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e Dynamic model of location choice using panel data.
e Correcting for endogeneity due to lagged dependent variable and agent effect.
e Case study: catering location choice using WiF1i traces.

e Cross-validation, price elasticity, predicted market shares.

Abstract

Location-aware data collection technologies provide new insights about location choices.
Only a few dynamic models of location choice exist in scientific literature. To our know-
ledge, none of them correct for serial correlation. In this paper, we model choice of cater-
ing locations on a campus using WiFi traces. We use the [Wooldridge (2005) correction
method that deals with the initial values problem and related endogeneity bias in estima-
tion. Cross-validation, price elasticity and simulation of a scenario predicting the opening
of a new catering location are presented. Predicted market shares of the new catering
location correspond to point-of-sale data of the first week of opening.
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data, model specifications files and results are available in Danalet et al.| (2015).
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1 Introduction

Properly modeling destination choices is important in order to understand travel behavior
and travel demand, both at the urban scale and in pedestrian facilities. In transportation,
destination choice modeling is often used by local and national authorities for planning
future infrastructures and policies (e.g., Fox et al.; 2014) and for the planning and design
of multimodal transport hubs (Hoogendoorn and Bovy; 2004). In tourism, the choice of
destinations is important for analyzing demand for holidays locations (e.g., Yang et al.;
2013) and for the management of pedestrian flows in museums (Yoshimura et al.f [2014)
and in parks (O’Connor et al.; 2005). In all of these contexts, destination choice models
commonly infer on the relevant factors that influence the decisions and allow the test-
ing of policies when building new infrastructures or optimizing current ones. Demand
management strategies can be evaluated.

Most of destination choice models rely on cross-sectional data (e.g., |[Ben-Akiva and
Lerman; [1985; Zhu and Timmermans; [2011; [Scott and He; 2012} Kalakou et al.f|2014]). As
they are collected at one point in time, the related frameworks of analysis are static. As
stated by [Hsaio| (2003)), “a longitudinal, or panel, data set is one that follows a given sample
of individuals over time, and thus provides multiple observations on each individual in the
sample”. Panel data are difficult and expensive to collect using standard survey techniques
(Yang and Timmermans;|2015)), and sometimes nonexistant, e.g., for the analysis of induced
traffic at an aggregate level (Weis and Axhausen; 2009). In absence of actual panel data,
pseudo-panel data are constructed by grouping individuals from cross sectional data into
cohorts and by considering behavior of cohorts as individuals (Deaton} |1985; Weis and
Axhausen;; 2009; | McDonald}; 2015). However, actual panel data from new technologies are
more and more used (Carrion et al.f |[2014; |Kazagli et al.; 2014). Network traces (e.g., WiFi
traces or cell tower data) are increasingly available for location choices (see Section [2.2)).
Compared to traditional surveys, network traces follow individuals over longer periods
(see Section . This makes it possible to collect sequences of activity locations covering
several days, weeks or months. Location choice models must be adapted to use these data.

In this article, we model dynamics of location choices for catering. We make best use
of panel data by taking into account state dependence and serial correlation. We solve
the initial values problem and related endogeneity bias in estimation using Wooldridge's
(2005) correction method. Accounting for panel data nature in location choices has never
been treated in the literature before. It allows us to correct for serial correlation, while
understanding people’s habits in their decision process. The methodology is applied to
sequences of catering locations on a campus collected using WiFi access points (Danalet
et al.; [2014)).

The rest of the paper is organized as follows. Review of literature is presented in
Section [2] We detail methodology in Section [3] Our case study is discussed in Section [4]
It also includes cross-validation and forecasting. Conclusions are drawn in Section
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2 Literature review

2.1 From diary surveys to location-aware technologies

One recent trend in travel demand modeling is resorting to location-aware technologies
(Chen and Yang; 2014; Danalet et al.f 2014; Miller; 2014} (Carrel et al.f 2015)). Tradi-
tionally, disaggregate data of revealed preferences about activity and travel patterns are
collected from diary surveys, where people describe 1 or 2 past days (Ettema; 1996 |Carrell
et al} 2015). The largest panel surveys include a six-week period for 317 participants
(Axhausen et al.f |2002), a six-week period for 261 participants (Axhausen et al.; 2007) and
a twelve-week period for 71 participants (Schlich; 2004). Most long-term surveys cover
a maximum of 7 days and are not panel data (Ortazar et al. 2011} |Carrel et al; 2015).
Location-aware technologies improve the quality of surveying. For instance, combination
of GPS devices carried by respondents with standard recall questionnaires makes for easier
implementation of longitudinal surveys (Frignani et al.; 2010; [Yang and Timmermans;
2015). Recall methods can also be directly implemented on mobile devices (Rindfiiser:
et al.; [2003} (Cottrill et al.; 2013).

Location-aware technologies can also be used alone. It can be from the communication
infrastructure side, such as cell tower traces or WiFi access points traces
2013; |Calabrese et alj; 2013; Danalet et al.f 2014). It can also be from the individuals’
devices (Etter et al.;[2012} Buisson; 2014} [Chen and Yang}; [2014; |Carrel et al.;[2015)). [Etter]
show that it is possible to predict up to 60% of next visited places from passive
smartphone data.

2.2 Location choice

Location choice models are common in studies of urban transportation policies and plan-
ning. [Ben-Akiva and Lerman| (1985) mention three of them, for the Paris region and
Maceio, Brazil. Such models have been applied to the choice of location for grocery shop-
ping (Timmermans; 1996; Dellaert et al.;[1998; [Fox et al.; 2004; |Scott and He; |2012). They
also relate to other applications: choice of a departure airport (Furuichi and Koppelman
, the choice of a hospital for patients by general practitioner (primary care physi-
cians) (Whynes et al.; 1996, the choice of tourist destinations (Woodside and Lysonski,

1989; [Um and Crompton}; [1990; [Eymann and Ronning}; [1997; [Oppermann}; [2000; [Seddighi

land Theocharous} [2002; [Bigano et all [2006; (Chi and Qui; 2008}, (Gossling et al.; 2012} [Yang
et al};[2013) and in particular recreational outdoor facilities (Fesenmaier} 1988} [Scarpa and|

Thiene}; [2005} [Thiene and Scarpaj; 2009)), the choice of migrants (Fotheringham} [1986]) and
the optimal allocation of charging stations for electric vehicles (He et al.; 2013)).

Regarding pedestrians, Zhu and Timmermans| (2011)) propose heuristic rules pertaining
to bounded rationality. They compare them with random utility maximization discrete
choice models. The models are validated on the same sample used for estimation. Cross
validation is not carried out. studies route and location choice in train stations
based on tracking and counting data. Counting data come from infrared scanners and
tracking data come from WiFi and Bluetooth scanners. Count data are used to model
pedestrians without smartphones. The choice is between locations for a given activity
type, e.g., which coffee shop knowing that the individual is visiting one.
apply a similar approach for location choice for a given activity type in an airport.




2.2.1 Attributes of the choice of a location

The main attributes in location choices in urban context are travel time, travel cost and
distance ({Cambridge Systematics Europe}; [1984; Ben-Akiva and Lerman; |1985; Whynes|
. Other variables are used: park-finding time, parking cost, type of neighbor-
hood, and the number of different services (banks, post offices, medical facilities, offices,
shops, etc.) in the zone ({Cambridge Systematics Europe}f [1984}; Ben-Akiva and Lerman)
. Another typical attribute is the size in the context of aggregation of alternatives
(see Section . It represents the number of elemental alternatives in the considered
aggregate alternatives (subsets of the choice set). The interpretation of this attribute is
complicated, since it absorbs both the preference for a large set of destinations compared
to a small one and the correlation between destinations in the set. The expected sign
is opposite in the two situations (Frejinger and Bierlaire; 2007). In shop patronage, the
main attributes are the retail floor space, the accessibility and the price
11983} [Scott and Hej; 2012). Other attributes include parking facilities, number of speciality
stores, number of retail employees, access to different services (foodcourts, cinemas) (Zhu!
et al.; 2006; Shobeiri Nejad et al.; 2013)) or symbolic acts (support of community charities,
front-door greeters, patriotic displays) (Arnold et al.; [1996]).

In the pedestrian context, the main attributes of location choice are the attraction of the
location and travel time. More specifically, models include floor space (Borgers and Tim-|
mermans; |1986), pedestrian environment in the neighborhood, employment 11999)
as measures of attractiveness and distance as an approximation of travel time (Borgers!
and Timmermans; |1986; Ton; 2014). Kalakou et al., (2014) include space syntax in the
specification of the utility through “integration”, i.e., a synthetic measure of accessibility.

2.2.2 Location choice models

In an urban context, models are often based on tours, characterized by a travel mode
and a destination. Models of joint choice of travel mode and destination often aggregate
destinations into zones ({Cambridge Systematics Europe}; [1984; Ben-Akiva and Lerman)
. Stratified importance sampling is used, dividing the destination choice set into non-
overlapping strata based on the origin zone. In the Paris Region example, this procedure
decreases the choice set from 595 destinations x 4 travel modes to 7 sampled alternatives
for each trip ({Cambridge Systematics Europe}} 1984; Ben-Akiva and Lerman; 1985). In
a pedestrian context, the choice set is often smaller, due to the smaller study area (e.g.,
'Ton}, |2014; Kalakou et al.; 2014} with 2 to 4 alternatives). Most destination choice models
are logit models (Arnold et al.; 1983; Zhu et al.; [2006; |Scott and Hej; 2012; Kalakou et al.}
20145 [Ton} 2014). Probit models have also been used (e.g., Whynes et al.; [1996).

Panel data have been used for a long time in transportation research (Golob et al.;
11997)). Habits are often observed in travel behavior (Gérling and Axhausen} 2003)), in par-
ticular in route choice (Aarts and Dijksterhuis; 2000; Bamberg et al.; [2003; [Th\o{ }gersen};
2006} [Eriksson et al.t 2008} [Verplanken et al.; [2008; (Gardner} 2009} [Schwanen et al.} [2012))
and in car ownership (de Jong et al.; [2004)).

[Stopher and Greaves| (2007) however mention that panel surveys “have not been em-
braced by the transport profession. (...) Perhaps the most important reason behind this
is that no one is quite sure how to use panel data in modelling”. It is especially the case
when dealing with modeling of discrete data. For example, in Markov models of destin-
ation choices, transition matrix represents the probability of choosing a destination given
the choice of destination at the previous stop. Markov models are criticized for being de-
scriptive, replicating the data, and not being sensitive to behavioral changes




1990; ' Timmermans et al.; 1992). Yang et al. (2013)) model the choice of a second tourist
destination after visiting a first one. They use a nested logit. The panel nature of the data
is not explicitly taken into account in their model (as in [Wuj 2012} ch. 5.2). The charac-
teristics of the previous destination are not included in their model. McFadden| (2001) and
Carrel et al| (2015)) highlight the importance of panel data in discrete choice models.

Dynamic models using panel data increase statistical efficiency, improve predictions
and allow the study of behavioral dynamics (Kitamuraj; 1990). Kitamural (1990) considers
the inclusion of lag terms in discrete choice models not well advanced. Unresolved issues in
the estimation of dynamic models using panel data include the representation of the initial
conditions and the correlated error term in dynamic models. Few authors explicitly include
lagged variables in location models. For non-work activity location choice, [Sivakumar and
Bhat| (2007)) include the previous location choices of the individual and the frequency of
past visits in the same location in the utility. They do not deal with endogeneity issues
due to the presence of lagged utility functions and assume the first location choice to
be exogenous. In tourism literature, (Grigolon et al.| (2014)) include the previous vacation
length choice in the choice of the current vacation length. They compare a logit, a mixed
logit and a dynamic mixed logit and show that the dynamic mixed logit is the best in
estimation and forecasting. In their dynamic mixed logit, by assuming that the error
term is independent of the variables (i.e., exogenous), and in particular independent of
the lagged variable, they assume that unobserved attributes do not persist over time for a
given individual. This can lead to bias in the estimation of the model, in particular when
the choice of the vacation length of a stay is influenced by variables not included in their
model. In the choice of a shop in a pedestrian street, [Zhu et al.| (2006) also face serial
correlation and mention independence issues as a technical challenge for future research.

Regarding pedestrian destination choice models, Timmermans et al.| (1992) mention in
their review the “issue of whether a pedestrian tends to always buy certain items in the
same store”, i.e., the question of loyalty, as future research.

In light of the above literature review, we emphasize that location-aware technologies
allow the collection of useful panel data over long periods. These data must be used in
location choice models. Attention must be paid when modeling state dependence (lagged
dependent variable). Serial correlation must also be accounted for. State dependence and
serial correlation yield bias in estimation if they are not properly taken into account.

Our contribution is to develop a state-of-the-art location choice model using panel data
from localization-aware technologies. We consider state dependence and serial correlation.
We use Wooldridge, (2005) correction method (see Section [3| for details) to correct bias
in estimation that is due to endogeneity of the lagged dependent variable. As pointed
out by (Arulampalam and Stewart; [2009), |Wooldridge| (2005]) correction method is mostly
applied to binary probit. We use it here with a logit model and a choice set that contains
21 alternatives. To our knowledge, this is the first time it is applied in such a context.

3 Methodology

We assume that panel data are available and provide observations of location choices over
time. An individual n repeatedly visits locations. For each individual n, we assume a
sequence of events {1,...,t,,...,T,}. This sequence is exogenous and individual specific.
At each event, a location choice is made. The indicator v, is 1 if individual n selects
location ¢ for event t,,. The time interval between two events vary, as well as the number
T, of events per individual. To make the notation light, we use t instead of ¢, in the
following developments.



A sequence of events with varying time intervals between the decisions is typical for
the choice of buying or selling for investors in the stock market (e.g., Robin and Bierlaire;
2012). It is also common when considering the activity location choice conditional on
an activity type (e.g., Kalakou et al.f 2014; Ton; [2014)). The modeling and forecasting
of choices of activity type and time intervals between events is covered in [Danalet and
Bierlaire| (2015).

We use a logit model for the choice of a location ¢. We present three models: a static
model, a dynamic model without agent effect and a dynamic model with agent effect.

We associate a utility U, with a location :

Uz'nt = V;nt + Eint (1)

where i € Cpy and Cyy is the choice set of all available locations at time ¢ for individual n.
This model is simple to estimate when we assume that €;,; ud EV(0,1) across i,n and t,
i.e., a static logit model. It ignores two aspects: dynamics and serial correlation.

First, the choice at a certain event ¢ may depend on previous choices. Individuals have
state dependence to already visited locations. For the purpose of simplification, we make
three additional assumptions. First, we assume a dynamic process of order one: the current
level of utility of location ¢ partly depends on the previously chosen location for the same
type of activity. Second, the state dependence is location specific: utility for a location
only depends on previous choice of this location. Third, we assume that the weight p of this
state dependence is the same for every individual n and every location i (the assumption
could be relaxed by considering variations across locations and individuals):

Uint = Vint + pYin(t—1) + Eint (2)

where y;,,(;—1) is a dummy variable with value one if location ¢ was chosen by individual n
as the previous location choice, and 0 otherwise. The coeflicient p measures the effect of
previous experience of the location on its current utility. p can be specific to the time of
day, e.g., the choice of a catering location for a coffee break in the afternoon depends on
the previous catering location choice in the afternoon, ignoring the other catering activity
locations in-between.

We assume that the time interval between two events does not change the impact of
the previous experience, i.e., the duration between two events does not affect the choice
probability. The choice probability of an activity location is only influenced by a previous
visit at the same activity location. There is no memory fading.

We initially assume that the previous choice y;,;—1) is independent of the error term
gint (strict exogeneity assumption) and that €;,; are independent and identically distributed
across ¢,n and t. We term such a model a dynamic model without agent effect.

The error terms €;,; model the unobserved factors. In the static and the dynamic
model without agent effect, we assume that they are independently distributed over time,
individuals and locations. In practice, it is very likely that they share time-invariant
components associated with the decision-maker, thereby generating serial correlation. This
raises the second issue of the static model. For example, in the successive choice of a
restaurant, a preference for healthy food is usually unobserved (Burton et al.; 2014} Chen
and Yang; 2014). In our context, it can be considered as an unobserved time-invariant
factorll

As a consequence, the lagged variable y,;—1) and the unobserved factors e;n; are
correlated since they both depend on the time-invariant factor, also known as agent effects.

!'We agree that taste may change in the lifecycle of an individual, but not during the time horizon of
the data we use for the application.



This is called endogeneity. It has to be taken into account to avoid bias in the estimation
of the parameters of the model.

We relax the independence assumption of error terms €;,,;_1) and &;, by replacing the
original single error term e;,; by the sum of two error terms: «y, + €},,. @p is the agent
effect. It is time-invariant and represents the long-term preferences of individual n over
time for location ¢. The agent effect oy, does not vary over time but varies across indi-
viduals (inter-individual variability). €, is the unobserved heterogeneity and represents
the short-term variation of preferences of individual n (intra-individual variability). &),
are independent across time and individuals. The utility function becomes:

Uint = Vint + PYin(t—1) + Qi + 5gnt' (3)

As stated by [Wooldridge (2005)), accounting for endogeneity in estimation of panel data
models with agent effects and lagged dependent variables requires the computation of the
marginal /steady state choice probability for the first observed outcome of the dependent
variable. This is often referred as the initial conditions problem in econometrics (Heck-
manj, 1981} Hsaio; 2003} Train; |2003; [Wooldridge; [2005). Computation of such marginal
probability is intractable except for some simple binary models (see Bhargava and Sargan;
1983, Hsaio; 2003 (Section 4.3) and Wooldridge; [2005). Several authors have proposed
circumventing strategies to solve this problem (see [Hsaiof 2003 and Wooldridge; 2005 for
reviews). We build here on the [Wooldridge (2005) correction method.

3.1 Correcting endogeneity for dynamic discrete choice models

In general, endogeneity must be corrected to get consistent estimates (Train; 2003, Ch. 13).
Control functions capture the relationship between the unobserved factors and the observed
variables and “absorb” endogeneity (Heckman; 1978).

Wooldridge, (2005) proposes to model the distribution of the agent effect ,, conditional
on the initial value and any exogenous explanatory variables:

Qip = a + byinO + C/in + gm (4)

where &, is normally distributed, &, ~ N(0,%,), with ¥, is a matrix of parameters to
be estimatedﬂ and Z, is a vector of time-invariant explanatory variables (i.e., long-term
preferences, socioeconomic characteristics). The utility of the dynamic model with agent
effect is:

Uint = Vint + pYin(t—1) + @ + bYino + ¢ T + Ein + iy (5)

The endogeneity issue is addressed with this utility function, given the assumption in
Eq. [4] is valid (see [Wooldridge| (2005) for a detailed discussion). The contribution of a
series of observations ¥;,; at times ¢t = 1,...,T for individual n to the likelihood function,
conditional on the initial value ;o and the agent effects a,, = {an, Vi}, is:

T
P(Yin1, Yin2s -+ Yint|Yin0, Otn) = H P(Yint|Yino, Yin(t—1)» Q). (6)
t=1
Note that we do not model the first choice y;,0. Given our assumptions, it turns
out that our estimator is a conditional maximum likelihood estimator. It is asymptotic-
ally equivalent to the full information maximum likelihood estimator. Only efficiency is
affected.

2Note that [Wooldridge| (2005)) is more general in his approach and other distributions might be used.
Here we assume Xq, = O’iil . In the current developments, the parameters of the normal distribution oq,
are location specific, but the i subscript is omitted to make the notation light.



When integrating out the agent effects o, € R%™(%)  as for any mixture model, Eq. @
becomes:

T
P(Yin1, Yin2, -+ Yint [Yin0) = Hp(ymt’ymo,ym(t_l), an) f(anlYino, Tn)dom. — (7)
An =1

Here, P(Yint|Yin0s Yin(t—1)> n) is a logit model. f(an|Yino, Tpn) is normally distributed,
following Eq. 4l Endogeneity is corrected.
Table [I] summarizes the three different models presented in Section

Static model Dynamic model Dynamic model
without agent effect with agent effect
p=0 p#0 p#0
a,b,c,02 =0 a,b,c,02 =0 a,b,c,02 #0

Table 1: Description of static model, dynamic model without agent effect and dynamic
model with panel effect as a function of Eq[5

4 Pedestrian case study for EPFL catering locations

We present results for the three models described in Section 8] summarized in Table[T] in the
context of location choice on the EPFL campus. We focus on the choice of catering facilities
during their opening hours. The choice set C contains 21 alternatives corresponding to the
services available in 2012 (Figure [1).

Section presents the WiFi data collection process. Section describes the model
specification and the estimation results. Based on this model, validation, elasticity to
price and forecasts in the case of the opening of a new catering location can be found in
Section [4.4] and [4.5] respectively.

The processed data, the model specification files for Pythonbiogeme (Bierlaire; 2003;
Bierlaire and Fetiarison; |2009)) and the results are available as additional material.

4.1 Data collection and processing
4.1.1 Raw WiFi traces

We use WiFi traces to detect sequences of activity episodes. Campus employees and
students have to authenticate themselves on the WiFi network through WPA using a RA-
DIUS server. The RADIUS server provides authentification, authorization and accounting
for users who connect and use the WiFi network. Accounting allows to associate a MAC
address (identification of the device) with a username (identification of the user). Each
measurement is associated with a unique identifier and a professional category, such as
employee or civil engineering student, bachelor. Data are then anonymized by deleting the
MAC address and the username. Here, a measurement corresponds to a localization and a
timestamp, associated with an individual, represented by an anonymous unique identifier
and a professional category. More than 2 million measurements were collected in Spring
2012, corresponding to 5902 unique identifiers (4140 employees, 1033 EPFL students and
729 other students). Details about the data collection campaign and data cleaning can be
found in Appendix A.2 in Danalet| (2015b) and raw data are available in |Danalet| (2015a).
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Figure 1: Catering facilities on EPFL campus with different categories: self-services, cafet-
erias, restaurants, caravans (fast food) and others. The alternatives in red circles did not
exist in 2012, when WiF1i traces were collected. Image: Tinguely| (2015).

4.1.2 A Bayesian procedure to detect activity-episode sequences

The Bayesian approach detailed in |Danalet et al.| (2014) is then applied to the cleaned
WiFi traces in order to detect activity-episode sequences. Activity episodes are defined
as an episode location (a point of interest), an episode start time and an episode end
time. WiFi traces are merged with map information (localization of points of interest
and length of the shortest path between two points) and a potential attractivity measure.
The potential attractivity measure is an aggregate measure of occupancy. It provides the
expected number of people in each point of interest from other data sources than WiFi
traces, e.g., from point-of-sale data, cumulative work percentage of the employees per office,
registered students per class, number of seats of the library. Time constraints (e.g., shop
opening or class schedules) are also included in the potential attractivity measure. The
potential attractivity measure is used as a prior in the Bayesian procedure. This Bayesian
approach detects stops and gives semantics to the WiFi traces. It generates a list of
candidate activity-episode sequences for each series of measurements and each individual,
with their probability of being the true one. Here, we keep only the most likely activity-
episode sequence for each day of measurements, per person (it corresponds to L = 1 in
Danalet et al.f [2014). A precise definition of the data used for defining the potential
attractivity measure can be found in Appendix A.2 in Danalet| (2015b). Map data and
data sources for the potential attractivity measure are available in |Danalet| (2015al).



4.1.3 The catering location choice data

For each activity-episode sequence, we keep the activity episodes corresponding to a cater-
ing location during the opening hours. The activity episode preceding a visit to a catering
destination is used to compute the distance walked by the individual to reach the catering
location. We end up with 1868 observations performed by 211 members of campus (649
observations by 66 EPFL students and 1219 observations by 145 employees). Descriptive
statistics on the catering activity episodes show that individuals’ choices are influenced by
distance from the previous activity episode localization and habits (Tinguely; 2015). The
catering location choice data are available as additional material.

4.2 Model specification and estimation

The explanatory variables used for the location choice are: (1) alternative specific attrib-
utes: distance from the previous activity location in the sequence, duration, cost, time
of the day, opening hours, quality evaluation of the catering location, its capacity, its
type of offer; (2) characteristics describing the choice context, constant across alternatives:
weather conditions, day of the year, socio-economic attributes. Descriptive statistics on
the collected data are available in Appendix

In the dynamic models, habits are assumed only for the morning and lunch break. Two
lagged variables y;,;—1) are defined in the dynamic models, one for the morning and one
for the lunch break. Thus, the dynamic Markov process is over individuals and periods of
the day. Equations [2] and [3] become:

. morning lunch

Unt = Vipe + pmorningym(t_l) + plunchyz‘}:(ltc_l) + Eint (8)
_ morning lunch morning lunch /

Uit = Vim + PmorningY;p,(t—1) + Plunchyigl(]f,l) + a;, + o+ gy (9)

The specification of the agent effect distribution must be correct to get consistent
estimates (Wooldridge; [2005). We propose two different specifications for the agent effect
@n. The first specification corresponds to ¢ = 0 in Eq. [l We assume the agent effect to
depend only on the first choice:

Qip, = @ + byinO + gn (10)

The second specification for the agent effect includes the count y§ormt

choices of alternative ¢ by individual n up to the event ¢ of the current choice: y5:;
Zi,_:l 1 I (yine). Note that in the definition of the count of previous choices, the first obser-
vation 9,0 is not included and the summation start at ¢ = 1. It allows to avoid biases
(Rabe-Hesketh and Skrondal; 2013).

Eq. [] becomes:

of previous
count __

Qip = a + byinO + Cyz'cr%lnt + gn (11)

Since the lagged variable y;,,;—1) is interacted with the period of the day, the count of
previous choices is also specified for each period of the day.

Consequently, we estimate 4 models: the static model (utility defined in Eq. , a
dynamic model without agent effect (utility defined in Eq. and two dynamic models
with agent effect: one with a first choice agent effect specification (Eq. and one with a
first choice and frequency specification (Eq. .

We use a linear specification for the different models, whose variables are described
in Table [3] The complete estimation results for the 4 models of Table [2] can be found in
Table[7]in Appendix[A.2] The main observations from the estimation are described below.
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Static model Dynamic model Dynamic model

without agent effect with agent effect
First choice First choice and frequency
p=0 p#0 p#0 p#0
a=0 a=0 a#0 a#0
b= b=0 b#0 b#0
=0 c=0 c=0 c#0
02 =0 02 =0 o2 #0 02 £0

Table 2: Description of static model, dynamic model without agent effect and two dynamic
models with panel effect used in the case study as a function of Eq

Lagged variables prynch and pmorning have positive signs, showing habits and repeated
choices. Their value decreases when the dynamic model includes the agent effect (as com-
pared to the model when it is considered exogenous). It has been reported in Monte Carlo
simulations that p is overestimated in dynamic models without agent effect as compared
to dynamic models with agent effect (Akay; 2012). This is due to the double nature of
the lagged variable p: the previous choice impacts the current choice because the past
experience modifies the current preferences and because the past and current choices both
depend on the same time-persistent unobserved parameters. These two factors are called
true state dependence and spurious state dependence, respectively, by Heckman| (1978
1981)) (see also [Hsaio; 2003, Section 7.5.4). The agent effect, and in particular the first
choice and frequency version of it, absorbs the time-persistent unobserved preferences.

The parameters have expected signs. Indoor capacity (number of seats) has a positive
impact on the choice of visiting a catering location. Distance from the previous activity
episode has a negative impact on the propensity to visit a catering location. This effect
is strong in the morning and during lunchtime for cafeterias. It is not significant in the
afternoon and during lunchtime for restaurants. Indeed, there are not many restaurants on
campus, and consequently longer distances to walk. The cost parameters have a negative
sign and their magnitude is larger for students than for employees. This is explained by the
fact that employees have salaries and thus a higher purchasing power and a lower sensitivity
to price. Annual evaluations by students (as a proxy for average quality), offering meals for
dinner and beers after 14:00 all have a positive impact on the choice of catering locations.

The dynamic model without agent effect, the dynamic model with agent effect (first
choice correction) and the dynamic model with agent effect (first choice and frequency
correction) are unrestricted versions of the previous, simpler model in Table [2] (i.e., static
model, dynamic model without agent effect, dynamic mode with agent effect (first choice
correction), resp.). Three likelihood ratio tests have been performed. In all cases, we can
reject the null hypothesis at a 95 % confidence level and the unrestricted model is preferred
to the restricted one. Numerical results can be found in Table([7] (last line) in Appendix[A.2]

4.3 Validation

Cross-validation has been performed, partitioning the data in an estimation dataset con-
taining past observations i1, is, ..., i7;,—1 of individuals n and a validation dataset with their
most recent choice i7,. Models presented in Section are applied to observations in the
morning and during lunch break, in order to test the dynamics. The estimation dataset
contains 1512 observations. The model is then applied to the validation dataset (contain-
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Parameters

Variables

Description of the variable

ASC;

Bdist, cat,T'oD

5110 dist

Beval

Beost, student
Beost, employees
Boeer

Bdinner
Beapacity

PToD

CToD

0i,ToD

1;

diStcat,ToD

laist N4

eval;

COStstudents
COStemployees

1 beer

1 dinner
CapaCitYOutdoor

Yit(t—1),ToD

count
Yint

1 ToD

Alternative specific constant for catering location ¢

Distance from the previous activity episode (previous
stop, not necessarily a catering location)

Variable for missing data about distance

Evaluation of catering location from survey data (grade
between 1 and 6)

Cost of the cheapest meal for students
Cost of the cheapest meal for employees
Availability of beer after 14:00
Availability of dinner

Number of seats in the catering location

Indicator variable with value 1 if the previous catering
location in the same time of day (T'oD) is the same as
the current catering location

Variable counting the frequency of visit to catering loc-
ation ¢ in the same time of day (T'0oD)

Variance of ¢ for each time of day (ToD) and each
catering location ¢

Table 3: Description of the variables in the catering location choice model. Some variables
are interacted with the professional category of catering location (cat), i.e. the categories
of restaurant presented in Figure , or are interacted with time of day (T'oD), divided in
morning (until 11:29), lunch break (11:30-13:59), afternoon (14:00-17:59), dinner (18:00-
19:59) and night (from 20:00).
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Observed Predicted

Dynamic model Dynamic model
without agent effect with agent effect

First choice
and frequency

Static model

First choice

Catering locations Nb % Nb % Nb % Nb % ‘ Nb %
Cafet. Le Klee 0 0.0 0.4 0.3 0.3 0.2 0.4 0.3 0.3 0.2
Cafet. ELA 14 9.7 7.6 5.3 6.9 4.8 8.0 5.5 8.0 5.6
Cafet. INM 1 0.7 1.2 0.9 1.1 0.8 2.2 1.5 2.1 1.4
Cafet. MX 6 4.2 6.3 4.4 6.4 4.4 5.3 3.7 5.8 4.0
Cafet. L’Arcadie 6 4.2 14 1.0 2.4 1.7 1.5 1.1 1.7 1.2
Cafet. Le Giacometti 13 9.0 | 12.0 8.3 11.8 8.2 12.8 8.9 12.2 8.5
Cafet. Satellite 5 3.5 7.2 5.0 7.6 5.3 7.8 5.4 7.5 5.2
Self BC 15 104 9.7 6.7 9.5 6.6 10.8 7.5 | 10.8 7.5
Self L’Atlantide 7 4.9 | 10.8 7.5 10.6 7.4 8.2 5.7 8.1 5.6
Self Le Corbusier 4 2.8 |12.6 8.7 10.6 7.4 94 6.5 | 10.8 7.5
Self Le Parmentier 8 5.6 | 13.1 9.1 12.9 9.0 13.1 9.1 13.2 9.1
Self Le Vinci 1 0.7 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1
Self L’Esplanade 23 16.0 | 26.1 18.2 25.9 18.0 24.2 16.8 24.4 17.0
Self L’Ornithorynque 15 104 | 150 104 16.4 11.4 15.6 10.8 | 15.7 10.9
Self Le Hodler 6 4.2 5.2 3.6 6.1 4.3 5.7 4.0 6.2 4.3
Rest. Le Copernic 1 0.7 1.0 0.7 1.4 1.0 3.4 2.4 3.3 2.3
Rest. Table de Vallotton 1 0.7 1.3 0.9 1.1 0.8 0.6 0.4 0.5 0.3
Caravan Pizza 6 4.2 4.2 2.9 4.5 3.1 4.5 3.1 4.8 3.4
Caravan Kebab 5 3.5 3.6 2.5 3.7 2.6 3.5 2.4 3.8 2.6
Other BM 1 0.7 1.8 1.2 1.2 0.8 1.6 1.1 1.3 0.9
Other PH 6 4.2 3.2 2.2 3.6 2.5 3.3 2.3 3.3 2.3
S 232.95 204.01 184.16 173.85

Table 4: Aggregate average number of visits of the observations and of the different models,
from the 144 most recent observations for each individual in the morning and during lunch
break. For the observations and for each model, the number of visitors (“Nb”) and the
proportion of visitors (“%”) are presented for each catering location. “Rest.” stands for
restaurant, “Self” for self-service, “Cafet.” for cafeteria.

ing 144 observations), using the parameter estimates from the previous step. Aggregate
average number of visits across individuals’ most recent choices from observations and from
the model output are compared in Table [4

In order to compare the performance of the different models over all catering locations
in Table 4| we compute the sum of the squares of the errors: Sy, = >_.(0; — E; )?, where
O; is the observed average number of visits for location ¢ and F; ,, is the expected average
number of visits based on the choice probabilities for location i assuming model m.

Observed and predicted average number of visits show similar tendencies, even for the
static model, meaning that the specification of the model is generally good. The model
minimizing the sum of the squares of the errors is the dynamic model with agent effect
using the first choice and the frequency. It is also the model that fits the data the best
(Table . It is an evidence that Wooldridge’s approach is valid, and it performs better
when the specification of the agent effect distribution includes the frequency of visits.
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4.4 Elasticity to price

Aggregate direct elasticity of cost denotes the percent change in the number of visits for
each catering location with respect to a change of 1% in the cost of a meal. Aggregate
direct elasticities of cost are presented for each restaurant, for students and employees,
in Table [§] in Appendix Figure 2| summarizes the distribution of aggregate direct
elasticities of cost as box-plots for each model, across students and employees.
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Figure 2: Distribution of aggregate direct elasticities of cost for different models, for stu-
dents and employees.

Demand for catering locations for students is more elastic to a change in the cost of
a meal as compared to employees. This is explained by the higher purchasing power of
employees. With the static model and the dynamic model without agent effect, employees
mostly show a inelastic demand (< 1 in absolute value) and students show an elastic
demand (> 1 in absolute value). With the dynamic models with agent effect, using the
first choice and the frequency of choices, the absolute values of elasticities increase and
employees have an elastic demand with respect to the cost of a meal. Generally, models
ignoring the dynamics are less sensitive to cost. A possible analogy is the presence of
unobserved variables, such as quality of the service or of the meal (Train; 2003 ch. 13).
Decision makers prefer cheap meals, but also like quality meals. When endogeneity is
not corrected for, B.ost absorbs both effects and its absolute value is attenuated. When
endogeneity is accounted for, f.ost is more negative, including only the taste for cheap
meals. Here, in the static model and the model without agent effect, 5.0t absorbs a taste
for cheap meals and other unobserved factors positively correlated with cost, such as a
warm atmosphere or any attribute of quality for a meal. In the models with agent effect,
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unobserved factors are absorbed by the agent effect.

4.5 Forecasting visits when opening a new catering location

Data used for estimation were collected in 2012. We forecast the average number of visits
for 2013 after the opening of a new self-service.

In this scenario, habits regarding the new catering location are not considered. The
new alternative is not part of people’s habits in the model: the previous catering location
and the frequency of visits are null (ym(t_l) =0 and y{o™ = 0 when ¢ is the new catering
location).

A new self-service, L’Epicure, opened in October 2013. The four models of Table [2] are
applied to this new choice set. The parameters for the new self-service are the same as Le
Giacometti, since it is the most similar existing catering location on campus and no stated
preference is available.

The error term of the new alternative and the error term of the most similar existing
alternative might be correlated. Indeed, if the new catering location does not share any
unobserved attribute with the most similar catering location, a logit specification is valid.
On the contrary, if unobserved attributes are shared, the two locations should be included
in a nest and a nested logit specification is used for forecasting. Since we do not know the
value of the nest parameter 6, an interval of values is used from 1 (i.e., logit model and
independent error terms) to 400 (i.e., perfectly correlated error terms) when applying the
model to forecast average number of visits. Results are presented in Fig.

When using a static model, the predicted average frequency of visits varies between
0.7% and 2.0 % for the full day. When correcting for endogeneity and using frequency
of visits in the specification of the agent effect, the predicted average frequency of visits
varies between 0.4 % and 1.1 %. This shows that correcting for endogeneity when using
panel data has a significant impact when predicting the destination choices of people. The
effect of the unknown level of correlation between the new catering location and its most
similar alternative also seems lower when using the dynamic models with agent effect.

According to point-of-sale data collected from October 21 to 23, 2013, the frequency
of financial transactions in the new self-service is 1.5 %, which has a level of magnitude
consistent with the values predicted by the model.

Results presented here are only valid in the short term, since the model has been applied
only once. For forecasting in the long term, accounting for the habits and routines, the
model should be applied several times so that habits for the new location are established
as an output of the model.

5 Conclusion

In this article, we model location choice conditional on the choice of activity type in activity
episodes from WiFi traces. WiFi traces provide panel data. We estimate dynamic models,
including lagged variables. They express the habits that could appear in repeated choices.

Including lagged variables in a discrete choice model generates endogeneity. The error
term and the explanatory variable representing the previous choice are serially correlated.
The so-called initial conditions problem is solved using a control function proposed by
Wooldridge (2005). The error term is decomposed in an agent effect and an independent
error term. The conditional distribution of the agent effect, knowing the first choice, is
approximated.
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Frequency of visits for the new catering destination
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Figure 3: Average frequency of visits for the new self-service for the different models, as a
function of 6.

The approach of Section [3| has been applied to a case study on a campus (Section ,
based on actual WiFi traces, preprocessed as in Danalet et al,| (2014). Campus members
tend to visit catering locations that are closer, have large capacities, and that offer beer and
serve meals at dinner. Students are more sensitive to cost than employees. The previous
choice significantly impacts the choice of the current catering location in the morning and
in the lunch break in a dynamic model without agent effect, without the correction for
endogeneity. When controlling for true state dependence and spurious state dependence,
time-persistent unobserved effects are detected and the previous choice becomes no longer
significant. A likelihood ratio test has been performed between the different models:

e the static model is rejected when compared to the dynamic model without agent
effect

e the dynamic model without agent effect is rejected when compared to the a dynamic
model with agent effect

e the model without the frequency of the first choice is rejected when compared to the
model with the frequency.

Models are validated in Section[£.3]and the models seem correctly specified, reproducing
the observations of the validation dataset. In terms of predictive power, dynamic models
outperform static models, and the agent effect including the first choice and the frequency
of visits performs the best.
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Elasticity to cost of a menu and forecasting in the case of the opening of new catering
locations are presented in Section [£.4] and [4.5] respectively. Elasticity to the cost of a menu
increases with dynamic models with agent effect. In the scenario of the opening of a new
catering location, predicted average number of visits correspond to point-of-sale data.

This model can be applied in pedestrian facilities to estimate demand for specific loc-
ations. Wooldridge’s approach is easy to implement for discrete choice models with many
alternatives and improves the estimation and predictive power of the model. Our model
specification could be extended towards more complex discrete choice models (e.g., a nested
logit where categories of catering locations would be the nests in our case study). Collec-
tion of more socioeconomic data would also improve the specification and prove useful for
marketing purposes. On campuses, in transportation hubs or music festivals, information
on congestion at location (i.e., queues for a service) is likely to be significant in explaining
people’s behavior. Endogeneity in the model due to congestion could also be corrected,
using the occupation rates for each location as measures of queues and congestion at these
locations. Some endogeneity could also be related to group effects, when a group chooses
a location together instead of each individual independently (Louviere et al.; 2005|, Section
2). This could be corrected using proximity as a measure of social networks. Finally, space
syntax has been used in recent research and could help in formalizing intuitions such as
“visibility” in public spaces.
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A  Appendix

A.1 Descriptive statistics of the WiFi traces

As described in Danalet et al.| (2014)), WiFi traces have been anonymized but the category
of people has been collected. Table 5| shows the number of daily observations and the total
number of individuals observed per category. Employees are overrepresented in the sample.

Category Number. of Numper of
observations individuals
Employees 1219 145
Students, among which... 649 66
Civil engineering, Bachelor, 4th semester 131 12
Computer science, Bachelor, 4th semester 87 6
Computer science, Master, 2nd semester 53 6
Mathematics, Bachelor, 2nd semester 108 13
Life science and technology, Bachelor, 2nd semester 138 11
Physics, Bachelor, 2nd semester 132 18
Total 1868 211

Table 5: Number of observations and of individuals per categories of individuals.

The number of times each catering location is chosen is described in Table 6] The
most visited catering location is L’Esplanade, very central on the campus. Le Parmentier
and Le Vinci are very close and share the same kitchen; their counts of being chosen from
WiFi traces are biased towards Le Parmentier, with a larger capacity and therefore a larger
attractivity (see|Danalet et al.f 2014)). Number of visits in catering locations in the Rolex
Learning Center (RLC), Le Hodler and Le Klee, are most probably underestimated due to
the large attractivity of the library (see again [Danalet et al.; 2014]).

The distance walked to reach a catering location (Fig. |4]) is computed used a weighted
shortest path (Danalet et al.; 2014). It takes into account the pedestrian network and the
different floors on the campus. In 478 cases, distance could not be computed (previous
location to the catering destination is not properly connected to the network).

More descriptive statistics about the data used in this case study are available in
Tinguely| (2015).
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Count of chosen alternatives

Catering locations Morning Lunch After lunch | Total
Cafeteria Cafe Le Klee 1 1 2 4
Self-service BC 46 60 40 146
Other BM 11 13 22 46
Cafeteria ELA 38 38 49 125
Cafeteria INM 3 3 7 13
Cafeteria MX 39 15 30 84
Other PH 38 7 34 79
Cafeteria L’Arcadie 19 11 8 38
Self-service L’Atlantide 73 11 51 135
Restaurant Le Copernic 0 6 0 6
Self-service Le Corbusier 17 56 0 73
Cafeteria Le Giacometti 47 44 85 176
Self-service Le Parmentier 14 68 53 135
Self-service Le Vinci 1 1 0 2
Self-service L’Esplanade 104 102 206 412
Self-service L’Ornithorynque 30 69 0 99
Caravan Pizza 18 24 22 64
Caravan Kebab 13 11 30 54
Cafeteria Satellite 37 11 87 135
Self-service Le Hodler 13 22 0 35
Restaurant Table de Vallotton 0 7 0 7
Total 562 580 728 | 1868

Table 6: Number of times each catering location is chosen in the dataset. Morning repres-
ents visits starting before 11:30, Lunch visits starting between 11:30 and 14:00, and After
lunch visits starting after 14:00.
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Figure 4: Distance walked to reach a catering location, in meters.
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A.2 Estimation results for the 4 models of Table 2|

Dynamic model

Static model without agent effect

Dynamic model
with agent effect
First choice
and frequency

First choice

Parameters Value t-test Value t-test Value t-test Value t-test
ASCLe Klee —3.26 —5.52 —291 —4.82 —4.90 —3.75 —5.24 —3.83
ASCcatetéria BC 0.387 0.97* 0.481 1.12* —1.09 —1.62* —0.682 —0.88*
ASCsMm 0.450 1.29* 0.453 1.33* —0.147 —0.24* —0.320 —0.49*
ASCcafetéria ELA —0.823 —2.42 —0.579 —1.59* —1.08 —1.68* —0.919 —1.67*
ASCcafetéria INM —2.19 —-3.97 —1.82 —-3.13 —1.64 —1.52* —1.81 —1.75%
ASCeateteria MX —0.461 —1.22* —0.514 —1.23* —1.89 —2.05 —1.78 —2.57
ASCpy 1.28 3.48 1.11 2.99 0.298 0.62* 0.704 1.39*
ASCLArcadie —0.738 —2.08 —0.684 —1.85* —1.98 —1.85* —1.70 —1.81*
ASCY Atlantide —0.143 —0.47* —0.285 —0.88* —1.23 —2.21 —0.731 —1.23*
ASClLe Copernic 2.83 2.04 2.67 2.29 2.59 0.75* 1.88 1.25*
ASClLe Corbusier —0.278 —2.05 —0.259 —1.74* —1.05 —2.52 —0.585 —2.28
ASClLe Giacometti 0.323 1.12* 0.398 1.26* 0.760 1.47* 0.685 1.34*
ASClLe Parmentier —0.846 —3.22 —0.883 —3.14 —1.44 —3.63 —1.60 —3.61
ASClLe Vinci —4.11 —5.77 —3.81 —5.35 —8.24 —2.58 —4.97 —3.42
ASCL’Esplanadc 0.0 - 0.0 - 0.0 - 0.0 -
ASCLOrnithorynque —0.631 —4.81 —0.641 —4.55 —1.26 —6.48 —1.24 —5.74
ASCCaravan Pizza —1.97 —3.40 —1.84 —3.23 —2.47 —2.89 —1.91 —2.79
ASCcaravan Kebab —2.73 —4.42 —2.51 —4.16 —3.12 —3.39 —2.64 —3.21
ASCgBar Satellite —1.60 —4.34 —1.42 —3.72 —2.27 —3.51 —2.65 —4.52
ASClLe Hodler 0.995 2.07 0.954 2.10 2.40 3.33 2.76 3.86
ASCrable de Vallotton 4.25 2.10 4.02 2.56 0.987 0.67* 1.34 0.80*
Bdist, lunch, cafet —0.00689 —13.47 —0.006 12 —11.64 —0.004 06 —6.37 —0.00397 —6.71
Bdist, lunch, rest —0.001 38 —0.63* —0.001 27 —0.62* —0.000498 —0.29* 0.001 66 0.75*
Bdist, lunch, self —0.00638 —15.45 —0.00543 —12.88 —0.003 94 —8.91 —0.004 00 —9.32
Bdist, lunch, fast food —0.009 53 —9.55 —0.008 81 —9.06 —0.006 72 —5.50 —0.006 76 —5.31
Bdist, lunch, other —0.001 87 —2.20 —0.00100 —1.40* 0.000 738 0.79* 0.000 190 0.17*
Bdist, morning —0.00557 —5.74 —0.004 48 —4.59 —0.004 05 —3.88 —0.00390 —3.60
Badist, after lunch —0.000453 —0.76* —0.00107 —1.84* —0.00101 —1.67* —0.00107 —1.72*
Bno dist —5.07 —12.70 —4.48 —11.79 —3.82 —6.98 —3.66 —7.66
Beval, cafet 1.18 12.27 1.10 11.91 1.92 10.59 1.90 7.72
Beval, selt 1.21 9.25 1.09 8.45 2.12 8.28 2.02 6.55
Beval, fast food 1.69 11.81 1.60 11.85 2.71 10.78 2.58 8.65
Beost, student —0.245 —3.50 —0.189 —3.01 —0.471 —4.00 —0.538 —4.47
Bcost, employees —0.128 —2.26 —0.102 —1.97 —0.352 —3.20 —0.368 —3.64
Bbeer 0.722 4.07 0.539 3.02 1.05 3.85 1.14 3.93
Bdinner 1.04 3.34 1.03 3.39 0.997 2.60 0.795 2.01
Beapacity 0.006 80 2.62 0.007 49 2.69 0.0104 2.71 0.0119 2.82
Pmorning 0.0 - 3.06 17.48 0.591 1.09* 0.476 1.69*
bmorning 0.0 - 0.0 - 1.80 3.10 1.46 4.82
Cmorning 0.0 - 0.0 - 0.0 - 0.450 2.76
Plunch 0.0 - 1.78 15.45 0.644 4.36 0.355 1.95%
Blunch 0.0 . 0.0 - 1.19 5.50 1.07 5.22
Clunch 0.0 - 0.0 - 0.0 - 0.618 3.36
OKlee, morning 0.0 - 0.0 - —2.55 —3.51 2.17 3.28
OBC, morning 0.0 - 0.0 - 1.76 5.91 1.61 3.90
OBM, morning 0.0 - 0.0 - —0.578 —1.04* 0.195 0.51*
OELA, morning 0.0 - 0.0 - 1.72 2.69 1.14 2.80
OINM, morning 0.0 - 0.0 - —1.01 —2.31 0.725 0.87*
OMX, morning 0.0 - 0.0 - —0.0850 —0.18* 1.17 1.91*
OPH, morning 0.0 - 0.0 - 0.246 0.79* —0.352 —1.44*
O Arcadie, morning 0.0 - 0.0 - 1.41 1.77* —0.726 —1.19*
O Atlantide, morning 0.0 - 0.0 - —1.85 —6.59 1.21 4.39
OCopernic, morning 0.0 - 0.0 - —0.922 —0.40* 0.378 0.86*
OCorbusier, morning 0.0 - 0.0 - 1.85 2.74 —-1.74 —2.59
OGiacometti, morning 0.0 - 0.0 - —0.007 21 —0.02* —0.147 —0.49*
OParmentier, morning 0.0 - 0.0 - 0.967 1.69* —1.43 —1.98
OVinci, morning 0.0 - 0.0 - —0.0815 —0.23* 0.396 0.74*
OEsplanade, morning 0.0 - 0.0 - 0.0 - 0.0 -
OOrnithorynque, morning 0.0 - 0.0 - 0.0261 0.05* 0.237 0.59*
OPizza, morning 0.0 - 0.0 - 1.60 2.74 —0.932 —6.03
OKebab, morning 0.0 - 0.0 - 1.82 5.98 —1.79 —5.59
continued ...
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Dynamic model Dynamic model
without agent effect with agent effect
First choice

Static model

First choice

and frequency

Parameters Value t-test Value t-test Value t-test Value t-test
OSatellite, morning 0.0 - 0.0 - 2.02 5.35 —2.32 —6.41
OHodler, morning 0.0 - 0.0 - 1.71 2.42 0.290 0.41*
OVallotton, morning 0.0 - 0.0 - 0.578 0.53* 0.292 0.75*
OKlee, lunch 0.0 - 0.0 - —2.59 —5.44 2.71 7.08
OBC, lunch 0.0 - 0.0 - 2.06 6.11 —2.20 —7.48
OBM, lunch 0.0 - 0.0 - 2.33 3.52 —2.50 —4.18
OELA, lunch 0.0 - 0.0 - —1.05 —3.92 —0.789 —2.60
OINM, lunch 0.0 - 0.0 - 0.883 1.47* —1.33 —2.83
OMX, lunch 0.0 - 0.0 - —2.06 —6.27 1.66 9.55
OPH, lunch 0.0 - 0.0 - 2.63 7.13 —2.30 —3.39
O Arcadie, lunch 0.0 - 0.0 - 2.97 5.74 2.46 5.25
O Atlantide, lunch 0.0 - 0.0 - 1.85 5.44 —1.54 —6.82
O Copernic, lunch 0.0 - 0.0 - 5.78 2.92 6.06 4.32
OCorbusier, lunch 0.0 - 0.0 - —1.27 —3.89 —0.855 —3.16
OGiacometti, lunch 0.0 - 0.0 - —-1.31 —6.13 1.24 6.35
OParmentier, lunch 0.0 - 0.0 - 0.961 3.75 —1.19 —2.57
OVinci, lunch 0.0 - 0.0 - 3.56 1.91* —1.37 —1.36
OEsplanade, lunch 0.0 - 0.0 - 0.0 - 0.0 -
OOrnithorynque, lunch 0.0 - 0.0 - 0.128 0.49* —0.258 —1.23*
OPizza, lunch 0.0 - 0.0 - —1.24 —5.42 1.29 5.15
OKebab, lunch 0.0 - 0.0 - 0.677 3.00 —1.11 —4.48
OSatellite, lunch 0.0 - 0.0 - 0.776 5.26 —1.20 —4.13
OHodler, lunch 0.0 - 0.0 - 1.05 3.51 —0.910 —1.91*
OVallotton, lunch 0.0 - 0.0 - 10.7 5.52 —10.8 —7.20
Nb of observations 1868

L(0) —5037.914

Nb estim. param. 36 38 80 82

E(B) —3446.109 —3092.106 —2631.929 —2623.843
Adjused rho square p° 0.309 0.379 0.462 0.480
Likelihood ratio test 354.003 (> 5.99) 920.354 (> 58.12) 16.172 (> 5.99)

Table 7: Summary of estimation results for the 4 models of Table[2] 1868 observations are
used for estimation. Parameters without stars are significantly different from zero with a
95 % confidence level. A likelihood ratio test is performed between the static model and the
dynamic model without agent effect, between the dynamic model without agent effect and
the dynamic model with agent effect (first choice specification), and between the dynamic
model with agent effect (first choice specification) and the dynamic model with agent effect
(first choice and frequency). The numbers in parenthesis for the likelihood ratio tests are
the percentiles of the x? distribution.
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A.3 Elasticity of choice probabilities to price: detailed results

Dynamic model
without agent effect

Dynamic model with
agent effect correction
First choice

and frequency

Static model

Catering locations First choice

L’ Arcadie Employees —1.23989 —0.985452 —3.395 26 —3.57178
Students —2.384 84 —1.83835 —4.578 27 —4.751 58
, . Employees —1.13413 —0.895 157 —3.18069 —3.326 38
L'Atlantide Students ~ —2.27122 —1.77387 —4.44407 —4.625
BC Employees —0.936 438 —0.739 586 —2.61785 —2.7033
Students —1.57302 —1.2261 —3.082 35 —3.15199
Le Copernic Employees  —2.35353 —1.87112 —6.41268 —6.681 58
Students —4.51551 —3.476 45 —8.643 27 —8.906 21
Le Corbusier Employees —0.929999 —0.735 688 —2.61505 —2.701 22
Students —1.54962 —1.20379 —2.97714 —3.07526
ELA Employees  —0.684047 —0.547 564 —1.87449 —1.9601
Students —1.27976 —0.972102 —2.4586 —2.52925
L ’Esplanade Employees —0.815134 —0.656 035 —2.194 22 —2.36297
Students —1.27379 —0.959 653 —2.356 76 —2.441
Le Giacometti Employees —0.693 894 —0.553 458 —1.8864 —1.96811
Students —1.313 32 —1.00551 —2.49273 —2.58709
Le Hodler Employees  —1.7247 —1.37671 —4.736 38 —4.969 36
Students —3.24068 —2.47713 —6.3035 —6.461 66
INM Employees  —0.763 795 —0.607 341 —2.08843 —2.179 38
Students —1.45722 —1.1218 —2.796 51 —2.87987
Kebab Employees —0.864 627 —0.689 636 —2.37133 —2.46379
Students —1.6376 —1.25415 —3.1567 —3.2466
Le Klee Employees  —0.794574 —0.631613 —2.17519 —2.274 34
Students —1.51289 —1.16528 —2.91007 —3.003 68
MX Employees —0.971 626 —0.767171 —2.709 28 —2.8277
Students —1.62567 —1.26778 —3.19163 —3.31779
Ornithorynque Employees  —0.844 35 —0.664 995 —2.24917 —2.37491
Students —1.67028 —1.306 76 —3.25905 —3.3904
Le Parmentier Employees  —0.871571 —0.695 141 —2.378 36 —2.49491
Students —1.47515 —1.12795 —2.736 67 —2.8268
Pizza Employees —0.977 648 —0.777131 —2.662 59 —2.793 63
Students —1.8736 —1.442 53 —3.584 97 —3.720 84
Sat Employees —0.596 256 —0.474 232 —1.63987 —1.690 52
Students —1.126 53 —0.866 874 —2.1905 —2.22546
Employees —3.9529 —3.14098 —10.5511 —10.9123
Table de Vallotton ¢\ 1oits  —7.58275 —5.83644 ~14.3337 147175
Le Vinei Employees —1.024 26 —0.81411 —2.80212 —2.936 23
Students —1.70861 —1.316 17 —-3.21097 —3.338 83

Table 8: Average sample elasticities of choice probabilities to price
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