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ABSTRACT: This article focuses on contact electrification
from thermodynamic equilibration of the electrochemical
potential of the electrons of two conductors upon contact.
The contact potential difference generated in bimetallic macro-
and nanosystems, the Fermi level after the contact, and the
amount and location of the charge transferred from one metal
to the other are discussed. The three geometries considered
are spheres in contact, Janus particles, and core−shell particles.
In addition, the force between the two spheres in contact with
each other is calculated and is found to be attractive. A simple
electrostatic model for calculating charge distribution and
potential profiles in both vacuum and an aqueous electrolyte
solution is described. Immersion of these bimetallic systems into an electrolyte solution leads to the formation of an electric
double layer at the metal−electrolyte interface. This Fermi level equilibration and the associated charge transfer can at least partly
explain experimentally observed different electrocatalytic, catalytic, and optical properties of multimetallic nanosystems in
comparison to systems composed of pure metals. For example, the shifts in the surface plasmon resonance peaks in bimetallic
core−shell particles seem to result at least partly from contact charging.

■ INTRODUCTION

Although observation of potential differences when two metals
are placed in contact dates back from the late 18th century
“electricians” and of course to the seminal work of Alessandro
Volta, the actual effects of the contact electrification are often
neglected. Although bimetallic nanoparticles have recently
received increasing attention because of their promising
electrocatalytic,1−3 catalytic,4−8 and optical properties,4,9 it is
equally important to understand how contact electrification can
change and contribute to enhance these properties. The
interaction of nanoparticles with their environment can,
sometimes drastically, shift the Fermi level of electrons in the
nanoparticles and influence their chemical and electrochemical
properties as highlighted in a review by Scanlon et al.10 Contact
electrification can also significantly shift the Fermi level of
electrons in bi- or multimetallic structures in comparison with
pure materials. This is important because these shifts in the
Fermi level can have a drastic effect on the properties of
multimetallic systems. For example, shifts observed in surface
plasmon resonance of core−shell nanoparticles seem to result
from contact electrification, as described vide infra.
The aim of this article is to clarify the position of the Fermi

level after contact charging, to understand how much charge is
transferred and where this charge is located, to give some idea
about how these effects influence properties of these systems,
and to illustrate what happens when these particles are
immersed in an electrolyte solution, leading to the formation

of an electric double layer around the particles. In addition, the
forces between two spheres in contact are described.
To understand what happens upon metal−metal contact and

how this phenomenon affects, for example, electrocatalytic,
catalytic, and optical properties of bimetallic nanosystems, we
must understand the governing principles. However, electro-
chemists use different terms than solid state and semiconductor
physicists, giving rise to additional confusion. In this article, we
describe the thermodynamics of the contact electrification from
the point of view of an electrochemist.
The history of the contact electrification until year 1900 has

been comprehensively reviewed by Hong.11 The accurate
measurement of the contact potential difference dates back to
the works of Hankel, Pellat, and Kelvin.12 Hankel studied an
apparatus based on a capacitor with two plates of different
materials, charging itself upon contact. When one plate was
grounded and the other was insulated, the potential difference
increased with an increase in the separation distance between
plates, enabling the measurement of the contact potential.
Pellat improved this method by connecting the first plate to a
potentiometer to allow compensation of the contact potential.
This so-called null method is very accurate, because even small,
uncompensated potentials resulted in measurable forces
between the capacitor plates, and this method was named

Received: April 4, 2016
Revised: May 9, 2016
Published: May 13, 2016

Article

pubs.acs.org/Langmuir

© 2016 American Chemical Society 5765 DOI: 10.1021/acs.langmuir.6b01282
Langmuir 2016, 32, 5765−5775

pubs.acs.org/Langmuir
http://dx.doi.org/10.1021/acs.langmuir.6b01282


after Kelvin. The sensitivity of the Kelvin probe was further
increased by Zisman13 using vibrating plates coupled with
headphones as the detecting instrument. The state-of-the-art
system is now the Kelvin probe force microscope, allowing the
measurement of the local contact potential difference between a
conducting atom force microscopy tip and the sample. This
technique allows the mapping of the surface topography and
local work function with high spatial resolution. For further
details, the reader is directed to the review by Lee et al.14

The triboelectric electrostatic charging by friction has also
been covered in a review by Lacks and Sankaran,15 and is out of
scope of this article focusing on the thermodynamics of the
contact electrification. In 1951, Harper16 studied contact
electrification of different metal spheres. He demonstrated
that the amount of charge transferred upon contact of two
different metal spheres showed almost a linear relationship with
the contact potential difference between the two metals. To
eliminate the effects of the triboelectric charging, the contact
was achieved by a floating sphere apparatus, and the Volta−
Helmholtz hypothesis that “the charge obtained on separating
two bodies must have been present as a double layer when they
were in contact” was corroborated.16 These results clearly show
that when the separation between two spheres is increased, the
capacitance of the system changes: first, the charge transfer
occurs to keep the Fermi levels of both spheres equal, and then
at a certain threshold value, the tunneling of electrons is no
longer possible between the two spheres, and the charge
remains constant.16 Because the capacitance of the system
varies as a function of the separation, the electrostatic
interactions between the two equal spheres redistribute the
surface charge, so that they can effectively be considered as
large dipoles.17 These large dipoles attract each other unless
they have exactly the same charge (in this case they repel each
other).17

This article focuses on the contact electrification from
thermodynamic equilibration of the electrochemical potential
of the electrons of two conductors upon contact. We have
recently proposed that the contact electrification in bimetallic
segregated systems can be quantitatively understood by simply
considering the system as a nanocapacitor, where a thin vacuum
layer separates the two metals. The potential difference
between the two metals is directly given by the work function
difference, and the amount of transferred charge can be
calculated simply from electrostatics.18 Comparison between
numerical simulations of the electrostatics and more
comprehensive density functional theory (DFT) calculations
showed that the continuum calculations can satisfactorily
describe the general charge transfer behavior, but DFT
calculations are required to accurately describe the atomic
scale charge transfer at the metal−vacuum interface and to
resolve the finer details of transferred charge at the metal−
metal interface.18

■ ELECTROSTATICS OF CONDUCTORS WITH
DIFFERENT WORK FUNCTIONS

Fermi Level Equilibration of Metallic Spheres.
According to its IUPAC definition,19−23 the electrochemical
potential μ ̃ −e in a conducting phase is the work of bringing one
electron from a reference point in vacuum (out of the range of
the charge of the phase) to the bulk phase; herein, we consider
chemical potentials per particle, not molar values. The
electrochemical convention assigns the zero energy to an

electron at rest in a field-free vacuum. Then, the electronic
energies in a metal have negative values. The work to bring this
electron from the reference point to just outside of the metal is
−eψ.20 The work function ψ μΦ = − − ̃ −e e is the difference in
the energies of the electron just outside of the metal (−eψ) and
inside of the metal μ ̃ −( )e . The ionization energy (IE) is defined
as the work to remove one electron from a particle. When the
state of charge is not significantly affected by the removal of an
electron, the IE can be approximated by

μ ψ= − ̃ = Φ +− eIE e (1)

The electrostatic term eψ indicates that it is more difficult to
extract electrons from a particle that is positively charged. The
basic concepts are further reviewed in the Supporting
Information.
Electrons tend to flow in the direction that decreases the

gradient of their electrochemical potential until it vanishes. This
process is known as Fermi level equilibration. In the case of two
conductors A and B, the equilibrium condition is μ μ̃ = ̃− −e

A
e
B .20

This equilibrium is achieved through charge redistribution, and
hence it involves the electrostatic energy of the electrons. Thus,
the equilibrated Fermi level should be understood as the
electrochemical potential of the electrons, μ= ̃ −EF e ;21,24 this is
also the highest occupied energy level at 0 K provided that
these levels include the electrostatic potential energy.
When two conductors of different metals A and B carry

charges qA and qB, their energy is

ψ ψ= Φ + Φ + +W
e

q q q q
1

( )
1
2

( )A A B B A A B B
(2)

In the capacitance matrix formalism, the charges on the
conductors are expressed in terms of their (outer) electrostatic
potentials and the self- and mutual capacitances as17
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At constant total charge qT ≡ qA + qB and fixed spatial
configuration of the conductors, the equilibrium condition
∂ ∂ =W q( / ) 0q C

A
, ijT

with respect to the exchange of charge is

achieved when the Volta potential difference is

ψ ψ ψΔ ≡ − = − Φ − Φ ≡ −Δ Φe e( ) ( )/ /A
B

eq
B A

eq
B A

A
B

(4)

From eq 1, this is equivalent to the Fermi level equilibration
μ μ̃ = ̃− −e

A
e
B . Thus, the outer potentials of two conductors in

equilibrium differ in a quantity proportional to the difference in
their work functions. If the conductors were initially uncharged,
electrons would flow from the conductor with the lowest work
function to the other conductor until their Fermi levels
equalize.20

The total charge qT determines the average potential ψav ≡
cAψ

A + cBψ
B = qT/CT of the conductors, where CT ≡ CAA +

2CAB + CBB and cA ≡ (CAA + CAB)/CT ≡ 1 − cB. When the
conductors have opposite charges qB = −qA ≡ q, the average
potential vanishes and their potential difference is given by q =
CΔA

Bψ, where

≡
−

+ +
C

C C C
C C C

( )
2

AA BB AB
2

AA AB BB (5)
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is known as the system capacitance.17,25 In general, the Volta
potential difference is given by CΔA

Bψ = cAq
B − cBq

A, so that the
condition ψA = ψB is equivalent to cAq

B = cBq
A.17 The latter

general expression for ΔA
Bψ is equivalent to qA = cAqT − CΔA

Bψ
and qB = qT − qA. With these expressions, the system energy
can also be represented as

ψ ψ= Δ Δ Φ + Δ +

+ Φ + Φ
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At fixed (qT,Cij), the minimum energy
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corresponds to the equilibrium Volta potential difference
ΔA

Bψeq, see eq 4. An external work W − Weq = C(ΔA
Bψ −

ΔA
Bψeq)

2/2 = (qeq
B − qB)2/2C must be done to displace the

system from equilibrium by transferring charge between the
conductors.
If the conductors are two spheres of radii ri (i = A, B), center-

to-center distance rA + rB + s, and small separation s, the series
expansions (up to order s) of the elements of the capacitance
matrix are19

λ ψ= −C s C s x( ) [ ( ) ( )]AA 0 0 B (8)

λ ψ= −C s C s x( ) [ ( ) ( )]BB 0 0 A (9)

λ γ= − +C s C s( ) [ ( ) ]AB 0 (10)

where xi = ri/(rA + rB), C0 ≡ 4πε0rArB/(rA + rB), 2λ(s) =
ln{2rArB/[(rA + rB)s]}, and ψ0(z) = d ln Γ(z)/dz is the
digamma function (defined as the logarithmic derivative of the
gamma function, and not to be confused with the Volta

potential ψ), and γ = −ψ0(1) ≈ 0.5772 is the Euler constant.
Thus, the system capacitance, eq 5, is

λ
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and the outer potentials of the charged spheres are ψB = ΔA
Bψ +

ψA and
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The charges on the conductors can be calculated from these
outer potentials. Such calculation requires eqs 3 and 8−11 as
the system capacitance depends strongly on the separation of
the spheres when they are brought close to each other. It would
be wrong to consider that the spheres have the same
capacitance when isolated in vacuum.
Consider two uncharged (qT = 0 and ψav = 0) large spheres

of silver (ΦAg = 4.30 eV) and gold (ΦAu = 5.30 eV).20 Upon
contact, the electrons flow from silver to gold to generate a
Volta potential difference ψAg − ψAu = 1.00 V and equalize the
Fermi levels. From eq 12, if the spheres have equal radii, xA = xB
= 1/2, then ψAg = −ψAu = −ΔAg

Auψ/2 = 0.50 V and the Fermi
level of the spheres in contact is the average of the two Fermi
levels, that is, 4.80 eV. Figure 1a illustrates schematically the
potential distribution. After equilibration, the electrochemical
potential of the electrons is the same in the two spheres (Figure
1b). This indicates that the work to remove one electron (from
the interior to infinity) has to be the same for both spheres.
Although the surface charge distribution is not uniform on the
spheres, the outer potential of each sphere is constant, and
hence the energy required to extract the electron from the
interior through any surface point is the same for all surface

Figure 1. (a) Potential distribution along the symmetry axis through the contact point of two spheres of Ag and Au. The inner or Galvani potential
of a phase is the sum of the surface potential and the outer potential, ϕ = χ + ψ. The surface potential χAg is not necessarily equal to χAu. (b) Work
functions of the metals (A = Ag, B = Au) and illustration of the Fermi level equilibration by electron flow upon contact. (c) Potential distribution for
a small gold sphere and a large silver sphere. (d) Equilibration of Fermi levels upon contact corresponding to panel c.
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points. Similarly, if we consider a charged cube of a conducting
material in vacuum, the excess surface charge is distributed to
have a constant potential around the cube with most of it
located at the corners of the cube.26,27 The system has to be in
thermodynamic equilibrium, so the work to remove one
electron through a corner is the same as the work to remove it
through the middle of the side.26,27

If the radius of the silver sphere is, say, 1000 times larger
(Figure 1c), then xA = 1 − xB ≈ 1 and eq 12 predicts ψAg ≈ 0,
that is, the Fermi level of the equilibrated system is close to that
of uncharged, pure silver (Figure 1d). Although the absolute
charges on both spheres are the same, the small gold sphere
acquires a high (negative) surface charge density so that ψAu ≈
−1.00 V and its Fermi level increases by 1.00 eV, whereas the
larger silver sphere has a negligible surface charge density and
ψAg ≈ 0. If we separate the spheres, we have a charged gold
sphere and a negligibly charged silver sphere. The gold sphere
is electron rich and this may have interesting applications, for
example, in plasmonics.28−30 On the contrary, if the gold sphere
is much larger than the silver sphere, then the equilibrated
Fermi level is that of uncharged gold and the silver is positively
charged. The variation in the potentials of the spheres with
their relative size is presented in Figure 2 for the case qT = 0
and ψav = 0.

The total magnitude of the transferred charge depends on
the size of the contact interface. For example, a total charge
transfer of 4 × 106 electrons (0.6 pC) is observed between a 5/
32 in. diameter chromium sphere and a 1/2 in. diameter gold
sphere,16 whereas DFT calculations done with 591 different
atom Au−Ag particles show total charge transfer of 5−17
electrons, depending on the arrangement of the atoms.18 These
examples show that the relative amount of the transferred
electrons can be very high in nanoscale systems, whereas less
significant effects are observed in the macroscopic systems.
Force between the Metallic Spheres. The rate of

variation in the system energy, eq 6, with the separation s of
the spheres provides the force between them. Equations 8−10
imply that cA, cB, and CT are independent of s, and that the
system capacitance decreases with increasing s

= = = − = −C
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When the conductors are separated without charge transfer, the
quantity CΔA

Bψ = cAq
B − cBq

A remains constant, but C varies
with s as does ΔA

Bψ, unless ΔA
Bψ = 0. Thus, from eq 6, the force

between the two spheres under this constraint is
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Similarly, the force between the conductors when they are
separated at a constant potential difference (by allowing charge
transfer between the conductors by electron tunneling) is
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If two spheres of different materials are separated after
equilibration of their Fermi levels, the force between them
depends on the constraint imposed during the separation. At
constant charge, the Volta potential difference increases with
increasing separation from its initial value, |ΔA

Bψ| ≥ |ΔA
Bψeq|, and

hence the force is more attractive than at the constant potential
difference

ψ ψ= − Δ ≤ − Δ = ψΔF
C

s
C

s
F
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2
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2
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2
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2q q q, A

B 2 0
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eq
2 0

,eq
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eq
B

T A
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eq

(16)

The Volta potential difference during and after contact of two
spheres of the same material is ΔA

Bψ = 0, and hence eq 14
predicts that the force Fq q,A B vanishes. However, this conclusion
is based on approximate expressions for cA, cB, and CT, which
makes them independent of the separation s. When higher
order terms are included in the series expansions of the
elements of the capacitance matrix, then Fq q,A B turns out to be
repulsive.17

If the spheres are close enough to equilibrate the Fermi levels
(i.e., electron tunneling is possible), the potential difference
ΔA

Bψeq = −ΔA
BΦ/e is constant. However, if the electron

tunneling is not possible, the charge is then constant. So if
we have ideal spheres of two different metals without any
surface roughness, this result indicates that when they are in
contact, the Fermi levels equilibrate and the force between
them is attractive. If the spheres are separated, there is some
transferred charge that tries to keep the potential difference
constant, that is, to maintain the condition μ μ̃ = ̃− −e

A
e
B . When

the cutoff distance of the electron tunneling is reached, the
charge remains constant and the attractive force is then given
by eq 12 with ΔA

Bψ varying with s. If qT = 0, because the
conductors have opposite charges qB = −qA = CΔA

Bψ, then eqs
11 and 14 allow to write the attractive force between the
conductors when separated at constant charge as
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■ CHARGING OF BIMETALLIC JANUS PARTICLES
Fermi Level Equilibrium. Consider two uncharged metals

A and B in vacuum, each made of two half-spheres linked by a
wire of the same metal (Figure 3a). Because no electric field
exists outside of the metals, two positions A2 and B2 just
outside of the metals have the same potential ψA2 = ψB2. The

Figure 2. ψA/(ψA − ψB) as a function of rA/(rA + rB) showing that
when rA ≪ rB, the potential difference is practically equal to that
between the smaller one and vacuum, while the bigger one has
practically zero potential, as described schematically in Figure 1d.
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metals are then brought in contact through the lower
hemispheres and reach the distribution equilibrium condition
μ μ̃ = ̃− −e

A
e
B . The charge redistribution that leads to the

equilibration of the Fermi levels affects the outer potentials of
the charged phases but not their work functions. Two positions
A4 and B4 just outside of the metals (Figure 3b) have a
potential difference given by eq 6, ψB4 − ψA4 = ψB − ψA. As the
Galvani potential ϕ = χ + ψ is constant within a phase at
equilibrium (see the Supporting Information), the Volta
potential difference equals the sum of the potential drops
between positions B4 and B3, the potential drop across the
plane of contact of the lower hemispheres, and the potential
drop between positions A3 and A4. The surface potential χ at a
metal−vacuum interface is not affected by the charge on the
metal,31 and therefore the potential drops between positions B3
and B4 and between positions A3 and A4 are χB and χA,
respectively. Then, the Galvani potential difference between A
and B is

ϕ ϕ μ μ

χ χ

− = −

= − + Φ − Φ

− − e

e

( ) ( )/

( )/

B A
contact e

B
e
A

B A A B (18)

Across a few atomic layers at the plane of contact of the lower
hemispheres, a surface density of dipoles σdip creates this
difference of inner potentials (ϕB − ϕA)contact.
A common belief about metal−metal contacts is that all the

charges transferring from A to B are located at the contact itself,
as interfacial dipoles that form polarized covalent bonds
between the interfacial atoms. This, however, is not completely
true as some charges spread all over the outer surfaces of the
metal to induce the electric potential in the metal, and this
charge distribution is dictated by the capacitance of the whole
system. For example, the simple electrostatic model predicts
that ca. 10% of the transferred charge is actually located on the
outer surfaces of a 12.6 Å radius Janus particle (vide infra), but
this ratio is expected to depend strongly on the geometry of the
system.
The total capacitance of the system shown in Figure 3b can

be considered as the sum of the capacitance of the upper and
lower hemispheres (as the system is equivalent to two
capacitors in parallel). This simple electrostatic model for the
contact electrification of Janus particles has been justified by
comparison with DFT calculations.18 The electrons in both
phases have the same electrochemical potential. This means
that the difference in real potential of electrons in different
metals is compensated by a Volta potential difference between
the metals. If we describe the metal−metal contact as a planar
capacitor and the surface density of dipoles as σdip = σcdc, then

ϕ ϕ σ ε− = =Q C d( ) / /B A
contact c c c c 0 (19)

where the subscript c stands for contact and ε0 is the vacuum
permittivity. Similarly, if we consider that the upper hemi-
spheric pieces form a pseudoplanar capacitor and neglect the
edge effect, we have

ψ ψ ψ ψ σ ε− = − = d/B4 A4 B A
0 (20)

where d is the gap of the capacitor and σ the surface charge
density on the two opposing metal faces. If we assume that the
difference in surface potential is very small, eqs 18−20 imply
that σcdc = σd, which means that most of the transferred charge
is at the contact plane because dc ≪ d. That is, the surface
charge density at the place of contact is much higher than that
in the separated hemispheres because the distance between the
plates is much smaller. In addition, a small amount of charge
resides on the outer surfaces of the metal, as each metal has
uniform potential.
In an ideal Ag−Au Janus sphere formed by contact of two

equal size hemispheres, the electrons flow from silver to gold to
equalize the Fermi levels because ΦAg = 4.30 eV and ΦAu = 5.30
eV.20 By symmetry, the Fermi level of this ideal Janus sphere is
the average of the Fermi levels of the two metals before contact,
that is, 4.80 eV. The Volta potential difference ψAg − ψAu = 1.00
V is given by eq 4, that is, by the common IE, IE = ΦAg + eψAg =
ΦAu + eψAu. Figure 4 illustrates schematically the potential
distribution on the symmetry axis.

Let us consider now what happens with the Fermi level when
the surface fraction of the metals changes (Figure 5). This
problem was rigorously studied by Langmuir, who considered
the effect of surface coverage of Cs on tungsten on the work
function.32 Alkali metal atoms adsorbed on various other metals
show relatively similar trends: a rapid decrease in the work
function with the increasing alkali metal coverage followed by a
broad minimum. As the coverage approaches unity, the work
function increases again and levels off at the work function of
the alkali metal.33 This behavior can be explained by the fact
that at low coverages alkali metal atoms are present as single
ions leading to the formation of strong dipoles, whereas on
increasing the surface coverage this polarization decreases
because of the stronger interaction between dipoles and the
formation of covalent bonds between adsorbates. In effect, the
coordination number of atoms increases, and finally the surface
layer starts to resemble the bulk materials.33 Interestingly, these
mixtures produce materials with lower work functions than

Figure 3. (a) Two uncharged metals with different work functions in
vacuum. (b) Contact electrification equilibrates their Fermi levels. The
signs + and − correspond to ΦB > ΦA.

Figure 4. Potential distribution along the equatorial axis for a Ag−Au
Janus sphere. χAg is not necessarily equal to χAu.
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both bulk materials. Recently, the additional effect of the orbital
overlap between both metals has also been highlighted.34

However, for fully coordinated surfaces, the formation of such
dipoles is suppressed.34 In this case, we have recently shown
that the Fermi level of the silver−gold system is directly
dependent on the surface area ratio between the two metals,
whereas there was no influence on the Fermi level by the
volume or molar ratio of the two elements.18 This relation is
expected to hold also for other systems where metals at the
surface are bound by metal−metal bonds and segregated into
large enough clusters.
In fact, the Fermi level EF of these systems can be

approximated by

= +−E x E x EF
Au Ag

s
Au

F
Au

s
Ag

F
Ag

(21)

where xs
Au = 1 − xs

Ag is the surface area fraction of Au. This
relationship in the case of polycrystalline surfaces is considered
to determine the average work function of the surface as the
weighted average of the work functions of the individual
crystallites known as “patches”.35,36 In the case of planar,
cylindrical, and spherical surfaces, the average work function is
the surface area-weighted average of the work functions of the
individual patches.35,36 For more complex geometries, the
electrostatic interactions between oppositely charged patches
have to be considered more carefully as described, for example,
by Sahni et al.35 and Baldereschi et al.,26 and also in this work
for two spheres. Similar considerations apply to the surfaces
covered with patches of different metals, but in this case the
Fermi level differences between the two metals can be much
higher, of the order of electronvolts, leading to higher surface

Figure 5. The variation in the surface fraction of silver in Ag−Au Janus particles.

Figure 6. (a−e) The potential distributions, shown in 2D axial symmetry, of spherical Ag−Au Janus particles with different surface fractions of Ag
(see Figure 5; note that a surface fraction xs

Ag = 5% corresponds to a volume fraction (3 − 2xs
Ag)(xs

Ag)2 = 0.725%). The silver cap has a positive
charge. (f) Surface charge density as a function of the arc length as shown in (c). The red stars mark the position of the shoulder in (d) and (e).
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charge densities and stronger electric fields than in the case of
surfaces of a single metal. Recently, this relationship has been
illustrated for different bimetallic Ag−Au nanoparticles
containing 591 atoms on Au−Ag surfaces and on Au
nanoislands on the Ag surface.18

The case described is very similar to the formation of alloys,
where two components are homogeneously mixed. The work
function and the Fermi level of alloys have been considered
both theoretically and experimentally. Computational methods
and theoretical correlations based on image force, dipole layer,
surface mixture, and dual phase mixture approaches have been
proposed.37 In the case of contact electrification, the situation is
much simpler than with alloys, because only one surface layer is
affected, whereas in alloys the components can be completely
mixed. Alloying changes the Fermi level in two ways: by contact
electrification, as described above, and by changing the lattice
structure of the metal, directly affecting the chemical potential
of electrons in the alloy. If the lattice structure does not change
significantly, the Fermi level of alloys can also be estimated with
eq 21.
Contact Charging in Vacuum. The evaluation of the

amount of transferred charge is a complicated issue, as it
strongly depends on the geometry of the contact interface. To
illustrate this, charge distribution upon contact charging was
investigated with the capacitance model.18 The Laplace
equation ∇2ϕ = 0 for the electrostatic potential in vacuum
was solved in 2D axis symmetry, both analytically and
numerically using COMSOL Multiphysics, to illustrate the
potential distribution because of the contact electrification of
Ag−Au Janus particles (radius 12.6 Å) with different
compositions (see the Supporting Information for details). In
particular, the surface fraction of Ag was varied from 5 to 95%
(Figure 5). All computations were performed using a
MacIntosh computer with 4 Intel Xeon(R) 5150 processors
operating at 2.66 GHz and using the Windows 7 operating
system; the runtimes were up to 1 min.
We have recently shown that the metals in contact can be

considered as two electrodes of a capacitor separated by the
tiny gap.18 The separation between the two metals was chosen
as 0.353 Å so that the charge transferred matched the value
obtained by DFT calculations.18 The results are shown in
Figure 6 with streamlines for the electric field. In this case, the
potential difference between the spherical caps is equal to the
difference in the Fermi levels of the pure metal nanoparticles
(0.86 V as calculated for icosahedral nanoparticles of 591
atoms).18

The simulations show that ca. 10% of the transferred charge
is on the outside, whereas 90% is retained at the contact
interface. The surface charge density is shown in Figure 6f. The
electric field is the strongest in the gap and vanishes almost
completely five particle radii away from the sphere. Although
these calculations are simplifications of the geometry of the
system, they allow understanding the magnitude of the surface
charge density. The small bumps on the surface charge of silver
and a higher peak for the gold in Figure 6e are located at the
three-phase boundary between silver, gold, and the surrounding
medium at the outer surface. This is because the boundary
between the surface of the sphere and the gold cap has a
sharper edge. Simulations done with surface fractions of 33, 25,
10, and 5% of Ag show the same behavior, but with inversed
charge density profiles (Ag showing the peak), as expected by
symmetry.

Potential Distribution around Bimetallic Janus Nano-
particles in Electrolyte Solution. When a material bearing a
surface charge is placed into an electrolyte solution, an ionic
double layer forms around the material, effectively screening
the surface charge. Because we want to understand what
happens when contact charging takes place in aqueous
electrolyte solutions, a brief overview of the electric double
layer, the Poisson−Boltzmann model, and their modifications is
given in this section. The electric double layer forms on all
charged interfaces in contact with electrolyte solutions. The
charge confined on the surface affects the solvent molecules and
the ions in the electrolyte solution. The generally accepted
model of the electric double layer contains inner and outer
Helmholtz layers and a diffuse double layer. The outer
Helmholtz layer is the closest approach of solvated ions to
the surface, whereas the inner Helmholtz layer consists of
mostly organized solvent dipoles and may also contain some
specifically adsorbed ions that have lost their solvation shell.
Sometimes the inner and outer Helmholtz planes are together
called as a Stern layer.20

In a binary symmetric electrolyte (z+ = |z−| = z), the
Poisson−Boltzmann equation is

ε ε ϕ ϕ∇ = ⎜ ⎟⎛
⎝

⎞
⎠zFc

zF
RT

2 sinhr 0
2 b

(22)

where c+
b = c−

b = cb is the molar concentration of the ionic
species at the bulk of the solution (where ϕ = 0). As it is well
known from the Gouy−Chapman description of the electric
double layer, a limitation of this model is that the ions are
considered as point charges, resulting in abnormally high
surface concentrations of ions at high polarizations. One
solution proposed by Cervera and co-workers takes into
account the steric effects in the Boltzmann distribution,38−42

leading to the modified Boltzmann distribution as follows:

=
−

+

ϕ

ϕ

( )
( )

c
c

v

exp

1 2 sinh

z F
RT

zF
RT

i
i
b

i
2

2

i

(23)

where vi is a packing parameter expressed as vi = 2NAai
3ci
b, NA is

Avogadro’s constant, and ai is the diameter of the solvated ion i.
Similar expressions were proposed in the 1940s and 1950s by
Bikerman, Grimley, and Mott, Eigen and Wicke, Freise, and
Brodowsky and Strehlow as reviewed in refs 39 and 42. The
modified Poisson−Boltzmann equation then becomes

ε ε ϕ∇ =
+

ϕ

ϕ

( )
( )

zFc

v

2 sinh

1 2 sinh
r

zF
RT

zF
RT

0
2

b

i
2

2 (24)

This modification ensures that the surface ionic concentrations
reach a saturation point at the steric limit with increasing
surface polarization, whereas the unmodified Poisson−
Boltzmann equations predict continuous increase in concen-
trations. Although eq 24 flattens out any oscillations in the
charge density distribution because of finite-size effects,42 these
oscillations are not expected to be important at the charge
densities owing to the contact electrification.
The Stern modification of the Gouy−Chapman model adds

the inner and outer Helmholtz planes into the system.20

Because there are no ions within the Stern layer (if the specific
ion adsorption is not considered), the electrostatic potential
satisfies the Laplace equation ∇2ϕ = 0. This equation is also
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valid in any phase where there are no ions and dipoles, and
hence there is no formation of the electric double layer.
To evaluate the effect of the electrolyte on the potential

distribution around a bimetallic particle, simulations were done
in 10 mM KCl using the modified Poisson−Boltzmann
equation 24 with a Stern layer of thickness of 3.3 Å (roughly
the radius of a hydrated K+ or Cl− ion43). For simplicity, the
relative permittivity in this Stern layer was considered as the
bulk value of water, εr = 78. More accurate simulations could be
obtained by using the Booth model to account for the electric
field-dependent permittivity of water in the Stern layer.44−46

The potential profiles obtained by solving the modified
Poisson−Boltzmann equation are very similar to those in
vacuum (Figure 6), so only the potential profile of the 50%
Ag−Au Janus particle is shown in Figure 7a. About half of the
potential drop occurs in the Stern layer, and the electric field
almost completely disappears beyond the Debye length
(calculated as 33 Å for 10 mM KCl). Figure 7b shows the

concentration profiles of cations (solid line) and anions
(dashed line) along the z axis. The cases with 75, 66, and
50% surface fractions of Ag are almost indistinguishable from
each other on the Au side, whereas stronger variation is
observed on the Ag side because of lower potentials. This is
emphasized in Figure 7c, where potential of Au decreases with
increasing Ag surface fraction. The potential profiles are
inversed for smaller Ag fractions, as expected by symmetry.

■ FERMI LEVEL EQUILIBRATION IN CORE−SHELL
PARTICLES

Let us consider a gold sphere coated with a silver layer (Figure
8) with no net charge and hence zero outer potential. The

Fermi level of the silver shell is the same as that of a pure,
uncharged silver particle. If we move a test charge from vacuum
into the shell of Ag, we have to overcome the surface potential
χAg between the Ag−vacuum interface and also consider the
interactions between electrons and atoms in the Ag phase, μ ̃ −e

Ag ,

giving the total work μ μ χ̃ = ̃ −− − ee
Ag

e
Ag Ag (note that there is no

outer surface charge and ψAg = 0). The work function of the
core−shell particle is the same as for the pure outer metal,

μ χ= − ̃ + = Φ− eIEAu@Ag
e
Ag Ag Ag , except for the strain induced

by the mismatch of the lattice constants of the two metals,
affecting the real potential of electrons in the outer metal. The
charge distribution at the interface between the two metals,
which results from the electron flow (and bond polarization)
from Ag to Au, makes the Fermi level of the Au core to be the
same as that of the Au shell. The Galvani potential difference
ΔAu

Agϕ = ϕAg − ϕAu is created by the charge distribution at this
interface. To evaluate the electrochemical potential of the
electrons in the Au core, the test charge has to be moved
t h r o u g h t h e A g−Au i n t e r f a c e , r e s u l t i n g i n
μ μ μ χ ϕ̃ = ̃ = ̃ − − Δ− − − e ee

Au
e
Ag

e
Au Ag

Au
Ag .

The surface density of dipoles that generates the Galvani
p o t e n t i a l d i ff e r e n c e c a n b e e s t i m a t e d a s
σ ε ϕ ϕ μ μ= − = ̃ − ̃− − e/ ( )/dip

Au@Ag
0

Ag Au
e
Au

e
Ag . If the magnitude

of this Galvani potential difference is estimated roughly as the
work function difference of pure metals, the surface dipole
density will be σdip

Au@Ag = 8.8 × 10−12 C/m. The charge
separation in metals occurs over a distance of the order of the
Thomas−Fermi length (rTF ≈ 0.05 nm), and therefore this
charge density of dipoles corresponds to σdip

Au@Ag/rTF = 0.17 C/
m ≈ 1 e/Å2 showing that the charge at the interfacial dipole
depends on the radius of the core (as the surface area of the
interface depends on the radius) but not on the thickness of the
shell. Of course, there are additional factors like the surface
stress that also influence the Fermi level of electrons in the

Figure 7. (a) The potential distributions around a spherical Ag−Au
Janus particle of 12.6 Å radius immersed in a 10 mM KCl aqueous
solution (εr = 78), shown in 2D axial symmetry. A Stern layer of 3.3 Å
has been considered. The potentials in the diffuse double layer vary
from 0.23 to −0.23 V. (b) Concentration profiles of cations and anions
in the electric double layer along the z axis for different Ag surface
fractions. (c) Potential profiles along the z axis for different Ag surface
fractions. The dashed lines indicate the thickness of the Stern layer on
the Ag surface.

Figure 8. Au@Ag core−shell nanoparticle.
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core−shell particles, but the general principles described here
apply.
Core−shell particles are known to have markedly different

optical properties than the pure metal nanoparticles, and the
experimental spectra can be reasonably reproduced theoret-
ically by using Mie theory for multilayer concentric spheres.47,48

The general observation is that when the size of the shell grows,
the plasmon resonance of the core is quickly masked by the
response from the shell and only at certain shell thicknesses the
two plasmon resonances are present.47 Although it is well
known that charging of the nanoparticle can have a significant
effect on the plasmon resonance,47,49,50 the effect of contact
charging is not easily observable because of the domination of
the outer shell. The removal of electrons from a metal
nanoparticle results in a slight red shift in the surface plasmon
peak to higher wavelengths.49,50 It has been observed
experimentally that the surface plasmon peak of the gold core
in the Au@Ag particle is blue shifted with increasing Ag shell
thicknesses until the two resonances merge into a single peak
close to the resonance wavelength of a solid particle of Ag.
Correspondingly, the resonance of the Ag shell is shifted
slightly red.47,51−53 A similar behavior is observed for Ag@Au
core−shell particles. We believe that these observed shifts in
the resonance spectra are at least partially because of contact
charging. A similar approach has been proposed earlier by
Nayak and Ghosh,54 who considered the diffuse electron
density profile at the boundary between the two metals instead
of a sharp boundary assumed by the Mie theory. The
experimentally observed blue shift of the Au core in Au@Ag
nanorods is markedly more clear,47,55,56 most likely because of
the increased contact area between the different metals,
increasing the number of transferred electrons.18

In Au@Ag particles, the Fermi level of the Au core is the
same as the Fermi level of the Ag shell. The question is, how
does the number of electrons transferred to the gold vary with
the thickness of the shell layer or the radius of the core? The
previous treatment would suggest that even a monolayer of
silver on gold would make the Fermi level of gold to align with
the Fermi level of bulk silver, and hence the work function of a
metal is not so sensitive to the three-dimensional structure of
the solid.57 Of course, the silver layer has to be thick enough so
that it behaves as bulk silver, but it seems that only a few
monolayers are enough to recover the bulk work function.57

For example, recent computational studies have shown that a
subsurface layer of a metal M inserted into a Pd particle can
significantly change the work function of the Pd(shell)/
M(monolayer)/Pd(core) particle, but the work function of
bulk Pd is recovered by increasing the thickness of the outer Pd
shell.58 In addition, the deformation of the metal structures
owing to the mismatch of unit cell parameters between two
different metals induces surface stress.3,59,60 This changes the
chemical potential of electrons in the surface layers,3,59,60 but if
the layers are thick enough, the deviation from bulk values are
small.

■ CONCLUSIONS
Fermi level equilibration takes place upon contact of two
different electric conductors (either metals or semiconductors)
through electron transfer from the material with the lower work
function to the other material. Most, but not all, of this
transferred charge is retained at the interface as an interfacial
dipole. However, the charge at the outer surfaces induces a
potential on both metals, where the potential difference is equal

to the work function difference in the two materials. The
position of the Fermi level (and the distribution of this
electrostatic potential) is strongly dependent on the surface
coverage of different metals and metal facets on the structure
(for spheres and surfaces this dependency is linear). Basically,
the Fermi level of the structure is the weighted average work
function of all the surfaces. In addition, the amount of the
transferred charge depends strongly on the geometry of the
system. Shifts in the Fermi level can have a drastic effect on, for
example, electrocatalytic, catalytic, and optical properties of
multimetallic systems; for example, shifts observed in surface
plasmon resonance of core−shell nanoparticles seem to result
from contact electrification. Understanding and taking advant-
age of the contact electrification on the material design is
expected to lead to improved performance of, for example,
bifunctional electrocatalysts.
In the case of two spheres of different metals, the position of

the Fermi level cannot be expressed simply as the surface area-
weighted average of the Fermi levels of pure metals but instead
the electrostatics of the system have to be considered more
carefully. Electrostatic calculations of the force between the two
spheres show that the spheres will attract each other. If the
separation is less than the distance of electron tunneling, the
potential difference between the spheres is constant, whereas
the charge depends on the separation distance. Outside of this
cutoff distance, the charge remains constant, whereas the
potential difference changes.
When a bimetallic particle is placed into an electrolyte

solution, an electric double layer forms around it. The behavior
of this double layer around Ag−Au Janus particles of different
compositions was studied by numerically solving the modified
Poisson−Boltzmann equations using finite element simulations.
The results show that the electric field induced by the contact
electrification disappears beyond the Debye length.
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Pecharromań, C. Drastic Surface Plasmon Mode Shifts in Gold
Nanorods Due to Electron Charging. Plasmonics 2006, 1, 61−66.
(51) Wang, X.; Zhang, Z.; Hartland, G. V. Electronic Dephasing in
Bimetallic Gold-Silver Nanoparticles Examined by Single Particle
Spectroscopy. J. Phys. Chem. B 2005, 109, 20324−20330.
(52) Morriss, R. H.; Collins, L. F. Optical Properties of Multilayer
Colloids. J. Chem. Phys. 1964, 41, 3357−3362.
(53) Gonzalez, C. M.; Liu, Y.; Scaiano, J. C. Photochemical Strategies
for the Facile Synthesis of Gold−Silver Alloy and Core−Shell
Bimetallic Nanoparticles. J. Phys. Chem. C 2009, 113, 11861−11867.
(54) Nayak, M. K.; Ghosh, S. K. Optical Properties of Bimetallic
Nanospheres: Effect of Diffuse Electron Density Profiles at the
Boundary Surfaces. J. Chem. Phys. 2009, 130, 204702.
(55) Xiang, Y.; Wu, X.; Liu, D.; Li, Z.; Chu, W.; Feng, L.; Zhang, K.;
Zhou, W.; Xie, S. Gold Nanorod-Seeded Growth of Silver
Nanostructures: From Homogeneous Coating to Anisotropic Coating.
Langmuir 2008, 24, 3465−3470.
(56) Becker, J.; Zins, I.; Jakab, A.; Khalavka, Y.; Schubert, O.;
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