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bolic conservation laws, resulting in a numerical method of arbitrarily high order
to solve problems with discontinuous solutions. Thanks to the mesh-less property
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We focus on multiquadric radial basis functions and propose a simple strategy
to choose the shape parameter to control the balance between achievable accu-
racy and the numerical stability. We also develop an original smoothness indicator
which is independent of the RBF for the WENO reconstruction step. Moreover, we
introduce type I and type II RBF-WENO methods by computing specific linear
weights. The RBF-WENO method is used to solve linear and nonlinear problems
for both scalar and systems of conservation laws, including Burgers equation, the
Buckley-Leverett equation, and the Euler equations. Numerical results confirm the
performance of the proposed method. We finally consider an effective conservative
adaptive algorithm that captures moving shocks and rapidly varying solutions well.
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the more complex Euler equations.
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SB-MATHICSE-MCSS, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015
Lausanne, Switzerland



2 Caterina Bigoni, Jan S. Hesthaven

1 Introduction

Finite volume methods (FVMs) are used for solving hyperbolic conservation laws
across many scientific and engineering fields. Indeed, the fundamental principle of
conservation applies to the conservation of mass, momentum, energy, etc. Mono-
tone FVMs satisfy all entropy conditions and therefore converge to the unique
entropy solution in a non-oscillatory manner. However, monotone methods are at
most first order accurate (see [25] for a detailed description). In general, high-order
linear FVMs ensure high-order accuracy in smooth regions of the solution, but in-
troduce spurious oscillations in regions of low regularity, e.g., in the neighborhood
of shocks and steep gradients. This phenomenon, known as the Gibbs phenomenon,
is often unacceptable and must be eliminated, e.g., in the approximation of a den-
sity or a pressure, such oscillations may cause these to become negative and thus
unphysical. The need to formulate numerical methods for conservation laws which
enable arbitrary high-order accuracy without artificial oscillations has led to the
development of the Essentially Non-Oscillatory (ENO) methods, introduced in
1987 by Harten and collaborators [21]. These schemes, together with the more
recent Weighted ENO (WENO) methods, initiated in Liu et al. [26] and further
developed by Jiang and Shu [24], are powerful schemes for the discretization of
the spacial variable. In past years these methods, coupled with strong stability
preserving (SSP) Runge-Kutta methods [17] for the time discretization, have re-
ceived considerable attention as a powerful tool for solving nonlinear problems
comprising both strong discontinuities and complex smooth solution features.

In the FVM the computational domain is partitioned into cells (control vol-
umes) and the solution is expressed in terms of cell averages of the solution on
the control volumes themselves. In this framework, the ENO idea is to recursively
select a stencil, i.e., a collection of contiguous cells, in the neighborhood of each
control volume and reconstruct the unknown solution through polynomial interpo-
lation based on the stencil’s cell average values. The stencil selection is performed
using Newton divided differences in such a way that possible discontinuities of the
solution are avoided and the chosen stencil is “optimal” in the sense of being the
least oscillating. In the more sophisticated WENO reconstruction procedure, all
candidate stencils are used and the reconstructed solution is recovered as a convex
combination of all the reconstructed solutions. Provided the solution is smooth,
the WENO method exhibits a superior convergence rate as compared to the ENO
method. However, if the solution contains singularities, the WENO method em-
ulates the ENO idea by essentially selecting a single stencil and avoiding stencils
that contain shocks. To satisfy these two requirements, the weights associated with
each stencil must be carefully defined through a suitable smoothness indicator.

Notwithstanding the popularity of these two methods, the use of polynomial
interpolation in the reconstruction step requires the stencils to have a fixed size.
Indeed, the order of the interpolating polynomials must correspond to the size
of the underlying stencils, i.e., the number of cells per stencil. To overcome this
restriction, which is particularly problematic for multi-dimensional unstructured
meshes, least-squares methods have been applied as an alternative to interpolation.
Unfortunately, standard least-squares approximation is often inaccurate as it does
not satisfy the interpolation property. The need for more flexible and, at the same
time, accurate alternatives becomes evident especially for mesh adaptation. This
is of particular importance to guarantee computational efficiency in the solution
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of conservation laws, where solutions are often composed of regions of fast moving
shock fronts combined with regions of high regularity.

The seminal work of [2] proposes a new type of WENO method based on non-
polynomial reconstructions. More specifically, in [2] and in related work [1, 23],
the mesh-free feature of Radial Basis Functions (RBFs) is successfully combined
with ENO/WENO ideas for scalar conservation laws in general geometries using
unstructured grids. In the past decades, interpolation techniques with RBFs have
been actively studied (see [4]) to approximate functions of more than one variable.
RBFs are well-known for their approximations properties [22] and are of special
interest in the case of scattered data. The class of polyharmonic splines are used
in [2] to define an adaptive ADER-WENO method for scalar equations in two
dimensions.

Another approach to non-polynomial ENO and WENO finite volume methods
studied in [18] introduces the use of adaptivity of the shape parameter to con-
trol the local error. This is done by expressing the shape parameter in terms of
the cell averages of the underlying stencil. As a consequence, the local accuracy
and convergence are improved with respect to the classic ENO and WENO meth-
ods if the underlying solution is smooth. For discontinuous solutions, a switching
condition to the classic polynomial reconstruction is proposed to guarantee the es-
sentially non-oscillatory property. The same idea is applied to the finite difference
RBF-WENO method in [19].

In this paper we investigate several aspects connected with the RBF-WENO
method and extend the method to systems of equations including the benchmark
Euler equations. In particular we consider two types of RBFs: the multiquadrics,
which belong to the class of infinitely smooth RBFs, and the polyharmonic splines,
which are piecewise smooth RBFs. Functions in the former class are characterized
by a free parameter, called a shape parameter, and we investigate the effect of this
on the accuracy of the solution following the works of Fornberg and Wright [14]
and Fasshauer [8].

The method proposed in [2] belongs to the so-called type I WENO method
because the accuracy, obtained by using a convex combination of stencils, remains
equal to what could be obtained using a single stencil. In this case, the WENO
method is preferred to the simpler ENO method for stability reasons. By intro-
ducing suitable linear weights, the method becomes a type II WENO method and
exhibits improved accuracy. Furthermore, in [2] the smoothness indicator is specific
to polyharmonic splines, while the weights described in this paper are independent
of the type of RBFs.

This paper is organized as follows. Section 2 gives a brief review of high-order
finite volume ENO and WENO methods. Section 3 introduces the general frame-
work of the RBF interpolation of scattered data, especially when data are cell
averages. We focus our attention on multiquadric interpolation and describe a
simple strategy to select a suitable shape parameter for this class of RBFs. The
WENO method based on RBF interpolation is presented in Section 4. In Section
5, after briefly describing the chosen numerical flux scheme and time integration
strategy, we present several one-dimensional numerical examples for both linear
and nonlinear problems and for both scalar equations and systems of equations.
Mesh adaptivity is presented in Section 6 together with a selection of related re-
sults. Finally, in Section 7, we provide conclusions and future directions of this
line of research.
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2 Finite volume ENO and WENO methods

2.1 FVM for conservation laws

We consider the hyperbolic conservation laws

∂u

∂t
+∇ · f(u) = 0, (x, t) ∈ Ωx ×Ωt, (2.1)

where Ωt = [0, T ] and Ωx ⊂ Rd. The state vector
u = u(x, t) : Rd × Ωt → Rm and the flux function f = [f1(u), . . . , fm(u)].
This system of equations is equipped with the initial condition u(x, 0) = u0(x)
along with suitable boundary conditions.

The finite volume method for the approximation of (2.1) is defined as follows:
at each time step, the computational domain is partitioned into control volumes
or cells C, which are possibly different in number and position at each time step.
Let us for simplicity consider a scalar conservation law. Integrating (2.1) over a
space-time control volume C × [tn, tn+1], we obtain

ūC(tn+1) = ūC(tn)− 1

|C|

∫ tn+1

tn

∫
∂C

n̂ · f(u, t) dxdt,

where n̂ represents the outward pointing normal along the boundary of C, indi-
cated as ∂C, |C| is the volume of C and

ūC(tn) =
1

|C|

∫
C

u(x, tn) dx

is the cell average of the solution u on cell C at time t= tn. We recover the finite
volume scheme as

ūn+1
C = ūnC −

∆t

|C| F̃
n
C ,

where∆t= tn+1−tn. The integrals that define the numerical flux F̃nC can be approx-
imated using a Gaussian quadrature. The crucial step consists in the computation
of the state of the solution u∗ at the cell interfaces.

2.2 Reconstruction from cell averages

The goal of the ENO reconstruction is to reconstruct a function u(x) at cell
interfaces with a certain accuracy. For the sake of simplicity, we consider the
ENO/WENO reconstruction in 1D and refer to [33] for a detailed review of these
methods.

At time tn = n∆t, consider a computational domain Ωx=[a, b] partitioned in
N subintervals

Ci = [xi− 1
2
, xi+ 1

2
] for i = 1, . . . , N, (2.2)

with x1 =a and xN =b. Moreover, let ∆xi=xi+ 1
2
−xi− 1

2
be the size of the cell and

xi = 1
2 (xi− 1

2
+ xi+ 1

2
) the cell center. Given the cell averages ūi(x) of a function
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Fig. 1 Illustration of the reconstruction of the interface values

u(x) for each cell Ci in the domain, we seek a polynomial pi(x) of degree at most
k−1 that is a k-th order accurate approximation to a function u(x) inside the cell:

pi(x) = u(x) +O(∆xk), x ∈ Ci, for i = 1, . . . , N. (2.3)

The evaluation of this polynomial at the cell boundaries yields the approximation
of u(x)

u−
i+ 1

2

= pi(xi+ 1
2
), u+

i+ 1
2

= pi+1(xi+ 1
2
), i = 1, . . . , N,

where the superscripts + and − denote the right and left side of the interface,
respectively, as shown in Fig. 1.

For each cell Ci, we consider k stencils, each formed by k contiguous cells

Sri := {Ci−r+1, . . . , Ci+k−r}, for r = 1, . . . , k. (2.4)

For each one of these stencils, there exists a unique polynomial pri of degree at most
k−1 that satisfies (2.3), with a cell average in each cell of the stencil, corresponding
to that of u(x):

1

∆xj

∫ x
j+ 1

2

x
j− 1

2

pri (ξ)dξ = ūj for j = i− r + 1 . . . , i+ k − r. (2.5)

Since the mapping from the cell averages in the stencil Sri to the values u+
i− 1

2

and

u−
i+ 1

2

is linear, the reconstructed function at the interfaces is given by

u
(r)−
i+ 1

2

:=
k∑
j=1

ckrj ūi−r+j , u
(r)+

i− 1
2

:=
k∑
j=1

c̃ krj ūi−r+j . (2.6)

The coefficients ckrj and c̃krj depend on the order of accuracy, the stencil, and the
cell sizes, but not on the function u itself. Therefore, they can be pre-computed
globally for uniform grids or locally in the case of non-uniform grids.

2.3 ENO and WENO schemes

To avoid polynomial reconstructions across cells that contain discontinuities in the
solution, the ENO method seeks to identify the least oscillating stencil among the
k candidates. The selection strategy is based on a recursive evaluation of Newton
divided differences and guarantees high-order accuracy provided the solution is



6 Caterina Bigoni, Jan S. Hesthaven

sufficiently smooth and the interpolating polynomial is of high order. It can be
shown that for polynomials of order k−1, the ENO scheme is k-th order accurate
[33].

The main restriction of this method, leading to the development of the WENO
scheme, is the stencil selection process, in which k different candidate stencils are
considered but only one is picked and used in the reconstruction. This results in a
k-th order accurate method, even though the covered region contains 2k−1 cells. In
the WENO method this shortcoming is overcome by using a convex combination
of all k stencil candidates

ui+ 1
2

=
k∑
r=1

ωru
(r)

i+ 1
2

. (2.7)

Here ωr are the weights and indicate a measure of regularity of the solution across
the considered stencil Sri . The method depends critically on the choice of these
weights, which, for stability and consistency, must satisfy

ωr≥0 ∀r = 1, . . . , k, and
k∑
r=1

ωr = 1. (2.8)

Moreover, weights are chosen such that the numerical oscillations in regions of
low regularity are avoided, thus emulating the successful ENO idea, and the max-
imum accuracy is retrieved for smooth solutions, i.e., (2k−1)-th order. The final
expression for the weights in the classic WENO method is

ωr =
%r∑k
s=1 %s

with %r =
dr

(ε+ Ir)ρ
, (2.9)

where ε is a small positive quantity introduced to avoid division by zero and ρ ∈ N
controls the sensitivity of the weights with respect to the smoothness indicator Ir:
in the limit ρ→∞ only one stencil contributes to the reconstruction, making the
WENO method similar to a ENO method. In general ε=10−6 and ρ=2 are often
used. Moreover, dr is a positive value such that in the smooth case

ωr = dr +O(∆xk−1), r = 0, . . . , k − 1, (2.10)

which suffices to ensure (2k−1)-th order of accuracy.
Finally, Ir is the so-called smoothness indicator of stencil Sr. After extensive

experiments, the following smoothness indicator was proposed in [34]:

Ir =

k−1∑
`=1

∫ x
i+ 1

2

x
i− 1

2

∆x2`−1

(
∂`pr(x)

∂x`

)2

dx. (2.11)

3 Radial basis functions

Radial basis functions are used in many fields to interpolate scattered data and
are here proposed as an alternative to polynomials in the reconstruction step of
ENO and WENO methods. We first briefly introduce the general concept of RBF
interpolation and refer the readers to [4, 8, 22, 35] for a complete discussion. We
then consider the RBF interpolation based on cell averages and discuss the trade-
off between numerical stability and accuracy before introducing a simple strategy
to compute the “optimal” shape parameters for infinitely smooth RBFs.
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3.1 RBF interpolation

Given a discrete set of data points Ξ⊂Rd, traditionally called centers, and data
values fξ = f(ξ) with ξ ∈Ξ, the recovery problem consists in reconstructing the
unknown function f that approximates the data values at those centers. The in-
terpolation requirements can be expressed by s|Ξ =f |Ξ , or alternatively by

s(ξi) = f(ξi), ∀ i = 1, . . . , n, (3.1)

if the point set is composed of n centers, i.e., Ξ={ξ1, . . . , ξn}, with n correspond-
ing function values f |Ξ = [f(ξ1), . . . , f(ξn)]T . To perform this interpolation, one
can consider a multivariate radial function Φ : Rd → R, i.e. Φ(x) = φ(‖x‖)∀x ∈
Rd, where ‖·‖ is some norm on Rd – usually the Euclidean norm. Possible choices
of the univariate function φ : [0,∞)→ R are shown in Table 1 together with their
notion of corresponding order.

RBFs of zeroth order are called positive definite and the interpolant is defined
as

s(x) =
∑
ξ∈Ξ

αξφ(‖x− ξ‖), x ∈ Rd, (3.2)

where α= (αξ)ξ∈Ξ is an element of Rn. If the radial function φ is conditionally
positive definite of some order k>0, the right-hand side of (3.2) needs to be aug-
mented with a polynomial p(x) ∈ Pdk−1, to ensure solvability of the interpolation

problem. Here Pdk−1 denotes the space of all d−dimensional polynomials of degree
at most k−1:

p(x) =
∑
|γ|<k

βγx
γ .

Here γ = (γ1, . . . , γd) ∈ Nd0 is a multi-index of degree |γ|=
∑d
i=1 γi. In this case,

the interpolant s in (3.2), is given as

s(x) =
∑
ξ∈Ξ

αξφ(‖x− ξ‖) + p(x), x ∈ Rd. (3.3)

The centers ξ are used both for shifting the radial basis function and as interpo-
lation points.

We limit ourselves to two conditionally positive definite RBFs: the multi-
quadrics of order k := dνe and the polyharmonic splines of order k. Therefore,
to solve the interpolation problem (3.1), we need to determine n+q coefficients,

Infinitely smooth RBFs Piecewise smooth RBFs

Name φ(ε, r) Order Name φ(r) Order

Multiquadrics (1 + (εr)2)ν dνe
Polyharmonic Splines

r2m−d for d odd
m− dd/2e+ 1

Inverse Multiquadrics (1 + (εr)2)η 0 r2m−d log(r) for d even
Gaussians exp(−(εr)2) 0

Table 1 Commonly used radial basis functions (RBFs) with parameters ν > 0,
ν /∈N, η < 0,m∈N and ε>0, known as the shape parameter.
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where q =
(
k−1+d
d

)
is the dimension of the space Pdk−1. These are retrieved by

solving (3.1) and by simultaneously requiring that the set of coefficients α∈Rn is
orthogonal to the polynomial space Pdk−1(Ξ), i.e.

α⊥Pdk−1(Ξ) with α ∈ Rn ⇐⇒
∑
ξ∈Ξ

αξη(ξ) = 0, ∀η ∈ Pdk−1. (3.4)

This leads to an (n+ q)× (n+ q) linear system Aγ = λ on the form[
A P

PT 0

] [
α
β

]
=

[
f |Ξ
0

]
, (3.5)

where A = (φ‖ξi − ξj‖)16i,j6n ∈ Rn×n, P = ((ξj)
γ)16j6n;|γ|<k ∈ Rn×q,

α ∈ Rn and β = (βγ)|γ|<k ∈ Rq.
To ensure uniqueness of the linear system (3.5), the set of interpolation points

Ξ has to contain Pdk−1-unisolvent subsets, i.e., the zero polynomial is the only

polynomial from Pdk−1 that vanishes on all of the points of Ξ.
Depending on the application, it may be interesting to consider interpolants

in which the degree of the polynomial part is arbitrarily high. It has been shown
in [11] that higher accuracy can be achieved for problems on circular domains
by introducing supplementary polynomials. It is also observed that small shape
parameters can then be used even without employing stable algorithms. The draw-
back of such interpolants is the computational cost; indeed, as it will be explained
in Section 4.2, the number of cells per stencil needs to be greater or equal than
the degree of the polynomial. Using polynomials of degree at most q− 1 allows us
to use smaller stencils.

3.2 RBF interpolation of cell averages

RBF interpolation can be used in the FVM ENO and WENO reconstructions by
considering the cells of a stencil S as the data points and the corresponding cell
averages as the data values. We follow [2] and define the linear functional λC as
the cell average operator over cell C:

ūC = λC(u) =
1

|C|

∫
C

u(x)dx.

Given the cell averages of a stencil {λC(u)}C∈S , in analogy with the conservation
requirements for polynomial interpolation (2.5), conservation can be expressed as

λC(u) = λC(s) for all C ∈ S. (3.6)

Hence, the averaged interpolant (3.3) becomes

s(x) =
∑
C∈S

αCλ
ξ
Cφ(‖x− ξ‖) + p(x), x ∈ Rd, (3.7)

where λξCφ(‖x− ξ‖) = 1
|C|

∫
C
φ(‖x− ξ‖)dξ. Moreover, the linear constraint (3.4)

can be written as ∑
C∈S

αCλC (η) = 0, ∀η ∈ Pdk−1. (3.8)
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Given n cell averages λ = (λC(u))C∈S ∈ Rn over a stencil of size n to solve the
interpolation problem (3.6) under the constraint (3.8), one solves a linear system
analogous to (3.5): [

A P

PT 0

] [
α
β

]
=

[
λ
0

]
, (3.9)

with the unknown parameters α = (αC)C∈S ∈ Rn and β = (βγ)|γ|<m ∈ Rq, ma-

trices A = (λxCλ
ξ
Zφ(‖x − ξ‖))C,Z∈S ∈ Rn×n and

P = (λC(xγ))C∈S,|γ|<k ∈ Rn×q.

3.3 On choosing a good shape parameter

Despite the flexibility of RBF interpolation, it is known that by using the standard
approach to the RBF interpolation problem, none of the commonly used basis
functions combine good approximation behavior with good numerical stability. In
[31], this conflict between the theoretical achievable accuracy and the numerical
stability is referred to as the uncertainty relation, also called the trade-off principle.
The stability problem is due to a large condition number of the interpolation
matrix in (3.9), especially when the distance between cell’s centers becomes small.

In general, one radial basis function φ can perform better than another one
depending on the function to be interpolated [8]. Without further elaboration, we
refer the interested reader to [35, 32] and consider other types of solutions to the
trade-off dilemma. Indeed, a preconditioning strategy for Lagrange interpolation
by polyharmonic splines is developed in [2], while for infinitely smooth RBFs,
it is now well-known that the accuracy of the interpolation depends strongly on
the choice of the shape parameter ε. It has been shown that the interpolation
error and the condition number of the interpolation matrix cannot be kept small
simultaneously [31]. For small values of ε we expect superior accuracy, but at the
same time the corresponding RBF is increasingly flat, resulting in the columns of
A becoming more and more alike, and leading to a numerically unstable method.

This trade-off principle has interested several authors and led to a search for an
“optimal” value of the shape parameter, i.e., a value that achieves maximal accu-
racy, while guaranteeing small condition numbers. Initially, only ad-hoc solutions
were proposed (see, e.g., [20, 15]), followed by various algorithms and guidelines
(see, e.g., [9, 30]) typically for a large number of centers. In [30], Rippa affirms
that the value of the optimal ε depends on the approximated function, the num-
ber and distribution of data points, the function φ and on the precision of the
computations.

More recentely, Fornberg and collaborators have investigated the dependency
of numerical stability on the shape parameter. In e.g. [7, 12, 14, 13], the authors
have introduced and further developed a series of so-called “stable algorithms” that
overcome the trade-off principle. In such methods, the linear system (3.9) is not
solved directly, thus allowing stable computations also when the shape parameter
is very small. The two most relevant algorithms proposed in the literature are the
Contour-Padé method (RBF-CP) and the RBF-QR method. While the latter is
limited to the Gaussian kernel, the RBF-CP and the recent RBF-RA [3] are more
flexible and can be applied to any type of smooth RBFs, including those with
an additional polynomial part. However, a major drawback of these algorithms
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is their computational cost. Moreover, even if the extension to the cell averages
of RBFs seems feasible, it remains unclear how to retrieve the coefficients needed
for the WENO weights definition (see Section 4.3.1). Therefore, the possibility of
applying the RBF-RA method to this context is an ongoing research topic. For
the moment we seek to identify an “optimal” value of the shape parameter, which
guarantees a good balance between numerical stability and accuracy.

Before choosing the most suitable strategy, note that the number of scattered
points that we wish to interpolate is very small. Typically, one would use ENO
methods of order at most 4, i.e., 7-th order WENO method. This corresponds
to stencils of size 2 to 5 in 1D. This makes some algorithms unsuitable for our
problem, as for example the leave-one-out cross validation technique proposed in
[30]. Other procedures are computationally expensive and we therefore propose
to use the following simple strategy, exposed in Section 17.1 of [8]. The idea is
to perform a series of interpolation experiments for various values of the shape
parameter and identify the one which yields the minimum interpolation error.
As already discussed, the optimal shape parameter may be different for different
functions (see e.g., [5, 30]), but our numerical examples show that using the same
shape parameter for different problems typically yields good results. Exceptions
may be needed for very small mesh sizes and high orders of the interpolants.

For the sake of simplicity, we limit ourselves to the one-dimensional case and
consider the following smooth function

f(x) = sin(2πx), x ∈ [0, 1] (3.10)

with periodic boundary conditions. After uniformly partitioning the domain intoN
cells, with N = 2i for i = 4, . . . , 8, we evaluate the interpolation error between the
reconstructed values at the interfaces and the exact function. The reconstructed
values are obtained using the WENO reconstruction procedure with multiquadrics
with ν = {12 ,

3
2 ,

5
2 ,

7
2}, i.e., of order k=1, 2, 3, 4. Note that the WENO reconstruc-

tion with RBFs is essentially equivalent to the classic WENO reconstruction except
for the definition of the weights.

At each interface there are two reconstructed values, one from the left and one
from the right. Thus, several interpretations of the interpolation error are possible.
We follow the interpretation in [10] and evaluate the error at the interfaces as

Err = ‖u−
i+ 1

2

− f(xi+ 1
2
)‖Lp

h
+ ‖u+

i+ 1
2

− f(xi+ 1
2
)‖Lp

h
, (3.11)

where the discrete norm Lph with h = 1/N is defined as

‖(.)i‖Lp
h

=

(
N−1∑
i=1

h|(.)i|p
)1/p

for p <∞, ‖(.)i‖L∞h = max
i
|(.)i|. (3.12)

Results are shown in Fig. 2 for p = 1. The graphs generally agree with our expec-
tations: as the cells centers get closer, i.e., as h decreases, the numerical instability
problem due to small ε becomes more severe. This phenomenon is more evident
for higher-order RBFs. Indeed, one can visibly recognize a “breakdown” point
P = (εP , ErrP ) that distinguishes stable solutions from unstable solutions. We
require the optimal shape parameter to be outside the region of instability, i.e.
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Fig. 2 Log-log plots of the RBF-WENO reconstruction errors with respect to
the shape parameter ε using multiquadric interpolants φ = (1 + (εr)2)ν with
ν = {12 ,

3
2 ,

5
2 ,

7
2}, i.e., of order k = dνe, on uniform grids

ε∗ ≥ εP . Moreover, the reconstruction becomes less accurate as ε increases fur-
ther. Therefore, a value in the immediate neighborhood of εP represents a good
candidate to be the optimal shape parameter.

Even though the optimal shape parameter clearly depends on both the order of
the interpolant and the cell size, i.e. ε∗ = ε(k, h), in practice it is more convenient
to use a single shape parameter that depends only on the order of the RBFs for
every mesh refinement, i.e. ε∗ = ε(k) for all h. To avoid stability issues, we choose
this value to be slightly bigger than the breakdown point for the smallest h we
consider. For k up to 4, chosen values are indicated in Table 2. We observe that
for these values, the reconstruction errors do not vary much when considering
slightly smaller or bigger ε, i.e. the minima for all h lie in a region where the
error lines flatten out. This suggest that the risk of decreased accuracy associated
with choosing a bigger ε∗ than the actual minimum one for the corresponding h
is limited.
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As shown in Section 5, for more complex problems breakdown points are often
shifted to larger ε than those in Table 2 (see Fig. 7 and 10). This is done to over-
come spurious oscillations that we observe, especially as h decreases or k increases.
The choice of the optimal shape parameter in these cases is based on experimen-
tal tests and the possibility of introducing an adaptive technique that chooses
the shape parameter locally is an ongoing research topic. In a recent paper by
Guo and Jung [18], the authors propose a way out of this problem by suggesting a
switching technique. This method first identifies the regions of sharp gradients or a
discontinuity of the solution and then locally uses the standard WENO method to
guarantee the essentially non-oscillatory property of the method. The drawback of
this technique is that it can not be extended to general problems with non-uniform
grids as it does not exploit the meshless properties of RBFs but simply builds on
top of the standard ENO/WENO method.

Order of φ Chosen shape parameter
k ε

1 1
2 3
3 6
4 10

Table 2 Chosen “optimal” shape parameter for RBF-WENO reconstruction based
on multiquadrics.

4 RBF-WENO method

Given these building blocks, we can now apply RBF interpolation in the FVM
reconstruction step to obtain RBF-WENO methods. In addition to the differ-
ent interpolating function, the RBF-WENO method distinguishes itself from the
polynomial WENO method in the definition of the weights and the smoothness
indicator.

We recall that an RBF-WENO was proposed in [2]. However, in that method
the smoothness indicator is restricted to polyharmonic splines, whose native space
is the Beppo-Levi space BLk(Rd) equipped with the semi-norm |·|BLk(Rd) (see

[2] for definitions). Since the interpolant s ∈ BLk(Rd) in (3.7), satisfying the
interpolation conditions (3.6), is the unique minimizer of |·|BLk(Rd) among all the

interpolants v∈BLk(Rd) that satisfy (3.6), the energy functional |·|BLk(Rd) is used
as the smoothness indicator for the WENO reconstruction in that work. RBFs have
also been used in combination with the ENO and WENO methods in [18], where
multiquadrics or the Gaussians are adopted as non-polynomial interpolation basis.
In that work the coefficients (2.6) are derived by perturbing the classic polynomial
coefficients and depend directly on the shape parameter, achieving a higher order
of convergence than the polynomial ENO and WENO methods. The method uses
the classic smoothness indicator and weights defined in [33].
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4.1 RBF-WENO reconstruction

Let us consider the one-dimensional case: after partitioning the computational
domain Ωx = [a, b] into N cells Ci defined by (2.2), we consider n stencils of
size m of the form (2.4). For each of these we construct an interpolant sr with
r = 1, . . . , n and define s(i) as a convex combination

s(i)(x) =
n∑
r=1

ωrsr(x). (4.1)

The weights satisfy (2.8). To compute the two WENO reconstructions, the final
interpolant s(i)(x) will be evaluated at the left and right interfaces of cell Ci, at
xi− 1

2
and xi+ 1

2
, respectively, yielding

u+
i− 1

2

= s(i)(xi− 1
2
), and u−

i+ 1
2

= s(i)(xi+ 1
2
).

4.2 Stencil selection

In 1D, the number of considered stencils for each cell must be smaller than m :=
#Sr ∀ r= 1, . . . , n, to avoid considering the same group of cells more than once.
We consider n stencils of size n, i.e., m=n. This requirement is not necessary in
multiple dimensions, especially for unstructured meshes, where the stencil design
is characterized by additional flexibility and the number of stencils needed in the
reconstruction might be larger than the number of cells per stencil, i.e., n>m.

Moreover, we require n ≥ q (see [22] for more details). If n = q, the inter-
polant (3.7) is uniquely defined by the polynomial part. Indeed, if P in (3.9) is a
square matrix, then PTα=0 implies α=0 unless P is singular. For all numerical
experiments in Section 5 we choose n=k + 1.

4.3 Weights

The weights ωr in (4.1) assume the same form as in the classic WENO method
(2.9), but they differ in the definition of the smoothness indicator Ir. We recall
that the choice of the weights ωr is guided by the dual goal of achieving higher
accuracy as compared to the ENO method and reduction of artificial oscillations
near discontinuities of the solution. The first feature is attained thanks to the
introduction of the linear weights dr, while the second one depends on the choice
of the smoothness indicator.

4.3.1 Linear weights

In the classic WENO method the linear weights dr (2.9) guarantee a global
(2k−1)-th order of accuracy in smooth regions.

We observe that for general meshes, two types of WENO methods are dis-
cussed in the literature (see e.g. [37]). The first one (type I) corresponds to WENO
schemes that do not gain additional accuracy by combining small stencils. This
is closer to ENO schemes as the weights ωr are not introduced to increase the
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order of accuracy, but to avoid spurious oscillations and for the sake of nonlinear
stability. Type II WENO schemes are designed so that the order of accuracy is
higher than each of the reconstructions. Such methods are more complicated to
construct, primarily because finding the linear weights may lead to negative large
linear weights [27]. In general, for type I methods, the weights ωr do not depend
on the evaluation point, while this is no longer true for type II methods. In 1D,
the left and right reconstructions of cell Ci are given by

u+
i− 1

2

=
n∑
r=1

ωrsr(xi− 1
2
), and u−

i+ 1
2

=
n∑
r=1

ω̃rsr(xi+ 1
2
), (4.2)

where

ω̃r =
%̃r∑n
j=1 %̃j

with %̃r =
d̃r

(ε+ Ir)ρ
, d̃r = dn−r+1.

The classic WENO method in 1D, described in Section 2.3, and the one introduced
in [18] are examples of type II WENO methods. While the RBF-WENO method
designed in [2] is a type I WENO method, using dr = 1 for all r, we consider
both types of methods and choose type II WENO when the problem is sufficiently
smooth.

To derive the coefficients, we proceed as in [33]. The interpolant s in (3.7) must
be rewritten as a function of the cell averages of the underlying stencil, leading to

s(x) =
∑
C∈S

αCλ
ξ
Cφ(‖x− ξ‖) +

∑
|γ|<k

βγx
γ =

∑
C∈S

cC(x)ūC . (4.3)

Given a stencil Sr, composed by n cells on a one-dimensional mesh and a RBF of
order k with the polynomial part of degree up to q − 1 , we have

sr(x) =
n∑
j=1

αrjf
r
j (x) +

q∑
`=1

βr` g`(x) =
n∑
j=1

cnr,j(x)ūj , (4.4)

where frj = λξCr
j
φ(‖x − ξ‖), Crj ∈ Sr and g` = x`−1. Equation (4.3) and (3.9)

imply

cr =
[
A−1[fr; g]

]
1:n

,

where cnr= [cnr,1, c
n
r,2, . . . , c

n
r,n]T ∈ Rn, fr ∈ Rn and g ∈ Rq.

To compute cnr,j(x), the unknown constants α and β in (4.4) need to be ex-
pressed as functions of the cell averages in the right hand-side. We remind the
reader that the above-mentioned constants cnr,j depend on the evaluation point x,
similar to the weights. More details on this can be found in the descriptions of the
WENO methods, e.g. in [33]. To determine the d = [d1, . . . , dn]T coefficients such
that (2.10) is satisfied, one needs to compare the constants cnr,j that have been
computed for all cells Cj ∈ Sr,∀ r = 1, . . . , n with the coefficients corresponding
to the unique stencil of size 2n− 1, covering the whole region.

After computing the n coefficients for each of the n stencils and for both
interfaces, one needs to recover the coefficients, indicated as c2n−1

n , corresponding
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to the stencil of size 2n−1, including all cells in the n stencils. To determine the
linear weights d, we solve



cn1,1 · · · · · · cn1,n 0 · · · · · · 0

0 cn2,1 c
n
2,2 · · · cn2,n 0 · · ·

...
...

. . .
. . .

...
... cnn−1,1 c

n
n−1,2 · · · cnn−1,n 0

0 · · · · · · 0 cnn,1 cnn,2 · · · cnn,n



T

d = c2n−1
n . (4.5)

We note that the cnr coefficients for 1D uniform grids obtained with RBF recon-
structions are asmyptotically equal to those for the classic WENO method [33].
To prove this result one needs to analytically invert the global matrix A in (3.9).
We show in the Appendix that these coefficients are equal to their classic WENO
counterpart for n = 2, 3 up to a term O(ε∆x)2. Inserting these into (4.5) we
recover, for k=1, the linear weights

d1(xi− 1
2
) =

2

3
+O(ε∆x)2 and d2(xi− 1

2
) =

1

3
+O(ε∆x)2, (4.6)

which indeed satisfy (2.10). We conjecture that this result holds also for higher
order schemes and thus, for any order k and uniform grids, we use the classic linear
coefficients given in [33].

Note that, due to a different notation explained in detail in Section 5.1, the
desired asymptotic behavior for multiquadrics interpolants is O(∆xk) rather than
O(∆xk−1) as in (2.10), which is still verified by (4.6).

4.3.2 Smoothness indicator

Artificial oscillations in regions of low regularity are avoided thanks to the smooth-
ness indicator, which needs to be small when the interpolant varies slowly across
the stencil and large if the solution contains a sharp gradient or a discontinuity
across the stencil. We consider the following definition for each cell Ci ∈ Ωx

I ri = ∆xi

∣∣∣∣∣∣
n∑
j=1

αj

∫
Ci

∂2

∂x2

[
λξCr

j
φ(‖x− ξ‖)

]
dx

∣∣∣∣∣∣+

k−1∑
`=1

∆x2`−1
i

∫
Ci

(
∂`p(x)

∂x`

)2

dx.

(4.7)
Here r = 1, . . . , n indicates one among the n possible stencils for cell Ci. This ex-
pression is composed of two parts: one depends on the RBFs and one on the poly-
nomial part of the RBF interpolant (3.7). The first part generalizes the smoothness
indicator introduced in [2] to all types of conditionally positive definite RBFs, while
the second component corresponds exactly to the smoothness indicator (2.11) in
the classic WENO method. Furthermore, the smoothness indicator is independent
of the x argument of the interpolant s, i.e. it is the same for both the left and
right reconstruction.
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5 Numerical results

In the following we present numerical results to demonstrate the performance of
the RBF-WENO method on uniform one-dimensional grids composed by N cells
of the form (2.2) with ∆x := ∆xi for all i = 1, . . . , N.

In the first part we compare the accuracy results for the RBF-WENO re-
constructions using polyharmonic splines (PHS) and multiquadrics (MQ) inter-
polants, while in the second part we consider evolution problems using only MQ
interpolants as these generally perform better.

5.1 Reconstruction accuracy

Let us first consider the smooth function (3.10) with periodic boundary conditions.
The reconstruction error at the interfaces is evaluated by (3.11).

Convergence for both MQ and PHS reconstructions is shown in Fig. 3. For the
MQ interpolants, the shape parameters is given in Table 2 for all mesh refinements.
We observe that, given the same order k of the RBF interpolant, reconstructions
obtained with MQ converge faster than those obtained with PHS, i.e. MQ recon-
structions of order k converge as O(hk+1), while PHS reconstructions of order k
only converge as O(hk). These results on PHS confirm the results obtained in [2]
in terms of convergence rate. Because of the higher convergence rate, we focus on
the multiquadrics in the following numerical examples.
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Fig. 3 Order of convergence of the RBF-WENO reconstructions using multi-
quadrics (left) and polyharmonic splines (right) interpolants. In both cases the
RBFs are of order k = 1, . . . , 4

Table 3 shows the MQ reconstruction errors and rates for k= 1, 2, 3, 4, using
the weights of type I, while errors and rates for the MQ reconstruction using type
II weights are shown in Table 4 for k = 1, 2, 3. Note that for k = 3 we use the
same coefficients as for the classic WENO method. Both tables indicate errors
and rates computed with the discrete Lp norm with p= 1, 2,∞. The results are
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summarized in Fig. 4, where we observe that type I reconstructions of order 2k
have approximately the same rate of convergence of type II reconstructions of order
k, even though, in general, type II reconstructions of order k are less accurate than
type I reconstructions of order 2k.

N
L1
h L2

h L∞h
error rate error rate error rate

k = 1

16 4.3098e-02 - 5.1873e-02 - 1.0626e-01 -
32 6.8078e-03 2.66 9.6642e-03 2.42 2.5436e-02 2.06
64 1.2518e-03 2.44 1.7410e-03 2.47 5.5854e-03 2.19
128 2.6052e-04 2.26 3.0127e-04 2.53 6.4367e-04 3.12
256 6.4467e-05 2.01 7.1632e-05 2.07 1.0542e-04 2.61

k = 2

16 8.2462e-03 - 8.6469e-03 - 1.4809e-02 -
32 9.3694e-04 3.14 1.0107e-03 3.10 1.6580e-03 3.16
64 1.0942e-04 3.10 1.1958e-04 3.08 1.8459e-04 3.17
128 1.3133e-05 3.06 1.4463e-05 3.05 2.1438e-05 3.11
256 1.6056e-06 3.03 1.7756e-06 3.03 2.5727e-06 3.06

k = 3

16 1.3246e-03 - 1.5593e-03 - 2.8756e-03 -
32 6.8415e-05 4.28 7.7316e-05 4.33 1.3497e-04 4.41
64 4.0809e-06 4.07 4.5338e-06 4.09 6.9651e-06 4.28
128 2.5145e-07 4.02 2.7892e-07 4.02 4.0782e-07 4.09
256 1.5565e-08 4.01 1.7298e-08 4.01 2.4816e-08 4.04

k = 4

16 8.5821e-04 - 1.1340e-03 - 2.4640e-03 -
32 2.0425e-05 5.39 2.7700e-05 5.36 8.4250e-05 4.87
64 4.9668e-07 5.36 6.1388e-07 5.50 1.7451e-06 5.59
128 1.3486e-08 5.20 1.5495e-08 5.31 4.8074e-08 5.18
256 3.9755e-10 5.08 4.4518e-10 5.12 1.1891e-09 5.34

Table 3 Reconstruction errors and rates of convergence for type I RBF-WENO
reconstruction using multiquadrics interpolants of order k = 1, 2, 3, 4.

N
L1
h L2

h L∞h
error rate error rate error rate

k = 1

16 4.0428e-02 - 4.6621e-02 - 9.9786e-02 -
32 6.0498e-03 2.74 8.1698e-03 2.51 2.3831e-02 2.07
64 8.1178e-04 2.90 1.2165e-03 2.75 4.7461e-03 2.33
128 6.2686e-05 3.69 7.8158e-05 3.96 2.2420e-04 4.40
256 3.1762e-06 4.30 3.1972e-06 4.61 3.8039e-06 5.88

k = 2

16 1.1808e-03 - 1.5192e-03 - 3.1412e-03 -
32 4.8086e-05 4.62 7.6201e-05 4.32 2.4483e-04 3.68
64 1.6721e-06 4.85 3.5253e-06 4.43 1.6927e-05 3.85
128 5.4881e-08 4.93 1.5900e-07 4.47 1.1093e-06 3.93
256 2.9747e-09 4.21 7.3338e-09 4.44 7.0864e-08 3.97

k = 3

16 3.5436e-04 - 4.5772e-04 - 1.0694e-03 -
32 5.9228e-06 5.90 8.9202e-06 5.68 3.0222e-05 5.15
64 7.3956e-08 6.32 1.1917e-07 6.23 4.5238e-07 6.06
128 8.6656e-10 6.42 1.3934e-09 6.42 6.4336e-09 6.14
256 3.2076e-11 4.76 3.8268e-11 5.19 1.0676e-10 5.91

Table 4 Reconstruction errors and rates of convergence for type II RBF-WENO
reconstruction using multiquadrics interpolants of orders k = 1, 2, 3.

Note that in a classic WENO method, the use of linear weights implies a 2k−1
convergence order, while type II RBF-WENO method appears to yield a higher
order of convergence, close to 2k+1. However, this is caused by the use of a different
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Fig. 4 Comparison of the order of convergence of the type I and type II RBF-
WENO reconstructions using multiquadrics interpolants of order k = 2, 4 and
k = 1, 2, 3 respectively

notation. In the classic WENO method, for an interpolant polynomial of order k−1
we consider a stencil of size k, i.e. #S=k. Combining k such stencils, the stencil
area comprises 2k−1 cells, yielding a global order of convergence of O(h2k−1).
Conversely, in the type II RBF-WENO method, for a MQ interpolant of order k
we consider n small stencils of size #S=k+1 and a large stencil that includes 2k
cells. This is consistent with the observed order of convergence for multiquadrics.

5.2 Evolution Problems

We now test the performance of the method for solving one-dimensional conserva-
tion laws, starting with scalar equations such as the linear advection equation, the
nonlinear Burgers equations, and the non-convex Buckely-Leverett equation. Later
we consider systems of equations such as the Euler equations. Furthermore, we
have observed good results also for the shallow water equations, a two-dimensional
system of conservation laws. Throughout all numerical examples we use the Lax-
Friedrichs numerical flux

FLF (a, b) =
f(a) + f(b)

2
− α

2
(b− a), (5.1)

where α is defined as α = maxu |∂f/∂u| on a relevant set of u (see [33]). For time
integration we use an SSP RK−3 [17, 16]. Regarding the CFL condition [6], unless
otherwise specified, we use CFL = 0.1.
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5.2.1 The linear advection equation

Consider the linear advection equation

ut + ux = 0, x ∈ [0, 1], (5.2)

with the exact solution u(x, t) = u0(x − t), where u0(x) is the initial condition.
Let us consider a smooth initial profile

u0(x) = sin(2πx), (5.3)

and assume periodic boundary conditions.

We seek to show that the orders of convergence obtained for the simple recon-
struction are recovered also for time-dependent problems. Since the Runge-Kutta
method is of order 3, we cannot expect a global order of convergence greater than
3 for every CFL number. We therefore limit ourselves to k < 4 and use smaller
CFL numbers when increasing the order of the RBF interpolant, i.e., for k= 1, 2
we use CFL = 0.2, while for k = 3 we use CFL = 0.005. Shape parameters are
given in Table 2 for every order k and refinement h. The errors and the rates of
convergence for the numerical solutions obtained with type I RBF-WENO method
at t = 0.025 are given in Table 5. These values agree with those obtained for the
reconstruction problem in Table 3. Table 6 shows the errors and convergence rates
for type II RBF-WENO method for k = 1, 2, 3 by further reducing the CFL also
for k = 2. Results for k = 1 and k = 3 confirm the results obtained in Table 4. For
k = 2 we observe a loss of one in the convergence rate, i.e., convergence of order
4 instead of 2k + 1 = 5. The reason for this loss of accuracy currently remains an
open question but is likely linked to the design of the weights.

N
L1
h L2

h L∞h
error rate error rate error rate

k = 1

16 1.4412e-02 - 1.7131e-02 - 2.3527e-03 -
32 3.6024e-03 2.00 5.2646e-03 1.70 4.7772e-04 2.30
64 7.7343e-04 2.22 1.3758e-03 1.94 8.0021e-05 2.58
128 7.1183e-05 3.44 1.0837e-04 3.67 4.2951e-06 4.22
256 1.0614e-05 2.75 1.1536e-05 3.23 7.2103e-08 5.90

k = 2

16 1.2482e-03 - 1.2777e-03 - 1.5839e-04 -
32 1.3369e-04 3.22 1.5121e-04 3.08 1.0452e-05 3.92
64 1.6456e-05 3.02 1.8675e-05 3.02 6.6014e-07 3.98
128 2.0091e-06 3.03 2.2614e-06 3.05 4.0600e-08 4.02
256 2.4804e-07 3.02 2.7775e-07 3.03 2.5539e-09 3.99

k = 3

16 3.7259e-04 - 4.9728e-04 - 7.6121e-05 -
32 1.8954e-05 4.30 2.3803e-05 4.38 1.9609e-06 5.28
64 1.1786e-06 4.01 1.7982e-06 3.73 9.9467e-08 4.30
128 5.7907e-08 4.35 8.2927e-08 4.44 2.9449e-09 5.08
256 2.5429e-09 4.51 2.8495e-09 4.86 3.0941e-11 6.57

Table 5 Errors and rates of convergence for the linear advection equation with
smooth initial condition solved using a type I RBF-WENO method with MQ
interpolants of order k=1, 2, 3.
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N
L1
h L2

h L∞h
error rate error rate error rate

k = 1

16 1.2148e-02 - 1.5754e-02 - 2.4425e-03 -
32 2.9989e-03 2.02 4.8924e-03 1.69 4.8270e-04 2.34
64 6.1949e-04 2.28 1.2608e-03 1.96 7.8086e-05 2.63
128 3.6460e-05 4.09 9.2931e-05 3.76 4.1230e-06 4.24
256 5.7053e-07 6.00 2.3008e-06 5.34 6.8282e-08 5.92

k = 2

16 4.7607e-04 - 5.4401e-04 - 7.5567e-05 -
32 2.9179e-05 4.03 4.4938e-05 3.60 4.4938e-06 4.07
64 1.6060e-06 4.18 3.4787e-06 3.69 2.3409e-07 4.26
128 8.6959e-08 4.21 2.5956e-07 3.74 1.1397e-08 4.36
256 5.1272e-09 4.08 1.9221e-08 3.76 5.5532e-10 4.36

k = 3

16 1.9518e-04 - 2.2578e-04 - 2.7580e-05 -
32 4.6146e-06 5.40 7.3483e-06 4.94 7.4349e-07 5.21
64 7.2397e-08 5.99 1.4075e-07 5.71 9.4948e-09 6.29
128 7.5322e-10 6.59 1.4510e-09 6.60 5.4878e-11 7.43
256 1.5670e-11 5.59 2.0120e-11 6.17 3.7801e-13 7.18

Table 6 Errors and rates of convergence for the linear advection equation with
smooth initial condition solved using a type II RBF-WENO method with MQ
interpolants of order k=1, 2, 3.

5.2.2 The Burgers equation

Now consider Burgers equation

ut +

(
u2

2

)
x

= 0, x ∈ Ωx = [0, 1], (5.4)

with smooth initial condition (5.3). Figure 5 shows the evolution of the solution at
four times t=[0.05, 0.15, 0.25, 0, 35]. Observe that the solution develops a disconti-
nuity at x=1/2. The dots represent the numerical solution obtained with the type
I RBF-WENO method with MQ interpolants of order k= 2 on a grid composed
by N=50 cells, while the solid line indicates the reference solution obtained on a
very fine grid. No oscillations are observed close to the discontinuity.

Let us now consider the discontinuous initial condition

u0(x) =

{
ul = 2 if x < 1

2

ur = 1 if x ≥ 1
2

. (5.5)

The solution is a shock wave moving at a speed a = 3/2 by the Rankine-Hugoniot
condition. The solution at t = 0.1, obtained with the type I RBF-WENO method
with MQ interpolants, is shown in Fig. 6 for k=1, 2, 3, 4 and for increasing refine-
ments from h=2−4 to h=2−8. Figure 7 shows the solution for k = 1 and h = 1/128
as ε is increased, i.e., ε = 1, 2, 3. For ε = 1 we observe small oscillations close to
the discontinuity. These spurious oscillations decrease in amplitude as the shape
parameter is increased, i.e., for ε = 2, 3. We observe a similar behavior also for
higher order of interpolants and different values of h. The chosen shape parameters
for every k and h are indicated in the legend of Fig. 6 and are purely experimental.



Adaptive WENO methods based on radial basis function reconstruction 21

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
(x
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 0.05

k = 2, ε = 3
Reference solution

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
(x
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 0.15

k = 2, ε = 3
Reference solution

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
(x
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 0.25

k = 2, ε = 3
Reference solution

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
(x
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 0.35

k = 2, ε = 3
Reference solution

Fig. 5 Solution of Burgers equation with smooth initial condition at four times.
The numerical solution (dots) is obtained using type I RBF-WENO method with
MQ interpolant of order k=2 on a grid of size h=0.02

5.2.3 The Buckley-Leverett equation

The Buckley-Leverett equation models a two-phase fluid flow of two immiscible
and incompressible fluids in a porous media. It is an example of a scalar non-convex
conservation law often used in oil-reservoir simulations. For a detailed discussion
of non-convex problems solved with classic WENO method and discontinuous
Galerkin method we refer to [29]. Given the one-dimensional conservation law
(2.1), u(x, t) represents the water saturation at time t in a porous medium such
as rock or sand, i.e., the fraction of fluid that is water. Therefore, 1−u represents
the fraction of the liquid that is oil. The flux function is

f(u) =
u2

u2 + a(1− u)2
, (5.6)

where a<1 is a constant that indicates the ratio of the viscosities of the two fluids;
in our example we take a=1/2. The following discontinuous initial condition

u(x, 0) =

{
1, x < 0
0, x ≥ 0

x ∈ Ωx = [−5, 5], (5.7)

indicates that there is water in the left part of the domain and oil in the right
one. Oil is subsequently displaced by water being pumped from the left and, as
water enters, the sharp interface between water and oil is not maintained. Behind
the propagating shock wave there is a mixture of oil and water, represented by a
rarefaction wave. This type of wave is called a compound wave [25]. Figure 8 shows
the solution at time t=1.5 for type I RBF-WENO method with MQ interpolation
of order k= 1, 2, 3, 4 for several mesh sizes. The exact solution, indicated with a
solid dark line, is obtained by the convex-hull construction [25].
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Fig. 6 Qualitative comparison of type I RBF-WENO solution of Burgers equation
with a discontinuous initial condition using MQ interpolants of order k=1, 2, 3, 4
at time t=0.1
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Fig. 7 Type I RBF-WENO solution of Burgers equation with a discontinuous
initial condition using MQ interpolants of order k = 1 on a uniform grid of size
h = 1/128 for increasing values of ε. The solution is shown on its entire domain
(left) and two details of the solution are highlighted: the left side of the shock wave
(center) and the right side of the shock wave (right). The classic WENO solution
of corresponding order is also shown.
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Fig. 8 Solution of the Buckley-Leverett equation with discontinuous initial condi-
tion at t = 1.5 obtained with type I RBF-WENO using MQ interpolants of order
k=1, 2, 3, 4 and ε given in Table 2. Grid refinements go from h=2−4 to h=2−8

5.2.4 The Euler equations

The one-dimensional Euler equations of gas dynamics are regarded as the classic
benchmark equation for new methods for conservation laws. The Euler equations
are a system of conservation laws (2.1) composed by d + 2 equations. For d= 1,
the state vector and the flux function take the form

u(x, t) = [ρ, ρu,E]T , f(u) = [ρu, ρu2 + p, (E + p)u]T , (5.8)

where ρ is the density, ρu the momentum, E the energy, and p the pressure. The
equation of state for an ideal gas is

p = (γ − 1)

(
E − 1

2
ρu2

)
,

and closes the system of equations. Here γ is a fluid dependent constant and we
take γ=7/5, as for atmospheric gasses.

To avoid spurious oscillations, we use the characteristic variables for our re-
constructions. In particular, for each cell in the domain we compute two decom-
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positions, i.e. one for each interface, by using the mean of the two cell averages
sharing the interface. For more details we refer the reader to [25].

We discuss two different problems: the Sod shock tube problem and a shock-
entropy wave interaction problem. We have obtained similar results for the Woodward-
Colella blast wave problem [36] and the Lax shock tube problem.

We consider the Sod shock tube problem, a one-dimensional Riemann problem
with an analytical solution. Given Ωx=[0, 1], the initial conditions are

ρ(x, 0) =

{
−1 x < 1/2
0.125 x ≥ 1/2

, ρu(x, 0) = 0, E(x, 0) =
1

γ − 1

{
1 x < 1/2
0.1 x ≥ 1/2

.

(5.9)
The boundary conditions follow directly from the initial conditions as the flow
never reaches the boundary of the computational domain. This set up corresponds
to a tube filled with two gases, separated by a membrane with zero initial velocity
everywhere. As soon as the membrane is removed at t=0, we observe a flow of gas
in the direction of lower pressure, in this case the right. The flow of gas involves
three distinct types of waves that separate the computational domain into four
regions in which the state variables remain constant: a rarefaction wave, a contact
wave, and a shock wave.

Figure 9 shows the density profile at t=0.2 when the problem is solved using
the type I RBF-WENO scheme with MQ interpolants of order k=1, 2, 3 for several
refinements. The left column shows the density profile on the whole computational
domain Ωx, while the middle and the right column show a detail of the solution,
namely the rarefaction wave and the contact wave, respectively. The exact solu-
tion is shown with a solid dark line. As in the previous Burgers’ example, using
the shape parameters defined in Table 2 may lead to spurious oscillations as h is
decreased. Figure 10 shows the solutions of the Sod problem obtained using the
RBF-WENO method with multiquadric interpolants of order k = 1 on a uniform
grid of size h = 1/256 for different values of the shape parameter. The graphs also
show the solution obtained using the classic polynomial WENO method of corre-
sponding order on the same uniform grid. For small values of ε, the solution ob-
tained with the RBF-WENO method is oscillating, while the oscillations decrease
in amplitude as the shape parameter is increased (for ε = 1, 2, 3, 4). However, in
regions where the solution is smooth the solution obtained with the RBF-WENO
method is less dissipative than the solution obtained with the polynomial WENO
method if the shape parameter is small. The shape parameters in Fig. 9 are chosen
experimentally to guarantee a balance between good accuracy and non-oscillatory
behavior.

Let us now consider a second and more complex problem for Euler equations,
the shock-entropy problem, for which the initial conditions are prescribed by

(ρ, ρu,E)(x, 0) =

{
(3.857143, 2.629369, 10.33333) x < −4
(1 + 0.2 sin(πx), 0, 1) x ≥ −4

, x ∈ [−5, 5]

(5.10)
and the boundary conditions are again given by the initial conditions. In contrast to
the Sod’s problem, there is no analytical solution and we use as reference a solution
computed with the classic WENO method using a very fine grid. Figure 11 shows
the solution obtained with a type I RBF-WENO method with MQ interpolants
at time t= 1.8 for k= 1, 2, 3 and various refinements. The left column shows the
solution on the entire domain, while the right column shows a detail where the
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Fig. 9 Density profile for the Sod shock tube problem at t = 0.2 for the type
I RBF-WENO method using MQ interpolants of order k = 1 (top row), k = 2
(middle row) and k= 3 (bottom row). For each row, the solution is shown on its
entire domain (left column) and two details of the solution are highlighted: the
rarefaction wave (central column) and the contact wave (right column)

solution varies rapidly. We observe convergence both for decreasing cell size and
increasing order of the RBFs.

6 Adaptive meshes

A key advantage of RBF-WENO methods lies in the potential for using non-
uniform grids in one dimension and unstructured grids in multiple dimensions.
This feature is fundamental to define a mesh adaptation strategy that balances
computational cost and quality of the solution by using different resolutions in
different regions of the domain. To distinguish regions in which the solution is
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Fig. 10 Density profile for the Sod shock tube problem at t= 0.2 for the type I
RBF-WENO method using MQ interpolants of order k= 1 on a uniform grid of
size h = 1/256 for increasing values of ε. The solution is shown on its entire domain
(top left) and three details of the solution are highlighted: the rarefaction wave
(top right), the contact wave (bottom left) and the shock wave (bottom right).
The classic WENO solution of the same order is also shown.

smooth from regions in which the solution presents sharp gradients, a suitable error
indicator is needed. We use the smoothness indicator (4.7) to decided whether to
increase or reduce the number of cells in a certain region.

6.1 Mesh adaptation strategy

Given a mesh T (tn) at time tn, the idea is to use a new adapted mesh T (tn+1)
at time tn+1. For each cell C ∈ T (tn), we consider the corresponding type I
weights ωrC , with r = 1, . . . , n. Recall that type I weights only depend on the
definition of the two constants ε, ρ and the smoothness indicator (4.7), as the
linear weights dr are all set to 1. In general, if these weights assume similar values,
i.e. ωr ≈ 1/n ∀r = 1, . . . , n, one concludes that the solution is smooth. Conversely,
having one or more among the n weights close to zero indicates that the solution
in that region contains discontinuities or sharp gradients. In this case the WENO
method emulates the ENO idea of discarding (by assigning small weights) stencils
that contain the discontinuity.

By defining two thresholds θmin and θmax, each cell in the domain is associated
with one of the following three mutually exclusive classes: to be refined, to be
coarsened, or to be left unchanged. Let ω∗C be the maximum among the n weights
associated to cell C ∈ T (tn), i.e.

ω∗C = max
r=1,...,n

ωrC . (6.1)
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Fig. 11 Density profile for the shock entropy problem at t = 1.8 for the type I
RBF-WENO method using MQ interpolants of order k=1 (top row), k=2 (middle
row) and k = 3 (bottom row). For each row, the solution is shown on its entire
domain (left column) and a detail of the solution is highlighted (right column)

If ω∗C ≥ θmax then cell C is chosen for refinement, whereas cell C is chosen for
coarsening if ω∗C ≤ θmin. If θmin < ω∗C < θmax, the cell is neither refined nor
coarsened. In general 0 ≤ θmin < θmax ≤ 1, and in our numerical examples
we choose θmin = 1/n + 10−4 and θmax = 0.88. Note that instead of fixing these
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two thresholds one could store (6.1) for every C ∈ T (tn), normalize these value
over the entire domain and choose to refine a certain portion of cells and coarsen
another. This strategy of relative thresholds is recommended when the solution is
continuous, but one still wants to refine where it varies more rapidly. While we
choose to use the maximum operator to distinguish the corresponding class of each
cell, other choices are possible, e.g., using the variance of the weights. In this case,
the specific values of the two thresholds need to be updated.

This strategy does not require the number of cells in the mesh to be fixed.
However, it is fundamental that the cell sizes do not become neither too small nor
too big, for the sake of computational cost and non-trivial recovery, respectively. If
the size of a cell, marked for refinement, is smaller than a fixed threshold dmin, then
this cell will remain unchanged. Conversely, cells marked for coarsening, but with a
dimension that is bigger than an upper threshold dmax are left unchanged. Finally,
cells marked for neither refinement nor coarsening but with a size that is either
smaller than dmin or bigger than dmax are marked for coarsening or refinement,
respectively. Given h as the size of the initial uniform grid, we choose dmin =0.145h
and dmax = 3h.

Finally, to avoid boundary issues, we mark boundary cells C ∈ ∂T for neither
refinement nor coarsening.

Once each cell in the domain has been characterized, we proceed by removing
cells marked for coarsening and split in two those marked for refinement. In the
latter case, the cell centers become the common interface of the two new cells and
the new centers are placed in the middle between this interface and the initial
interfaces of the cell, i.e. given C = [x`−1/2, x`+1/2] as the cell to be refined, we
obtain C1 =[x`−1/2, x`] and C1 =[x`, x`−1/2].

6.2 Conservative mesh adaptation

Once the new grid T (tn+1) has been computed, care must be taken when assigning
cell averages from the original grid to the adapted one. As we are dealing with
conservative methods, we must require that any interpolation or averaging strategy
maintains conservation.

For each cell C ∈ T (tn+1), we detect the corresponding intersecting cells in
the original mesh T (tn), together with their area. This step in 1D is rather simple,
while in multiple dimensions one may employ the chasing algorithm [28]. Imagine
that cell C ∈ T (tn+1) overlaps with δ cells Cj ∈ T (tn), for j = 1, . . . , δ, such
that C =

⋃δ
j=1(C ∩ Cj) and let hjC be the area of Cj that contributes to cell C

so that |C| =
∑δ
j=1 h

j
C . Note that hjC ≤ |Cj | for all Cj ∈ T (tn) and hjC ≤ |C|.

Then, the total mass of C ∈ T (tn+1) is given by MC =
∑δ
j=1MC∩Cj

, where each
contribution is given by

MC∩Cj
= hjC ūCj

(tn, x).

Here ūCj
(tn, x) is the cell average corresponding to cell Cj ∈ T (tn). Finally, the

cell average of cell C ∈ T (tn+1) is given by

ūC =
MC

|C| ∀C ∈ T (tn+1).
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6.3 Numerical results on adapted grids

Let us consider Burgers equation (5.4) with a continuous initial condition (5.3).
The solution over an adapted grid at times t=0, 0.15, 0.2, 0.25 is shown in Fig. 12.
We observe that the points cluster near the discontinuity which develops at x=1/2.
Moreover, the left graph of Fig. 14 displays the dimension of the cells and the po-
sitions for the corresponding times. Analogously, Fig. 13 shows the evolution of
Burgers equation with discontinuous initial condition (5.5) for t=0, 0.025, 0.05, 0.1.
Qualitatively, we observe that the adaptation method captures the moving shock
well. This result is confirmed by the right graph of Fig. 14, where the cell dimen-
sions are presented and one observes that the smaller cells are confined in the
neighborhood of the shock as time increases, i.e., x = at where a = 3/2 is the
speed.
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Fig. 12 Solution of Burgers equation with continuous initial condition at different
times using the adaptive strategy. The type I RBF-WENO method is of order
k=2 with ε = 5. The initial grid has size h=0.02

Finally, Fig. 15 shows the solution of Sod problem (5.10) at t= 0.2 obtained
using an adaptive type I RBF-WENO method with second order multiquadrics
interpolants with ε= 5. The left graph compares the adapted solution, using an
initial uniform grid of size h = 2−4, with solutions on uniform grids of different
refinements, namely h = 2−4, 2−5, 2−6, as well as the exact solution. The right
graph shows the corresponding cell sizes. We observe that the central region of the
domainΩx is characterized by a fine grid. Overall we see a substantial improvement
in accuracy when using the adaptive method.
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Fig. 13 Solution of Burgers equation with a discontinuous initial condition at
different times using the adaptive strategy. The type I RBF-WENO method is of
order k=2 with ε=4. The initial grid has size h=0.02

7 Conclusions

We have developed a RBF-WENO method that uses high-order RBF interpolants
in the reconstruction step. Exploiting the mesh-less property of RBFs, these schemes
are very flexible as the order of the RBF is not required to match the stencil size.
This feature is particularly important for multidimensional problems and when
the mesh is unstructured. Particular attention is given to the definition of the
weights, both in terms of the linear weights and the smoothness indicator. More-
over, the latter plays an important role in the implementation of a conservative
mesh adaptation strategy.

We test two types of RBFs for the reconstruction step and show that using
multiquadrics yields more accurate results than when using polyharmonic splines.
The multiquadrics belong to the so-called class of infinitely smooth RBFs and the
shape parameter is a scaling parameter peculiar to this class of functions. Choosing
this parameter is a delicate task as too small values lead to numerically unstable
solutions while too large values result in inaccurate solutions. The optimal choice
of the shape parameter depends upon a set of conditions, but in particular upon
the order of the RBF and the refinement of the mesh. A simple selection strategy
is described and supported by several numerical results.

The numerical results demonstrate good performance of the method both for
scalar conservation laws and system of equations. Examples include Burgers equa-
tions, the Buckley-Leverett equation, and the Euler equations; we have obtained
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Fig. 14 Cell dimensions of the solution of Burgers equation at different time steps
using adaptive grids with continuous initial condition (left) and discontinuous
initial conditions (right). The type I RBF-WENO method is of order k= 2 with
ε=5 and ε=4, respectively
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Fig. 15 Comparison of the solution of the Sod problem obtained using and adap-
tive mesh and uniform meshes of different refinements (left). Corresponding cell
dimensions on a semilogarithmic axis (right). The type I RBF-WENO method is
of order k = 2 with ε=5

similar results for several other problems. Good results are also obtained on adap-
tive grids.

The possibility of extending the proposed adapted method to multiple dimen-
sions on unstructured meshes is currently under investigation.
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black

Appendix A Derivation of the expansion coefficients of the RBF
interpolant s of order k=1, 2

In the following we show that, for uniform one-dimensional meshes, the cC co-
efficients in (4.3) for a stencil of size n = k + 1 for k = 1 or k = 2 agree with
the coefficients used in the classic polynomial WENO reconstructions for the same
stencils sizes (see [33]) up to a term that depends on ε and ∆x. We conjecture that
these results extend to k>2. Clearly, if the expansion coefficients are the same for
the RBF interpolation and the polynomial interpolation, so are the linear weights
d in the definition of the weights ω, since (4.5) is the same in the two cases.

Given a cell Ci = [xi− 1
2
, xi+ 1

2
] consider the three stencils Sk=1

1 = {Ci−1, Ci},
Sk=1
2 ={Ci, Ci+1} and Sk=2

2 ={Ci−1, Ci, Ci+1} as illustrated in Fig. 16. For each of
these stencils we construct the relative interpolant s(x) in terms of the coefficients
α and β as in (3.7) and then evaluate s at the left and the right interface of
cell Ci: xL = xi− 1

2
and xR = xi+ 1

2
, respectively. To derive the cC coefficients for

all the cells in the stencil, we express α and β in terms of the cell averages of
the solution corresponding to the underlying stencil by solving the linear system
(3.9) and use (4.3) for direct comparison of the terms. Similar calculations, albeit
with a different goal, can be found in [7], where the authors show that in 1D,
under simple assumptions on the basis function, the interpolants converge to the
Lagrange interpolating polynomial as ε→ 0.

xi− 3
2

xi− 1
2

=xL xi+ 1
2

=xR xi+ 3
2

Ci−1 Ci Ci+1

Sk=1
1

Sk=1
2

Sk=2
2

Fig. 16 Stencils of size 2 and size 3 associated with cell Ci

Stencil Sk=1
1 = {Ci−1, Ci}. Let us first consider the left stencil of size

n = 2 in Fig. 16 and notice that the problem will be very similar for the right
stencil. Given the general expression of the interpolants (3.7), they are constructed



Adaptive WENO methods based on radial basis function reconstruction 35

over these two cells as

sk=1
1 (x) =

n=2∑
j=1

α1,j λ
ξ
Ci−2+j

φk=1(‖x− ξ‖) +

q=1∑
`=1

β1,`x
`−1

=α11
1

∆x

∫ x
i− 1

2

x
i− 3

2

φ1(‖x− ξ‖)dξ + α12
1

∆x

∫ x
i+ 1

2

x
i− 1

2

φ1(‖x− ξ‖)dξ + β11

=α11f1(x, xi− 3
2
, xi− 1

2
) + α12f1(x, xi− 1

2
, xi+ 1

2
) + β11,

(A.1)
where α1 = [α11, α12]T and β1 = [β11] are the unknown coefficients to be deter-
mined. The first subscripts indicate the “first” stencil, i.e. the left one. Moreover,

fk(x, a, b) =
1

∆x

∫ b

a

φk(‖x− ξ‖)dξ. (A.2)

Given the general expression of the linear system (3.9), α11, α12 and β11 are ob-
tained by solving A11 A12 P11

A21 A22 P21

P11 P21 0

α11

α12

β11

 =

vi−1

vi
0

 ,
where the rectangular matrix P = [P11, P21]T is a vector composed by ones, i.e.
P11 = P21 = 1 (see the definition of general matrix P in (3.9)). Moreover, matrix
A is symmetric by construction, i.e., A2 := A12 = A21. Since the grid is uniform
the elements on the diagonal are all the same, i.e., A1 := A11 = A22. Matrix A
is therefore a symmetric Toeplitz matrix of size 2. Using these simplifications, the
system becomes A1 A2 1

A2 A1 1
1 1 0

α11

α12

β11

 =

vi−1

vi
0

 . (A.3)

For the following steps, we choose φ to be a multiquadrics function, i.e., for k=1

φ1(ε, ‖x− ξ‖) k=1→ν=1/2
=

√
1 + ε2(x− ξ)2. (A.4)

Therefore, the interpolation matrix in (A.3) is composed of the following elements

A1 =
1

∆x2

∫ x
i− 1

2

x
i− 3

2

∫ x
i− 1

2

x
i− 3

2

φ1(‖x− ξ‖)dξdx = 2m(0)− 2m(∆x),

A2 =
1

∆x2

∫ x
i− 1

2

x
i− 3

2

∫ x
i+ 1

2

x
i− 1

2

φ1(‖x− ξ‖)dξdx = −m(0) + 2m(∆x)−m(2∆x),

(A.5)
where

m(y) = − 1

6ε2∆x2

[√
1 + ε2y2(ε2y2 − 2) + 3εy sinh−1(εy)

]
. (A.6)

Our goal is to derive the coefficients c1j with j = 1, 2, such that

sk=1
1 (x) = c11(x)vi−1 + c12(x)vi. (A.7)
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To do so, we need to compare (A.7) and (A.1) by expressing the coefficients
α11, α12 and β11 as a function of the cell averages. Inverting the 3 × 3 matrix
in (A.3), we obtainA1 A2 1

A2 A1 1
1 1 0

−1

=
1

2

(A1 −A2)−1 (A2 −A1)−1 1
(A2 −A1)−1 (A1 −A2)−1 1

1 1 −(A1 +A2)

 .
Note that only the first 2 columns of the inverse matrix are needed to compute
the coefficients α1 and β1 because only the first 2 elements of the right hand side
are nonzero by definition. Therefore we obtainα11

α12

β11

 =
1

2

(A1 −A2)−1 (A2 −A1)−1

(A2 −A1)−1 (A1 −A2)−1

1 1

[vi−1

vi

]
,

or 
α11 = 1

2 (A2 −A1)−1(−vi−1 + vi)

α12 = −α11

β11 = 1
2 (vi−1 + vi)

.

Inserting these coefficients into the last equality of (A.1), we obtain

sk=1
1 (x) =

1

2
(A2 −A1)−1(−vi−1 + vi)

[
f1(x, xi− 3

2
, xi− 1

2
)− f1(x, xi− 1

2
, xi+ 1

2
)
]

+
1

2
(vi−1 + vi).

By factoring out the cell averages, we recover an explicit expression of the two
coefficients in (A.7) on the formc11(x) = − 1

2(A2−A1)

[
f1(x, xi− 3

2
, xi− 1

2
)− f1(x, xi− 1

2
, xi+ 1

2
)
]

+ 1
2

c12(x) = 1
2(A2−A1)

[
f1(x, xi− 3

2
, xi− 1

2
)− f1(x, xi− 1

2
, xi+ 1

2
)
]

+ 1
2

(A.8)

Each of these two coefficients need to be evaluated at the left and the right interface
of the central cell Ci, i.e., xL = xi− 1

2
and xR = xi+ 1

2
. Therefore, we need to

evaluate f1(xi− 1
2
, xi− 3

2
, xi− 1

2
) and f1(xi− 1

2
, xi− 1

2
, xi+ 1

2
) for the left coefficients

and f1(xi+ 1
2
, xi− 3

2
, xi− 1

2
) and f1(xi+ 1

2
, xi− 1

2
, xi+ 1

2
) for the right coefficients. If we

again consider first order multiquadrics (A.4), then f1(x, a, b), defined in (A.2),
becomes

f1(x, a, b) =
1

∆x

∫ b

a

√
1 + ε2(x− ξ)2dξ

=
1

2ε∆x

[
ε(ξ − x)

√
1 + ε2(x− ξ)2 − sinh−1(ε(x− ξ))

]b
a
.

Using this expression for the left interface we obtain

f1(xi− 1
2
, xi− 3

2
, xi− 1

2
) =

1

2ε∆x

[
ε∆x

√
1 + ε2∆x2 + sinh−1(ε∆x)

]
,
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and

f1(xi− 1
2
, xi− 1

2
, xi+ 1

2
) =

1

2ε∆x

[
ε∆x

√
1 + ε2∆x2 + sinh−1(ε∆x)

]
. (A.9)

It is clear that

f1(xi− 1
2
, xi− 3

2
, xi− 1

2
) = f1(xi− 1

2
, xi− 1

2
, xi+ 1

2
),

which, when inserted into (A.8), implies

c11(xL) =
1

2
and c12(xL) =

1

2
.

Proceeding in the same manner for the right interface, we recover

f1(xi+ 1
2
, xi− 3

2
, xi− 1

2
) =

1

2ε∆x

[
−ε∆x

√
1 + ε2∆x2 − sinh−1(ε∆x)+

2ε∆x
√

1 + 4ε2∆x2 + sinh−1(2ε∆x)
]
,

and

f1(xi+ 1
2
, xi− 1

2
, xi+ 1

2
) =

1

2ε∆x

[
ε∆x

√
1 + ε2(∆x)2 + sinh−1(ε∆x)

]
. (A.10)

Since these two functions are no longer equivalent, this case is more laborious than
the previous one. To compute the constants c11(xR) and c12(xR), we first consider
the Taylor expansion of the difference of these two expressions

f1(xi+ 1
2
, xi− 3

2
, xi− 1

2
)− f1(xi+ 1

2
, xi− 1

2
, xi+ 1

2
)

=
1

2ε∆x

[
−2ε∆x

√
1 + ε2∆x2 − 2 sinh−1(ε∆x)

+2ε∆x
√

1 + 4ε2(∆x)2 + sinh−1(2ε∆x)
]

= (ε∆x)2 − 3

4
(ε∆x)4 +

9

8
(ε∆x)6 +O(∆x8).

(A.11)

We evaluate 2(A2 −A1) by the definitions in (A.5)

2(A2 −A1) = 2 (−3m(0) + 4m(∆x)−m(2∆x)) . (A.12)

To compute the Taylor expansion of (A.12), we consider the Taylor expansion of
each term using (A.6). Therefore,

m(0) =− 1

6ε2∆x2
[−2] =

1

3
(ε∆x)−2

m(∆x) =− 1

6ε2∆x2

[√
1 + ε2∆x2(ε2∆x2 − 2) + 3ε∆x sinh−1(ε∆x)

]
=

1

3
(ε∆x)−2 − 1

2
− 1

24
(ε∆x)2 − 73

2480
(ε∆x)4 − 1

112
(ε∆x)6 +O(∆x8)

m(2∆x) =− 1

6ε2∆x2

[√
1 + 4ε2∆x2(4ε2∆x2 − 2) + 6ε∆x sinh−1(2ε∆x)

]
=

1

3
(ε∆x)−2 − 2− 2

3
(ε∆x)2 +

4

15
(ε∆x)4 − 2

7
(ε∆x)6 +O(∆x8)
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Inserting these results into (A.12), we obtain

2(A2 −A1) = (ε∆x)2 − 1

2
(ε∆x)4 +

65

112
(ε∆x)6 +O(∆x8) (A.13)

Finally, combining the two expressions (A.11), we obtain

f1(xi+ 1
2
, xi− 3

2
, xi− 1

2
)− f1(xi+ 1

2
, xi− 1

2
, xi+ 1

2
)

2(A2 −A1)

=
(ε∆x)2 − 3

4 (ε∆x)4 + 9
8 (ε∆x)6 +O(∆x8)

(ε∆x)2 − 1
2 (ε∆x)4 + 65

112 (ε∆x)6 +O(∆x8)

= 1− (ε∆x)2

4
+O(ε∆x)4

(A.14)

which, when inserted into (A.8), implies

c11(xR) = −1

2
+O(ε∆x)2 and c12(xR) = −3

2
+O(ε∆x)2

Stencil Sk=1
2 = {Ci, Ci+1} The coefficients for the second stencil in Fig. 16 are

obtained by symmetry. For the left and right interface they are, respectively,

c21(xL) =
3

2
+O(ε∆x)2, c22(xL) = −1

2
+O(ε∆x)2 and c21(xR) = c22(xR) =

1

2
.

Stencil Sk=2
2 = {Ci−1, Ci, Ci+1} Among the three stencils of size 3 associated to

cell Ci, we start by considering the second one S2, i.e. the one drawn in Fig. 16, as
it covers the union of the two stencils of size 2 for which we derived the constants in
the previous paragraphs. Computing the coefficients of Sk=2

2 allows the derivation
of the linear weights d by solving the linear system (4.5).

Applying the previous steps to a stencil of size three leads to similar but more
complex calculations. However, it can be shown that

c21(xL) =
1

3
+O(ε∆x)2, c22(xL) =

5

6
+O(ε∆x)2, c23(xL) = −1

6
+O(ε∆x)2,

c21(xR) = −1

6
+O(ε∆x)2, c22(xR) =

5

6
+O(ε∆x)2, c23(xR) =

1

3
+O(ε∆x)2.

These are again equivalent to the linear weights of the WENO scheme up to
O(ε∆x)2. We conjecture that hold for any value of the order of the radial basis
function.
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