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BASIC CONCEPTS: FERMI LEVEL AND WORK FUNCTION OF A METAL 

The electrochemical convention assigns the zero energy to an electron at rest in a field-free 

vacuum. Then, the electronic energies in a metal have negative values. The Fermi-Dirac 

distribution describes the probability of occupation of electronic states. At any temperature, the 

probability of occupation of a state with energy equal to the chemical potential
 

 of the 

electrons is 1/2. The number density of electrons in the conduction band of a metal determines 

the difference between  and the lowest energy level in this band. At absolute zero, the Fermi-

Dirac distribution becomes a step function and  is the energy of the highest occupied electron 

level. Rather often temperature dependence of  (at fixed number density of electrons) is 

neglected, and  in the Fermi-Dirac distribution is replaced by a constant value denoted as the 

Fermi energy. Unfortunately, there is considerable ambiguity in the use of this term. 

Under isothermal conditions, electrons tend to move to locations where their electrochemical 

potential  is lower. The electrochemical potential of the electrons is determined by their 

interactions with the other particles within the phase as well as by the interaction with the 

electrostatic field. That is,  is affected by the charge state of the phase. The relation between 

the electrochemical potential and the chemical potential of the electrons is  

%µ
e−
= µ

e−
− eφ           (S1) 

where e is the elementary charge and  is the electrostatic potential. That is, − eφ  is the 

electrostatic potential energy of the electron at its location. When two phases equilibrate with 

respect to the redistribution of electrons,  takes the same value in both phases. 
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The electronic energies mentioned above, and , are intrinsic, bulk properties of uncharged 

metals and do not contain interfacial effects. That is, these energies include kinetic and potential 

contributions from electron-electron and electron-ion interactions but they do not include the 

potential energy of the electrons in any electrostatic field. In the metal-vacuum interfacial region, 

the spreading of the electronic charge into the vacuum creates a surface potential χ which raises 

the work function of the material,S1–S4 The state of the electrons inside metals with interfaces is 

described by the real potential (also called real chemical potential)S1  

α
e−
≡ µ

e−
− eχ .          (S2) 

The potential drop χ is the potential in the bulk of the metal minus the potential in the vacuum 

“just outside” it; where “just outside” refers to a position just out of the range of the image 

forces.S5  

The local work function Φ = −α
e−
 of a metal surface is the minimum work required to remove 

one electron from the bulk of a large piece of uncharged metal across a surface to a position at 

rest in vacuum just outside the metal surface; the distance from the surface should be so large 

that the image force is negligible but small compared with the distance from another face. From 

eq S2, the local work function Φ = −α
e−
 has a chemical contribution −µ

e−
 that can be 

calculated from the bulk band structure and a surface or electrostatic eχ  contribution that can be 

calculated from the surface electronic structure.S6  

The difference between 
 
and  is the electrostatic potential energy −eψ  of the electron 

just outside the metal 

          (S3) 

µ
e−

%µ
e−

α
e−



 4

where  is the outer or Volta potential of the phase, or vacuum level. The surface charge density 

σ  on the phase and the outer potential ψ  have the same sign and are linked together by the 

capacitance that depends on the geometry of the phase. According to its IUPAC definition,S6–S8 

the electrochemical potential  in a conducting phase is the work of bringing one electron 

from a reference point in vacuum (outside the range of the charge of the phase) to the bulk phase. 

The work to bring this electron from the reference point to just outside the metal is − eψ .S1 The 

work function 
 
Φ = −eψ − %µ

e−
 is the difference in the energies of the electron just outside the 

metal (−eψ ) and inside the metal (
 
%µ
e−
). From eqs S1–S3, the inner or Galvani potential of a 

phase is the sum of the surface potential and the outer potential, . By definition, the 

inner potential is constant within the phase at equilibrium.S1 

The ionization energy IE is defined as the work to remove one electron from a particle (with a 

size that can range from the single atom to the bulk metal). The particle can be charged before 

the electron extraction or become charged due to the electron removal; the latter case is usually 

considered when reporting experimental or calculated values.S9 For a nanoparticle of radius r and 

charge ze the energy required to remove one electron in vacuum can be estimated asS10 

IENP, ze
V  = Φbulk +

q

4πε0r
dq

ze

(z+1)e

∫ = Φbulk +
2z +1( )e2

8πε0r
     (S4) 

In the case of bulk phases (i.e., large radius), the second term in the rhs of eq S4 is negligible 

because there is no significant difference (in the state of charge) when one electron is added or 

removed. In this work, we consider that the ionization energy is 

 
IE = − %µ

e−
= Φ+ eψ  .          (S5) 
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When two phases A and B are placed in contact, electrons flow until an equilibrium is reached 

in which the electrochemical potential of the electrons is equal in phases A and B, %µ
e–
A = %µ

e–
B .S1

 

The condition %µ
e–
A = %µ

e–
B  and eq S5 imply that the outer potentials of two conductors in 

equilibrium differ in a quantity proportional to the difference of their work functions 

∆A
Bψ eq ≡ (ψ

B −ψ A )eq = −(Φ
B −ΦA ) / e ≡ −∆A

BΦ / e.     (S6) 

This is known as the equilibrium Volta potential difference. Under equilibrium, the ionization 

energies, eq S5, of the conductors also become equal as the conductor with lower work function 

becomes positively charged with respect to that with higher work function,S3 and this makes 

equally difficult to extract one electron from one or another. 

Different surfaces of a crystal may have different local work functions; however, if the 

electron were extracted to a final position at an infinitely large distance from the surface it would 

not be possible to discriminate between the work functions of different faces.25 The differences 

in Φ  originate from the differences in . The surfaces must then have different outer electric 

potentials because eq S6 also applies to two faces A and B of the same metal.S6 As the 

electrochemical potential for electrons has to be the same, independent of the surface through 

which the test charge is brought into the phase, this difference in the surface potentials is 

balanced by redistribution of charge on the surfaces, and hence different outer potentials. This is 

also the origin of observed differences in the potential of zero charges for different crystal facets. 

In physics, this is often described by saying that “the vacuum level changes”, simply meaning 

that different surfaces have different surface charge and hence different electric field. 

 

χ
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MODEL DESCRIPTION 

The potential distribution around a sperical particle with a radius of 12.6 Å with different ratios 

of Au and Ag was investigated both in vacuum and in an electrolyte solution containing 10 mM 

KCl. The sepration distance between the two metals was set to 0.36 Å as described earlier.S11 

The electrostatics of the system were described by the Poisson equation 

2
0 r Vε ε φ ρ∇ = −           (S7) 

where φ is the electrostatic potential, 0ε and rε  are permittivity of vacuum and the relative 

permittivity, and Vρ  is the space charge density. The geometry is shown in Figure S1. The sharp 

corners were rounded with a radius of 0.2 Å. In the aqueous electrolyte solution the particle was 

surrounded by a Stern layer with a radius of 3.3 Å, where the space charge density is nil. 

 

Figure S1. The simulation geometry. 

The model was solved in 2D axial symmetry (r = 0 as the axis of symmetry). The electric 

potential difference between the Ag and Au was set to 0.86 V (the computational work function 
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difference between the two pure metallic particles of this size) and the outer boundary of the 

surrounding medium (10 000 Å away) was set to be insulating. The actual potential values were 

calculated from eq 21 in the main text, considering that silver surface area weighted ratio of the 

potential difference is on the silver metal (e.g. with Janus particle 50% of the potential difference 

is on the silver side, and with the 5 % Ag covered particle 5% of the potential difference is on the 

silver side). Silver is positive because of the electron transfer to the gold to equilibrate the Fermi 

levels. The mesh density was increased until the results did not significantly change. The validity 

of eq 21 was confirmed by checking that charge conservation was maintained within the particle. 

 

ANALYTICAL SOLUTION AND VALIDATION OF THE SIMULATION RESULTS 

In the case of an ideal Janus particle made of two hemispheres of equal size and radius a, the 

solution of the Laplace equation of electrostatics (in polar coordinates) is 

φ(r,θ ) =
∆ψ
4 π

(−1)m(4m + 3)
Γ(m +1/ 2)
Γ(m + 2)

m=0

∞

∑ a

r






2(m+1)

P2m+1(cosθ )  (S8) 

which satisfies the boundary conditions φ(r = a,π / 2 <θ ≤ π) = −∆ψ / 2  and 

φ(r = a,0 ≤θ < π / 2) = ∆ψ / 2 . Here no gap between the two hemispheres is considered. This 

analytical solution was compared with the results from the numerical simulations, as shown in 

Figure S2, showing very good match. 
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Figure S2. Comparison of the numerical (points) and analytical (solid lines) potentials at 

different distances around the Janus sphere in vacuum. 
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