕs(Ci , j ) = medi an
{
ϕ(Ci−s, j−t ), s, t ∈ {−1,0,1}

}
.
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(a) Median filter stencil with larger neigh-
bours

(b) We average the ϕ value of the circled
cells before computing the median

Figure 1.13: Stencil used for the median filter applied to the octree.

In three dimensions, the median filter thus requires getting the ϕ values of 26 neighbouring

cells and of the cell to be filtered. To apply this filter on the octree, we can apply the filter as is

but we need to treat the cases where the cell has larger neighbours or smaller neighbours.

Suppose now that we want to get the filtered value of ϕn+1 at cell C ∈ Dn+1/2 where C has

neighbours of same size or larger, hC is the edge length of C (we suppose it is a cube here) and

xC
m is the center-point of C . We use the 27 point compact stencil centered at xC

m of distance

between adjacent nodes hC which we note SC illustrated in Figure 1.13.a. The filtered value

of ϕn+1 is the median of the multiset
{
ϕn+1(D), D ∈Dn+1/2 containing p, p ∈ SC

}
, allowing

duplicate values. If a cell contains two nodes of the stencil, its ϕn+1 value should appear twice

in the expression of the multiset.

Now suppose that we want to get the filtered value of ϕn+1 at cell C ∈Dn+1/2 where C also has

neighbours of smaller size. For a point of the stencil p ∈ SC , if the cell C has smaller neighbours

in the direction p − xC
m , the point p will be a common vertex of 8 cells and we do not get a

unique value of ϕ. We choose instead to take the average value of ϕn+1(C i
p ) where C i

p are the

cells sharing a face or an edge with cell C in direction p −xC
m . We add this value to the multiset

instead. The Figure 1.13.b illustrates this case; the cells sharing an edge or face are marked

with a circle.

We choose to use the median filter smoothing decompression for our simulations. It results in

less spurious holes than the classic decompression since the bulk of the fluid is prioritized dur-

ing redistribution due to the smoothing. The redistribution does not follow the physics of the

problem but is considered to be a post-processing which corrects spurious fluid compressions.

Redistribution algorithms based on the physics of the problem could be considered but we

have found the median filter decompression to yield satisfactory results in little computational

time. It should be noted that the amount of numerical compression tends towards zero as cell
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size decreases.

We compute the smoothing of the ϕn+1 field and apply Algorithm 3 to enforce 0 ≤ϕn+1(C ) ≤ 1

∀C ∈Dn+1/2.

We present a comparison of Median filter smoothing decompression and Classic decompres-

sion methods on a free surface flow problem. Free surface flows are introduced in Section

1.6 but we anticipate in order to compare the decompression schemes on a real test case. A

2D-3D jet buckling test case documented in [42] is simulated on a structured grid for both

decompression algorithms and results are shown in Figure 1.14. It can be seen that the me-

dian filter decompression method redistributes the fluid in the bulk instead of the boundary

and as a consequence, hinders the appearance of spurious bubbles as can be seen in the

classic decompression case. It can be noted that the median filter decompression results in a

more stable jet, which buckles at a later time than for a classic decompression scheme. This

particular simulation is however an extreme case where the slightest perturbations of the jet

equilibrium can drastically change the timing and direction of the jet buckling. In simulations

that we have run and that will be analyzed later, the choice between classic decompression

and median filter decompression algorithms does not drastically affect the evolution of the

liquid region. It is however of particular interest for the coarsening of the octree mesh to

prevent the appearance of these spurious bubbles in the first place. Indeed, we will see in

Section 1.4.5 how we require cells to be filled to be able to coarsen the octree cells in the bulk

of the fluid. A decompression algorithm hindering the appearance of the spurious bubbles

will therefore allow for more cells to be coarsened and therefore leads to a faster and less

memory-consuming algorithm. These spurious bubbles are however expected to disappear

when timestep and cell size tend to zero.

1.4.5 Coarsening

After the advection and decompression steps, we coarsen non-interfacial cells for memory

and speed gains. From the point of view of the octree graph, coarsening means removing 8

children nodes in the octree graph belonging to the same parent. From the point of view of the

octree mesh, this means joining 8 cells belonging to the same parent cell. The values of ϕn+1

of the parent cell will be given by the average of the corresponding values of its 8 children cells.

The goal is to coarsen the cells as much as possible while satisfying the following requirements.

• Liquid cells should not be coarsened further than the level ll i qui d

• Interfacial cells should not be coarsened

• Eight cells Ci can only be coarsened if they all satisfy either of the conditions

ϕn+1(Ci ) ≥ 1−εl i qui d , i = 0, ...,7 or ϕn+1(Ci ) = 0, i = 0, ...,7.

The first requirement is present to preserve an accurate representation of the velocity field
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Figure 1.14: Decompression algorithm comparison. Median filter smoothing decompression
on the left and classic decompression on the right. Median filter smoothing redistributes fluid
better in the bulk of the fluid rather than on the boundary.
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(a) Cells sharing the same parent satisfy
coarsening requirements

(b) The cells are replaced by their parent
cell

Figure 1.15: Coarsening process.

Figure 1.16: Coarsening is not done if one of the 8 cells has a neighbour in a different state
(liquid/non-liquid).
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when evaluating the velocity field at cell centers. The second requirement is needed to keep

interfacial cells at level lmax so as to preserve an accurate representation of the interface. The

last requirement is needed because when the timestep is large, it can happen that a cell C

in the bulk of the fluid with level l < lmax takes a value of ϕn+1(C ) < 1. The latter should in

principle not happen since a coarse cell C in the fluid bulk is supposed to satisfy ϕn+1(C ) = 1.

For these reasons, we also allow a relaxed coarsening if the cell is not fully liquid but ϕn+1(C )

is close enough to 1. In that case, we set ϕn+1(C ) = 1 for the coarsened cell C and the buffer

containing the fluid to redistribute in the decompression algorithm at the next timestep is

decreased so as to enforce mass conservation. The buffer will then temporarily be negative

until compression occurs at the next step. It has never been observed that the buffer would

stay negative throughout simulations. This additional post-processing is justified in a similar

way to the decompression algorithm. In the decompression algorithm, we correct spurious

compressions and in this step we correct spurious diffusions in the bulk of the fluid. With the

relaxation, we obtain a more efficient coarsening and a sharper definition of the fluid bulk.

Numerical results in Section 2 confirm that this does not prevent accurate tracking of the

interface and in fact can even improve the results in difficult test cases where spurious bubbles

appear in the non-adaptive algorithm. We have found εl i qui d = 0.1 to yield satisfying results.

The coarsening process is illustrated in Figure 1.15. We apply the coarsening procedure on the

octree Dn+1/2 and obtain a coarsened octree Dn+1.

1.5 Octree implementation

An efficient octree implementation has to be adapted to the numerical scheme described

above, therefore the following features are desirable. Low memory overhead, efficient iteration

over the octree cells and retrieval of parent, child, neighbour cells and of leaf cells containing

a specified point are all features that need to be satisfied by our octree implementation.

Early implementations of the quadtree, which is the 2D equivalent of the octree, such as

[74] used to store a reference to the parent and children cells for each cell of the quadtree.

Coordinates and level information could be stored in cells or computed from the path to the

root node depending on the desired tradeoff between memory usage and CPU time. The

minimal storage version of the octree implementation has a structural memory overhead

of 9 memory words per cell (one reference to the parent and 8 to the children). Retrieval of

neighbour cells required ascending the octree and computing a path to descend.

An improvement to this implementation is called the Fully Threaded Tree (FTT) and was

proposed in [69]. It introduced the notion of oct which aggregates positional information

of 8 cells belonging to the same parent. The oct stores its level, coordinates and references

to parent cell and parent cells of neighbouring octs, along with the 8 cells belonging to that

oct. Each cell contains the physical quantities associated with it along with a pointer to

its associated oct. This implementation reduces memory overhead and makes neighbour

retrieval more efficient and simpler. Indeed, the structural memory overhead of 19 words per

30



1.5. Octree implementation

Cell 1
Cell 2

Cell 8
Leaf ag

Domain ag

Index (i,j,k)

Base (a,b,c)

Level

Figure 1.17: Memory map of an oct

oct which corresponds to 2 3
8 words per cell is lower than the previous 9 words per cell.

Recently, a pointerless implementation of the octree was proposed in [75]. An integer index-

ing system identifies uniquely each oct and retrieving parent, children and neighbour cells

amounts to simple arithmetic operations. This eliminates the need for references to other

cells and yields a memory overhead of 5
8 words per cell. The tree-like structure is replaced with

a simple hash map whose keys are integers identifying each oct which makes the structure

easier to handle and slightly more efficient.

We take advantage of the strategy used in [75] and extend it to allow cells of arbitrary aspect

ratio. This is done by replacing the single base hexahedron by an array of base hexahedra

which can be chosen so as to get the desired cell aspect ratio. We also allow for more complex

domains with the use of a flag indicating whether a cell is inside or outside the domain.

Let us drop the assumption that the computational domain is a hexahedron and let the

axis-aligned bounding box of the computational domain be of dimensions (Lx ,Ly ,Lz ) ∈R3.

As illustrated in Figure 1.17, an oct stores in memory a base integer triplet (a,b,c), the refine-

ment level, an index integer triplet (i , j ,k), a leaf flag indicating which cells are leaves and a

domain flag indicating which cells are in the computational domain. It also stores the physical

quantities associated with its 8 cells.

Recall that in order to avoid having the bounding box dictate the anisotropy of cells, we subdi-

vide it into an array of octs with respectively Bx ,By ,Bz octs in directions x, y, z as illustrated in

Figure 1.4. Such octs are set to level 0 and will be called base octs. Any oct in the octree belongs

to a unique base oct and the base integer triplet (a,b,c) represents the coordinates of that base

oct in the array.

The index (i , j ,k) of an oct is recursively defined as follows. Let the index of a base oct be

(0,0,0). Suppose that the index of an oct is (i , j ,k), then its 8 children octs have indices defined
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(a) Index of base oct (b) Indices of children given by
(2 ·0+δi ,2 ·0+δ j ), δi ,δ j ∈ {0,1}.

(c) Indices of further children
given by (2 · 1 + δi ,2 · 1 + δ j ),
δi ,δ j ∈ {0,1}.

Figure 1.18: Oct indices.

by

(2i +δi , 2 j +δ j , 2k +δk ), δi ,δ j ,δk ∈ {0,1}.

A 2D example illustration is provided in Figure 1.18.

The simple recursive definition of the index makes it easy to retrieve the parent oct’s index

(ip , jp ,kp ) given a child oct’s index (i , j ,k). It is given by

(ip , jp ,kp ) =
(⌊

i

2

⌋
,

⌊
j

2

⌋
,

⌊
k

2

⌋)
.

Assume for simplicity that there is a single base oct in the octree, i.e. Bx = By = Bz = 1. Given

an oct of level l , another way of computing the index is simply to count its coordinates in an

array of octs of level l . . This means that if an oct with index (i , j ,k) has a neighbour oct of

same level of index (in , jn ,kn), we have

(in , jn ,kn) = (i +γi , j +γ j , k +γk ), |γi |+ |γ j |+ |γk | = 1,

γi ,γ j ,γk ∈ {−1,0,1}.

As a consequence, an oct is uniquely defined by its level, base and index and its coordinates

can be computed. Let (x0, y0, z0) be the vertex of the bounding box which has minimal (x, y, z)

coordinates and recall that the bounding box has dimensions (Lx ,Ly ,Lz ). The dimensions of

an oct of level l , base (a,b,c) and index (i , j ,k) are

(
Lx

Bx 2l
,

Ly

By 2l
,

Lz

Bz 2l

)
and its vertex which

has minimal coordinates is given by

(xv , yv , zv ) =
(

x0 + Lx

Bx
(a + i

2l
), y0 +

Ly

By
(b + j

2l
), z0 + Lz

Bz
(c + k

2l
)

)
.
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The oct structures are indexed in a hash table using an ID which uniquely encodes level, base

and index of an oct. A hash table (or hash map) is a data structure which allows mapping

of keys (here the ID) to values (here the oct) with the advantage of an average number of

O(1) operations to retrieve, insert and delete elements in the structure. Here we modify the

definition of ID given in [75] to allow arrays of base octs which permit arbitrary cell aspect

ratios. Given an oct of level l , base (a,b,c) and index (i , j ,k) we define the ID as

I D = a +b Bx +c Bx By +Bx By Bz

(
l−1∑
n=0

23n + i + j 2l +k 22l

)
.

Note that if the number of base octs in each direction are powers of two, the information

encoded into the ID can be restored using fast binary operations. With this strategy, it is easy

retrieve parent octs and children octs from the octree. Indeed, to retrieve the parent oct of an

oct with index (i , j ,k), we simply compute the parent index
(⌊ i

2

⌋
,
⌊

j
2

⌋
,
⌊

k
2

⌋)
which allows us to

compute the parent ID and query the hash map with it.

To retrieve a leaf oct containing a point (x, y, z) we first compute its base

(a,b,c) =
(⌊

x −x0

Lx
Bx

⌋
,

⌊
y − y0

Ly
By

⌋
,

⌊
z − z0

Lz
Bz

⌋)
.

Assuming that a leaf oct of level l exists in the octree, we can compute its index

(il , jl ,kl ) =
(⌊

2l
(

Bx

Lx
(x −x0)−a

)⌋
,

⌊
2l
(

By

Ly
(y − y0)−b

)⌋
,

⌊
2l
(

Bz

Lz
(z − z0)−c

)⌋)
.

We then compute the ID and query the hash map. Usually we do not know the level l of the

leaf oct containing the point in advance, so a simple strategy is to start from level lmax and

query the hash map with octs of decreasing level until the query is successful. In the numerical

experiments we have conducted, lmax rarely exceeded 6. There is therefore probably little to

gain in terms of algorithm speed in looking for a better heuristic to predict which level the

query will be successful at since the number of queries is bounded by lmax +1.

Since hash maps are also equipped with algorithms for efficient traversal of all elements, we

have satisfied all the desired features of our octree implementation.

The handling of complex domains is supported via the domain flag and will be explained in

detail in section 1.6.5.
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1.6 Octree-based scheme for free surface flows governed by the Navier

Stokes equations

1.6.1 Splitting scheme for the Navier Stokes equations

We introduce a splitting scheme to simulate free surface flows governed by the Navier Stokes

equations. Recall that T > 0 is the final simulation time. Let QT be the space-time domain

containing the fluid at all times QT = {
(x, t ) ∈Λ× (0,T ); ϕ(x, t ) = 1

}
. Let v : QT → R3 be the

velocity field and p : QT →R the pressure field. Note that the velocity field is now defined only

in the liquid domain and not in the whole cavity Λ as in Section 1.1. We will be solving the

time-dependent incompressible Navier-Stokes equations

ρ
∂v

∂t
+ρ(v ·∇)v −2μ∇·ε(v)+∇p = ρg in QT , (1.15)

∇· v = 0 in QT , (1.16)

where ρ is the density, μ the dynamic viscosity of the fluid, g the gravitational field and

ε(v) = (∇v +∇vT )/2 the rate-of-strain tensor. The Navier Stokes equations are coupled with

the advection equation (1.1) which translates the fact that the interface moves with the liquid.

In order to solve the full Navier-Stokes equations, we will use an implicit splitting algorithm of

order one. The splitting scheme described in [40] allows decoupling the advection part from

other phenomena, such as diffusion, incompressibility and effect of external forces in our case.

This time splitting scheme has been successfully used with a structured cartesian mesh in

[41, 36, 42, 37, 38, 43, 44] and we describe how it can be used with the octree.

Let Δt = T
N be the timestep where N > 0 is an integer. The time discretization points are then

tn = nΔt , n = 0,1, ..., N and Λ⊂R3 is the bounded computational domain. Let us assume that

at timestep tn , an approximation ϕn : Λ→ R of the liquid characteristic function is known

which defines the domain Ωn , an approximation of the liquid domain at time tn .

Due to the splitting, the velocity satisfies a transport equation. We assume that an approxima-

tion vn : Ωn →R3 of the velocity field at time tn is available.

In the advection step, we first transport ϕn along with the velocity vn to obtain the new liquid

characteristic function ϕn+1 which defines the new liquid region Ωn+1 and a first estimate

of the velocity field vn+1/2. The second step of the splitting algorithm then yields a Stokes

problem to solve which gives the final estimate vn+1 of the velocity at timestep tn+1.

The advection step consists in solving

∂ϕ

∂t
+ v ·∇ϕ= 0, (1.17)

∂v

∂t
+ v ·∇v = 0, (1.18)
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between tn and tn+1 where the initial conditions are given by

ϕ(tn) =ϕn ,

v(tn) = vn .

From equation (1.18) we deduce that velocity is constant along characteristics and there-

fore the characteristics are straight lines. Indeed, similarly to (1.2), the characteristics X :

[tn , tn+1] →R3 are here defined as

Ẋ (t ) = v(X (t ), t ) ∀t ∈ [tn , tn+1]. (1.19)

Equation (1.18) then implies that

d

d t
v(X (t ), t ) = 0 ∀t ∈ [tn , tn+1]. (1.20)

Since the characteristics are straight lines, they are computed exactly with a first order method

and it is therefore sufficient to use an explicit Euler method which gives

ϕn+1(X n+1
1 (x, t n)) =ϕn(x). (1.21)

vn+1/2(X n+1
1 (x, t n)) = vn(x). (1.22)

for x ∈ Ωn . ϕn+1 defines the new liquid region Ωn+1 = {
x ∈Λ : ϕn+1(x) = 1

}
on which an

estimate of the new velocity field vn+1/2 after the first step of the splitting is computed.

Given vn+1/2 and Ωn+1, the second step of the splitting algorithm consists in computing the

new velocity vn+1. To do this, we solve the following Stokes problem

ρ
vn+1 − vn+1/2

Δt
−2μ∇·ε(vn+1)+∇pn+1 = ρg in Ωn+1, (1.23)

∇· vn+1 = 0 in Ωn+1. (1.24)

In Section 1.6.3, we detail the space discretization and algorithms used to perform both

splitting steps in practice.

1.6.2 Initial conditions and boundary conditions

We briefly recall the initial and boundary conditions given for instance in [36]. Given an initial

liquid characteristic functionϕ(·,0), the initial liquid domain is thenΩ(0) = {
x ∈Λ : ϕ(x,0) = 1

}
.

The initial velocity then has to be given in Ω(0).

The boundary conditions for the Stokes problem (1.23)-(1.24) are then as follows. Neglecting

forces due to pressure from the gas outside the liquid region and any capillary forces, we

assume that the interface is stress-free. Therefore, the following boundary condition holds at
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the boundary of the initial liquid region Ω(0) that is not in contact with the domain boundary

2με(v) ·n −pn = 0

where n is the outward unit normal to the free surface.

We describe two options for the boundary condition in the region where the liquid is in contact

with the domain boundary. The first option is a Dirichlet condition which imposes all three

components of the velocity. This is the so-called inflow condition or noslip condition in the

case of homogenous Dirichlet boundary conditions. The second option is the Signorini bound-

ary condition, which imposes zero normal velocity and tangential stress on the boundary if

the liquid pushes against the boundary wall. This translates as imposing

v.n = 0 and
(
2με(v) ·n −pn

) · ti = 0, i = 1,2 if
(
2με(v) ·n −pn

) ·n < 0

where ti , i = 1,2 are two orthogonal unit vectors of the plane tangent to the boundary wall. On

the other hand, if the fluid does not push against the boundary wall, a zero stress condition is

imposed as follows

2με(v) ·n −pn = 0 if
(
2με(v) ·n −pn

) ·n ≥ 0.

1.6.3 Space discretization of the splitting scheme

The splitting scheme allows the use of different grids for the advection problem and Stokes

problem. The advection step is done on the octree and the Stokes problem is solved on a

tetrahedral grid. As stated in the first part, the choice of the octree was motivated by the

capture of fine detail at the interface while keeping coarser cells in the bulk of the fluid for

efficiency. The Stokes problem is solved on a tetrahedral grid for several reasons.

First of all, finite elements on tetrahedral grids have been the object of extensive research and

are therefore relatively well known, see e.g. the references in [46]. Tetrahedral meshes allow

accurate capture of even complex domain boundaries and boundary normals. The latter is

useful for imposition of the slip boundary condition for instance. This would be a challenge

Figure 1.19: Octree grid for advection and tetrahedral mesh for Stokes problem.
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if we wanted to solve the Stokes problem on the octree as well. Solving the Stokes problem

on the octree would create other problems, such as dealing with the hanging nodes in the

octree. Also, the large number of fine cells at the boundary might lead to a prohibitively high

cost. We assume that the continuity of the velocity allows us to solve the Stokes problem on a

tetrahedral mesh coarser than the fine octree cells as illustrated in Figure 1.19. Let us call the

tetrahedral mesh TH where H is the maximal diameter of all tetrahedra in TH . We will choose

H to be approximately of the same size as hli qui d .

Advection of the liquid characteristic function ϕ has been described in previous Sections in

detail. Advection of the velocity happens in an analogous way. Since we now use an explicit

Euler scheme to follow the characteristics, for each cell D ∈Dn+1/2, ϕn+1(D) is given by

ϕn+1(D) = ∑
C∈Dn

vol ume(D ∩X n+1
1 (C̃ , t n))

vol ume(D)

where C̃ is the cell C treated with the SLIC algorithm.

Analogously for the velocity projection, each contributing cell C ∈Dn yields a weighted contri-

bution of vn+1/2(C ) to the receiver cell D ∈Dn+1/2. That weight is precisely the normalized

contribution of cell C to ϕn+1(D). For each cell D ∈Dn+1/2 such that ϕn+1(D) > 0, vn+1/2(D)

is then given by

vn+1/2(D) = ∑
C∈Dn

vn(C )

(
vol ume(D ∩X n+1

1 (C̃ , t n))

vol ume(D)

)

ϕn+1(D)
.

We will explain in Section 1.6.4 how we interpolate ϕn+1 and vn+1/2 onto the tetrahedral mesh

TH to define which tetrahedra are considered liquid and also to define the velocity on those

tetrahedra.

The Stokes problem is then solved on the union of all liquid elements using P1 −P1 finite

elements, an implicit Euler time discretization and boundary conditions given in Section

1.6.2. Several possible stabilizations are discussed in Chapter 3. As will be seen, an efficient

choice which does not require a stabilization parameter is the bubble reconstruction method

described in Section 3.1.5.

Closing the loop, Section 1.6.4 describes how velocity is interpolated back onto the octree

from the tetrahedral mesh for the next iteration.

1.6.4 Interpolations between meshes

Dynamic mapping between meshes In order to compute interpolations between octree

cells and tetrahedra, we need an efficient way of mapping each cell to its neighbouring
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tetrahedra and vice versa. We say that a cell C ∈ Dn+1
h is the neighbour of a tetrahedron

K ∈TH and vice-versa if their axis-aligned bounding boxes have a non-empty intersection.

At initialization, for each octree cell we compute and store a list of its tetrahedral neighbours

and for each tetrahedron we store the list of its neighbour cells. When a cell C of the octree is

split, each of its eight children stores a copy of the neighbour list of C and we simply remove

the tetrahedra from the eight lists that are not neighbours with each respective child. The

list of neighbours of C is then deleted. The neighbour lists of the tetrahedra involved in the

update are also updated accordingly. When eight cells are coarsened, we set the neighbour list

of the parent cell to be the union of the eight cells’ neighbour lists and update the neighbour

lists of the involved tetrahedra accordingly.

Interpolation from the octree to the tetrahedral mesh We wish to interpolate the fields

ϕn+1 and vn+1/2 from the octree Dn+1
h to the tetrahedral mesh TH . ϕn+1 is interpolated in

order to determine which tetrahedra are considered liquid, that is on which tetrahedra we

will solve the Stokes problem. We seek to determine an interpolated value ϕn+1
K for each

tetrahedron K in TH . If ϕn+1
K ≥ 0.5, the tetrahedron is considered liquid. Suppose that BK is

the axis-aligned bounding box of K in TH . We define ϕn+1
K as a weighted average of values

ϕn+1(C ) where C are neighbours of K . Weights are given by the volume of the intersection

between cell C and the axis-aligned bounding box of K . We have

ϕn+1
K =

∑
C∈Dn+1

h

ϕn+1(C ) vol ume(BK ∩C )

∑
C∈Dn+1

h

vol ume(BK ∩C )
.

Recall that we are using P1 −P1 finite elements so we also need to define vn+1/2 on the nodes

of the tetrahedral mesh. In order to do that, we will use a variation of the inverse distance

weighting interpolation, see e.g. [76]. Let vn+1/2
P be an approximation of vn+1/2 at node P of

mesh TH given by the interpolation. Let BP be the axis-aligned bounding box of the union of

the tetrahedra K in TH such that P ∈ K . To get a local interpolation and to handle different

sizes of octree cells, we weight the contribution of each cell C not only by the inverse distance

but also by the volume of the intersection of BP and C . If there exists a cell C whose center c

coincides with P , we set vn+1/2
P = vn+1/2(C ). Otherwise, we have the following expression

vn+1/2
P =

∑
C∈Dn+1

h

vn+1/2(C )
vol ume(BP ∩C )

‖c −P‖2
2∑

C∈Dn+1
h

vol ume(BP ∩C )

‖c −P‖2
2

where ‖‖2 is the Euclidean norm and c is the cell center of C . Figure 1.20 shows a vertex P ,

the patch of tetrahedra containing it, the bounding box BP and all the cells involved in the

interpolation.
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Figure 1.20: All the tetrahedra (here triangles) in TH containing the vertex P are shown. The
bounding box BP of the union of those tetrahedra is shown in light grey. Cells in dashed lines
are involved in the interpolation.

The interpolation of ϕn+1 defines the liquid elements and therefore the subset of TH on which

the Stokes problem is solved. Note that it is possible for a cell to end up with only non-liquid

tetrahedral neighbours, which means that all its neighbours are excluded from the Stokes’

problem solving. In this case, move the fluid contained in the cell to the decompression buffer

in order to redistribute it at the next decompression step. Given vn+1/2 on the mesh TH , we

solve the Stokes problem to obtain vn+1 and interpolate it back onto the octree as follows.

Interpolation from the tetrahedral mesh to the octree We have computed the piecewise

linear field vn+1 on the mesh TH by solving the Stokes problem. vn+1 is interpolated onto a

cell C ∈Dn+1
h of the octree by inverse distance weighting of the values vn+1(P ) where P is a

node of the neighbouring tetrahedron K of the cell C . Again, if the cell center c of C coincides

with a node P of a tetrahedron K ∈TH , we set vn+1(C ) = vn+1(P ). Otherwise, set

vn+1(C ) =

∑
K∈TH

∑
P∈K

vn+1(P )

‖c −P‖2
2∑

K∈TH

∑
P∈K

1

‖c −P‖2
2

.

The interpolation is illustrated in Figure 1.21 With this interpolation, vn+1 is defined on the

octree Dn+1
h and we proceed to the next iteration.
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Figure 1.21: Tetrahedra (here triangles) in TH shown in dashed lines are involved in the
interpolation on the cell C .

Figure 1.22: Cells with domain flag 1 are in gray and white cells have domain flag 0.

1.6.5 Capturing of complex domains

In Section 1.5, we mentioned that octs store a domain flag to indicate which cells belonging to

that oct are inside the domain. More precisely, the domain flag is 1 for a cell which should be

advected and advected into and it is 0 otherwise.

Given the tetrahedral mesh TH , the octree is initially refined up to level lmax for all cells

intersecting the triangles in the boundary of TH , although for axis-aligned triangles we can

choose whether to do so or not. This initially refined octree is the octree with minimal

refinement allowed; we do not allow coarsening further than it to preserve accurate capture

of the boundary throughout the simulation. For each non-leaf cell that has been split in

this initial phase in order to capture the boundary, the domain flag is set to 0. Thus, when

coarsening eight cells during the simulation, if the domain flag of the parent is 0, we do not

allow the coarsening. In the initially refined octree, we set the domain flag of cells of level

lmax that intersect the boundary or are fully within the domain to 1. Cells of level lmax that

are outside of the domain have their domain flag set to 0. Up to now, all the cells intersecting
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the boundary of TH have had their domain flags set. All remaining cells that intersect any

tetrahedron in the mesh have their domain flag set to 1 and then all the remaining cells are

outside of the domain and have their domain flag set to 0. An illustration is provided in Figure

1.22. During the advection phase, the cells to be projected are given by iterating over all liquid

cells Dn
h that have a domain flag of 1. If a receiver cell in Dn+1/2

h has a domain flag of 0, the

fluid contribution is instead stored in the decompression buffer.
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2 Numerical results

The octree convection scheme was implemented in C++ using standard STL containers and

was benchmarked on a system equipped with a 3.30G H z Intel Xeon E5-2643 processor and

32GB RAM. The scheme was benchmarked on a single core but could be parallelized by

decomposing the domain and implementing a local version of the decompression algorithm

on each subdomain. Parallelizing would require special care in decomposing the domain

such that the load is balanced as equally as possible over all processors. A Hilbert space-filling

curve such as proposed in [75] could be adapted to our octree implementation to do so.

The reported memory usage is the total physical memory allocation for our program per-

formed by the operating system and therefore includes an overhead which becomes neg-

ligible as memory usage increases. All of the presented test cases have the property that

ϕ(·,0) = ϕ(·,T ) where ϕ is the liquid characteristic function introduced in Section 1.1 and

T > 0 final simulation time. The L1 error is then the L1 norm of the difference between fields

ϕ at final time and at time t = 0, thus the initial space discretization error is excluded from it.

Comparisons are performed against the structured non-adaptive analogue of our convection

scheme which is described in [36]. The forward Euler scheme for approximating characteristics

in the structured grid solver is however changed to an order 4 Runge Kutta method.

The cell size of the structured non-adaptive grid is defined by hmi n where hmi n corresponds

to the smallest cell size of the octree.

2.1 3D advection results with the octree-based scheme

2.1.1 Translation of a sphere

A sphere of radius 0.15 initially centered at (0.2,0.2,0.2) is translated uniformly with velocity

field (1,1,1) from t = 0 to t = 0.6 and from t = 0.6 to t = 1.2, the velocity field is reversed such

that the final position of the sphere at T = 1.2 corresponds to its initial position.
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(a) Loglog plot of CPU time (b) Loglog plot of Memory usage (c) Loglog plot of L1 Error

C ·hmi n Octree Structured

1.0 1.097×102 8.743×101

0.5 8.588×102 1.323×103

0.25 7.196×103 1.865×104

(d) CPU time in seconds

C ·hmi n Octree Structured

1.0 45.49 80.39
0.5 160.30 456.50

0.25 559.10 3021.00

(e) Memory usage in MB

C ·hmi n Octree Structured

1.0 8.062×10−4 7.524×10−4

0.5 4.443×10−4 4.265×10−4

0.25 2.785×10−4 2.444×10−4

(f) L1 Error

Figure 2.1: CPU time, memory usage and error benchmark of the octree scheme for the sphere
translation test case. hmi n is the smallest cell size and we have set C = 192 as the reference cell
size and C F L = 6.6.

(a) t=0.6 (b) t=1.2

Figure 2.2: Slice of sphere translation test case with hmi n = 1.302×10−3 and C F L = 6.6.

The CFL number C F L = |u|Δt/hmi n is an adimensional number representing the maximal

number of cells traversed by the fluid in one iteration. Classical VOF methods require the

condition C F L ≤ 1 because they perform advection using an explicit scheme and consider

fluxes between adjacent cells. The numerical domain of dependence needs to contain the

true domain of dependence for stability [22]. Our method is however unconditionally stable

with respect to the C F L and does not require a linear system to be solved. Low C F L values

even tend to introduce more numerical diffusion due to the smaller timesteps and hence
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more numerous projections. The characteristics method has been shown in [61] to converge

in O
(

h2

Δt +h +Δt
)

where the h2

Δt error term stems from the interpolations at each timestep.

In order to keep the interpolation error small, the C F L should therefore be kept fairly large.

The goal is therefore to choose the C F L number so as to strike a balance between error due

to numerical diffusion at low C F L values and error arising from the failure to follow the

characteristics at high C F L values.

Restoring the sphere to its initial location could of course be done very accurately by setting

the timestep to Δt = 0.6 since the characteristics are straight lines. This however informs

us little about the performance of the scheme when translating free surfaces with timesteps

of the same order as would be used in the full Navier Stokes equations resolution. For this

benchmark test case we use a C F L of 6.6 which is typically of the order of what we would use

for full Navier Stokes equations solving. The results are shown in Figure 2.1.

The interface is restored to its initial position but some bubbles are produced inside the fluid

due to the SLIC algorithm as illustrated in Figure 2.2. It can be seen that the transport algorithm

produces bubbles inside the fluid bulk close to the free surface in the direction of the flow as

shown in Figure 2.2 for t = 0.6 in the top right corner of the sphere after the translation in the

first direction. It handles rather well the part of the free surface being transported towards

the bulk of the fluid. At final time t = 1.2 the bubbles which previously prevented coarsening

of the fluid have been filled by the decompression algorithm in the top right corner. They

however reappeared in the direction of the transport of the fluid.
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(a) t=0 (b) t=0.4 (c) t=0.8

(d) t=1.2 (e) t=1.6 (f) t=2.0

Figure 2.3: Zalesak’s sphere test case.

2.1.2 Zalesak’s sphere

A 3-dimensional version of the classic Zalesak’s disk test case is used as a numerical error

and performance benchmarking tool for the octree convection scheme [15]. A 3-dimensional

slotted sphere of radius 0.15 initially centered at (0.5,0.75,0.5) is rotated a full circle around

the point at (0.5,0.5,0.5) in the z = 0.5 plane in a [0,1]× [0,1]× [0,1] domain with final time

T = 2. The slot is defined by the intersection with the sphere and the planes y = 0.725,x = 0.475

and x = 0.525. The numerical simulation is illustrated in Figure 2.3 and restores the initial

slotted sphere at the final time with great accuracy. It illustrates the finest mesh size in the

convergence plots in Figure 2.6.

Figure 2.4 shows a cut of the slotted sphere at initial and final times. It illustrates how the

octree accurately captures the surface of the slotted sphere and how the interfacial cells remain

fine throughout the simulation, while the inner cells remain coarse.

Unlike in the previous test case where the characteristics were straight lines, a crucial point to
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2.1. 3D advection results with the octree-based scheme

(a) t=0

(b) t=2

Figure 2.4: Octree mesh cut of Zalesak’s sphere at initial and final times with a CFL number
of 19.2 and hmi n = 2.6×10−3. Only cells D with ϕ(D) ≥ 0.5 are displayed. CPU time was 7
minutes. The mesh contains 191506 cells while its structured analog contains 884736 cells.
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CFL Octree Structured

1.2 5.844×104 2.051×105

2.4 3.071×104 1.057×105

4.8 1.299×104 5.401×104

9.6 6.727×103 2.794×104

19.2 3.625×103 1.409×104

38.4 1.825×103 5.836×103

76.8 1.014×103 2.968×103

(d) CPU time in seconds

CFL Octree Structured

1.2 557.3 2955
2.4 521.6 3042
4.8 559.3 2769
9.6 642.3 2761

19.2 692.0 2752
38.4 720.6 2659
76.8 832.3 2954

(e) Memory usage in MB

CFL Octree Structured

1.2 5.218×10−4 3.609×10−4

2.4 2.958×10−4 2.439×10−4

4.8 2.463×10−4 2.021×10−4

9.6 1.982×10−4 1.772×10−4

19.2 1.791×10−4 1.650×10−4

38.4 1.739×10−4 1.596×10−4

76.8 1.846×10−4 1.568×10−4

(f) L1 Error

Figure 2.5: CPU time, memory usage and error benchmark of the octree scheme for Zalesak’s
sphere for different CFL numbers and hmi n = 2.6×10−3.

consider in the choice of numerical parameters is the CFL number here.

A comparison of several C F L values is shown in Figure 2.5. We set hmi n = 2.6× 10−3 and

vary the timestep between 0.00125 and 0.08 to obtain the results. We set ll i qui d = lmax −2,

hence hli qui d = 1.02×10−2 and we will discuss this choice below. As expected, running time

decreases with order 1 and memory usage stays approximately constant. L1 error decreases at

first but then attains a minimum for very large CFL numbers. The use of Runge Kutta of order 4

to follow the characteristics allows large C F L numbers in the case of simple stationary velocity

fields such as this one. Note that the octree performs about four times better both in terms of

running time and memory usage with comparable errors for this fixed cell size. In a second

comparison, we study the convergence of the schemes as both cell size and timestep tend to

zero while the C F L stays constant. Even though higher C F L values yield lower running time

and error, some splitting schemes for solving the full Navier Stokes equations may require a

smaller timestep. We choose to study convergence for a C F L of 19.2.

For a fixed C F L = 19.2, the benchmarking consists in setting 4 different values of hmi n for

both the octree and fully structured schemes. The baseline value of hmi n is 1/192 and the

simulation is run using finer meshes with respectively C ·hmi n = 1, 1/2, 1/4, 1/8 where C = 192.

The baseline timestep is set to Δt r e f = 0.08 and in order to keep a constant CFL value, the

timestep is chosen such that the ratio hmi n/Δt remains constant.

Recall that for the octree, we have set ll i qui d = lmax −2, i.e. hmi n = hli qui d /4.

Results are shown in Figure 2.6. Running time for the structured version grows with order 4
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2.1. 3D advection results with the octree-based scheme

(a) Loglog plot of CPU time (b) Loglog plot of Memory usage (c) Loglog plot of L1 Error

C ·hmi n Octree Structured

1.0 5.440×101 4.869×101

0.5 4.446×102 7.011×102

0.25 3.674×103 1.278×104

0.125 3.278×104 2.285×105

(d) CPU time in seconds

C ·hmi n Octree Structured

1.0 56.76 88.29
0.5 204.70 468.70

0.25 683.70 2556.00
0.125 2951.00 21810.00

(e) Memory usage in MB

C ·hmi n Octree Structured

1.0 7.350×10−4 6.314×10−4

0.5 3.455×10−4 3.177×10−4

0.25 1.791×10−4 1.650×10−4

0.125 9.693×10−5 8.694×10−5

(f) L1 Error

Figure 2.6: CPU time, memory usage and error benchmark of the octree scheme for Zalesak’s
sphere. hmi n is the smallest cell size, C = 192 and C F L = 19.2.

compared to order 3 for the octree. Memory growth is order 3 for structured and 2 for the

octree. Convergence rates of the L1 error seem to be of order 0.9 for both structured grid and

octree.

Our earlier choice of fixing ll i qui d = lmax −2 is justified as follows. At a relative liquid cell size

of hli qui d = 4 hmi n and for hmi n of the order of cell sizes benchmarked above, the interfacial

cells are responsible for most of the memory usage and CPU time. This is illustrated in Figure

2.7, in which we plot the maximal number of cells through the simulation for the different

mesh sizes for both structured grid and octree. Note that for the structured grid we only

include liquid cells since only those are stored in memory and for the octree, non-leaf cells

are counted as well. We plot the number of cells of level lmax and we can clearly see they

dominate. Number of cells for the structured grid behaves as 1/h3
mi n compared to 1/h2

mi n

for the octree. Taking coarser relative liquid cell sizes of hli qui d = 8 hmi n or larger produces a

larger error and negligible efficiency gains in terms of CPU time and memory usage.

Note that the number of interfacial cells grows in O
(
1/hmi n

2) and the constraint hl i qui d =
4 hmi n implies that asymptotically the number of liquid cells grows in O

(
1/hmi n

3). However,

we have 1/hli qui d
3 = 1/(64 hmi n

3) which makes the multiplicative constant of the cubic asymp-

totic growth of liquid cells much smaller than the multiplicative constant of the quadratic

growth of interfacial cells. We therefore expect a gain of one order in terms of number of cells

for the octree scheme compared to the structured scheme until the cubic growth of liquid cells

becomes dominant. In performed experiments, even for the finest levels of refinement, we

have not reached the point where growth of number of cells becomes cubic for the octree.
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Figure 2.7: Maximal number of cells for Zalesak’s sphere test case

2.1.3 Time-dependent vortex

The next test case advects a sphere around a time-dependent vortical velocity field and is

described in [77]. A 3-dimensional sphere of radius 0.15 initially centered at (0.7,0.5,0.5) is

subjected to the following velocity field with final time T = 2 :

u(x, y, z, t ) =

⎛
⎜⎝

sin2(πx)cos(πt/2)
(
sin(π(y −0.5))− sin(π(z −0.5))

)
sin2(πy)cos(πt/2)(sin(π(z −0.5))− sin(π(x −0.5)))

sin2(πz)cos(πt/2)
(
sin(π(x −0.5))− sin(π(y −0.5))

)
⎞
⎟⎠

The sphere gets deformed from t = 0 to t = 1 as shown in Figure 2.8 and is returned to its initial

position at t = 2. A delicate point in this test case is the choice of the C F L since the velocity is

zero at t = 1 so a range of C F L values are covered throughout the simulation. We will instead

set the maximal C F L which is attained at t = 0.

Results are shown in Figure 2.9.

This time the L1 error is lower for the octree scheme than for the structured scheme due to the

more complex velocity field. Indeed, the heuristic decompression and relaxed coarsening al-

gorithms which are designed for easier coarsening of liquid octree cells correct some spurious

bubbles formed in the bulk of the fluid.

A maximal C F L of 2.7 seems to give best results for the octree structure both in terms of error

and memory usage. For lower and higher maximal C F L values, spurious bubbles start to

appear and prevent coarsening the bulk of the fluid which results in increase of error and

memory usage. This test case in contrast with Zalesak’s sphere test case highlights the fact

that the optimal C F L number is heavily dependent on the velocity field considered.
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(a) t=0 (b) t=0.48 (c) t=1

(d) t=1.52 (e) t=2

Figure 2.8: Time-dependent vortex test case.

A convergence analysis is performed with C F L = 2.7. This time, the baseline value of hmi n is

1/96 and the simulation is again run using finer meshes with respectively C ·hmi n = 1, 1/2, 1/4,

1/8 where C = 96. The baseline timestep is set to Δt r e f = 0.02 and in order to keep a constant

CFL value, the timestep is chosen such that the ratio hmi n/Δt remains constant. Results are

shown in Figure 2.10.

Running time and memory usage seem to behave as observed in Zalesak’s sphere test case but

as the octree scheme conserves its approximately first order convergence in terms of error, the

convergence for the structured algorithm seems to stall. This behaviour comes from spurious

bubbles which are formed in the bulk of the fluid but they can be corrected with adaptive

time-stepping which is not discussed here. However, the relaxed coarsening algorithm of the

octree seems to correct this problem and allow convergence.

As a conclusion to the analysis of the octree convection scheme, it appears that despite the

first order convergence of the numerical scheme, the scheme is able to accurately advect

interfaces as shown in the Zalesak’s sphere test case. The advantage of being able to choose

C F L numbers much larger than 1 speeds up calculations and reduces computation time.

CPU time and memory usage growth for the octree are roughly one order lower than for the

51



Chapter 2. Numerical results

2
0

2
1

2
2

2
3

2
4

2
5

CFL number

2
9

2
10

2
11

2
12

2
13

2
14

R
u
n
n
in
g
 t
im
e
 (
s
)

Convection CPU time for Vortex test case

Octree

Structured

(a) Loglog plot of CPU time

2
0

2
1

2
2

2
3

2
4

2
5

CFL Number

2
7

2
8

2
9

2
10

M
e
m
o
ry
 u
s
e
d
 (
M
B
)

Peak Memory Usage for Vortex test case

Octree

Structured

(b) Loglog plot of Memory usage

2
0

2
1

2
2

2
3

2
4

2
5

CFL Number

2
­11

2
­10

2
­9

L
1
 n
o
rm

 o
f 
e
rr
o
r

L
1
 error at t=T

max
 for Vortex test case

Octree

Structured

(c) Loglog plot of L1 Error

CFL Octree Structured

1.35 7.339×103 1.455×104

2.7 3.787×103 7.528×103

5.4 2.378×103 3.954×103

10.9 1.438×103 2.053×103

21.8 7.773×102 1.081×103

(d) CPU time in seconds

CFL Octree Structured

1.35 167.7 659.9
2.7 161.3 607.7
5.4 234.4 599.8

10.9 305.5 562.4
21.8 341.7 533.4

(e) Memory usage in MB

CFL Octree Structured

1.35 9.010×10−4 1.459×10−3

2.7 5.912×10−4 1.178×10−3

5.4 8.873×10−4 1.133×10−3

10.9 9.589×10−4 1.134×10−3

21.8 9.914×10−4 1.171×10−3

(f) L1 Error

Figure 2.9: CPU time, memory usage and error benchmark of the octree scheme for the time-
dependent vortex test case for different values of maximal CFL numbers and hmi n = 2.6×10−3.

structured scheme when refining timestep and cell size. For time-dependent velocity fields,

the relaxed coarsening algorithm of the octree scheme can even allow convergence when

the structured algorithm does not. The adaptivity of the octree scheme and the usage of fast

algorithms allows accurate results in little time and memory usage.

2.1.4 Leveque-Enright’s test case

We call this test case the Leveque-Enright test case since it was proposed by Leveque in [78]

and popularized by Enright’s work on particle level sets [15]. A three-dimensional vortical

velocity field deforms a sphere and the opposite velocity field is then applied starting from

t = T /2 in order to restore the sphere back to its original position at t = T . The test case is

different from the time-dependent test case in Section 2.1.3 in the sense that a substantial

deformation is applied to the sphere which stretches it to the point of being reduced to an

elongated filament. Another notable difference is that the deformation velocity field does not

vary continuously in time; a constant in time velocity field is applied from t = 0 to t = T /2 and

the opposite velocity field is applied from t = T /2 to t = T .

A 3-dimensional sphere of radius 0.15 initially centered at (0.35,0.35,0.35) is subjected to the

following velocity field from t = 0 to t = T /2 with final time T = 2 :
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C ·hmi n Octree Structured

1.0 4.943×101 3.447×101

0.5 3.841×102 4.249×102

0.25 3.115×103 7.018×103

0.125 2.765×104 1.275×105

(d) CPU time in seconds

C ·hmi n Octree Structured

1.0 17.86 41.84
0.5 49.49 83.25

0.25 161.20 607.60
0.125 565.00 3233.00

(e) Memory usage in MB

C ·hmi n Octree Structured

1.0 2.241×10−3 2.181×10−3

0.5 1.348×10−3 1.540×10−3

0.25 5.912×10−4 1.178×10−3

0.125 3.304×10−4 1.031×10−3

(f) L1 Error

Figure 2.10: CPU time, memory usage and error benchmark of the octree scheme for the
time-dependent vortex test case. hmi n is the smallest cell size, C = 96 and C F L = 2.7.

u(x, y, z, t ) =

⎛
⎜⎝

2sin2(πx)sin(2πy)sin(2πz)

−sin(2πx)sin2(πy)sin(2πz)

−sin(2πx)sin(2πy)sin2(πz)

⎞
⎟⎠

The opposite velocity field is then applied from t = T /2 to t = T .

Results are shown in Figure 2.11 and pictures of the test case in Figure 2.12. For this somewhat

extreme test case, we can see that the octree performs faster than the structured only for the

finest mesh. This phenomenon can be explained by the fact that the thin fluid form at t = 1

presents a high surface to volume ratio compared to the sphere. When this ratio is high, the

overhead of refining the octree on the whole surface is large compared to the structured grid

for coarse meshes. The smaller hmi n , the more cells can be coarsened and eventually the

octree is faster. The L1 error behaves as hmi n for both octree and structured mesh.

Figure 2.12 shows good agreement between fluid shapes at t = 0.6 and t = 1.4 where the two

should be identical. At final time t = 2.0, the sphere is well restored but some extra flotsam is

present around the sphere. This type of behaviour is caused by the SLIC algorithm and has

been documented for instance in [29].
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(a) Loglog plot of CPU time (b) Loglog plot of Memory usage (c) Loglog plot of L1 Error

C ·hmi n Octree Structured

1.0 3.436×102 2.070×102

0.5 3.221×103 3.077×103

0.25 2.806×104 5.149×104

(d) CPU time in seconds

C ·hmi n Octree Structured

1.0 135.1 108.9
0.5 539.8 663.9

0.25 1742.0 3387.0

(e) Memory usage in MB

C ·hmi n Octree Structured

1.0 2.725×10−3 2.319×10−3

0.5 1.396×10−3 1.087×10−3

0.25 7.254×10−4 5.625×10−4

(f) L1 Error

Figure 2.11: CPU time, memory usage and error benchmark of the octree scheme for the
Leveque-Enright test case. hmi n is the smallest cell size, C = 192 and C F L = 6.6.

(a) t=0 (b) t=0.6 (c) t=1.0

(d) t=1.4 (e) t=2.0

Figure 2.12: Leveque-Enright test case.
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2.2 3D Navier Stokes free surface results with the octree-based scheme

2.2.1 Stoker’s test case

A first benchmark of the full Navier-Stokes octree scheme is done on the Stoker test case, see

for instance [79]. A parallelepipedic cavity [−50,50]× [0,2]× [0,3] is initially filled with a water

height of Hl = 2.0 for x < 0 and a height of Hr = 1.0 for x ≥ 0. Under the effect of gravity, a

shock wave then propagates along the x-axis towards positive values of x. A second rarefaction

wave propagates along the x-axis in the opposite direction and an intermediate constant water

height of Hm and velocity um then forms in between both waves.

This problem can be solved analytically assuming a simplified model called the inviscid

shallow water or Saint-Venant equations. The problem has been solved with the structured

analog of our scheme in [44]. Therein can also be found a more precise description of the

analytical solution which we just give here. Let cl =
√

g Hl , cr = √
g Hr and cm = √

g Hm

where g is the gravitational acceleration. Let us also define the speed of the hydraulic jump

W = Hm um
Hm−Hr

. The analytical water height H̄ is then given by

H̄(x, t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Hl if x <−cl t(
2cl − x

t

)2

9g
if −cl t < x < (um −cm)t

Hm if (um −cm)t < x <W t

Hr if W t < x

(2.1)

for x ∈ [−50,50] and t ∈ [0,T ] where T = 5. Using the relation um = 2(cl −cm) and the approxi-

mation Hm � 1.45384 which stems from the solution of a polynomial equation of degree 6, we

compute H̄ .

We compare the analytical solution to the inviscid shallow water with three different solutions

by different refinements of the octree. Physical properties of the water for the Navier-Stokes

simulations are taken as ρ = 103kg /m3 and μ = 10−3kg /(m s). Simulation parameters for

the coarse octree mesh are hmi n = 0.06 and Δt = 0.05, for the medium mesh are hmi n = 0.03

and Δt = 0.025 and for the fine octree mesh are hmi n = 0.015 and Δt = 0.0125. Like for

convection test cases, we choose ll i qui d = lmax −2. Mesh sizes for the uniform tetrahedral

mesh are respectively H = 0.374, H = 0.187 and H = 0.0936. Boundary conditions are set to

slip conditions. Results plotted for times t = 0.t ,2.0,3.5 and t = 5.0 are shown in Figure 2.13.

Results are very similar to those obtained in [44]. The wave profiles given by the Navier-Stokes

equation are smoother and present over- and undershoots. They however match closely the

analytical curve outside of the rarefaction and shock wave. The point of onset of both the

rarefaction wave and shock wave also seem to be in good agreement between both models

although the center point of the shocks do not agree as for example in [80]. This difference is

expected due to the non-conservative nature of our scheme.
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Figure 2.13: Wave profiles for the Stoker test case at times t = 0.5,2.0,3.5 and t = 5.0.
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x

Figure 2.14: Sketch of the experimental setup for the paddle-generated wave

2.2.2 Pseudo-2D paddle-generated wave simulations in a tilted cavity

A paddle-generated wave in a tilted 3D cavity will be used as a benchmark to determine the

accuracy of the numerical scheme for solving free surface flows governed by the Navier Stokes

equations. Although the wave propagates in a 3D cavity, the cavity is narrow enough such that

the wave only exhibits 2D features. The experimental wave profile measurements [45] were

kindly provided by the VAW at ETH Zürich.

The experimental cavity is 14m long, 0.5m wide and 0.7m high. One of the side walls is lined

with observational glass windows and the other wall along with the bottom is lined with

smooth PVC. A pneumatic wave-generating piston is mounted at one end of the cavity and is

controlled with electrical impulses sent by a computer. The setup has been successfully used

in several experiments by the VAW, see [81, 82, 83].

The experimental setup is illustrated in Figure 2.14. The cavity is tilted at an angle β. A plate

pushes the water parallel to the bottom of the cavity with a velocity profile designed to generate

waves with a given height relative to the still water depth. The relative wave height is noted

Rh and the still water depth is always taken as 0.2m. In order to define more accurately what

is meant by still water depth, let us define the x-axis as parallel to the bottom of the cavity,

directed from the paddle to the other end of the cavity. The paddle does a sweeping motion

from x =−x0 to x = x0. The still water depth is the maximal water depth when the plate is at

position x = 0 in the middle of the plate sweep. Note that the starting and end coordinates of

the plate depend on the desired relative wave height Rh . The relative wave height Rh is then

the ratio of the maximal wave height to the still water depth 0.2m.

We will simulate all combinations of parameters β= 1◦, β= 6◦ and Rh = 0.3,0.5,0.7.

Two types of sensors have been set up for measuring the wave profiles, UltraSonic Distance

Sensors (USDSs) and Capacitance Wave Gauges (CWGs). The USDSs are placed at the top of

the cavity and send an acoustic signal downwards towards the water surface. The signal reflects
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off the water free surface and the free surface height is deduced from the time taken for the

signal to return to the sensor. In [45], an estimate of 3mm is given for expected measurement

errors. As a downside, this sensor can give spurious values if the signal is reflected away from

the sensor. This can happen in particular if the free surface under the sensor is at a steep angle.

Since it does happen when d = 6◦, the less accurate CWG sensors are also used.

CWGs are vertical enamel coated wires attached to the top of the cavity whose capacitance

varies linearly with respect to water height. After calibration, they can then be used to de-

termine water height. The obtained wave profiles are then noisy and show jumps of up to

8mm between sampling points and the measurement error is estimated in [45] to be also up

to 8mm. It is why they are smoothed with a Savitzky-Golay filter [84]. The Savitzky-Golay

filter smoothes the signal by fitting low-level polynomials with the linear least squares method

with successive subsets of adjacent data points. The polynomials are also used to derive a

smooth velocity which is used for the simulation part to determine the imposed velocity at

the paddle. As parameters for the filter we used a data point window size of 71 data points and

polynomials of degree 3. Numerical wave profiles were also smoothed for visualization clarity

with the Savitzky-Golay filter but to a much lesser extent, with a data point window size of 7

data points and polynomials of degree 3.

Physical properties of the water for the Navier-Stokes simulations are taken as ρ = 103kg /m3

and μ= 10−3kg /(m s). Simulation parameters for the coarse octree mesh are hmi n = 3.79e −3

and Δt = 0.0125, for the medium mesh are hmi n = 1.89e −3 and Δt = 0.00625 and for the fine

octree mesh are hmi n = 9.49e −4 and Δt = 0.003125. We choose ll i qui d = lmax −2 to have

coarse cells approximately of same size as tetrahedra. Mesh sizes for the uniform tetrahedral

mesh are respectively H = 0.0102, H = 0.00510 and H = 0.00255. Since the wave only exhibits

two-dimensional features, we have truncated the cavity to a width of 0.125 for lower running

times. Boundary conditions are set to no-slip conditions. A generated wave is shown on a

coarse mesh in Figure 2.15.

A bubble enrichment stabilization is used for the finite element problem along with a GMRES

solver and ILU preconditioner. The paddle movement is simulated in practice by computing

at each step which nodes are intersecting the region that has been swept by the paddle and

imposing the paddle velocity at those points. The octree is aligned with the water level and

therefore not with the cavity. It is refined to level lmax at the bottom of the cavity to capture

the cavity slope, at the wall in contact with the paddle and at the water free surface but not on

the lateral sides which are aligned with the octree and hence captured exactly.

Results are shown in Figures 2.16 to 2.27. For each combination of experimental parameters

d = 1◦,6◦ and Rh = 0.3,0.5,0.7 we first plot the evolution of the wave height over time at four

fixed points in the cavity and then snapshots of the numerical wave overlaid on photographs.

Four pairs (USDS and CWG) of sensors placed at coordinates x1 = 0.677m, x2 = 1.177m,

x3 = 1.677m and x4 = 2.177m. The sensors provide water height data from times t = 0s to

t = 4s at a sampling rate of 100H z. Note that the pneumatic-driven paddle moves with a slight

58



2.2. 3D Navier Stokes free surface results with the octree-based scheme

Figure 2.15: Render of a coarse octree wave with hmi n = 3.79e −3

delay compared to the electrical input it receives. Wave profiles have therefore been shifted in

order to correct for this fact. Despite this, we have measurements at four different points in

the cavity which allows us to see how the wave from numerical simulations compares to the

experimental one. Also, wave height profiles are compared.

A high-speed camera was used to capture photographs which are used to compare static in

time wave profiles with our simulated wave profiles. The camera is aimed between sensors 3

and 4 and the CWG wires can be seen hanging from the top of the cavity. The photographs

have been fitted together by matching initial still water heights and CWG wires with their

known positions in the numerical cavity. Note that the CWG wires in the photographs are

situated at the lateral wall of the cavity farther away from the camera and the ones placed in

the numerical cavity are at the lateral wall closer to the cavity. The parallax then had to be

estimated to match the positions of the virtual CWG wires with the experimental ones.

Figures 2.16 to 2.21 show results for d = 1◦. For these experimental parameters, the wave does

not break in the shown data. However, for Rh = 0.7, the wave does break soon after sensor

4. We achieve very good agreement between numerical and experimental profiles. It seems

that for Rh = 0.7 where the wave presents a sharper and higher crest, the mesh needs to be

refined more than for lower smoother waves in order for the wave profile to be captured. Note

that in Figure 2.20, the USDSs show spurious values on the middle plots and those should be

disregarded.

For d = 6◦, we can see the waves breaking and causing a splash. These types of simulations are

typically more difficult since they cannot be simulated by the shallow water model and require

more elaborate models. Turbulence, fine-scale drops of water and air bubbles also occur when

breaking and these aspects are not captured by our model. Figures 2.22 to 2.27 show results

for these parameters. Again, spurious values of the USDS sensors should be disregarded.
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H hmi n Δt Advection Order Stokes Order
0.0102 3.79e-3 0.0125 4.5 × 2 ×

0.00510 1.89e-3 0.006125 23 2.35 25 3.64
0.00255 9.49e-4 0.0030625 370 4 794 4.98

Table 2.1: Running times (seconds) per timestep for the wave d = 1◦ and Rh = 0.5

Numerical wave profiles show very good agreement with the experimental wave profile despite

the fact that the model does not capture turbulence and the air cushion that is formed beneath

the breaking wave as seen in Figure 2.27. Notice that for Rh = 0.7, we observe as before that

the higher sharper wave crest is more difficult to capture and the slight error in the solitary

wave heights causes a more significant in the tongue shape during the breaking. Despite this,

water wave profiles quickly match again after the wave breaking.

Running times per timestep for parameters d = 1◦ and Rh = 0.5 are displayed in Table 2.1

for the three different mesh sizes and their associated timesteps. For coarser meshes, an

advection step with the octree is slower than solving the Stokes’ problem but as meshes get

finer, the adaptivity of the octree makes it faster than solving the Stokes problem on a regular

grid.
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Figure 2.16: Pointwise height of the free surface throughout time on four different sensors for
the wave test case for experimental parameters d = 1◦ and Rh = 0.3.
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(a) t = 1.98s (b) t = 2.08s

(c) t = 2.18s (d) t = 2.28s

(e) t = 2.38s (f) t = 2.48s

Figure 2.17: Overlay of the numerical wave profile in blue on top of the high speed pictures of
the experimental wave for parameters d = 1◦ and Rh = 0.3.

62



2.2. 3D Navier Stokes free surface results with the octree-based scheme

1.0 1.5 2.0 2.5 3.0

Time (s)

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
H
e
ig
h
t 
(m

)
Numerical : fineness 0

Numerical : fineness 1

Numerical : fineness 2

CWG 1, x = 0.677m

USDS 1, x = 0.677m

1.0 1.5 2.0 2.5 3.0

Time (s)

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

H
e
ig
h
t 
(m

)

Numerical : fineness 0

Numerical : fineness 1

Numerical : fineness 2

CWG 2, x = 1.177m

USDS 2, x = 1.177m

1.0 1.5 2.0 2.5 3.0

Time (s)

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

H
e
ig
h
t 
(m

)

Numerical : fineness 0

Numerical : fineness 1

Numerical : fineness 2

CWG 3, x = 1.677m

USDS 3, x = 1.677m

1.0 1.5 2.0 2.5 3.0

Time (s)

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

H
e
ig
h
t 
(m

)

Numerical : fineness 0

Numerical : fineness 1

Numerical : fineness 2

CWG 4, x = 2.177m

USDS 4, x = 2.177m

Figure 2.18: Pointwise height of the free surface throughout time on four different sensors for
the wave test case for experimental parameters d = 1◦ and Rh = 0.5.
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(a) t = 1.84s (b) t = 1.94s

(c) t = 2.04s (d) t = 2.14s

(e) t = 2.24s (f) t = 2.34s

Figure 2.19: Overlay of the numerical wave profile in blue on top of the high speed pictures of
the experimental wave for parameters d = 1◦ and Rh = 0.5.
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Figure 2.20: Pointwise height of the free surface throughout time on four different sensors for
the wave test case for experimental parameters d = 1◦ and Rh = 0.7.
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(a) t = 1.63s (b) t = 1.73s

(c) t = 1.83s (d) t = 1.93s

(e) t = 2.03s (f) t = 2.13s

Figure 2.21: Overlay of the numerical wave profile in blue on top of the high speed pictures of
the experimental wave for parameters d = 1◦ and Rh = 0.7.
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Figure 2.22: Pointwise height of the free surface throughout time on four different sensors for
the wave test case for experimental parameters d = 6◦ and Rh = 0.3.
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(a) t = 2.12s (b) t = 2.22s

(c) t = 2.32s (d) t = 2.42s

(e) t = 2.52s (f) t = 2.62s

Figure 2.23: Overlay of the numerical wave profile in blue on top of the high speed pictures of
the experimental wave for parameters d = 6◦ and Rh = 0.3.
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Figure 2.24: Pointwise height of the free surface throughout time on four different sensors for
the wave test case for experimental parameters d = 6◦ and Rh = 0.5.
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(a) t = 1.82s (b) t = 1.92s

(c) t = 2.02s (d) t = 2.12s

(e) t = 2.22s (f) t = 2.32s

Figure 2.25: Overlay of the numerical wave profile in blue on top of the high speed pictures of
the experimental wave for parameters d = 6◦ and Rh = 0.5.
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Figure 2.26: Pointwise height of the free surface throughout time on four different sensors for
the wave test case for experimental parameters d = 6◦ and Rh = 0.7.
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(a) t = 1.63s (b) t = 1.73s

(c) t = 1.83s (d) t = 1.93s

(e) t = 2.03s (f) t = 2.13s

Figure 2.27: Overlay of the numerical wave profile in blue on top of the high speed pictures of
the experimental wave for parameters d = 6◦ and Rh = 0.7.
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2.2.3 Paddle-generated 3D wave in a large cavity

We extend the pseudo-2D paddle-generated water wave to a fully 3D wave. Despite having

no measurements to compare with, with this we show that our current scheme is capable of

simulating full 3D waves.

The cavity dimensions are 8×6×1.1. The initial water height is 0.6. A paddle of width 1 moves

at uniform velocity 1.52 from t = 0 to t = 1 and hence displaces a water volume of 0.912. Final

time is T = 6.

Physical properties of the water for the Navier-Stokes simulations are taken as ρ = 103kg /m3

and μ = 10−3kg /(m s). Simulation parameters for the octree mesh are hmi n = 1.5e −2 and

ll i qui d = lmax − 2 to have coarse cells approximately of same size as tetrahedra. We have

Δt = 0.02 and mesh size for the uniform tetrahedral mesh is respectively H = 0.08. No-slip

conditions are imposed on the boundary of the tetrahedral mesh.

A bubble enrichment stabilization is used for the finite element problem along with a GMRES

solver and ILU preconditioner. The paddle movement is simulated in practice by computing

at each step which nodes are intersecting the region that has been swept by the paddle and

imposing the paddle velocity at those points. The octree is refined to level lmax at the wall

in contact with the paddle and at the water free surface but not on the other walls or cavity

bottom which are aligned with the octree and hence captured exactly.

Wave heights are shown in Figure 2.28 and views of the octree mesh are shown in Figure 2.29

along with a cut of the tetrahedral mesh.
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(a) t = 0.0s (b) t = 0.4s

(c) t = 0.8s (d) t = 1.2s

(e) t = 1.6s (f) t = 2.0s

(g) t = 2.4s (h) t = 2.8s

Figure 2.28: 3D wave from the top.
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(a) Perspective view of the octree liquid cells at t = 1.6

(b) Slice of the octree liquid cells at t = 1.6

(c) Cut of the tetrahedral mesh (d) Cut of the octree liquid cells at t = 1.6

Figure 2.29: 3D wave and octree mesh.
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3 A study of first order stabilization
schemes for the time-dependent
Stokes problem
In this Chapter, we will present and compare different first order stabilization schemes for

the time-dependent Stokes’ equations. Stability and convergence results will be given for

consistent and non-consistent PSPG schemes and numerical results will show accuracy and

stability of the different schemes.

3.1 Definition of different stabilization schemes

Consider the time-dependent Stokes’ equations on a space-time domainΩ×[0,T ] with velocity

u : Ω× [0,T ] →Rd and pressure p : Ω× [0,T ] →R with Ω a bounded open subset of Rd , d = 2,3

and T > 0. We first introduce the classical formulation and then provide the functional

framework which we will use. Let u0 : Ω× [0,T ] → Rd be a given initial velocity and f :

Ω× [0,T ] →Rd a forcing term.

Assuming sufficient regularity, the classical Stokes’ problem is to find velocity u and pressure

p that satisfy

∂u

∂t
−νΔu +∇p = f in Ω× [0,T ]

∇·u = 0 in Ω× [0,T ]

u = 0 on ∂Ω× [0,T ]

u(·,0) = u0 in Ω.

(3.1)

Let us define the spaces V = [H 1
0 (Ω)]d = {

v ∈ [H 1(Ω)]d , v = 0 on Ω
}

and Q = L2
0(Ω) to introduce

the weak form of (3.1).

Let f ∈ L2(0,T ; [L2(Ω)]d ) and u0 ∈V . Following [85], the weak formulation is therefore :
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Find u ∈ L2(0,T ; [H 1
0 (Ω)]d )∩C 0([0,T ], [L2(Ω)]d ) and p such that

(
∂u

∂t
, v
)
+ν (∇u,∇v )− (

p,∇·v
)= (

f , v
) ∀v ∈V (3.2)

(∇·u, q
)= 0 ∀q ∈Q (3.3)

where u|t=0 = u0 and (·, ·) represents the usual L2(Ω) inner product. We do not specify a space

for the pressure but a lengthy discussion on it can be found in [86].

Let us now also introduce a conformal triangular or tetrahedral space discretization. For

any h > 0, let Th be a conformal regular mesh [87] of Ω in triangles or tetrahedra K having

diameter hK ≤ h. Let us define the piecewise linear finite element spaces

Vh =
{

v h ∈ [C 0(Ω)]d | v h |K ∈ [P1(K )]d ∀K ∈Th

}
∩ [H 1

0 (Ω)]d (3.4)

Qh =
{

qh ∈C 0(Ω) | qh |K ∈P1(K ) ∀K ∈Th

}
∩Q (3.5)

and the space of bubble functions

Vbub =
{

v h ∈V | v h = ∑
K∈Th

v b
K ψ

K
b , v b

K ∈Rd

}

where we choose ψK
b to be the so called conforming bubbles defined as follows. Let ψK

i ,

i = 1, ...,d +1 be the finite element basis functions linear on triangle/tetrahedron K . The

conforming bubble ψK
b is defined as

ψK
b = (d +1)d+1

d+1∏
i=1

ψK
i .

Using Green’s formula, it can be shown that Vh and Vbub are orthogonal subspaces of [H 1
0 (Ω)]d

for the H 1 seminorm and we will be using (Vh ⊕Vbub) as the velocity finite element space for

the bubble stabilization.

In what follows, several finite element discretizations with continuous finite elements of first

order are considered. Given N > 0, Δt = T /N , let tn = nΔt , n = 0, ..., N be a time discretization

of the interval [0,T ].

3.1.1 Bubble stabilization

Using continuous P1 finite elements enriched with bubble functions for velocity and continu-

ous P1 finite elements for pressure with an implicit Euler time discretization, the weak problem
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(3.2)-(3.3) becomes the following semi-discretized problem. Let un
h � u(tn) and un

h is known.

We take u0
h =Π1

hu(t0) where Π1
h is the L2 projection onto Vh . (un+1

h , pn+1
h ) ∈ (Vh ⊕Vbub)×Qh is

then computed from

(
un+1

h −un
h

Δt
, v h

)
+ν

(∇un+1
h ,∇v h

)− (
pn+1

h ,∇·v h
)= (

f (t n+1), v h
) ∀v h ∈Vh ⊕Vbub

(3.6)(∇·un+1
h , qh

)= 0 ∀qh ∈Qh (3.7)

Taking v h = un+1
h and qh = pn+1

h yields the stability estimate

∥∥un+1
h

∥∥2
L2(Ω) +

Δtν

2

∥∥∇un+1
h

∥∥2
L2(Ω) ≤

∥∥un
h

∥∥2
L2(Ω) +CΔt

∥∥ f (t n+1)
∥∥2

L2(Ω) .

The conforming bubble elements satisfy a Babuška-Brezzi or inf-sup condition [88] and we

therefore have that : ∃C , ∀h, ∀qh ∈Qh

∥∥qh
∥∥

L2(Ω) ≤C sup
v h∈(Vh⊕Vbub )

(
qh ,∇·v h

)
‖∇v h‖L2(Ω)

. (3.8)

For finite element approximations satisfying the inf-sup condition, error estimates for both

velocity and pressure have been given for linearized Navier-Stokes equations in [89] with no

constraint on the timestep and unconditional stability for the time-dependent Stokes equation

is discussed in [90]. Despite being unconditionally stable with respect to the timestep, the

scheme requires solving a larger linear system than PSPG-type schemes introduced in Section

3.1.2.

The bubble enrichment method has been linked to a residual-based PSPG stabilization in the

context of P1 −P1 finite elements for the stationary Stokes equations in [49, 50]. In [50], both

methods were shown to give close results in the sense that the norm of the difference of the

velocity-pressure pairs is at most of order h2 where h is the mesh size. In Section 3.1.5, we

discuss this link in the context of the time-dependent Stokes equations.

3.1.2 PSPG stabilizations

Since P1 −P1 finite elements are known not to satisfy the inf-sup condition [46], we introduce

several possible stabilizations that stem from a general class of stabilizations known as PSPG

(Pressure Stabilized Petrov-Galerkin) stabilizations that circumvent this condition. Analogs of

these different stabilizations have been widely studied in the stationary case, see for instance

[46] and references therein, but several candidates are available for an extension to the time-

dependent case and some of them are presented here.
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The parameters β ∈ {0,1} and γ ∈ {0,± 1
Δt

}
define different types of stabilization. Using P1 −P1

finite elements and a consistent stabilization with an implicit Euler time discretization, the

weak problem (3.2)-(3.3) becomes the following fully discretized problem. Let un
h � u(tn) and

un
h is known. We take u0

h =Π1
hu(t0) where Π1

h is the L2 projection onto Vh . (un+1
h , pn+1

h ) is then

computed from

(
un+1

h −un
h

Δt
, v h

)
+ν

(∇un+1
h ,∇v h

)− (
pn+1

h ,∇·v h
)+ (∇·un+1

h , qh
)

+ ∑
K∈Th

αK

(
β

un+1
h −un

h

Δt
+∇pn+1

h − f (t n+1),∇qh +γv h

)
K

= (
f (t n+1), v h

) ∀v h , qh ∈Vh ,Qh

(3.9)

for n ≥ 0 where αK > 0 ∀K ∈Th are stabilization parameters associated with element K whose

choice will be discussed in Section 3.1.6. Note that we omit the −Δun+1
h term because it is

zero for our first order elements. The parameter β selects either a consistent in time or non-

consistent stabilization and γ is a parameter which sets the scaling between the stabilization

residuals.

Choosing γ= 0 for β= 0,1 yields an analog for the time-dependent Stokes equations of the

Streamline Upwind Galerkin (SUPG) stabilization [47] with a respectively non-consistent and

consistent in time formulation for β= 0,1. The choice β= 0, γ= 0 is also reminiscent of the

Brezzi-Pitkäranta stabilization [48] in the stationary case, which leaves only a pressure gradient

term in the stabilization of the continuity equation but in our case a force term is present as

well. When γ �= 0, a stabilizing contribution is also added to the momentum equation which

can be used to obtain a symmetric linear system as in the case of the Galerkin Least Squares

(GLS) stabilization [46].

For the stationary case, a comprehensive comparison of the different variations of PSPG

stabilizations has been done in [91], where it is shown that while the solutions for different

stabilizations vary little, the matrix properties and performance of different Krylov subspace

solvers change significantly.

Scalings γ = ± 1
Δt will be considered. They correspond to symmetric and anti-symmetric

matrix formulations of the stabilization.

Analyses of these PSPG schemes for the time-dependent Stokes equations have been per-

formed individually, most of them recently, in [92, 51, 90, 56, 57, 58]. As far as we know, a

stability estimate of the velocity for the β = 1, γ = 0 and β = 0, γ = 0 stabilizations and

a stability condition for the β = 1, γ = 0 stabilization were first derived in [92]. In [51], a

parallel is made between bubble enrichment of the velocity finite element space and the

β= 1, γ= 1
Δt stabilization. Indeed, assuming that the bubble term behaves like a residual term

of the equation, equivalence is proven between the bubble enrichment and the β= 1, γ=− 1
Δt
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stabilization. A stability proof for the velocity is then given along with some stability result

weaker than L2 stability for the pressure gradient.

In [56], a proof of stability and convergence of a general class of symmetric stabilizations

including the Brezzi-Pitkäranta stabilization which resembles the β= 0, γ= 0 stabilization

but lacking the force term is given in the fully discrete case. We show in Section 3.1.5 that the

scheme with the force term can be derived from the bubble enrichment scheme by making

two simplifying assumptions. In [57], stability and convergence for the velocity in the fully

discrete case has been proven for the β= 1, γ= 0 stabilization. Stability of the pressure is also

proven and the L2 convergence is mentioned as a corollary although without proof. In [58], a

semi-discrete analysis proves stability and convergence for both velocity and pressure in the

L2 norm and for the velocity in the fully discrete case.

In Section 3.2 we provide a unified proof of the L2-stability of the velocity and pressure for

both β= 0, γ= 0 and β= 1, γ= 0 stabilizations in the fully discrete case while keeping track

of the influence of the viscosity and stabilization parameter. In fact, we give a result based

on the β= 1, γ= 0 stabilization expressing the effect of any consistency default on the norm

of the solution. A proof for L2 convergence of both velocity and pressure in the fully discrete

case is then given in Section 3.3 while again keeping track of the influence of viscosity and

stabilization parameters on the error for further analysis. The convergence result then gives

the optimal choice of the stabilization parameter.

3.1.3 Orthogonal Subscales stabilization

Codina and Blasco [52, 53] have introduced the following residual-based stabilization some-

times referred to as Orthogonal Subscales Stabilization (OSS). Let un
h � u(tn) and un

h is known.

We take u0
h =Π1

hu(t0) where Π1
h is the L2 projection onto Vh . (un+1

h , pn+1
h ) is then computed

from (
un+1

h −un
h

Δt
, v h

)
+ν

(∇un+1
h ,∇v h

)− (
pn+1

h ,∇·v h
)= (

f (t n+1), v h
) ∀v h ∈Vh (3.10)

(∇·un+1
h , qh

)+ ∑
K∈Th

αK
(∇pn+1

h −Π1
h(∇pn+1

h ),∇qh −Π1
h(∇qh)

)
K = 0 ∀qh ∈Qh (3.11)

for n ≥ 0 where Π1
h is the L2 projector onto Vh . This scheme has been proven to be equivalent

to a PSPG stabilization with regularized Laplacian by Burman and Fernandez in [57]. The

fact that the projector is non-local is however not very convenient and a scheme using local

pressure gradient projections has been proposed in [93].

3.1.4 Local pressure projection stabilization

In [54, 55] a new stabilization was introduced based on polynomial pressure projections for

the stationary Stokes equations. The same scheme has been used for time-dependent Stokes
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problems and we introduce the stabilization used for continuous P1 −P1 finite elements. Let

un
h � u(tn) and un

h is known. We take u0
h = Π1

hu(t0) where Π1
h is the L2 projection onto Vh .

(un+1
h , pn+1

h ) is then computed from

(
un+1

h −un
h

Δt
, v h

)
+ν

(∇un+1
h ,∇v h

)− (
pn+1

h ,∇·v h
)= (

f (t n+1), v h
) ∀v h ∈Vh (3.12)

(∇·un+1
h , qh

)+ ᾱ
∑

K∈Th

(
pn+1

h −Π0
h pn+1

h , qh −Π0
h qh

)
K = 0 ∀qh ∈Qh (3.13)

for n ≥ 0 where Π0
h is a local piecewise constant projector that can be taken as the elementwise

mean and ᾱ> 0 a constant stabilization parameter. Stability and convergence of both velocity

and pressure have been proved in [94] for the Navier-Stokes equations with ᾱ= 1 and P1 −P1

elements and in [95] for the time-dependent Stokes equations with P1−P1 elements. Although

the natural scaling in the sense that physical units are respected suggests a 1
ν scaling factor in

the stabilization term as mentioned in a footnote in [55], stability and convergence results in

[94, 95] omit the scaling and prove optimal convergence rate without making the dependence

on viscosity explicit. Although the stabilization parameter can be set to ᾱ = 1 for Stokes’

equations, solving the full Navier-Stokes equations with a time-splitting method potentially

requires different values of the stabilization parameter as seen in [96].

3.1.5 Link between bubble and PSPG stabilizations

The link between the bubble enrichment method and PSPG stabilizations has been reported

in [49, 50] in the context of 2D stationary Stokes equations. It has been shown in [50] that

the bubble unknowns can be eliminated from the linear system after discretization and a

formulation similar to PSPG stabilizations can be recovered. This method is sometimes

referred to as static condensation. In the context of time-dependent Stokes equations, the

bubble unknowns cannot be strictly eliminated but we discuss here some alternative ways of

recovering a PSPG-type method. This recovery allows us to explicit terms that are responsible

for the unconditional stability of the bubble-enriched numerical scheme which are missing in

the PSPG methods.

A method equivalent to the bubble-enrichment method can then be developed by eliminating

the bubble unknown and then reconstructing it locally. This method is however cheaper since

the linear system is of the same size as PSPG methods. A mention of this method has been

noted in [97].

Let us decompose the bubble enriched velocity at timestep n into its piecewise linear part

un
h,l and bubble part un

h,b such that un
h = un

h,l + un
h,b with un

h,l ∈ Vh and un
h,b ∈ Vbub . We

will eliminate un+1
h,b at the elemental level from (3.6)-(3.7) similarly to [50]. We adapt the

computations in [50] first of all for a 3D setting and also for the time-dependent case.
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The 19×19 matrix MK containing the contributions of an element K ∈Th in the variational

formulation (3.6)-(3.7) is defined by blocks as follows.

MK = |K |

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

AK eK 0 0 0 0 B T
K ,x

eT
K λK 0 0 0 0 wT

K ,x

0 0 AK eK 0 0 B T
K ,y

0 0 eT
K λK 0 0 w T

K ,y

0 0 0 0 AK eK B T
K ,z

0 0 0 0 eT
K λK wT

K ,z

BK ,x wK ,x BK ,y wK ,y BK ,z wK ,z 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

|K | is the volume of tetrahedron K . Exact expressions for each block will be explicited after a

summary of where each block comes from is given. The 4×4 AK matrices stem from contribu-

tions from products between velocity linear basis functions, eK and eT
K from products between

velocity linear and bubble basis functions. λK are contributions coming from products of

velocity bubble functions. BK ,x , BK ,y , BK ,z and B T
K ,x , B T

K ,y , B T
K ,z come from products between

divergence of the velocity linear basis functions and pressure (linear) basis functions. wK ,x ,

wK ,y , wK ,z and wT
K ,x , wT

K ,y , wT
K ,z come from products between divergence of the velocity

bubble basis functions and pressure (linear) basis functions.

Let us denote ψK
i , i = 1, ...,4 the linear nodal basis functions on K and ψK

b the bubble basis

function on K . The block elements of the matrix MK are defined as follows.

|K | (AK )i , j =
1

Δt

∫
K
ψK

i ψ
K
j +ν

∫
K
∇ψK

i ·∇ψK
j i , j = 1, ...,4 (3.14)

|K |(BK ,x
)

i , j =−
∫

K
ψK

i ∂xψ
K
j , |K |(BK ,y

)
i , j =−

∫
K
ψK

i ∂yψ
K
j ,

|K |(BK ,z
)

i , j =−
∫

K
ψK

i ∂zψ
K
j i , j = 1, ...,4 (3.15)

|K |(wK ,x
)

i =
∫

K
ψK

b ∂xψ
K
i , |K |(wK ,y

)
i =

∫
K
ψK

b ∂yψ
K
i ,

|K |(wK ,z
)

i =
∫

K
ψK

b ∂zψ
K
i i = 1, ...,4 (3.16)

|K | (eK )i =
1

Δt

∫
K
ψK

i ψK
b i = 1, ...,4 (3.17)

|K |λK = 1

Δt

∫
K
ψK

b ψ
K
b +ν

∫
K
∇ψK

b ·∇ψK
b (3.18)

Note that we have used Green’s formula and the fact that ψK
b|∂K = 0 to show that

∫
K ∇ψK

i ·∇ψK
b =

0, i = 1, ...,4. The 19−vector containing the contributions of an element K ∈Th in the right-

83



Chapter 3. A study of first order stabilization schemes for the time-dependent Stokes
problem

hand side of the variational formulation (3.6)-(3.7) is defined as

(rK )i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
K

f1 ψK
i + 1

Δt

4∑
j=1

un
x,K , j

∫
K
ψK

j ψ
K
i + 1

Δt
un

x,K ,b

∫
K
ψK

b ψ
K
i , i = 1, ...,4

∫
K

f1 ψK
b + 1

Δt

4∑
j=1

un
x,K , j

∫
K
ψK

j ψ
K
b + 1

Δt
un

x,K ,b

∫
K
ψK

b ψ
K
b , i = 5,

∫
K

f2 ψK
i−5 +

1

Δt

4∑
j=1

un
y,K , j

∫
K
ψK

j ψ
K
i−5 +

1

Δt
un

y,K ,b

∫
K
ψK

b ψ
K
i−5 , i = 6, ...,9

∫
K

f2 ψK
b + 1

Δt

4∑
j=1

un
y,K , j

∫
K
ψK

j ψ
K
b + 1

Δt
un

y,K ,b

∫
K
ψK

b ψ
K
b , i = 10,

∫
K

f3 ψK
i−10 +

1

Δt

4∑
j=1

un
z,K , j

∫
K
ψK

j ψ
K
i−10 +

1

Δt
un

z,K ,b

∫
K
ψK

b ψ
K
i−10 , i = 11, ...,14

∫
K

f3 ψK
b + 1

Δt

4∑
j=1

un
z,K , j

∫
K
ψK

j ψ
K
b + 1

Δt
un

z,K ,b

∫
K
ψK

b ψ
K
b , i = 15,

0, i = 16, ...,19.

where fi , i = 1,2,3 are the components of f (tn+1). un
x,K , j , un

y,K , j and un
z,K , j are respectively the

value of the first, second and third component of un
h at node j of tetrahedron K . un

x,K ,b , un
y,K ,b

and un
z,K ,b are respectively the bubble value of the first, second and third component of un

h in

tetrahedron K .

Keeping in mind that derivatives of the linear basis functions yield constants on the tetrahe-

dron K , and computing integrals, we get

(AK )i , j =
1

Δt

1

20
(1+δi j )+ν∇ψK

i ·∇ψK
j i , j = 1, ...,4 (3.19)

(
BK ,x

)
i , j =−1

4
∂xψ

K
j ,

(
BK ,y

)
i , j =−1

4
∂yψ

K
j ,

(
BK ,z

)
i , j =−1

4
∂zψ

K
j i , j = 1, ...,4 (3.20)

(
wK ,x

)
i =

32

105
∂xψ

K
i ,

(
wK ,y

)
i =

32

105
∂yψ

K
i ,

(
wK ,z

)
i =

32

105
∂zψ

K
i i = 1, ...,4 (3.21)

(eK )i =
1

Δt

8

105
i = 1, ...,4 (3.22)

λK = 1

Δt

8192

51975
+ ν

|K |
∫

K
∇ψK

b ·∇ψK
b (3.23)

where δi j is the Kronecker delta. Note that unlike in [50] we use conforming bubbles, which

are designed such that their maximum is 1. Our bubble basis function contains then a

multiplicative factor of 256 with respect to the basis bubble taken simply as the product of
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linear basis functions. We also have

(rK )i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
K

f1 ψK
i + |K |

Δt

1

20

4∑
j=1

(1+δi j )un
x,K , j +

|K |
Δt

8

105
un

x,K ,b , i = 1, ...,4

∫
K

f1 ψK
b + |K |

Δt

8

105

4∑
j=1

un
x,K , j +

|K |
Δt

8192

51975
un

x,K ,b , i = 5,

∫
K

f2 ψK
i−5 +

|K |
Δt

1

20

4∑
j=1

(1+δi j )un
y,K , j +

|K |
Δt

8

105
un

y,K ,b , i = 6, ...,9

∫
K

f2 ψK
b + |K |

Δt

8

105

4∑
j=1

un
y,K , j +

|K |
Δt

8192

51975
un

y,K ,b , i = 10,

∫
K

f3 ψK
i−10 +

|K |
Δt

1

20

4∑
j=1

(1+δi j )un
z,K , j +

|K |
Δt

8

105
un

z,K ,b , i = 11, ...,14

∫
K

f3 ψK
b + |K |

Δt

8

105

4∑
j=1

un
z,K , j +

|K |
Δt

8192

51975
un

z,K ,b , i = 15,

0, i = 16, ...,19.

It is important to note that the bubble basis function of tetrahedron K yields no contributions

to any other tetrahedra, which allows to work on an elemental level and eliminate the bubble

unknown in the matrix MK . We perform the following line substitutions on the elemental

matrix MK and right-hand side vector rK

l1−4 �→ l1−4 − 1

λK
l5

l6−9 �→ l6−9 − 1

λK
l10

l11−14 �→ l11−14 − 1

λK
l15

l16−19 �→ l16−19 − 1

λK

(
wK ,x l5 +wK ,y l10 +wK ,z l15

)

where li denotes line i of the matrix MK and right-hand side vector rK . This yields the 16×16

matrix M ′
K

M ′
K = |K |

⎛
⎜⎜⎜⎜⎝

A′
K 0 0 B ′

K ,x
T

0 A′
K 0 B ′

K ,y
T

0 0 A′
K B ′

K ,z
T

B ′
K ,x B ′

K ,y B ′
K ,z −SK

⎞
⎟⎟⎟⎟⎠
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with block matrices defined as follow

A′
K = AK − 1

λK
eK eT

K (3.24)

B ′
K ,x = BK ,x − 1

λK
wK ,x eT

K (3.25)

B ′
K ,y = BK ,y − 1

λK
wK ,y eT

K (3.26)

B ′
K ,z = BK ,z − 1

λK
wK ,z eT

K (3.27)

SK = 1

λK

(
wK ,x wT

K ,x +wK ,y wT
K ,y +wK ,z wT

K ,z

)
. (3.28)

The substitutions also yield the right-hand side 16−vector r ′
K defined as

(
r ′

K

)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(rK )i −
1

λK Δt

8

105
(rK )5 , i = 1, ...,4

(rK )i+1 −
1

λK Δt

8

105
(rK )10 , i = 5, ...,8

(rK )i+2 −
1

λK Δt

8

105
(rK )15 , i = 9, ...,12

− 32

105

1

λK

((
f (tn+1),ψK

b ∇ψK
i−12

)
K + 1

Δt

(
un

h ,ψK
b ∇ψK

i−12

)
K

)
, i = 13, ...,16.

We will now rewrite the substituted system as a variational weak formulation. Remarking as in

[50] that the term

1

λK
eK eT

K = 1

λK

(
32

105

)2 1

16

⎛
⎜⎜⎜⎜⎝

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎞
⎟⎟⎟⎟⎠

in (3.24) corresponds to the tetrahedron’s barycenter rule, which is exact for linear integrands,

the corresponding variational term is
(
un+1

h,l , v h

)
K

for v h ∈Vh where v h is the average value of

v h on the tetrahedron K , here 1
4 . The A′

K matrix blocks then give rise to the following term in

the variational formulation

− 1

λK

(
32

105

)2 1

Δt 2

(
un+1

h,l , v h

)
.

Keeping in mind that 1
|K |

∫
K ψK

i = 1
4 , i = 1, ...,4, the blocks B ′

K ,x
T , B ′

K ,y
T and B ′

K ,z
T in the matrix

contribute the following term to the variational form

− 1

λK

(
32

105

)2 (
∇pn+1

h ,
1

Δt
v h

)
.

Finally, the matrices BK ,x , BK ,y , BK ,z and −SK in M ′
K give rise to the following terms

+ 1

λK

(
32

105

)2 ( 1

Δt
un+1

h,l ,∇qh

)
+ 1

λK

(
32

105

)2 (∇pn+1
h ,∇qh

)
.
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Note that the plus signs are due to the standard choice in the context of Navier-Stokes equa-

tions of writing a symmetric matrix formulation and negating the block when writing the

variational formulation. To write the right-hand side r ′
K as a variational formulation, we note

that for all i = 1, ...,4, we have ∫
K
ψK

i = |K |
4

and hence ψK
i = 1

4 . It follows that the integrals of the type

∫
K
ψK

j ψ
K
b

can be written as

4
∫

K
ψK

j ψ
K
b ψ

K
i .

Using this trick, the terms appearing in r ′
K but not in rK can be written in variational formula-

tion as

− 1

λK

32

105

(
f (tn+1)+ 1

Δt

(
un

h,l +un
h,b

)
,ψK

b

(
v h

Δt
−∇qh

))
.

Combining all the terms, the final variational formulation we obtain is

(
un+1

h,l −un
h,l

Δt
, v h

)
+ν

(
∇un+1

h,l ,∇v h

)
− (

pn+1
h ,∇·v h

)+ (
∇·un+1

h,l , qh

)

− ∑
K∈Th

1

λK

(
32

105

)2
(

un+1
h,l

Δt
+∇pn+1

h ,
1

Δt
v h −∇qh

)
K

+ ∑
K∈Th

1

λK

(
32

105

)2
(

un+1
h,l

Δt
,

v h −v h

Δt

)
K

=
(

f (t n+1)+ 1

Δt
un

h,b , v h

)
− ∑

K∈Th

1

λK

32

105

(
f (t n+1)+

un
h,l +un

h,b

Δt
,ψK

b

(
v h

Δt
−∇qh

))
K

∀v h ∈Vh ,∀qh ∈Qh . (3.29)

It is then possible to write the formulation (3.29) as a PSPG formulation with some additional

87



Chapter 3. A study of first order stabilization schemes for the time-dependent Stokes
problem

terms. Writing the PSPG formulation and grouping the remaining terms yields

(
un+1

h,l −un
h,l

Δt
, v h

)
+ν

(
∇un+1

h,l ,∇v h

)
− (

pn+1
h ,∇·v h

)+ (
∇·un+1

h,l , qh

)

+ ∑
K∈Th

1

λK

(
32

105

)2
(

un+1
h,l −un

h,l

Δt
+∇pn+1

h − f (t n+1),∇qh − 1

Δt
v h

)
K

= (
f (t n+1), v h

)+ ∑
K∈Th

1

λK

32

105

(
f (t n+1)+

un
h,l

Δt
,
(
ψK

b −ψK
b

)(v h

Δt
−∇qh

))
K

− ∑
K∈Th

1

λK

(
32

105

)2
(

un+1
h,l −un

h,l

Δt
− f (t n+1),

v h −v h

Δt

)
K

− ∑
K∈Th

1

λK

32

105

(
un

h,b

Δt
,ψK

b

(
v h

Δt
−∇qh

))
K

+
(

1

Δt
un

h,b , v h

)
∀v h ∈Vh ,∀qh ∈Qh (3.30)

where ψK
b = 32

105 is the average value of the bubble function on K .

We recognize a PSPG variational formulation with parameters β = 1, γ = − 1
Δt and αK =

1
λK

( 32
105

)2
and some additional terms. The stabilization parameter is

1

λK

(
32

105

)2

=

(
32

105

)2

8192

51975

1

Δt
+ ν

|K |
∫

K
∇ψK

b ·∇ψK
b

.

Since we assumed a regular mesh, we can write 1
|K |

∫
K ∇ψK

b ·∇ψK
b = C b

K

h2
K

where the constant C b
K

depends just on the shape and not on the size of K and hK is the size of K . We can express the

stabilization parameter as a weighted harmonic mean between Δt and
h2

K
ν as

1

λK

(
32

105

)2

=
(

32

105

)2 Δt
h2

K

ν

8192

51975

h2
K

ν
+C b

K Δt

To give an approximate order of the constant C b
K , for a tetrahedron K similar in the geomet-

rical sense to the reference tetrahedron, we have C b
K = 8192

315 . This stabilization parameter is

discussed further in Section 3.1.6.

In (3.30), we have eliminated the unknown un+1
h,b which means that we also cannot compute

the value of un
h,b further than the initial step simply using that equation. However, assuming

that we know un
h,b , we can compute un+1

h,l and then the bubble value un+1
h,b can be reconstructed

using the lines that we have eliminated when getting from MK to M ′
K . Those lines express the
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following

(
(un+1

h,l +un+1
h,b )− (un

h,l +un
h,b)

Δt
,ψK

b

)
K

+ν
(
∇un+1

h,b ,∇ψK
b

)
K
− (

pn+1
h ,∇.ψK

b

)
K = (

f (t n+1),ψK
b

)
K .

(3.31)

Since the support of the bubble basis function ψK
b is restricted to K , we can explicitly and

locally reconstruct un+1
h,b . We thus have an unconditionally stable method with respect to the

timestep while solving a linear system only of the size of a standard P1 −P1 method. We will

call this method the bubble reconstruction method. This method requires storing the un
h,b

coefficients from one timestep to another.

We also propose another method where we simply set un
h,b = 0 and use the remaining terms

in (3.30) to compute un+1
h,l . We call this method the bubble elimination method. It does not

require storing any extra coefficients from one timestep to another.

Remark 2. Although the weak formulation (3.30) appears unwieldy to program, in practice the

bubble elimination can be implemented efficiently and rather easily by performing a pressure-

Schur-like elimination at the elemental level before assembling the elemental matrices together.

In [51], the assumption that the bubble functions are quasi-static has been made, meaning

that (
un+1

h,b −un
h,b

Δt
, v h

)
= 0, ∀v h ∈Vh ⊕Vbub .

Let us assume that the bubble functions are quasi-static, we can then do a similar elimination

of bubble unknowns as above and (3.29) then becomes

(
un+1

h,l −un
h,l

Δt
, v h

)
+ν

(
∇un+1

h,l ,∇v h

)
− (

pn+1
h ,∇·v h

)+ (
∇·un+1

h,l , qh

)

+ ∑
K∈Th

1

λK

(
32

105

)2
(

un+1
h,l

Δt
+∇pn+1

h ,∇qh

)
K

= (
f (t n+1), v h

)+ ∑
K∈Th

1

λK

32

105

(
f (t n+1)+

un
h,l

Δt
,ψK

b ∇qh

)
K

∀v h ∈Vh ,∀qh ∈Qh (3.32)

where

λK = ν

|K |
∫

K
∇ψK

b ·∇ψK
b =C b

K
ν

h2
K

.

The quasi-static assumption drops the timestep dependency in the stabilization parameter

which becomes simply the usual C
h2

K

ν
.
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(3.32) can then be rewritten as

(
un+1

h,l −un
h,l

Δt
, v h

)
+ν

(
∇un+1

h,l ,∇v h

)
− (

pn+1
h ,∇·v h

)+ (
∇·un+1

h,l , qh

)

+ ∑
K∈Th

1

λK

(
32

105

)2
⎛
⎝∇pn+1

h − ψK
b

ψK
b

f (t n+1),∇qh

⎞
⎠

K

= (
f (t n+1), v h

)

− ∑
K∈Th

1

λK

32

105

(
un+1

h,l

Δt
ψK

b −
un

h,l

Δt
ψK

b ,∇qh

)
K

∀v h ∈Vh ,∀qh ∈Qh . (3.33)

again where ψK
b = 32

105 is the average value of ψK
b on element K . With an additional bubble

function scaling of the force term in the stabilization and an extra term, we recognize (3.33) as

another PSPG scheme with parameters β= 0, γ= 0 and αK = ( 32
105

)2 1

C b
K

h2
K

ν
.

The link between bubble enrichment and PSPG type schemes has been established and seems

to suggest a stabilization parameter being the harmonic mean of timestep Δt and squared

mesh size
h2

K
ν . To our knowledge, this parameter had not previously been derived from the

theory but has been motivated by practice for instance in [98]. It is interesting to see that

making a quasi-static assumption on the bubbles, the corresponding stabilization parameter

is reduced to simply the classic stabilization parameter
h2

K
ν .

3.1.6 Possible choices of the stabilization parameter

A standard and widely used choice for the stabilization parameter αK has been

αK = ᾱ
h2

K

ν

at least in the case of the stationary Stokes equations [48, 99, 46] but also for the time-

dependent Stokes equations [92, 56]. This choice allows convergence of the pressure in

the L2 norm as proved in Section 3.3. ᾱ is a dimensionless parameter which has to be chosen

and that choice will be discussed. We will call this parameter choice the spatial stabilization

parameter.

In [100, 101, 98] another stabilization parameter for time-dependent problems is proposed

which is a harmonic mean of timestep and squared mesh size h2
K . Although this choice of

parameter was originally motivated by practice, the link with the bubble enrichment in Section

3.1.5 provides a theoretical motivation for this choice of stabilization parameter as well. We

will call

αK = ᾱ
Δt

h2
K

ν

h2
K

ν
+αΔt
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the transient stabilization parameter along the lines of [90]. ᾱ and α are dimensionless

parameters. Note that the physical units of the stabilization parameter reduce to seconds

which is the same as for the spatial stabilization parameter. α sets the weight of the timestep

compared to the squared mesh size in the harmonic mean. While [98] suggests a scaling of

α= 1
2 , the derivation in Section 3.1.5 assuming a regular mesh suggests scalings of

ᾱ= 33

56
, α= 165.

It should be noted that when Δt >> h2
K

ν
, the transient and spatial stabilizations are equivalent.

However, when Δt << h2
K

ν
, we have for the transient stabilization parameter that αK ≈Δt . In

the latter case, the pressure is less stabilized and we could not prove L2 convergence of the

pressure.

We prove in Section 3.2 the stability and convergence of the PSPG scheme assuming a spatial

stabilization parameter. In the small timestep limit, instabilities have been reported by [90]

and it was noted that in the small timestep limit, the stabilization parameter must scale as

Δt which is the case for the transient parameter but not for the spatial parameter. However,

this condition violates the pressure stability condition αK ≥ h2
K
ν in Section 3.2. We will per-

form numerical experiments to determine performance and stability of spatial and transient

parameters.

3.2 Stability of the schemes for velocity and pressure for time-dependent

Stokes

To prove a stability result on the pressure for the stabilized scheme, we use the lemma proven

in [99], [102] using an argument by Verfürth [103], also called Verfürth’s trick or generalized

inf-sup condition.

Lemma 1. Let Vh ,Qh be spaces as defined in (3.4), (3.5) and v h ∈Vh. Given ph ∈Qh there exist

constants C1 > 0, C2 > 0 such that

sup
0�=v h∈Vh

(
ph ,∇·v h

)
‖v h‖H 1(Ω)

≥C1
∥∥ph

∥∥
L2(Ω) −C2

( ∑
K∈Th

h2
K

∥∥∇ph
∥∥2

L2(K )

)1/2

. (3.34)

Using continuous P1 finite elements and a consistent stabilization with an implicit Euler time

discretization, the weak problem (3.2)-(3.3) becomes the following fully discretized problem.

Find (un+1
h , pn+1

h ) ∈Vh ×Qh such that
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(
un+1

h −un
h

Δt
, v h

)
+ν

(∇un+1
h ,∇v h

)− (
pn+1

h ,∇·v h
)= (

f (t n+1), v h
) ∀v h ∈Vh (3.35)

(∇·un+1
h , qh

)+ ∑
K∈Th

αK

(
β

un+1
h −un

h

Δt
−νΔun+1

h +∇pn+1
h −g (t n+1),∇qh

)
K

= 0 ∀qh ∈Qh

(3.36)

for n ≥ 0 where αK > 0 ∀K ∈Th are stabilization parameters associated with element K and

β= 0 or 1 depending on the choice of non-consistent or consistent stabilization respectively.

Note that in the stabilization term, we consider a function g ∈ L2(0,T ;L2
0(Ω)) instead of f for a

more general result to be used further. u0
h ∈Vh is an approximation of u0 and we assume that

f ∈ L2(0,T ;L2
0(Ω)). Note thatΔuh = 0 forP1 elements. Letαmi n = min

K∈Th

αK andαmax = max
K∈Th

αK

and also hmax = max
K∈Th

hK . The following result gives the stability of the numerical solution.

Theorem 1. Let (un
h , pn

h ) ∈Vh ×Qh be a solution of the above problem for n = 0, ..., N .

Assume that the stabilization parameters αK > 0 are chosen such that there exists a constant

Cα > 0 such that for all K in Th and hK > 0, αK satisfies h2
K ≤Cα αK .

Assume also that the timestep 0 < Δt < 1 satisfies the stability condition αmax ≤ Δt for the

consistent scheme β= 1.

Then, the following stability estimates for the velocity and pressure holds

∥∥uN
h

∥∥2
L2(Ω) +νΔt

N∑
n=1

∥∥∇un
h

∥∥2
L2(Ω) +

Δt

2

N∑
n=1

∑
K∈Th

αK
∥∥∇pn

h

∥∥2
L2(K )

≤ ∥∥u0
h

∥∥2
L2(Ω) +Δt

N∑
i=1

(
C 2

p

ν

∥∥∥ f (t i )
∥∥∥2

L2(Ω)
+αmax

∥∥∥g (t i )
∥∥∥2

L2(Ω)

)
.

Δt
N∑

n=1

∥∥pn
h

∥∥2
L2(Ω) ≤ C

[
1

Δt

∥∥∇·u0
h

∥∥2
L2(Ω) +max(1,Cα)

∥∥u0
h

∥∥2
L2(Ω) +ν

∥∥∇u0
h

∥∥2
L2(Ω)

+max(1,Cα)

(
(1+

C 2
p

ν
) Δt

N∑
n=1

∥∥ f (t n)
∥∥2

L2(Ω) +αmax Δt
N∑

n=1

∥∥g (t n)
∥∥2

L2(Ω)

)]
.

Remark 3. Note that in particular
1

Δt

∥∥∇·u0
h

∥∥
L2(Ω)

≤C
∥∥D2u0

∥∥2
L2(Ω) holds under the stability

condition αmax ≤Δt if u0
h is chosen as the Lagrange interpolant in Vh of u0 and ∇·u0 = 0 with

u0 ∈ H 2(Ω).

Proof. We will first derive the stability result for the velocity. Taking v h = un+1
h in (3.35) and
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qh = pn+1
h in (3.36) with n ∈ {0, ..., N } yields

(
un+1

h −un
h

Δt
,un+1

h

)
+ν

(∇un+1
h ,∇un+1

h

)

+ ∑
K∈Th

αK β

(
un+1

h −un
h

Δt
,∇pn+1

h

)
K

+ ∑
K∈Th

αK
(∇pn+1

h −g (t n+1),∇pn+1
h

)
K

= (
f (t n+1),un+1

h

)
(3.37)

which leads to the inequality

1

2Δt

∥∥un+1
h

∥∥2
L2(Ω) +

1

2Δt

∥∥un+1
h −un

h

∥∥2
L2(Ω) +ν

∥∥∇un+1
h

∥∥2
L2(Ω)

+ ∑
K∈Th

αK

Δt
β
(
un+1

h −un
h ,∇pn+1

h

)
K + ∑

K∈Th

αK
(∇pn+1

h −g (t n+1),∇pn+1
h

)
K

≤ 1

2Δt

∥∥un
h

∥∥2
L2(Ω) +

(
f (t n+1),un+1

h

)
. (3.38)

Using Cauchy-Schwarz and Young’s inequalities, we get

1

2Δt

∥∥un+1
h

∥∥2
L2(Ω) +

1−β

2Δt

∥∥un+1
h −un

h

∥∥2
L2(Ω) +ν

∥∥∇un+1
h

∥∥2
L2(Ω) +

∑
K∈Th

αK
∥∥∇pn+1

h

∥∥2
L2(K )

≤ 1

2Δt

∥∥un
h

∥∥2
L2(Ω) +

∑
K∈Th

αK
(
g (t n+1),∇pn+1

h

)
K + ∑

K∈Th

α2
K

2Δt
β
∥∥∇pn+1

h

∥∥2
L2(K ) +

(
f (t n+1),un+1

h

)
(3.39)

which by using the Poincaré inequality with constant Cp leads to

1

Δt

∥∥un+1
h

∥∥2
L2(Ω) +

1−β

Δt

∥∥un+1
h −un

h

∥∥2
L2(Ω) +ν

∥∥∇un+1
h

∥∥2
L2(Ω) +

∑
K∈Th

αK (
3

2
− αK β

Δt
)
∥∥∇pn+1

h

∥∥2
L2(K )

≤ 1

Δt

∥∥un
h

∥∥2
L2(Ω) +

∑
K∈Th

(
C 2

p

ν

∥∥ f (t n+1)
∥∥2

L2(K ) +2αK
∥∥g (t n+1)

∥∥2
L2(K )

)
. (3.40)

With the assumption αmax ≤Δt if β= 1, (3.40) then gives

1

Δt

∥∥un+1
h

∥∥2
L2(Ω) +

1−β

Δt

∥∥un+1
h −un

h

∥∥2
L2(Ω) +ν

∥∥∇un+1
h

∥∥2
L2(Ω) +

1

2

∑
K∈Th

αK
∥∥∇pn+1

h

∥∥2
L2(K )

≤ 1

Δt

∥∥un
h

∥∥2
L2(Ω) +

C 2
p

ν

∥∥ f (t n+1)
∥∥2

L2(Ω) +2αmax
∥∥g (t n+1)

∥∥2
L2(Ω) (3.41)
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which by summing leads to the stability result for the velocity and pressure

∥∥uN
h

∥∥2
L2(Ω) +νΔt

N∑
n=1

∥∥∇un
h

∥∥2
L2(Ω) +

Δt

2

N∑
n=1

∑
K∈Th

αK
∥∥∇pn

h

∥∥2
L2(K )

≤ ∥∥u0
h

∥∥2
L2(Ω) +Δt

N∑
i=1

(
C 2

p

ν

∥∥∥ f (t i )
∥∥∥2

L2(Ω)
+2αmax

∥∥∥g (t i )
∥∥∥2

L2(Ω)

)
. (3.42)

Applying Lemma 1 to pn+1
h yields the inequality

C1
∥∥pn+1

h

∥∥
L2(Ω) ≤ sup

0�=v h∈Vh

(
pn+1

h ,∇·v h
)

‖v h‖H 1(Ω)
+C2

( ∑
K∈Th

h2
K

∥∥∇pn+1
h

∥∥2
L2(K )

)1/2

. (3.43)

Using (3.35) and Cauchy-Schwarz we get ∀v h ∈Vh

(
pn+1

h ,∇·v h
)

‖v h‖H 1(Ω)
=

(
un+1

h −un
h

Δt
, v h

)
+ν

(∇un+1
h ,∇v h

)− (
f (t n+1), v h

)
‖v h‖H 1(Ω)

(3.44)

≤
∥∥∥∥∥

un+1
h −un

h

Δt

∥∥∥∥∥
L2(Ω)

+ν
∥∥∇un+1

h

∥∥
L2(Ω) +

∥∥ f (t n+1)
∥∥

L2(Ω) . (3.45)

Squaring (3.43) and inserting (3.44) then yields for a constant C3 > 0 the inequality

∥∥pn+1
h

∥∥2
L2(Ω) ≤C3

(∥∥∥∥∥
un+1

h −un
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ν
∥∥∇un+1

h

∥∥2
L2(Ω)

+∥∥ f (t n+1)
∥∥2

L2(Ω) +
∑

K∈Th

h2
K

∥∥∇pn+1
h

∥∥2
L2(K )

)
. (3.46)

We sum (3.46) for n = 0, ..., N−1 and multiply byΔt . Using the assumption h2
K ≤CααK ∀K ∈Th

then gives

Δt
N∑

n=1

∥∥pn
h

∥∥2
L2(Ω) ≤C3Δt

N−1∑
n=0

(∥∥∥∥∥
un+1

h −un
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ν
∥∥∇un+1

h

∥∥2
L2(Ω)

+Cα

∑
K∈Th

αK
∥∥∇pn+1

h

∥∥2
L2(K ) +

∥∥ f (t n+1)
∥∥2

L2(Ω)

)
. (3.47)

It remains only to bound
∥∥∥un+1

h −un
h

Δt

∥∥∥2

L2(Ω)
of the terms on the right-hand side of (3.47) since

the rest has been bounded in (3.42). Let us suppose first that n ≥ 1. We take (3.35) with
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v h = un+1
h −un

h
Δt . This yields

∥∥∥∥∥
un+1

h −un
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ν

(
∇un+1

h ,∇un+1
h −un

h

Δt

)
−
(

pn+1
h ,∇· un+1

h −un
h

Δt

)
(3.48)

=
(

f (t n+1),
un+1

h −un
h

Δt

)
.

We subtract (3.36) for two consecutive timesteps and take qh = pn+1
h . We get

Δt

(
∇· un+1

h −un
h

Δt
, pn+1

h

)
+ ∑

K∈Th

αK

(
β

(
un+1

h −un
h

Δt
− un

h −un−1
h

Δt

)
+∇(pn+1

h −pn
h ),∇pn+1

h

)
K

(3.49)

= ∑
K∈Th

αK
(
g (t n+1)−g (t n),∇pn+1

h

)
K .

Plugging in yields

∥∥∥∥∥
un+1

h −un
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ν

(
∇un+1

h ,∇un+1
h −un

h

Δt

)

+ ∑
K∈Th

αK

Δt

(
β

(
un+1

h −un
h

Δt
− un

h −un−1
h

Δt

)
+∇(pn+1

h −pn
h ),∇pn+1

h

)
K

=
(

f (t n+1),
un+1

h −un
h

Δt

)
+ ∑

K∈Th

αK

Δt

(
g (t n+1)−g (t n),∇pn+1

h

)
K . (3.50)

Using Cauchy Schwarz and Young’s inequalities, we get

Δt

∥∥∥∥∥
un+1

h −un
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ ν

2

∥∥∇un+1
h

∥∥2
L2(Ω) +

ν

2

∥∥∇(un+1
h −un

h )
∥∥2

L2(Ω)

+ ∑
K∈Th

αK

2

∥∥∇pn+1
h

∥∥2
L2(K ) +

∑
K∈Th

αK

2

∥∥∇(pn+1
h −pn

h )
∥∥2

L2(K )

+ ∑
K∈Th

αK β

(
un+1

h −un
h

Δt
− un

h −un−1
h

Δt
,∇pn+1

h

)
K

(3.51)

= ν

2

∥∥∇un
h

∥∥2
L2(Ω) +

∑
K∈Th

αK

2

∥∥∇pn
h

∥∥2
L2(K ) +Δt

(
f (t n+1),

un+1
h −un

h

Δt

)

+ ∑
K∈Th

αK
(
g (t n+1)−g (t n),∇pn+1

h

)
K .
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and therefore

3Δt

2

∥∥∥∥∥
un+1

h −un
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ν
∥∥∇un+1

h

∥∥2
L2(Ω)

+ ∑
K∈Th

αK
∥∥∇pn+1

h

∥∥2
L2(K ) +

∑
K∈Th

αK
∥∥∇(pn+1

h −pn
h )
∥∥2

L2(K )

+2
∑

K∈Th

αK β

(
un+1

h −un
h

Δt
− un

h −un−1
h

Δt
,∇pn+1

h

)
K

(3.52)

≤ ν
∥∥∇un

h

∥∥2
L2(Ω) +

∑
K∈Th

αK
∥∥∇pn

h

∥∥2
L2(K ) +2Δt

∥∥ f (t n+1)
∥∥2

L2(Ω)

+2
∑

K∈Th

αK
(
g (t n+1)−g (t n),∇pn+1

h

)
K .

Before summing this inequality for n = 1, ..., N −1, we will write the discrete equivalent of

integrating by parts in time the scalar product terms in (3.52). We have

N−1∑
n=1

∑
K∈Th

αK

(
un+1

h −un
h

Δt
− un

h −un−1
h

Δt
,∇pn+1

h

)
K

=−
N−1∑
n=2

∑
K∈Th

αK

(
un

h −un−1
h

Δt
,∇(pn+1

h −pn
h )

)
K

+ ∑
K∈Th

αK

(
uN

h −uN−1
h

Δt
,∇pN

h

)
K

− ∑
K∈Th

αK

(
u1

h −u0
h

Δt
,∇p2

h

)
K

. (3.53)

Similarly,

N−1∑
n=1

∑
K∈Th

αK
(
g (t n+1)−g (t n),∇pn+1

h

)
K =−

N−1∑
n=2

∑
K∈Th

αK
(
g (t n),∇(pn+1

h −pn
h )
)

K

+ ∑
K∈Th

αK
(
g (t N ),∇pN

h

)
K − ∑

K∈Th

αK
(
g (t 1),∇p2

h

)
K . (3.54)
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Now summing (3.52) for n = 1, ..., N −1 and using (3.53) and (3.54) yields

3Δt

2

N−1∑
n=1

∥∥∥∥∥
un+1

h −un
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ν
N−1∑
n=1

∥∥∇un+1
h

∥∥2
L2(Ω)

+
N−1∑
n=1

∑
K∈Th

αK
∥∥∇pn+1

h

∥∥2
L2(K ) +

N−1∑
n=1

∑
K∈Th

αK
∥∥∇(pn+1

h −pn
h )
∥∥2

L2(K )

≤ ν
N−1∑
n=1

∥∥∇un
h

∥∥2
L2(Ω) +

N−1∑
n=1

∑
K∈Th

αK
∥∥∇pn

h

∥∥2
L2(K ) +2

N−1∑
n=1

Δt
∥∥ f (t n+1)

∥∥2
L2(Ω)

−
N−1∑
n=2

∑
K∈Th

αK
(
g (t n),∇(pn+1

h −pn
h )
)

K

+2
∑

K∈Th

αK
(
g (t N ),∇pN

h

)
K −2

∑
K∈Th

αK
(
g (t 1),∇p2

h

)
K

+2
N−1∑
n=2

∑
K∈Th

αK β

(
un

h −un−1
h

Δt
,∇(pn+1

h −pn
h )

)
K

−2
∑

K∈Th

αK β

(
uN

h −uN−1
h

Δt
,∇pN

h

)
K

+2
∑

K∈Th

αK β

(
u1

h −u0
h

Δt
,∇p2

h

)
K

. (3.55)

Eliminating identical terms on both sides of the inequality and using Cauchy-Schwarz and

Young, we get

3Δt

2

N−1∑
n=1

∥∥∥∥∥
un+1

h −un
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ν
∥∥∇uN

h

∥∥2
L2(Ω)

+ ∑
K∈Th

αK
∥∥∇pN

h

∥∥2
L2(K ) +

N−1∑
n=1

∑
K∈Th

αK
∥∥∇(pn+1

h −pn
h )
∥∥2

L2(K )

≤ ν
∥∥∇u1

h

∥∥2
L2(Ω) +

∑
K∈Th

αK
∥∥∇p1

h

∥∥2
L2(K ) +2

N−1∑
n=1

Δt
∥∥ f (t n+1)

∥∥2
L2(Ω)

+
N−1∑
n=2

∑
K∈Th

αK

[
5
∥∥g (t n)

∥∥2
L2(K ) +

1

5

∥∥∇(pn+1
h −pn

h )
∥∥2

L2(K )

]

+ ∑
K∈Th

αK

[
5
∥∥g (t N )

∥∥2
L2(K ) +

1

5

∥∥∇pN
h

∥∥2
L2(K )

]
+ ∑

K∈Th

αK

[
4
∥∥g (t 1)

∥∥2
L2(K ) +

1

4

∥∥∇p2
h

∥∥2
L2(K )

]

+
N−1∑
n=2

∑
K∈Th

αK β

[
5

4

∥∥∥∥∥
un

h −un−1
h

Δt

∥∥∥∥∥
2

L2(K )

+ 4

5

∥∥∇(pn+1
h −pn

h )
∥∥2

L2(K )

]

+ ∑
K∈Th

αK β

[
5

4

∥∥∥∥∥
uN

h −uN−1
h

Δt

∥∥∥∥∥
2

L2(K )

+ 4

5

∥∥∇pN
h

∥∥2
L2(K )

]

+ ∑
K∈Th

αK β

[
4

∥∥∥∥∥
u1

h −u0
h

Δt

∥∥∥∥∥
2

L2(K )

+ 1

4

∥∥∇p2
h

∥∥2
L2(K )

]
. (3.56)
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Simplifying the expression and using the assumption αK ≤Δt if β= 1, we obtain

Δt

4

N−1∑
n=1

∥∥∥∥∥
un+1

h −un
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ν
∥∥∇uN

h

∥∥2
L2(Ω) +

∑
K∈Th

αK
∥∥∇(p2

h −p1
h)
∥∥2

L2(K )

≤ ν
∥∥∇u1

h

∥∥2
L2(Ω) +

∑
K∈Th

αK
∥∥∇p1

h

∥∥2
L2(K ) +Δt

N∑
n=1

(
2
∥∥ f (t n)

∥∥2
L2(Ω) +5

∥∥g (t n)
∥∥2

L2(Ω)

)

+ ∑
K∈Th

4Δt β

∥∥∥∥∥
u1

h −u0
h

Δt

∥∥∥∥∥
2

L2(K )

+ ∑
K∈Th

αK

2

∥∥∇p2
h

∥∥2
L2(K ) (3.57)

and finally, writing p2
h = p2

h −p1
h +p1

h yields

Δt

2

N−1∑
n=1

∥∥∥∥∥
un+1

h −un
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ν
∥∥∇uN

h

∥∥2
L2(Ω) ≤ ν

∥∥∇u1
h

∥∥2
L2(Ω) +2

∑
K∈Th

αK
∥∥∇p1

h

∥∥2
L2(K )

+Δt
N∑

n=1

(
2
∥∥ f (t n)

∥∥2
L2(Ω) +5

∥∥g (t n)
∥∥2

L2(Ω)

)
+ ∑

K∈Th

4Δt β

∥∥∥∥∥
u1

h −u0
h

Δt

∥∥∥∥∥
2

L2(K )

. (3.58)

Now we also need to bound Δt
∥∥∥u1

h−u0
h

Δt

∥∥∥2

L2(Ω)
. For this we take n = 1 and v h = u1

h−u0
h

Δt in (3.35)

which yields

∥∥∥∥∥
u1

h −u0
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ν

(
∇u1

h ,∇u1
h −u0

h

Δt

)
− 1

Δt

(
p1

h ,∇·u1
h

)=
(

f (t n+1),
u1

h −u0
h

Δt

)
+ 1

Δt

(
p1

h ,∇·u0
h

)
(3.59)

and using (3.36) with qh = p1
h then gives

∥∥∥∥∥
u1

h −u0
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ν

(
∇u1

h ,∇u1
h −u0

h

Δt

)
+ ∑

K∈Th

αK

Δt

(
β

u1
h −u0

h

Δt
+∇p1

h −g (t 1),∇p1
h

)
K

(3.60)

=
(

f (t 1),
u1

h −u0
h

Δt

)
+ 1

Δt

(
p1

h ,∇·u0
h

)
.

(3.60) then yields

∥∥∥∥∥
u1

h −u0
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ νΔt

2

∥∥∥∥∥∇
u1

h −u0
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ ν

2Δt

∥∥∇u1
h

∥∥2
L2(Ω) (3.61)

+ ∑
K∈Th

αK

Δt

∥∥∇p1
h

∥∥2
L2(Ω) +

∑
K∈Th

αK

Δt

(
β

u1
h −u0

h

Δt
−g (t 1),∇p1

h

)
K

= ν

2Δt

∥∥∇u0
h

∥∥2
L2(Ω) +

(
f (t 1),

u1
h −u0

h

Δt

)
+ 1

Δt

(
p1

h ,∇·u0
h

)
.
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Using the assumption αmax ≤ Δt if β= 1 with Cauchy Schwarz and Young inequalities, we

have for any ε> 0

Δt

∥∥∥∥∥
u1

h −u0
h

Δt

∥∥∥∥∥
2

L2(Ω)

+ ∑
K∈Th

αK
∥∥∇p1

h

∥∥2
L2(Ω) +2νΔt 2

∥∥∥∥∥∇
u1

h −u0
h

Δt

∥∥∥∥∥
2

L2(Ω)

+2ν
∥∥∇u1

h

∥∥2
L2(Ω)

≤ 2ν
∥∥∇u0

h

∥∥2
L2(Ω) +4Δt

(∥∥ f (t 1)
∥∥2

L2(Ω) +αmax
∥∥g (t 1)

∥∥2
L2(Ω)

)
+2ε

∥∥p1
h

∥∥2
L2(Ω) +

2

ε

∥∥∇·u0
h

∥∥2
L2(Ω) .

(3.62)

Adding (3.62) and (3.58) then yields

Δt
N−1∑
n=0

∥∥∥∥∥
un+1

h −un
h

Δt

∥∥∥∥∥
2

L2(Ω)

+2ν
∥∥∇uN

h

∥∥2
L2(Ω) +

∑
K∈Th

αK
∥∥∇p1

h

∥∥2
L2(Ω) ≤ 9ν

∥∥∇u0
h

∥∥2
L2(Ω)

+23Δt
N∑

n=1

(∥∥ f (t n)
∥∥2

L2(Ω) +αmax
∥∥g (t n)

∥∥2
L2(Ω)

)
+9ε

∥∥p1
h

∥∥2
L2(Ω) +

9

ε

∥∥∇·u0
h

∥∥2
L2(Ω) . (3.63)

We use (3.42) and (3.63) in (3.47) to obtain the inequality

Δt
N∑

n=1

∥∥pn
h

∥∥2
L2(Ω) ≤C3

[
9ν

∥∥∇u0
h

∥∥2
L2(Ω) +9ε

∥∥p1
h

∥∥2
L2(Ω) +

9

ε

∥∥∇·u0
h

∥∥2
L2(Ω) +max(1,Cα)

∥∥u0
h

∥∥2
L2(Ω)

+23 max(1,Cα) Δt
N∑

n=1

(
(1+

C 2
p

ν
)
∥∥ f (t n)

∥∥2
L2(Ω) +αmax

∥∥g (t n)
∥∥2

L2(Ω)

)]
.

(3.64)

Taking ε= Δt
18 C3

gives the stability estimate for the pressure.

3.3 Convergence of the schemes for velocity and pressure for time-

dependent Stokes

Similarly to [56, 58], we will use the following Ritz projections to prove convergence of the PSPG

schemes. Let the Ritz projections (Rh,β,k (u, p),Ph,β,k (u, p)) ∈ Vh ×Qh of any (u, p) ∈ V ×Q

satisfy

ν
(∇Rh,β,k (u, p),∇v h

)− (
Ph,β,k (u, p),∇·v h

)+ (
qh ,∇·Rh,β,k (u, p)

)
+ ∑

K∈Th

αK
(−νΔRh,β,k (u, p)+∇Ph,β,k (u, p),∇qh

)
K

= ν (∇u,∇v h)− (
p,∇·v h

)+ (
qh ,∇·u

)
+ ∑

K∈Th

αK
(
β (−νΔu +∇p)+ (1−β) k ,∇qh

)
K ∀(v h , qh) ∈Vh ×Qh (3.65)

where k ∈ L2(Ω) is a given function with β= 0,1 corresponding to non-consistent and consis-

tent stabilizations respectively. It is important to note that the terms included in the projection

differ depending on β.
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We derive a priori error estimates for the Ritz projections as follows.

Lemma 2. Let u ∈ V ∩ [H 2(Ω)]3 and p ∈ Q ∩ H 1(Ω) and (Rh,β,k (u, p),Ph,β,k (u, p)) ∈ Vh ×Qh

their Ritz projections as defined above. Let h = max
K∈Th

hK and αK > 0, K ∈ Th. The following

estimates hold

(
ν
∣∣u −Rh,β,k (u, p)

∣∣2
H 1(Ω) +

∑
K∈Th

αK
∥∥∇(p −Ph,β,k (u, p))

∥∥2
L2(K )

) 1
2

≤C h

⎡
⎣
⎛
⎝ν 1

2 + h

α
1
2
mi n

+βν
α

1
2
max

h

⎞
⎠ |u|H 2(Ω) +

⎛
⎝ h

ν
1
2

+ α
1
2
max

h

⎞
⎠∣∣p∣∣H 1(Ω) + (1−β)

α
1
2
max

h
‖k‖L2(Ω)

⎤
⎦

∥∥p −Ph,β,k (u, p)
∥∥

L2(Ω) ≤C h max

⎛
⎝ h

α
1
2
mi n

,ν
1
2

⎞
⎠
⎡
⎣
⎛
⎝ν 1

2 + h

α
1
2
mi n

+βν
α

1
2
max

h

⎞
⎠ |u|H 2(Ω)

+
(
ν−

1
2 + h

ν
1
2

+α
1
2
max

)∣∣p∣∣H 1(Ω) + (1−β)
α

1
2
max

h
‖k‖L2(Ω)

⎤
⎦

where C is a constant that depends on the domain Ω, but not on ν, u, p, k or the stabilization

parameter.

Remark 4. The same estimates can be obtained for time-derivative of the velocity and pres-

sure by differentiating the Ritz error equations (3.68) with respect to time and using time-

differentiated test functions.

Remark 5. Estimates for a similar Ritz projection have been obtained in [104].

Proof. Let us introduce Ihu the Lagrange interpolant of u in Vh and Jh p the Clément inter-

polant of p on Qh . We then define E h and Sh as follows

u −Rh,β,k (u, p) = u − Ihu + Ihu −Rh,β,k (u, p) = u − Ihu +E h (3.66)

p −Ph,β,k (u, p) = p − Jh p + Jh p −Ph,β,k (u, p) = p − Jh p +Sh (3.67)

Injecting the interpolants into (3.65) and choosing v h = E h , qh = Sh then yields

ν‖∇E h‖2
L2(Ω) +

∑
K∈Th

αK ‖∇Sh‖2
L2(K ) = ν (∇(Ihu −u),∇E h)− (

Jh p −p,∇·E h
)

+ (Sh ,∇· (Ihu −u))+
∑

K∈Th

αK
(
βνΔu +∇(Jh p −βp),∇Sh

)
K

+ (1−β)
∑

K∈Th

αK (k ,∇Sh)K (3.68)

Estimating the terms in (3.68) using standard interpolation estimates, Young and Cauchy
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Schwarz with one integration by parts, we get

ν (∇(Ihu −u),∇E h) ≤Cνh2 |u|2H 2(Ω) +
ν

4
|E h |2H 1(Ω)

−(
Jh p −p,∇·E h

)≤C
h2

ν

∣∣p∣∣2H 1(Ω) +
ν

4
|E h |2H 1(Ω)

(Sh ,∇· (Ihu −u)) =−(∇Sh , Ihu −u) ≤
∑

K∈Th

αK

4
‖∇Sh‖2

L2(K ) +C
h4

αmi n
|u|2H 2(Ω) .

The two last terms in (3.68) gives the following estimate for β= 0

∑
K∈Th

αK
(∇Jh p +k ,∇Sh

)
K ≤ ∑

K∈Th

αK

4
‖∇Sh‖2

L2(K ) +Cαmax

(∣∣p∣∣2H 1(Ω) +‖k‖2
L2(Ω)

)

and for β= 1, we get

∑
K∈Th

αK
(
νΔu +∇(Jh p −p),∇Sh

)
K ≤ ∑

K∈Th

αK

4
‖∇Sh‖2

L2(K ) +Cαmax

(
ν2 |u|2H 2(Ω) +

∣∣p∣∣2H 1(Ω)

)
.

Decomposing the error as above as in (3.66), (3.67), using the triangle inequality and combin-

ing the estimates yields the first error estimate.

Applying Lemma 1 to Sh , we get

‖Sh‖L2(Ω) ≤C

( ∑
K∈Th

h2
K ‖∇Sh‖2

L2(K )

)1/2

+C sup
0�=v h∈Vh

(Sh ,∇·v h)

|v h |H 1(Ω)
.

The first term is estimated using the error estimate derived above and for the second we use

the Ritz error equation (3.68) with qh = 0. This yields

(Sh ,∇·v h)

|v h |H 1(Ω)
≤
(

Jh p −p,∇·v h
)−ν (∇E h ,∇v h)+ν (∇(Ihu −u),∇v h)

|v h |H 1(Ω)

≤C
[

h
∣∣p∣∣H 1(Ω) +ν |E h |H 1(Ω) +hν |u|H 2(Ω)

]
.

We then get

‖Sh‖L2(Ω) ≤C

⎛
⎝max

⎛
⎝ h

α
1
2
mi n

,ν
1
2

⎞
⎠(ν |E h |2H 1(Ω) +

∑
K∈Th

αK ‖∇Sh‖2
L2(K )

) 1
2

+h
∣∣p∣∣H 1(Ω) +hν |u|H 2(Ω)

⎞
⎠ .

Decomposing the error as in (3.66), (3.67), using the triangle inequality and the first error

estimate yields the pressure error estimate.

Theorem 2. Let (u, p) be a solution of the time-dependent Stokes’ equations (3.1) and (un
h , pn

h )
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given by (3.9) for n ≥ 0. Let

r h,β(t ) = Rh,β, f (t )(u(t ), p(t )) ∀t ≥ 0

sh,β(t ) = Ph,β, f (t )(u(t ), p(t )) ∀t ≥ 0.

Assume that

u,
∂u

∂t
∈ L∞(0,T ; H 2(Ω)),

p,
∂p

∂t
∈ L∞(0,T ; H 1(Ω)),

For β= 0, we have f ,
∂ f

∂t
∈ L∞(0,T ;L2(Ω)),

∂2r h,β

∂t 2 ∈ L2(0,T ;L2(Ω)).

Assume that the stabilization parameters αK > 0 are chosen such that there exists a constant

Cα > 0 such that for all K in Th and hK > 0, αK satisfies h2
K ≤Cα αK .

If we assume also that the timestep Δt satisfies the stability condition αmax ≤Δt for the con-

sistent scheme β= 1 and that u0
h = r h,β(t0), then the following a priori error estimate for the

discrete in time norm of the velocity holds

νΔt
N∑

n=1

∣∣u(tn)−un
h

∣∣2
H 1(Ω)

≤C
T

ν2 h2

⎡
⎣
⎛
⎝ν 1

2 + h

α
1
2
mi n

+βν
α

1
2
max

h

⎞
⎠

2 (
ν‖u‖2

L∞(0,T ;H 2(Ω)) +
∥∥∥∥∂u

∂t

∥∥∥∥2

L∞(0,T ;H 2(Ω))

)

+
(

h

ν
1
2

+α
1
2
max

)2 (
ν
∥∥p

∥∥2
L∞(0,T ;H 1(Ω)) +

∥∥∥∥∂p

∂t

∥∥∥∥2

L∞(0,T ;H 1(Ω))

)

+(1−β)
αmax

h2

(
ν
∥∥ f

∥∥2
L∞(0,T ;L2(Ω)) +

∥∥∥∥∂ f

∂t

∥∥∥∥2

L∞(0,T ;L2(Ω))

)]

+CΔt 2

∥∥∥∥∥∂
2r h,β

∂t 2

∥∥∥∥∥
2

L2(0,T ;L2(Ω))

.

Assuming that the stabilization parameter is αK =C
h2

ν
, we get the optimal error estimate

Δt
N∑

n=1

∣∣u(tn)−un
h

∣∣2
H 1(Ω) ≤Cu,p, f ,T

(
(ν−1 +h2ν−3 + (1−β)ν−3)h2 +Δt 2)

where Cu,p, f ,T is independent of h, Δt .

Remark 6. The term involving r h,β can be estimated by making the Ritz projection error u−r h,β

appear and using the triangle inequality along with the error bound in Lemma 2 with twice
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derived quantities. We then obtain a
∂2u

∂t 2 term along with error terms small with respect to h

and Δt assuming sufficient regularity of the data.

Proof. Let us introduce the following notations for n ≥ 0

ηn
h = u(tn)−r h,β(tn)

θn
h = r h,β(tn)−uh(tn)

ζn
h = p(tn)− sh,β(tn)

ξn
h = sh,β(tn)−ph(tn)

such that the errors are decomposed as

u(tn)−un
h =ηn

h +θn
h , p(tn)−pn

h = ζn
h +ξn

h .

Using (3.2), (3.3) and (3.9), we obtain

(
1

Δt

(
un+1

h −un
h

)
, v h

)
+ν

(∇un+1
h ,∇v h

)− (
pn+1

h ,∇·v h
)+ (

qh ,∇·un+1
h

)
+ ∑

K∈Th

αK

(
β

Δt

(
un+1

h −un
h

)−νΔun+1
h +∇pn+1

h ,∇qh

)
K

=
(
∂u

∂t
(tn+1), v h

)
+ν (∇u(tn+1),∇v h)

+ (
p(tn+1),∇·v h

)− (
qh ,∇·u(tn+1)

)
+ ∑

K∈Th

αK

(
∂u

∂t
(tn+1)−νΔu(tn+1)+∇p(tn+1),∇qh

)
K

(3.69)

By adding the missing terms on both sides of the equality, we derive a modified Galerkin

orthogonality accounting for the lack of consistency in the time derivative. We get

(
1

Δt

(
θn+1

h −θn
h

)
, v h

)
+ν

(∇θn+1
h ,∇v h

)− (
ξn+1

h ,∇·v h
)+ (

qh ,∇·θn+1
h

)
+ ∑

K∈Th

αK

(
β

Δt

(
θn+1

h −θn
h

)−νΔθn+1
h +∇ξn+1

h ,∇qh

)
K

=
(

1

Δt

(
r h,β(tn+1)−r h,β(tn)

)− ∂u

∂t
(tn+1), v h

)
−ν

(∇ηn+1
h ,∇v h

)
+ (

ζn+1
h ,∇·v h

)− (
qh ,∇·ηn+1

h

)
+ ∑

K∈Th

αK

(
β

Δt

(
r h,β(tn+1)−r h,β(tn)

)− ∂u

∂t
(tn+1)+νΔηn+1

h −∇ζn+1
h ,∇qh

)
K

(3.70)
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For β= 0, using (3.65) in (3.70) we get

(
1

Δt

(
θn+1

h −θn
h

)
, v h

)
+ν

(∇θn+1
h ,∇v h

)− (
ξn+1

h ,∇·v h
)+ (

qh ,∇·θn+1
h

)
+ ∑

K∈Th

αK

(
β

Δt

(
θn+1

h −θn
h

)−νΔθn+1
h +∇ξn+1

h ,∇qh

)
K

=
(

1

Δt

(
r h,β(tn+1)−r h,β(tn)

)− ∂u

∂t
(tn+1), v h

)

+ ∑
K∈Th

αK

(
−∂u

∂t
(tn+1)+νΔu(tn+1)−∇p(tn+1)+ f (tn+1),∇qh

)
K

=
(

1

Δt

(
r h,β(tn+1)−r h,β(tn)

)− ∂u

∂t
(tn+1), v h

)
(3.71)

Note that we have replaced k by f (t n+1) in (3.65) since r h,β(t) = Rh,β, f (t )(u(t), p(t)) ∀t ≥ 0.

Thus in the case β= 0, (θn+1
h ,ξn+1

h ) is solution of (3.35) and (3.36) with

f (t n+1) = 1

Δt

(
r h,β(tn+1)− r h,β(tn)

)− ∂u

∂t
(t n+1)

and

g (tn+1) = 0

for n ≥ 0 with θ0
h = r h,β(t0)−uh(t0). We can therefore apply Theorem 1 and get

∥∥θN
h

∥∥2
L2(Ω) +νΔt

N∑
n=1

∥∥∇θn
h

∥∥2
L2(Ω) +

Δt

2

N∑
n=1

∑
K∈Th

αK
∥∥∇ξn

h

∥∥2
L2(K )

≤ ∥∥θ0
h

∥∥2
L2(Ω) +Δt

N−1∑
n=0

(
C 2

p

ν

∥∥∥∥ 1

Δt

(
r h,β(tn+1)− r h,β(tn)

)− ∂u

∂t
(tn+1)

∥∥∥∥2

L2(Ω)

)
. (3.72)

We then inject −∂r h,β

∂t
(tn+1)+ ∂r h,β

∂t
(tn+1) into (3.72) and estimate the terms separately us-

ing the triangle inequality, similarly to the analysis of SUPG stabilizations for evolutionary

convection-diffusion-reaction equations in [105]. With Taylor’s formula with integral remain-

der and Cauchy Schwarz, we get

∥∥∥∥r h,β(tn+1)−r h,β(tn)

Δt
− ∂r h,β

∂t
(tn+1)

∥∥∥∥
2

L2(Ω)
≤ 1

Δt 2

∥∥∥∥∥
∫tn+1

tn

(t − tn)
∂2r h,β

∂t 2 (t ) d t

∥∥∥∥∥
2

L2(Ω)

≤ 1

Δt 2

⎛
⎜⎝(∫tn+1

tn

(t − tn)2 d t

) 1
2

(∫tn+1

tn

∥∥∥∥∥∂
2r h,β

∂t 2

∥∥∥∥∥
2

L2(Ω)

d t

) 1
2

⎞
⎟⎠

2

≤CΔt
∫tn+1

tn

∥∥∥∥∥∂
2r h,β

∂t 2

∥∥∥∥∥
2

L2(Ω)

d t . (3.73)
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An estimate for

∥∥∥∥∂r h,β

∂t
(tn+1)− ∂u

∂t
(tn+1)

∥∥∥∥
2

L2(Ω)
can be recovered using the same reasoning as

used in Lemma 2 with quantities differentiated in time. Taking the time derivative of (3.65)

and proceeding as in Lemma 2, we obtain

∥∥∥∥∂r h,β

∂t
(tn+1)− ∂u

∂t
(tn+1)

∥∥∥∥
2

L2(Ω)

≤ C

ν
h2

⎡
⎣
⎛
⎝ν 1

2 + h

α
1
2
mi n

⎞
⎠

2 ∣∣∣∣∂u

∂t
(tn+1)

∣∣∣∣2
H 2(Ω)

+
⎛
⎝ h

ν
1
2

+ α
1
2
max

h

⎞
⎠

2 ∣∣∣∣∂p

∂t
(tn+1)

∣∣∣∣2
H 1(Ω)

+αmax

h2

∥∥∥∥∂ f

∂t
(tn+1)

∥∥∥∥2

L2(Ω)

]
. (3.74)

Combining the two previous estimates, we then get

Δt

ν

N−1∑
n=0

(∥∥∥∥ 1

Δt

(
r h,β(tn+1)−r h,β(tn)

)− ∂u

∂t
(tn+1)

∥∥∥∥2

L2(Ω)

)

≤C
T

ν2 h2

⎡
⎣
⎛
⎝ν 1

2 + h

α
1
2
mi n

⎞
⎠

2∥∥∥∥∂u

∂t

∥∥∥∥2

L∞(0,T ;H 2(Ω))
+
⎛
⎝ h

ν
1
2

+ α
1
2
max

2

⎞
⎠

2∥∥∥∥∂p

∂t

∥∥∥∥2

L∞(0,T ;H 1(Ω))

+αmax

h2

∥∥∥∥∂ f

∂t

∥∥∥∥2

L∞(0,T ;L2(Ω))

]
+CΔt 2

∥∥∥∥∥∂
2r h,β

∂t 2

∥∥∥∥∥
2

L2(0,T ;L2(Ω))

. (3.75)

Now, we can estimate the error on u −uh by inserting −r h,β+ r h,β and using the triangle

inequality, velocity estimate from Lemma 2 and (3.75). It follows that

νΔt
N∑

n=1

∣∣u(tn)−un
h

∣∣2
H 1(Ω)

≤C
T

ν2 h2

⎡
⎣
⎛
⎝ν 1

2 + h

α
1
2
mi n

⎞
⎠

2 (
ν‖u‖2

L∞(0,T ;H 2(Ω)) +
∥∥∥∥∂u

∂t

∥∥∥∥2

L∞(0,T ;H 2(Ω))

)

+
⎛
⎝ h

ν
1
2

+ α
1
2
max

2

⎞
⎠

2 (
ν
∥∥p

∥∥2
L∞(0,T ;H 1(Ω)) +

∥∥∥∥∂p

∂t

∥∥∥∥2

L∞(0,T ;H 1(Ω))

)

+αmax

h2

(
ν
∥∥ f

∥∥2
L∞(0,T ;L2(Ω)) +

∥∥∥∥∂ f

∂t

∥∥∥∥2

L∞(0,T ;L2(Ω))

)]

+CΔt 2

∥∥∥∥∥∂
2r h,β

∂t 2

∥∥∥∥∥
2

L2(0,T ;L2(Ω))

. (3.76)

We do a similar analysis for the case β = 1. This time, (θn+1
h ,ξn+1

h ) satisfy the discretized

time-dependent Stokes equations (3.35) and (3.36) with

f (t n+1) = 1

Δt

(
r h,β(tn+1)− r h,β(tn)

)− ∂u

∂t
(t n+1)
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and

g (tn+1) = 1

Δt

(
r h,β(tn+1)− r h,β(tn)

)− ∂u

∂t
(t n+1).

Following the same analysis as for β= 0 leads to the estimate

νΔt
N∑

n=1

∣∣u(tn)−un
h

∣∣2
H 1(Ω)

≤C
T

ν2 h2

⎡
⎣
⎛
⎝ν 1

2 + h

α
1
2
mi n

+ν
α

1
2
max

h

⎞
⎠

2 (
ν‖u‖2

L∞(0,T ;H 2(Ω)) +
∥∥∥∥∂u

∂t

∥∥∥∥2

L∞(0,T ;H 2(Ω))

)

+
⎛
⎝ h

ν
1
2

+ α
1
2
max

h

⎞
⎠

2 (
ν
∥∥p

∥∥2
L∞(0,T ;H 1(Ω)) +

∥∥∥∥∂p

∂t

∥∥∥∥2

L∞(0,T ;H 1(Ω))

)⎤⎦+CΔt 2

∥∥∥∥∥∂
2r h,β

∂t 2

∥∥∥∥∥
2

L2(0,T ;L2(Ω))

(3.77)

which completes the proof.

Theorem 3. Let (u, p) be a solution of the time-dependent Stokes’ equations (3.1) and (un
h , pn

h )

given by (3.9) for n ≥ 0. Let

r h,β(t ) = Rh,β, f (t )(u(t ), p(t )) ∀t ≥ 0

sh,β(t ) = Ph,β, f (t )(u(t ), p(t )) ∀t ≥ 0.

Assume that

u,
∂u

∂t
∈ L∞(0,T ; H 2(Ω)),

p,
∂p

∂t
∈ L∞(0,T ; H 1(Ω)),

For β= 0, we have f ∈ L∞(0,T ; H 1(Ω) and )
∂ f

∂t
∈ L∞(0,T ;L2(Ω), )

∂2r h,β

∂t 2 ∈ L2(0,T ;L2(Ω)).

Assume that the stabilization parameters αK > 0 are chosen such that there exists a constant

Cα > 0 such that for all K in Th and hK > 0, αK satisfies h2
K ≤Cα αK .

Assume also that the timestep 0 < Δt < 1 satisfies the stability condition αmax ≤ Δt for the

consistent scheme β= 1 and that u0
h = r h,β(t0), then the following a priori error estimate for the
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discrete in time norm of the pressure holds

Δt
N∑

n=1

∥∥p(tn)−pn
h

∥∥2
L2(Ω)

≤C max(1,Cα)(1+
C 2

p

ν
)

T

ν
h2

⎡
⎣
⎛
⎝ν 1

2 + h

α
1
2
mi n

+βν
α

1
2
max

h

⎞
⎠

2∥∥∥∥∂u

∂t

∥∥∥∥2

L∞(0,T ;H 2(Ω))

+
⎛
⎝ h

ν
1
2

+ α
1
2
max

h

⎞
⎠

2∥∥∥∥∂p

∂t

∥∥∥∥2

L∞(0,T ;H 1(Ω))

+(1−β)
αmax

h2

(∥∥∥∥∂p

∂t

∥∥∥∥2

L∞(0,T ;H 1(Ω))
+
∥∥∥∥∂ f

∂t

∥∥∥∥2

L∞(0,T ;L2(Ω))

)]

+C T max

(
h2

αmi n
,ν

)
h2

⎡
⎣
⎛
⎝ν 1

2 + h

α
1
2
mi n

+βν
α

1
2
max

h

⎞
⎠

2

‖u‖2
L∞(0,T ;H 2(Ω))

+
(
ν−

1
2 + h

ν
1
2

+α
1
2
max

)2∥∥p
∥∥2

L∞(0,T ;H 1(Ω)) + (1−β)
αmax

h2

∥∥ f
∥∥2

L∞(0,T ;H 1(Ω))

]

+CΔt 2

∥∥∥∥∥∂
2r h,β

∂t 2

∥∥∥∥∥
2

L2(0,T ;L2(Ω))

.

Assuming that the stabilization parameter is αK =C
h2

ν
, we get the optimal error estimate

Δt
N∑

n=1

∥∥p(tn)−pn
h

∥∥2
L2(Ω) ≤Cu,p, f ,T,ν

((
1+ν2 +max(1,Cα)(1+ν−1)(1+ν−2)

)
h2 +Δt 2) .

Remark 7. Again as mentioned in Remark 6 the term involving r h,β can be estimated by the

norm of
∂2u

∂t 2 term along with error terms small with respect to h and Δt assuming sufficient

regularity of the data.

Proof. Assume first that β= 0. Proceeding as in the proof for velocity convergence, (θn+1
h ,ξn+1

h )

satisfy the discretized time-dependent Stokes equations (3.35) and (3.36) with

f (t n+1) = 1

Δt

(
r h,β(tn+1)− r h,β(tn)

)− ∂u

∂t
(t n+1)

and

g (tn+1) = 0
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for n ≥ 0 with θ0
h = r h,β(t0)−uh(t0). Using the stability result from Theorem 1, we get
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.

Using the assumption u0
h = r h,β(t0) and (3.75), we obtain
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which by injecting the Ritz projected pressure, using the triangular inequality and the pressure

error for the Ritz projection in Lemma 2 gives

Δt
N∑

n=1

∥∥p(tn)−pn
h

∥∥2
L2(Ω)

≤C max(1,Cα)(1+
C 2

p

ν
)

T

ν
h2

⎡
⎣
⎛
⎝ν 1

2 + h

α
1
2
mi n

⎞
⎠

2∥∥∥∥∂u

∂t

∥∥∥∥2

L∞(0,T ;H 2(Ω))
+
⎛
⎝ h

ν
1
2

+ α
1
2
max

t

⎞
⎠

2∥∥∥∥∂p

∂t

∥∥∥∥2

L∞(0,T ;H 1(Ω))

+αmax

h2

(∥∥∥∥∂p

∂t

∥∥∥∥2

L∞(0,T ;H 1(Ω))
+
∥∥∥∥∂ f

∂t

∥∥∥∥2

L∞(0,T ;L2(Ω))

)]

+C T max

(
h2

αmi n
,ν

)
h2

⎡
⎣
⎛
⎝ν 1

2 + h

α
1
2
mi n

+ν
α

1
2
max

h

⎞
⎠

2

‖u‖2
L∞(0,T ;H 2(Ω))

+
⎛
⎝ν− 1

2
h

ν
1
2

+ α
1
2
max

h

⎞
⎠

2∥∥p
∥∥2

L∞(0,T ;H 1(Ω)) +
αmax

h2

∥∥ f
∥∥2

L∞(0,T ;H 1(Ω))

⎤
⎦

+CΔt 2

∥∥∥∥∥∂
2r h,β

∂t 2

∥∥∥∥∥
2

L2(0,T ;L2(Ω))

(3.78)

Assume now β= 1. Proceeding as in the proof for velocity convergence, (θn+1
h ,ξn+1

h ) satisfy the

discretized time-dependent Stokes equations (3.35) and (3.36) with

f (t n+1) = 1

Δt

(
r h,β(tn+1)− r h,β(tn)

)− ∂u

∂t
(t n+1)
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and

g (tn+1) = 1

Δt

(
r h,β(tn+1)− r h,β(tn)

)− ∂u

∂t
(t n+1)

for n ≥ 0 with θ0
h = r h,β(t0)−uh(t0). Using the same analysis as in (3.79), we get
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(3.79)

which completes the proof.

Remark 8. If L2 estimates for the Ritz projection errors had been derived instead of H 1 estimates,

sharper bounds for small values of ν could be obtained. Indeed, given L2 estimates, it would not

have been necessary to use Poincaré and dividing by the viscosity ν in (3.74).
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Figure 3.1: Sketch of the lid-driven cavity test case

3.4 Analysis of stabilization on startup of 2D lid-driven cavity with

regularized time-varying tangential velocity at the boundary

The lid-driven cavity is a classical test case for the Stokes and Navier-Stokes equations, see for

instance [106]. We consider a regularized version of the lid-driven cavity such that velocity field

discontinuities in the corners are eliminated by changing the boundary tangential velocity

profile. The tangential velocity is set to increase from zero with respect to time. We only

consider the startup of the simulation in order to evaluate performance of several stabilization

schemes in a non-stationary context.

The test case is illustrated in Figure 3.1 where Ω is the computational domain, Γt is the bound-

ary where tangential velocity is imposed and Γd is boundary where an homogenous Dirichlet

boundary condition will be imposed. Let the computational domain be Ω = [0,1]× [0,1]

and T = 0.01 the final simulation time. We choose a relatively small kinematic viscosity

ν= 10−6 m2/s which corresponds to the kinematic viscosity of water in order to illustrate dif-

ferences between the stabilization schemes with application to hydrodynamics in mind. Note

that although we solve the rescaled Stokes equations formulations involving the kinematic

viscosity ν, we will plot the unscaled pressure which is given by ρp where p is pressure given

by the scaled equations (3.1) and ρ = 1000.

Let us define u t : (0,1)× [0,T ] →R2 as

u t (x, t ) =
⎛
⎝ 16x2(1−x)210t

1+10t
0

⎞
⎠ ∀x ∈ (0,1), ∀t ∈ [0,T ]. (3.80)

We then solve the time-dependent homogenous Stokes problem with the boundary conditions

and initial condition are given as follows

⎧⎪⎪⎨
⎪⎪⎩

u = 0 on Γd × [0,T ],

u = u t on Γt × [0,T ],

u(0, ·) = 0 in Ω.

(3.81)
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Since the pressure is determined up to an additive constant, we fix the pressure to zero at the

origin. We will first qualitatively study the behaviour of the different stabilization schemes

with different stabilization parameters, with different mesh sizes and timesteps. We choose

four different mesh sizes H = 0.005, 0.01, 0.02, 0.1 and a timestep of Δt = 1e −4. Note that

for numerical experiments, we will use the notation H for tetrahedral mesh size. For these

values, the error is dominated by the error in space so we should observe convergence. Note

for all mesh sizes but the smallest, we have Δt ≤ H 2, which means we are considering the case

of a small timestep. Although it is not as small as timesteps for which instabilities appear for

the velocity in [57], it is interesting to see how the different methods compare when slightly

deviating away from the stability condition Δt ≥ H 2.

To get an accurate approximation of the solution at T = 0.01, we compare the different sta-

bilizations with the unconditionally stable P2 −P1 finite element solution with H = 0.01 and

Δt = 1e−4. We consider the bubble enrichment scheme and local pressure projection scheme,

which do not have any stabilization parameter to set, along with four different PSPG stabiliza-

tions,
(
β= 0,γ= 0

)
and

(
β= 1,γ ∈ {

0, 1
Δt ,− 1

Δt

})
. Recall that the spatial stabilization parameter

is defined as

αK = ᾱ
H 2

K

ν
(3.82)

and the transient stabilization parameter as

αK = ᾱ
Δt

H 2
K

ν

H 2
K

ν
+αΔt

(3.83)

where HK is the size of tetrahedron K ∈Th . As derived in Section 3.1.5, we set α= 165 and we

study behaviour of the PSPG schemes for spatial stabilization parameter with ᾱ= 0.01, 0.001

and transient stabilization parameter with ᾱ= 0.1, 1.

We define the discrete norms√√√√Δt
N∑

n=1

∥∥un
h

∥∥
H 1(Ω)

and

√√√√Δt
N∑

n=1

∥∥pn
h

∥∥
L2(Ω)

(3.84)

that we will simply refer to as the H 1 norm of the velocity and L2 norm of the pressure

respectively. For all the given stabilizations, stabilization parameters, mesh sizes and timestep

sizes, we compute the H 1 norm of the velocity, the L2 norm of the pressure and the condition

number of the matrix. Although for 3D simulations we would generally use iterative solvers,

we choose to use a direct LU solver in this test case in order to isolate solver issues and analyze

those separately at a further point. All 2D computations in this work are done using the free

and open source FEniCS package [107] and PETSc solver [108].

Remark 9. Due to the lack of access to the elemental level of matrix assembly in the FEniCS
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(a) Velocity magnitude (b) Pressure

Figure 3.2: P2 −P1 solution for the 2D time-dependent lid-driven cavity test case at T = 0.01
with Δt = 1e −4 and H = 0.01
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(a) Horizontal velocity profile along x = 0.5
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Figure 3.3: Local pressure projection solution profiles for the 2D time-dependent lid-driven
cavity test case at T = 0.01 with Δt = 1e −4

package, we omit here the analysis of the eliminated bubble and reconstructed bubble.

Remark 10. For the same reason, the implementation of the local pressure stabilization is done

by introducing piecewise constant unknowns and test functions and coupling the Stokes system

with an elementwise L2 projection. As a consequence, the system is larger than it would be if we

used for instance local Gauss integrations [109].

The P2 −P1 solution is shown in Figure 3.2. The velocity is uniformly zero in the cavity except

for a thin boundary layer close to Γt . For visualization purposes, we will compare horizontal

velocities given by the different stabilization schemes along the axis x = 0.5. For the pressure,

comparison will be done along the x = 0.25 axis to compare how well the crease is captured

for y close to one.
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Figure 3.4: Bubble enrichment solution profiles for the 2D time-dependent lid-driven cavity
test case at T = 0.01 with Δt = 1e −4

Velocity and pressure profile analysis Figures 3.3 and 3.4 illustrate the convergence of

the horizontal velocity and pressure for the pressure projection scheme and the bubble

enrichment scheme respectively. Both schemes show similar convergence for the horizontal

velocity, although for the local pressure projection scheme there is a slightly larger undershoot

around the boundary layer. Pressure convergences are also comparable although for the

coarsest mesh, the bubble enrichment scheme shows a higher error than the local pressure

projection scheme. Note that for the local pressure projection, the pressure for the coarsest

mesh matches quite closely the P2 −P1 curve but it could be pure chance, since the curve

deviates away and converges back when taking smaller mesh sizes. Note that the plots for

Δt = 1e −3 are identical and therefore are not displayed.

Figure 3.5 shows convergence plots for the PSPG scheme with β = 0 and γ = 0 and spatial

stabilization parameter with ᾱ= 1e −3, 1e −2. For both parameters, the velocity convergence

plots are almost identical to the local pressure projection scheme. The pressure seems to

converge very well for ᾱ= 1e −3 and slightly more slowly for ᾱ= 1e −2. Note that again the

plots for Δt = 1e −3 are identical and therefore are not displayed. Figure 3.6 illustrates conver-

gence for the same PSPG scheme but with a transient stabilization parameter and ᾱ= 0.1, 1.

Velocities are similar but show slight oscillations. The pressures plots show oscillations and the

pressure for the coarsest mesh breaks down. In this case, for H = 0.1 and ν= 10−6, computing

the spatial stabilization parameters that have been used yields respectively αK = 101, 102

and the transient parameters are αK = 5.10−4, 5.10−3. For H = 0.01, the spatial stabilization

parameters are respectively αK = 10−3, 10−2 and the transient parameters are αK = 10−5, 10−4.

Due to the small value of ν, the differences between spatial and transient parameters are then

very large especially for small H . In Section 3.5, we compare the stabilizations with a higher

value of ν= 1.

Figure 3.7 shows convergence plots for the PSPG scheme with β = 1 and γ = 0 and spatial

stabilization parameter with ᾱ= 1e −3, 1e −2. Horizontal velocity approximations seem to

be poorer approximations of the exact solution than for the β= 0 PSPG scheme. Indeed, they
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(c) Horizontal velocity profile along x = 0.5
with ᾱ= 1e −2
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Figure 3.5: PSPG with β= 0 and γ= 0 solution profiles for the 2D time-dependent lid-driven
cavity test case at T = 0.01 with Δt = 1e −4 and spatial stabilization parameter
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(a) Horizontal velocity profile along x = 0.5
with ᾱ= 0.1
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(b) Pressure profile along x = 0.25 with ᾱ= 0.1

0.0 0.2 0.4 0.6 0.8 1.0
y

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

x
­V

e
lo
c
it
y

P1, H : 5.0e­03

P1, H : 1.0e­02

P1, H : 2.0e­02

P1, H : 1.0e­01

P2, H : 1.0e­02

(c) Horizontal velocity profile along x = 0.5
with ᾱ= 1
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Figure 3.6: PSPG with β= 0 and γ= 0 solution profiles for the 2D time-dependent lid-driven
cavity test case at T = 0.01 with Δt = 1e −4 and transient stabilization parameter
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(a) Horizontal velocity profile along x = 0.5 with ᾱ= 1e−3
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(b) Pressure profile along x = 0.25 with ᾱ= 1e −3
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(d) Pressure profile along x = 0.25 with ᾱ= 1e −2

Figure 3.7: PSPG with β= 1 and γ= 0 solution profiles for the 2D time-dependent lid-driven
cavity test case at T = 0.01 with Δt = 1e −4 and spatial stabilization parameter

fail to capture the uniformity of the horizontal velocity outside the boundary layer except for

the finest mesh. The pressure also fails to be captured for the three coarsest meshes. Again,

ᾱ = 1e − 3 shows to be a better choice than ᾱ = 1e − 2. Note that once again the plots for

Δt = 1e −3 are identical and therefore are not displayed. Figure 3.8 illustrates convergence for

the same PSPG scheme but with a transient stabilization parameter and ᾱ= 0.1, 1. Horizontal

velocity approximations seem to capture the behaviour of the exact velocity fairly well although

some oscillations are present and in fact, the curves show the same solutions as for β= 0 in

Figure 3.6. The pressure curves are the same as for β= 0 as well.

Figure 3.9 shows convergence plots for the PSPG scheme with β= 1 and γ= −1
Δt , 1

Δt and spatial

stabilization parameter with ᾱ= 1e −3. The solutions are identical to solutions given by the

PSPG scheme β = 1 and γ = 0 and in fact we have never observed a significant difference

in the solution by taking either γ = 0 or γ = −1
Δt , 1

Δt . However, algebraic properties of the

matrix from the linear system produced by those different stabilizations slightly as seen in

the further paragraph where we investigate condition numbers of the matrix for the different

stabilizations.

Figures 3.10 and 3.11 show plots of the L2 pressure norm over time for PSPG stabilizations

with a spatial and transient stabilization parameter respectively. Figure 3.12 displays the same

for the bubble enrichment scheme and local pressure projection. With spatial stabilization
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Figure 3.8: PSPG with β= 1 and γ= 0 solution profiles for the 2D time-dependent lid-driven
cavity test case at T = 0.01 with Δt = 1e −4 and transient stabilization parameter

parameters, the PSPG scheme with β = 1 displays extremely high pressure norms at the

beginning of the simulation. The pressure norm for the PSPG scheme β = 0 is increasing

from zero to values progressively approaching the exact final pressure norm, somewhat

similarly to the local pressure projection scheme. From 3.3, we do indeed expect it to converge.

In Section 3.3, one of the conditions for stability and convergence for β = 1 was that the

the stabilization parameter should be smaller than Δt , which is the case for the transient

stabilization parameter. Choosing the transient stabilization parameter, the plots show that

we do indeed get convergence towards the right pressure norm profile and furthermore, the

curves we get are very similar to the bubble enrichment scheme. Spatial oscillations are

however still present when choosing the transient stabilization parameter. This leads us to

believe that from a time evolution point of view, the transient parameter is a correct one in

a sense, but choosing it makes the scheme spatially unstable and therefore unsuitable for

computations.

In [58, p. 1028], it is argued that small timestep instabilities similar to those we observe

for the β = 1 stabilization with spatial stabilization parameter are caused by the choice of

the projection of the initial velocity. Instead of using an L2 or Lagrange projection, a Ritz

projection is suggested in [58, p. 1019] to determine a discrete initial velocity compatible

with the initial pressure of the problem. However, in the Ritz projection the velocity time

derivative
∂u

∂t
is involved and since it is unknown in general, it is replaced by the limit of the
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(c) Horizontal velocity profile along x = 0.5 with γ= −1
Δt
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Figure 3.9: PSPG β= 1 and γ= −1
Δt , 1

Δt profiles for the 2D time-dependent lid-driven cavity test
case at T = 0.01 with Δt = 1e −4 and spatial stabilization parameter with ᾱ= 1e −3
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Figure 3.10: Pressure L2 norm plots w.r.t. time of PSPG stabilizations with γ = 0 for the 2D
time-dependent lid-driven cavity test case with Δt = 1e −4 and spatial stabilization parameter
ᾱ= 1e −3
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Figure 3.11: Pressure L2 norm plots w.r.t. time of PSPG stabilizations with γ= 0 for the 2D time-
dependent lid-driven cavity test case with Δt = 1e −4 and transient stabilization parameter
ᾱ= 1

0.002 0.004 0.006 0.008 0.010

t

0

5

10

15

20

25

30

35

40

45

P
re
s
s
u
re
 L

2
 n
o
rm

P1 bubble, H : 5.0e­03

P1 bubble, H : 1.0e­02

P1 bubble, H : 2.0e­02

P1 bubble, H : 1.0e­01

P2, H : 1.0e­02

(a) Bubble enrichment

0.002 0.004 0.006 0.008 0.010

t

0

1

2

3

4

5

6

P
re
s
s
u
re
 L

2
 n
o
rm

LPP, H : 5.0e­03

LPP, H : 1.0e­02

LPP, H : 2.0e­02

LPP, H : 1.0e­01

P2, H : 1.0e­02

(b) Local pressure projection

Figure 3.12: Pressure L2 norm plots w.r.t. time of bubble enrichment scheme and local pressure
projection method for the 2D time-dependent lid-driven cavity test case with Δt = 1e −4
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momentum balance equation for t → 0. Solving a Poisson problem for the pressure then

yields the approximation of the velocity time derivative which in turn yields an initial velocity

compatible with the computed pressure. In our case however, solving the Poisson problem for

the pressure gives a constant pressure which yields zero as an approximation of the velocity

time derivative. This is wrong, since the velocity boundary conditions we have set have a

non-zero time-derivative. We therefore cannot easily compute the right Ritz projection which

shows a limitation of their estimation method for the initial velocity. These results highlight

the difficulties encountered with PSPG type methods in the small timestep limit.

In conclusion to this part, it seems that for low viscosities, small timesteps and non-stationary

phenomena, the PSPG stabilization β = 1 is best avoided especially when pressure is of

interest. Transient stabilization parameters seem to provide a natural temporal scaling but

do not guarantee spatial stability of the pressure. A PSPG stabilization β = 0 with spatial

stabilization parameter ᾱ= 1e −3 seems to give correct results. In the end, the local pressure

projection scheme and bubble enrichment scheme seem to give the best results.

Condition number analysis We now compare condition numbers of the full matrices in the

Stokes’ problem linear systems associated with the different stabilizations considered. We

compare them for values H = 0.04, 0.2 and Δt = 1e −6, 1e −3.

Figures 3.13 and 3.14 show the condition numbers of the left-hand side matrix in the linear

system for the coupled Stokes problem corresponding to the considered PSPG schemes, local

pressure projection scheme and bubble enrichment scheme.

As expected from the previous paragraphs, PSPG schemes with β= 1 and spatial stabilization

parameter as well as all PSPG schemes with transient stabilization parameter exhibit particu-

larly high condition numbers for small timesteps compared to the stable PSPG stabilization

β = 0,γ = 0. The condition number for the stable PSPG scheme β = 0,γ = 0 seems to be

inversely proportional to the stabilization parameter for a spatial stabilization parameter. The

condition numbers for the local pressure projection scheme seem to be somewhat higher

than for the stable PSPG scheme. Although direct comparison of the condition number for
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Figure 3.13: Condition number of the linear system for the 2D time-dependent lid-driven
cavity test case at T = 0.01
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ᾱ=0.1, β=1, γ=− 1

Δt

0
.0
4

0
.2

H

3.22e+17 1.43e+11

2.32e+17 1.80e+11
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Figure 3.14: Condition number of the linear system for the 2D time-dependent lid-driven
cavity test case at T = 0.01
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the bubble-enriched scheme with the other schemes might be unfair since the linear sys-

tem is larger for the bubble-enriched scheme, we notice that the condition number behaves

roughly in 1
Δt 2 for the bubble-enriched scheme with respect to timestep. For both the local

pressure projection and stable PSPG scheme, the condition number seems to behave in 1
Δt

with respect to timestep. We therefore expect the stable PSPG scheme and local pressure

projection schemes to be better suited to Stokes-type problems where small timesteps are

required. Due to their poor conditioning and appearance of oscillations as noted previously,

transient stabilization parameter-based PSPG schemes will be dropped from the analysis from

now on.
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Figure 3.15: A sketch of the 3D Poiseuille cavity

3.5 Analysis of stabilization schemes on 3D Poiseuille with time-varying

inflow

A difficulty in evaluating accuracy of numerical schemes for the time-dependent Stokes

equations is to design a test case where the solution is non-trivial but known. We want our

solution to be non-stationary and ideally be able to control the time derivative of the velocity

to be able to assess differences between consistent and non-consistent PSPG schemes. Such a

test case can be created given that we know a stationary solution to the Stokes equations for a

Poiseuille flow given an inflow velocity. We can set a time-dependent inflow and choose the

force term on the right-hand side of the time-dependent momentum equation to be the time

derivative of the velocity such that at each time-step, the time derivative of the velocity cancels

with the right-hand side. We can thus choose an oscillating inflow in time and by choosing the

frequency of the oscillations we can also choose the time derivative of the velocity.

With this in mind, we will analyze different stabilization schemes and evaluate their perfor-

mance in terms of velocity error, pressure error and running time on a 3D Poiseuille test case

with time-varying inflow.

A sketch of the cylindrical domain is given in Figure 3.15 where Ω is the computational domain,

Γi is the inlet boundary where inflow velocity is imposed, Γo is the free outflow boundary and

Γd are the upper and lower boundaries where a zero Dirichlet boundary condition will be

imposed. Let the computational domain be a cylinder of length 12, radius 1 such that the

origin corresponds to the middle of the inflow disk and the point (0,0,12) corresponds to the

middle of the outflow disk and T > 0 the final simulation time. For this test case, we choose

ν= 1.
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Let us define uex : Ω× [0,T ] →R3 and pex : Ω× [0,T ] →R as follows

uex (x, y, z, t ) =

⎛
⎜⎝

0

0

sin(2πωt )(1−x2 − y2)

⎞
⎟⎠ ∀(x, y, z) ∈Ω, ∀t ∈ [0,T ] (3.85)

pex (x, y, z, t ) = 4(12− z)sin(2πωt ) ∀(x, y, z) ∈Ω, ∀t ∈ [0,T ] (3.86)

where ω ∈R a parameter controlling frequency of the inflow velocity oscillations.

The time-dependent Stokes problem that we want to solve is then given by the following

equations

⎧⎪⎨
⎪⎩

∂u

∂t
−νΔu +∇p = ∂uex

∂t
in Ω× [0,T ]

∇·u = 0 in Ω× [0,T ]
(3.87)

and the boundary conditions and initial condition are given as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u = 0 on Γd × [0,T ]

u = uex on Γi × [0,T ]

∂u

∂n
−pn = 0 on Γo × [0,T ]

u(0, ·) = uex (0, ·) in Ω.

(3.88)

It can easily be verified that (uex , pex ) is a solution to the problem (3.87)-(3.88).

We have set T = 1 and chosen to analyze the cases ω = 1,3. We only show results for ω = 3.

The whole simulation then consists of three full periods of sinusoidal inflow. To highlight

the differences between the large timestep case and the small timestep case, we will further

analyze the case ω= 1000 and T = 3/1000 such that again, the simulation consists of three

periods of sinusoidal inflow but the timesteps are much shorter.

Three different mesh sizes H = 0.1,0.2,0.4 and four different timesteps Δt = 1
80 , 1

160 , 1
320 , 1

640

were used. The problem was numerically solved with the cfsFlow software, see for instance

[36], coupled with the PETSc package for solving the linear system, using a GMRES solver and

ILU preconditioner.

We compare the H 1 norm of the velocity error and L2 norm of the pressure error as defined in

(3.84), number of iterations of the GMRES solver and CPU time for the considered stabilization

schemes. The considered stabilization schemes are PSPG schemes with γ = 0, β = 0,1 and

spatial stabilization parameters with ᾱ= 0.001,0.01,0.05, the local pressure projection scheme

with ᾱ= 1 and the full bubble-enriched scheme, the bubble reconstruction method and the

bubble elimination method. For a description of the stabilization methods, see Section 3.1.5.
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Figure 3.16: Errors for PSPG stabilization β= 0,γ= 0 and spatial stabilization parameter in 3D
Poiseuille test case

Velocity and pressure error analysis Figures 3.16 and 3.17 show H 1 norm velocity and L2

norm pressure errors for the PSPG schemes γ = 0 with spatial stabilization parameter and

β= 0,1 respectively. For both stabilizations, the stabilization parameter ᾱ= 0.05 seems to be

too large and introduces additional error to both velocity and pressure compared to the two

other stabilization parameters ᾱ= 0.001,0.01.

Looking at velocity errors in Figures 3.16 and 3.17, it seems that the error due to space dis-

cretization is dominant for small timesteps and in that case the error behaves as O(H) as

predicted by the convergence result from Theorem 2. Although slightly higher errors in veloc-

ity are observed for the β= 0 stabilization, the behaviour of both schemes is similar. For larger

timesteps, the time discretization error becomes dominant but both schemes fare similarly.

Indeed, Theorem 2 shows that the two PSPG schemes contain differences in the part of the

error due to space discretization, but have the same bound for the part of the error due to

time discretization. The scheme β= 1 seems to be not only slightly more accurate but also

somewhat less sensitive to the choice of the stabilization parameter.

For the pressure errors, it seems that again the PSPG scheme β= 1 shows slightly lower errors

in all cases compared to β= 0 but both schemes give approximately equivalent results. For

smaller H , the time discretization error starts dominating and as predicted, we observe at

least a O(Δt ) convergence.
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Figure 3.17: Errors for PSPG stabilization β= 1,γ= 0 and spatial stabilization parameter in 3D
Poiseuille test case
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Figure 3.18: Errors for full bubble enrichment in 3D Poiseuille test case
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Figure 3.19: Errors for bubble elimination method in 3D Poiseuille test case
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Figure 3.20: Errors for bubble reconstruction method in 3D Poiseuille test case
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Figure 3.21: Errors for local pressure projection method in 3D Poiseuille test case

Velocity and pressure error for the bubble enrichment scheme, bubble elimination and bubble

reconstruction schemes are shown in Figures 3.18, 3.19 and 3.20. In fact, the bubble enrich-

ment and bubble reconstruction errors are identical which is reassuring since the schemes

should give the same solution, although some differences might occur due to the iterative

solver. They present the expected O(Δt) convergence for large Δt . In the case of the bubble

elimination, the pressure error grows for small values of Δt . The error grows significantly

more for even smaller values of Δt . This shows that the bubble terms that are ignored in the

bubble elimination scheme are essential for stabilizing the pressure at small timesteps. A

small perturbation of the velocity can also be seen for small timesteps, indicating a potential

loss of accuracy for even smaller timesteps.

Figure 3.21 shows errors for the last scheme, the local pressure projection scheme. The velocity

behaves like the bubble enrichment schemes, if slightly worse and pressure errors are similar

to the pressure errors for the PSPG scheme β= 1.

It seems that for this test case, no scheme is particularly worse off than others in terms of ve-

locity and pressure errors, but not having to choose a stabilization parameter is a considerable

advantage. This however changes when considering smaller as in the next paragraph.
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Figure 3.22: Errors for PSPG stabilization β = 0,γ = 0 and spatial stabilization parameter
ᾱ= 0.01 in 3D Poiseuille test case for small timesteps
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Figure 3.23: Errors for PSPG stabilization β= 1,γ= 0 and spatial stabilization ᾱ= 0.01 parame-
ter in 3D Poiseuille test case for small timesteps. Zero values are shown where the solver fails
to converge.

Runtime and solver iteration analysis in the small timestep case We consider the case

ω = 1000 and T = 3/1000 where three periods of the sinusoidal inflow are again covered,

but timesteps are much smaller. The timesteps are the same as earlier but smaller by a

multiplicative factor of 1/1000 such that the sinusoidal inflow is resolved with the same

accuracy.

Figures 3.22 and 3.23 show H 1 norm velocity and L2 norm pressure errors for the PSPG

schemes γ= 0 with spatial stabilization parameter and β= 0,1 respectively. For both stabi-

lizations, the stabilization parameter ᾱ= 0.01, which worked well in the previous case, has

been used. In Figure 3.23, zero values are displayed when the solver has failed to converge. We

observe that for β= 0 the scheme converges to the wrong solution and for β= 1, in the small

timestep limit, the matrix associated with the problem becomes singular.

Figures 3.24 and 3.25 show results for the full bubble enrichment scheme and the local pressure

projection scheme. Velocity and pressure seem to converge for both schemes although for the

local pressure projection scheme, the error on the pressure seems to grow for Δt = 1.3e −5

as H decreases. We believe that the scheme converges as it should but for large H , the errors

are small by chance. Indeed, if the pressure is stabilized correctly, it will be linear along
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Figure 3.24: Errors for full bubble enrichment in 3D Poiseuille test case for small timesteps
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Figure 3.25: Errors for local pressure projection method in 3D Poiseuille test case for small
timesteps
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Figure 3.26: CPU time and median number of iterations for PSPG stabilization β= 0,γ= 0 and
spatial stabilization parameter in 3D Poiseuille test case

the cylinder axis. Since pressure at the outflow boundary is zero, the problem reduces to a

monodimensional one in terms of the pressure, where the unknown is for instance the value

of the pressure at the inflow boundary. For this reason, it is not improbable to obtain a small

pressure error by chance for H = 0.4. Note that for H = 0.4, the local pressure projection

scheme shows a pressure error much smaller than the bubble enrichment scheme by a factor

1/20, which corroborates our belief.

Runtime and solver iteration analysis We now analyze running times and number of itera-

tions of the linear system solver for large timesteps once again (ω= 3 and T = 1). Figures 3.26

and 3.27 show CPU time and median number of iterations done by the GMRES solver for the

PSPG schemes β= 0 and β= 1. Running times are similar for both schemes and roughly of

order O( 1
H 3

1
Δt ) as expected with slightly faster computations for the scheme β= 0.

The scheme β= 1 performs a few more solver iterations in general which could also explain

why it shows slightly lower errors than the scheme β= 0. We see the largest difference when H

is large and Δt is small. In that case, we observe an increase in the number of iterations for the

scheme β= 1 compared to the scheme β= 0. This is in line with the observations in Section

3.4 that condition number grows faster for scheme β= 1 when timestep decreases. ᾱ= 0.01

seems to be a better choice than ᾱ= 0.001 in terms of iterations performed by the solver.
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Figure 3.27: CPU time and median number of iterations for PSPG stabilization β= 1,γ= 0 and
spatial stabilization parameter in 3D Poiseuille test case
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Figure 3.28: CPU time and median number of iterations for full bubble enrichment in 3D
Poiseuille test case
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Figure 3.29: CPU time and median number of iterations for bubble elimination method in 3D
Poiseuille test case
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Figure 3.30: CPU time and median number of iterations for bubble reconstruction method in
3D Poiseuille test case
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Figure 3.31: CPU time and median number of iterations for local pressure projection method
in 3D Poiseuille test case

CPU time and median number of solver iterations for the bubble enrichment scheme, bubble

elimination and bubble reconstruction schemes are shown in Figures 3.28, 3.29 and 3.30.

The number of iterations seems to be slightly higher for the full bubble enriched method

compared to the other two methods which is due to the larger system to solve. CPU time is

about twice as high for the full bubble for H = 0.2 and three times as high for H = 0.1 compared

to the two other methods. The bubble reconstruction scheme is at most slightly slower than

the bubble elimination scheme and at best faster, showing that the reconstruction is indeed

a cheap operation. The number of iterations seems to be higher for bubble-based schemes

than for both considered PSPG schemes and is in line with the observation in Section 3.4 that

condition number for bubble-based schemes is higher than for PSPG schemes with adequately

selected stabilization parameter. This is reflected in slightly higher running times for bubble

elimination and reconstruction methods compared to PSPG schemes.

Figure 3.31 shows CPU time and median number of iterations for the local pressure projection

scheme. Running time and iterations seem to be on par with the PSPG method β = 0 for

ᾱ= 0.01 and therefore slightly better than the bubble-based schemes.

We have determined for this Stokes problem, all schemes give almost equivalently good results

for large timesteps. For small timesteps, PSPG schemes fail. Indeed, the PSPG scheme with

β = 0 seems to converge to the wrong solution and the PSPG scheme with β = 1 yields a

singular matrix. The local pressure projection and bubble enrichment schemes give good

results even in the small timestep case. The local pressure projection scheme and PSPG

scheme β= 0, ᾱ= 0.01 seem to be among the least time-consuming schemes, although the

differences in performance are relatively minor for all considered schemes, except the full

bubble which requires a larger system to be solved. The bubble-based schemes and local

pressure projection are attractive methods due to the absence of stabilization parameter and

as a conclusion, this test case shows that the local pressure projection scheme and bubble

reconstruction scheme are the methods which should be preferred. We will see in Section 3.6

that when the Stokes equations are coupled with a characteristics method for solving the full

Navier-Stokes equations, the local pressure projection method also requires a stabilization
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parameter to be set and the bubble enrichment will give good results.
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3.6 3D comparison of wave profiles for different stabilization schemes

on experimental VAW data

After having investigated the performance and accuracy of the different stabilization schemes

on the time-dependent Stokes equations, we now compare their accuracies on the full Navier-

Stokes equations. The setup is exactly the same as in Section 2.2.2 and we will compare wave

profiles in a cavity of angle 1◦ and relative wave height Rh = 0.5 for the different stabilizations

with parameters corresponding to the simulation with the mesh of medium fineness in Section

2.2.2.

Figure 3.32 shows wave profiles for the full bubble enriched scheme, bubble elimination and

bubble reconstruction schemes and it seems like the profiles match perfectly. It seems like

there is therefore no loss in eliminating the bubble completely and furthermore, this scheme

contains no stabilization parameter to set. All curves present excellent agreement with the

experimental data.

Figure 3.33 shows wave profiles for the local pressure projection with stabilization parameters

ᾱ = 0.01,0.1,1. We can observe that for ᾱ = 1, the wave profile breaks down and the free

surface starts to present spurious oscillations, which is why it was necessary to consider

smaller stabilization parameters as well. ᾱ= 0.01 seems to yield best results; the same value

has also been observed to give satisfactory results in [96] for high Reynolds numbers.

Figure 3.34 shows wave profiles for the PSPG scheme with β= 1 spatial stabilization parameter

and ᾱ= 5e −6,1e −5,5e −5. Note that ᾱ has been taken about 103 times smaller than was the

case for a pure Stokes problem since taking the same values as before causes the solver to

fail. This indicates that the stabilization parameter should possibly depend on the Reynolds

number as had been observed in [110]. The wave profile for ᾱ= 5e −5 contains oscillations

at the free surface but the two profiles corresponding to ᾱ= 5e −6,1e −5 yield good matches

with experimental results.

Figure 3.35 shows wave profiles for the PSPG scheme with β= 0 spatial stabilization parameter

and ᾱ= 5e −6,1e −5,5e −5. This time, we see the wave profile completely breaking down for

ᾱ= 5e −5 and losing some accuracy for ᾱ= 1e −5.

Figures 3.36 and 3.37 show wave profiles for the PSPG scheme with β= 0,1 and spatial stabi-

lization parameter divided by the local Reynolds number and ᾱ= 1e−3,5e−2,1e−2. Dividing

by the local Reynolds number had been proposed by Franca-Hughes in [111]. Both PSPG

schemes seems to yield excellent agreement for all proposed values of ᾱ and results seem

much more robust with respect to the choice of ᾱ compared to the simple spatial stabilization

parameter.

Dividing by the local Reynolds number can also be done for the local pressure projection

scheme. Figure 3.38 shows the result for ᾱ= 10,50,100 which shows reasonable accuracy for

ᾱ= 10. Taking ᾱ= 1 would cause the solver to fail.
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Figure 3.32: Wave profiles for bubble enrichment stabilizations.
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Figure 3.33: Wave profiles for local pressure projection stabilizations.
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Figure 3.34: Wave profiles for PSPG schemes β= 1,γ= 0 with spatial stabilization parameter.
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Figure 3.35: Wave profiles for PSPG schemes β= 0,γ= 0 with spatial stabilization parameter.
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Figure 3.36: Wave profiles for PSPG schemes β= 1,γ= 0 with Franca-Hughes stabilization
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Numerical : β=0, FH ᾱ=5e−3
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Figure 3.37: Wave profiles for PSPG schemes β= 0,γ= 0 with Franca-Hughes stabilization
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Figure 3.38: Wave profiles for the Local Pressure Projection with Franca-Hughes stabilization
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We have seen how the different stabilization schemes fare in terms of accuracy for solitary

wave simulations. It seems that in the context of Navier-Stokes equations, it seems to be much

more difficult to find a suitable stabilization parameter for PSPG schemes but also for the local

pressure projection scheme this time. Results indicate that the stabilization parameter should

depend on the Reynolds number. For this reason, we will prefer the bubble reconstruction

method, which is always stable, accurate and computationally efficient, and furthermore does

not require any stabilization paremeter.
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Conclusion

We have proposed an adaptive octree-based free surface flow solver for the Navier-Stokes

equations and discussed theoretical and practical aspects of stabilizations for the P1−P1 finite

elements.

We have proposed an adaptive scheme for accurately simulating the displacement of free

surfaces by refining cells around the interface and coarsening them elsewhere. A set of rules

was established for preserving the detail at the interface while allowing dynamic coarsening of

non-interfacial regions throughout the simulation. This was done using a prediction algorithm

before the advection step. A new decompression algorithm was proposed which allows better

redistribution of the fluid when numerical compression occurs. The octree implementation

by [75] was extended to allow cells whose aspect ratio is not dictated by the bounding box

and also supports arbitrary complex domains. A splitting scheme described in [36] for the

structured grid was adapted for the octree. We defined suitable interpolations to and from the

tetrahedral mesh on which the Stokes’ equations are solved.

The octree scheme was validated on classical free surface displacement test cases and shown

to be faster and less memory-consuming than the scheme described in [36]. We have shown

that the octree-based scheme is able to simulate the generation, propagation and breaking of

paddle-generated waves in a tilted cavity. It is also capable of simulating 3D waves although

no experimental data has been compared against yet.

On the theoretical side we have shown a unified proof for stability and convergence of velocity

and pressure for consistent and non-consistent PSPG schemes for the time-dependent Stokes’

equations under a large timestep condition with respect to the stabilization parameter. We

have proposed simplified bubble-based schemes based on elimination and reconstruction

of the bubble. Comparisons have been performed to determine performance of different

stabilizations for the Stokes’ equations and Navier-Stokes equations with free surface flow. We

concluded that the bubble reconstruction technique is cheap and reliable.

Perspectives include studying refinement criteria to refine the octree in regions of large velocity

gradients and to coarsen it elsewhere and researching the possibility of solving the Stokes’

problem on the octree. The latter might be costly to do on the full octree and a sub-octree

might be considered, but problems such as computation of boundary normals and hanging
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Conclusion

nodes need to be taken care of. A more accurate interface reconstruction technique such as

PLIC could be evaluated and adaptive time-stepping should be studied for simulations where

velocity magnitudes vary greatly throughout the simulation. On the theoretical side, the proper

stabilization parameter for Characteristics-Galerkin PSPG methods could be determined using

similar techniques as in [96] while keeping track of the Reynolds number.
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