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Abstract

We consider the problem of reliably connecting an arbitrarily large set of computers (nodes)
with communication channels. Reliability means here the ability, for any two nodes, to remain
connected (i.e., their ability to communicate) with probability at least µ, despite the very fact
that every other node or channel has an independent probability λ of failing. A simple solution
to the problem consists in connecting every pair of nodes with several channels. This solution
however does not scale: the number of connections per node (degree) would not be bounded by
a constant.

We address the following question: is it possible to reliably connect an arbitrarily large num-
ber n of nodes with a bounded degree? This problem is non-trivial, as the level of redundancy
implied by reliability is apparently incompatible with a bounded degree. In this paper, we show
that, may be surprisingly, the answer to this problem is positive. We show how to build a graph
to reliably connect n nodes while preserving a bounded degree.

We first address a weak version of the problem, where we allow to add intermediary nodes
(that are not necessarily reliably connected to the others), provided that their number is linear
in the total number of nodes reliably connected. To solve the weaker problem, we define a fractal
graph that ensures constant reliability at any distance, and combine it with a tree-like graph
to reliably connect an arbitrary set of nodes. Then, to solve the strong version of the problem
(without intermediary nodes), we split the n nodes to connect into several subsets, and reliably
connect each pair of subsets with an instance of the previous graph containing at most n nodes.
The final graph is obtained by merging all these instances together. The linearity property of
the weak problem ensures that the number of graphs we merge is bounded by a constant, which
guarantees a bounded degree. Interestingly, the resulting graph has an optimal diameter: it is
logarithmic in n.

Whilst we focus on crash-stop failures for presentation simplicity, we also show how our
solution can be generalized to tolerate Byzantine (malicious) failures, by increasing the level of
redundancy and performing majority votes at several levels of the graph.

1 Introduction

With the fast development of communication networks, more and more computers are getting
connected. The growth of the size of modern networks seems to be even exceeding Moore’s Law [22].
This is in particular the case for data centers handling massive data storage for cloud computing
[5, 4], as well as industrial and research simulations. We talk about 60,000 cores for the Human
Brain Project [1] and over 100,000 for the CERN data center [2]. Companies like Google and
Microsoft today have data centers of more than one million servers [3].

We consider the problem of reliably connecting a set of computers (we say nodes) with communi-
cation channels. The reliability criteria we consider is the following: assuming that each node or
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channel has an independent probability λ to crash1, any two (non-crashed) nodes must be able to
communicate with probability at least µ. We call this the communication probability2.

A simple solution to the problem consists in building a “complete graph”, that is, to add one
or several communication channels between any two nodes. This solution is clearly not scalable:
as each node needs to be connected to all others, the node degree (i.e., the number of channels
connected to a given node) explodes. In practice, we can only connect a finite number of channels
to a given node. In order to scale, the node degree must be bounded by a constant.

Many network topologies were proposed to reliably connect a large number of nodes with a “rea-
sonable” degree [15, 6, 20, 11, 12, 19, 7, 9]. However, all proposed approaches were empirical and
have only been experimented through simulations: their performances were evaluated for a spe-
cific number of nodes. In fact, if we consider the asymptotic behavior of their proposed graphs
(i.e., when the number of nodes grows larger and larger), either the communication probability
approaches zero, or the maximal degree approaches infinity.

We study for the first time this problem theoretically, and we address the following question: is
it possible to connect an arbitrarily large number of nodes n, while achieving any desired level of
reliability and preserving a bounded degree? We call this problem the RBD (Reliable Bounded
Degree) problem. (We give the precise definition of the problem in the paper.)

We keep the setting voluntarily simple here: all nodes and channels have the same status and the
same probability of failure (in practice, this network could represent the backbone of the actual
network). We seek no optimization of the degree of the network and focus on the feasibility of the
problem, first in the context of crash failures.

At first glance, the answer to the RBD problem seems to be negative. Indeed, consider a graph
of n nodes with a bounded degree. When n increases, the diameter of the graph also increases:
some pairs of nodes become more and more distant from each other, inevitably dragging down the
communication probability. To compensate for this loss of reliability, the natural solution is to add
redundant paths between any pair of (distant) nodes. However, the number of parallel paths is
bounded by the maximal degree here, while the network diameter keeps increasing with n. Clearly,
for a sufficiently large n, the loss of reliability cannot be compensated by a bounded number of
parallel paths. The trade-off seems impossible to circumvent.

In this paper, we show that, may be surprisingly, the answer to the RBD problem turns out to be
positive. More precisely, we provide a solution to this problem: for any number of nodes n, we
show how to build a graph Gn that ensures arbitrarily high reliability while preserving a bounded
degree.

We proceed in two main parts, each one containing several steps.

1. We first solve a weak version of the problem we call the Weak RBD (WRBD) problem,
which we believe is interesting in its own right. The goal is to reliably connect m nodes with
a graph Wm of bounded degree. The difference with the RBD problem is that it is allowed to
add intermediary nodes between these m nodes (that are not necessarily reliably connected
to the rest), provided that their number is at most linear in m – that is, at most Cm, where
C is a constant. The key idea of our solution to this problem is to define a fractal graph that
ensures a constant communication probability between any two given nodes (independently
of their distance) with a bounded degree. This fractal definition enables us to express the
communication probability as a convergent sequence. The fractal graph can be described as a

1Here, “crash” refers to the classical “crash-stop” model [21, 14] .
2This criteria should not be confused with the following: “the whole graph should remain connected with prob-

ability λ”. Indeed, this second criteria is impossible to satisfy: as the node degree must be bounded by a constant,
when the size of the network increases, the probability that all channels surrounding some node crash approaches 1.
Therefore, it is impossible to have a lower bound on the probability that the whole graph remains connected. For
this reason, we consider a less restrictive criteria, that is: the probability that p and q are connected (where p and q
can be any nodes).
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floor graph: a graph where the nodes are divided into floors, each floor being only connected
to adjacent floors. Then, we define a tree-like floor graph connecting m nodes, and combine
both graphs “floor by floor” to reliably connect the m nodes. The different speed of growth
between the floors of these two graphs enables to preserve a linear number of intermediary
nodes: overall, the number of intermediary nodes is divided by two every two floors, and their
total number is therefore a convergent sum.

2. We then use the solution to the WRBD problem to solve our seemingly stronger RBD problem
(i.e., reliably connecting n nodes without intermediary nodes). The idea is to combine several
instances of a WRBD graph Wm, each instance reliably connecting a smaller number of nodes
m ≤ n, and to make their intermediary nodes “disappear” by merging them with other nodes.
More precisely, let m be an integer sufficiently small so that Wm contains at most n nodes
in total (including the intermediary nodes). We divide the n nodes into several subsets, and
connect each pair of subsets with an instance of Wm. For each instance of Wm, we merge the
intermediary nodes with the n −m other nodes. According to the linearity property of the
WRBD problem, the number of subsets into which n should be divided is bounded. Then,
even after merging all the instances of Wm with the n nodes, the degree remains bounded.
Interestingly, the resulting solution has an optimal (logarithmic) diameter.

In the paper, we show how to extend our result to Byzantine failures (when the failed components,
i.e., nodes or channels, have an arbitrary malicious behavior). Basically, assuming a failure rate
λ < 0.5 (which is necessary here), we can still solve the RBD problem, even with Byzantine failures,
by increasing the level of redundacy and adding several layers of majority votes.

The paper is organized as follows. In Section 2, we define the WRBD problem (the weak
version of the problem) as well as the RBD problem itself. In Section 3, we define a graph Wm

that solves the WRBD problem, and prove its correctness. In Section 4, we define a graph Gn that
solves the RBD problem, and prove its correctness. In Section 5, we show that the diameter of our
solution is optimal. In Section 6, we discuss the extension to Byzantine failures. We conclude in
Section 7 by discussing some related works and possible extensions.

2 The problems

In this section, we state some definitions, then define the WRBD and RBD problems.

Definitions. Let λ ∈]0, 1[ and µ ∈]0, 1[ be any two arbitrary values: λ represents the (indepen-
dent) probability of failure of each node or channel, and µ the desired communication probability
between each pair of nodes. We define these notions below.

A graph is a tuple G = (V,E) where V is the set of nodes and E is the set of channels. E is a set
of pairs of nodes {p, q} ⊆ V . In this paper, E is a set with repetition: for two nodes p and q, it is
possible to have multiple channels between p and q.

A component of a graph G is any node or channel of G. Each component of G can be either
alive (functional) or crashed (failed). An alive path is a sequence of nodes (p1, . . . , pm) such that,
∀i ∈ {1, . . . ,m}, pi is alive, and ∀i ∈ {1, . . . ,m − 1}, there exists an alive channel {pi, pi+1}. Two
nodes p and q are connected if there exists an alive path (p1, . . . , pm) such that p1 = p and pm = q.

The communication probability of two nodes p and q is the probability that p and q are connected
(according to the definition just above) when p and q are alive and any other component is crashed
with an independent probability λ. We say that p and q are reliably connected if the communication
probability between p and q is at least µ.
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Figure 1: The difference between the WRBD and RBD problems.

WRBD. The WRBD (Weak Reliable Bounded Degree) problem consists in finding a graph Wm

(with a parameter m ≥ 2) satisfying the three following requirements:

1. Reliability. ∀m ≥ 2, there exists a set Sm of nodes of Wm such that |Sm| = m and, for any
two nodes p and q of Sm, p and q are reliably connected (in other words, at least m nodes of
Wm are reliably connected).

2. Bounded degree. There exists a constant ∆ such that, ∀m ≥ 2, the maximal degree of Wm

is at most ∆ (that is, each node of Wm is connected to at most ∆ channels).

3. Linear number of nodes. There exists a constant C such that, ∀m ≥ 2, the number of
nodes of Wm is at most Cm (that is, the number of nodes is linear in m).

RBD. The RBD (Reliable Bounded Degree) problem consists in finding a graph Gn (with a
parameter n ≥ 2), containing exactly n nodes and satisfying the two following requirements:

1. Reliability. ∀n ≥ 2, for any two nodes p and q of Gn, p and q are reliably connected.

2. Bounded degree. There exists a constant ∆ such that, ∀n ≥ 2, the maximal degree of Gn
is at most ∆.

The difference between the WRBD and RBD problems is illustrated in Figure 1. In the WRBD
problem, m nodes need to be reliably connected, and the total number of nodes is linear in m
(i.e., at most Cm). In other words, in the WRBD problem, some nodes are not necessarily reliably
connected to the others. We call them intermediary nodes. These intermediary nodes can represent
routers which purpose is only to connect m computers reliably. In the RBD problem, there are no
intermediary nodes: the n nodes of the graph need to be reliably connected.

3 Solving the WRBD problem

In this section, we define a graph Wm (3.1) and prove that it solves the WRBD problem (3.2).

3.1 A WRBD graph

Overview. For the motivation of the construction steps, please refer to the introduction. Here,
we explain these steps in more details.

We first define the notion of floor graph. A floor graph is a graph where nodes are separated into
several “floors”, and where only nodes of two adjacent floors can be connected.
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Figure 2: A floor graph of height H = 4. Figure 3: Structure of graph Tm.

Then, we define two floor graphs: Tm, which contains a binary tree connecting at least m nodes,
and Rm, which is a “fractal” graph defined by induction. The fractal definition of Rm enables
to preserve a constant communication probability between the first and last floor (independently
of m) when λ < 0.01 (Lemma 1). We show how to overcome this “λ < 0.01” constraint below.
Besides, Rm is defined so that the number of nodes doubles at most every 2 floors, which enables to
preserve a linear number of nodes, as shown in Theorem 3. The number of floors of Tm is adjusted
so that Tm and Rm have the same number of floors Hm.

Then, we define a graph Xm, which is a “floor by floor” product of Tm and Rm, and a graph Ym,
which puts two graphs Xm in parallel. Doing so ensures a constant communication probability
between any two nodes of the first floor.

Finally, we make three transformations in order to reach any communication probability µ with any
failure rate λ. First, we connect several graphs Ym in parallel, in order to achieve any communication
probability µ. Second, we replicate each node, in order to simulate a failure rate λ < 0.01 for each
node. Third, we replicate each channel, in order to simulate a failure rate λ < 0.01 for each channel.
The graph thus obtained is Wm.

Definitions. For any m ≥ 2, let hm be the smallest integer such that 2hm−1 ≥ m. Let Km be the
smallest integer such that 2 + 4Km ≥ hm, and let Hm = 2 + 4Km. Let α be the smallest integer
such that α ≥ 1 and 0.5α ≤ 1− µ. Let β be the smallest integer such that β ≥ 1 and λβ ≤ 0.01.

A floor graph of height H is a tuple (V1, . . . , VH , E) satisfying the three following conditions:

1. (V,E) is a graph with V =
⋃
i∈{1,...,H} Vi.

2. The sets Vi (“floors”) are disjoint: ∀{i, j} ⊆ {1, . . . ,H}, Vi ∩ Vj = ∅.

3. The channels only connect neighbor floors: ∀{p, q} ∈ E, if p ∈ Vi and q ∈ Vj , then |i− j| = 1.

An example of a floor graph is given in Figure 2. By convention, in the following figures, V1 always
corresponds to the lower floor on the figure. We call V1 the “first floor” and VH the “last floor”.

Graph Tm. We first define a tree-like floor graph of height Hm. Consider the floor graph repre-
sented in Figure 3: this graph is composed of a line of height H = 3 and of a binary tree of height
H ′ = 3. In other words, ∀i ∈ {1, . . . ,H ′}, the floor i contains 2i−1 nodes, and the H remaining
floors contain each 1 node. Then, ∀m ≥ 2, we define Tm as a similar graph with H = Hm − hm
and H ′ = hm.

Graph Rm. ∀k ≥ 0, we first define a floor graph Qk by induction. Let Q0 be a floor graph
of height 2 containing 2 nodes and 1 channel, as described in Figure 4. Then, ∀k ≥ 0, Qk+1 is
constructed with 2 instances of Qk in parallel and 4 additional nodes, as described in Figure 4
(Qk+1 has 4 more floors than Qk). We now define Rm as follows: ∀m ≥ 2, Rm = QKm .
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Figure 4: Construction (by induction) of fractal graph Qk.

Figure 5: Construction of graph Ym.

Graph Xm. ∀m ≥ 2, Tm is a floor graph of heightHm, and Rm is a floor graph of height 2+4Km =
Hm. As Tm and Rm are floor graphs, let Tm = (V1, . . . , VHm , E) and Rm = (V ′1 , . . . , V

′
Hm

, E′). Then,
∀m ≥ 2, we define the floor graph Xm = (V ∗1 , . . . , V

∗
Hm

, E∗) as follows:

• ∀i ∈ {1, . . . ,Hm}, to each pair of nodes (u, v) ∈ Vi × V ′i , we associate a unique node p =
f(u, v) ∈ V ∗i (thus, |V ∗i | = |Vi||V ′i |).

• Let p = f(u, v) and p′ = f(u′, v′). Then, p and p′ are neighbor in Xm if and only if u and u′

(resp. v and v′) are neighbors in Tm (resp. Rm).

Observe that, as the last floors of Tm and Rm contain 1 node, the last floor of Xm also contains 1
node.

Graph Ym. ∀m ≥ 2, we define the graph Ym as follows: we consider two instances of Xm (XA
m

and XB
m), we merge the nodes of their first floors, and we merge the nodes of their last floors. This

is illustrated in Figure 5.

Graph Wm. ∀m ≥ 2, the graph Wm is finally obtained by applying three successive transforma-
tions to Ym:

1. Transformation 1 (Network replication). First, we connect α instances of Ym by merging
the nodes of their first floors. This is illustrated in Figure 6 for α = 3.
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Figure 6: Transformation 1 (Network replication) with α = 3.

Figure 7: Transformations 2 (Node replication) and 3 (Channel replication) with β = 3.

2. Transformation 2 (Node replication). Second, we replace each node p by a set of β
nodes M(p). Then, for each channel {p, q}, we add a channel between each node of M(p) and
each node of M(q) (see Figure 7-a).

3. Transformation 3 (Channel replication). Third, we replace each channel by β channels
in parallel (see Figure 7-b).

3.2 Correctness

We prove that the graph Wm solves the WRBD problem. For this purpose, we prove the three
properties of the WRBD problem: Reliability, Bounded degree and Linear number of nodes.

In Lemma 1, we show that, for a sufficiently small failure rate (λ ≤ 0.01), we have a constant
communication probability between the first and last floor of Rm (independently of m). To do so,
we call Pk the probability that the first and last floor of Qk are connected, then express Pk+1 as a
function of Pk (according to the inductive definition of Qk). Then, we show that if Pk ≥ 0.8, we
also have Pk+1 ≥ 0.8. Thus, the communication probability between the first and last floor of Qk
(and thus, Rm) is at least 0.8.

In Lemma 2, we show that the first floor of Wm contains at least m nodes. Then, we consider that
Sm is a subset of the first floor of Wm to prove the following property.

In Theorem 1, we prove the Reliability property. We first consider the case λ ≤ 0.01 and µ ≤ 0.5
(in this case, Ym = Wm). According to the definition of Xm and Ym, any two nodes of Sm are
connected to the last floor of Ym by two graphs Rm. Thus, the result, according to Lemma 2. We
then consider that λ and µ can have any value, and show that the 3 final transformations of 3.1
enable to simulate the previous situation where λ ≤ 0.01 and µ ≤ 0.5.

In Theorem 2, we prove the Bounded degree property. As Wm is intentionally defined as a
combination of graphs with a bounded degree, the property follows.

In Theorem 3, we prove the Linear number of nodes property. We use the fact that the number
of nodes of Tm is divided by 2 every floor (starting from the first floor), while the number of nodes of
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Rm at most doubles every 2 floors. Therefore, the number of nodes of Xm (which is the combination
of Tm and Rm) is at least divided by 2 every 2 floors. Then, as 1 + 1/2 + 1/4 + 1/8 + · · · ≤ 2, the
number of nodes of Xm is linear in m, and so is the number of nodes of Wm.

Lemma 1. If λ ≤ 0.01, then ∀m ≥ 2, the communication probability of the nodes of the first and
last floor of Rm is at least 0.8.

Proof. First, note that according to the definitions of Section 2, “p and q are connected with
probability P” is a stronger property than “the communication probability of p and q is P”, as the
second one assumes that p and q are alive.

∀k ≥ 0, let pk (resp. qk) be the only node of the first (resp. last) floor of the graph Qk. Let Pk be
the probability that pk and qk are connected.

Let k ≥ 0. Figure 4 shows how Qk+1 is constructed with 2 instances of Qk and 10 additional
components. Then, observe that pk+1 and qk+1 are connected in the following particular situation:
the 10 additional components are all alive, and at least one of the two instances of Qk has the nodes
of its first and last floor connected (which happens with probability Pk). Therefore, Pk+1 ≥ p(Pk),
with p(x) = (1− λ)10(1− (1− x)2).

The function p(x) is increasing for x ∈ [0.8, 1], p(0.8) ∈ [0.8, 1] and p(1) ∈ [0.8, 1]. Therefore,
∀x ∈ [0.8, 1], p(x) ∈ [0.8, 1].

As Q0 contains 3 components, P0 ≥ (1 − λ)3. Thus, as λ ≤ 0.01, P0 ≥ 0.8 and P0 ∈ [0.8, 1].
Therefore, by induction, ∀k ≥ 0, Pk ∈ [0.8, 1]: pk and qk are connected with probability 0.8. Thus,
as Rm = QKm , the result follows.

Lemma 2. ∀m ≥ 2, the first floor of Wm contains at least m nodes.

Proof. Let m ≥ 2. The first floor of Tm contains 2hm−1 ≥ m nodes. Then, by definition of Xm, the
first floor of Xm contains at least m nodes, and so does the first floor of Ym. Thus, as the 3 final
transformations of 3.1 can only increase the number of nodes of each floor, the first floor of Wm

contains at least m nodes.

Theorem 1. ∀m ≥ 2, there exists a set Sm of nodes of Wm such that |Sm| = m and, for any two
nodes p and q of Sm, p and q are reliably connected

Proof. According to Lemma 2, ∀m ≥ 2, let Sm be a set containing m nodes of the first floor of Wm.

Let m ≥ 2, and let p and q be any two nodes of Sm. First, assume that λ ≤ 0.01 and µ ≤ 0.5.
Then, α = 1 and β = 1, and according to the 3 final transformations of 3.1, Wm is identical to Ym.
Let a be a node of the first floor of Xm, and let b be the only node of the last floor of Xm. Let
P0 be the communication probability of a and b in Xm. Then, according to the definition of Xm,
P0 is at least the communication probability of the nodes of the first and last floor of Rm. Thus,
according to Lemma 1, P0 ≥ 0.8.

As Ym is formed by 2 instances of Xm, the communication probability of p and q is P1 ≥ P 2
0 (1−λ) ≥

0.5 (as P0 ≥ 0.8 and λ ≤ 0.01). Thus, as µ ≤ 0.5 here, P1 ≥ µ, and p and q are reliably connected.

Now, we only assume that λ ≤ 0.01 (µ can have any value in ]0, 1[). Then, β = 1, and transforma-
tions 2 and 3 do not change anything. After transformation 1, the communication probability of p
and q is P2 = 1− (1−P1)

α ≥ 1−0.5α (as P1 ≥ 0.5). According to the definition of α, 0.5α ≤ 1−µ.
Thus, P2 ≥ µ, and p and q are reliably connected.

Finally, we consider that λ and µ can have any value in ]0, 1[. Let us show that, after transformations
2 and 3, we reach a situation which is equivalent to the previous case where λ ≤ 0.01.
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Let Zm be the graph after transformation 1. After transformation 2, each node u is replaced by a
set of β nodes M(u). We consider that M(u) is crashed if all its nodes are crashed, which happens
with probability λβ ≤ 0.01. Thus, if M(u) is alive, at least one node of M(u) is alive.

For two alive sets of nodes M(u) and M(v), let u′ (resp. v′) be an alive node of M(u) (resp. M(v)).
Then, after transformation 3, the channel {u′, v′} is replaced by a set of β channels. We consider
that this group of channels is crashed if all its channels are crashed, which happens with probability
λβ ≤ 0.01. Otherwise, u′ and v′ are connected by at least one channel.

Let u and v be the two nodes of Zm such that p ∈M(u) and q ∈M(v). Then, the communication
probability of p and q in Wm is at least the communication probability of u and v in Zm when λ ≤
0.01. Thus, the situation is equivalent to the previous case, and p and q are reliably connected.

Theorem 2. There exists a constant ∆ such that, ∀m ≥ 2, the maximal degree of Wm is at most
∆.

Proof. Let m ≥ 2. The maximal degree of Tm and Rm is 3. Thus, the maximal degree of Xm is at
most 9, and the maximal degree of Ym is at most 18. After the 3 final transformations of 3.1, the
maximal degree of Wm is at most ∆ = 18αβ2. Thus, the result, as α and β are independent from
m.

Theorem 3. There exists a constant C such that, ∀m ≥ 2, the number of nodes of Wm is at most
Cm.

Proof. Let m ≥ 2. As Tm, Rm and Xm are 3 floor graphs of height Hm, let Tm = (V1, . . . , VHm , E),
Rm = (V ′1 , . . . , V

′
Hm

, E) and Xm = (V ∗1 , . . . , V
∗
Hm

, E).

According to the definition of Tm, ∀i ∈ {1, . . . , hm}, |Vi| ≤ 2hm−i, and ∀i ∈ {hm + 1, . . . ,Hm},
|Vi| = 1. According to the definition of Rm, starting from the first floor, |V ′i | at most doubles every
2 floors. This is also true if we start from the last floor. Thus, ∀i ∈ {1, . . . ,Hm}, |V ′i | ≤ 2i/2 and
|V ′i | ≤ 2(Hm−i)/2.

Thus, ∀i ∈ {1, . . . , hm}, |V ∗i | = |Vi||V ′i | ≤ 2hm−i2i/2 = 2hm−(i/2), and ∀i ∈ {hm + 1, . . . ,Hm},
|V ∗i | = |Vi||V ′i | ≤ 2(Hm−i)/2. Thus, Xm contains at mostD = A+B nodes, with A = Σi=Hm

i=1 2hm−(i/2)

and B = Σi=Hm
i=1 2(Hm/2)−(i/2).

A ≤ 2Σi=Hm
i=0 2hm−i ≤ 2(a + a/2 + a/4 + . . . ) ≤ 4a, with a = 2hm . Thus, A ≤ 2hm+2. B ≤

2Σi=Hm
i=0 2(Hm/2)−i ≤ 2(b + b/2 + b/4 + . . . ) ≤ 4b, with b = 2Hm/2. Thus, as hm ≥ Hm/2, b ≤ 2hm

and B ≤ 2hm+2. Therefore, D ≤ 2hm+3.

As hm is the smallest integer such that 2hm−1 ≥ m, we have hm ≤ 2+logm andD ≤ 25+logm = 25m.
Therefore, the graph Ym contains at most 26m nodes, and the graph Wm contains at most Cm
nodes, with C = 26αβ. Thus, the result.

4 Solving the RBD problem

In this section, we define a graph Gn (4.1) and prove that it solves the RBD problem (4.2).

4.1 A RBD graph

Overview. For the motivation of the construction steps, please refer to the introduction. Here,
we explain these steps in more details.

Let Wm be the WRBD graph defined in Section 3. Then, ∀n ≥ 2, we consider the largest m such
that the number of nodes of Wm is at most n. If such a m does not exist, we define Gn as a
complete graph with redundancy of channels. As it only happens for bounded values of n, it does
not break the “Bounded degree” property.
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Otherwise, we consider a set V of n nodes, and we split V into subsets of bm/2c nodes. Then, we
connect each pair of subsets with an instance of Wm merged with the nodes of V . The resulting
graph is Gn. Doing so ensures that any two nodes of V are reliably connected. Besides, according
to the “Linear number of nodes” property of Wm, the number of instances of Wm is bounded, and
so is the maximal degree of Gn.

Construction of Gn. Let n ≥ 2, and let V be a set of n nodes.

Let Wm be the graph defined in Section 3. Let Nm be the total number of nodes of Wm (Nm ≥ m),
and let Sm be the set of m nodes reliably connected by Wm.

If there exists no m ≥ 2 such that Nm ≤ n, then for any two nodes p and q of V , we add
dlog(1− µ)/ log(1− λ)e channels between p and q (“complete graph” case).

Otherwise, let m ≥ 2 be the largest integer such that Nm ≤ n. Let M be the smallest integer such
that Mbm/2c ≥ n. Let {A1, . . . , AM} be a set of M subsets of V such that

⋃
i∈{1,...,M}Ai = V and

∀i ∈ {1, . . . ,M}, |Ai| = bm/2c.
Then, ∀(i, j) ∈ {1, . . . ,M}2, we apply the following transformations. Let W (i, j) be an instance of
Wm, let V (i, j) be the set of nodes of W (i, j), and let S(i, j) be the set of m nodes corresponding to
Sm. Let A(i, j) and B(i, j) be two disjoint subsets of S(i, j) such that |A(i, j)| = |B(i, j)| = bm/2c.
We merge the bm/2c nodes of A(i, j) (resp. B(i, j)) with the bm/2c nodes of Ai (resp. Aj). Then,
we merge the Nm − 2bm/2c nodes of V (i, j) − A(i, j) − B(i, j) with any Nm − 2bm/2c nodes of
V −Ai −Aj . The graph thus obtained is Gn.

4.2 Correctness

We prove that the graph Gn solves the RBD problem.

In Theorem 4, we prove the Reliability property. Let p and q be two nodes of Gn. In the
“complete graph” case, the reliability property is ensured by the number of channels between p and
q. Otherwise, it is ensured by the fact that p and q belong to the set Sm of at least one instance of
Wm.

In Theorem 5, we prove the Bounded degree property. We first notice that the “complete graph”
case only occurs when n ≤ N2. Thus, in this case, the degree is bounded. Otherwise, we show that
the number of subsets of bm/2c nodes is bounded (which is a consequence of the linearity property
of the WRBD problem). Thus, the number of instances of Wm is bounded, and so is the degree of
Gn.

Theorem 4. ∀n ≥ 2, for any two nodes p and q of Gn, p and q are reliably connected.

Proof. If there exists no m ≥ 2 such that Nm ≤ n, then p and q are connected by k = dlog(1 −
µ)/ log(1 − λ)e channels. Thus, the probability that p and q are connected is 1 − (1 − λ)k. As
k ≥ log(1− µ)/ log(1− λ), log(1− µ) ≥ k log(1− λ) (as log(1− λ) < 0 ). Then, 1− µ ≥ (1− λ)k,
and 1− (1− λ)k ≥ µ. Therefore, p and q are reliably connected.

Otherwise, let i and j be such that p ∈ Ai and q ∈ Aj . Then, p and q belong to the set of nodes
S(i, j) of the graph W (i, j). Thus, according to the reliability property of the WRBD problem, p
and q are reliably connected.

Theorem 5. There exists a constant ∆ such that, ∀n ≥ 2, the maximal degree of Gn is at most ∆.

Proof. As the graphWm solves the WRBD problem, there exists two constants ∆0 and C0 such that,
∀m ≥ 2, the maximal degree of Wm is at most ∆0 (“Bounded degree” property) and Nm ≤ C0m
(“Linear number of nodes” property).
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Let n ≥ 2. If there exists no m ≥ 2 such that Nm ≤ n, then ∀m ≥ 2, Nm > n. In particular,
n < N2. Thus, each node of S is connected to at most ∆1 = N2dlog(1− µ)/ log(1− λ)e neighbors.
Thus, the result, if we take ∆ = ∆1.

Otherwise, let m ≥ 2 be the largest integer such that Nm ≤ n. Thus, Nm+1 > n, and as Nm+1 ≤
C0(m + 1), n < C0(m + 1). As M is the smallest integer such that Mbm/2c ≥ n, we have
(M−1)bm/2c < n. Thus, M < 1+n/bm/2c < 1+C0(m+1)/bm/2c. Then, as (m+1)/bm/2c ≤ 4,
M ≤ 1 + 4C0.

∀(i, j) ∈ {1, . . . ,M}2, each node of V is merged with at most 2 nodes of W (i, j). As the maximal
degree of W (i, j) is at most ∆0, the maximal degree of Gn is at most 2∆0M

2 ≤ 2∆0(1 + 4C0)
2.

Thus, the result, if we take ∆ = 2∆0(1 + 4C0)
2.

5 Diameter

Our graph Gn, solving the RBD problem, turns out to have an optimal diameter (i.e., logarithmic
in n). Remember that the diameter of a network corresponds to the maximal number of hops that
a message has to cross, which directly impacts the communication delays.

Theorem 6 states that the diameter of a graph Gn solving the RBD problem cannot be better than
logarithmic in n. Then, in Theorem 7, we state that our graph Gn has a logarithmic (and thus,
optimal) diameter.

Theorem 6. Let Gn be a graph solving the RBD problem. Then, the diameter of Gn is Ω(log n)
(i.e., at least logarithmic in n).

Proof. As Gn solves the RBD problem, the degree of Gn can be bounded by a constant ∆ ≥ 2. Let
p be any node of Gn. Then, at most ∆ nodes are at distance 1 from p, at most ∆2 nodes are at
distance 2 from p, . . . , at most ∆k nodes are at distance k from p. Thus, if D is the diameter of
Gn, then Gn contains at most 1 + ∆ + ∆2 + · · · + ∆D ≤ 2∆D nodes (as ∆ ≥ 2). Thus, n ≤ 2∆D

and D ≥ (log n− log 2)/ log ∆ = Ω(log n).

Theorem 7. The graph Gn presented in this paper has a O(log n) diameter.

Proof. Let Wm be the WRBD graph defined in Section 3. As Wm is a floor graph of height Hm,
the diameter of Wm is at most D = 2Hm. As Km is the smallest integer such that 2 + 4Km ≥ hm,
2 + 4(Km − 1) < hm and Hm = 2 + 4Km < hm + 4. As hm is the smallest integer such that
2hm−1 ≥ m, 2hm−2 < m and hm < logm+ 2. Thus, D = 2Hm < 2(logm+ 6) = O(logm).

Now, let Gn be the RBD graph defined in Section 4. As Gn is the combination of several graphs
Wm of diameter O(logm) with m ≤ n, the diameter of Gn is also O(log n).

6 Byzantine failures

Until now, we considered crash failures, where the failed components (nodes and channels) simply
stop functionning. When Byzantine failures are considered [17], the graph we considered so far
reveals insufficient. Indeed, even one single Byzantine failure, if not contained, can potentially
broadcast false messages to any other node, and deceive the whole network.

A classical strategy to contain Byzantine failures is to perform majority votes [8, 18]: a message
is accepted and forwarded only if it is received throught a majority of channels. Thus, assuming
there is a majority of correct components, the effect of Byzantine components can be masked by
the vote. In the following, we explain how our solution can tolerate Byzantine failures by increasing
the level of redundancy and adding several layers of majority votes. Yet, the main ideas remain
the same.
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Whilst the solution we presented (assuming only crashes) works for any failure rate λ ∈]0, 1[, in
order to tolerate Byzantine failures, we assume λ ∈]0, 0.5[. This is necessary because of the classical
argument of indistinguishability (e.g., [8] and [18]). Indeed, if a solution existed for λ = 0.5, then
with the same probability, correct and Byzantine components could be exchanged. As the correct
components can ensure safe communication with probability µ, the Byzantine components also
could, a contraditicion. If λ > 0.5, then the Byzantine components can simulate the case λ = 0.5
by acting as correct components with probability λ− 0.5.

Now, assuming that λ ∈]0, 0.5[, our solution can be modified as follows to handle Byzantine failures.
First, the construction scheme of the fractal graph described in Figure 4 should contain three
instances of Qk instead of two, with a majority vote at the junction. Then, the result of Lemma 1
remains correct provided that λ < 0.0013, and the number of nodes remains linear4. Second, the
three last transformations of 3.1 should be adapted to Byzantine failures, by increasing the level of
redundancy and adding majority votes:

1. In Transformation 1 (Network replication), the number of replications α should be large
enough so that the probability to have a strict majority of correct instances of Ym is at least
µ. Then, a majority vote should be performed by each node of the first floor.

2. In Transformation 2 (Node replication), the number of replications β should be large enough
so that the probability to have a strict majority of correct nodes is at least 0.999 (according
to the hypothesis λ ≤ 0.001 above). Then, a majority vote should be performed by each node
over each set of β neighbors.

3. Similarly, in Transformation 3 (Channel replication), the same number β of replications should
be used. Then, a majority vote should be performed by each node over each set of β channels.

These modifications only impact the construction of the WRBD graph Wm. The construction
technique of the RBD graph Gn (containing several instances of Wm) remains the same.

7 Concluding remarks

It is frequent to study the asymptotic behavior of a distributed system as a function of its number of
nodes n. The parameters studied are typically the message complexity and the memory complexity.
Here, we considered for the first time the asymptotic reliability of the network (i.e., the probability
that any two nodes remain connected). We showed that it is possible to connect an arbitrarily
large number of nodes with any desired level of reliability while preserving a bounded degree.

It turns out that even this apparently simple problem (with only two requirements: reliability and
bounded degree) requires a non-trivial solution. Most works so far in distributed computing have
focused on tolerating a specific number of failures, but a constant failure rate brings out different
problems when the size of the network is unbounded (e.g., even a very small failure rate can entirely
change asymptotic properties). At first glance, the desired properties may have some similarities
with expander graphs [13, 10, 16]. However, these graphs are not suited for proving the reliability
property: as a network is not a continuum, the combinatorial complexity of the problem explodes
with the size of the network, making any proof by induction impracticable.

3In the proof of Lemma 1, we consider the probability that at least one instance of Qk (out of two) is correct.
Here, we should consider the probability that at least two instances of Qk (out of three) are correct. Therefore, the
formula p(x) bounding the reliability becomes (1 − λ)12(x3 + 3x2(1 − x)). If we assume that λ ≤ 0.001, p(x) keeps
the same property on the interval [0.8, 1], and the result of Lemma 1 remains correct.

4After this modification, the number of nodes of Xm is now multiplied by 4/3 every two floors (instead of 1/2).
But it is still at least divided by 2 at regular intervals (every 6 floors). Thus, the argument used in Theorem 3 (i.e.,
1 + 1/2 + 1/4 + 1/8 + · · · ≤ 2) remains applicable.
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Our approach suggests several research directions. For instance, an additional property could be to
preserve a bounded flow of messages through each channel. One could also consider the complexity
of “physically wiring” the network, and try to bound it.
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