
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. F. Mila, président du jury
Prof. H. M. Rønnow, directeur de thèse

Prof. D. M. Silevitch, rapporteur
Prof. M. Schechter, rapporteur

Dr G. Boero, rapporteur

Probing Entangled States of the Nuclear-Electronic
Quantum Magnet LiHoF4

THÈSE NO 7015 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 12 MAI 2016

 À LA FACULTÉ DES SCIENCES DE BASE
LABORATOIRE DE MAGNÉTISME QUANTIQUE

PROGRAMME DOCTORAL EN PHYSIQUE 

Suisse
2016

PAR

Ivan KOVAČEVIĆ





Everything around you
that you call life
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Abstract
Two objects are entangled when their quantum mechanical wavefunctions cannot
be written in a separable product form. Entangling dissimilar quantum objects, or
hybridization, has been suggested as a promising route to efficient quantum infor-
mation processors, but mostly realized on a limited scale. Hybrid nuclear-electronic
many-body systems remain a largely unexplored challenge to both experiments and
theories. The prototypical transverse-field Ising ferromagnet LiHoF4 is an ideal plat-
form to address this issue. The Ising model is considered as an archetype both for the
investigation of quantum criticality and for the evaluation of quantum simulators. The
hyperfine coupling strength of a Ho3+ ion is exceptionally large, promoting a strong
hybridization or entanglement between the nuclear and electronic moments. The
magnetic coupling between the Ho3+ ions that leads to ferromagnetic ordering is pre-
dominantly through long-range dipole interactions, while nearest-neighbor exchange
interaction is negligibly weak. Applying a transverse field induces a zero temperature
quantum phase transition driven by quantum fluctuations. Altogether LiHoF4 rep-
resents a unique nuclear-electronic quantum magnet, whose wavefunctions can be
readily obtained by diagonalizing the Hamiltonian using the mean-field approxima-
tion.
In this thesis we develop an experimental scheme allowing us to quantify hybridized
nuclear-electronic states in the model transverse field Ising system LiHoF4. Using
magnetic resonance the field and temperature evolution of the nuclear-electronic
states are successfully traced across the whole phase diagram. We develop a theo-
retical framework based on mean-field calculations and linear response theory. Our
experimental observation of the hybridization is remarkably well reproduced by the
calculations based on parameters obtained from experiments probing three orders
of magnitude higher energies. Thus armed, we find that the calculated entanglement
entropy shows a peak at the quantum phase transition. This raises the tantalizing
possibility that electronic entanglement is encoded onto the nuclear-electronic states,
which presents an interesting avenue towards experimental probes of many-body
entanglement.

Keywords: magnetism, quantum phase transition, magnetic resonance, quantum
information, quantum simulation, entanglement entropy.
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Résumé

Deux objets sont emmêlés quand leurs fonctions d’onde quantique mécanique ne
peuvent être écrites dans la forme du produit séparable. En emmêlant des objets
quantiques différents, la hybridation, a été suggéré comme la bonne façon pour le pro-
cesseur efficace quantique informatique, mais principalement réalisé sur une échelle
limitée. Les systèmes hybrides nucléaires électroniques multi corps reste un défi in-
exploré pour l’expérience et la théorie. Le Ising ferromagnet prototypique LiHoF4

avec le champ transversal est une plateforme idéale pour aborder cette question.
Le modèle Ising est considéré comme un archétype pour la recherche de la criticité
quantique ainsi que pour l’évaluation de simulateurs quantiques. La force très fin de
couplage d’un ion Ho3+ est exceptionnellement élevé, et cette force promeut une forte
hybridation ou un enchevêtrement entre les moments nucléaires et électroniques. Le
couplage magnétique entre les ions Ho3+ qui conduit à la commande ferromagné-
tique est essentiellement par des interactions dipolaires à longue portée, tandis que
l’interaction de plus proches voisins est faible. L’application d’un champ transver-
sal induit une température de zéro transition de phase quantique entraînée par les
fluctuations quantiques. Au total, LiHoF4 représente un magnet quantique nucléaire
électronique unique, dont les fonctions d’onde peuvent être facilement obtenus par
diagonalisation l’Hamiltonien en utilisant l’approximation du champ moyen. Dans
cette thèse, nous développons un montage expérimental pour sonder l’état nucléaire
électronique dans un système de Ising transversale champ modelé du LiHoF4. En
utilisant la résonance magnétique, l’évolution du champ et de la température des états
nucléaires électronique est avec succès tracée à travers l’ensemble du diagramme de
phase. Nous développons un cadre théorique sur la base de calculs de champ moyen
qui est d’accord avec les observations expérimentales. Ayant établi expérimentalement
que les fonctions d’onde de champ moyen sont une excellente approximation de la
fonction d’onde réelle, nous les avons utilisées pour calculer l’enchevêtrement entro-
pie de l’état fondamental entre des moments magnétiques électroniques et nucléaires.
Nous constatons que l’entropie d’enchevêtrement entre les moments nucléaires et
électroniques présente un pic à la transition de phase quantique. Ceci suggère que
l’enchevêtrement électronique est codé sur chaque état nucléaire-électronique. Nos
résultats ouvrent la voie à de nouvelles recherches théoriques et expérimentales de
l’intrication quantique.
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1 Introduction

Entangling dissimilar objects such as atom-photon, photon-spin, or nuclear-electronic
spins, can bring together the merit of each element for efficient quantum information
processing [1, 2]. Hybrid nuclear-electronic spin systems might enable fast gating on
electron spins together with long storage on nuclear spins [3]. Simulating quantum
many-body systems [4, 5] may also benefit from such hybridization, and foster the
entanglement perspective on many-body phenomena [4]. Indeed entanglement in-
creasingly provides a useful toolkit for many-body systems [6, 7, 8, 9, 10], for instance,
by displaying a scaling behavior close to a quantum phase transition (QPT) [11, 12]
or enabling identification of novel quantum phases like a topologically ordered one
[13, 14, 15]. However, the efforts to realize hybrid quantum systems mostly focus on
and is limited by a few body ones, and hybrid many-body systems remain a largely
unexplored challenge to both experiments and theories.

The prototypical transverse-field Ising ferromagnet LiHoF4 (see Fig. 1.1a for the phase
diagram) is an ideal platform to address this issue. Indeed the Ising model is considered
as an archetype both for the investigation of quantum criticality [6, 11, 12, 17] and for
the evaluation of quantum simulators [18]. First, the hyperfine coupling strength of a
Ho3+ ion is exceptionally large as coupling constant A = 39 mK [19, 20], promoting a
strong hybridization or entanglement between the nuclear and electronic moments
[16, 17, 21]. Second, the magnetic coupling between the Ho3+ ions that leads to
ferromagnetic ordering at Tc = 1.53K is predominantly through long-range dipole
interactions JD with strength in the order of 1 K, while nearest-neighbor exchange
interaction is negligibly weak as Jex = −1.2 mK [22]. This gives rise to the upper critical
dimension d∗ = 3 so that a mean-field approximation is accurate up to a logarithmic
correction [23, 24, 16]. Third, applying a relatively small transverse field Hc = 4.95

T induces a zero-temperature QPT [16] driven by quantum fluctuations. Altogether
LiHoF4 represents a unique nuclear-electronic quantum magnet (Fig. 1.1b) [21], whose
wavefunctions can be readily obtained by diagonalizing the Hamiltonian using the
mean-field approximation.

1



Chapter 1. Introduction

Figure 1.1: a) Phase diagram in LiHoF4. Solid line represents a mean-field calculation
taking into account strong hyperfine interaction in Ho ions, while dashed line is
calculated in the absence of hyperfine interaction. Inset shows schematic energy
levels for the Ising spins in an ordered phase (left) and its modification by hyperfine
interactions with the nuclear spins (right). Experimental data taken from Bitko et al.
[16]. b) Conceptual drawing of many-body nuclear-electronic system, where blue and
red arrows represent electronic and nuclear moments, respectively, and wavy ribbon
the entanglement. c) Entanglement from the many-body system encoded onto each
nuclear-electronic hybrid in the mean-field model.

Using inelastic neutron scattering it was revealed that the collective electronic exci-
tations in LiHoF4 are incoherently coupled to the nuclear spin bath [17, 25]. The true
QPT must therefore takes place in a hybridized nuclear-electronic state. In this thesis I
develop a technique allowing to directly probe the entangled nature of electrons and
nuclei using magnetic resonance schemes.

In order to guide and interpret our experimental investigation, first I perform a model
calculation of the system. In the chapter 2, I establish and solve the Hamiltonian of
the single Ho ion in the crystal field of LiHoF4. By comparing the calculated energies
of states as a function of magnetic field to the electron paramagnetic resonance mea-
surements on LiHoF4 I confirm that the Hamiltonian accurately describes the physical
system. Hyperfine interaction is introduced to the single-ion Hamiltonian to show the
effect of nuclear-electronic coupling on splitting of the electronic states. To model the
ferromagnetic ordering of the system below critical temperature, I have to account for
the dipolar interaction between the Ho ions. It is impossible to solve the many-body
Hamiltonian so I introduce the concept of the mean-field approximation. The calcu-
lated mean-field states and energies are the foundation for calculating the expected
dynamic susceptibility response of the system in the microwave frequency range. The
linear response theory is then introduced as a formalism to calculate the excitations in
the magnetic resonance experiment. This calculation is the foundation for interpreting
our experimental data. Most of the theoretical work to date has focused on the static
energy levels and phase diagram so these are the first calculations which describe the
dynamical regime of the LiHoF4 system. In the final section of the chapter 2 I show

2



original calculations of entanglement entropy in an interacting many-body system to
get a deeper understanding of the quantum nature of the nuclear-electronic states,
especially near quantum critical point, from the perspective of nuclear-electronic
entanglement.

In the chapter 3 I describe the experimental setup which I developed to quantify hy-
bridized nuclear-electronic states in the model transverse field Ising system LiHoF4.
I start by introducing the basic principles and detection techniques of magnetic res-
onance experiment. After that I explain the principles of operation of the dilution
refrigerator which is necessary to access the low temperature physics where nuclear-
electronic entanglement starts to play an important role [26]. Finally, I describe how I
built the magnetic resonance setup and thermally anchored it to the dilution refrig-
erator. I show how the experimental data is fitted in order to extract the resonant
frequency and Q-factor which are related to real and imaginary part of the magnetic
susceptibility, calculated in previous chapter.

Experimental results, both raw and analyzed, are shown in the chapter 4. The inter-
pretation of the experimental data is given by comparing it to the calculations from
chapter 2. Our experimental observation of the hybridization is remarkably well repro-
duced by the calculations based on parameters obtained from experiments probing
three orders of magnitude higher energies. I demonstrate the realization of nuclear-
electronic magnetic resonance in an interacting many-body system by probing directly
the transitions between the nuclear-electronic states which could not be resolved in
neutron scattering experiments.

In the following, I further aim to explore the observed hybridization of the nuclear-
electronic states from the perspective of entanglement. Comparing the measured
susceptibility to the calculated entanglement entropy I find that they behave remark-
ably similar across the quantum phase transition. I conclude that the extended en-
tanglement present in the transverse-field Ising model may leave a signature on the
nuclear-electronic states through hybridization and that having an access to the nu-
clear spin as an observer may open an interesting avenue towards experimental probes
of many body entanglement.
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2 Theoretical background and calcu-
lations

In this chapter a theoretical model for LiHoF4 is introduced and using a mean-field
approximation the hyperfine nuclear-electronic energy levels are calculated. The real
and imaginary part of the frequency-dependent magnetic susceptibility is calculated
within the linear response framework, using the mean-field wavefunctions and en-
ergy levels. Entanglement in vicinity of the quantum phase transition is studied by
calculating entanglement entropy of the nuclear and electronic subsystems.

2.1 LiHoF4

The crystal structure of LiHoF4 is tetragonal and belongs to the space group I41/a, n◦88
in the International Tables for Crystallography [28] (Scheelite structure) with lattice
constants a = b = 5.175 Å and c = 10.75 Å. The magnetic moments are carried by the
rare earth ions, whose positions in the unit cell are shown in Fig. 2.1. The conventional
unit cell contains 4 rare earth ions.

In LiHoF4 the Ho3+ ions have a partially filled outermost 4f shell with 10 electrons.
By applying the Hund′s rules we find that the ground state electronic configuration
of a single Ho3+ ion is 5I8 (J = 8, L = 6, S = 2). The effective magnetic moment
μeff = gμB

√
J(J + 1) is μeff = 10.6μB . In the absence of a crystalline electric field, the

ground state is (2J+1)=17-fold degeneracy. The lowest excited state of the configuration
5I7 is 7400 K above, so it is not in the range of temperatures of interest discussed here
[29].

2.1.1 Crystal field

If we include the Coulomb interaction of the Ho3+ ion with the surrounding Li+ and
F− ions, the degeneracy of the electron orbital states is broken due to the static electric
field produced by the surrounding charge distribution (surrounding ions). Therefore,

5



Chapter 2. Theoretical background and calculations

Figure 2.1: The crystal and magnetic structure of LiHoF4 in the ferromagnetic phase.
The magnetic moments of the Ho ions in the ordered phase are along the c-axis.
The dipole field from the central moment yields the ferromagnetic (red scale) and
antiferromagnetic (blue scale) coupling. The sign and the strengths of the coupling
depend on the direction of the moments. After Ref. [27].

6



2.1. LiHoF4

this electric field depends heavily on the spatial symmetry of the crystal. The derivation
of the crystal-field electrostatic potential takes into account the lattice symmetry, and
is most simply expressed in terms of operators called the operator equivalents. The
details of the derivation can be found in Hutchings [30]. The operator equivalents
are operators built out of the J operators that act on a 2J+1 dimensional space.The
operators act only on the angular part of the wave function of the coupled system, and
the matrix elements of the radial part of the wave function are usually incorporated in
the fitting parameters. The number of the operators needed to define the crystal field
Hamiltonian HCF , and rules for deriving them, is determined by the spatial symmetry
of the crystal and the ground state configuration of the ion. These rules are clearly
explained by Stevens [31, 32].

The LiHoF4 crystal has the S4 point group symmetry, which partially splits the 17-fold
degeneracy. The ground state of the crystal-field Hamiltonian is a doublet, which is
a non-Kramers degenerate ground state. The S4 point group symmetry of the Ho-
ion surroundings in the Scheelite lattice of LiHoF4 implies that the relevant Stevens
operators are:

O0
2 = 3J2

z − J(J + 1),

O0
4 = 35J4

z − 30J(J + 1)J2
z + 25J2

z − 6J(J + 1) + 3J2(J + 1)2,

O4
4(c) =

1

2
(J4

+ + J4
−),

O0
6 = 231J6

z − 315J(J + 1)J4
z + 735J4

z + 105J2(J + 1)2J2
z

−525J(J + 1)J2
z + 294J2

z − 5J3(J + 1)3 + 40J2(J + 1)− 60J(J + 1),

O4
6(c) =

1

4
(J4

+ + J4
−)[11J

2
z − J(J + 1)− 38] + H.c.,

O4
6(s) =

1

4i
(J4

+ − J4
−)[11J

2
z − J(J + 1)− 38] + H.c., (2.1)

where J+ = Jx + Jy and J− = Jx − Jy . Using these operators, the crystal field
Hamiltonian HCF can be written as

HCF = B0
2O

0
4 +B0

4O
0
4 +B0

6O
0
6 +B4

4(c)O
4
4(c) +B4

6(c)O
4
6(c) +B4

6(s)O
4
6(s). (2.2)

The x-axis can be chosen arbitrarily. The coordinate system was rotated around the
crystal symmetry z-axis so that the parameter B4

4(s) vanishes (removing the additional
O4

4(s) term which would otherwise be present) and B4
4(c) is positive.

Although it is possible to calculate the crystal field parameters Bl
m in point-charge

approximation, where the surrounding ions are considered as an array of point charges,
the accuracy of these calculations is rarely acceptable. The crystal field parameters are

7



Chapter 2. Theoretical background and calculations

Table 2.1: Crystal-field parameters in units of meV. The set of parameters are the same
for all four Ho sublattices. The sign of 105B4

6(s) is undetermined, not arbitrary, and
depends on the chosen fluoride basis.

B0
2 103B0

4 103B4
4 105B0

6 105B4
6(c) 105B4

6(s)

-0.06 0.35 3.6 0.04 7.0 ±0.98
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Figure 2.2: Calculated crystal field energy levels as a function of a) the transverse and
b) longitudinal magnetic field.

extracted by fitting the crystal field spectrum. The values of the crystal field parameters
were obtained by fitting the c-axis field dependence of the three lowest crystal-field
levels to the observed electron paramagnetic resonance data [20]. In the calculations
we have used the crystal field parameters refined by Rønnow et al. [22] shown in the
table 2.1.

2.1.2 Magnetic field effects

We diagonalised the crystal field Hamiltonian which resulted in 17 electronic eigen-
states and eigenvalues, shown in Fig. 2.2. The ground state at the zero-field is a doublet
and the first excited state is 11 K above it. The ground state doublet is followed by 4
singlet states and again a doublet state.

By diagonalizing the crystal field Hamiltonian HCF and the Zeeman term HZ ,

H = HCF +HZ , HZ = gLμBJ · H

were gL (Lande factor) = 1.250 and μB is the Bohr magneton, we track the electronic
states as a function of the transverse magnetic field along the a-axis (Fig. 2.2a) and the

8



2.1. LiHoF4

Figure 2.3: a) Calculated transitions between the 3 lowest crystal field levels as a
function of the transverse magnetic field. b) Experimental EPR transitions measured
by Magarino et al. [20].

longitudinal magnetic field along the c-axis (Fig. 2.2b). The ground state doublet is
split when the transverse field is applied. The transverse field is effectively mixing the
excited states into the ground state.

To compare our calculations with the experiment we calculated transitions between
the 3 lowest crystal field levels as a function of the transverse magnetic field (Fig. 2.3a)
and transition between 4 lowest levels as a function of longitudinal field (Fig. 2.4a),
and show it alongside the electron paramagnetic resonance (EPR) measurements from
Magarino et al. [20] (Fig. 2.3b, Fig. 2.4b). We see that the transitions between different
electronic states measured by EPR agree with the diagonalization of the crystal-field
Hamiltonian.

Diagonalizing the HCF shows that the lowest excited state in the spectrum is the singlet
state lying 11 K above the ground state doublet. At temperatures lower than this gap,
only the ground state doublet is significantly populated, and low temperature physics
can be captured by using a two state system. The two degenerate states, |α〉 and |β〉
can be chosen in a way that 〈α|Jz|β〉 = 0 and 〈α|Jz|α〉 = −〈β|Jz|β〉. We identify the
two degenerate states as | ↑〉 and | ↓〉. If we consider only the low temperatures, LiHoF4

Hamiltonian can be reduced to a transverse field Ising model with pseudo-spin-12

9



Chapter 2. Theoretical background and calculations

Figure 2.4: a) Calculated transitions between the 4 lowest crystal field levels as a
function of the longitudinal magnetic field. b) Experimental EPR transitions measured
by Magarino et al. [20].

10



2.1. LiHoF4

degrees of freedom. Considerable work was carried out on LiHoF4, based on Monte
Carlo simulations in order to elucidate a spin glass phase [29, 33, 34]. Most of that work
was performed on a reduced rare earth Hamiltonian.

The two lowest Ising states are formed from the odd Jz eigenstates, such that | ↑
〉 = {| − 5〉, | − 1〉, |3〉, |7〉} and | ↓〉 = {| − 7〉, | − 3〉, |1〉, |5〉}. We see that Jx cannot
couple directly between the two lowest lying states, therefore, applying the transverse
external field Hx, which couples to Jx via Zeeman term gLμBJxHx alone is not enough
to mix | ↑〉 and | ↓〉. We need at least 1st excited state (at 11 K) which consists of
{| − 6〉, | − 2〉, |2〉, |6〉}, which can be mixed with the ground states by Jx when applying
Hx, to make the 〈↑ |Jx| ↓〉 = 〈↓ |Jx| ↑〉 matrix element non-zero, to have non-zero
energy splitting gLμBJxHx. Since 〈↑ |Jx| ↓〉 is proportional to Hx, the energy splitting
between the two lowest levels is proportional to Hx squared at low fields (as shown by
1↔2 transition in Fig. 2.3).

The two lowest states are no longer pure Ising states as we apply the transverse mag-
netic field, because the higher states are mixed into the new lowest states. In the
following, we shall treat the full rare-earth Hamiltonian, including all 17 electronic
states, not the effective Ising model.

2.1.3 Hyperfine interaction

So far we considered the Hamiltonian with a crystal field and Zeeman interaction. But
in case of LiHoF4 a hyperfine interaction between Holmium electrons and Holmium
nuclei is so strong that at low temperatures it affects the electronic phase diagram [26].

The hyperfine coupling of a single Ho atom with its own I = 7/2 nuclear spin gives the
term

HHyp = A J · I (2.3)

The hyperfine constant in LiHoF4, A = 3.36 μeV, has been determined by the hyperfine
resonance [20] and heat capacity measurements [19].

Let us consider the simple case in which there is only the crystal field, Zeeman splitting,
and we add the hyperfine term to the Hamiltonian

H =
∑
i

[HCF +AJi · Ii − gLμBJi · H] (2.4)

The hyperfine coupling additionally splits each crystal field level into (2I+1)=8 hyper-

11



Chapter 2. Theoretical background and calculations

0 1 2 3 4 5 6 7 8 9
−500

−400

−300

−200

−100

0

100

200

300

400

500

Transverse magnetic field (T)

Fr
eq

ue
nc

y 
(G

H
z)

a

0 1 2 3 4 5 6 7 8 9
−500

−400

−300

−200

−100

0

100

200

300

400

500

Transverse magnetic field (T)

Fr
eq

ue
nc

y 
(G

H
z)

0 0.5 1 1.5 2
−50

−40

−30

−20

−10

0

10

20

30

40

50

Transverse magnetic field (T)

F
re

q
u

e
n

cy
 (

G
H

z)

b

Figure 2.5: a) Lowest 3 energy levels split into 24 levels when hyperfine interaction is
included b). Inset in b) shows splitting of the doublet at low fields.

Figure 2.6: Lowest nuclear-electronic states of the electronic doublet split by the
hyperfine interaction. After M. Schechter and P. C. E. Stamp [21].

fine states, making it (17·8)=136 nuclear-electronic levels in total. In Fig. 2.5 we show
how the lowest 3 electronic states are split into 24 nuclear-electronic states. If we take
a closer look (Fig. 2.5b inset) we see that we have 8 hyperfine levels at the zero-field.
The magnetic field breaks the degeneracy and splits each energy level into two.

One can think of this lowest 8 energy levels in zero-field states as 16 double degenerate
states with 8 different nuclear spin quantum numbers (-7/2 to 7/2), where each of
them has one of the two original electron spin states, | ↑〉 and | ↓〉 (Fig. 2.6). Nuclear
and electronic spin angular momenta is aligned along the crystallographic c-direction
in the zero-field, but this is no longer true when the transverse field is applied. When a
transverse field is applied, states can no longer be considered as separable nuclear and
electronic states, but rather as mixed nuclear-electronic states. At high magnetic fields
they can be treated as separable states again.

To excite some of the particles from the lower to higher energy state one would need an
oscillating magnetic field tuned to the energy equal to the difference between energy
levels. That is exactly what we want to do in our magnetic resonance experiment, so
we have calculated the energy difference between states as a function of the transverse
magnetic field. The nuclear magnetic resonance (NMR) excitations which change
nuclear spin quantum number by 1, ΔmN = 1, and preserve the electron spin quantum
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Figure 2.7: Calculated energy difference between subsequent states or NMR transitions
(blue) and EPR transitions (red).

number, ΔmS = 0, are shown by blue lines in Fig. 2.7. The electronic paramagnetic
resonance (EPR) excitations between spin up and spin down state, which preserves
the nuclear spin quantum number, are shown by the red lines.

The hyperfine interaction HHyp = AJ · I splits the lowest doublet states to an eightfold
multiplet of nearly equidistant levels. The energy difference between the nuclear-
electronic states is approximately 4.5± 0.2 GHz at the zero-field and it gets smaller as
the field is increased and the states are more mixed. These states are not equidistant
because mixed nuclear-electronic states cannot be written as a product state of the
electronic and nuclear state. Nevertheless, to a first approximation and in the zero
field, we can think of the nuclear-electronic states as the product of electronic and
nuclear states.

2.2 Mean-field theory

So far we have considered only the single-ion part of the Hamiltonian, which has
contribution from the crystal field, the Zeeman coupling, and the hyperfine coupling,
but there is also interaction between the Ho3+ ions which is dominated by the long-

13



Chapter 2. Theoretical background and calculations

range dipole coupling, with a small nearest neighbour exchange interaction:

H =
∑
i

[HCF(Ji) +AJi · Ii − gLμBJi ·H]

−1

2

∑
ij

∑
αβ

JDDαβJiαJjβ − 1

2

∑
ij,n.n.

JexJi · Jj . (2.5)

It is relatively easy to solve a single-body problem by diagonalizing the Hamiltonian.
Difficulty arises when the considering interaction Hamiltonian, because the size of
Hamiltonian increases as N !, where N is the number of particles. The primary mo-
tivation of a mean-field approximation is to reduce the N−body Hamiltonian to a
single-body Hamiltonian. The mean-field theory replaces interactions between vari-
ous ions by an interaction between a single ion with a self-consistent field, neglecting
the fluctuations of moments around their equilibrium position.

Dipolar interactions are long-range pair interactions, therefore all the pairs of moments
in the lattice should be taken into account in Hdip:

Hdip = −1

2

∑
ij

gLigLjμ
2
BJiDijJj (2.6)

where Dij is the matrix for the dipole-dipole interaction between sites i and j. Dij can
be derived from the classical dipole-dipole interaction:

Dij =
μ

4π

⎛
⎝3rijr

T
ij

||rij ||5 − δij
||rij ||3

⎞
⎠. (2.7)

In the mean-field approximation the fluctuations of moments around their equilibrium
positions are neglected, Ji is replaced in the Hdip by (Ji−〈Ji〉)+〈Ji〉, where (Ji−〈Ji〉) is
the fluctuation term which is considered small. The second order terms are neglected
and constant is removed. Since Dij = Dji and Dij is symmetric

HMF
dip = −

∑
ij

gLigLjμ
2
BJiDij〈Jj〉. (2.8)
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2.2. Mean-field theory

The effective mean field can be introduced

hi
eff =

∑
j

D̃ijμBgLj〈Jj〉, (2.9)

where the i index varies from 1 to 4, for the 4 sites in the unit cell. The D̃ij matrices are
defined by

D̃ij =
N

V

⎛
⎝4π

3
+

∑
cells

Dij −Nij

⎞
⎠ (2.10)

The first term is the Lorentz factor, the second term is the sum of the Dij matrices
calculated for a large number of unit cells inside a sphere of 80 cells radius, and the
third term is the demagnetization factor.

A demagnetization field depends on the geometry of a sample and most of the time is
not uniform. If a sample is ellipsoid-shaped, the demagnetizing field is linearly related
to the magnetization and the proportionality factor N is the demagnetization factor,
which is a diagonal tensor in the basis of principal axes of the ellipsoid. This tensor has
two general properties: it is symmetric and its trace is 1. For a non-ellipsoidal body,
the demagnetization factor is not uniform inside the sample, even if there is only one
magnetic domain in the sample.

Our sample is cube shaped, but magneto-optic Kerr effect images [35] and scanning
Hall probe microscope imaging of our cubic LiHoF4 sample [36] show that magnetic
domains are needle shaped along the c-axis due to the strong anisotropy. We calculated
the critical field, HC , in LiHoF4 at 0.15 K with demagnetization factors for the three
different sample body types: for a needle-shaped body HC = 4.9 T, for an egg-shaped
body HC = 3.5 T and for a sphere- or cube-shaped body HC = 2.2 T. Since our suscep-
tibility measurements with the cubical sample show that the critical field at 0.15 K is
4.8 T, we used the demagnetization factor for needle-shape body in our calculations.

Finally, we can express the dipolar HMF
dip in terms of the effective mean field heff

HMF
dip =

4∑
i=1

gLiμBJi · hi
eff . (2.11)

The Heisenberg exchange interaction can also be calculated in the mean-field approxi-
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Chapter 2. Theoretical background and calculations

mation as

HMF
ex =

∑
i,j

JijJi · 〈Jj〉 (2.12)

which, if taking only the closest neighbours interaction into account, becomes

HMF
ex =

∑
〈i,j〉

J12Ji · 〈Jj〉. (2.13)

The value for the anti-ferromagnetic exchange coupling was fitted by H. M. Rønnow et
al., finding a value of J12 = − 0.1 μeV [26].

The mean-field approximation neglects second order fluctuation terms, which implies
that it neglects the two ion correlation, leading to 〈JiJj〉 = 〈Ji〉〈Jj〉. The variables Ji and
Jj are therefore independent in the mean-field approximation. Which is not the case
in real system LiHoF4. This has important consequences when the correlation length
is large, at the phase transition where correlation length goes to infinity. Furthermore,
as the fluctuations increase at the transition, the behaviour of the system around the
transition cannot be accurately described by this mean field approximation. It is a well-
known fact that mean-field theory in general overestimates the transition temperature
and the critical transverse magnetic field, because the fluctuations are neglected. To
compensate for the effects of the fluctuations we renormalized the moment along the
c-axis by a renormalization factor of 1.3, calculated in the effective-medium theory to
the first order in the 1/z expansion by Rønnow et al. [22].

Once this Hamiltonian is established, the calculation which computes the values only
in the unit cell is as follows:

1. The matrices D̃ij are computed once at the beginning.

2. The moments 〈Ji〉 are initialized in a given arbitrary configuration.

3. The mean fieldshi
eff are computed from the current configuration of the moments

4. The mean field hamiltonian HMF
i = Hi

CF +Hi
Zeeman +Hi

Hyp +HiMF
dip +HiMF

ex is
diagonalized for each site.

5. The means moments 〈Ji〉 are updated by computing the thermal average from
the eigenvalues and eigenvectors of HMF

i .

6. The difference between new and old 〈Ji〉 is evaluated and compared to a conver-
gence threshold 10−6. If the difference is larger than the threshold, the algorithm
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Figure 2.8: a) Temperature dependence of the lowest 16 energy levels at the zero-field.
b) 〈Jz〉 as a function of temperature.

returns to the third step. This procedure is repeated until the convergence is
satisfied.

We carried out calculations in the mean-field approximation while considering the
full rare-earth Hamiltonian with 136 nuclear-electronic states. The calculated critical
temperature is TC = 1.8 K (experimental TC = 1.53 K) and the critical transverse field
HC = 5.4 T.

Figure 2.8 shows the evolution of energies of the 16 lowest states as we decrease the
temperature below the TC . The doublet splits because the mean field increases due to
the ferromagnetic ordering as the temperature is decreased below TC .

When the temperature is lowered below TC , the spins order in the c-direction, which
results in the mean field along the c-direction. This field removes the degeneracy of
the doublet. The mean field increases with the decrease in temperature splitting the
doublet even more. The difference between the hyperfine energy levels is intact, it is
the same 4.5 GHz at 0.1 K as it was in the ordered state.

The evolution of the energies of the 16 lowest states at 0.1 K was calculated as a function
of the transverse magnetic field from 0 to 9 T (Fig. 2.9).

Now that we have seen what happens to the energy levels when we cool down to 0.1 K,
we calculate how they evolve with the applied transverse field at 0.1 K (Fig. 2.9). The
transverse field separates the two sets of states even further and mixes the higher
energy states into | ↑〉 and | ↓〉 states, which become more mixed.

We are particularly interested in the difference between the energy levels because that
is the most relevant for the magnetic resonance experiments which we carried out.
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Figure 2.9: a) Field dependence of the lowest 16 energy levels at 0.1 K calculated in
mean-field aproximation. b) 〈Jz〉 and 〈Jx〉 as a function of the transverse field.
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Figure 2.10: Field dependence of difference in energy between lowest 8 states at 0.1 K.
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2.3. Linear response theory

We show the difference between the hyperfine energy levels as a function of the field
in Fig. 2.10. Only the 8 lowest states are considered because the higher states are not
significantly populated at the low temperatures at which the experiment is performed.

The differences between the energy levels become smaller until it reaches the mini-
mum value at the critical field HC . After that, the difference in energy increases with
field and finally saturates at high field. The difference between the energy levels is
dominated by the hyperfine term A〈J〉. A〈JZ〉 is getting smaller with the increase
of the transverse magnetic field (Fig. 2.9b) while A〈JX〉 is increasing. Total A〈J〉 has
a minimum at the quantum phase transition, and so does the difference in energy
(Fig. 2.10). With experimental setup we shall probe the system at five fixed frequencies
noted with different colours in Fig. 2.10. The magnetic resonance condition should be
satisfied at frequencies and fields where the frequency of excitation field is equal to the
difference between the energy levels.

2.3 Linear response theory

To calculate the actual response of the system to a small external perturbing oscillating
magnetic field, we have calculated the susceptibility in the linear response theory
framework. Before calculating the response of our system, let us first introduce the
concept of the linear response theory as reported by J. Jensen and A. R. Mackintosh
[37].

A response function for a macroscopic system relates the change of an ensemble-
averaged physical quantity 〈B(t)〉 to an external force f(t). In our case, B(t) is the
angular momentum of an ion or the magnetization and f(t) is a time-dependent
applied magnetic field. We shall only consider the regime where 〈B(t)〉 changes linearly
with the force f(t), hence the name linear response theory. We suppose that f(t)

is sufficiently weak to ensure that the response is linear. We shall check that this
condition is satisfied when performing the experiment. We assume that the system is
in the thermal equilibrium before the external force is applied.

A system in thermal equilibrium is characterized by the density operator

ρ0 =
1

Z
e−βH0 ; Z = Tr e−βH0 , (2.14)

where H0 is the (effective) Hamiltonian, Z is the (grand) partition function, and
β = 1/kBT . Since we are only interested in the linear part of the response, we may
assume that the weak external disturbance f(t) gives rise to a linear time-dependent
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perturbation in the total Hamiltonian H:

H1 = −Af(t) ; H = H0 +H1, (2.15)

where A is a constant quantum operator.

In the magnetic resonance experiment the z-axis is defined parallel to the crystallo-
graphic c-axis long which the electronic spins are aligned in the ferromagnetic phase.
The static transverse magnetic field which drives the quantum phase transition is
applied along the x-axis which is parallel to the crystallographic a-axis. The oscillating
magnetic field which acts as an external force f(t) is applied along the y-axis to ensure
that it is always perpendicular to 〈J〉, which is along the z-axis in the ferromagnetic
phase (at the zero-field) or along the x-axis in the quantum paramagnetic phase. Thus,
H1 is the Zeeman term H1 = −gLμBJyHy(t), so that A = Jy and f(t) = gLμBHy(t).

As a consequence of this perturbation, the density operator ρ(t)becomes time-dependent
and so also does the ensemble average of the operator B:

〈B(t)〉 = Tr{ρ(t)B}. (2.16)

The linear equation between this quantity and the external force has the form

〈B(t)〉 − 〈B〉 =
∫ t

−∞
φBA(t− t′)f(t′)dt′, (2.17)

Where φBA is the response function. The differential change of 〈B(t)〉 is proportional
to the external disturbance f(t′) and the duration of the perturbation delta t′. Equa-
tion 2.17 can be Fourier transformed into

〈B(ω)〉 = χBA(ω)f(ω), (2.18)

χBA(ω) is called the frequency-dependent susceptibility and is the Fourier transform
of the response function φBA(t).

We shall deduce the expression for the response function φBA(t) in the term of the
operators B and A and the unperturbed Hamiltonian H0. Instead of the Schrodinger
picture we adopt the Heisenberg picture, so that the wave functions are independent
of time, while the operators become time-dependent. In the Heisenberg picture the

20



2.3. Linear response theory

operators are

B(t) = eiHt/h̄Be−iHt/h̄, (2.19)

While the corresponding equation of motion is

d

dt
B(t) =

i

h̄
[H,B(t)]. (2.20)

The equation of motion derived for the density operator in the Schrodinger picture is
similar to the Heisenberg equation of motion above, except for the change of the sign
in front of the commutator

d

dt
ρ(t) = − i

h̄
[H, ρ(t)]. (2.21)

The density operator may be written as the sum of the two terms

ρ(t) = ρ0 + ρ1(t) with [H0, ρ0] = 0, (2.22)

where ρ0 is the density operator of the thermal-equilibrium state which, by definition,
must commute with H0. ρ1(t) is time-dependent change due to the perturbation.

It can be easily derived (details can be found in Ref. [37]) that, to first order order in
the external perturbations, the time-dependent density operator is

ρ(t) = ρ0 +
i

h̄

∫ t

−∞
[A0(t

′ − t), ρ0]f(t
′)dt′, (2.23)

where

A0(t) = eiH0t/h̄Ae−iH0t/h̄. (2.24)
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This determines the time dependence of B as

〈B(t)〉 − 〈B〉 = Tr{(ρ(t)− ρ0)B}

=
i

h̄
Tr

{∫ t

−∞
[A0(t

′ − t), ρ0]Bf(t′)dt′
}

=
i

h̄

∫ t

−∞
Tr{ρ0[B,A0(t

′ − t)]}f(t′)dt′

=
i

h̄

∫ t

−∞
〈[B0(t),A0(t

′)]〉0f(t′)dt′.

A comparison of this result with the definition of the response function gives

φBA(t− t′) =
i

h̄
〈[B(t),A(t′)]〉. (2.25)

This expression is called the Kubo formula for the response function.

If the eigenvalues Eα and the corresponding eigenstates |α〉 for the Hamiltonian H0

are known, it is possible to derive an explicit expression for the response function and
for frequency-dependent susceptibility.

KBA(t) =
i

h̄

1

Z
Tr

{
e−βH[eiHt/h̄Be−iHt/h̄,A]

}
=

i

h̄

1

Z

∑
αα′

e−βEα

{
eiEαt/h̄〈α|B|α′〉e−iEα′ t/h̄〈α′|A|α〉 − 〈α|A|α′〉eiEα′ t/h̄〈α′|B|α〉e−iEαt/h̄

}
.

Interchanging α and α′ in the last term, and introducing the population factor

nα =
1

Z
e−βEα ; Z =

∑
α′

e−βEα′
, (2.26)

we get

KBA(t) =
i

h̄

∑
αα′

〈α|B|α′〉〈α′|A|α〉(nα − nα′)ei(Eα−Eα′ )t/h̄, (2.27)
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and hence

χBA(ω) = lim
ε→0+

∫ ∞

0
KBA(t)e

i(ω+iε)tdt

= lim
ε→0+

∑
αα′

〈α|B|α′〉〈α′|A|α〉
Eα′ − Eα − h̄ω − ih̄ε

(nα − nα′),
(2.28)

χBA(ω) can be separated into the reactive and absorptive part of susceptibility. The
absorptive part of susceptibility is

χ′′
BA(ω) = π

∑
αα′

〈α|B|α′〉〈α′|A|α〉(nα − nα′)δ(h̄ω − (Eα′ − Eα)) (2.29)

and the reactive part of susceptibility is

χ′
BA(ω) =

Eα 	=Eα′∑
αα′

〈α|B|α′〉〈α′|A|α〉
Eα′ − Eα − h̄ω

(nα − nα′) + χ′
BA(el)δω0 (2.30)

where

δω0 ≡ lim
ε→0+

iε

ω + iε
=

{
1 if ω = 0

0 if ω �= 0
(2.31)

and the elastic term χ′
BA(el), which only contributes in the static limit ω = 0, is

χ′
BA(el) = β{

Eα=Eα′∑
αα′

〈α|B|α′〉〈α′|A|α〉nα − 〈B〉〈A〉}. (2.32)

The absorptive part χ′′
BA(ω) is a sum of δ-functions, whose argument is zero only

when h̄ω is equal to the excitation energies Eα′ − Eα. In such system no spontaneous
transitions occur. In real macroscopic system the distribution of states is continuous
and only the ground state may be considered as a well-defined discrete state. At non-
zero temperature the parameters of the system are subject to fluctuations in space and
time. The introduction of a non-zero probability for a spontaneous transition between
the levels α and α′ can be included in a phenomenological way by replacing the energy
difference Eα′ − Eα by (Eα′ − Eα)− iΓα′α. When |Eα′ − Eα| 	 Γα′α the δ-function is
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effectively replaced by a Lorentzian:

χ′′
BA(ω) 


∑
αα′

〈α|B|α′〉〈α′|A|α〉
(Eα′ − Eα − h̄ω)2 + Γ2

α′α
Γα′α(nα − nα′)

+
h̄ωΓ0

(h̄ω)2 + Γ2
0

χ′
BA(el)

(2.33)

with a linewidth, or more precisely FWHM (full width at half maximum), of 2Γα′α. The
corresponding reactive part of the susceptibility is

χ′
BA(ω) 


∑
αα′

〈α|B|α′〉〈α′|A|α〉
(Eα′ − Eα − h̄ω)2 + Γ2

α′α
(Eα′ − Eα − h̄ω)(nα − nα′)

+
Γ2
0

(h̄ω)2 + Γ2
0

χ′
BA(el)

(2.34)

The absorption observed in the resonance experiment is proportional to χ′′
AA(ω). The

peak in the absorption spectrum is interpreted as an elementary or quasi-particle
excitation, or as a normal mode of the dynamic variable A, with a lifetime τ 
 h̄/Γα′α.

LiHoF4 eigenvalues Eα and eigenstates |α〉 in thermal equilibrium are calculated in a
mean-field approximation, as explained in the previous section.

In a standard electron spin resonance (ESR) experiment the excitation oscillating field
of the fixed frequency ω is perpendicular to the external magnetic field. We orientate
the sample so that the external magnetic field is along the x-axis and oscillating field
along the y-axis, so the Zeeman term is H1 = −gLμBJyHy(t), which means that A =

gLμBJy, where Jy is a quantum operator for the angular momentum of the electron,
gL = 1.25, and μB is a Bohr magneton. Since the experimental setup is measuring the
sample’s response or change of magnetization along the y-axis, B = A = gLμBJy.

This would be the case for a typical electron spin resonance experiment, but as we
have seen in previous chapter, we are probing the entangled nuclear-electron states,
so our excitation and response are coupled to the nuclear and electronic moments.
Thus, H1 = −(gLμBJy + gNμNIy)Hy(t), and B = A = gLμBJy + gNμNIy, where Iy is
the quantum operator for angular momentum of the nuclei, gN = 4.173 is the nuclear
magnetic moment of Ho3+ in units of μN and μN is the nuclear magneton.

For transitions between hyperfine levels, which are eigenstates of Iz in zero field, so
predominantly nuclear-spin levels,

Since the transitions are induced between hyperfine levels, which are eigenstates of Iz
in zero field, we would expect that the intensity of the response to the oscillating field

24



2.3. Linear response theory

Magnetic field (T)

Fr
eq

ue
nc

y 
(G

H
z)

χ’’

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

0.001 0.1 10

Figure 2.11: Calculated absorption χ′′ as a function of the transverse magnetic field at
0.3 K.

is dominantly from the nuclear operator. We were surprised to find out that the elec-
tronic operator is dominating in the magnetic-resonance experiment. By calculating
separately the contribution from the electrons and the nuclei we have found that con-
tribution from the electrons is approximately 500 times larger than the contribution
from the nuclei. We conclude that this is a hybrid magnetic resonance experiment,
where levels are predominantly nuclear-spin levels as in nuclear magnetic resonance
(NMR), while the signal is coming from electrons as in electron spin resonance (ESR)
experiment.

Our calculation of the absorptive part

χ′′
(Jy+Iy)(Jy+Iy)

(ω) =
∑
αα′

〈α|(gLμBJy + gNμN Iy)|α′〉〈α′|(gLμBJy + gNμN Iy)|α〉
(Eα′ − Eα − h̄ω)2 + Γ2

α′α
Γα′α(nα − nα′)

+
h̄ωΓ0

(h̄ω)2 + Γ2
0

χ′
BA(el)

(2.35)

for LiHoF4 has been shown in Fig. 2.11.

The maximum absorption appears exactly at the excitation frequencies which are
equal to the difference between the two energy levels. If we track the field-dependence
of the absorption at a fixed frequency, for example at 3.9 GHz, there is a maximum
at 3 T. The only free parameter in our calculations is the lifetime or the width of the
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Lorentzians in the absorption spectrum Γα′α. If the width is infinitesimally small, there
would be 7 separated absorption peaks. Since in our experiment at 3.9 GHz absorption
appears as one broad peak at 3 T, the width in the simulation shown in Fig. 2.11 was set
to Γα′α = 0.1 μeV (lifetime τ 
 40 ns) to reflect that. It is not correct to assume that the
lifetime of the states does not change with temperature or field, especially between the
ferromagnetic and paramagnetic phase, but we shall discuss this in detail later when
analysing the experimental results.

2.4 Entanglement

2.4.1 Quantum information meets condensed matter

The phenomenon of entanglement is probably the most fundamental characteristics
which distinguishes the quantum from the classic world. Entanglement was one
of the first studied and discussed aspects of quantum physics (e.g., EPR paradox
[38]), and there are many ways of defining it. In the last 30 years, the interest in
quantum entanglement has risen sharply in various formerly disconnected scientific
communities, bringing them together in unexpected ways.

In the early 1980s the entanglement between particles inside and outside of a black
hole was suggested the basis for the properties of the Hawking’s radiation. The idea is
that an observer outside of the black hole will perceive an effective mixed quantum
state if there is entanglement with the other subsystem inside the black hole. The
entanglement entropy between pure quantum subsystems is corresponding to the von
Neumann entropy associated with the reduced density matrix.

In the 1990s, with the rise of quantum information science, it was important to find
a quantitative measure of entanglement. One of the most important results in quan-
tum information science is that entanglement entropy is a candidate for measuring
entanglement between two subsystems.

In recent years there has been a cultural interchange between quantum information
science and condensed-matter physics. Traditionally, the characterisation of many-
body systems has been carried on through the study of different physical quantities,
such as magnetization and susceptibility in magnetic systems, and their correlations.
Very little attention was paid to the structure of their quantum state and in particular
to their amount of entanglement. Methods developed in quantum information have
proven to be extremely useful in the analysis of the state of many-body systems.

This new interdisciplinary field could improve our understanding of strongly corre-
lated systems, and also help control and manipulate quantum correlations to our
convenience, with the hope of making an impact on the quantum computation.
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2.4. Entanglement

2.4.2 Entanglement as a tool to characterise quantum phase transition

Among the most challenging and interesting problems in quantum dynamics involve
understanding the behaviour of strongly-coupled many-body systems with many de-
grees of freedom that undergo quantum phase transition. Classical phase transitions
occur when a physical system reaches a state below a critical temperature character-
ized by a microscopic order. Quantum phase transitions (QPT) occur at an absolute
zero temperature, and they are induced by the change of an external parameter or
coupling constant, and are driven by quantum fluctuations [39, 40]. Both classical
and quantum second order phase transitions are governed by a diverging correlation
length, although quantum systems possess additional correlations that do not have
a classical counterpart. This phenomenon is known as entanglement. The role of
entanglement at a phase transition is not captured by statistical mechanics.

At the moment the most common technique to study entanglement in critical quan-
tum systems is the renormalization group (RG), which is the standard way to obtain
information about systems at and near criticality. The development of the renormal-
ization group has shown that phase transitions are universal in the sense that many
properties of a system do not depend on the details of a system. Instead, using the
RG techniques, it has been shown that the critical behaviour depends only on certain
global properties, such as symmetry and dimension.

Recently it became apparent that there was a rich structure to be uncovered by in-
troducing the concept of entanglement entropy in context of many-body physics, in
particular in the vicinity of the transition point [12]. Osborne et al. [11] argued that
the physical origin of the long-range correlations which occur in systems exhibiting a
quantum phase transition is quantum entanglement. It was also argued that a system
state is strongly entangled at the critical point. A ground-state wavefunction undergoes
qualitative changes at a quantum phase transition, which is why it is important to
understand how its quantum aspects evolve throughout the transition. The analysis of
entanglement for a condensed-matter system close to a quantum critical point allows
us to characterize both quantitatively and qualitatively the change in the wavefunction
of the ground state on passing the transition.

The entanglement entropy is a good candidate to characterize quantum states near
a critical point because of its simple definition. We only have to divide a system
into subsystems and calculate the entanglement entropy. The entanglement entropy
extracts fundamental properties of a critical behaviour in a cleaner way than most
standard quantities and measures quantum correlations in a more universal and
flexible way than the correlation functions themselves.

The association between entanglement and phase transitions has been studied in dif-
ferent systems [12, 11]. The ground-state entanglement in the infinite one-dimensional
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Heisenberg chain was studied by Wootters [41]. Numerical calculations of entangle-
ment in the Heisenberg model on a small number of sites were carried out by Arnesen
et al. [42]. Arnesen et al. identified parameter regions where there is appreciable
thermal entanglement, which is entanglement present at nonzero temperatures. Re-
cent studies include the numerical calculation of entanglement in the transverse Ising
model on small numbers of sites [43], and the analytic computations of entanglement
in the XY model on two sites [44] and three sites [45]. However, the precise nature of the
relationship between entanglement and phase transitions is not yet fully understood.

2.4.3 Entanglement entropy

Entanglement entropy is a measure of entanglement between two regions of a system
and is given by the von Neumann entropy associated with the reduced density matrix.

Consider two noninteracting regions of the systems A and B, with respective Hilbert
spaces HA and HB . The Hilbert space of the composite system is the tensor product
HA ⊗HB . If the first system is in state |ψ〉A and the second system in state |ψ〉B , the
state of the composite system is |ψ〉A ⊗ |ψ〉B . If the state of the composite system can
be represented in this form, it is called a separable state or product state. If the systems
A and B are entangled, the composed state may not be represented in a separable
form as a product state.

Since only the product states lead to pure reduced density matrices, a measure for their
mixedness is a step toward quantifying entanglement. One of the most useful mathe-
matical tools in understanding how to quantify entanglement is that of the Schmidt
decomposition, which is based on the property of singular value decomposition for
matrices.

In general, any composite state |Ψ〉 in HA ⊗HB can be represented as

|Ψ〉 =
∑
j

cj |ψj〉A ⊗ |ψj〉B, (2.36)

where |ψ〉A and |ψ〉B are orthonormal vectors in HA and HB , respectively, which is es-
sentially a restatement of the singular value decomposition. According to the Schmidt
theorem, the scalars cj are real, non-negative, and, as a set, uniquely determined by
|Ψ〉. They are called Schmidt coefficients.

If |Ψ〉 can be expressed as a product |ψ〉A ⊗ |ψ〉B then it is called a separable state.
Otherwise, |Ψ〉 is said to be an entangled state. From the Schmidt decomposition, we
can see that |Ψ〉 is entangled if and only if |Ψ〉 has Schmidt rank strictly greater than
1. The number of Schmidt coefficients of |Ψ〉, counted with multiplicity, is called its

28



2.4. Entanglement

Schmidt rank. Therefore, the two subsystems that partition the pure state are entangled
if and only if their reduced states are mixed states.

The measure of entanglement between A and B in |Ψ〉 is then determined by the cj
values and the von Neumann entropy is defined as

S ≡ −
∑
j

|cj |2 ln |cj |2. (2.37)

If c1 = 1 and all ci 	=1 = 0, entropy is zero, which means that |Ψ〉 is a product state and is
unentangled (although there may still be correlations). If, on the other hand, all cj are
equal, then the entanglement entropy takes its maximal value, given by the logarithm
of the smaller of the dimensions of HA and HB . For example, if each subspace is a
tensor of a spin-12 (2-dimensional) then the maximal entanglement entropy is ln 2.

2.4.4 Nuclear-electronic hybrid

The association between the entanglement and the phase transitions has been studied
in different systems [12, 11, 41, 42, 43, 44, 45], but the precise nature of this relationship
is not yet fully understood. We try to detect the presence of quantum phase transition
by analysing a ground-state wavefunction of nuclear-electronic ferromagnet LiHoF4

from a perspective of the quantum entanglement between the electronic and the
nuclear subsystem.

LiHoF4 undergoes a second-order quantum phase transition at a critical transverse
field around HC = 5 T. The magnetization along the c-axis vanishes above HC . On the
contrary the magnetization along a-direction is different from zero at any transverse
field larger than 0 T due to the transverse field along a-axis.

The LiHoF4 single-ion Hilbert spaces is constructed as a tensor product of the elec-
tronic and the nuclear Hilbert spaces, He⊗Hn. The total electronic angular momentum
J = 8 creates a (2J+1)=17-dimensional Hilbert space He, while the nuclear spin I = 7/2
forms a 8-dimensional Hilbert space. The total nuclear-electronic Hilbert space is 136-
dimensional. To calculate the entanglement entropy the system needs to be divided
into two partitions. The most natural way to do that is to calculate the entanglement
between the nuclear and the electronic subsystem.

We analysed the entanglement between the nuclear and the electronic part of the
ground state wavefunction as a function of a transverse field along the crystallographic
a-axis and temperature (Fig. 2.12). In case the ground state is double degenerated,
which is the case in the paramagnetic phase at zero field, we analysed one of the two
degenerated ground states.
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Figure 2.12: a) The entanglement entropy as a function of transverse field, calculated
at different temperatures. b) The same calculation shown as 3D shaded surface plot.

The entanglement entropy in the ferromagnetic phase varies from zero at zero field
to maximum at the quantum phase transition HC , and then again descends toward
zero at high fields. There is a characteristic sharp peak at critical field. In the limit
B = 0 T, the entanglement entropy in the ordered phase approaches zero due to a
large dipolar mean field along the c-axis which is reinforcing the anisotropy along
c-axis, so the ground state is similar to the product state. On the other hand, the
transverse field along the a-axis is mixing higher excited states into the ground state,
consequently enhancing mixedness between the nuclear and the electronic subsystem.
The entanglement entropy, as a measure of this mixedness, peaks at HC . At the large
transverse field H > HC , a dipolar mean field along the c-axis is zero, the electronic
and the nuclear moments polarize in a direction of the transverse field, so ground state
gravitates toward the product state, resulting in the entanglement entropy approaching
zero.

Calculation shows that the entanglement between the nuclear and the electronic
subsystem is maximal at the critical field HC , which supports the experimental data
from Ronnow et al. [17] where they show that the soft mode is gapped near the phase
transition due to strong nuclear-electronic coupling.

It is unexpected that maximum in the entanglement entropy is increasing with the
temperature. The entanglement entropy is not measuring the entanglement content
of the ground state, but rather it is measuring the degree of mixing of the ground
state. The increase of temperature is decreasing the dipolar mean field along the c-axis,
so there is more mixing between the nuclear and the electronic subsystem at higher
temperature.

The unexpected feature is the appreciable entanglement in the system for temperatures
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above the critical temperature 1.8 K, where the quantum system is expected to behave
classically. The presence of the entanglement in the system at temperatures above the
energy gap indicates that quantum effects persist past the point where they are usually
expected to disappear.

In the paramagnetic phase the entanglement entropy is temperature independent
because the temperature only enters the Hamiltonian through mean-field (〈J〉), which
is zero above TC .

One would expect a maximum entanglement entropy to appear at 0 T in the paramag-
netic phase. The reason for small entanglement at 0 T in the paramagnetic phase is
the Ising-like degenerate ground state of LiHoF4. We calculate entanglement entropy
for only one of these two degenerated states as a function of transverse field. At zero
field ground state is degenerate, and each of the two states is an unentangled state, but
small transverse field is enough to break the degeneracy and mix two ground states,
resulting in maximally entangled state.

Above HC , the system is in a paramagnetic state in a strong transverse field and tem-
perature does not make a difference on the ground state entanglement entropy.

The calculated entanglement entropy in the absence of interactions decreases smoothly
as a function of transverse field. This result is in agreement with those previously re-
ported by Schechter and Stamp et al. [21]. However, turning on dipolar coupling in the
model produces a cusp-like peak at the QPT, which reflects the enhanced mixing upon
approaching the QPT.

Theoretically the maximal entropy is equal to the dimension of the subsystem with
lower dimension. In our case it is a nuclear subsystem which is 8-dimensional, so the
maximal entropy should be ln 8. However, maximum of the calculated entanglement
entropy in LiHoF4 appears to be ln 2. The reason for this might be that the LiHoF4

ground state can be treated as an effective transverse field Ising model which is 2-
dimensional electronic spin subsystem.

The analysis of the entanglement for a condensed-matter system close to a quantum
critical point allows us to characterize both quantitatively and qualitatively the change
in the wavefunction of the ground state on passing the phase transition. We see that
the entanglement between the electronic and the nuclear subsystem is an indicator
of the quantum phase transition. A sharp peak of the electron-nuclear entanglement
entropy and transition in the structure of the entanglement takes place exactly at the
critical point.

Since the total wavefunction is approximated to a product of mean-field wavefunctions
of the nuclear-electronic states the correlations between the electronic moments are
neglected (Fig. 1.1c). On the other hand, an isolated nuclear-electronic state would
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not track the QPT which results from the underlying transverse-field Ising model as a
solely many-body phenomenon. This suggests that the entanglement present in the
transverse-field Ising model leaves a signature on the nuclear-electronic states through
hybridization. By attaching a nuclear spin to each electronic moment, a two-body
pure-state wavefunction could suffice to trace the entanglement that dictates the QPT.

Whilst current theory of entanglement entropy has largely focused on pure states of
spin-1/2 one-dimensional systems or mixed states of two qubits [12, 46], the field is
still developing. Strong hyperfine interaction has been previously suggested to limit
our ability to observe intrinsic electronic criticality by the introduction of nuclear spin
bath [17]. Our new results suggest that we may actually take advantage of the nuclear
spins entangled with the electronic moments to monitor the underlying criticality.
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3 Experimental techniques and
setup

3.1 Continuous-wave magnetic resonance

3.1.1 Principle of operation

The energy differences between states can be measured and with knowledge of these
energy differences, we gain insight into the magnetic interactions of the sample under
study. We can measure these energy differences, ΔE, because of an important rela-
tionship between ΔE and the absorption of electromagnetic radiation. According to
Planck’s law, electromagnetic radiation will be absorbed if:

ΔE = hf = h̄ω (3.1)

where h is Planck’s constant, h̄ = h
2π , f is the frequency and ω is the angular frequency

of the radiation.

Figure 3.1: a) Transition associated with the absorption of electromagnetic energy. b)
An absorption spectrum. After Ref. [47].
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Figure 3.2: a) Lowest lying hyperfine states calculated in the mean-field model. b)
Difference of energy between subsequent lowest lying hyperfine levels.

The absorption of energy causes a transition from a lower energy state to a higher
energy state (see Fig. 3.1A). In conventional spectroscopy, frequency is varied or swept
and the frequencies at which absorption occurs corresponds to the energy difference
between the states. This record is called a spectrum. The frequencies vary from
radio waves in the megahertz range, typical for nuclear magnetic resonance (NMR), to
microwaves in the gigahertz range, typical for electron spin resonance (ESR), to visible
and ultraviolet light. Since the hyperfine coupling is particularly strong in our sample,
the splitting between nuclear-electronic levels becomes ∼4.5 GHz whereas in most
other systems it is in MHz range. Splitting between the levels change with transverse
magnetic field produced by superconducting magnet in the laboratory.

Typically, without a magnetic field, nuclear states are degenerate, so there is no energy
difference to measure in the zero field, but in LiHoF4 there is a strong internal magnetic
field from ferromagnetic ordering at low temperature, of strength A〈J〉, which gives
rise to a large hyperfine energy of 4.5 GHz. Since a transverse magnetic field reduces
the order parameter 〈J〉, it also reduces the energy difference between hyperfine states.

As we can change the energy differences between the two states by varying the mag-
netic field strength, we thus have an alternative way to obtain a spectra. Instead of
applying a constant magnetic field and scanning the frequency of the electromagnetic
radiation, we keep the electromagnetic radiation frequency constant and scan the
magnetic field. A peak in the absorption of electromagnetic radiation will occur when
the magnetic field tunes the nuclear-electronic states so that the energy difference
between subsequent states matches the energy of the radiation (Fig. 3.2a). This field is
called the resonant field.

In LiHoF4, there are 8 hyperfine states so there are 7 transitions between subsequent
energy levels (Fig. 3.2b). Each of these transitions can be tuned to the energy of
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3.1. Continuous-wave magnetic resonance

radiation so one would expect to measure 7 peaks, unless the peaks are so close to
each other and so broad that they appear as one peak.

3.1.2 Detection of the signal

In a continuous wave (CW) magnetic resonance the signal is produced by a precessing
magnetization in the sample. The precessing magnetization occurs in the presence of,
and in response to, a weak oscillating transverse magnetic field B(t). The precessing
magnetization will induce a voltage in a resonator placed around the sample and the
spectrometer on the reception side should detect this voltage signal.

The spectral feature of a CW signal can be calculated. A voltage is induced in the
resonator by the precessing magnetization, the relation between the two being deter-
mined by various geometrical factors concerning the size of the specimen and the
disposition of the resonator. The precessing magnetization results from the oscillating
transverse magnetic field and the ratio of the two is the susceptibility of the sample. If
we know the excitation magnetic field and if we can measure the signal voltage, we can
calculate the susceptibility of the sample.

Magnetic susceptibility is defined as the ratio of magnetization to the applied magnetic
field, but it is also the factor by which the inductance of a resonator is enhanced. An
inductor of inductance L0, when embedded in a medium of susceptibility χ, has its
inductance changed to

L = L0(1 + χ). (3.2)

The factor (1 + χ) is usually referred to as the relative permeability of the medium. In a
practical arrangement the resonator is not embedded in the sample; but the sample is
placed near the resonator. Thus, not all the magnetic field of the resonator permeates
the medium; some is in the surrounding space. The enhancement of inductance is
then not complete and we should write

L = L0(1 + ηχ), (3.3)

where the dimensionless quantity η, i.e. the filling factor quantifies this effect. Similarly,
a small sample would have a reduced filling factor. We have seen in the chapter 2.3
how the magnetic susceptibility embodies a full description of the linear response
of a system. Now we see that the susceptibility is reflected in the inductance of a
resonator. The frequency dependent susceptibility χ(ω) is a complex quantity. This
has important consequences for the observed inductance L of the resonator, which are
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best considered in terms of the complex impedance of the resonator

Z = −iωL+ r, (3.4)

where r is the resistance associated with the resonator. With a specimen coupled to
the resonator this becomes

Z = −iωL0(1 + ηχ) + r, (3.5)

and writing χ in terms of its real and imaginary parts

χ = χ′ + χ′′ (3.6)

we obtain

Z = −iωL0(1 + ηχ′) + ωL0ηχ
′′ + r. (3.7)

The imaginary part of the susceptibility has introduced a real term in the impedance.
Putting a sample near the resonator causes it to appear as a changed inductance in
series with an increased resistance.

There is a direct electrical way in which the CW magnetic resonance may be detected. It
proves convenient to quantify the loss in the resonator, instead of using the resistance
r, in terms of the dimensionless parameter, the Q factor. Q-factor describes how under-
damped a resonator is, and characterizes a resonator’s bandwidth relative to its center
frequency. For this circuit, the Q-factor becomes

Q = ωL/r, (3.8)

i.e. it is the ratio of the reactive impedance to the resistive impedance. As we have
shown in the chapter 2.3, the imaginary part of the susceptibility changes when ΔE =

hf , so we see that the magnetic resonance phenomena has the effect of changing
the Q factor of the resonator near the sample. If Q0 is the natural Q of the resonator,
corresponding to an equivalent series resistance r of

r = ωL0/Q0, (3.9)
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then, since the effect of the sample is to add a further resistance Δr

Δr = ωL0ηχ
′′, (3.10)

we see that the inverse Q is increased by

1

Q
=

1

Q0
+ ηχ′′

Δ
1

Q
= ηχ′′.

(3.11)

Thus we see how measurement of the resonator’s Q factor may be used to detect the
magnetic resonance absorption as the imaginary part of the susceptibility.

3.1.3 Saturation

The size of the absorption signal voltage is proportional to the applied oscillating
voltage amplitude V0. This follows from the linearity assumption that the precessing
magnetization which induces the signal voltage is proportional to the oscillating trans-
verse magnetic field B1, generated by the current in the resonator. This is the case only
if the oscillating transverse magnetic field is small enough that it does not significantly
perturb the population of states in the thermodynamical equilibrium.

If we treat the response of the CW magnetic resonance within the framework of the
Bloch equations (details can be found in Ref. [49]) we shall get real and imaginary parts
of susceptibility in terms of the spin-lattice and the spin-spin relaxation times, T1 and
T2

χ′(ω) =
χ0ω0T

2
2 (ω − ω0)

1 + (ω − ω0)2T 2
2 + γ2B2

1T1T2

χ′′(ω) =
χ0ω0T2

1 + (ω − ω0)2T 2
2 + γ2B2

1T1T2
(3.12)

where ω is the frequency of the excitation, ω0 is resonant frequency of the system and
γ is a gyromagnetic ratio. Bloch equations 3.12 enable us to evaluate the respective
contributions of real and imaginary parts of the frequency-dependent susceptibility.
χ′ and χ′′ give the dispersion and the absorption curves, respectively (Fig. 3.3).

The real part of the dynamic susceptibility χ′ is in phase with the oscillating external
field. It does not affect the microwave power absorption in the sample but merely
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Figure 3.3: Real and imaginary part of susceptibility of the complex susceptibility
χ = χ′ + iχ′′ as a function of the frequency, for a generalized Lorentzian line shape
(arbitrary scale). After Ref. [48].

describes a reactive effect, resulting in a shift in the resonance frequency [48]. To the
first order in χ′ the resonance frequency f0 is proportional to dispersive part of the
sample susceptibility [50]:

ω ≈ 1√
L0(1 + ηχ′)

≈ ω0

(
1− ηχ′

2

)
. (3.13)

The imaginary component χ′′ of the dynamic susceptibility is in antiphase with the
high-frequency field and has a resonant character. It determines the absorption of mi-
crowave power by the sample. Thus, the frequency dependent function χ′′(ω) reflects
the line shape of the absorption, observed experimentally with the spectrometer.

Equations 3.12 indicate that non-linear behaviour is possible at high fields B1 since
the magnitude of the susceptibility depends on the strength of the applied field B1.
Only in the limit

γ2B2
1T1T2 � 1 (3.14)

the observed susceptibility is linear or independent of the strength of the excitation.
It is only in this limiting case that the frequency response takes on the characteristic
Lorentzian form.
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3.2. Dilution refrigerator

Figure 3.4: a) Scheme of the 4He or 1K pot. b) Vapour pressure of 3He and 4He as a
function on temperature. After Ref. [51].

For a physical understanding of the linearity condition let us consider the energies
involved. The quantity B1 determines the flow of energy from the oscillating magnetic
field into the spin system. The rate of flow of energy out of the spin system is deter-
mined by the spin-lattice relaxation. In the steady state the flow in is balanced by the
flow out. What is important from the linearity point of view is that in this steady state
the spin system should not be disturbed significantly from its equilibrium state - in
particular, that the Boltzmann distribution of population of the spin states should
not be appreciably disturbed. This requirement is contained in Eq. 3.12. We see that
the effect of a large B1 is to equalise the populations of states. This phenomenon is
known as saturation. To maintain the linearity of the response it is necessary to avoid
saturation.

3.2 Dilution refrigerator

Interesting physics in LiHoF4 appears at low temperatures, below 0.3 K, where hyper-
fine interactions change the phase diagram. To be able to reach such low temperatures
we have to use a dilution refrigerator. The dilution refrigerator is immersed into a liquid
helium 4He bath of re-condensing cryostat which provides a stable cold environment,
at 4.2 K, for the dilution refrigerator and at the same time cools superconducting wires
of the magnet which provides magnetic field up to 18 T.

A 4He pot pre-cools a 3He - 4He mixture to 1.2 K. In a small pot called 1K pot, 4He
is continuously fed through a small pipe which is pumping out 4He from the liquid
helium bath (Fig. 3.4a). At the same time 4He is continuously pumped out of the 1K
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Figure 3.5: a) Phase diagram of the 3He - 4He mixture. b) Phase separation of pure 3He
and diluted 4He phase in the 3He - 4He mixture. After Ref. [51].

pot by the 1K pot pump to achieve a constant pressure of approximately 0.1 mbar. At
that pressure 4He can be easily cooled down to 1.2 K (Fig. 3.4b). Cooling is achieved
due to the latent heat of the evaporated liquid 4He.

3He is lighter than 4He and it can be cooled down to 0.3 K by pumping on it, while
4He can be cooled down to 1.2 K. 4He has 4 nucleons and a nuclear spin of I = 0. It
obeys Boson statistics and undergoes a transition to a superfluid at 2.17 K. 3He has 3
nucleons, and a nuclear spin of I = 1

2 . It obeys Fermi statistics and the Pauli exclusion
principle, which prevents it from undergoing a superfluid transition until a much
lower temperature at which spins pair up to make a Boson. 3He can be diluted in 4He
and the superfluid transition temperature of a 3He - 4He mixture depends on the 3He
concentration (Fig. 3.5a). When the 3He - 4He mixture is cooled down it first undergoes
a transition to a superfluid, and then finally below 0.8 K the mixture is separated into
two phases; one with pure 3He and other with some amount of 3He diluted in 4He
(Fig. 3.5b). If the mixture is cooled down even further to 0 K the ratio of 3He to 4He is
further reduced, but finite, with the theoretical minimum at 6.4% of 3He in the diluted
phase at 0 K (Fig. 3.5a).

If we put pure 3He in contact with pure 4He, the single 3He atom is more strongly
bound to pure 4He than to pure 3He. The binding energy of a single 3He atom in 4He
is larger than the binding energy of 3He in 3He, this is why 3He atoms prefer to cross
from a pure 3He phase to a 4He phase. This property is the reason for the solubility
of 3He in 4He at 0 K. But the Fermi energy kBTF of 3He in 4He will increase with the
concentration of 3He in 4He. At a concentration of 6.4% the chemical potential of a
3He atom in the diluted 4He will be equal to its chemical potential in pure 3He. At that
point 3He will stop crossing from pure 3He to the diluted 4He phase. This is why the
solubility of 3He in 4He at 0 K is limited to 6.4%.

Heat is extracted every time a 3He atom crosses from a pure 3He phase to a diluted
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Figure 3.6: a) Scheme of dilution refrigerator. b) The dilution unit with its most impor-
tant parts. After Ref. [51].

4He phase. The associated cooling power is given by the enthalpy difference between
3He in diluted and pure 3He multiplied by the 3He flow rate. The enthalpy of 3He in
4He is higher than the enthalpy in pure 3He, due to the 3He in 4He behaving as a Fermi
gas. This is similar to the enthalpy difference between the 3He gas and 3He liquid that
results in the cooling power in an evaporation refrigerator.

The flow of 3He from pure 3He to diluted 4He is established by constant removing 3He
from the diluted phase. This is done in a distiller (still), which is connected to a mixing
chamber and distils 3He from 4He due to the difference in vapour pressure.

4He is just a static background which is there to enable 3He to transition from its pure
liquid state into a Fermi gas. The dilution process of 3He moving across the phase
boundary is equivalent to an upside-down evaporator. While the lowest achievable
temperate in an evaporator is limited by an exponentially decreasing vapour pressure,
the concentration of 3He in a Fermi gas (diluted 4He) is constant with temperature.

We can now explain the whole circulation of 3He in the dilution refrigerator. 3He is
circulated by a still pump which pushes the pumped 3He from the still to the mixing
chamber (Fig. 3.6a). Before reaching the mixing chamber 3He gas is liquefied and then
precooled. 3He is liquefied when in contact with the 1K pot, which is kept at 1.2 K by the
1K pot pump. Impedance is there to increase the pressure and elevate the liquefying
temperature. Heat exchangers take cooling power from the still which is at 0.7 - 0.8 K
to cool down the liquid 3He on its way to the mixing chamber. Finally, 3He enters the
mixing chamber where it first goes into the pure 3He phase only to be moved across the
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Figure 3.7: Scheme of the fixed-frequency continuous-wave experimental setup.

phase boundary to the diluted 4He phase, which cools the mixing chamber. Osmotic
pressure pulls 3He from the mixing chamber to the still because of the difference
between the concentration of 3He in the still and in the mixing chamber. 3He is then
separated from 4He by the still pump, and then pushed again to the mixing chamber,
so the circle is closed. The dilution unit with all these parts, shown in Fig. 3.6b, is in the
inner vacuum chamber, which is inside the cryostat filled with liquid 4He at 4.2 K. The
1K pot pumps out 4He from the cryostat, with the flow regulated by a needle valve. The
still pump to cycle 3He and the 1K pump to pump on 4He are at room temperature.

3.3 Fixed frequency CW magnetic resonance

We would like to probe the nuclear-electronic states of Ho in LiHoF4, but the NMR
of rare-earths is constrained by technical difficulties, due to the very high frequency
and fast relaxation. For this purpose we have built a continuous-wave microwave
spectrometer that works at dilution temperatures. We shall explain the most important
parts of this spectrometer in this section. A scheme of the setup is shown in Fig. 3.7.

3.3.1 Microwave signal generator

The signal generator, Agilent MXG N5181B, is an electronic device which produces
simple repetitive waveforms, with the most simple one being a sine wave, which is
what we have used in experiments. The maximum power produced by the signal
generator is 16 dBm or 39.8 mW [52], but we typically worked at -16 dBm or 25 μW
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3.3. Fixed frequency CW magnetic resonance

Figure 3.8: Signal generator Agilent MXG N5181B.

Figure 3.9: Circulator connected to the signal generator (right port), resonator (lower
port) and microwave detector (left port).

to minimise the heating. We used an amplitude modulation (AM) of the sine-wave
electromagnetic field. The signal is transmitted from a signal generator to a circulator.

3.3.2 Circulator

The circulator, Wiltron 87A50 (2 GHz to 18 GHz), is a passive non-reciprocal three port
device in which a microwave frequency signal is transmitted to the next port only. A
port is a point where a coaxial cable connects to the circulator. A signal applied to
the port 1 (Fig. 3.9) only comes out of the port 2 and a signal applied to the port 2
only comes out of the port 3. In the experimental setup, we connect signal generator
as input to the port 1, this signal is then transmitted to port 2 where we connect a
microwave coplanar resonator. The signal reflected from the resonator is an input for
port 2 which comes out of port 3 where it is measured by a microwave detector and a
lock-in amplifier. The change in the measured reflected signal is usually only a fraction

43



Chapter 3. Experimental techniques and setup

Figure 3.10: a) Schematic drawing of a microwave coplanar resonator loaded with the
sample. b) Electronic spins in the sample in the static external field of the magnet and
the oscillating field of the resonator. [After Ref. [53]]

Figure 3.11: Magnitude of the oscillating magnetic field in vicinity of the resonator at
fundamental frequency of the resonator.

of the original input signal, so we are not able to detect the reflected signal without
separating it from the input signal by the circulator.

3.3.3 Microwave coplanar resonator

The microwave coplanar resonator absorbs most of the incident electromagnetic field
in the standing wave in the active strip of the resonator (Fig. 3.10), but only in vicinity
of a certain frequency of the microwave field. The scheme structure of the resonator
is shown in Fig. 3.10a. Standing electromagnetic waves form in the active strip of the
resonator which amplifies the microwave field. The amplitude of the magnetic field
in vicinity of the resonator was modeled in the COMSOL software package by Zhuo
Quan Im. The result, presented graphically in Fig. 3.11, shows that the microwave field
has its largest amplitude near the active strip, but only if the microwave field is of the
resonant frequency that is specific to the resonator.

44



3.3. Fixed frequency CW magnetic resonance

3.4 3.42 3.44 3.46 3.48 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency [GHz]

S
11

Figure 3.12: Reflection coefficient S11 as a function of frequency.

The resonator absorbs most of the incoming radiation, but only at the resonant fre-
quency, while reflecting all incoming radiation at other frequencies. The resonator has
a low loss at its resonant frequency, resulting in high Q factors. A high Q factor res-
onator amplifies the microwave, field which means there is a larger sensitivity. The Q

factor is determined by the width of the resonance (FWHM) in the frequency spectrum,
which means that a high-Q resonator only excites in a narrow frequency bandwidth.
The benefit of a smaller Q is that we can excite more hyperfine transitions at the same
time. We can measure the resonant frequency of the resonator by measuring the S11

parameter as a function of the frequency. The S-parameters (S11, S21, S12, S22), which
are a typical way of characterizing two-port networks, are defined as the relationship
between the reflected and incident power at each of the network ports (1 and 2). Since
we did a one-port measurement, we measured the S11 parameter, which stands for
the ratio of the reflected power (at port 1) and incident power (at port 1). A typical
frequency scan, where Q 
 250, is shown in Fig. 3.12.

Our microwave resonators (Fig. 3.13) were prepared from Rogers RO4003C laminates
for our experiment by Microsystems Laboratory at EPFL. The resonators consist of a 1.5
mm thick glass-reinforced hydrocarbon and a ceramic dielectric substrate (dielectric
constant εR = 3.38), laminated with a 35 μm electro-deposited copper layer. Two 0.1
mm thin parallel lines/gaps were cut in the copper layer to separate the central and
outer parts of the plate. The central part of the plate is soldered to the inner conductor
of the coaxial cable and the outer part of the plate is soldered to the shield of coaxial
cable. A gap has been made in the central line and the width of this gap determines the
capacitance for matching of the electronic circuits. For our experiment the gap was
fixed to 0.1 mm. The length of the active strip determines the fundamental frequency of
the standing wave, so we tuned all our resonators to the desired frequency by producing
resonators with a different length of the active strip. The fundamental frequency
should not significantly change with cooling the resonator to low temperatures. In our
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Figure 3.13: Microwave resonator a) before and b) after soldering the SMA connector
for coaxial cable. c) Resonator mounted on the sample holder.
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3.3. Fixed frequency CW magnetic resonance

experiments we employed resonators with fundamental frequencies of 1.7, 3.4, 3.9, 4.5
and 5.6 GHz.

A cube-shaped LiHoF4 sample of 2× 2× 2 mm3 is positioned just above the active strip
of the resonator where the electromagnetic field is highest (Fig. 3.10). The sample is
oriented in such a way that the oscillating field from the resonator is along the sample’s
a-axis and the magnetic field from the magnet is along the b-axis (a- and b-axis are
equivalent). A copper cage around the resonator (Fig. 3.13c) holds the resonator and
the sample in a fixed position in respect to each other. The copper cage hangs on a
copper rod, which is screwed into the mixing chamber to ensure best thermal contact
and prevent it from touching the inner vacuum chamber (IVC) can (which is at 4.2 K).
To measure the signal reflected from the resonator, we first need to separate it using
the circulator, then amplify it in a microwave amplifier and finally detect it using a
microwave detector.

3.3.4 Microwave detector

The microwave detector, Agilent 8473B MW, is a Schottky diode detector which con-
verts an input microwave signal to an output DC voltage. Before the detection, the
signal was amplified by the 16 dB gain amplifier (Fig. 3.9). We measured the detector’s
input/output characteristics and fitted it to get the functional dependence of output
voltage on input RF power. The measured reflected signal was then corrected for
amplification and microwave detector non-linearity to estimate the microwave power.
The input voltage was amplitude modulated by the signal generator so that the output
signal from the microwave detector could be measured by the lock-in amplifier Ametek
7270, with the amplitude modulation from signal generator as the reference.

3.3.5 Complete magnetic resonance setup

After describing the setup component by component, we can sum up how the whole
microwave setup works. The microwave signal is first synthesized by the signal genera-
tor. It is an amplitude modulated sine wave with a frequency between 1 and 6 GHz,
depending on the fundamental frequency of the resonator. The microwave signal
then goes through the circulator to the resonator where most of the input power is
absorbed, if the microwave field is tuned to the fundamental frequency of the resonator.
The input power is reflected at every other frequency far away from the fundamental
frequency (Fig. 3.12). When the input power is absorbed, the standing wave is formed
in the active part of the resonator where the microwave field is amplified. The spin
ensemble in the sample is probed by the microwave signal. The sample can absorb
the microwave power if there is an energy difference between the nuclear-electronic
states that corresponds to the excitation frequency of the microwave field. The energy
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Figure 3.14: Rohde & Schwarz ZVL 6 vector network analyzer.

difference of the sample’s nuclear-electronic states can be tuned by magnetic field and
temperature. In our case, the sample is tuned into resonance by applying an external
transverse magnetic field B0. If microwave radiation is absorbed by the sample, it
perturbs the fundamental frequency f0 and Q-factor of the resonator such that it no
longer absorbs the same amount of input power as before. This perturbation can be
measured by the power reflected from the resonator. The reflected signal goes through
the circulator, which separates it from input signal. It is then amplified and converted
to a DC signal by the microwave detector. Finally, the amplitude modulated DC signal
is measured by a lock-in amplifier.

In a typical experiment we keep the frequency fixed at the resonators fundamental
frequency and change the properties of the sample by slowly sweeping the magnetic
field while recording the reflected signal. If the sample is tuned into resonance by the
magnetic field, there is a peak in the reflected signal. The sample is constantly excited
at a fixed frequency and the reflected signal is constantly recorded, while the magnetic
field is slowly swept at 0.04 T/min.

3.4 Sweeping-frequency experimental setup

To test resonators’ frequency characteristics S11 at room temperature and in zero-field,
we used the Rohde & Schwarz ZVL 6 vector network analyzer (VNA) which measures
the S11 reflection parameter in range of frequencies between 0 and 6 GHz with a
maximum of 4000 points in the frequency spectrum per shot (Fig. 3.14). The network
analyzer actually consists of components similar to these we have previously described
in our experimental setup (chapter 3.3), but arranged in a compact package optimised
for the measure of S11. It also comes with a calibration kit, to compensate for various
capacitance and inductance in the electric circuit between the resonator and the
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3.4. Sweeping-frequency experimental setup

Figure 3.15: Scheme of the sweeping-frequency continuous-wave experimental setup.

network analyzer.

We could in principle do the frequency sweeps with our previously described setup, by
changing the frequency in small steps and measuring S11 point-by-point, but we are
limited by our software to recording 1 data-point every 0.1 seconds, while the network
analyzer is manufactured to measure the 4000 points frequency spectrum in a fraction
of a second.

We learned that we can use the network analyzer to measure the frequency spectrum
of S11 while sweeping the field, instead of using a fixed frequency setup. This technique
allowed us to take 3-dimensional data (S11, frequency, magnetic field) in one field scan
(Fig. 3.16). By analyzing every frequency scan at each magnetic field and fitting it to a
Lorentzian we were able to determine the Q factor and the fundamental frequency of
the resonator f0, and track their field dependence. Most of our measurements were
performed by using the sweeping-frequency experimental setup shown in Fig. 3.15.

On the other hand, fixed frequency setup is more versatile and can be used to measure
power dependance. A fixed frequency setup constantly excites the sample at the same
frequency f0, while a vector network analyzer cyclicly changes the frequency around f0.
This makes fixed frequency setup more appropriate for measuring non-linear effects,
which require a long-lasting excitation.

All instruments were controlled by a computer which also acquired the measured data.
We wrote drivers for all mentioned instruments, and integrated their control in our
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Figure 3.16: Reflected signal S11 as a function of the excitation frequency and magnetic
field.

custom made measurements software, written in the Microsoft .NET platform. We also
wrote software modules for the remote control of the dilution refrigerator.

3.5 Thermalization of the experimental setup

To cool down the LiHoF4 sample to sub-Kelvin temperatures, we used an Oxford
Instruments Kelvinox 400 dilution refrigerator (Fig. 3.17). The whole refrigerator was
placed in the Oxford Instruments 18 T superconducting magnet providing top loading
access to a sample in the dilution refrigerator. The dilution refrigerator achieves more
than 400 μW cooling power at 100 mK, which makes it ideal for experiments with high
heat dissipation such as microwave resonator losses. Base temperature is less than
9 mK, with no coaxial cables attached. This refrigerator has a line of sight of 38 mm
diameter (from the top of the refrigerator to the mixing chamber) which allows to
quickly change among different experimental inserts. We used a custom made high-
frequency insert, with up to 4 semi-rigid coaxial cables and 2 Fisher 24-pin connectors.

The high-frequency insert has been wired with a semi-rigid coaxial cable, with a BeCu
inner conductor and a stainless steel shield. It has been specified by manufacturer to
have losses of 1 dB per meter at 5 GHz. The coaxial cable is approximately 2 m long,
it goes all the way from the connector at the top of the refrigerator to the resonator
bellow mixing chamber. By measuring the transmission coefficient S11, we confirmed
the total loss in our coaxial cable to be 2 dB. To compensate for possible losses in the
coaxial cable, the network analyzer was calibrated at the SMA connector where the
resonator was connected.

After installing the high-frequency insert in the dilution refrigerator, the base temper-
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3.5. Thermalization of the experimental setup

Figure 3.17: a) High frequency insert with copper blocks attached. b) Scheme of the
dilution refrigerator. c) Dilution unit with mounted high frequency insert.
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ature increased to 30 mK, and the cooling power at 100 mK dropped to 150 μW. The
main reason for this deterioration of the refrigerator’s performance is the heat coming
from outside through the coaxial cable. To reduce this effect we manufactured blocks,
made in Oxygen-free high thermal conductivity copper, designed to take away the heat
by thermalizing the coaxial cable at every stage of the dilution refrigerator, namely at
the 1 K pot, at the still, at the cold plate and at the mixing chamber (Fig. 3.17). Copper
is a good thermal conductor and these blocks have a large touching surface with the
coaxial cable and with the plate at each stage. By thermalizing the coaxial cable at each
stage, the heat is gradually transferred from the coaxial cable to the different parts of
the dilution refrigerator. Most of the heat is extracted at higher temperature stages
of the dilution refrigerator where more cooling power is available. Since the shield of
the coaxial cable was well thermalized, the biggest source of heating was the inner
conductor. To increase the thermal contact between inner conducer and shield, we
made two loops in the coaxial cable; one loop between the cold plate and the still, and
one loop just above the 1 K pot (as shown in Fig. 3.17). These loops are made so to
squeeze the cable when the dilution refrigerator is cooled down and the stainless steel
shield is contracted. At the very end of the coaxial cable, below the mixing chamber, a
SMA connector was soldered and a microwave resonator was connected.

We made a sample and resonator holder out of copper and connected it with a copper
rod to the bottom of the mixing chamber (Fig. 3.13). The sample holder was designed
to thermalize the sample to the mixing chamber, and at the same time keep it thermally
decoupled from the resonator.

The inner conductor of the coaxial cable is connected to the active strip of the resonator
by a SMA connector. Since the inner conductor of the coaxial cable is at temperature
higher than the mixing chamber, the resonator is also warmer than the mixing chamber.
That is why the sample is thermally coupled to the mixing chamber, but thermally
decoupled from the resonator. The sample is enclosed in Stycast with a thermometer
and four copper wires. Stycast is a nonconductive epoxy resin for cryogenic use, which
ensures the best thermal contact between the sample, the thermometer and the four
copper wires, due to the large contact surface. The copper wires are squeezed close to
the copper sample holder, which is then screwed into the mixing chamber to ensure
good thermal contact between the mixing chamber and the sample. We have tried
to decouple the resonator from the sample, by attaching it to the sample holder with
PTFE pillars. PTFE is not only a poor thermal conductor, but also an electrical insulator,
so that it keeps the resonator electrically decoupled from the copper cage.

The mixing chamber base temperature was 35 mK, while the sample temperature was
135 mK. The temperature was set by the temperature controller Lake Shore 370 with
the heater attached to the mixing chamber. We show in Fig. 3.18 that the temperature
of the mixing chamber was stable during field scans at different temperatures.
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Figure 3.18: a) Sample and b) mixing chamber temperature stability during the field
scan.
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Figure 3.19: Sample temperature stability during field scan in 9T cryostat.

The sample temperature is higher than the mixing chamber temperature. Heating
is coming from various sources, but mainly from the coaxial cable. Another source
of heating is the Joule heating of the resonator from the oscillating microwave field
which is in the vicinity of the sample. The microwave field absorbed by the sample at
resonance also increases the sample temperature.

As a result of the heating, there is a temperature gradient between the sample and
themixing chamber (Fig. 3.18). This difference in temperature gradually disappears
from 35 mK to 500 mK. At all temperatures above 500 mK, the averaged temperature
of the sample is the same as that of the mixing chamber. An apparent cooling of the
sample was observed during each field scan, even though we waited for 2 hours for
temperature stability before each field scan. The apparent lowering of the sample
temperature is likely due to the magnetoresistance of the sample thermometer which
is a RuO2 chip resistor with nominal resistance of 2.2 kΩ at room temperature. We do

53



Chapter 3. Experimental techniques and setup

2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

8

−22 dBm, 0.3 K

−16 dBm, 0.3 K

−10 dBm, 0.3 K 

  −4 dBm, 0.3 K

−16 dBm, 0.4 K

Δ
 (1

/Q
) 
´

10
3

Field [T]
2.5 3 3.5 4 4.5

0.3

0.32

0.34

0.36

0.38

0.4

0.42

Te
m

pe
ra

tu
re

 [K
]

Field [T]

 

 

−22 dBm, 0.3 K
−16 dBm, 0.3 K
−10 dBm, 0.3 K
  −4 dBm, 0.3 K
−16 dBm, 0.4 K

ba

Figure 3.20: a) Absorption signal measured with the vector network analyzer. b) Sample
temperature stability during the experiment at different microwave input power.

not see this effect in the mixing chamber thermometer because it is 40 cm further away
from the magnet, where magnetic field is negligible. Spikes in the sample temperature
at fields between 1.5 T and 2.5 T, present at low temperatures, became weaker or
disappeared at higher temperatures. These spikes have not been observed in the 9 T
magnet (Fig. 3.19), but once we performed the experiment in the 18 T magnet they
were recorded in every experiment. The reason for this could be a flux creep in the
magnet’s superconducting wire. This apparent perturbation of the temperature is not
affecting measurements since the measured spectrum is featureless at these fields and
temperatures. Our results were consistent both in the 9 T and the 18 T magnets, hence
we continued our experiments with the 18 T magnet.

We tested the heating from microwave radiation by increasing the input microwave
power and monitoring the sample and mixing chamber temperatures. When perform-
ing the measurement with the network analyzer with excitation power of -22 dBm
and -16 dBm, there is no heating of the sample, as shown in Fig. 3.20b. If the power
is increased to -10 dB, we begin to see the first signs of heating. -16 dBm, the largest
microwave excitation power at which the effect of heating from microwaves, was neg-
ligible was chosen as our standard excitation power for measurements. Figure 3.20a
shows how heating of the sample influenced the measured absorption signal.

3.6 Interpretation of experimental results

The experiment is performed by cooling the sample to the desired temperature and
then sweeping the transverse magnetic field from 0 to 9 T at 0.04 T/min. When the
difference of energy between subsequent levels is equal to the excitation frequency,
microwave power is absorbed by the sample. We have developed two experimental
setups, one which works at a single fixed frequency and one which constantly sweeps
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Figure 3.21: Reflected signal S11 as a function of field at 0.3 K.

across the frequency range, as discussed in previous sections.

First, we made the experiment with the fixed frequency setup, where the microwave
excitation was supplied by a signal generator and the reflected power was measured
by the microwave detector. The signal generator was supplying microwave power at a
constant frequency equal to the resonant frequency, while the amplitude was modu-
lated by 100% at a frequency of 1.123 MHz. Typical field scan recorded at 3.436 GHz
and 0.15 K is shown in Fig. 3.21.

When the loaded resonator was cooled to sub-Kelvin temperatures, minimum reflected
power was at 3.436 GHz, which we call the resonant frequency of the resonator f0. At
resonant frequency most of the incident power is absorbed and only a small fraction is
reflected back from the resonator. The resonator is most sensitive to perturbation by
spin system at the resonant frequency, so we keep the excitation frequency fixed at f0.
If microwaves are absorbed by the sample, the resonant frequency of the resonator and
spin system is changed (as shown in Fig. 3.22). Not only the resonant frequency f0 shifts,
but also the depth and the width of the resonator’s S11(f) curve (or Q factor) change at
the resonance. Both of these effects result in a larger S11 at the fixed frequency, when
the sample absorbs energy at a certain magnetic field. That is why we observe the
peak in S11 at 3.63 T in Fig. 3.21. The only information that we can extract from this
measurement is the resonant field. At given fixed temperature (0.3 K) and frequency
(3.436 GHz) sample absorbs most power at 3.63 T, which means that the resonance
condition is satisfied at that magnetic field. It is hard to quantify the absorption at
resonant field because we do not know whether f0 or Q is changing, or both. We
would like to compare experimental results with calculations where we calculated the
absorption or the imaginary part of susceptibility (Fig. 3.23). By comparing Fig. 3.21
and Fig. 3.23 we do see a resamblance, but we cannot make quantitative analysis
beyond the observation that the resonant magnetic field is the same in the experiment
and the calculations. This is already a proof that both our experimental setup and
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Figure 3.22: Frequency scans at different fields with the resonator loaded with the
sample.
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Figure 3.23: Calculated absorption χ′′ at different frequencies.
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calculations give meaningful results. It also means that we were able to cool the sample
below 0.15 K while exciting the system with a microwave field.

Instead of using the fixed frequency experimental setup, we could use the network
analyzer to measure S11. We have used the network analyzer at room temperature to
measure the S11(f) of the empty resonator while tuning and matching resonators to
have the desired fundamental frequency f0.

After modifying the data acquisition and the instrument control to work with the
network analyzer, we were able to record the S11 reflection while sweeping frequen-
cies. That allowed us to do fast frequency sweeps continuously in a frequency range
roughly centred at the resonant frequency, while slowly sweeping the magnetic field.
The magnetic field was swept at 0.04 T/min to prevent heating from Eddy currents
caused by changing the magnetic field in the copper sample holder. This resulted
in a measurement where S11(f,Bt, T ) was measured as a function of frequency and
transverse magnetic field, at fixed temperature.

Measurements were carried out at 5 characteristic frequencies: 1.7, 3.4, 3.9, 4.5 and
5.6 GHz, each of them corresponding to a different resonator. We measured at several
different temperatures with every resonator, from base temperature 0.13 K to 3 K. At
each measurement we did the complete field scan from 0 to 9 T.

Now that we can measure full frequency scan at each magnetic field (Fig. 3.22), we
have to relate the measured frequency spectrum with the calculated susceptibility. As
we have shown in the chapter 3.6, the change of 1/Q, where Q is quality factor of the
resonator, is proportional to the imaginary part of the sample susceptibility χ′′

1

Q
=

1

Q0
+ ηχ′′. (3.15)

Change in the real part of the susceptibility χ′ causes a shift in the resonance frequency
f0.

Our objective is to accurately and precisely measure the quality factor Q and the reso-
nant frequency f0 of a microwave resonator, using the complex reflection coefficient
data acquired by the vector network analyzer as a function of frequency. Accurate
Q and f0 measurements are needed for high precision measurements of magnetic
susceptibility via resonator perturbation.

We fit the reflection coefficient S11(f) data to a Lorentzian curve using a nonlinear
least squares fit to determine the resonant frequency f0 and the quality factor Q. The
resonant frequency f0, bandwidth ΔfLorentz, background constant C and maximum
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Figure 3.24: Typical fit of raw data to Lorentzian curve, recorded at 0.32 K with 3.4 GHz
resonator.

magnitude A are used as fitting parameters for the Lorentzian:

S11(f) = C +
2A

π

ΔfLorentz
4(f − f0)2 +Δf2

. (3.16)

Typical such fit to raw data is shown in Fig. 3.24. The Q is then calculated using
the values of f0 and ΔfLorentz from the final fit parameters Q = f0/ΔfLorentz. We
fit the frequency scan at a fixed field, delivering the values of Q and f0 at each field.
This procedure allows the extraction of the full field dependence of both Q and f0.
Background constant C has been fixed to the value found at zero-field, for the entire
field-scan.
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4 Magnetic resonance of entangled
states

4.1 Experimental results

The magnetic resonance experiment was performed by sweeping a transverse magnetic
field from 0 to 9 T around 5 different frequencies between 1.7 and 5.6 GHz to get a
complete picture of the energy landscape (Fig. 4.1). Each frequency was measured
with different microwave resonator. The resonators can be divided in two different
categories; those which satisfy the magnetic resonance condition ΔE = hf and those
resonators whose frequency is either too high or too low to cross the difference between
energy levels. The resonators with fundamental frequency of 3.4 and 3.9 GHz cross
the maximum of absorption, which is shown by dashed blue and red line in Fig. 4.1.
Measurements with 1.7 GHz resonator, shown by dashed orange line, are at a frequency
which is too low to satisfy the magnetic resonance condition, while measurements
at 5.6 GHz are always above the resonance frequency. Resonator with fundamental
frequency at 4.5 GHz is just at the upper edge of the resonance frequency at zero-field.
Each of these measurements was carried out at temperatures ranging from 0.13 to 3 K.

Experiments were carried out by measuring the reflected signal, S11, by the vector
network analyzer. Vector network analyzer was sweeping the frequency in span of 100
MHz, centered roughly at the fundamental frequency of the resonator. Measurements
were performed in a field-scan mode from 0 to 9 T at base temperature. Tempera-
ture is then gradually increased in steps and experiment was repeated at different
temperatures.

The microwave resonator is coupled to the spin ensemble, so when the resonant
frequency of the spin ensemble approaches fundamental frequency of the resonator it
changes f0 and Q of the resonator. An avoided crossing pattern, which is a signature of
the strong coupling between the microwave resonator and the spin ensemble, appears
in frequency-field map (Fig. 4.2) when the transition between the hyperfine energy
levels approaches the fundamental frequency of the resonator. Resonance frequency
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Figure 4.1: Absorption χ′′ at 0.3 K calculated in linear-response theory framework.
Dashed lines show fundamental frequencies of microwave resonators.

f0 shifts when when the sample resonance is close to it. This results primarily from the
dispersive part of the sample susceptibility, which is proportional to the resonance
frequency f0. When the magnetic resonance condition is satisfied, the resonator line is
damped by the coupling to the nuclear-electronic spin ensemble.

4.1.1 Magnetic resonance at 3.4 GHz

The first experiment we did was with the resonator which has a resonant frequency of
3.436 GHz. The amplitude of S11 as a function of frequency and transverse magnetic
field at different temperatures is shown in Fig. 4.2. The loaded resonator is matched
(Q 
 250) and tuned to 3.436 GHz in zero-field at 0.14 K. As the magnetic field is
increased, the resonator is unperturbed at low fields, then strongly perturbed around
3.7 T, and then unperturbed again at higher fields. At 3.7 T there is an avoided crossing
pattern in S11 as a function of field and frequency. This pattern was observed in every
field scan in which the temperature is below the phase transition temperature, 1.5 K.
Above TC the sample is in the paramagnetic phase where the magnetic resonance is
much weaker in strength, therefore the perturbation of the resonator is also very weak,
so there is no avoided crossing pattern.

We could determine the magnetic resonance field just from Fig. 4.2, but to resolve the
magnetic susceptibility we extract the quality factor Q and the resonant frequency f0
of the microwave resonator using complex reflection coefficient data, S11, as a function
of the frequency at each magnetic field. We perform nonlinear least squares fit of
reflection coefficient S11 as a function of frequency (Fig. 4.3) to a Lorentzian curve,
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4.1. Experimental results

Figure 4.2: Frequency-field map of the experimental S11 parameter, which is the ratio
of the reflected to the input power, around the fundamental frequency of a resonator
loaded with the single-crystal sample. The anomaly corresponds to the expected
resonance field for the frequency of 3.436 GHz.
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Figure 4.3: Frequency dependence of S11 at different fields as a signature of resonance.

while keeping the background constant. Frequency sweeps at a couple of characteristic
fields are shown in Fig. 4.3. Resulting fitting parameters f0 and Δf are then used to
calculate the quality factor Q = f0/Δf . Q and f0 are plotted at each field between 0
and 9 T for all measured temperatures in Fig. 4.4. The linewidth at zero-field is Δf =

14 MHz (Q 
 250) which then becomes broader near the resonant field (Q 
 100)
as shown in Fig. 4.3. The resonator line is repelled by 4 MHz on each side from the
unperturbed resonator frequency as shown in Fig. 4.4.

The resonant field can be determined either from a peak position of 1/Q or from f0. The
resonant frequency f0 shows a characteristic first derivative of the absorption spectrum
at the resonant field. Figure 4.4 shows that the absorption peak in 1/Q is shifting to
lower resonant fields with increase of temperature. This trend is expected because
the magnetization, which roughly determines the excitation frequency (ΔEHyp =

A〈J〉), decreases with increase of the temperature or the transverse magnetic field.
The amplitude of the absorption 1/Q peak is getting weaker as the temperature is
increased. This is explained by a smaller absorption of the microwave power at higher
temperature due to a smaller difference in population between the energy levels
(Boltzmann distribution).

The absorption peak in 1/Q is present at all temperatures in the ferromagnetic phase,
up to the phase transition, 1.5 K. The absorption peak position agrees very well with
the calculated resonance fields for 3.436 GHz resonator. The detailed comparison will
be shown later in the thesis.
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Figure 4.4: The quality factor Q and the resonant frequency f0 as a function of the
transverse magnetic field, at different temperatures for the 3.4 GHz resonator.
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The width of the absorption line ΔBResonant is 250 mT and it does not change much
with the temperature. It is a very broad asymmetric absorption line, because it is com-
posed of multiple absorption lines. Since there are 8 non-equidistant hyperfine levels,
there are 7 transition frequencies between them which should result in 7 separated
peaks, but because difference between peaks is within the lifetime of the excitation it
is not possible to resolve the 7 transitions. In the first approximation we can think of
it as the nuclear-spin transitions which conserve the Ho3+ electronic spin, although
we shall later show that this is not exactly the case because the entanglement between
the electronic and nuclear spin states makes it impossible to separate electronic and
nuclear subsystems. This entanglement can be ignored if the spins are highly polarized,
but it has a maximum near the quantum phase transition.

4.1.2 Magnetic resonance at 3.9 GHz

To track the magnetic resonance at the different frequency we made a new resonator
with the fundamental frequency of 3.924 GHz. All measurements carried out with this
resonator are shown in Fig. 4.5. Frequency scans have been done in the range from
3.875 to 3.975 GHz. Again, there is the avoided crossing at the resonant field, but this
time at the lower resonant field 2.9 T, at the base temperature 0.13 K. That is exactly
what our calculations predict, as one can see from Fig. 4.1, the higher the excitation
frequency the lower the resonant field.

The quality factor Q, shown at Fig. 4.6, is extracted from the fitting frequency scans to
the Lorentzian curves, as explained in the chapter 3.6. In the zero field Q 
 210 (Δf =

18 MHz), while at the resonant field it decreases to Q 
 60, at 0.13 K. The absorption
spectrum 1/Q shows a peak at the resonant field. The resonant field is reduced with
an increase of temperature. The resonance peak amplitude is weaker as we increase
the temperature to the phase transition TC and disappears in the paramagnetic phase
above 1.5 K. The width of the absorption line ΔBResonant is 250 mT, at the lowest
temperature 0.13 K and is temperature independent. The resonant frequency f0 as a
function of the field shows characteristic first derivative of absorption spectrum, where
f0 shifts ± 7 MHz away 3.924 GHz.

4.1.3 Off-resonant susceptibility at 1.7 GHz

The magnetic resonance at frequencies below 2 GHz should be very weak or negligible
at temperature of 0.3 K or lower, according to our calculations shown in Fig. 4.1. To
probe the system in the non-resonant region we made a resonator with a fundamental
frequency of 1.681 GHz. Measurements performed at different temperatures show no
sign of avoided crossing characteristic for magnetic resonance, as we have seen in 3.4
and 3.9 GHz resonators. There is a shift in the resonant frequency of the resonator
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Figure 4.5: Frequency-field map of the experimental S11 parameter for the 3.9 GHz
resonator.
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Figure 4.6: The quality factor Q and the resonant frequency f0 as a function of the
transverse magnetic field, at different temperatures for the 3.9 GHz resonator.
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4.1. Experimental results

Figure 4.7: Frequency-field map of the experimental S11 parameter, which is the ratio
of the reflected to the input power, around the fundamental frequency of the 1.7 GHz
resonator loaded with the single-crystal sample.

8.0

8.3

8.6

8.9 0.13 K

1/
Q

×1
03

0 1 2 3 4 5 6 7 8

0.31 K

Field [T]
0 1 2 3 4 5 6 7 8 9

0.60 K

Field [T]

0 1 2 3 4 5 6 7 8 9
8.0

8.3

8.6

8.9 0.85 K

Field [T]

1/
Q

×1
03

1.675

1.680

1.685

f 0 [G
H

z]

1.675

1.680

f 0 [G
H

z]

Figure 4.8: The quality factor Q and the resonant frequency f0 as a function of the
transverse magnetic field, at different temperatures for the 1.7 GHz resonator.
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at the quantum phase transition. Even though there is no resonance at 1.681 GHz,
the resonator is still sensitive to change in susceptibility of the sample. A calculated
real part of susceptibility shows a peak at the quantum phase transition, which is
observed as a dip in the resonant frequency f0 (Fig. 4.7). To quantify this we fit the
frequency scans with the Lorentzian to extract Q and f0, which is shown on Fig. 4.8.
This experimental result is expected since the calculations predicted that there will be
no resonance at this frequency. Our experimental setup can be used in off-resonance
regime to measure the real part of susceptibility and map the phase diagram, which
will be demonstrated in later in the thesis.

4.1.4 Off-resonant susceptibility at 5.6 GHz

To further understand our sample, we built a resonator which measures the response
at energy higher than the absorption spectrum (Fig. 4.1), with a fundamental frequency
of 5.600 GHz. Our calculations predicted no magnetic resonance at 5.6 GHz, except
for weak absorption when the excitation frequency corresponds to transition to next
nearest energy level. This weak absorption appears visible on our colour plot in
Fig. 4.1, but actually the amplitude too small to be detected by our setup. Figure 4.9
shows the spectrum recorded with the network analyzer as a function of the field at
different temperatures. Similar to non-resonant measurements at 1.7 GHz, there is
no avoided crossing at 5.6 GHz. Extracting the Q and f0 by fitting the measured data
we get the results shown in Fig. 4.10. Again, there is no absorption in the ordered
phase, below 1.5 K. But there is a clear dip in the resonant frequency at the critical
field at temperatures below 1.5 K. It is noticeable that there is some absorption in the
paramagnetic phase. We shall discuss this further later in the thesis.

4.1.5 Off-resonant susceptibility at 4.5 GHz

Finally, we wanted to probe LiHoF4 spins at the highest possible resonant energy.
According to our original calculations, the highest frequency at which the system goes
through the resonance was supposed to be around 4.5 GHz, so we made a resonator
with the fundamental frequency of 4.447 GHz. We expected to see the strongest
absorption when we cut parallel to the resonance, but we actually did not see much
of the absorption, especially at the base temperature, 0.13 K. The measured reflected
signal looks very similar to the 5.6 GHz resonator. We concluded that we actually
missed the resonance by setting up the frequency too high, above all resonance energy
levels. This can be explained by adjusting the hyperfine constant, but more on that
later in the thesis.

There is a new feature which appears at 4.5 GHz (Fig. 4.11) at low fields and tempera-
tures below 0.9 K. We extract Q and f0 and plot it as a function of the field at different
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Figure 4.9: Frequency-field map of the experimental S11 parameter for the 5.6 GHz
resonator.
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Figure 4.10: The quality factor Q and the resonant frequency f0 as a function of the
transverse magnetic field, at different temperatures for the 5.6 GHz resonator.
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Figure 4.11: Frequency-field map of the experimental S11 parameter for the 4.5 GHz
resonator.
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Figure 4.12: The quality factor Q and the resonant frequency f0 as a function of the
transverse magnetic field, at different temperatures for the 4.5 GHz resonator.
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temperatures (Fig. 4.11). Oddly, this does not result in a large change of absorption 1/Q

(Fig. 4.12), at least when compared to signal at 3.4 and 3.9 GHz (Fig. 4.13a). Also, the
pattern in the frequency-field map shown in Fig. 4.11 is different from avoided crossing
which appears at 3.4 and 3.9 GHz. From frequency-field map of absorption at 0.3 K in
Fig. 4.1 we see that the field-scan at 4.5 GHz is just above the resonant frequency at low
fields. The small change in 1/Q could therefore be attributed to a small change in the
imaginary part of susceptibility (Fig. 4.1), since the experimental setup is sensitive to
the a change in the absorption.

Since 1/Q shows absorption at low fields in ferromagnetic phase, minimum of resonant
frequency f0 is far enough that it is not affected by the absorption, so we can use f0 to
track the critical field at each temperature.

There is an anomaly at 0.7 and 0.9 K measurement between 6 and 9 T which can also
be seen in raw frequency scans in Fig. 4.12 as a slightly brighter color of the high-field
data. It seems that the data are corrupted so that the background is changed. Possible
reason for this could be vibrations or similar. Since the fitting parameter background
is fixed throughout the whole field scan, a change in the experimental background in
the middle of the field scan would result in change in Q.

4.2 Data analysis and simulations

4.2.1 Hyperfine constant determination

If we compare low temperature (0.3 K) experimental data with calculations we see
that the curve at 4.5 GHz is very different from calculations (Fig. 4.13a and Fig. 4.13b).
There is a strong absorption in calculated data at low fields, which is much weaker in
measured data.

We remember from Fig. 4.1 that the frequency of 4.5 GHz is at the very top of the
predicted absorption spectrum. The energy difference between energy levels is, in
the first approximation, determined by the hyperfine constant and the expectation
value of the electron magnetic moment, ΔEHyp = A〈J〉. Since 〈J〉, in zero field,
is determined by the crystal electric field, we could change the resonant frequency
either by adjusting the crystal field parameters or by adjusting the hyperfine constant.
Crystal field parameters and the hyperfine constant were determined from the same
hyperfine resonance experiment [20]. By measuring the spacing between the hyperfine
resonance lines Magarino et al. observed that the hyperfine constant is A = 3.36 μeV
±2.1%. By decreasing the hyperfine constant in our simulations by only 3% of the
cited value, the resonant frequency became smaller than 4.5 GHz, so that experiment
with 4.5 GHz resonator never satisfies the resonance condition (which we show in
Fig. 4.13c). The change of hyperfine constant did not significantly affect calculations
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Figure 4.13: Comparison between a) measured absorption at 0.3 K, b) calculated
absorption at 0.3 K with A = 3.36 μeV and Γα′α = 0.1 μeV, and c) calculated absorption
at 0.3 K with A = 3.26 μeV and Γα′α = 0.1 μeV.
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at other frequencies because they do not critically depend on it.

This shows that the nuclear-electronic magnetic resonance experiment, where we
probe hyperfine levels directly, is very sensitive to small changes in the hyperfine
constant. Original value of the hyperfine constant A = 3.36 μeV was refined to A =

3.26 μeV. In all calculations shown in this thesis we used the refined A = 3.26 μeV.

The only free parameter in our model was the width of the peak in the absorption
spectrum Γα′α. The width of χ′′(ω) in our simulations in Fig. 4.1 was set to Γα′α =
0.1 μeV (lifetime τ 
 40 ns) to best fit the absorption in the ferromagnetic phase.
If we significantly reduce Γα′α, we would recognise the hyperfine structure with 7
distinct peaks. Comparison between calculations and experiment at 0.3 K is shown in
Fig. 4.13a and Fig. 4.13c. We see that the model reproduces the peaks and features of
the measured absorption up to critical field around 4.5 T. We shall show more detailed
comparison later in the thesis.

4.2.2 Temperature and field dependence

After fixing the hyperfine constant A = 3.26 μeV and the lifetime of states to Γα′α =
0.1 μeV we look into the temperature dependence of the two resonators with the
resonance at 3.4 and 3.9 GHz (Fig. 4.14).

There is no rescaling of experimental or measured data. Lifetime of excitations Γα′α

and the hyperfine constant A were kept fixed. Calculations in Fig. 4.14 are in very good
agreement with measurements. The resonance peak in 1/Q can be reproduced by our
calculations.

To better visualise the absorption at 3.4 and 3.9 GHz, we show the absorption peak
as a point in temperature vs. field diagram on Fig. 4.15. We plot the calculated peak
position on the same figure as a band whose upper boundary corresponds to calcu-
lations with the hyperfine constant A increased by 3% and the lower band boundary
corresponds to A decreased by 3%, relative to the new adjusted value A = 3.26 μeV. To
make a distinction between the magnetic resonance condition and the phase transi-
tion, we also plot the calculated phase boundary (note that mean-field calculations
overestimate TC at 1.8 K).

We can also compare the calculated resonant bands directly with the colormap of
absorption measured as a function of the field and temperature at 3.4 and 3.9 GHz,
shown in Fig. 4.16. We see that the maximum of absorption (dark color) corresponds
to the calculated band in Fig. 4.15.

To show how sensitive the resonant field is to the value of the hyperfine constant A,
we recalculated the resonant field with A varied by ±10% for 3.4 GHz and from -6% to
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Figure 4.14: Temperature evolution of the magnetic resonance spectra from 0.13 K to
2.5 K from experiments (blue) and calculations (red) using excitation frequency of a)
3.4 GHz and b) 3.9 GHz.
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Figure 4.15: The resonance field as a function of temperature for two different fre-
quencies, 3.4 GHz (blue) and 3.9 GHz (red). Symbols denote experimentally obtained
values while the coloured bands are calculations using hyperfine constant in the range
of ± 3% from the value used in calculations A =3.26 μeV. Black line reproduces the
calculated phase boundary.

a
b

Figure 4.16: Colorplot of measured absorption 1/Q as a function of temperature and
field at a) 3.4 and b) 3.9 GHz.
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a b

Figure 4.17: Temperature evolution of the resonant field at 3.4 and 3.9 GHz. a), Dark
blue band shows resonant field as a function of temperature calculated at fixed fre-
quency of 3.4 GHz by using the hyperfine constant, A, in the range of ±3% of the value
used in this paper. Light blue band shows resonant fields for A in the range of ±10%.
b), Dark red band shows resonant field at the fixed frequency of 3.9 GHz based on A in
the range of ±3%. Light red band shows resonant fields where A was varied by -6% and
+10% of the optimal value. There is no resonance at 3.9 GHz if A is decreased by more
than 6% because the resonator frequency is larger than the difference between energy
levels.
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Figure 4.18: Comparing a) measured absorption with b) calculations at all frequencies
at 0.3 K. Absorption was calculated with Γα′α = 1 μeV.

+10% for 3.9 GHz excitation (Fig. 4.17).

4.2.3 Lifetime of the states

It is evident from Fig. 4.14 that calculations do not agree with the experiment above the
critical field and above the critical temperature. There are strong correlations above TC

and HC which are not accounted for in the mean-field calculations. One could make
the calculations which take these correlations into account, but that is out of the scope
of this thesis. If we stay within the mean-field approximation, we can ask how much do
we have to change the lifetime of the nuclear-electronic states to take the correlations
into account.

Let us first consider absorption above HC at low temperatures. In the ferromagnetic
phase the width of excitation was fixed to Γα′α = 0.1 μeV which corresponds to lifetime
of τ 
 40 ns. We recalculated the absorption spectrum for measured frequencies
with 10 times shorter lifetime, τ 
 4 ns, i.e. 10 times larger energy width of nuclear-
electronic states, Γα′α = 1 μeV (shown in Fig. 4.18). Shorter lifetimes reproduces the tail
measured above 4.5 T with 3.4 and 3.9 GHz resonators. Both calculated absorptions,
for 3.4 and 3.9 GHz, increase as a function of field, which is observed in experimental
data. 10 times shorter lifetime of states reproduces the absorption above HC .

Let us now consider the absorption at temperatures above TC . There is a weak absorp-
tion in the paramagnetic phase, at temperatures above 1.5 K, between 1 and 2 T with
all resonators (Fig. 4.19a). Since calculated peaks with width of Γα′α = 0.1 μeV were too
sharp to fit our measurements we increased it by factor of 10 in Fig. 4.19b and by factor
of 100 in Fig. 4.19c and compared calculations with the experiment. Calculations with
Γα′α = 10 μeV i.e. τ 
 0.4 ns (shown in Fig. 4.19c) reproduce the low field (0 to 3 T) part
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Figure 4.19: Comparison between a) measured absorption at 3 K, b) absorption was
calculated at 3 K with Γα′α = 1 μeV and c) absorption was calculated at 3 K with Γα′α =
10 μeV.
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a b

Figure 4.20: Colormap of the resonant frequency at a, 4.5 GHz and a, 5.6 GHz where
white is minimum and black is maximum of the resonant frequency as a function of
the field and temperature.

of the spectrum, at all frequencies, while calculations with Γα′α = 1 μeV i.e. τ 
 4 ns
(shown in Fig. 4.19b) reproduce the high-field tail in absorption measured at 3.4 and
3.9 GHz.

4.2.4 Off-resonant measurements

The resonators with f0 of 1.7, 4.5 and 5.6 GHz show no absorption because they have
the fundamental frequency too large or too low to cross excitations (Fig. 4.1). Even
though there is no absorption, the resonator is sensitive enough to measure a change
in the susceptibility of the sample across the phase transition. The phase diagram can
be mapped by tracing the minimum in resonant frequency of the resonators (Fig. 4.8,
4.10, 4.12). The colormap in the Fig. 4.20 shows the resonant frequency f0 (represented
with green or purple color) as a function of the field at different temperatures, for 4.5
and 5.6 GHz resonators. The field at which f0 is minimal (white color) corresponds to
the critical field HC .

We extract HC as a function of temperature for every measured resonator and plot
it on top of the mean-field phase boundary and the previous measurements of the
phase boundary from literature [16] (Fig. 4.21). There is a very good agreement of
measurements at all frequencies with theory and literature up to TC , 1.5 K. It is a
longstanding problem that mean-field calculations overestimate the TC at low fields in
the phase diagram [22]. It is peculiar that our measurements stop tracing the phase
transition at 1.5 K and 2.5 T, exactly where mean-field calculations fail. Explanation for
this might be in the temperature dependence of the hyperfine energy levels (Fig. 4.22)
which shows that hyperfine levels begin to be appreciably split only below 1.6 K, while
between 1.6 and 1.8 K there are still were close in energy. Since at 1.6 K hyperfine levels

81



Chapter 4. Magnetic resonance of entangled states

0 0.5 1 1.5 2
0

1

2

3

4

5

6

Temperature [K]

M
ag

ne
tic

 fi
el

d 
[T

]
1.6 GHz
4.5 GHz
5.6 GHz
literature
calculation

Figure 4.21: Minimum of the resonant field at measured frequencies compared with
the calculated phase transition and literature measurements data.
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Figure 4.22: Temperature dependence of the lowest 16 energy levels in zero-field.
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4.3. Power dependence of the magnetic resonance
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Figure 4.23: a) Reflected signal S11 as a function of field at 0.3 K. b) Sample temperature
as a function of applied field.

are almost equally populated, that could be the reason for the paramagnetic behaviour.

4.3 Power dependence of the magnetic resonance

In LiHoF4 hyperfine coupling significantly alters the phase boundary at low tem-
peratures below 0.3 K. It would be interesting if we could get insight into the non-
equilibrium phenomena in the vicinity of the quantum phase transition through
control of hyperfine coupling by microwave radiation. One could reduce or completely
eliminate the hyperfine coupling by equally populating hyperfine states. The magnetic
resonance is changing the population of states (between which it operates). If the
excitation field is increased, the population of hyperfine states could be changed from
Boltzmann distribution to equal population of all excited states. If all states are equally
populated there would be no absorption of microwave field by the sample. This can be
experimentally tested by increasing the excitation until the absorption of the sample
stops increasing linearly. To do this kind of a test one should constantly excite the
system at fixed frequency, so we used the fixed frequency experimental setup described
in the chapter 3.3.

We show the results of the S11 reflected power normalised by the input power in
Fig. 4.23. The input power was changed from -26 dBm to -11 dBm in steps of 3 dBm
(3 dBm is equal to a factor of 2 difference in power). The amplitude of the peak at 3.5 T
is a measure of the absorbed power. We see that the peak is not changing significantly
with the increase of the input power, which means that it shows no signs of saturation.
There is a small decrease of the peak intensity accompanied with a small shift of peak
to lower fields. This can simply be due to heating of the sample by increased microwave
radiation as shown in Fig. 4.23b. At higher temperatures, the difference between the
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Figure 4.24: a) Reflected signal S11 as a function of field at 0.15 K. b) Sample tempera-
ture as a function of applied field.

population of energy levels is smaller so the absorption amplitude is smaller. Also,
the effective spin 〈J〉 is smaller so the resonant field is smaller at higher temperatures.
At transverse magnetic fields above 5 T, there are signs of saturation of the signal as
excitation power is increased. To confirm this, we repeated the experiment at 0.15 K
(Fig. 4.24).

The effect of the lower absorption amplitude and the resonant field shift is even more
noticeable at 0.15 K, due to a relatively larger increase of a sample temperature at 0.15 K
than at 0.3 K. The dilution refrigerator has less cooling power at a lower temperature to
compensate for heating from microwave radiation and heat conductivity of copper is
lower to remove the heat from the sample. Since the frequency is not changing - there
is a continuous pumping on the sample spin system. The absorption of the microwave
power is even witnessed in the sample thermometer when temperature peaks at the
resonance position. At 0.15 K there is a large decrease of the reflected signal at high
fields, which cannot be explained just by the temperature, but may be attributed to the
saturation.

There is no saturation at the peak position in the ferromagnetic phase. This is probably
due to the fast relaxation of the system to the thermodynamic equilibrium, compared
to the relatively low power of microwave excitation which populates higher energy
levels. The effect of saturation might have been partially masked by the fact that the
field strength is inhomogeneous across the sample, so while in some parts of the
sample closer to the resonator the saturation might have been achieved, parts of the
sample which are further away from the resonator are in weaker field and are therefore
still not saturated. There are some indications of non-linearity at high fields, but we
would need more experimental data to be sure.

84



4.4. Entanglement entropy

4.4 Entanglement entropy

It has been suggested that the expectation values of thermodynamical observables such
as internal energy or susceptibility can been used as entanglement witnesses [46, 54].
In Fig. 4.25b, we show the field dependance of the real part of the susceptibility, χ′,
which was obtained from the relative frequency shift χ′(f) ∝ −Δf/f [49] off resonance
at 1.7 and 5.6 GHz. The peak at 4.83 T agrees with the experimental critical field value
found by Bitko et al. [16] at 0.15 K, which confirms that the temperature of our sample
was indeed 0.15 K. Comparing the measured and mean-field χ′ to the calculated
entanglement entropy at 0.15 K (Fig. 4.25a), we find they behave remarkably similar
across the QPT.

Since in our calculation the total wavefunction is approximated to a product of mean-
field wavefunctions of the nuclear-electronic states the correlations between the elec-
tronic moments are neglected (Fig. 1.1c). On the other hand, an isolated nuclear-
electronic state would not track the QPT which results from the underlying transverse-
field Ising model as a solely many-body phenomenon. Therefore the extended en-
tanglement present in the transverse-field Ising model may leave a signature on the
nuclear-electronic states through hybridization.

Whilst current theory of entanglement entropy has largely focused on pure states of
spin-1/2 one-dimensional systems or mixed states of two qubits [12, 46], the field is
still developing. Strong hyperfine interaction has been previously suggested to limit
our ability to observe intrinsic electronic criticality by the introduction of nuclear spin
bath [26]. The novelty in our experimental scheme is that having access to nuclear
spin as an observer may open an interesting avenue towards experimental probes of
many body entanglement, and as such is intended as a stimulant for future theoretical
and experimental work.
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Figure 4.25: a) Entanglement entropy calculated for the ground state at 0.15 K, which
is thermally populated between 54% and 74% at 0.15 K, as a function of transverse
magnetic field (solid line). Dashed line is the entanglement entropy calculated without
dipolar interactions in the single-ion limit. b) Relative shift in the resonance frequency,
∝ χ′, experimentally observed at 0.15 K as a function of field using 1.7 GHz (orange) and
5.6 GHz (purple) resonators. Mean-field calculation of the real part of the frequency-
dependent susceptibility at 1.7 GHz and 0.15 K is shown by the blue line.
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5 Conclusions

I calculated nuclear-electronic states and energy levels in LiHoF4 by solving the single-
ion Hamiltonian in the mean-field approximation. Excitations in the magnetic reso-
nance experiment are simulated in the linear response framework based on mean-field
states. Quantum entanglement of the nuclear-electronic states is quantified by entan-
glement entropy.

I developed the low-temperature continuous-wave magnetic resonance setup to probe
the entangled nuclear-electronic states in LiHoF4. The magnetic resonance was mea-
sured from 0.13 to 3 K in transverse magnetic field between 0 and 9 T. The experiment
has been performed at five different frequencies from 1.7 to 5.6 GHz in order to investi-
gate the excitations between hyperfine levels.

Temperature evolution of the absorption spectrum was measured at 3.4 and 3.9 GHz.
To interpret the magnetic resonance absorption I compared the measured spectra to
the calculated imaginary part of susceptibility. The frequency-dependent resonant
fields in experiments showed excellent agreement with those obtained by calculations.
I found that all the salient features of the experimental results are well reproduced by
the model calculations.

Since the setup probes the hyperfine states directly, our measurements are shown to
be very sensitive to the hyperfine coupling constant. This is particulary true when
excitation frequency is 4.5 GHz, because it is right at the edge of hyperfine transition
energies, so we used this measurement to refine the hyperfine constant.

Off-resonant measurements at 1.7, 4.5 and 5.6 GHz allowed us to map the phase dia-
gram by extracting HC as a function of temperature. There is a very good agreement of
measurements at all frequencies both with our calculated mean-field phase boundary
and with previous experiments on LiHoF4.

Having established experimentally that the mean-field wavefunctions are an excellent
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approximation of the actual wavefunction, I used them to calculate the ground-state
entanglement entropy between the electronic and nuclear magnetic moments. The cal-
culated entanglement entropy in the absence of dipole interactions decreases smoothly
as a function of transverse field. However, turning on dipolar coupling in the model
produces a peak at the quantum phase transition, which reflects the enhanced mixing
upon approaching the quantum phase transition.

Finally, I compared the off-resonant measurements at 1.7 and 5.6 GHz with calcu-
lated entanglement entropy. I find that the calculated entanglement entropy shows
a peak at the quantum phase transition. This raises the tantalizing possibility that
electronic entanglement is encoded onto the nuclear-electronic states, which presents
an interesting avenue towards experimental probes of many-body entanglement.
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6 Outlook

Our demonstration of nuclear-electronic magnetic resonance using a simple experi-
mental scheme may find direct applications in other systems containing rare-earth
ions, for instance, in rare-earth doped insulators or spin ice compounds.

LiHoF4 diluted with nonmagnetic Yttrium, LiHoxY1−xF4, evolves from a ferromagnet
(x = 1) to a long range ordered ferromagnetic state with strong history dependent
effects (x = 0.44), to a spin glass (x = 0.1 - 0.3) and to an antiglass phase (x < 0.1) [55, 56].
The positional randomness introduced by the dilution through the dipole coupling
and the transverse field lead to random fields along the Ising direction. Very diluted
LiHoxY1−xF4 (x = 0.002) has been studied via 19F NMR [57] where they found that
at low temperature the field dependence of 19F nuclear spin-lattice relaxation 1/T1

shows peaks in correspondence to the critical magnetic fields for energy level crossings.
Nuclear-electronic energy states of Ho3+ ion could be probed directly by our magnetic
resonance setup.

LiErF4 is another interesting compound since it is one of the first model dipolar-
coupled antiferromagnet with planar spin-anisotropy [27]. This compound has been
studied by electron paramagnetic resonance [20, 58] and 7Li nuclear magnetic reso-
nance [59]. Nuclear-electronic sub-system coupling can be controlled by replacing Er
with the nuclear-spin free 168Er izotope. This allows us to separate the effects of electro-
nuclear entanglement from purely electronic ones in the observed spectrum. In light
of our results for LiHoF4, this could be used to study the connection between measured
susceptibility and entanglement entropy across the quantum phase transition further.

Nuclear spins play an important role in the spin ice compound Ho2Ti2O7 [60] . Low
lying weak excitations, observed by neutrons, are identified as nuclear spin system
excitations. Hyperfine energy splitting of the Ho ion is estimated at 6.36 GHz, which
is at the limit of the possible energy resolution in neutron scattering experiments.
Nevertheless, our setup is ideally suited to examine such excitations in the gigaherz
frequency spectrum.
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Chapter 6. Outlook

We have shown that using our setup we are able to couple to electro-nuclear hybrid
modes using a continuous-wave method. Following from this, it could be possible to
develop pulsed mode techniques. Pulsed mode magnetic resonance has been already
used in controlling quantum state of hybrid nuclear–electronic qubits in bismuth-
doped silicon [3], and could be used for controlling rare-earth based qubits in rare-
earth doped insulators [61].
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A Code for calculating the suscepti-
bility

On the next page I show the Matlab code I wrote to calculate the frequency dependant
susceptibility in the linear response theory framework, based on the eigenstates and
eigenvalues from the mean-field calculations.
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function linear_response_theory
cd('W:\MF_calc\variousA\A097')
load('0.150.mat') % loads variables "fields", "temp", "E" and "V"
% which are eigenstates and eigenvalues calculated in the mean-field model
% as a function of transverse field and temperature

for zzz = 1:length(freq_total(1,:)) %calculate susceptibility for all frequencies
    freq = freq_total (zzz);

J=8;
I=3.5;
gLande_Ho=1.25;

%Initiate J operators
Jz=diag(J:-1:-J);
Jzh=kron(Jz,eye(2*I+1));
Jp=diag(sqrt((J-[(J-1):-1:-J]).*(J+1+[(J-1):-1:-J])),1);
Jm=Jp';
Jph=kron(Jp,eye(2*I+1));
Jmh=kron(Jm,eye(2*I+1));
Jxh=(Jph+Jmh)/2;
Jyh=(Jph-Jmh)/2i;
%tensor product of cristal field to include nuclear moments
%Initiate I operators
Iz=diag(I:-1:-I);
Izh=kron(eye(2*J+1),Iz);
Ip=diag(sqrt((I-[(I-1):-1:-I]).*(I+1+[(I-1):-1:-I])),1);
Im=Ip';
Iph=kron(eye(2*J+1),Ip);
Imh=kron(eye(2*J+1),Im);
Ixh=(Iph+Imh)/2;
Iyh=(Iph-Imh)/2i;

ghztomeV = 1/241.8;
omega = freq*ghztomeV;     % define frequency sweep range (meV)
gama = 0.0001; % define lifetime (meV)

for l = 1:length(temp(1,:)) % calculate susceptibility for all temperatures
t = temp(1,l);

for k = 1:length(fields(1,:)) % calculate susceptibility for all fields
v = squeeze ( V(k,l,:,:) );
e = squeeze ( E(k,l,:) );
field = fields(1,k);

N = length(e);
chi_t = zeros(1,N^2);
ll = 1;
zz = zeros(1,N);
beta = 1/(t/11.6);
z=sum(exp(-beta*e));
zz=exp(-beta*e)/z;92



[n,np]=meshgrid(zz,zz);
NN=n-np;
[ee,eep]=meshgrid(e,e);
EE1=1./(ee-eep-omega);
EE = eep-ee-omega;
gamma = ones(size(EE))*gama;
G = gamma ./ (EE.^2 + gamma.^2);
G1 = EE ./ (EE.^2 + gamma.^2);

ELEf = 1.250 * 0.05788;
NUCf = 4.732 * 3.1519e-5;
JxhT = Jxh * ELEf;
IxhT = Ixh * NUCf;
JyhT = Jyh * ELEf;
IyhT = Iyh * NUCf;
JzhT = Jzh * ELEf;
IzhT = Izh * NUCf;
tittt = 'S(Jyy+Iyy)';
tt  = v'  * (JyhT+IyhT) * v;
chi_t  = (tt) .* (tt.') .* NN .* G;
chi_t1 = (tt) .* (tt.') .* NN .* G1;
sss=sum(sum(chi_t));
sss1=sum(sum(chi_t1));
imchi  (k) =  real(sss)   ;
rechi1 (k) =  real(sss1)  ;
end
        hfig1 = figure (1);
        clf
        set(hfig1,'position',[50 100 600 400])
        h1=plot (fields(1,:), imchi ,'r','LineWidth',2);
        set(gca,'XTick',[0,1,2,3,4,5,6,7,8,9]);
        set(gca,'fontsize',15)
        xlim([0 9]);
        xlabel('Magnetic field (T)','FontSize',15)
        ylabel('\chi'''' (arb. u.)','FontSize',15)

        hfig2 = figure (2);
        clf
        set(hfig2,'position',[680 100 600 400])
        h2=plot (fields(1,:), rechi1 ,'r','LineWidth',2);
        set(gca,'XTick',[0,1,2,3,4,5,6,7,8,9]);
        set(gca,'fontsize',15)
        xlim([0 9]);
        xlabel('Magnetic field (T)','FontSize',15)
        ylabel('\chi'' (arb. u.)','FontSize',15)
end
end
end
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B Code for calculating the entangle-
ment entropy

Here I show the Matlab code I wrote to calculate the entanglement entropy, by using
the eigenstates and eigenvalues calculated in the mean-field aproximation.
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function entanglement_entropy
cd('D:\Projects\LiHoF4_Network_Analyzer\plots\new_analysis\A097-\mf')
load('0.150.mat') % loads variables "fields", "temp", "E" and "V"
% which are eigenstates and eigenvalues calculated in the mean-field model
% as a function of transverse field and temperature

J=8;
I=3.5;
gLande_Ho=1.25;

% Initiate J operators
Jz=diag(J:-1:-J);
Jzh=kron(Jz,eye(2*I+1));
Jp=diag(sqrt((J-[(J-1):-1:-J]).*(J+1+[(J-1):-1:-J])),1);
Jm=Jp';
Jph=kron(Jp,eye(2*I+1));
Jmh=kron(Jm,eye(2*I+1));
Jxh=(Jph+Jmh)/2;
Jyh=(Jph-Jmh)/2i;
%tensor product of cristal field to include nuclear moments
%Initiate I operators
Iz=diag(I:-1:-I);
Izh=kron(eye(2*J+1),Iz);
Ip=diag(sqrt((I-[(I-1):-1:-I]).*(I+1+[(I-1):-1:-I])),1);
Im=Ip';
Iph=kron(eye(2*J+1),Ip);
Imh=kron(eye(2*J+1),Im);
Ixh=(Iph+Imh)/2;
Iyh=(Iph-Imh)/2i;

for l = 1:length(temp(1,:)) % calculate entanglement entropy for all temperatures
for k = 1:length(fields(1,:)) % calculate entanglement entropy for all fields
    v = squeeze ( V(k,l,:,:));
    e = squeeze ( E(k,l,:));
    field = fields(1,k);
    Bbb = reshape(v(:,1),[8,17]);
    [U,S,Vv] = svd(B) ;
    tt = sum ( S .* S );
    entanglement_entorpy  (k) = - sum ( tt .* log(tt+eps) ) ;
end
fig1 = figure (1); hold on;
hpcfr = plot (fields(1,:), entanglement_entorpy + br ,'b','LineWidth',2);
set(gca,'fontsize',15);
text(8,br+1,num2str(temp(1,l)));
set(fig1,'position',[100 100 600 400])
xlabel('Field (T)','FontSize',15)
ylabel('Entanglement entropy','FontSize',15)
title('Entanglement entropy','FontSize',15)
end
end
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