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ABSTRACT

In concurrent systems without automatic garbage collection,
it is challenging to determine when it is safe to reclaim mem-
ory, especially for lock-free data structures. Existing concur-
rent memory reclamation schemes are either fast but do not
tolerate process delays, robust to delays but with high over-
head, or both robust and fast but narrowly applicable.

This paper proposes QSense, a novel concurrent memory
reclamation technique. QSense is a hybrid technique with a
fast path and a fallback path. In the common case (with-
out process delays), a high-performing memory reclamation
scheme is used (fast path). If process delays block memory
reclamation through the fast path, a robust fallback path is
used to guarantee progress. The fallback path uses hazard
pointers, but avoids their notorious need for frequent and
expensive memory fences.

QSense is widely applicable, as we illustrate through sev-
eral lock-free data structure algorithms. Our experimental
evaluation shows that QSense has an overhead comparable
to the fastest memory reclamation techniques, while still
tolerating prolonged process delays.

1. INTRODUCTION
1.1 The Problem

Any realistic application requires its data structures to
grow and shrink dynamically and hence to reclaim memory
that is no longer being used. For the foreseeable future,
many high-performing applications, such as operating sys-
tems and databases, will be written in languages where pro-
grammers manage memory explicitly (such as C or C++).
There is thus a clear need for concurrent data structures that
scale and efficiently allocate/free memory. Designing such
data structures is however challenging, as it is not clear when
it is safe to free memory, especially when locks are prohibited
(lock-free constructions [11, 18]).

To illustrate the difficulty, consider, as illustrated in Fig-
ure 1, two processes p; and p2 concurrently accessing a
linked list of several nodes. Process p: is reading node ni,
while ps is concurrently removing node ni. Assume p2 un-
links n1 from the list. Then, p2 needs to decide whether
n1’s memory can be freed. If po were allowed to block p;
and inspect p1’s references, then it could easily determine
whether freeing n; is safe. But in a lock-free context, p2 has
a priori no way of knowing if p; is still accessing ni or not.
So, if po goes ahead and frees node ni, it triggers an illegal
access next time p; tries to use n;.
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Figure 1: The concurrent memory reclamation problem.

1.2 The Trade-off

Various approaches have been proposed to address the is-
sue of concurrent, programmer-controlled memory reclama-
tion for lock-free data structures. Hazard pointers (HP) [25]
(which we recall in more details in § 3) is perhaps the most
widely-used method. Basically, the programmer publishes
the addresses (hazard pointers) of nodes for as long as they
cannot be safely reclaimed. A reclaiming process must en-
sure that a node it is about to free is not marked by any other
process. The hazard pointer methodology holds two impor-
tant advantages: (1) it is wait-free and (2) it is applicable to
a wide range of data structures. However, hazard pointers
also have a notable drawback: as we explain in § 3.2, they
require a memory fence instruction for every node traversed
in the data structure. This can decrease performance by up
to 75% (as we will see in § 7).

Most memory reclamation techniques that seek to over-
come the performance penalty of hazard pointers have been
analyzed in terms of amortized overhead [1, 5, 6, 14]: the
overhead of reclamation operations is spread across several
node accesses or across several operations, thus consider-
ably reducing their impact on performance. Quiescent State
Based Reclamation (QSBR) (which we recall in § 3), is
among the most popular schemes applying the amortized
overhead principle [6, 14]. QSBR is fast and can be applied
to virtually any data structure. However, QSBR is blocking:
if a process is delayed for a long time (a process failure is
a particular type of delay), an unbounded amount of mem-
ory might remain unreclaimed. As such, using QSBR with
lock-free data structures would negate one of the main ad-
vantages of lock-freedom: robustness to process delays.

There have indeed been several proposals for achieving
both lock-freedom and low amortized overhead [5, 6]. Yet,
these are ad-hoc methods that apply only to certain well-
chosen data structures. They require significant effort to be
adapted to other data structures (as we discuss in § 8).

Overall, the current prevalent solutions for concurrent mem-
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Figure 2: A high-level view of QSense.

ory reclamation are either wait-free but with high overhead,
fast but blocking, or ad-hoc, lacking a clear and systematic
methodology on how to apply them.

1.3 The Contributions

We design, implement and evaluate QSense, a novel tech-
nique for concurrent memory reclamation that is, at the
same time, easily applicable to a wide range of concurrent
data structures (including lock-free ones), robust, and fast.

QSense uses a hybrid approach to provide fast and robust
memory reclamation. Figure 2 depicts a high-level view of
QSense. In the common case (i.e. when processes do not
undergo prolonged delays), the fast QSBR scheme is em-
ployed. A delay could be caused, for instance, by cache
misses, application-related delays, or being descheduled by
the operating system. By prolonged delay, we refer to a de-
lay of a process pi that is long enough such that a large
number of nodes (larger than a given configurable thresh-
old) are removed but cannot be safely reclaimed by another
concurrent process ps. If prolonged process delays are de-
tected, QSense automatically switches to a fall-back memory
reclamation scheme that is robust. When all processes are
active again (no more prolonged delays), the system auto-
matically switches back to the fast path. By robustness we
mean that any process performing operations on the data
structure (called worker process) will finish any action re-
lated to memory reclamation within a bounded number of
steps, regardless of the progress of other worker processes.
To guarantee this progress, we require certain timing as-
sumptions about a set of auxiliary background processes,
that do not participate in the actual data structure opera-
tions (all assumptions are discussed in § 5).

The fall-back path consists of a subprotocol we call Ca-
dence, a novel amortized variant of the widely-used haz-
ard pointer mechanism. Cadence overcomes the necessity
for per-node memory barriers during data structure traver-
sal, significantly increasing performance. We achieve this
through two new concepts. The first is rooster processes:
background processes that periodically wake up and gener-
ate context switches, which act as memory barriers. The
periodic context switches ensure that any hazard pointer
becomes visible to other processes within a bounded time
T. The second concept is deferred reclamation: a process
p only reclaims a removed node n after n has been await-
ing reclamation for longer than 7. This ensures any hazard
pointer potentially protecting n must be visible. Therefore,
n’s memory can be safely freed provided no hazard point-
ers are protecting n. Cadence can be used either as part of
QSense or as a stand-alone memory reclamation scheme.
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Figure 3: QSense, HP and no reclamation on a linked list of
2000 elements, with a 10% updates workload.

QSense requires minimal additions to the data structure
code, consisting only of a number of calls to functions pro-
vided by the QSense interface. We present a simple set
of rules that determine where to place these calls. QSense
communicates with data structures through three functions:
manage_qsense_state, assign_HP and free_node_later. The
rules concerning where to call these three functions are:

1. Call manage_gsense_state in states where no references
to shared objects are held by the processes (usually in
between data structure operations).

2. Call assign_HP before using a reference to a node so as
to inform other processes that the node’s memory should
not be reclaimed yet.

3. Call free_node_later whenever a node is removed from
the data structure (where free would be called in a se-
quential setting).

We show empirically that QSense achieves good perfor-
mance in a wide range of scenarios, while providing the same
progress guarantees as a hazard pointer based scheme. Our
experiments in § 7 show that QSense achieves a 29% over-
head on average over leaky implementations of a lock-free
concurrent linked list, a skip list and a binary search tree.
Moreover, QSense outperforms the popular hazard pointers
technique by two to three times. To illustrate this point,
Figure 3 shows sample results from our experiments, com-
paring QSense to hazard pointers and no memory reclama-
tion (leaky implementation) on a concurrent linked list.

Roadmap. The rest of this paper is organized as follows.
In § 2, we pose the problem. In § 3, we recall prior work
that inspired QSense. In § 4, we give an overview of QSense.
Then, in § 5, we dive into the details of Cadence and detail
the assumptions needed for its correctness. In § 6, we prove
safety and liveness properties of QSense. In § 7, we com-
pare QSense’s performance against that of popular memory
reclamation schemes. Finally, in § 8, we describe related
work and we conclude in § 9.

2. MODEL AND PROBLEM DEFINITION

We consider a set of n processes that communicate through
a set of shared memory locations using primitive memory ac-
cess operations. A node is a set of memory locations that
can be viewed as a logical entity. A data structure consists
of one or more fixed nodes that can always be accessed di-
rectly by the processes, called roots, and the set of nodes
that are reachable by following pointers from the roots.



2.1 Node States

At any given time, a node can be in one of five states [25]:
(1) Allocated — the node has been allocated by a process,
but not yet inserted into the data structure. (2) Reachable
— the node is reachable by following pointers from the roots
of the data structure. (3) Removed — the node is no longer
reachable, but may still be in use by some processes. (4)
Retired — the node is removed and cannot be used by any
process, but is not yet free. (5) Free — the node’s memory
is available for allocation.

2.2 The Memory Reclamation Problem

We can now state the memory reclamation problem as
follows: given some removed nodes, make them available
for re-allocation (i.e. change their state to free) after it is
no longer possible for any process (except the reclaiming
process) to access them (i.e. after they have become retired).

The problem is distinct from garbage collection. Here, we
are only concerned with the reclamation of memory used
by data structure nodes, and not the reclamation of arbi-
trary memory regions. Moreover, the nodes whose memory
needs to be reclaimed are expressly marked by the program-
mer after they have been explicitly unlinked from the data
structure and are no longer reachable.

2.3 Terminology

Safe: A node n is safe [25] for a process p if: (1) n is allocated
and p is the process that allocated it, or (2) n is reachable, or
(3) n is removed or retired and p is the process that removed
n from the data structure.

Possibly unsafe: A node n is possibly unsafe [25] for a pro-
cesses p if it is impossible, using only knowledge of p’s private
variables and the semantics of the data structure algorithm
used, to positively establish that n is safe for p. Informally, a
node is possibly unsafe if it is impossible to determine using
only local process data and knowledge of the data structure
algorithm whether accessing n will trigger an access viola-
tion (e.g. if n has been reclaimed in the meanwhile).

Access hazard: An access hazard [25] is a step in the algo-
rithm that might result in accessing a possibly unsafe node
for the process that is executing the algorithm.

Hazardous reference: A process p holds a hazardous refer-
ence [25] to a node n if one of p’s private variables holds n’s
address and p will reach an access hazard that uses n’s ad-
dress. Informally, a hazardous reference is an address that
will be used later in a hazardous manner (i.e. to access pos-
sibly unsafe memory) without further verification of safety.

3. BACKGROUND

In this section we recall quiescent state based reclamation
and hazard pointers, the techniques QSense builds upon.

3.1 Quiescent State Based Reclamation

Quiescent State Based Reclamation (QSBR) is a tech-
nique which emerged in the context of memory management
in operating system kernels [4]. Quiescence-based schemes
are fast, outrunning popular pointer-based schemes under a
variety of workloads [14]. Therefore, in QSense, we chose a
quiescence technique for the fast path. Though not a contri-
bution of this paper, QSBR is detailed below, for complete-
ness. QSBR makes use of quiescent states (at process level)

and grace periods (at system level).

A process is in a quiescent state if it does not hold refer-
ences to any shared objects in the data structure. Quiescent
states need to be specified at the application level. Typ-
ically, a process is in a quiescent state whenever it is in
between operations (read/insert/delete). In practice, quies-
cent states are declared after processes have finished a larger
number of operations — called the quiescence threshold —
as batching operations in this way boosts performance.

A grace period is a time interval in the execution during
which each worker process in the system goes through at
least one quiescent state. If the time interval [a, b] is a grace
period, after time b no process holds hazardous references
to nodes that were removed before time a. The occurrence
of grace periods is managed through an epoch-based tech-
nique [6, 14]. At every step of the execution, every process
is in one of three logical epochs. Each process has three lists
in which removed nodes are stored, called limbo lists (one
per epoch). If a node n has been removed when a process p
was in epoch i, n will be added to p’s i*® limbo list. Each
process keeps track of its local epoch and all processes have
access to a shared global epoch. When a process p declares
a quiescent state, it does the following. If p’s local epoch e,
is different than the global epoch e, then p updates e, to
ec. Else, if all processes have their local epoch equal to eg
(including p), p increments eg by 1.

The Problem of Robustness in QSBR. The main ad-
vantage of QSBR is the low overhead. Nevertheless, its lack
of robustness to significant process delays makes its out of
the box use unsuitable for some practical applications. As
we show in § 7, if achieving a grace period is no longer pos-
sible or takes a significant amount of time, the system might
run out of memory and eventually block. In § 5, we show
how we address the problem of resilience to prolonged pro-
cess delays in QSense.

3.2 Hazard Pointers (HP)

The main idea behind the hazard pointers scheme [25] is to
associate with each process a number of single-writer multi-
reader pointers. These pointers — called hazard pointers —
are used by processes to indicate which nodes they might
be about to access without further validation. The nodes
marked by hazard pointers are unsafe to reclaim.

The hazard pointer scheme mainly consists of node mark-
ing and node reclamation. Node marking is the assignment
of hazard pointers to nodes. This ensures that the reclaiming
process can discern which of the nodes that were removed
from the data structure are retired (and thus safe to reclaim).
Node reclamation is a procedure that makes nodes available
for re-allocation. Every time a process removes a node from
a data structure, the process adds a reference to the node in
a local list of removed nodes. After a given number of node
removals, each process will go through its list of removed
nodes and will free those nodes that are not protected by
any hazard pointers. The programmer needs to ensure the
following condition:

CONDITION 1. At the time of any hazardous access by a
process p to the memory location of a node n (access haz-
ard), n has been continuously protected by one of p’s hazard
pointers since a time when n was definitely safe for p.

Michael [25] provides a methodology for programmers to
enforce this condition: (1) Identify all hazardous references



and access hazards in the data structure code. (2) For each
hazardous reference, determine the step when the reference
is created and the last access hazard where the reference
is used. This is the period when the reference needs to be
protected by a hazard pointer. (3) Examine the overlap of
the periods from step 2. The maximum number of hazard
pointers is the maximum number of distinct hazardous refer-
ences that exist simultaneously for the same process. (4) For
each hazardous reference, assign a hazard pointer to it and
immediately afterwards, verify if the reference (the node) is
still safe. If the verification fails, follow the path of the orig-
inal algorithm that corresponds to failure due to contention
(e.g. try again, backoff etc.).

The Problem of Instruction Reordering in HP. An
important practical consideration when applying the above
methodology is instruction reordering [18, 21]. In most mod-
ern processors, instructions may be executed out of order for
performance considerations. In particular, in the widespread
x86/AMD 64/SPARC TSO memory models, stores may be
executed after loads, even if the stores occur before loads in
the program code [21, 28]. Instruction reordering is relevant
in the case of hazard pointers due to step 4 in the methodol-
ogy above. We assign a hazard pointer and then verify that
the node is still safe, thus ensuring that the hazard pointer
starts protecting that node from a time when the node is
definitely safe. However, if assigning the hazard pointer (a
store) is reordered after the validation (a load), then we can
no longer be certain that the node is still safe when the haz-
ard pointer becomes visible to other processes. Therefore, it
is necessary for the programmer to insert a memory barrier
between the hazard pointer assignment and the validation.
Algorithm 1 shows the high-level instructions that need to
be added to the data structure code when accessing a node,
if hazard pointers are used (lines 2—4).

Read reference to node n

Assign a hazard pointer to n

Perform a memory barrier

Check if node n is still valid

Access n's memory

Release reference to n (e.g. move to successor node)

o oA W N =

Algorithm 1: High-level steps taken when accessing a
node in a data structure using hazard pointers.

A memory barrier [18] (or fence) is an instruction that
ensures no memory operation is reordered around it. In
particular, all stores that occur before a memory barrier in
program order will be visible to other processes before any
loads appearing after the barrier is executed. Therefore,
when validating that a node is still safe (as per step 4 in the
methodology), we can be certain that the hazard pointer is
already visible.

Memory barriers are expensive instructions. They can
take hundreds of processor cycles. This cost results in a
significant performance overhead for hazard pointer imple-
mentations, especially in read-only data structure opera-
tions (update operations typically use other expensive syn-
chronization primitives such as compare-and-swap, so the
marginal cost of memory barriers due to hazard pointers is
much lower than for read-only operations). Moreover, these
memory barriers must be performed on a per-element basis,
which causes the performance of hazard pointers to scale

poorly with data structure size.

4. AN OVERVIEW OF QSENSE

Combining QSBR’s high-performance with hazard point-
ers’ robustness in a hybrid memory reclamation scheme is
appealing. In this section, we first argue why merging QSBR
with the original hazard pointers technique is also however
a challenge. Then, we give a high-level view of QSense.

4.1 Rationale

One could imagine a hybrid scheme where QSBR and haz-
ard pointers are two separate entities, with the switch be-
tween the two schemes triggered by a signal or flag. QSBR
would run in the common case (when no process delays
are observed) and hazard pointers would be employed when
a long process delay makes quiescence impossible. How-
ever, after a switch to hazard pointers based reclamation,
hazardous references from when the system was running in
QSBR mode would need to be protected as well. So, haz-
ard pointers should be protecting nodes during the entire
execution of the system, regardless of the mode of operation
the system is currently in. As discussed above, the original
hazard pointers algorithm requires a memory barrier call
after every hazard pointer update, to ensure correctness.
However, ideally, when the system operates in QSBR mode,
the per-node memory barriers required by hazard pointers
should be eliminated. Per-node memory barriers should be
placed as specified in the HP algorithm only when the sys-
tem goes into fallback mode. Nonetheless, such an approach
is not correct. The scenario in Algorithm 2 illustrates why.

1 Ri. Read a pointer to a node n (Load)

2> Rs. Assign a hazard pointer to n (Store)

s Rs. If fallback mode is active (Load) execute a memory
barrier (here, suppose fallback mode is
inactive and the memory barrier is not
executed)

R4. Recheck n (Load)

Rs. Use n (Loads and Stores)

D;1. Remove n

D,. Check fallback—flag (here, suppose fallback
mode was activated)

9 Ds. Scan hazard pointers

10 Dy. Free n (assuming no hazard pointer protects it)

0 N o oA

Algorithm 2: Example of illegal operation interleaving

Consider two processes, Pr and Pp, at a time ¢t when the
system makes the switch from the fast path to the fallback
path. Pr is a reader process performing steps R; to Rs and
Pp is a deleting process performing steps D1 to D4, during
which it detects that it must switch to the fallback scheme.

Assume that Pp’s steps are not reordered (we can use
memory barriers to ensure this, since we are mainly con-
cerned with removing memory barriers from read-only oper-
ations, but not necessarily from deletion operations). How-
ever, Pr’s steps can be reordered; more precisely, in the
TSO model, the Rz store can be delayed past all subsequent
reads [21, 28] if Pr does not detect that the fallback-flag is
turned on and does not perform a memory barrier.

Next, consider the following interleaving of Pr’s and Pp’s
steps. Initially the fallback-flag is off (the system is running



in the fast path). The reader will read a reference to n
(R1) and assign a hazard pointer to n (Rz2). At Rs the
fallback-flag is off, so the memory barrier is not executed.
Thus, the store of the hazard pointer (R2) can be delayed
past all subsequent reads. Then, Pr rechecks n (R4) and
finds that it is still a valid node. Now, suppose that another
process P activates the fallback path. This is where Pp
steps in and executes D; through D4. Since Pr’s store of
the hazard pointer was delayed, Pp is free to reclaim the
node in question. Finally, in step Rs, Pr will try to use the
reference to n that it had acquired without publishing the
hazard pointer via a memory barrier and thus attempt to
access a reclaimed node, which is incorrect.

If a memory barrier was called after the update of each
hazard pointer in both the fast and fallback paths, the QS-
BR/HP hybrid would function correctly. However, adding
per-node memory barriers when running the fast path means
re-introducing the main performance bottleneck of the fall-
back scheme into the fast path. Consequently, the perfor-
mance of the hybrid in QSBR mode would be similar to its
performance in HP mode, what we initially set out to avoid.

The challenge is to eliminate the traversal memory barri-
ers when the system operates in the fast path (QSBR), while
optimistically updating the hazard pointer values. We ad-
dress this challenge by designing Cadence, a hazard pointer
inspired memory reclamation scheme which does not require
per-node memory barriers upon traversal. Cadence is pre-
sented in § 5. Then, in § 6 we show that Cadence is a good
candidate for the fallback scheme in QSense, preserving the
safety properties of the algorithm, while not hindering the
performance of QSBR in the fast path.

4.2 QSense in a Nutshell

QSense is a hybrid scheme, unifying the high-performing
approach provided by QSBR and the robustness provided by
hazard pointers. QSense is an adaptive scheme, using two
paths (a fast path and a fallback path) and automatically
deciding when it should switch paths. QSBR constitutes the
fast path and is used in the common case, when all processes
are active in the system. As QSBR was presented in prior
work [6, 14], we omit the implementation details.

When one or more processes experience prolonged de-
lays (e.g. blocked in I/O), there is a risk of exhausting the
available memory, because quiescence is not possible. In
this case, Cadence serves as a safety net. Cadence guar-
antees that QSense continues to function within a bounded
amount of memory. Cadence eliminates the expensive per-
node memory fences needed for data structure traversal, the
main drawback of the original hazard pointer scheme. In-
stead of using memory barriers, Cadence forces periodic con-
text switches in order to make outstanding hazard pointer
writes visible. Since the cost of expensive operations (in our
case context switches) is spread across a large number of
operations, Cadence achieves scalability that is up to three
times as good as the original hazard pointer scheme, while
maintaining the same safety guarantees. Moreover, using
Cadence as the fallback path allows the elimination of mem-
ory barriers when running in the fast path. QSense auto-
matically detects the need to switch to the fallback scheme
and triggers the switch through a shared flag. Similarly,
when all the processes become active again in the system
(e.g. return from a routine incurring a long delay), QSense
re-establishes the quiescence-based reclamation mechanism

automatically.

Applicability. QSense can be used with any data structure
for which both the fast path and the slow path are applica-
ble. Since Cadence does not introduce any additional usabil-
ity constraints compared to hazard pointers, and QSBR can
be applied to virtually any data structure, this means that
QSense can be used with any data structure for which hazard
pointers are applicable. Applying QSense to a data struc-
ture is done in three steps: (1) Call manage_gsense_state
to declare a quiescent state (e.g. between every two data
structure operations). The function automatically handles
amortizing overhead by executing the memory reclamation
code only once every @ calls to manage_qgsense_state (where
Q is the quiescence threshold introduced in § 3.1). (2) Fol-
lowing the methodology from § 3.2, protect hazardous ref-
erences by calling assign_HP. (3) To reclaim memory, call
free_node_later when free would be called in a sequential
setting. An example of how to apply QSense to a concurrent
linked list can be found in the appendix.

S. CADENCE

In this section, we present Cadence, our fallback path for
QSense. We first describe Cadence as a stand-alone mem-
ory reclamation technique and then show how we integrate
Cadence with QSBR in our QSense scheme.

5.1 The Fallback Path

Cadence builds upon hazard pointers, eliminating the need
to use per-node memory barriers when traversing the data
structure. Note that while Cadence is the fallback path in
QSense, it could also be used as a stand alone memory recla-
mation scheme. Algorithm 3 presents the pseudocode of the
main functions of Cadence. This scheme is based on two
new concepts: rooster processes and deferred reclamation.
1. Rooster processes are a mechanism used to ensure that

all new hazard pointer writes become globally visible after

at most a period of time T (the sleep interval, a config-
urable parameter). For every core or hardware context
on which a worker process is running, we create a rooster
process and pin it to run on that core. Every rooster pro-
cess has the task of sleeping for a predetermined amount
of time T', waking up, and going back to sleep again, in an
infinite loop. In this way, every worker process is guaran-
teed to be switched out periodically, and thus the worker
processes’ outstanding writes, including hazard pointers,
will become visible to the other processes (as detailed in

Note on assumptions below). Therefore, for every time ¢,

all hazard pointers that were published before time t — T’

are visible to all processes.

2. Deferred reclamation. Figure 4 illustrates the main
idea of how rooster processes and deferred reclamation
work together. By verifying that a node n is old enough
(pseudocode shown in Algorithm 3, lines 35-39), the re-
claiming process makes sure that at least one rooster pro-
cess wake-up has occurred since n was removed from the
data structure and thus that any hazard pointers protect-
ing n have become visible. If n is removed by a process
at time to, then at time ¢t > to + T, any potential hazard
pointers protecting n are visible. This is because these
hazard pointers were written before to (by the methodol-
ogy in § 3.2) and at least one rooster process wake-up has
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Figure 4: Rooster processes and deferred reclamation

occurred between to and ¢t. Therefore, at ¢, the reclaiming
process can safely free the node’s memory provided that
no hazard pointers are protecting it.

1 // **x Cadence #**x*

2 timestamped_node {

3 node* actual_node;

4 timestamp time_created;

5 timestamped_nodex next;};

6 HP_array HP; // Shared HP array

7

g8 void assign_HP(nodex* target, int HP_index) {
9 // Assign hazard pointer to target node.
10 HP[HP_index] = target;

11 // No need for a memory barrier here.
12}

13

14 void scan(timestamped_node* removed_nodes_list)
15 {

16 // Insert non-null values in HP_in_use.

17 HP_array HP_in_use = get_protected_nodes(HP);
18 // Free non-hazardous nodes

19 timestamped_node* tmplist;

20 tmplist = removed_nodes_list;

21 removed_nodes_list = NULL;

22 timestamped_node* cur_node;

23 while (tmplist != NULL) {

24 cur_node = tmplist;

25 tmplist = tmplist->next;

26 // Deferred reclamation

27 if (!is_old_enough(cur_node) |

28 HP_in_use.find(cur_node->actual_node)) {
29 cur_node->next = removed_nodes_list;

30 removed_nodes_list = cur_node;

31 } else {

32 free(cur_node->actual_node);

33 free(cur_node);

34} } 3}

36 boolean is_old_enough(timestamped_node=*
wrapper_node) {

37 current_time = get_current_time();

38 age = current_time - wrapper_node->
time_created;

39 return (age >= (ROOSTER_SLEEP_INTERVAL +
EPSILON));

40 )

Algorithm 3: Main functions of Cadence

When a node n is removed from the data structure (when
the free function would be called in a sequential setting), n
is timestamped and placed inside the removing process’ local
list of nodes awaiting reclamation. Once every R such node
removals, a scan of the list is performed (see Algorithm 3,
lines 14-33). A scan inspects the process’ removed nodes

list and frees those nodes that are safe to reclaim (retired).
Nodes that are old enough and are not protected by any haz-
ard pointers are freed; hazard pointers of all the worker pro-
cesses are checked, not only the reclaiming process’. The
rest of the nodes — which are either not old enough, or
are protected — are left in the removed nodes list, to be
reclaimed at a later time (Algorithm 3, lines 26-30).

From the programmer’s perspective, using Cadence is es-
sentially identical to using hazard pointers. The difference is
that no memory barriers are needed after publishing a new
hazard pointer, thus making Cadence up to three times as
fast than the original hazard pointers (as we will see in § 7).
Algorithm 4 shows the steps taken when accessing a node,
when Cadence is used.

1 Read reference to node n

Assign a hazard pointer to n

Performa memorybarrier

Check if n is still valid

Access n's memory

6 Release reference to n (e.g. move to successor node)

AW N

o

Algorithm 4: High-level steps taken when accessing a
node in a data structure using Cadence.

Note on assumptions. For correctness, Cadence relies on
the following assumptions. First, we assume that the only
instruction reorderings possible are the ones between loads
and subsequent reads, as in the TSO model. We assume this
in § 3.2 to determine the memory barrier placement and in
§ 5.1 to justify that the memory barrier is no longer needed.

Second, we require that a context switch implies a memory
barrier for the process being switched out. This is necessary
to guarantee that hazard pointers published by a process p
become visible at the latest right after p is switched out by
a rooster process. The low-level locking required to perform
a context switch automatically provides a memory barrier
for the process being switched out. Although this property
is architecture dependent and might not be generally true
if architectures change in the future, it does hold for most
modern architectures [19, 21].

Third, we assume that rooster processes never fail. This is
a reasonable assumption, considering that rooster processes
do not take any steps that could produce exceptions: their
only actions are going to sleep and waking up. However,
small timing inconsistencies might appear, in the form of
(1) rooster processes possibly taking slightly longer than T
between wake-ups, i.e. “oversleeping” (it is reasonable to
assume that this difference is small, since modern operat-
ing systems use fair schedulers [20]) and (2) different cores
seeing slightly different times when creating and comparing
timestamps. We make the assumption that these inconsis-
tencies are bounded and introduce a tolerance € to account
for them. We use € explicitly, as shown in Figure 4: to verify
if a removed node n is old enough, we compute the differ-
ence between the current value of the system clock and n’s
timestamp. If the time difference is larger than 7" + ¢, then
n is old enough.

Note that we are making no assumptions about the worker
processes (i.e. the processes performing read or write oper-
ations on the data structure). In particular, they may be
delayed for an arbitrary amount of time. Therefore, the
model under which our construction is correct and wait-free



is partly asynchronous (the worker processes) and partly
synchronous (the rooster processes).

5.2 Merging the Fast and Fallback Paths

In QSense, from a high-level design point of view, the
fast path (QSBR) and the fallback path (Cadence) can be
viewed as two separate entities, functioning independently.
The switch between the two modes is triggered via a shared
flag, called the fallback-flag. However, even if the two modes
of operation are logically distinct, there are elements of the
two schemes that have been merged or that are continuously
active. Even if QSense is running in the fast path, hazard
pointers still have to be set. As explained in § 4.1, this is nec-
essary because in the case of a switch to the fallback path,
hazardous references need to be protected. Furthermore, for
similar reasons, timestamps need to be recorded when a node
is removed, regardless of the mode of operation of QSense.
Moreover, when running in fallback mode and performing a
scan, QSBR’s limbo_list (with all three epochs) becomes
the removed_nodes_list scanned by Cadence. Pseudocode
for the main functions used by QSense is shown in Algo-
rithm 5 (unless stated otherwise, all pseudocode references
in this section refer to Algorithm 5).

Any of the worker processes can trigger the switch between
the fast and fallback paths. The switch can be split into the
following sub-problems:

1. Detecting the need to switch to the fallback path.
QSense triggers the switch from QSBR to Cadence when
a process detects that its removed (but not freed) nodes
list reached a size C, where C' is a parameter of the system
(lines 53-60). Reaching a large removed nodes list size
for one process indicates that quiescence was not possible
for an extended period.

2. Switching from the fast path to the fallback path.
QSense signals the switch from QSBR to Cadence through
the fallback-flag. The process that has detected the need
for the switch sets the shared fallback-flag. The fallback-
flag is checked by all processes when performing node
reclamation (i.e. calling the free_node_later function,
shown in lines 35-60), so the path switch will eventu-
ally be detected by all active processes (line 41). If the
flag is set to fallback mode, a hazard pointer style scan
as described in § 5.1 is immediately performed to reclaim
nodes (lines 42-47; scan shown in Algorithm 3).

3. Detecting when it is safe to switch back to the
fast path. To determine when to switch from the fall-
back path to the fast path we need to verify if all processes
have once again become active in the system. While the
system operates in fallback mode, there is at least one
process which cannot participate, because using the fall-
back path implies that one of the processes was delayed
and quiescence was not possible. To assess whether all
the processes have become active in the meantime, we
keep an array of presence-flags (one flag per worker pro-
cess), which is reset periodically. After each operation
(or batch of operations) on the data structure, processes
set their corresponding presence-flags to true, to signal
that they are active (line 18). Then, processes scan the
presence-flag array (line 26). If one of the processes sees
all of the presence flags set to true, it infers that all pro-
cesses might be active again in the system and a switch
from fallback path to fast path is attempted.

4. Switching from the fallback path to the fast path.

15

23

26
27
28
29
30
31
32
33
34
35
36
37
38

39
40

42
43
44
45

46
47

59

//*x*x QSENSE interface x*x*

void manage_qsense_state();

void assign_HP(node* target, int HP_index);
void free_node_later(node* n);

// One limbo list per epoch
timestamped_node* limbo_list[3];
int call_count = 0;

int free_node_later_call_count = 0;

// *xx QSENSE main functions*xx
void manage_qgsense_state(){
// Batch operations
call_count += 1;
if (call_count % QUIESCENCE_THRESHOLD
return;
}
// Signal that the process is active
is_active(process_id);
seen_fallback_flag = fallback_flag;
if (seen_fallback_flag == FAST_PATH) {
// Common case: run the fast path
quiescent_state();
prev_seen_fallback_flag = FAST_PATH;
} else if (seen_fallback_flag == FALLBACK_PATH
) A
// Try to switch to fast path
if ( all_processes_active() ) {
// Trigger switch to the fast path
fallback_flag = FAST_PATH;
prev_seen_fallback_flag =
quiescent_state();
3
prev_seen_fallback_flag =
3}

= 0) {

FAST_PATH;
FALLBACK_PATH;

void free_node_later (node* n) {
// Create timestamped wrapper node
timestamped_nodex wrapper_node = alloc(size(
timestamped_node));
wrapper_node ->actual_node = n;
wrapper_node->time_created = get_current_time
O

limbo_list[my_current_epoch].add(wrapper_node)

seen_fallback_flag = fallback_flag;

if (seen_fallback_flag == FALLBACK_PATH &&
++free_node_later_call_count % R == 0) {

// Running in fallback mode. All three epochs

in limbo list are scanned.

scan(limbo_list[@]); scan(limbo_list[1]);
scan(limbo_list[2]);

prev_seen_fallback_flag = FALLBACK_PATH;

} else if ( prev_seen_fallback_flag ==

FALLBACK_PATH &&

seen_fallback_flag == FAST_PATH) {
// QSBR mode switch triggered by another
process.

quiescent_state();
prev_seen_fallback_flag = FAST_PATH;

} else if (size(limbo_list) >= C &&

prev_seen_fallback_flag == FAST_PATH) {

// Trigger switch to fallback mode:
fallback_flag = FALLBACK_PATH;
prev_seen_fallback_flag = FALLBACK_PATH;
scan(limbo_list[@]); scan(limbo_list[1]);
scan(limbo_list[2]);

3}

Algorithm 5: Main QSense functions



If QSense runs in fallback mode, but all processes have
become present in the meantime, the possibility to switch
from Cadence back to QSBR is detected, as described
above. Similarly to switching from the fast path to the
fallback path, the switch in the opposite direction is sig-
naled through setting the value of the shared fallback-flag

and immediately declaring a quiescent state (lines 27-30).

If the switch to the fast path was already triggered by an-

other process, the new value of the fallback-flag will be

seen upon retiring a node (in the free_node_later func-

tion, lines 48-52).

The current version of QSense does not support dynamic
membership: processes cannot join or leave the system as an
algorithm is running. Also, if a process crashes and never
recovers, QSense will switch to fallback mode and stay there
forever. Both of these issues can be addressed by adding
mechanisms for processes to announce entering or leaving
the system and for evicting participating processes that have
not quiesced in a long time. We leave these extensions for
future work.

6. CORRECTNESS & COMPLEXITY

In this section we argue for the safety and liveness of Ca-
dence and QSense. For completeness, safety and liveness
proofs for QSBR can be found in the appendix.

6.1 Cadence

PROPERTY 1. (SAFETY) If at time t, a node n is identi-
fied in the scan function as eligible to be reused by process
p, then no process q # p holds a hazardous reference to n at
time t.

PROOF. Assume by contradiction that (1) n is identified
as eligible for reuse by p at time ¢ and (2) there exists another
process ¢ that holds a hazardous reference to n at t. Then
by (1) and the scan algorithm, at time ¢, p inspects n’s
timestamp and finds that n is old enough, meaning that n
has been removed from the data structure at a time ¢’ < t—T
(where T is the rooster process sleep interval, including the
tolerance €). Therefore, by Condition 1 in § 3.2, ¢ has had
a hazard pointer hp dedicated to m since a time t” < ¢'.
Since t — t” > T, the write by ¢ to hp at t” is visible to
p at time t. Therefore, by the scan algorithm, p will not
identify n as eligible for reuse (since it is protected by a
hazard pointer). [

LEMMA 1. For any process p, at the end of a call to scan
by p, p can have at most N K+T retired nodes in its removed
nodes list, where N is the number of processes, K 1is the
number of hazard pointers per process and T is the rooster
process sleep interval.

PRrROOF. At the time of the scan, there can be at most
NK nodes protected by hazard pointers (since NK is the
total number of hazard pointers), and there can be at most
T nodes that are not yet old enough (for clarity, we assume
that p can remove at most one node per time unit). [

PROPERTY 2. (LIVENESS) At any time, there are at most
N(K + T + R) retired nodes in the system, where R is the
number of nodes a process can remove before it invokes scan.

ProOOF. Fix a process p and examine how many nodes can
be removed by p but not yet reclaimed. Using Lemma 1, it

follows that between two scan calls, the number of nodes in
p’s removed nodes list can grow up to N K+T+ R, before the
next scan call is triggered, lowering the size of the removed
nodes list to NK + T again. So the maximum size of a
process’ removed nodes list is NK + T + R, where the NK
term comes from the nodes that are protected by hazard
pointers. When considering the entire system, we can have
at most VK HP-protected nodes, and at most N(T + R)
non-HP-protected nodes, so the maximum number of retired
nodes is N(K +T+ R). O

6.2 QSense

PROPERTY 3. (SAFETY) If a node n is identified at time
t by process p as eligible for reuse, then no process q # p
holds a hazardous reference to n.

PROOF. Since all processes keep track of both hazard
pointers (exactly as in Cadence) and of epochs (exactly as
in QSBR), regardless of whether the system is in the fast
path or in the fallback path, the safety guarantees of both
methods are maintained. [J

For the next property, we define a legal value of C, the
threshold introduced in step 1 of § 5.2. C refers to the size
of the removed nodes list and is used for determining when
to switch to the fallback path. We say that C' is legal if
C > max(mQ,NK + T, (K + T + R)/2), where Q is the
quiescence threshold introduced in § 3, m is the maximum
number of nodes that can be removed by a single operation,
and N, K and T are as in § 6.1. Picking a legal value for C
is always possible since C' is a configurable parameter.

PROPERTY 4. (LIVENESS) If C' has a legal value then, at
any time, there can be no more than 2NC' retired nodes in
the system.

PROOF. Assume by contradiction that there is a time ¢
when there are U > 2N retired nodes in the system. Then
there exists a process p such that at time ¢, p has more than
2C retired nodes.

Let t1 < t be the time of the last quiescent state called
by p before t. Since t1, p has completed at most @ oper-
ations (otherwise p would have gone through another qui-
escent state before t) and has therefore removed at most
mQ nodes. Therefore, at t1, p has at least 2C — mQ > C
(using the fact that C' > mQ) retired nodes and therefore
triggers a switch to the fallback path. This means that p
will call a hazard pointers scan before starting any other
operation, by construction of the QSense algorithm (step 2
in § 5.2). Let t2 be the time of this first scan after ¢1. After
this scan is complete, p can have at most NK + T retired
nodes, by Lemma 1. If t > to, then at ¢, p can have at most
NK + T + mQ < 2C retired nodes (NK + T at most at
the end of the scan plus m@ because p has completed at
most @ operations since t2), a contradiction. Therefore it
must be the case that {1 < ¢t < t2. Since the scan at t» is
called immediately after the quiescent state at t1, without
other operations being started by p (by step 2 in § 5.2), the
number of retired nodes does not increase between ¢, and ¢.
So at t1, p has more than 2C retired nodes. We now show
this to be impossible.

Let t3 be the time of the last quiescent state called by p
before t1. Since p performed @ operations between t3 and
t1, it follows that at t3, p had at least 2C' — m@Q > C retired



nodes, thus triggering a switch to the fallback state and a
scan at time t4, t3 < t4 < t1. After this scan, p had at most
NK + T retired nodes and therefore, at t1, p had at most
NK +T +m@ < 2C retired nodes, a contradiction because
we had shown that p had more than 2C retired nodes at t;.
This completes the proof. []

7. EXPERIMENTAL EVALUATION

We first describe the experimental setup of our evalua-
tion. We proceed with presenting the methodology of our
experiments and we finally discuss our evaluation results.

7.1 Experimental Setting

We apply QSense to a lock-free linked list [24], a lock-free
skip list [11] and a binary search tree [27]. The base im-
plementations of these data structures are taken from AS-
CYLIB [8]. The code to reproduce our experiments is avail-
able at https://github.com/zablotchi/qsense. We com-
pare the performance of QSense to that of QSBR, HP and a
leaky implementation. Our evaluation was performed on a
48 core AMD Opteron with four 12-core 2.1 GHz Processors
and 128 GB of RAM, running Ubuntu 14.04. Our code was
compiled with GCC 4.8.4 and the -03 optimization level.

Fach experiment consists of a number of processes con-
currently performing data structure operations (searching,
inserting or deleting keys) for a predefined amount of time.
Each operation is chosen at random, according to a given
probability distribution, with a randomly chosen key. An
initialization is performed before each experiment, where
one process fills the data structure up to half the key-range.

7.2 Methodology

The purpose of our evaluation is two-fold. First, we aim
to determine whether QSense performs similarly to QSBR in
the base case. It is important to highlight the base case be-
havior of QSense (i.e. when no processes undergo prolonged
delays), since this is the expected execution path in most
scenarios. To this end, we run a set of tests emphasizing
the scalability with respect to the number of cores. For this
first category of tests, the system throughput is recorded as
a function of the number of cores (each process is pinned to
a different core). The number of cores is varied from 1 to
32, the operation distribution is fixed at 50% reads and 50%
updates (i.e. 256% inserts, 25% deletes) and the key range
sizes are fixed at 2000 for the linked list, 20000 for the skip
list and 2000000 for the binary search tree.

The second goal of the evaluation is to examine the be-
havior of QSense in case of prolonged process delays. To
this end, we run a set of tests that include periodic process
disruptions and measure the system throughput as a func-
tion of time. We observe the switch from QSBR to Cadence
when the system senses that one of the processes was delayed
and the switch back to QSBR when all the processes became
active in the system again. We seek to trigger a switch be-
tween the paths (QSBR to Cadence or oppositely) every 10
seconds. To induce the system switch, every 20 seconds one
of the processes is delayed for a period of 10 seconds. The
operation distribution and key range sizes are fixed as above
and the number of processes is fixed at 8. As before, the data
structure is filled up to half of its capacity, processes start
simultaneously, then run for 100 seconds. The throughput is
recorded as a function of time and is measured every second.

7.3 Results

The top row of Figure 5 shows the behavior of QSBR,
QSense, HP and None (the leaky implementation) on the
linked list, on the skip list and on the binary search tree
in the common case, when no process delays occur. The
throughput of the algorithms is plotted as a function of
number of cores (higher is better). Due to its amortized
overhead, QSBR maintains a 2.3% overhead on average com-
pared to None. As expected, HP achieves the lowest over-
all throughput, with an average overhead of 80% over the
leaky implementation. This is due to the expensive per-node
memory barriers used upon data structure traversal. QSense
achieves two to three times better throughput than HP and
has an average overhead of 29% over None. While close
to QSBR in all scenarios, QSense does not match its per-
formance. Even if QSense follows a quiescence-based recla-
mation scheme in the base case, it still has to maintain the
hazard pointer and timestamp values updated. This induces
increased overhead, compared to QSBR. Despite the fact
that no memory barriers are used upon updating the haz-
ard pointers, the process-local variable updates alone add
sequential complexity. This explains why the performance
gap between QSBR and QSense is larger for the skip list
than for the linked list, or the tree: whereas the linked list
only uses two hazard pointers per process and the tree uses
six, the skip list can use up to 35 hazard pointers per process.

QSense does not completely match the performance of
QSBR but, unlike QSBR, it can recover from long process
delays. The bottom row of Figure 5 illustrates this. The
throughput of QSense is shown alongside QSBR and HP. In
this experiment, one of the processes is delayed in the 10-20,
30-40, 50-60, 70-80 and 90-100 time intervals. A similar pat-
tern can be observed for all three data structures. Note that
the first time a process is delayed (after 10 seconds), QSBR
(shown in orange) can no longer quiesce. Consequently, the
system runs out of memory and eventually fails. In con-
trast, QSense (shown in green) continues to run. When qui-
escence is no longer possible, QSense switches to Cadence
and then switches back to QSBR as soon as the delayed
process becomes active. The sequence of fallbacks and re-
coveries is continued throughout the entire experiment run.
As intended, the throughput achieved by QSense is similar
to QSBR during the fast path. When QSense is running in
the fallback path, it can be seen that Cadence outperforms
the original hazard pointer scheme by a factor of 3x on aver-
age, because it avoids per-node memory barriers upon data
structure traversal.

8. RELATED WORK

Reference counting (RC) [9, 12, 15, 30] assigns shared
counters to each node in the data structure, representing
the number of references to the nodes held at every given
time. When a node’s counter reaches zero, the node is safe to
reclaim. Though easy to implement, RC requires expensive
atomic operations on every access to maintain consistent
counters.

Pointer-based techniques. Hazard pointers (HP) [25], or
Pass-the-Buck [16] rely on the programmer marking nodes
that are unsafe to reclaim before performing memory ac-
cesses to their locations. A reclaiming process must ensure
that a node it is about to deallocate is not marked. An
advantage of these schemes is that they maintain the lock-
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Figure 5: Scalability of memory reclamation on a linked list (2000 elements), a skip list (20000 elements) and a BST (2000000
elements) with 50% updates (top row); Path switching with process delays (8 processes, 50% updates) (bottom row).

free property of data structures. Yet, their implementation
requires a memory fence instruction to be issued for every
node traversed, which significantly hinders the performance
of read-only operations [14].

Improvements on HP. Morrison et al. [26] introduce a
new, strengthened version of the Total Store Ordering (T'SO)
memory model [28] in which there is a known bound on the
time it takes for writes in the store buffer to become visi-
ble in main memory. A variant of HP which does not need
memory barriers is proposed. While this solution is similar
to Cadence, it relies on hardware guarantees that do not ex-
ist yet in practice. McKenney et al. [22] describe a method
to force quiescent states by creating a high-priority daemon
process that executes on each CPU in turn, but this method
has never been applied to HP. Finally, Aghazadeh et al. [1]
provide an improvement on HP by reducing the number of
hazard-pointer-to-node comparisons per scan call to one, at
the cost of increasing the amount of time between node re-
moval and node reclamation.

Epoch-based techniques. These techniques [13, 14, 23]
rely on the assumption that live processes will eventually
drop references they hold on a node (i.e. if a reclaiming pro-
cess waits long enough, all other processes will eventually
stop holding references to the deleted nodes, which will thus
become safe to reclaim). Though epoch-based techniques
have good performance [14], their main drawback is that
they are blocking.

Ad-hoc techniques. Drop the Anchor (DTA) [5] combines
timestamping with a HP-inspired technique. Processes use
timestamps to track their progress and they place anchor
pointers in the data structure upon traversal. When a pro-
cess delay occurs, the other processes work together to re-
construct the data structure using the anchors. Similarly
to QSense, DTA spreads the cost of expensive operations
across a large number of operations. However, the applica-
bility of DTA to other data structures, besides the linked
list implementation provided by the authors, is unclear. In
contrast, QSense is as easy to apply as HP, for which a well
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established methodology exists.

DEBRA+ [6] uses a variant of QSBR when processes are
making progress in the common case and has a slower mech-
anism for treating delays. When a delayed process is pre-
venting other processes from quiescing for too long, the slow
process is neutralized, using an OS signal. Upon resum-
ing execution, a neutralized process runs special recovery
code to clean up any inconsistencies it might have left in the
data structure before it was neutralized. Like QSense, DE-
BRA+ has a fast path and a recovery path. Unlike QSense,
DEBRA+ relies on OS-specific instructions. Moreover, DE-
BRA+ is only easy to apply to lock-free data structures that
have (1) an explicit help function and an explicit descriptor
record containing all the information required by the help
function and (2) operation code that follows a certain pat-
tern (quiescent preamble — non-quiescent body — quiescent
postamble). It is unclear how to extend DEBRA+ to state-
of-the-art algorithms not satisfying the above properties.

Automatic memory reclamation. ThreadScan [3] is an
automatic technique for concurrent memory reclamation.
Processes add references to removed nodes to a shared delete
buffer. Periodically, a scan is initiated by sending a signal
to all processes. Each process examines its stack and regis-
ters and marks the corresponding entry in the delete buffer
if there is a match, to indicate that the node is in use. Af-
ter all processes complete the scan, unmarked nodes can be
freed. ThreadScan amortizes the overhead of memory recla-
mation, similarly to QSense. Unlike QSense, ThreadScan
has the advantage of being completely automatic. However,
ThreadScan makes critical assumptions about the synchrony
of its worker processes and about the layout of process stacks
in memory. Cohen and Petrank [7] present an automatic
memory reclamation scheme for lock-free data structures,
inspired by mark-and-sweep garbage collection. This tech-
nique relies on the data structure operations being in nor-
malized form [29]. While such implementations of lock-free
data structures exist, there is no clear methodology on how
to normalize lock-free data structure implementations.



HTM techniques. Another direction for concurrent mem-
ory reclamation is the use of Hardware Transactional Mem-
ory (HTM) [17]. Dragojevic et al. [10] use HTM to produce
faster and simpler solutions to a common subproblem in
prior memory reclamation techniques. StackTrack [2] uses
the bookkeeping facilities of HTM directly to track node ref-
erences. The downside of this class of solutions is that they
rely on the presence of HTM on the target machine, which
is rare in practice.

9. CONCLUSION

QSense offers a fast, robust and highly applicable solution
to the concurrent memory reclamation problem. Whenever
possible, the fast QSBR technique is used. In case of pro-
longed process delays, QSense switches to Cadence, a novel
hazard pointer inspired scheme, that is robust to process
delays. QSense can be integrated in data structures mak-
ing use of the popular hazard pointer based schemes almost
effortlessly, a significant advantage from the applicability
standpoint. We show experimentally that QSense achieves
performance similar to the highest-performing techniques in
the common case (i.e. when all worker processes are active
in the system), while tolerating process delays.
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APPENDIX

A. QSBR
CORRECTNESS AND COMPLEXITY

LEMMA 2. If the time interval [a,b] is a grace period, af-
ter time b mo process holds hazardous references to nodes
that were removed before time a.

PROOF. Let [a,b] be a grace period and consider a node
n that was removed at time ¢t < a. By the definition of
the removed state, this means that no process can obtain
a reference to n after a, but it is possible for processes to
still hold references to n that they obtained before t. By the
definition of a grace period, all processes will pass through a
quiescent state between a and b. Therefore, for each process
p there exists a time ¢;, a < t; < b, when p does not hold
any reference to n. Thus, at b, none of the processes hold
any references (and in particular, hazardous references) to

n. O

LEMMA 3. For any process p, at the time when p updates
its local epoch from e; to eq, no process holds any hazardous
references to the nodes already present in p’s eq™ limbo list.

ProOOF. Note that all epoch updates are done modulo
three (because there are three logical epochs). Without loss
of generality, suppose process p passes through a local epoch
cycle 0 - 1 — 2 — 0. We want to show that when p reaches
epoch 0 for the second time, no processes hold any hazardous
references to the nodes in p’s limbo bag 0.

We claim that the system goes through a grace period
[a,b] starting just before the quiescent state during which
p updates its local epoch from 0 to 1 and ending just after
the transition by p of its local epoch from 2 to 0. Note that
this claim implies, using Lemma 2, that after p’s local epoch
becomes 0 again, no processes hold hazardous references to
the nodes in p’s limbo bag 0, as required to complete the
proof of Lemma 3.

We now proceed to prove the claim. Assume that [a,b]
is not a grace period. It follows that there exists a process
g that does not go through a quiescent state during [a, b].
Therefore, we know that the local epoch of g stays the same
during the time interval [a, b]. Since during [a, b], p updates
its local epoch from 0 to 1, then from 1 to 2 and then from
2 to 0, there exist times t1 < t2 < t3, t1,t2,t3 € [a,b] such
that eq = 1 at t1, e¢ = 2 at t2 and eq = 0 at t3. Since some
process transitions the global epoch from 1 to 2 between ¢;
and t2, it must be the case the the epoch of ¢ is equal to 1
(otherwise the update cannot be completed). But this means
that later during [a, b] the global epoch cannot be advanced
from 2 to 0, because there exists at least one process (q)
whose local epoch is not equal to 2. We have reached a
contradiction. This completes the proof of the claim and of
Lemma 3. [

PROPERTY 5. (SAFETY) If at time t, node n is identified
by process p as eligible for reuse, then no process holds any
hazardous references to n at time t.

Proor. This follows from Lemma 3 and from the fact
that a process p will identify a node n as eligible for reuse if
and only if p has just updated its local epoch from e; to eq
and n is in p’s eg'™ limbo list. [

12

B. QSENSE ON A LINKED LIST

Algorithm 6 and Algorithm 7 show an example of how
QSense can be applied to a lock-free concurrent linked-list [13].
The lines of code needed to use QSense are highlighted (in
blue). First, in the beginning of each list operation, the
manage_qgsense_state function is called. This function takes
care of switching between QSBR and Cadence, if necessary,
and invoking a quiescent state for every batch of performed
operations. Second, hazard pointers are assigned to protect
nodes when the list is traversed, in the same way one would
use the original hazard pointer technique. The only differ-
ence is that the memory barrier between the hazard pointer
assignment and the verification step is no longer needed.
Finally, free_node_later should be called instead of free,
when a node is removed.

Node* search(Node* set_head,
manage_qgsense_state();
Node xleft_node, *right_node;

retry_search:
left_node = set_head;
right_node = set_head->next;
while (True) {

//Protect node by hazard pointer and
perform verification, without the
memory barrier

9 assign_HP(left_node,

right_node, 1);

if (right_node != left_node->next) {
goto retry_search;

Key key) {

N

0w N o o

0); assign_HP(

12 }

if (right_node->key >= key) {
break;

15 }

left_node =

right_node =

right_node;
unmarked(right_node->next);
18 }
return right_node;
20 }
Boolean insert(Node xlist_head, Key key) {
manage_qgsense_state();
do {

Node* left_node;

Node* right_node = search_and_cleanup(

list_head, key, &left_node);
if (right_node->key == key) {
return False;

//Allocate a node with the allocator of
your choice
Node* node_to_add =
right_node);
if (CAS(&left_node->next, right_node,
node_to_add) == right_node) {

return True;

31 new_node (key,

32

33
34 }
35 //Node was not inserted;
directly.
free(node_to_add);
} while (True);

free the node
36

38 }

Algorithm 6: QSense on a concurrent linked-list (I)
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21
22
23
24
25

26
27

28

43

44
45

Boolean delete(Node xlist_head, Key key) {
manage_qgsense_state();

Node* cas_result;
Node* unmarked_node;
Nodex left_node;
Node* right_node;

do {

right_node = search_and_cleanup(list_head,

key, &left_node);
if (right_node->key != key) {
return False;
}
//Try to mark right_node as logically
deleted

unmarked_node = unmarked(right_node->next);
Node* marked_node = marked(unmarked_node);

cas_result = CAS(&right_node->next,
unmarked_node, marked_node);
} while (cas_result != unmarked_node);

if (lunlink_right(left_node, right_node)) {
search_and_cleanup(list_head, key, &
left_node);
3
return True;

}

Boolean unlink_right(Nodex left_node, Nodex
right_node) {

Node* new_next = unmarked(right_node->next);
Nodex old_right_node = CAS(&left_node->next,

right_node, new_next);
Boolean removed = (old_right_node ==
right_node);
if (removed){
//call instead of free
free_node_later (old_right_node);
3
return removed;

}

Node* search_and_cleanup (Node* set_head, Key
key, Node** left_node_ref) {
Node *left_node, *xright_node;
retry_search_cleanup:
left_node = set_head;
right_node = set_head->next;
while (True) {

//Protect node by hazard pointer and
perform verification, without the
memory barrier

assign_HP(left_node, @); assign_HP(
right_node, 1);

if (right_node != left_node->next) {

goto retry_search_cleanup;

}

if (!is_marked(right_node->next)) {

if (right_node->key >= key) {
break;

}

left_node = right_node;

1} else {

//Perform cleanup of marked node

unlink_right(left_node, right_node);

}

right_node = unmarked(right_node->next);

}
*left_node_ref = left_node;
return right_node;

}

Algorithm 7: QSense on a concurrent linked-list (II)
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