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Preface  
As a non-toxic, renewable natural material, that does not leak chemicals, can be safely handled, while 
usually, it is widely available within a short distance between production and construction sites, 
wood/timber is nowadays widely used as an important construction material in structures such as houses, 
bridges, domes, and piers. The embodied energy in timber is one of the lowest between all common 
construction materials; timber stores the carbon from the atmosphere and reduces the greenhouse effect. 
It is also a good thermal insulator reducing the energy necessary for heating and operating a building. 

Nevertheless, timber has a complex mechanical behaviour, presenting a high degree of anisotropy in its, 
inherently, highly variable mechanical properties. This variability includes statistical and spatial 
variabilities and leads to randomness in the response of timber structural components.  

To obtain an accurate estimation of the reliability of timber structures under external loading, 
probabilistic/stochastic approaches, capable of properly taking into account the random spatial 
variability of the material properties, are needed. 

The Thesis of Alireza addresses new topics concerning the variability of the mechanical properties of 
clear timber along and transverse to the grain and the way it affects the structural integrity of timber 
structures. In addition to the extensive experimental program and the database that has been provided, a 
new computational framework was developed for the modelling of the failure of timber structures taking 
into account the effect of size and variability. A numerical/analytical size effect model has also been 
developed taking into account the random spatial variability in the strength field by using the theory of 
random fields.  

It is obvious that further analysis is necessary in order to derive a well-established model, however, this 
Thesis introduces for the first time such procedure for timber structures’ design with random spatial 
variability and could be the basis for additional developments in the field.  

I would like to acknowledge the financial support of this Thesis by the Swiss National Science 
Foundation through the NRP 66 “Research Wood” research framework, (Grant No. 406640_136680). 

 

 

Dr. Anastasios P. Vassilopoulos 

EPFL/CCLab 
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Abstract  
Wood/timber has been widely used for house and bridge construction. It is a widely available natural 
material that necessitates low energy for the production, following simple processes. The 
environmentally friendliness, together with the low cost of raw material makes it an efficient building 
material. Moreover, timber possesses attractive mechanical properties such as high specific strength and 
stiffness. In contrast, timber constructions have, to a large extent, been based on experience and 
craftsmanship, which prevents taking full advantage of this material. There are several reasons for this. 
Timber has a complex mechanical behavior being a natural highly anisotropic fiber composite, with 
properties that are also affected by moisture content. For specific species, geographical location, local 
growth conditions and moisture content, the material properties depend, among others, on the age, the 
structural imperfections, the location of timber within the tree, and load history. Consequently, the 
mechanical properties of timber are, inherently, highly variable. Variability of timber properties includes 
statistical and spatial variabilities, referred to as random spatial variability (RSV). This entails adopting 
a probabilistic/stochastic approach to analysis of timer structures.  

The aim of this research is to understand and model the effect of the RSV on the clear timber mechanical 
properties, as well as the experimental characterization of RSV for clear timber, and also to develop a 
stochastic finite element framework for random response assessment of clear timber components. 

A size effect model was developed which takes into account the RSV in the strength field. The theory 
of random fields was used for this purpose. Using the spectral representation scheme, realizations of 
strength field in each specimen were generated. The stochastic response was obtained via the Monte 
Carlo method. The model results was compared to the existing experimental data in the literature. Also, 
an analytical expression was provided to facilitate the application of the model. 

Clear timber specimens of different lengths were fabricated for longitudinal tensile tests. Local 
deformations along the lengths of the specimens were recorded during the tests in order to characterize 
the RSV in longitudinal properties. A connection between the mesostructure of the clear wood and its 
local elastic modulus was observed. Statistics concerning the elastic modulus, strength and strain to 
failure and the effect of length change on these properties were extracted. The correlations between the 
strength, the elasticity and the density were obtained.  

Transverse properties were also investigated which are of particular importance in some applications 
such as mechanical and adhesively-bonded timber joints. Regularly positioned and randomly positioned 
specimens were cut from different timber boards. Statistics and size effects concerning the elastic 
modulus, strength and strain to failure as well as the correlation between the properties were studied. 
The spatial variability in the transverse elastic modulus, the tensile strength and the failure strain was 
also experimentally studied. Mesostructural patterns of clear timber were shown to have a direct effect 
on the local elastic modulus. 

Finally, a stochastic finite element framework was established by combining the spectral representation 
scheme for RSV modelling and the finite element software ABAQUS in a non-intrusive manner. This 
framework can be used for the stochastic structural response assessment of timber structural components 
made of clear timber. To show the applicability of the model in real applications, the failure of 
adhesively bonded double-lap timber joints were simulated under tensile loading. The effect of size on 
the strength was also taken into account. The results were in a fairly well agreement with the available 
experimental data in the literature. 

 

Keywords: Clear timber; Experimental characterization; Mechanical properties; Random spatial 
variability; Size effect; Mechanical tests; Stochastic finite element; Bonded joints; Monte Carlo
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Résumé 
Le bois a été largement  utilisé dans la construction de bâtiments et de ponts. Il est largement disponible 
dans la nature et nécessite une faible quantité d’énergie pour sa production. Le bois est ainsi un matériau 
écologique et économique ce qui le rend très attractif  dans le domaine de la construction. Le bois a des 
propriétés mécaniques très intéressantes comme une haute résistance et une haute rigidité spécifique. 
Pourtant,  jusqu’à nos jours la majorité des constructions en bois ont été réalisées sur la base de 
l’expérience et du savoir-faire, ce qui limite l’exploitation des performances de ce matériau. De 
nombreuses raisons expliquent cette réalité. Le bois a un comportement mécanique complexe, il s’agit 
d’un matériau composite naturel, fortement anisotrope et dont les propriétés sont influencées par son 
taux hygroscopique. Ses propriétés mécaniques dépendent de l’âge, des défauts structuraux, de sa 
position dans le tronc de l’arbre et de l’historique de chargement. Par conséquent, les propriétés 
mécaniques du bois sont extrêmement variables. La variabilité des propriétés du bois comprend la 
variabilité spatiale et statistique, connue comme random spatial variability (RSV). Ceci entraine 
l’adoption d’une approche probabiliste/stochastique pour l’analyse du bois.   

L’objectif de cette recherche est la compréhension et la modélisation l’influence que la RSV sur les 
propriétés mécaniques bois sans défaut et la caractérisation expérimentale de la RSV du bois sans défaut 
d’éléments structuraux en bois sans défaut. 

Un modèle de l’effet de taille a été développé en considérant la RSV dans  le champ de contraintes et 
en appliquant la théorie des champs aléatoires. Les champs de contraintes ont été générés pour chaque 
échantillon en utilisant le plan de représentation spectral. La réponse stochastique a été obtenue par la 
méthode Monte Carlo. Les résultats du modèle ont été comparés aux valeurs expérimentales présentes 
dans la littérature. De plus, une expression analytique a été établie afin de faciliter l’application du 
modèle.  

Des échantillons de bois pur de longueurs différentes ont été sollicités en traction dans la direction 
longitudinale. Les déformations locales tout au long des échantillons ont été mesurées afin de 
caractériser la RSV des propriétés longitudinales. Une relation entre la mésostructure du bois pur et le 
module d’élasticité local a été observée. Des valeurs statistiques du module d’élasticité, de la résistance 
et de la déformation à la rupture ainsi que l’effet de la longueur sur ces propriétés ont été extraites. Les 
corrélations entre la résistance, le module d’élasticité et la densité du bois ont été établies.    

Les propriétés dans la direction transversal, importantes pour certaines applications telles que les 
assemblages mécaniques et les assemblages collés ont été analysées. Des échantillons ont été découpés 
de manière régulière et de manière aléatoire dans différentes planches en bois. Des valeurs statistiques 
du module d’élasticité, de la résistance et de la déformation à la rupture, les effets liés aux dimensions 
des échantillons ainsi que la corrélation entre ces diverses propriétés ont été étudiées.  La variabilité 
spatiale du module d’élasticité, de la résistance à la traction et de la déformation de la rupture dans la 
direction transversale a été étudié de façon expérimentale. Les résultats ont montrés que la mésostructure 
du bois sans défauta une influence directe sur le module d’élasticité local.  

Finalement, un modèle stochastique d’éléments finis  a été établi en combinant le schéma de la 
représentation spectral utilisé pour la simulation de la RSV et le logiciel d’éléments finis Abaqus. Il 
permet d’évaluer la réponse structurale stochastique d’éléments structuraux en bois sans défaut.  Afin 
de montrer l’application du model aux situations réelles, la rupture d’assemblages à double 
recouvrement collés solicités en traction a été simulée. L’effet de taille sur la résistance a été pris en 
considération. Les résultats obtenus étaient en accord avec les valeurs expérimentales présentes dans la 
littérature.  
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1 Introduction 
 

 

 

1.1 Motivation 

Wood/timber has been widely used traditionally as an important construction material in 
structures such as houses, bridges, domes, and piers. In 2014, the total consumption of industrial 
roundwood, sawnwood and wood-based panels was estimated as being 560 million m3 [1].  

There are several reasons for considering timber as an efficient material for construction. 
Timber is a non-toxic, renewable natural material, does not leak chemicals, can be safely 
handled with bare hands, while, usually, it is widely available within a short distance between 
production and construction sites. Relatively very little energy is used to convert the wood from 
trees to construction timber. The embodied energy in timber is one of the lowest all common 
construction materials. Timber stores the carbon from the atmosphere and reduces the 
greenhouse effect. Timber is also a good thermal insulator reducing the energy necessary for 
heating and operating a building, while it is versatile and also it is easy to work with, even with 
simple tools. It is also considered as a low-cost material. Finally, timber possesses attractive 
mechanical properties such as a high strength to weight ratio. 

Nevertheless, timber has a complex mechanical behavior as a highly anisotropic fiber 
composite material. Given specific species, geographical location, local growth conditions and 
moisture content, the material properties depend on factors such as age, structural 
imperfections, location of timber within the tree, and load history. Consequently, the 
mechanical properties of timber are, inherently, highly variable. For these reasons, a high level 
of expertise is needed to take full advantage of timber. 

In current practice, design codes are normally used as guidelines for constructing timber 
structures. These codes, often, are outdated and have not evolved by incorporating new 
information regarding the design of timber structures. In some cases, such as for the design of 
adhesively-bonded timber joints, there is no available code at all. One main concern, which has 
recently received attention from researchers, is the high scatter/variability in the mechanical 
properties of timber and its incorporation in design codes [2]. This variability includes statistical 
and spatial variabilities and is sometimes referred to as random spatial variability (RSV) [3]. 
This variability leads to randomness in the response of structures and components made of 
timber. To obtain an accurate estimation of the reliability of timber structures under external 
loading, probabilistic/stochastic approaches, capable of properly taking into account the RSV 
of the material properties, are needed. 
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On the other hand, following a deterministic approach often results in overdesigned structures 
and increases expenses [4]. Also, as highlighted in a recent study on the random failure analysis 
of unidirectional composites [5], designs based on deterministic material properties can also 
overestimate the reliability of structures significantly.  

The probabilistic design allows the estimation of reliability by incorporating the stochastic 
uncertainty in the data using probability density functions (PDFs) and correlations between 
parameters, based on which designs are certified to offer a given reliability level [6]. The 
performance is generally evaluated by means of a variable such as the displacement of a point, 
the maximum stress, maximum allowable load etc., or by a set of them. Variability in the 
performance of timber structures arises mainly from the variability in the mechanical properties, 
i.e. stiffness and strength parameters, and also from the variability of the external loading. 
Efforts have also been made to develop probabilistic/reliability based safety factors in order to 
minimize the difference between probabilistic design and classical deterministic design [2,6]. 
These are normally derived based on the available formulas for the limit states of structural 
components. 

The mean value of timber strength, in its brittle failure modes such as those under longitudinal 
and transverse tensile loadings, decreases as its volume increases, which is known as the size 
effect on the strength. This is because the probability of occurrence of a weakest material point 
with a lower strength value increases with volume increase, due to the RSV in the strength field. 
Pure tensile tests on clear specimens of different sizes have been carried out in [7,8] in the case 
of longitudinal strength and [9-14] for transverse strength (solid timber and laminated timber 
specimens) to investigate the size effect. The results have shown an obvious size effect. 
Concerning finite element simulations, the effect of size in small volumes is important. In the 
context of this thesis, ‘small volume’ refers to the scale of a few millimeters or mesoscale. The 
reason is that the failure initiation occurs at a material point, to which the volume of a small 
element or the volume around an integration point is normally assigned. There is very limited 
experimental information on this in the literature. 

The classical Weibull size effect law (CWSEL) [15] is commonly used in the literature for 
modeling this effect on clear timber strength [10,11,16-21]. Very few works in the literature 
have adopted any other approach than CWSEL to investigate the size effect in timber, especially 
in the transverse direction. In the case of transverse strength, Pedersen et al. [13] and Astrup et 
al. [14] conducted transverse tensile tests on bulk specimens with a double symmetry. They 
developed a deterministic model for the size effect observed from experiments. In [21], after 
reviewing size effect models, it is noted that “Although no conclusive evidence has yet arisen 
concerning the accuracy of probabilistic strength theories to describe the size effect in the 
strength of timber, the existence of significant size effects is largely accepted within the 
scientific community.” 
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Random variable-based studies, i.e. not considering spatial variability, have been undertaken 
for different structures; however, the significance of spatial variability for the accurate 
estimation of the stochastic structural response has been only highlighted in recent studies [22-
25]. The theory of random fields has been used in these studies for the representation of RSV. 
As a numerical method to model the RSV effect on the structural response, stochastic finite 
element (SFE) modeling has received special attention [26], in spite of being computationally 
demanding. The consideration of spatial variability, within a stochastic finite element 
framework, may bring advantages in terms of material utilization, and would result in more 
accurate estimations of reliability. A recent comprehensive review of different aspects of the 
SFE method can be found in [26].The focus of the current study is on the experimental 
characterization of size effects and RSV for mechanical properties of clear timber and 
development of size effect and SFE models for analysis of clear timber components such as 
bonded joints. 

 

1.2 Wood as a structural material 

Wood is produced by trees in nature.  Over million years, its structure has evolved into an 
optimized efficient system to support the crown, conduct mineral solutions and store food 
materials. There are about 30,000 different species in the world [27].  

Different products made of timber can be classified into three groups. The first is solid timber, 
and the objective is to produce as efficiently as possible timber with specific dimensions having 
a quality of surface suitable for the intended use. The second includes board materials such as 
Chipboard, oriented strand board and fiber board. The third is laminated timber which consists 
of products such as glulam and laminated veneer lumber. Some of the advantages of the second 
and third groups over solid timber are lower degrees of variability, lower anisotropy and higher 
dimensional stability. 

Unlike many other materials used in construction industry, solid timber cannot be manufactured 
to a particular specification. Instead, the best use should be made of the material already 
produced, although the type of timber can be selected from the wide range available. Timber as 
a material is a low-density, cellular, hygroscopic, viscoelastic, inhomogeneous, anisotropic 
polymeric composite. Regarding its high strength to weight ratio and low cost, timber is the 
most successful fiber composite in the world [27]. 

Woods from different trees are usually classified into two general groups: hardwood and 
softwood. Hardwood trees are generally broad-leaved deciduous trees which carry their seeds 
in seedcases such as beech and maple, while softwoods are generally coniferous trees such as 
Douglas-fir, spruce and larch. The wood from a tree can be divided into two parts, heartwood 
and sapwood. Heartwood surrounds the central part of the tree trunk and sapwood surrounds 
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the heartwood. From a structural-botanical point of view, wood contains many cells. These cells 
have different functions depending on their location in the tree. Inner cells, located in the 
heartwood and in which the reserve materials, e.g. starch, have been removed or converted into 
resinous substances, are mostly dead and provide mechanical support for the tree. Heartwood 
is generally darker than sapwood, although the two are not always clearly differentiated [27]. 
Cells located in the sapwood store nutrients and act as conduits for water. Each year, a ring of 
small width is added to the wood in the tree. As a result of different conditions during the 
growing season, there are usually two distinguishable parts within each ring, earlywood and 
latewood, which are more distinguishable in softwoods. 

Figure 1.1 shows different parts of cross section of a cut tree trunk, also known as log. At the 
center of the section, there is a small core of soft, spongy tissue called pith. A few growth rings 
around the pith have often higher width and lower density and mechanical properties, which 
are named juvenile wood. Surrounding the juvenile wood are heartwood and sapwood. A thin 
layer of living reproductive cells called cambium surrounds the sapwood and forms a new 
growth rings and bark cells. Bark is the outer part of a tree trunk composed of inner living and 
outer dead bark. 

             
Fig. 1.1: Different parts of a tree in a cross-sectional view of trunk 

 

A schematic illustration of the three main structural planes in a tree trunk is shown in Fig. 1.2. 
As can be seen, there are three principal directions, longitudinal L, radial R and tangential T, in 
each tree trunk, and correspondingly, three principal planes which are called cross-sectional or 
TR plane, radial of LR plane and tangential or LT planes. Most of the cells which contribute to 
the stiffness and strength of timber are aligned in the longitudinal (axial) direction. Therefore, 
timber has superior mechanical properties in the axial direction. Also, the mechanical properties 
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are higher in the radial direction than in the tangential direction. Timber is usually considered 
to be an orthotropic material in mechanical studies [28-30]. 

 

 
Fig. 1.2: Schematic illustration of a wedge-shaped segment of a tree showing the principal 

directions and planes 
 

Irregular patterns of wood mesostructure that can be seen in timber pieces in Fig. 1.3, as one 
might intuitively understand, lead to spatially different local mechanical properties. Also, 
timber pieces like in Fig. 1.3 can be cut from different positions in a tree and have different 
overall properties as well. 

                  
Fig. 1.3: Irregular structural patterns in timber pieces 

 

1.2.1 Factors affecting mechanical properties of timber 

Factors affecting mechanical properties of timber are as follows: 

Grain direction: The term ‘grain’ usually refers to the arrangement of aligned cells in the tree 
longitudinal direction. As already mentioned, the mechanical properties change largely from 
longitudinal direction (parallel to grain) to transverse (perpendicular to grain) direction. Due to 
being a natural material, the grain direction always oscillates around the nominal direction of 
tree stem, which also affects the properties [27]. 
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Reaction wood: Action of wind on a tree or a sloping ground can cause an inclination in the 
tree stem with respect to the vertical/gravitational axis [27]. This changes the distribution of 
growth hormones in the tree and an abnormal tissue called reaction wood is formed. In 
hardwoods, this tissue is formed on the side of the trunk that is under tension, known as tension 
wood. In tension wood, tensile strengths are higher and compression strengths are lower than 
normal wood. In softwoods, this tissue is formed on the side of the trunk that is under 
compression, referred to as compression wood. Its compression strength is higher and its tensile 
strength and toughness are lower than in normal timber.  

Spiral grain: A tree is said to have spiral grain when the average direction of its grain has an 
obvious difference with respect to the nominal axis of the trunk, which looks like a spiral. The 
mechanical properties of pieces of sawn timber are negatively affected by spiral grain [32]. 

Localized defects: Knots are the most common defects in pieces of timber caused by branching 
in trees. They are imperfections associated with gain distortion. They also cause grain deviation 
in the surrounding area. Since the mechanical properties are changed with grain direction, knots 
can have a major negative effect on the properties. The level of this effect is a function of their 
size, distribution and the type of the knot. Larger knots and more frequently distributed knots 
are more influential. The deformation and failure behavior of knot clusters have been studied 
in [33,34]. Also, dead knots, which cause discontinuity in timber are more critical than green 
knots, which are completely connected to the surrounding timber. Other localized defects are 
checks, shakes and splits. These cause discontinuities in timber [31]. 

Decay: Wood, as a product of nature, is biodegradable. Different natural agents such insects 
can cause decay, but fungi, some low forms of plant life, can causes the highest damage [31]. 
Decay deteriorates the mechanical properties. 

Density: Density is considered as the best indicator for the mechanical properties [27]: the 
higher the density, the higher the elastic modulus and strength. Density of wood can vary 
significantly even within a single tree. At mesoscale, in which the material can be considered 
as a continuous medium, the density of clear timber is a function the ratio between late wood 
and earlywood. The latewood is denser than earlywood. Also, the density of each one can 
change from one growth ring to another [27].  

Factors which are independent of the structure of wood itself, but can affect the mechanical 
properties are moisture content, temperature and time (rate and duration of loading) [27]. 

1.2.2 Small clear timber specimens versus structural-sized lumber 

Clear timber refers to defect-free wood from a tree. Small clear specimens are normally tested 
to specify the characteristic properties of each species. These specimens are usually considered 
to be homogeneous in mechanical analyses of wood [35,36]. Nevertheless, it will be 
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experimentally shown in this thesis that there are significant changes in the local mechanical 
properties within clear timber specimens. 

Structural-sized solid timber known as lumber may contain different kind of defects such as 
knots, checks and spiral grain. These timber pieces, which are used as members in timber 
structures, are cut from logs by sawing in the form of rectangular elongated pieces of wood. 
The nominal axis of the lumber is intended to coincide with the parallel to grain direction. Due 
to inherent variability in timber properties, lumbers are graded based on their expected service 
performance. In grading lumbers, it is tried to evaluate the desired material properties such as 
bending strength, based on other properties that can be measured in a non-destructive manner, 
such as stiffness and density, or by visual assessment of the quality of lumber.  

1.2.3 Mesoscale and clear wood 

The mesoscale of wood spans from a few millimeters to several tens of millimeter. In this scale, 
a connection between the local mechanical properties and the mesostructure of clear timber can 
be made. The mesostructure of clear wood is mainly characterized by earlywood-latewood and 
growth ring arrangements and grain deviations. These can be seen in Figs. 1.2 and 1.3 in 
transverse and longitudinal sections, respectively. The mesostructure of clear wood in 
specimens cut in the longitudinal and transverse directions are studied in Sections 3.3 and 5.2. 

1.2.4 Orthotropic elasticity and timber  

Orthotropic elasticity is usually used to describe timber elastic behavior [28-30]. It is assumed 
that the three principal elasticity directions coincide with the L, R and T directions of the wood 
structure. The curvature of the tangential faces is neglected in this assumption. This assumption 
becomes more acceptable, as the distance from the tree center increases.  
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Nine independent parameters are needed to construct the elasticity matrix of the timber in 3D 
space: three elastic moduli in L, R and T directions, three shear moduli in LR, LT and TR planes 
and three Poisson ratios. The constitutive equation for timber, considered as an orthotropic 
material, is given in Eq. (1.1). 

The assumption of plane stress state and transverse isotropy for clear timber [19,20] is 
considered for the case study performed in Chapter 6. In this case, Eq. (1.1) is simplified to 

 

22
11 11

22 22
22

12 12

12
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12
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1 0

1 0
2

10 0
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(1.2) 

where 1 and 2 correspond to longitudinal and transverse directions. Longitudinal and transverse 
tensile and longitudinal and shear behavior are often assumed as linear up to failure [13,14,16-
21], although some degrees of non-linearity might be present, as was observed in Chapter 4 for 
transverse tensile behavior. Tensile longitudinal and transverse mechanical behavior of clear 
timber are studied in Chapters 3 and 4, respectively. In longitudinal and transverse compression, 
however, there are significant plastic deformation that cannot be neglected [27]. Schematic 
illustration of compressive stress-strain behavior of clear timber in the longitudinal and 
transverse directions are shown in Fig. 1.4a and b. 

a)           b)  
 

Fig. 1.4: Schematic illustration of stress-strain behavior of clear timber: a) Longitudinal 
compression b) Transverse compression. 
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1.3 Uncertainty 

Uncertainty is the lack of certainty caused by incomplete and/or unknown information in a 
situation. In an uncertain situation, one cannot exactly predict an outcome. Mathematical 
models and experimental measurements can be uncertain in different ways. The following is a 
list of potential sources of uncertainty that could be present in this project: 

 Inherent uncertainty of parameters: This originates from the parameters whose values 
change randomly in different measured samples such as clear timber mechanical 
parameters or wind velocity components. The uncertainty in the material properties is also 
referred to as material randomness. 

 Uncertainty in statistics of collected data: This usually results from limited number of tests 
or observations for a target parameter such as strength parameters. 

 Uncertainty due to manufacturing process: The final specimen dimensions might not be 
exactly the same as expected due to imperfection of the fabrication process which can affect 
its performance. 

 Model uncertainty: This originates from lack of knowledge about the true underlying 
phenomenon. This also includes the uncertainty from various simplifications/assumptions 
in the process of modeling, such as assuming an orthotropic behavior for timber. 

 Numerical uncertainty: This is due to numerical errors or numerical approximations. Often, 
due to complexity of models, it is impossible to find the exact solution and resorting to 
numerical methods, such as Gaussian quadrature for approximation of a definite integral 
or finite element discretization, as in Chapter 6, for solving a structural problem, becomes 
necessary. This, however, introduces numerical uncertainty. Considering the current state 
of computational tools, the numerical uncertainty cannot be eliminated. It can only be 
minimized or bounded [37]. 

 Measurement/observation uncertainty: If a measurement is done several times following 
the exact same setting, no matter how small, there will inevitably be a scatter in the results. 
For example, the way in which a person fixes a specimen in a testing machine can affect 
the measured value for the required parameter. 

 Testing machine uncertainty: Any testing machine, such as tensile test machines used for 
tests of Chapter 3 and Chapter 4, has a certain level of accuracy which introduces an 
uncertainty in the collected data from the test. 

 Interpolation/extrapolation uncertainty: The uncertainty introduced when interpolating or 
extrapolating output data from simulations or experiments for other input settings for which 
no output data is available. 

From another point of view, uncertainty can be classified into two categories [38]. The first is 
called aleatoric, also known as stochastic/irreducible uncertainty. It is a physical variability in 
a system or its environment. Parameters that change their values each time the same experiment 
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is performed, have aleatoric uncertainty. For example, if an arrow is shot several times by a 
mechanical machine, it will hit the same point on the target due to complex vibrations of the 
arrow shaft. Another example is the strength of wooden specimens with the same geometry 
tested in the same conditions. The strength randomly changes from one specimen to the other. 
Also, there is an aleatoric uncertainty involved in predicting the result of rolling a dice. It is 
sometimes argued that considering this uncertainty as irreducible is due to lack of sufficient 
progress in the current science and technology. Probabilistic approaches such as Monte Carlo 
are used to analyze this kind of uncertainty, as is done in the current study. 

Epistemic uncertainty, also known as systematic/reducible uncertainty, is due to lack of 
knowledge. In other words, it originates from things that we could know to reduce the 
uncertainty, but in practice we do not. This can be due to lack of sufficient accuracy in 
measuring a quantity, assumptions involved in the mathematical model and neglecting some 
effects. Better calibration and improvement of the model can reduce this kind of uncertainty.  

Often, in studies on the stochastic structural response assessment of timber or composite 
structures [5,6,17-21,23-25], as in this thesis, the focus is on the effect of uncertainties in 
material properties as well as in loading, if present, although other above mentioned 
uncertainties might exist as well. This is because the level of uncertainty in the properties of 
these materials is so high that it usually acts as the main factor causing the uncertainty in the 
structural response. Concerning the randomness in the local elastic moduli investigated in the 
thesis, the total/ensemble variability is a results of the variability of moduli within each 
individual specimen, designated as within specimen variability, and the variability of moduli 
that occurs by changing specimens, referred to as between specimen variability. The latter 
implies that different specimens can have different average moduli. In the analyses done on the 
results of performed tests and estimation of the statistics of the properties, both the variability 
within specimens and between specimen variability were considered. In Sections 3.5.1 and 
5.3.1, contributions of within specimen variability and between specimen variability to the 
total/ensemble variability of the local longitudinal and transverse elastic moduli are discussed. 

It is noted that beside safety and uncertainty issues related to randomness of material properties 
and loading, there are also other safety related issues such susceptibility of timber to fire [39-
42] which are not discussed in this thesis. 

1.3.1 Statistical distributions 

Probability density functions (PDF) such as Weibull and normal are used to represent the 
uncertainties in the mechanical properties of clear timber. f ( )x , defined over real numbers, can 

be a PDF for the continuous random variable X if: 1) f ( ) 0x , for all x R . 2) f ( ) 1.x dx  

3) ( ) f ( )
b

a
P a X b x dx . 
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The PDF of the normal random variable X  with mean  and standard deviation  is defined 

as: 

2
2

1 1f ( ) exp( ( ) ), 
2 2

x x x . (1.3) 

The PDF of the Weibull distribution is defined as 

1

0
0 0 0

f ( ) exp ,0 , 0, 0
m m

m x xx x m  (1.4) 

where 0  and m  are the scale and shape parameters of the Weibull distribution. The mean and 

standard deviation for this PDF are as follows: 

0.52
0 0m m m  (1.5) 

The random variable X  has a lognormal distribution, if random variable Y  with mean Y  and 

standard deviation Y , defined by the equation lnY X , follows a normal distribution. The 

PDF of X is: 

2ln1 1f ( ) exp , 0
22

Y

YY

x
x x

x
 (1.6) 

The mean and standard deviation are as follows: 

2 0.5
2 2exp , exp 1 exp 2

2
y

y y y y  (1.7) 

 
 

1.4 Design approaches in timber engineering 

Traditionally, the safety of a timber structure or component is assessed via safety factors or 
partial safety factors. Since fixed values are assigned to load and resistance in these approaches, 
safety is presented as a deterministic measure. To ensure a target level of safety for the structure, 
the estimates of load and resistance are considered sufficiently high and sufficiently low, 
respectively [2]. In probabilistic analyses of timber structures, however, uncertainty of variables 
are directly taken into account via their respective PDFs. Therefore, a more accurate estimation 
of the reliability of the structure can be provided. 
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1.4.1 Allowable stress design (ASD): Safety factor approach 

In allowable stress design, ASD, the stresses in the material due to service loads are compared 
with allowable stresses of the material [43]. The safety of the structures is defined by Eq. (1.8) 
[2] 

i is  
(1.8) 

where i  is the ith stress component due to service loads, normally obtained via linear stress 

analysis, and is  is the corresponding allowable stress component. is  is defined by dividing the 

strength parameter of the material uis , such as ultimate characteristic moment, tension and 

compression stresses, to a safety factor 1  

/i uis s  
(1.9) 

The values for  is usually chosen with regard to experience, tradition, legal requirements and 

economic considerations. In this approach, the case of equality in Eq. (1.8) is considered as the 
failure condition. 

1.4.2 Load and resistance factor design (LRFD): Partial safety factor approach 

In 1990s, a new design format for timber structures called LRFD was completed by research 
community and wood industry [43]. In this approach, the effect of factored loads are compared 
with adjusted nominal capacities (resistance). Uncertainty and failure consequences are 
explicitly taken into account for developing factors for both resistance and loads which leading 
to a more differentiated safety analysis. LRFD format for structural members is expressed as 
[2] 

M
...d i

G i Q i
z r G Q  (1.10) 

where ir  is a characteristic resistance of the member, M  is the partial factor for ir  and dz  is 

a design variable. iG  and iQ  are the characteristic permanent (dead) load and variable (live) 

load effects with corresponding partial factors G  and Q . Experience, tradition and 

judgement have largely been involved in determining the partial factors. 

Values for safety factors, partial safety factors and characteristic resistances and load effects 
are normally found in design codes. Characteristic values are normally determined based on the 
fractile values of the statistical distributions associated with the parameters. For more 
information on this topic can be found in [43] and in ASD/LFRD Manual for Engineered Wood 
Construction [44]. 
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1.4.3 Reliability-based code calibration 

Reliability-based code calibration is an approach for establishing consistent design formats for 
determining characteristic values of material parameters and partial safety factors. This is to 
provide consistent levels of safety for different type of structures using structural reliability 
methods such as FORM. LRFD is normally used as basis for formulating the partial safety 
factors. In order to determine the partial safety factors, the difference between reliability of a 
class of structures and a target reliability level should be minimized [45]. The basics of this 
kind of calibration of partial safety factors has been described in [46]. 

Concerning timber, Vrouwenvelder and Siems [47] used First-order second moment method to 
calibrate partial safety factors for building codes of Netherland for different structural members 
made of timber, steel and concrete. In 2002, Smith and Foliente [48] reported the current 
international practice for designing mechanical joints based on LRFD and issues for probability 
based calibration. Svensson and Thelandersson [49], discussed the effect of the change of the 
type of statistical distribution of random parameters in calibration of reliability based partial 
safety factors. The duration load factors in LRFD were calibrated using time varying stochastic 
processes in [50] for wind, snow and imposed loads. Köhler [2] and Köhler et al. [51] developed 
a probabilistic model code which was adopted by the Joint Committee on Structural Safety. 
Their approach considers several levels of complexity. The basic level focuses on the common 
LRFD aspects such as basic material random variables, basic limit state functions and different 
characteristics of timber. Several refinements have been introduced such as adding new 
information using Bayesian updating and modeling time dependent damage. Also, a 
hierarchical spatial variability model was proposed for bending strength. 

1.4.4 Stochastic analysis of timber members with knots 

Efforts have also been made to develop models to describe behavior of timber members with 
knots such as lumbers and glulams by considering spatial variability, often lengthwise, of the 
longitudinal elastic modulus and strength. These work are useful for designing load-bearing 
timber beams, or possibly columns. Sometimes, the analysis is merely done on the modulus of 
stiffness in these works. The stochastic input data to these models are usually collected by 
examining the behavior of smaller parts, with or without knots, of the member. Kline et al. [52] 
developed a stochastic model for lengthwise variability of elastic modulus of lumber, based on 
a second order Markov model. Lam and Varoglu [53,54] also conducted experimental and 
modelling investigations on the spatial variation in the compressive and tensile strengths of 
lumbers [53-55]. Their model was based on semivariogram and regression analyses and 
stochastic processes. Isaksson [56] experimentally studied the variability of bending strength 
within and between timber members. He also developed a model based on stochastic variables 
such as the distance between weak sections, length of weak sections, strength of weak sections 
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and strength between weak sections. A calibration based on the Swedish code format has also 
been performed. 

Recently, Fink and Köhler [57], investigated the variability of stiffness properties of timber 
boards focusing on the effect of knots and knot clusters. They developed a hierarchical model 
that takes into account both within board variability and between board variability. Köhler et 
al. [58] developed and calibrated a probabilistic model for longitudinal strength of spruce 
boards with no longitudinal joints. In this study, a member was considered to be composed of 
weak sections caused by major knots or knot clusters. The distance between these sections was 
represented by Poisson stochastic process. More recently, a new approach for modelling tensile 
stiffness and strength of timber boards and finger joints [59] has been developed based on the 
dynamic modulus of elasticity and total knot are ratio as influencing random variables.  

Fink et al. [60] conducted bending tests on glulam beams and studied the influence of variable 
material parameters, such as knot ratio and dynamic modulus of elasticity, on the capacity, 
bending stiffness and failure mechanism in the glulams. The implementation of the results in a 
numerical model was described.  

1.4.5 Direct probabilistic approach and reliability 

In the probabilistic analysis of structures or structural components, the final goal is to calculate 
the probability of survival or reliability, or equivalently the probability of failure. The reliability 
is defined by the following equation: 

F( ) 1
H p( )d

X X
X X  (1.11) 

where X is a vector which represents the uncertain variables affecting the state of the structure, 
F( )X is the limit state function or failure criterion (or failure function (FF)) and p( )X  is the 

probability density  function (PDF) of the problem being considered. F( ) 1X  is the condition 

of non-failure. 

The term ‘direct probabilistic approach’ in the context of this work refers to an approach for 
estimation of reliability of a chosen structure or component with regard to the uncertainty in 
material parameters and loading, without using design codes and safety factors for material 
properties and loading. This does not mean that for the final design of such a structure safety 
factors are not needed [61]. For potential sources of failure such as an imperfect theory, 
unknown failure mechanism and human error in fabrication, the safety factors are 
indispensable. This approach is usually followed in the case of structures/components for which 
no design code is available, or the code cannot directly be applied due to a change in the 
involved parameters such as geometry, loading and environmental conditions. An example 
would be design of adhesively bonded timber joints. Another case is when the effect of a new 
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phenomenon, which in design codes is not explicitly described, is to be investigated. In the case 
of clear timber structures, such a phenomenon can be RSV in the mechanical properties. This 
is because the effect of RSV on the reliability of clear timber has not been previously 
investigated, although its significant effect has been shown for composite structures, especially 
when low probabilities of failure are desired.  

In this approach, beside the reliability analysis, normally due to lack of an overall 
(structural/member level) limit state, a structural analysis has to be performed. Usually, due to 
complexity of geometry or the phenomenon under investigation such as RSV, finite element 
method is used to obtain the multi-axial stress state within the structure/component. This is 
especially handy for incorporation of RSV into the analysis. In this case, Monte Carlo approach 
can conveniently be used for the reliability analysis. Some other reliability methods such as 
FORM and SORM introduced in the next section, are more convenient when a formula can be 
established that can directly relate the capacity of the structure/component to load and strength 
parameters. Three main decisions in this approach are about: (1) the material failure criterion, 
(2) influencing random factors, (3) reliability estimation method. The methods available in the 
literature for the evaluation of the reliability are classified into four groups in the following 
sections. 

1.4.5.1 Fast probability integration methods 

Fast probability integration methods are based on approximating the failure surface by a 
predetermined geometric form for which calculation of the reliability integral is practical. In 
the process of calculation, a most probable point is searched, and the failure surface is 
approximated by the geometric form. The distance between the origin and this point is called 
Reliability Index (RI) and expressed in units of standard deviation. The two most famous 
methods are called first order reliability method (FORM), which is more popular, and second 
order reliability method (SORM). 

In FORM, a linear approximation of the FF is used in the vicinity of design point to estimate 
RI. Standard normal non-correlated variables are needed in this method; therefore, the vector 
of random variables X of the problem is transformed into the standard non-correlated vector U. 
Then, the reliability index can be obtained by [6] 

TRI min .

subject to : F( ) 0

U U

U
 

 
(1.12) 

RI  represents an Euclidean distance between the origin and the failure function F( )U  in the 

non-correlated normal space. In case of correlations between the random variables, a Cholesky 
decomposition of the covariance matrix is used to transform the variables from the real space 
to the non-correlated standard space [62]. If there are some non-normal variables, Rackwitz–
Fiessler technique can be employed [63]. If both correlations and non-normal variables exist at 
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the same time, Rosenblatt transformation is recommend [64]. Having found the value of RI, it 

is shown that the reliability can be expressed as H (RI) , where  is the standard normal 

cumulative distribution function (CDF). Carbillet et al. [25] applied this method to evaluated 
the reliability of a laminated plate [0/90]s simply supported at two edges and subjected to the 
combined action of a uniform pressure and a concentrated force in its centre. They found that 
RSV has a significant effect on the probability of failure. 

SORM is an enhancement of FORM, where the failure function is approximated about the most 
probable point, using a quadratic Taylor series expansion. Because of inevitable complicated 
integrations in this method, its applicability in reliability studies is restricted [65]. 

For some structures/components, such as timber joints with dowel type fasteners, analytical 
formula or experimental approximate formula for the load bearing capacity as a function of 
timber and fastener behavior geometrical dimensions can be found [2]. Based on these formula 
as a member-level limit state, the reliability of such a structure can be estimated based on FORM 
[2]. 

1.4.5.2 Monte Carlo method (MC) 

Monte Carlo is a very straightforward and accurate method in reliability analysis [46]. This 
scheme consists of generating random values for stochastic input variables, then substituting 
them into the failure function and determining if the material fails or not. This procedure is 
repeated many times, and the reliability H is calculated as the ratio of the number of cases in 
which failure does not occur to total number of repetitions. 

One drawback of the above method is that in cases of high reliability, the total number of 
simulations increases dramatically [6]. In an effort to overcome this limitation, some more 
efficient simulation methods have been developed. The importance sampling method appears 
to be the most promising technique for structural reliability problems [66]. This is a variance 
reduction technique which uses the idea that some of the input random variables in a simulation 
have more influence on the parameter being estimated than others. If these important values are 
emphasized by sampling more frequently, then the variance of the estimate is reduced. 

1.4.5.3 Analytical Methods 

To introduce more simplicity in reliability analysis, some analytical methods have been 
proposed in the literature, two of which have received more attention. Philippidis and Lekou 
[67] developed two analytical approaches, namely Edgeworth expansion method (EDW) and 
the introduction of Pearson’s semi-empirical distribution function (PRS) for UD FRP 
composites under plane stress loading. In this work, only strengths were considered to be 
random, each following a Weibull distribution. The purpose of these two analytical approaches 
was to determine the CDF of the failure function F, based on which the failure probability can 
be calculated. EDW, which had been previously applied to off-axis composites for the case of 
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uniaxial tension [68,69], was used to predict the CDF under complex stress state in terms of 
individual component moments [70]. First, the failure function is expanded in a multivariable 
Taylor series about mean values of strengths. Then, this function along with central moments 
of individual strength parameters are used to calculate the central moments of random failure 

function. EDW uses a series expansion in terms of the standard normal CDF, (F) , to 

approximate an unknown CDF in which the coefficients are functions of central moments of 
the random variable F. This is given by: 

3 43 4
3/2 2
2 2

1 1P(F) (F) (F) 3 (F) ...
3! 4!

 
 

(1.13) 

where k  is the central k-moment of the failure function F and n (F)  is the nth derivate of the 

normal CDF (F) . Later, this method was enhanced by the same authors considering random 

elastic properties and random thermal coefficients [5]. For the case of a rotor turbine blade, it 
was shown that variability of elastic properties affects the failure envelope considerably. In 
contrast, in the temperature range considered, the effect of thermal properties was negligible. 

Alternatively, in PRS method, the unknown CDF of failure function can be fitted by empirical 
statistical distributions, if the central moments of F are available. In [67], the distribution 
families presented by Pearson were considered as a solution to the differential Eq. (14) 

2
0 1 2

Fdp(F) p(F)
dF b b F b F

 
 

(1.14) 

in which  and ib  are constant parameters. From Eq. (14), after some mathematical 

manipulations, these constant parameters can be found in terms of the central moments of the 
distribution function of F. By using coordinate transformation k F , Eq. (14) is recast as 

2
0 1 2

dp(F) k p(F)
dk B B k B k

 
 

(1.15) 

If the roots of the polynomial in the denominator of Eq. (15), 1a  and 2a , are real and of the 

opposite sign, the distribution in Eq. (15) reduces to Beta distribution, with parameters p and q 
found by equating the Pearson distribution’s moments with that of the failure function: 

q 1p 11p(z) z 1 z ,(p,q 0)
B(p,q)  

 
(1.16) 

where 1 2 1z k a / a a . In this work, several comparisons between EDW, PRS, MCM 

and a semi-deterministic failure analyses, were made considering different fiber angles and 
assumptions for the Tsai-Wu failure criterion. The results obtained with the analytical 
approaches were in excellent agreement with experimental or Monte Carlo data. 
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The second major analytical approach was developed by Gurvich and Pipes [71]. They argue 
that solutions based on other methods such as FORM, SORM, MC etc. are either numerical or 
approximate ones and, sometimes, those are too time-consuming. Moreover, when there is a 
high degree of variability in input parameters, careful attention must be exercised regarding the 
results from those methods. So, they have developed an exact solution for the mean value and 
variance of the random failure function in terms of statistical characteristics of both stresses and 
strengths. This approach considers the failure function as a random linear function of products 
of applied random stresses, instead of the traditional consideration of the FF in the form of a 
random non-linear function of the stresses and strength parameters. First, a general FF is 
considered as follows 

ij ij ijkl ij klF  (1.17) 

where ij , ijkl , … are the strength tensors. The condition of non-failure is F 1 . Now, the 

following vectors are introduced 

1 2 n 1 2 n[s] [s s ...s ]; [ ] [ ... ]  (1.18) 

where ms  are components characterizing all required combinations of the stresses, m  are the 

strength characteristics and n is the number of elements in the matrices. Hence, Eq. (1.17) may 
be presented as 

n

m m
m 1

F s  
(1.19) 

In a probabilistic framework, ms , m  and F should be considered as random variables: 

n
T

m m
m 1

F [ ][s] s  
(1.20) 

In this formulation, the random matrices [ ]  and [s]  may be represented by the mean matrices  

[ ]  and [s ]  and the correlation matrices s[K ] , [K ] , respectively; all of them considered as 

initial data. Basic statistical characteristics of F  namely mean value, F , and the standard 
deviation, F , are obtained as 

n n n
2

m m F sm ,m m m m ,m m m sm ,m m ,m
m 1 m 1m 1

F s ; K K s s K K  
 

(1.21) 

Here, the correlation between the strength characteristics and stresses has been ignored, but can 
be taken into account in principle. If the elastic properties are also considered as random 
variables, as usually is the case for composites and wood, their randomness results in 
randomness of the stresses even under the application of deterministic external loading. On the 
other hand, there often exists a correlation between stiffness and strength parameters. Therefore, 
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in a more accurate analysis, it is necessary to consider the correlation between the strength 
characteristics and stresses. 

The only assumption involved in this approach is connected with the type of distribution for F
, such as normal, Weibull, gamma distributions etc. In all the other methods cited above, 
reliability estimation requires an assumption regarding the type of the distributions for strengths 
and/or stresses, whereas Gurvich’s method needs an assumption about the type of the 

distribution for F . In simpler words, Gurvich changes the form of the failure function and states 
the problem such that, based on the multivariate distribution theory, an exact solution for the 
mean value and the standard deviation of the random failure function can be found in terms of 
mean values and correlations of input parameters in the new form. 

Gurvich and Pipes illustrated their method in the case of a single composite ply as well as a 
laminate. For a single ply under in plane loading, the stresses are uniform, similar to stress state 

at a material point; thus, by assuming a distribution for F  the reliability is easily obtained. On 
the other hand, the reliability of a laminate, in which there are usually different stresses in 
different plies, can be calculated by multiplication of reliability of all plies, using the concept 
of first-ply-failure. 

Also, a method to extend the concept of reliability to a structural member is to choose a 

distribution for the random failure function F  which already contains an integral for 
consideration of the spatial variation of stresses. This is usually done with the help of Weibull 
distribution. The CDF of this distribution is expressed as 

m
0V0

1P(F) 1 exp F / dV
V

 
(1.22) 

where 0V  is a reference volume, 0  is the scale parameter and m is the shape parameter. In 

this way, statistical size effect can be taken into account at the same time. Gurvich and Pipes 
[72] extended their previous work by introducing a new distribution to incorporate the statistical 
size effect and spatial variability of stresses, for which the reliability is obtained as: 

(x,y,z)
V0

1H exp A(x, y,z) dV
V

 
(1.23) 

where parameters A and  are functions of F  and F . They used Eq. (1.23) to calculate the 

reliability of a simply-supported beam under distributed random loading. It was shown that 
when the beam is considered as an assemblage of a number of rectangles, the numerical 
integration in Eq. (1.24) converges as the size of rectangles becomes smaller: 
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i j(x ,y )
i j

0 i j

t x yH exp A(x , y )
V

 
(1.24) 

A semi-analyical probabilistic approach in reliability analysis of structural members was 
proposed by Vallee et al. [73]. In contrast to the two previous analytical methods, which 
consider a failure criterion with random parameters, they first fitted a quadratic failure criterion, 
Eq. (1.25), to experimental strength results of composite laminae under combined tensile-shear 
loading. It means that the failure criterion contains deterministic strength parameters. The 
failure function is expressed as 

2 2
z xz

z,u xz,u
F 1 

(1.25) 

Then, the failure criterion is considered as a random function with stress components as its 
random parameters. Next, all the experimental strength data are substituted into the failure 
function as stress components which lead to a set of numbers scattered around one. Using the 
concept of brittle failure to apply the method to a structure/component, an adhesively bonded 
double-lap joint in this case, the following formula was introduced for estimation of probability 
of survival or reliability: 

mn
i i

s
0 0i 1

V FP exp
V F

 
(1.26) 

where iV  are small volumes in which the stress can was considered to be uniform and iF  is the 

value of the failure function in iV . Instead of the whole volume of the joint, based on 

experimental observations, three critical paths were chosen to be examined by Eq. (1.26). Next, 
due to linearity of the problem, there was a direct relationship between external loading and iF

, i.e. i i extF F  where i  is different at each volume iV . They used a finite element model to 

estimate i . Therefore, from Eq. (1.26) a relationship between the external loading and the 

probability of survival was established. 

1.4.5.4 Stochastic finite element method 

Recently, as a numerical method, the stochastic finite element modelling has received particular 
attention in reliability analyses of structures/component [26]. It is noted that the term ‘stochastic 
finite element’ has been used in the literature for probabilistic analysis of structures based on 
finite element models, in which the spatial variability of the mechanical properties may or may 
not have been taken into account. From a mathematical point of view, SFE method can be seen 
as a powerful tool for the solution of stochastic partial differential equations. Three different 
classes of SFE method have been developed in the literature: 1) the perturbation approach [74] 
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in which the response vector is expanded according to Taylor series, 2) the spectral stochastic 
finite element method [75] based on representation of each response quantity using a series of 
random Hermite polynomials and 3) Monte Carlo simulations [76] which is actually a way to 
extend the previously discussed MC to a structural member with spatially variable stresses. 

SFE method has several advantages. First, it is robust meaning that this method can work well 
in a wide variety of conditions [26]. Next, lots of parameters can be considered as random input 
variables such as random elastic properties, random geometrical dimensions and random 
external loading. Moreover, the correlations between parameters can also be taken into account 
[77]. The other feature of SFE method is that different non-linear constitutive equations can be 
considered, similar to conventional FEM. The major drawback of this method is that it is 
computationally expensive. 

Lin [78] used SFE method to predict the reliability of angle-ply laminates subject to in-plane 
edge random loads. This author provides a comparison of different reliability methods and 
different failure criteria using SFE method to derive the statistics of the First-Ply-Failure load 
by mean-centered second-order perturbation technique. Recently, Noh [24] proposed a 
formulation for SFE method based on perturbation techniques to determine the response 
variability in laminate composite plates considering the randomness of material parameters and 
different correlation states between them. The results were compared with experimental failure 
load data of centrally loaded composite plates with different lamination arrangements to study 
the accuracy of the methods. Recently, Philippidis and Bacharoudis [77] have utilized Monte 
Carlo-based SFE method to examine the reliability of wind turbine rotor blades. They have 
taken into account random elastic properties and strengths as well as random external loading. 

In timber applications, MC-SFE method has been mainly used, because of its simplicity and 
robustness. Clouston and Lam [16], considering strengths parameters as random variables, used 
MC-SFE method to predict the reliability of a center point off-axis bending member made of 
Douglas-fir laminated veneer. They used Tsai-Wu as failure criteria and Weibull theory in two 
different ways to take into account the statistical size effect. They also developed their model 
further [18] into a 2D nonlinear SFE method to simulate the stress strain behavior of strand-
based wood composites. The nonlinearity was considered only in compression and 
characterized within the framework of the theory of orthotropic plasticity, using Tsai-Wu 
criterion to describe the plastic flow rule. Their modelling results were comparatively in a good 
agreement with experimental results. They also extended their method into 3D nonlinear 
stochastic finite element modelling [17].  

More recently, the tensile strength of different orientation of wood strands from different 
growth ring positions was investigated by Jeong and Hindman [79] using MC-SFE method. 
They distinguished between earlywood and latewood in their model and assigned different 
random elastic properties and strengths to each of them, with no spatial variability. Predicted 
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ultimate tensile strengths from SFE method, based on Tsai-Hill failure criterion, were shown to 
be in good accordance with experimental results with a maximum error of 11.09%. Jeong et al. 
have also used MC-SFE method to analyze dovetail connections [80]. 

 

1.5 Failure criteria 
Choosing the failure criterion is a critical step in analyzing the performance of a material under 
loading. There is a number of failure criteria in the literature to study the performance of clear 
timber [81]. Most of them have been first developed to analyze the failure of composite 
materials and then were applied to wood. There are only a few failure functions which are 
developed especially for wood such as Norris’s theory [82] and Hankinson’s formula [83]. In 
the following, the failure criteria are reviewed briefly. It is noted that all failure criteria are 
based on on-axis stress components. 

Hankinson formula 

An estimation for the clear timber strength at any grain angle can be obtained based on the 
strength values of both parallel and perpendicular to grain directions using the following 
formula, which was introduced by Hankinson in its original form [83]: 

n n
XYX

Xsin Ycos
 

(1.27) 

where X  

direction, Y is the strength perpendicular to grain direction and n is an empirically determined 
constant; in tension n 1.5 2  and in compression n 2 2.5  [27]. The Hankinson formula has 
been shown to be independent of temperature [84]. This formula is sometimes used along with 
other failure criteria in wood failure analysis [85,86] 

Linear criterion 

The linear failure criterion is the simplest among others and is expressed as [87] 

y xyx 1
X Y S

 
(1.28) 

where x , y  and xy  are the in-plane stress components and S is the shear strength. For 

application of this formula to wood, the difference between magnitude of tensile and 
compressive strengths must be taken into account. This is also the case for the following failure 
criteria except for tensorial failure criteria in which this difference is explicitly incorporated. It 
has been shown that this function is not a good failure predictor for wood [88].  
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Quadratic Criterion 

Quadratic criterion [87] is the simplest quadratic failure criterion and is represented by an 
ellipsoidal envelope: 

2 22
y xyx 1

X Y S
 

(1.29) 

This formula is less common compared to the following failure criteria. 

Tsai-Hill Criterion 

Hill [89] developed a failure criterion for plastic anisotropic materials based on Von Mises 
distortion energy theory. Later, Azzi and Tsai [90] modified Hill’s theory to be used for 
composites. The criterion referred to as Tsai-Hill is written as 

2 22
x y y xyx

2 1
X Y SX

 
(1.30) 

Unlike the linear and quadratic failure criteria, this formula includes the interaction between 
normal stresses. Cabrero et al. [88] have shown that this is a good predictor of wood failure in 
the cases of combined tensile and compressive stress states.  

Norris Criterion 

Although originally developed by Norris [82] in 1950, this failure criterion is still being used 
widely [81]. This criterion, developed specially for wood, is also based on von Mises distortion 
energy hypothesis: 

2 2 22 2
x y y xy yx x1, 1, 1

X XY Y S X Y
 

(1.31) 

 In three dimensional stress states, this criterion is expressed in the following form [21]: 

222
x y y xyx

xy
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22 2
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X XY Y S

1,
X XZ Z S

1
Y YZ Z S

 

 
 
 
 

(1.32) 

 

Tsai-Wu failure criterion 

A failure criterion with a general tensorial form was proposed by Tsai and Wu [81]  

i i ij i jF F 1, i, j 1,2,...,6  (1.33) 
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where iF  and ijF  are the strength tensors and i  and j  are the stress tensors in contracted 

notation. For the two-dimensional stress state, Eq. (1.33) is expanded as: 

2 2 2
1 1 2 2 6 6 11 1 22 2 66 6 12 1 2 16 1 6 26 2 6F F F F F F 2F 2F 2F 1  (1.34) 

with the condition 2
11 22 12F F F 0 . 

The strength tensor components take the following form: 

1 2 6 11 22 66 16 262
t c t c t c t c

1 1 1 1 1 1 1F , F , F 0, F , F , F , F 0, F 0
X X Y Y X X Y Y S

 

(1.35
) 

where the Xt, Xc, Yt and Yc are the tensile and compressive strengths in longitudinal and 
transverse directions, and S is the shear strength. For the remaining component, F12, there is 
some controversy in the literature [91], and researchers have presented different expressions for 
it. Tsai-Wu [92] proposed 12 11 22F F F / 2 . Tsai and Wu argued that Eq. (1.34) in the case of 

isotropic materials has to reduce to von Mises criterion. Cowin [93] showed that, for bone and 
wood, the tensor theory is reduced to Hankinson formula and proposed the expression

2
12 11 22F F F 1/ (2S ) . Hoffman [94] suggested 11C F / 2  which is based on theories 

presented by von Mises and Hill, but assuming a brittle failure. Van der put [95] also proposed 

12F 0 , arguing that this can better represent the behavior of timber. 

In previous models, the interaction term F12 can be experimentally obtained based on the results 
of on-axis uniaxial tests. The more direct approach is to use on-axis multiaxial tests or off-axis 
uniaxial tests. For example, if multiaxial hydrostatic tension P is applied to the specimen, using 

Eq. (1.34), 12F  is obtained as [81] 

2
12 1 2 11 222

1F 1 P F F P F F
2P

 
(1.36) 

Similarly, in the case of uniaxial off-axis test, after calculating on-axis stress components as a 

function of the off-axis stress , substituting them into Eq. (1.34) and doing some 

mathematical manipulation, 12F  is obtained as 

2 21 2 11
12 66 222 2 2 2 2 2

1 1 F F FF F F tan
2 sin cos sin cos tan

 
 

(1.37) 

This method is easier in practice than performing multiaxial tests; therefore, it is important to 
consider which angle  is most suitable. Clearly, it should be large enough to produce 
acceptable on-axis stress in transverse direction. Clouston et al. [96] showed that the most 
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1.6 Thesis justification 

The literature lacks sufficient information on the experimental and theoretical aspects of the 
RSV of clear timber properties and its effect on the response of clear timber components, such 
as bonded joints, under external loading. More specifically, there are only a limited number of 
studies on the characterization of the RSV of the mechanical properties of clear timber [97-99], 
and the RSV is usually not studied at the mesoscale. There is no size effect model at this scale 
for clear timber. Also, to the best of the authors’ knowledge, no previous study has taken the 
RSV of clear timber properties, as multi-dimensional fields, into account for assessing the 
random response of clear timber components. 

This thesis is focused on the variability of the mechanical properties of clear timber, with 
emphasis on the mesoscale variations, and its effect on the properties of clear specimens of 
different sizes and on the stochastic response of clear timber components such as adhesively 
bonded timber joint. The emphasis on the mesoscale is because in the finite element analyses 
of those timber structures/components in which failure occurs in the clear wood, the failure 
initiation is normally equivalent to the first element failure. These elements are often at scale 
of millimeters. Therefore, for an accurate prediction of the failure initiation, the local behavior 
of clear timber becomes of critical importance. At this scale, both elastic moduli and strength 
parameters spatially change their values as the spatial position changes (Chapters 3 and 5). A 
change in local values of the elastic moduli at critical areas of a structural component with high 
stress gradients, assuming fixed geometry and boundary conditions, will change the stress field 
at those areas. Consequently, when a failure function is used for failure prediction, these 
changes in the stress components and strengths parameters will affect the prediction. This is 
why taking into account the variability of the mechanical properties is important in analysis of 
clear timber structures.  

Experiments are needed to characterize the size effects and RSV for the longitudinal and 
transverse tensile strengths of clear timber at mesoscale. Also, there are no information in the 
literature on the correlation between elastic and strengths parameters at mesoscale for clear 
timber which can be important for stochastic simulations. In parallel, models are also needed 
for describing these phenomenons as well as further predictions. 

Based on these arguments the thesis objectives were defined and are presented in the next 
section. As mentioned earlier, this thesis focuses on clear timber. However, it is also regarded 
as a fundamental step toward a wider framework capable of assessing performance of timber 
structures with knots. In [100], an approach has been proposed for estimating the elastic 
deflection of beams with knots based on the test results of clear timber specimens. In this 
approach, the distribution of knots in a timber beam are modelled, as spatially distributed 
imperfections, by a random field. Other approaches, such as direct modeling of knots in the 
finite element model might be applicable as well [29]. 
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1.7 Objectives 

The purpose of the present study is to experimentally investigate the size effects and RSV of 
the mechanical properties of clear timber, and to establish models for the size effect on the 
strength and the assessment of the stochastic response of structures made of clear timber. In this 
regard, the first objective is to develop a size effect model for clear timber strength. The second 
and third objectives are to experimentally characterize the size effect, RSV and meso-
correlation between local modulus and strength for longitudinal and transverse directions. The 
final objective is to establish an SFE framework that uses the data on the size effects, RSV and 
correlations to model the stochastic response of clear timber components such as bonded timber 
joints. These objectives are listed below: 

1. The experimental characterization of the RSV of the longitudinal mechanical properties 
of clear timber and the evaluation of the size effects and correlation between properties 
at the mesoscale. 

2. The experimental characterization of the RSV of the transverse mechanical properties 
of clear timber and the evaluation of the size effects and correlation between properties 
at the mesoscale. 

3. The establishment of a strength size effect model taking into account the RSV of clear 
timber strength.  

4. The development of an efficient SFE framework for clear timber components and its 
application to an adhesively-bonded timber joint. 

 

1.8 Methods of investigation 

Both experimental and numerical methods have been used to achieve the objectives. Methods 
1 to 4 correspond to objectives 1 to 4 of the previous section: 

1. A significant number of quasi-static tensile tests (165 tests with proper failures) were 
carried out on clear specimens of different sizes, cut in the longitudinal direction of 
timber boards and conditioned to 12% moisture content. Local deformations were 
measured via video extensometry. 

2. A large number of quasi-static tensile tests (226 tests) were performed on clear 
specimens of different sizes, cut in the transverse direction of timber boards and 
conditioned to 12% moisture content. Again, local deformations in each specimen were 
measured via video extensometry. 

3. The theory of random fields based on the spectral representation scheme was used to 
model the RSV of the strength field in MATLAB. The weakest link theory and the 
Monte Carlo method were used to obtain the size effect on the strength. 
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4. An SFE framework was established using MATLAB and ABAQUS. The RSV of the 
mechanical properties, taking into account their correlations, was modeled in MATLAB 
based on the spectral representation scheme and transferred to finite elements via the 
ABAQUS user-defined element (UEL) subroutine. The Monte Carlo simulation method 
was used to assess the stochastic structural response. To show the capability of the 
framework in modeling clear timber components, an adhesively-bonded clear timber 
joint was modeled based on an experimental data from the literature for the same joint. 
Due to lack of experimental data for the spatial variability of the mechanical properties, 
an average value considered for correlation lengths of all the involved elastic and 
strength parameters. By using an appropriate value for this average correlation length, 
the applicability of the model to clear timber components was validated. However, 
experimental input data are necessary to validate the efficiency of the model in 
predicting the load bearing capacity of clear timber components. 

 

1.9 Thesis organization 

The thesis is organized into seven chapters. The first chapter is the thesis introduction. Five 
next chapters are the main body of the thesis. Chapter 2 describes the developed size effect 
model for clear timber strength. Chapters 3 to 5 present the performed experiments and the 
results on RSV, size effect and correlations for mechanical properties of clear timber in 
longitudinal and transverse directions. Chapter 6 describes the procedures of the developed SFE 
framework for evaluation of stochastic response of clear timber components and the case study 
performed on an adhesively bonded timber joint. To evaluate the stochastic response, the model 
of the joint is built in ABAQUS which uses the experimental data on RSV and correlations 
between elastic and strength parameters, as well as the developed size effect model. The size 
effect model adjusts the strength parameters between the tested specimen size and the size of 
the area around the integration point in the finite elements of the joint model. The thesis 
organization is illustrated in Fig. 1.5. It can be considered as a developed tool for design of clear 
timber component, although the size effect model of Chapter 2 or the experimental results can 
be used on their own as well. However, the information specified by dashed lines in Fig. 1.5, 
are missing for validation of the model. For a general clear timber component, these include 
input experimental data on RSV and correlations for the material properties for shear and 
compression as well as experimental data on the component capacity. Nevertheless, the 
applicability of the tool developed for estimation of the stochastic response of clear timber 
components was shown in Chapter 6 by modeling the tensile failure behavior of bonded joints, 
using experimental data from the literature and finding an average appropriate value for the 
correlation length. Finally, Chapter 7 concludes the thesis. 
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Fig. 1.5: Schematic overview of the thesis. 
 

The overview of each chapter is given in the following. 

Chapter 1 – Introduction: The natural randomness in the timber properties and its significance 
in the analysis of timber structures/components is discussed and the relevant literature is 
reviewed. The wood structure, different types of uncertainty and timber design approaches are 
explained.  The knowledge gap, based on which the research objectives are defined, is 
discussed. The experimental and theoretical investigation methods adopted to achieve the 
objectives are explained.  A summary of the thesis content is provided in this chapter. 
Discussions for thesis justification and its limitations are also carried out. 

Chapter 2 – Size effect model: A model is proposed to express the size effect on clear timber 
strength that takes into account the spatial variability in the strength field to fulfill objective 3. 
The theory of random fields was used to model the random 3D spatial variability of the strength 
field. Using the spectral representation scheme, realizations, which are samples of a random 
field, of the strength field in each specimen were generated. The stochastic response was 
obtained via the Monte Carlo method along with the weakest link theory. This procedure was 
repeated for specimens with different volumes to estimate the effect of size on strength. In 
determination of model unknown parameters, the experimental data from the literature on the 
longitudinal strengths of two sets of specimens with different volumes, for each one of spruce 
and Japanese larch wood, were used. These data were sufficient to obtain the two unknown 
parameters of the model for each species. This way, the correlation lengths for longitudinal 
strength of the woods were obtained. This calibration (finding appropriate parameters) was 
possible due to the improvement of the proposed model compared to the classical Weibull 
model, and it was shown that Weibull model can never be calibrated for none of the woods 
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considered. An analytical expression to approximate the numerical results of the 3D random 
field modeling was also introduced. 

Chapter 3 – Longitudinal mechanical properties of clear timber: RSV and size effects: 
Specimens of different lengths were prepared and their quasi-static behavior was 
experimentally investigated under tensile loading, concerning objective 1. In addition to the 
global displacement monitoring, the local deformations along the length of each specimen were 
measured. The effect of the mesostructure of the clear timber on the local elastic modulus was 
examined. The spatial variability of the elastic modulus was experimentally characterized. Also, 
statistics concerning the elastic modulus, strength and strain to failure as well as correlations 
between elastic modulus, strength and density were derived. Moreover, the size effect on these 
properties due to the length change was studied.  

Chapter 4 – Transverse mechanical properties of clear timber: Uncertainty and size 
effects: Quasi-static experiments were performed on specimens with different lengths in the 
transverse direction, concerning objective 2. In addition to the global displacement monitoring, 
the local deformations along the length of each specimen were measured. The mechanical 
behavior of specimens of different lengths cut in a regular and random manner from different 
boards was studied. The statistics concerning the elastic modulus, strength and strain to failure 
as well as the effect of size on these properties were examined. The accuracy of the CWSEL 
for modeling the transverse tensile strength of small clear specimens was also evaluated, and 
the correlations between the mechanical properties and between the mechanical properties and 
material density were investigated. Specimens were also grouped based on failure type, and an 
analysis of variance (ANOVA) was used to find statistically significant differences between the 
mean strengths of these groups. 

Chapter 5 – Transverse mechanical properties of clear timber: Spatial variability: The 
experimental data from the transverse tensile tests were further used for characterization of the 
RSV, concerning objective 2. The spatial variability in the transverse elastic modulus, 
transverse strength and transverse strain to failure in both longitudinal and transverse directions 
was characterized. Also, the effect of the mesostructure of the clear timber on the local elastic 
modulus was studied. Finally, the effect of some defects on the timber properties were 
examined. 

Chapter 6 – SFE modeling framework for clear timber structures: A 2D stochastic finite 
element framework was developed for the stochastic structural response assessment of timber 
structural members made of clear timber concerning objective 4. The realizations of material 
properties, considering their correlations, were generated in MATLAB based on the spectral 
representation scheme, and the size effect on the strength was also taken into account using the 
model of Chapter 2. These realizations were transferred to actual finite elements in the 
commercial finite element software ABAQUS by writing a UEL subroutine. As a real 
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application, the behavior of an adhesively-bonded double-lap beech joint was simulated under 
tensile loading and the stochastic response was obtained using the Monte Carlo method, based 
on the experimental data from the literature on the statistics of beech mechanical properties. 
The size effect model developed in Chapter 2 was used for adjustment of strength parameters 
from small clear specimens. The experimental data from the literature on the joint capacity were 
used to find an appropriate average correlation length for beech properties. This was done so 
that result of the model joint, with its other existing constraints such as pre-determined statistics 
for all the mechanical properties, be as close as possible to the experimental results. This 
correlation length was also used in the size effect adjustment. 

Chapter 7 – Conclusions and future work: The thesis conclusions drawn from experimental 
and theoretical/numerical results are summarized. This chapter also highlights the original 
contributions of this work to the research field. Finally, recommendations concerning future 
efforts for the continuation of the current work are given. 

 

1.10 Thesis limitations/assumptions 

The limitations/assumptions of the thesis are as follows: 

 The developed models and performed experiments are for the case of short-term quasi 
static behavior. 

 All experiments are performed at a moisture content of 12% and laboratory temperature 
of 22±3 °C. 

 The main focus of the thesis is the variability of the mechanical properties and its effect 
on the stochastic response of clear timber components. Other kind of variabilities such 
as variability of the external loading and variability of the structure dimensions are not 
covered. 

 Clear timber was considered for all the investigations. 
 Only tensile longitudinal and transverse properties were experimentally characterized.  
 Linear elastic, small deformation assumption, which leads to brittle failure of the 

material, was used in the models. 
 Chapter 2: Although the size effect model predicts the effect of size on the strength for 

volumes outside the range of the available experimental data as well, which has a 
physical justification as explained in Chapter 2, more experimental data would be 
desirable in these range. Therefore, it can be stated that the model is more descriptive 
outside this range, meaning that although the size effect is predicted based on sound 
physical concepts, it is not experimentally validated. In Chapter 4, however, the left 
asymptotic behavior was experimentally validated. It was assumed that the correlation 
length is the same in longitudinal and transverse directions to reduce the number of 
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unknowns. The correlation length is most likely to be different in different orthotropic 
material directions. Nevertheless, since the cross-sectional dimensions of the tested 
specimens were rather small compared to the longitudinal dimension, the estimated 
correlation lengths are much closer to the true longitudinal correlation length.  

 Chapter 3: The experimental investigation of the size effect was performed for modulus 
of elasticity, strength and strain to failure. However, the RSV was only characterized 
for the longitudinal elastic modulus. Also, the transverse variation of the longitudinal 
properties in the study of size effect and RSV have been implicitly taken into account, 
so the provided statistics represent the total variability of the longitudinal properties. 

 Chapters 4-5: The lumbers used for fabricating specimens in these chapters were cut in 
the so-called radial plane, but the specimens were not positioned exactly in the radial 
plane that crosses the pith. The experimental investigation of the size effect was 
performed for modulus of elasticity, strength and strain to failure. However, the RSV 
was mainly characterized for the transverse elastic modulus, although the RSV for 
transverse strength and strain were also investigated with the available data. 

 Chapter 6: The main novelty of this chapter was the establishment of the new SFE 
framework that, with appropriate input data on RSV, can potentially be applied to 
different clear timber components under various loading conditions, taking into account 
the orthotropic behavior of clear timber. The developed SFE framework was applied to 
an adhesively bonded timber joint. For the simulation, due to lack of experimental data 
for the shear properties as well as the joint capacity, the experimental data from literature 
were used. An average correlation length for strength and elastic parameters was 
considered for the simulations. This average value was obtained with regard to 
experimental data on joint capacity. Complete experimental data on the correlation 
length and simulations of different components are needed for validation of the model. 
Therefore, the model is, at its current state, is more descriptive than predictive. The aim 
of this simulation was first to show the capabilities of the developed SFE framework in 
modelling real structures via a demonstrative example, and second, was to show that 
with appropriate value for the correlation length, the predicted results can be in a fairly 
well agreement with the experimental results for the joint capacity. 

 

1.11 List of Publications 

The results of this research have been included in five journal papers that correspond to 
Chapters 2 to 6 of the thesis. Three papers have been submitted, one of which is accepted, and 
the last two of the five papers are in progress. The papers are as follows: 
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Paper 1: Moshtaghin, A.F., Franke, S., Keller, T., Vassilopoulos, A.P., 2016. Random field-
based modeling of size effect on the longitudinal tensile strength of clear timber. Structural 
Safety 58, 60-68. 

Paper 2: Moshtaghin, A.F., Franke, S., Keller, T., Vassilopoulos, A.P., February 2015. 
Experimental characterization of longitudinal mechanical properties of clear timber: Random 
spatial variability and size effects. Submitted to Construction and Building materials. 

Paper 3: Moshtaghin, A.F., Franke, S., Keller, T., Vassilopoulos, A.P., December 2015. 
Transverse mechanical properties of clear timber: Uncertainty and size effects. Submitted to 
Wood Science and Technology. 

Paper 4: Moshtaghin, A.F., Franke, S., Keller, T., Vassilopoulos, A.P., 2016. An experimental 
study on the spatial variability in transverse mechanical properties of clear timber. In progress. 

Paper 5: Moshtaghin, A.F., Franke, S., Keller, T., Vassilopoulos, A.P., 2016. ABAQUS-based 
non-intrusive stochastic finite element framework: Application to adhesively-bonded timber 
joints. In progress. 
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2   Random field-based size effect model for 
longitudinal strength of clear timber 
 

 

 

2.1 Introduction 

From a structural point of view, wood/timber can be considered as a natural unidirectional fiber 
composite with highly anisotropic properties. For specific species, geographical location, and 
local growth conditions, the material properties depend on factors such as age, structural 
imperfections, location of timber within the tree, and load history and are therefore inherently 
highly variable. One of the consequences of this variability is the phenomenon known as 
statistical size effect. When the failure mode is brittle, the mean strength of a specimen with a 
larger volume is lower than that of a smaller one, which is also the case for any other level of 
cumulative probability, and this difference increases with the level of variability in material 
properties. This is normally attributed to the higher probability of critical defects occurring in 
a larger volume. 

The classical Weibull size effect law (CWSEL) [1] is the most common model used in the 
literature [2] for the description of statistical size effects on timber strength in its brittle failure 
modes. According to this model, a structural member fails when the stress level reaches the 
strength at a single material point. 

The size effect on timber strength can be treated as a volume effect, for example see [3-6] where 
such an assumption was adopted for the failure analysis of adhesively-bonded, welded and 
dovetail timber joints and [7-9] in which the elastoplastic behavior of strand-based wood 
composites and laminated veneer was studied. The Weibull law was applied only in tensile 
mode, while plastic behavior was considered only in compressive mode. Alternatively, the size 
effect can be split into length and cross-sectional effects - see e.g. [10,11] - on the strength 
prediction of clear timber under bending and [12] in the case of structural lumber. 

Nevertheless, research efforts for the quantification of size effect on the strength of clear wood, 
by conducting pure tensile tests on specimens with different volumes, are very limited in the 
literature. Dill-Langer et al. [13] conducted longitudinal tensile experiments on specimens made 
of spruce wood. Two groups of specimens with different volumes were tested and a fiber bundle 
model was introduced in order to simulate the macroscopic behavior in terms of microscopic 
damage. Zhu et al. [14] introduced a length-effect parameter to quantify the size effect due to 
the length change on the longitudinal tensile strength of Japanese larch wood. 
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In current practice using the CWSEL, a Weibull distribution is fitted to data obtained from 
experiments on specimens with standardized dimensions. Then, the CWSEL is used to predict 
the strength of pieces of timber either with higher volumes [2,10,11], like timber beams, or 
lower volumes [4,7], which are usually small elements considered in finite element analyses of 
timber structures. However, using experimental data from the literature [13,14], it is shown in 
the current study that this procedure can result in relative errors in the prediction of the size 
effect on timber strength as high as 400%. This is attributed to the fact that the spatial correlation 
in the strength field is neglected in the CWSEL. It is noted that the inaccuracy of the CWSEL, 
when small volumes of materials are concerned, is already known; however, the issue has been 
overlooked in the case of timber. Nevertheless, it is important, particularly in the FE content, 
to extend size effect predictions to small volumes.  

As an alternative to the CWSEL, timber strength can be modeled as a random field, considering, 
in addition to strength variation between different specimens as in conventional statistical 
analyses, the spatial variation within each specimen in a random manner. There are several 
methods to generate realizations of a random field in each specimen. The two more commonly 
used methods are the spectral representation method [15] and the The Karhunen–Loève (K–L) 
expansion [16]. A comparison between the two methods showed that the spectral representation 
method is faster and more efficient [17]. Among other methods, turning bands method [18], the 
autoregressive moving average–autoregressive models [19], the optimal linear estimation [20] 
and the expansion optimal linear estimation method [21] can be mentioned. A realization is a 
randomly generated sample of a random field and describes the spatial variability of the field 
for that sample in the physical domain considered, e.g. the volume of a specimen. Realizations 
of the strength field for specimens with different volumes can be used for investigating the size 
effect. Recently, Arwade et al. [22,23] used the random field approach to characterize the 
lengthwise spatial variability in the elastic modulus and compressive strength of parallel strand 
lumbers as 1D random fields. However, there is no study in the literature that has been devoted 
to the size effect on the longitudinal tensile strength of clear timber, and the spatial correlation 
in the strength field, i.e. the way in which the strength value at one point influences the strength 
at the surrounding points, has usually been neglected. 

Studying the size effect on the longitudinal tensile strength of clear timber using random fields, 
is a problem of finding the extreme value statistics. This is because the failure mode is brittle, 
and to investigate the size effect, the distributions of minima of strength fields for specimens of 
different volumes has to be obtained. The extreme value problem was studied thoroughly by 
Gumbel in 1958 [24]. Concerning random fields, lots of research on this problem has been 
conducted in different scientific domains, e.g., by mathematicians [25], and in hydrology [26], 
climate [27], and cosmology [28]. Useful information on this topic can be found in [29]. 
Analytical solutions are only available for a few cases [30], and therefore, numerical methods 
such as simulations [31] or asymptotic approximation methods [30] are usually employed.  



Stochastic analysis of clear timber as a structural material  
 

41 
 

This study presents a model for the size effect on timber strength that takes into account the 
spatial variability in the strength field. The theory of random fields was used to model the 
random 3D spatial variability of the longitudinal strength. Using the spectral representation 
scheme, realizations of strength field in each specimen were generated considering the Weibull 
distribution and squared exponential function for statistical variability and spatial variability, 
respectively. The stochastic response was obtained via the Monte Carlo method along with the 
weakest link theory. This procedure was repeated for specimens with different volumes to 
estimate the effect of size on strength. The current results were compared to experimental data 
from the literature. An analytical expression able to efficiently approximate the numerical 
results of the random field modeling has also been introduced in this Chapter.  

 

2.2 Classical Weibull size effect law and its limitations 

2.2.1 Weibull size effect theory 

The CWSEL has been widely used to model the size effect on timber strength [2,4-12]. 
According to this model, the material is considered as a structure made up of linked elements, 
which fails with the first element failure. The mean strength of a specimen under uniaxial 

loading, ( )V , is related to its volume V  as [32]: 
 

1/0
0( ) (1 1/ )( ) mVV m

V
 (2.1) 

where 0  and m  are the scale and shape parameters of the Weibull distribution,  is the 

Gamma function, and 0V  is a reference volume. Eq. (2.1) can be plotted as a straight line in a 

log-log scale. The procedure to obtain this formula is explained in [32]. 

It can be shown that, at any given failure probability level, the strengths of two pieces, 1 and 

2 , with volumes 1V  and 2V  are related: 

 

1/
1 2

2 1

m
V
V

 (2.2) 

based on the assumption of independent identically distributed random variables [33]. The 
analytical procedure to obtain Eq. (2.2) is explained in [34]. For a numerical representation of 
the method, the larger volume 2V  is divided into n  segments with volumes equal to 1V  and a 

random strength value from the Weibull distribution, corresponding to volume 1V , is assigned 

to each segment. The minimum value of the segment strengths is considered as the strength of 
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2V  based on the weakest link theory. This simulation is repeated as many times as necessary to 

collect sufficient data points for estimating the statistics of the strength distribution of 2V . When 

2 1/V V  is not an integer, interpolation can be used. Finally, having obtained the strength 

distributions for both volumes, it is easy to show that their relationship follows Eq. (2.2). 
However, due to this independent spatial assignment of the strength to smaller segments in the 
larger volume, The CWSEL tends to overestimate the effect of size on strength [33]. In reality, 
there is always a spatial correlation in the strength field that can be considered by using the 
random field approach. Moreover, Eq. (2.2) implies that the CWSEL can be scaled arbitrarily; 
i.e., its form does not change even for very small volumes of materials. Therefore, for very 
small volumes ( 0V ) the scale parameter, or equivalently the mean value of the strength 
distribution, approaches infinity. However, this is not the case in reality, and there is an upper 
limit for strength as volume decreases. 

2.2.2 Modeling size effect on longitudinal tensile strength of clear timber with CWSEL 

In most works related to the size effect on the longitudinal tensile strength of clear wood, tensile 
tests parallel to the grain are only performed on specimens with a constant volume. This is 
because testing a set of specimens with a constant volume suffices to determine the unknown 
parameter of the CWSEL. Thus, by fitting the Weibull distribution to the experimental data, the 
shape parameter is estimated, and the CWSEL is then used in the related application, such as 
estimation of a wooden joint capacity [4]. To the authors’ knowledge, there are only two works 
[13, 14] in which the effect of volume change on the longitudinal tensile strength of clear timber 
has been investigated experimentally. The specimen dimensions in these works and the 
corresponding Weibull parameters are given in Table 2.1. The dimensions correspond to the 
middle part of specimens with a constant cross-sectional area. In [13], longitudinal tensile tests 
were conducted on two sets of clear specimens made of spruce wood. The dimensions of the 
larger specimen are approximately three times those of the smaller specimen. In [14], however, 
only the length of the specimen has been changed. Nevertheless, in each of these works, the 
Weibull shape parameters obtained from fitting the experimental results of the smaller and 
larger specimens exhibit some differences. To examine the size effect within the Weibull theory 
framework, it is necessary to have a constant shape parameter; therefore, an average value was 
used in this study for examining the accuracy of the CWSEL; i.e., 9.3 and 4.0 for the 
experimental results from [13] and [14] respectively. The error introduced in the calculation of 
mean values due to this averaging, compared to mean values from experimental data, is less 
than 0.5% in both cases.  
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Table 2.1: Experimental results for longitudinal tensile strength of clear timber. 

Researchers Type of 
wood 

Specimen 
dimensions (mm3) 

Weibull scale 
parameter (MPa) 

Weibull shape 
parameter 

Mean value 
(MPa) 

Dill-Langer 
et al. [13] 

spruce 2×6×35 146.2 8.3 138.7±19.8 

6×20×110 134.0 10.3 127.1±14.9 

Zhu et al. 
[14] 

Japanese 
larch 

5×25×30 122.9 3.77 111.4±32.9 

5×25×120 114.0 4.22 103.3±27.7 

 

When specimen volumes and Weibull shape parameters for spruce are substituted into Eq. (2.2), 
an increase of 45% in the mean value strength, from larger specimens to smaller ones, is 
predicted. However, experimental results show only a 9.1% increase in strength. Therefore, the 
absolute error in the Weibull prediction for strength change is 45 9.1 35.9% . In the case 

of Japanese larch, an increase of 41.4% in the mean strength is predicted by the CWSEL. 
However, there is only a 7.8% increase in the strength according to experiments. In this case, 
the absolute error introduced in the prediction of strength change due to size effect is 
41.4 7.8 33.6% . 

To highlight the inaccuracy of the classical law, the relative error is also calculated. This value 
shows the error in prediction of strength change compared to the absolute value of the change 
obtained from experimental results. The relative errors, in the case of spruce and Japanese larch, 
are 45 9.1 / 9.1 100 394%  and 41.4 7.8 / 7.8 100 431% , respectively. In both cases, 

the CWSEL overestimates the change in strength by a factor of 5, approximately. 

The above calculations show that the CWSEL can severely overestimate the effect of size on 
timber strength. 

 

2.3 Strength of timber as random field 

Random variability and spatial variability in material properties usually exist in parallel. For 
example, in a set of specimens prepared for standard mechanical tests, the properties randomly 
change from one to another. Also, these specimens have already been cut from spatially 
different places in a timber board or composite panel that comprises spatial variability. The 
combination of random and spatial variability is referred to as random spatial variability. Taking 
this variability into account can result in more accurate and realistic numerical models, leading 
to more reliable and optimized timber-based designs. However, the spatial variability in the 
properties of clear timber has frequently been neglected in the literature [3-12]. Although knots 
are frequently present in timber structures, in some applications such as timber joints, the failure 
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usually occurs in the clear wood that is being considered in this thesis. Moreover, the current 
study can form a basis for developing models for structures containing knots. 

The stochastic/random field approach can be used to model the random spatial variation of the 
strength [35]. Unlike composite laminas and laminates, which can usually be safely considered 
as 2D structures such as plates due to their low thickness, timber structures are normally 
modeled as beam, columns etc., which have 3D spatial variation along their lengths as well as 
their cross sections. Hence, a 3D random field should be used for the appropriate modeling of 
the strength field in timber. 

To model timber strength as a random field, statistical variability and spatial variability have to 
be analytically formulated. Statistical variability is described by the marginal distribution of the 
random field. Marginal distribution is the statistical distribution of samples of the random field 
simulated in a small volume of material in which spatial variability can be neglected. In other 
words, the simulated field has the same value throughout a specific sample, but this can change 
from one sample to another. Also, spatial variability is normally characterized using an 
appropriate autocorrelation function that specifies the degree of correlation in strength values 
at a specific material point and its surrounding points. The term auto indicates the correlation 
between values of the same parameter. This autocorrelation function contributes to the 
generation of realizations of the random field, as shown in the next section.  

The autocorrelation function of the random field ( )Y x  is defined by the following equation [34]: 

1 2 1 2 1 2( , )YY YYR y y f y y dy dy  (2.3) 

where random variables 1y  and 2y  represent ( )Y x  at the positions 1x  and 2x , and 1 2( , )YYf y y  

is the joint probability density function (PDF) of the random variables 1y  and 2y . The marginal 

PDF is not always available [21], and only the marginal PDF is usually at hand: 

1 1 2 2( ) ( , )Y YYf y f y y dy  (2.4) 

which is independent of x  for stationary random fields, as is the case in the current study. In 
practice, different autocorrelation functions have been developed that can be used for different 
random fields [29]. Concerning material parameters, exponential and squared exponential 
autocorrelation functions have proved to be most successful [35,36-39]. Some applications for 
material characterization include unidirectional composites [35], strand chopped mats [40], 
concrete [41] and glass fibers [33]. The squared exponential function was selected in the present 
study, as it has been used more often for fibrous composites [35,36,39,40] and is expressed as: 
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2 2 2 2
1 2 3( )/2 e dR  (2.5) 

where  is the standard deviation of the strength field, d  is a correlation length and 1, 2  and 

3  are separation distance components along 1x , 2x  and 3x  directions respectively. Correlation 

length specifies the level of correlation in space; the shorter the correlation length, the faster 
the correlation decreases. The assumption of having the same value for correlation length in the 
longitudinal and transverse directions is commonly found in the literature [35,36,39,40] for 
composites. This assumption would be more justifiable for timber structures where the cross-
sectional dimensions of structural members are normally smaller than the longitudinal ones and 
also the ones used in this study. Nevertheless, due to the orthotropic behavior of timber, it is 
most likely that the correlation length would be different in the transverse direction, which is 
commonly considered to be the isotropic plane. 

 

2.4 Random field modeling procedure 

In order to model timber strength as a random field it is necessary to generate spatial variation 
of strength in a specified domain, and to obtain the desired response based on this spatial 
variation.  

2.4.1 Generating realizations of strength as a 3D random field 

Within the framework of the spectral representation scheme, simulation of a non-Gaussian 
random field is based on simulating an underlying Gaussian one. After this underlying Gaussian 
random field has been determined, the translation technique can be applied to generate 
realizations of the target non-Gaussian field. The translation technique is a memory-less non-
linear transformation of a Gaussian field into a non-Gaussian field [42].   

The method for simulating a Gaussian random process was first presented by Shinozuka and 
Jan [43] and later extended to multidimensional random fields [15]. In this method, the 
Gaussian random field ( )Gf x  is expanded as a sum of cosine functions having random phase 

angles and deterministic amplitudes. The amplitudes depend on the power spectral density 
function of the random field, which in 3D space is defined as: 

1 1 2 2 3 3( )
1 2 33

1( ) ( ) e
2

i
G GS R d d d  (2.6) 

where GR  is the autocorrelation function and 1, 2  and 3  are the corresponding wave 

numbers. The formula to simulate the Gaussian random field is [15] 
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where: 

1 2 3 1 2 31 2 3 1 2 32 ( , , )n n n G n n nA S  
(2.8) 

1 2 31 1 1 2 2 2 3 3 3, ,n n nn n n  
(2.9) 

1 2 3
1 2 3

1 2 3
, ,u u u

N N N
 (2.10) 

1 2 1 3 2 30 0 0 0n n n n n nA A A   for: 

1 1 2 2 3 30,1,..., 1; 0,1,..., 1; 0,1,..., 1n N n N n N  

(2.11) 

In Eq. (2.7), 
1 2 3

1, 2,3, 4i
n n n i  are random phase angles and ( 1,2,3)iu i  are upper cut-off 

wave numbers. iu  are selected as being sufficiently large to cover the whole wave range of 

interest. Also, a random number generator is used to produce the independent random phase 
angles in each sample function that are uniformly distributed in the range 0, 2 . Moreover, 

the fast Fourier transform technique can be applied when calculating the series in Eq. (2.7) to 
reduce the computation time of sample function generation. This is a major advantage 
especially when dealing with 3D random fields. As pointed out in [17], the computational 
efficiency of this method is far better than the other popular method known as the Karhunen-
Loeve expansion. 

Recently, a simple and efficient scheme has been introduced by Shields et al. [42] for the 
simulation of general non-Gaussian one-dimensional random processes based on simulating an 
underlying Gaussian process. In the present study, an extension to 3D random fields has been 
introduced. This scheme is based on the translation technique for estimating the non-Gaussian 
random field: 

1
1 2 3 1 2 3( , , ) ( , , )nG nG G Gf x x x F F f x x x  (2.12) 
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where 1
nGF  is the inverse of non-Gaussian cumulative distribution function (CDF) and GF  

denotes the CDF of the underlying Gaussian random field. If the autocorrelation function of the 
underlying Gaussian random field is known, this transformation can always be applied. 
However, the autocorrelation function of the non-Gaussian field is normally available, see (Eq. 
(2.5)), instead of the autocorrelation function of the Gaussian field. nGS  can therefore be 

obtained by substituting nGR estimated by Eq. (2.5) into Eq. (2.6):  

2
2 2 2

1 2 3
3

2 4
1.58

d

nG
dS e  (2.13) 

This integration was done in MATLAB. An autocorrelation function for the underlying 
Gaussian field is estimated in an iterative manner, using the non-Gaussian marginal distribution, 
and the nGR  and nGS  as input data. When GR  has been estimated, a Gaussian sample function 

can be generated using Eq. (2.7). Finally, the transformation in Eq. (2.12) is applied to obtain 
the target non-Gaussian sample function, which expresses the spatial variation of the strength 
field in each specimen. 

Each Gaussian realization is generated at one step using Eq. (2.7), with no iteration. This 
equation includes a converted form of correlation function but also lots of randomly generated 
numbers, based on the ‘uniform’ statistical distribution between 0 and 2 . The final summation 
of series gives a function of only space coordinates. Now the insertion of the coordinates of 
each point in the space will give the value of the parameter at that point in that realization. The 
random difference between realizations comes from the randomly generated numbers for each 
realization. 

This single sudden step will generate a realization with an underlying Gaussian distribution and 
with the desired spatial correlation structure. After that, the translation to the Non-Gaussian 
realization is done using Eq. (2.12), which distorts the spatial correlation structure. An iterative 
procedure is needed to maintain the original spatial correlation structure according to the 
correlation function of Eq. (2.5), as explained above. 

2.4.2 Random response assessment 

In this study, the Monte Carlo method was used to estimate the statistics of the stochastic 
response of the tensile strength of wooden specimens with different volumes. Following the 
above-mentioned method, realizations of the strength random field were generated in each 
specimen. The spatial variation of the random parameter in the generated realizations were 
continuous and smooth, indicating that a sufficient number of terms were considered in 
calculating the series in Eq. (2.7). The strength of a specimen under a uniform uniaxial stress 
state can be determined as the minimum value of the strength field in the corresponding 
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realization, as the failure mode is brittle for timber in parallel to the grain direction. Therefore, 
the smoothness of the spatial distribution is important for accurate estimation of the minimum 
value of the field in each specimen. By generating a statistically significant number of 
realizations and selecting the minimum strength value in each of them, a good estimation of the 
statistical distribution for the strength of a specimen with a specific volume can be obtained. In 
the current study, a sample size of 4000 realizations has been considered for each specific 
volume and material property, which suffices to achieve a high level of accuracy [44]. This 
process is repeated for specimens with different volumes and the statistical distributions for 
their strengths are obtained. By comparing strength statistics, such as mean values, for 
specimens with different volumes, the effect of size on timber strength can be determined.  

 

2.5 Estimating random field parameters for spruce and Japanese larch 

The experimental data given in Table 2.1 were used for estimating the correlation length of the 
autocorrelation function and the marginal distribution parameters of strength as a random field 
for spruce and Japanese larch wood. 

The two-parameter Weibull distribution has been considered to represent statistical variability. 
For the shape parameter, as discussed in Section 2.2.2, the mean value obtained from 
experimental results is used. The remaining two unknowns are the scale parameter of the 
marginal distribution and the correlation length. Scale parameters of two different volumes for 
each type of wood are shown in Table 2.1. Therefore, it is possible to obtain the two unknown 
values for each wood. By extensive numerical experimentation, assuming different values for 
the correlation length and scale parameter of the marginal distribution, i.e. trial and error 
approach, appropriate values were estimated and are given in Table 2.2. It can be seen that the 
value of the scale parameter for each wood, which has a direct relationship to the mean value, 
is higher than the corresponding values in Table 2.1. This is because the marginal mean value 
gives the higher bound for the strength as the volume approaches zero. In the next section, it is 
shown that using the values given in Table 2.2 a good agreement with the experimental results 
can be achieved. 

 

Table 2.2: Parameters of marginal Weibull distribution and correlation length of strength field for spruce and 
Japanese larch. 

Type of wood Marginal shape 
parameter 

Marginal scale 
parameter (MPa) 

Correlation 
length (mm) 

spruce 9.3 155.5 62.0 

Japanese larch 4.0 130.9 225.0 
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A value of 62mm for the correlation length means that when the distance between two points 
inside the material is 62mm, the correlation between field values at these points is reduced by 
a factor of exp(-1) according to Eq. (2.5) compared to the case of two coincident points. It is 
noted that the field value at any specific point inside the material can be considered as a random 
variable, because when the coordinates of a point are substituted into Eq. (2.7), only statistical 
variability remains. 

The approach used to estimate the correlation length can be considered as a reversed approach, 
compared to the direct approach of measuring the strength at enough number of points within 
a sample of the material. If the correlation length is known from a direct approach, it can be 
used to produce realizations of the actual strength field in specimens of different sizes and 
investigate the size effect. These results, are unique, provided that enough number of 
simulations have been performed. Therefore, the reverse procedure could also be followed; i.e., 
having the size effect results, a unique correlation length could be found that would reproduce 
those results. The addition of more specimen sets of different volumes can improve the 
estimation of the correlation length. 

 

2.6 Random field modeling results and discussion 

The random field modeling of longitudinal tensile strength was performed for the two volumes 
of spruce wood with the dimensions given in Table 2.1. Three indicative realizations, i.e. 
randomly generated spatial distribution of the strength, for both volumes are shown in Figs. 2.1 
and 2.2. As can be seen, the spatial variability of strength generally exhibits a more complicated 
pattern for the larger volume (Fig. 2.2). This is because the correlation length is a material 
parameter that expresses the degree to which the value of the field at one specific point 
influences field values in the surrounding points as a function of spatial distance. Generally, the 
more macroscopically homogeneous a material is, the higher the value of the correlation length 
of its mechanical properties such as strength.  
 

Fig. 2.1: Three indicative, randomly generated realizations for longitudinal tensile strength as random field in 
spruce specimen of volume 2×6×35 mm3. 
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Fig. 2.2: Three indicative, randomly generated realizations for longitudinal tensile strength as random field in 
spruce specimen of volume 6×20×110 mm3. 

 

As in a larger volume greater distances between material points are anticipated, the possibility 
of more spatial variation increases. Naturally, the possibility of the occurrence of a minimum 
strength with a lower value also increases in each specimen, as evidenced by the numerical 
values of the strength field given in Figs. 2.1 and 2.2. Strength field within each specimen has 
a minimum value, and for a larger specimen it is more probable that its minimum value be lower 
than the minimum value in a smaller specimen. The above constitutes the basis for the random 
field modeling of the size effect on strength. 

Histograms of strength results from numerical simulations and fitted PDFs along with 
corresponding CDFs for spruce specimens with dimensions 2×6×35 mm3 and 6×20×110 mm3 
are shown in Figs. 2.3 and 2.4, respectively. The three most common statistical distributions 
used for material properties, i.e. normal, lognormal and Weibull, have been fitted to the 
simulation results to ascertain which one is the most representative. PDFs and CDFs of 
experimental results based on the Weibull distribution are also given and labeled as 
‘Experiment’. 

       
Fig. 2.3: a) Probability density and b) cumulative distribution functions for strength of spruce specimen with 

volume 2×6×35 mm3. 
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Fig. 2.4: a) Probability density and b) cumulative distribution functions for strength of spruce specimen with 

volume 6×20×110 mm3. 

It can be seen in Figs. 2.3a and 2.4a that the Weibull PDF is the best descriptor for the simulation 
results. The fitted Weibull distributions to the simulation results are also closer to the 
experimental distributions in both cases. Weibull parameters as well as the results of goodness 
of fit tests, Anderson-Darling (AD) and Kolmogorov-Smirnov (KS), at a significance level of 
0.05 are provided in Table 2.3. Regarding the results of the statistical tests, a value of zero 
denotes that sampled data are taken from the corresponding distribution, while a value of one 
denotes that the presumed distribution is not accepted. It is observed that both AD and KS tests 
support Weibull distribution for the longitudinal tensile strength while rejecting normal and 
lognormal distributions. Therefore, the strength results obtained from selecting the minimum 
strength value from each realization follow a Weibull distribution. Values provided for the 
shape parameter of Weibull distributions in Table 2.3 exhibit a slight change compared to that 
of the marginal distribution; however, as mentioned earlier, its effect on the mean value of the 
distribution is negligible. The Weibull parameters based on simulation results in Table 2.3 are 
slightly different from parameters of Weibull distributions fitted to the experimental data in 
Table 2.1. These difference, which are not very significant, are common in stochastic studies 
[6,9,35,45]. The experimental parameters are always more trustable when a sufficiently large 
number of tests have been performed.

 

Table 2.3: Results for statistical parameters of simulations and goodness of fit tests for longitudinal tensile 
strength of spruce. 

Dimensions of 
spruce specimen 

(mm3) 

Weibull parameters Weibull Normal Lognormal 

Scale factor Shape 
factor 

AD KS AD KS AD KS 

2×6×35 147.2 8.9 0 0 1 1 1 1 

6×20×110 134.4 8.5 0 0 1 1 1 1 
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The random field modeling of longitudinal strength was also performed for Japanese larch 
wood. Simulation results and fitted PDFs along with corresponding CDFs are shown in Figs. 
2.5 and 2.6, respectively. Similarly to the previous case, the Weibull PDF is the best descriptor 
for the simulation results.  

 

     
Fig. 2.5: a) Probability density and b) cumulative distribution functions for strength of Japanese larch 

specimen with volume 5×25×30 mm3. 

 

Weibull parameters as well as results of goodness of fit tests are given in Table 2.4. Both AD 
and KS tests support the Weibull distribution for the longitudinal tensile strength while rejecting 
lognormal distribution. However, a normal distribution was only rejected by the AD test. The 
effect of a small variation in values for the Weibull shape parameter, given in Table 2.4, on the 
mean values is again negligible. 

 

     
Fig. 2.6: a) Probability density and b) cumulative distribution functions for strength of Japanese larch 

specimen with volume 5×25×120 mm3. 
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Table 2.4: Results for statistical parameters of simulations and goodness of fit tests for longitudinal tensile 
strength of Japanese larch. 

Dimensions of 
spruce specimen 

(mm3) 

Weibull parameters Weibull Normal Lognormal 

Scale 
factor 

Shape 
factor 

AD KS AD KS AD KS 

5×25×30 123.2 3.9 0 0 1 0 1 1 

5×25×120 115.1 3.8 0 0 1 0 1 1 
 

 

Based on the parameters in Tables 2.3 and 2.4, the prediction accuracy of the random field 
modeling can be evaluated by computing the ratio between the mean values of strength for 
shorter and longer specimens. The mean values are summarized in Table 2.5. This ratio is 1.098 
for spruce and 1.072 for Japanese larch; i.e., a 9.8% and 7.2% increase in the strength for smaller 
specimens compared to the larger ones, respectively. From the experimental data, the 
corresponding values are 9.1% and 7.8%. The relative errors of random field predictions 
compared to experiments, for both cases, are computed as 9.8 9.1 / 9.1 100 7.7%  and 

7.2 7.8 / 7.8 100 7.7% . It can be seen that the error has been reduced from 394% and 431% 

to 7.7% for both woods by using the random field approach instead of the CWSEL. 
 

Table 2.5: Mean values for longitudinal tensile strength of spruce and Japanese larch based on simulations. 

Type of wood Specimen 
dimensions 
(mm3) 

Mean value 
strength 
(MPa) 

Spruce 2×6×35 139.3±18.7 

6×20×110 126.9±17.8 

Japanese larch 5×25×30 111.5±32.0 

5×25×120 104.0±30.6 
 

 

2.6.1 Size effect in wider volume ranges of clear timber and analytical approximation 

The developed model can be used for investigating the size effect on strength in a wider volume 
range of clear timber. First, Japanese larch is considered because the size effect is examined as 
specimen length changes; therefore, owing to the change in only one dimension, it is easier to 
demonstrate the asymptotic behaviors of the size effect. Fig. 2.7 displays simulation results 
using red dots for the mean value of strength of a specimen with cross-sectional dimensions 

25 25mm  versus its length on a logarithmic scale. It can be seen that there are two asymptotes. 

In the left asymptote where specimen length decreases to zero, the curve gradually approaches 
a constant value. Based on visual observations of this curve, the length limit below which the 
strength can be considered to be independent of specimen length is approximately 0.1 of the 
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correlation length, d . The upper bound mean value for the strength of the Japanese larch 
specimen is 114.9 MPa, which is lower than the mean value of the marginal distribution, 118.6 
MPa, calculated based on the data in Table 2.2 and shown as a solid horizontal line in Fig. 2.7. 
This difference highlights the fact that the strength field was modeled as a 3D random field, 
and therefore, strength can change spatially across the cross section, even when the length 
approaches zero, leading to a decrease in the mean value of strength. As the length of the 
specimen increases, strength variation gradually approaches a line with a constant slope similar 
to that of the CWSEL. This indicates that for a very long specimen, the effect of the spatial 
correlation between adjacent material points becomes insignificant. Therefore, the prediction 
by the current model approaches that of the CWSEL in which spatial correlation is neglected. 
The length of specimen above which the CWSEL can be used accurately is approximately 10 
times the correlation length by visual observation of the curve in Fig. 2.7.  

 

   
Fig. 2.7: Mean value strength versus length of Japanese larch specimen. d on horizontal axis indicates 

correlation length of Japanese larch wood. 

 

An analytical formula is proposed in the following that approximates the numerical results 
reasonably well and facilitates the application of the proposed size effect model for clear timber. 
This formula mainly modifies the part of Eq. (2.1) related to the volume of the material: 

1/

1 2 3 0
1 2 3

( , , ) (1 1/ )
m

m
d d dL L L m

d L d L d L
 (2.14) 

where 1L , 2L and 3L  are dimensions along 1x , 2x and 3x  directions, respectively, for a 

specimen with uniform uniaxial stress state, and d  is the correlation length already introduced 
in Eq. (2.5).
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Eq. (2.14) is proposed based on the following arguments: 1) The general form of the classical 
formula in Eq. (2.1) has been used as a basis for this equation and the shape parameter of the 
Weibull distribution has been used in the same manner. 2) Contrary to the CWSEL, the effect 
of volume change on the strength has been broken into three components corresponding to three 
coordinate axes, because the level of spatial variability in each direction depends on the 
corresponding specimen dimension. 3) The reference volume in Eq. (2.14) has been considered 
as being a very small volume of the material in which spatial variability can be neglected. Thus, 
when specimen dimensions approach zero, the expression powered by 1/ m  approaches one, 
similar to the classical formula. Naturally, what remains should represent the mean value of the 
marginal distribution. Therefore, 0  in Eq. (2.1) has been changed to 0m  in Eq. (2.14). 4) 

The correlation length of the strength field has been incorporated in the classical formula, in 
such a way that the asymptotic behaviors of the size effect predicted by the numerical 
simulations hold.  

Eq. (2.14) cannot be arbitrarily scaled because the correlation length, d , as a material 
parameter, introduces a length scale into the size effect law in a natural way. This equation has 
also been plotted in Fig. 2.7. The two above-mentioned asymptotic behaviors observed in the 
numerical results are also satisfied by this equation. In other words, the mean value of strength 
approaches a constant value as specimen dimensions become small compared to the correlation 
length. On the other hand, the CWSEL can be applied when specimen dimensions are much 
larger than the correlation length. Finally, it is noted that Eq. (2.14) also predicts a lower left 
asymptotic value of strength than the marginal strength for the Japanese larch specimen with 

cross-sectional dimensions 25 25mm  because when the length of the specimen approaches 

zero, only 3L  is removed in Eq. (2.14). Therefore, the expression powered by 1/ m  will still 

have a value lower than 1. 

The left asymptotic behavior is justified according to the theory of random fields in which an 
underlying statistical distribution for the physical parameter, modelled as a random field, is 
considered. The right asymptotic behavior from numerical results, which is a line with a slope 
close to 1 / m  ( m  is the Weibull shape factor from experiments) is justified according to the 
CWSEL. As the specimen length increases to one or more orders of magnitude larger than the 
correlation length, the effect of the spatial correlation on the strength of the specimen becomes 
negligible. Therefore, the numerical results approach to the CWSEL. Nevertheless, 
experimental data are desired for validation of these asymptotic behaviors. Moreover, in this 
model wood is considered as a continuum material. Therefore application of this model for 
lengths less than 1 mm is not recommended, since new effects might become important as the 
specimen length approaches the size of microstructural characteristics of clear wood. 
Concerning the right asymptote, as long as clear specimens are obtainable, the model is 
applicable. However the application of the model for lengths more than 1 or 2 meters is not 
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practically justifiable, since knots usually have some effects on the capacity of timber 
components/structures in these ranges. 

Also, in the case studies performed the same correlation length was considered in longitudinal 
and transverse directions, in order to reduce the number of unknown for description of RSV to 
two parameters mentioned in Section 2.5. This is justifiable since the cross sectional dimensions 
of the specimens were smaller than the longitudinal dimension. The presented numerical model 
and formula (2.14) are equally applicable to cases with different correlation lengths in different 
directions, if sufficient experimental data are available. 

In order to examine if there are other sets of marginal shape factor and correlation length that 
could lead to the same size effect on the longitudinal strength as the size effect in experimental 
data, the following analysis was performed on the result already presented in Fig. 2.7 for larch, 
using Eq. (2.14). First, considering the original value of 118.66 MPa for the marginal shape 
factor, the effect of increasing and decreasing the correlation length on the size effect curve is 
shown in Fig. 2.8. It is seen that none of the experimental data points can be obtained in this 
way. 

   
Fig. 2.8: The effect of changing the correlation length on the size effect curve for a marginal shape factor of 

118.66 MPa. 

 

As a noticeable reduction in the value of the shape factor, a value of 90.0 MPa for the marginal 
shape factor is considered. The effect of increasing and decreasing the correlation length on the 
size effect curve is shown in Fig. 2.9. Again none of the experimental points can be obtained. 
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Fig. 2.9: The effect of changing the correlation length on the size effect curve for a marginal shape factor of 

90.0 MPa. 

 

Also, as a noticeable increase in the value of the shape factor, a value of 150.0 MPa is 
considered. The effect of increasing and decreasing the correlation length on the size effect 
curve is shown in Fig. 2.10. In this case, only one of the experimental points can be obtained 
by an individual size effect curve. Therefore, based on the trends of the size effect model in 
Figs. 2.8-2.10, there are no other set of values for the marginal shape factor and the correlation 
length for the model so that it crosses both experimental data points. 
 

   
Fig. 2.10: The effect of changing the correlation length on the size effect curve for a marginal shape factor of 

150.0 MPa. 
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A similar analysis can be performed for spruce wood. However, because all the specimen 
dimensions vary in this case, it is not possible to plot strength variations as a function of 1L , 

2L  and 3L . In Table 2.6, the mean value strengths of specimens with various volumes obtained 

from numerical simulations have been compared to those predicted by Eq. (2.14). The results 
of the analytical formula are well corroborated by the numerical simulations except for larger 
volumes where the error increases up to 11.2%, see Table 2.6. When all the specimen 
dimensions become very small, the predicted mean strength value approaches the marginal 
mean value. For large specimen dimensions, the prediction by the current model approaches 
that of the CWSEL. 

Table 2.6: Comparison of numerical results for mean value of strength (MPa) of spruce wood with predicted 
values of analytical approximation. 

Dimensions (mm) Numerical simulation Analytical 
approximation 

Error (%) 

2×2×2 146.5 146.0 0.34 

2×6×35 139.3 138.7 0.43 

6×20×110 127.0 126.9 0.079 

9.6×28.8×163.2 121.6 121.3 0.25 

19.2×57.6×326.4 107.2 109.6 2.2 

57.6×172.8×979.2 83.8 87.9 4.9 

172.8×518.4×2937.6 61.3 66.2 8.0 

1036.8×1036.8×2937.6 47.1 52.4 11.2 
 

 

2.7 Conclusions 

In this chapter, a random field-based size effect model has been proposed for the longitudinal 
tensile strength of timber. The statistical and spatial variability of the strength as a 3D random 
field were taken into account by its marginal distribution and autocorrelation function. 
Realizations of the strength field were generated in specimens with different volumes using the 
spectral representation scheme, and the strength results were obtained based on the Monte Carlo 
method along with the weakest link concept. The main conclusions are as follows: 

 The application of the CWSEL to the experimental data in the literature showed a very 
high level of error. On the other hand, the current model was in a good agreement with 
the experimental data.  

 The current model predicts an upper bound for the strength as specimen dimensions 
approach zero. On the other hand, when the dimensions are sufficiently large compared 
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to the correlation length of the strength field, the result obtained by the current model 
approaches that of the CWSEL. 

 It was shown that the limits for the left and right asymptotic behaviors of the model are 
approximately 0.1 and 10 times the correlation length because, in the denominator of 
Eq. (2.14), if L is much smaller than d, L can be disregarded and vice versa. This range 
covers most real applications, which emphasizes the practical aspect of the current 
study. 

 Values of 62 mm and 225 mm for the correlation lengths of the strength fields of spruce 
and Japanese larch were obtained. These values can be used in the stochastic simulation 
of timber structures under different loading conditions such as bending. Also, this 
indicates that the correlation length of the strength field in timber can vary significantly 
between different species. 

 Finally, an analytical formula was proposed that closely approximates numerical results 
and facilitates the application of the current model. This formula, unlike its classical 
counterpart, is not arbitrarily scalable and includes the correlation length as a length 
scale. 

The proposed model is in good agreement with experimental data, and it seems more 
appropriate than the CWSEL, particularly in the FE context, to extend the size effect predictions 
to small volumes.  This can improve the current design of timber structures, such as timber 
joints, in which the size effect on the strength of clear wood is important. In this regard, 
conducting additional tests are suggested with different species. This work can also constitute 
a preliminary step toward developing models that take knots into account. 
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3   Characterization of longitudinal mechanical 
properties of clear timber: RSV and size effects 
 

 

 

3.1 Introduction 

As a natural unidirectional fiber composite, wood/timber has highly anisotropic properties [1]. 
Different factors such as age, location of timber within the tree, structural imperfections, load 
history such as wind and snow etc. can affect the material properties of timber taken from the 
same species, and grown in the same geographical location and local growth conditions. 
Consequently, there is a considerable variability in mechanical properties. This variability, also 
observed in other materials such as composites, is both random and spatial and is usually 
referred to as “random spatial variability” [2-3]. 

The effect of the high scatter of timber elastic properties [4] on the response of timber structures 
has received less attention in the literature than the effect of the scatter of strength. In the few 
works that take the statistical variability of the elastic modulus into account, when assessing the 
structural response, the local point-by-point variability, i.e. the spatial variability, is commonly 
neglected [5,6]. This local variability of the elastic modulus can affect the local stress state of 
the material, which can be critical in estimating the failure probability under external loading. 
Recently Arwade et al. [7] have experimentally characterized the longitudinal spatial variability 
in the elasticity of parallel strand lumber using bending tests. They incorporated the 
experimental results in a stochastic model with orthotropic elasticity.  

The mean strength of timber decreases as its volume increases due to the size effect on the 
strength. A small number of works have used pure tensile tests, on specimens of different sizes, 
to investigate the size effect on the strength of clear timber. In [8], a length effect parameter 
was introduced by Zhu et al. to quantify the size effect, due to the length change, on the 
longitudinal tensile strength of Japanese larch wood. Dill-Langer et al. [9] conducted 
longitudinal tensile experiments on two groups of specimens composed of spruce wood, and 
observed that the volume of the material significantly affects the strength. 

The classical Weibull size effect law (CWSEL) [10] is commonly used in the literature for 
modeling this effect [5,6,9]. Some researchers have considered this effect as a volume effect. 
For example, this assumption was applied in [11-14] for the failure analysis of adhesively-
bonded, welded and dovetail timber joints and in [5,6,15] for the study of the elastoplastic 
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behavior of strand-based wood composites and laminated veneer. Others, however, have split 
this effect into length and cross-sectional effects, see e.g. [16,17] on the bending strength of 
clear timber and [18] for the case of structural lumber. Nevertheless, in a recent study [19], it 
was highlighted that “Although no conclusive evidence has yet arisen concerning the accuracy 
of probabilistic strength theories to describe the size in the strength of timber, the existence of 
significant size effects is largely accepted within the scientific community.”  

The spatial variability is most likely to influence the response of structures made of clear timber, 
but this has not been studied before. This work is an attempt to investigate the random spatial 
variability of the timber elastic modulus. Also, it is partly aimed at experimentally 
characterizing the size effect on the strength of clear timber using specimens of different 
lengths, which can be used for developing more accurate models for the size effect on timber 
strength. 

Four groups of specimens of different lengths were prepared and their quasi-static behavior was 
experimentally investigated under tensile loading. In addition to the global displacement 
monitoring, the local deformations along the length of each specimen were measured. The 
effect of the mesostructure of the clear timber on the local elastic modulus was examined. The 
spatial variability of the elastic modulus was experimentally characterized. Also, Statistics 
concerning the elastic modulus, strength and strain to failure as well as correlations between 
elastic modulus, strength and density were derived. Moreover, the size effect on these properties 
due to the length change was studied.  

 

3.2 Experimental investigation 

3.2.1 Material 

Norway spruce wood was used for the specimens’ preparation in this study. Although the 
boards contained a certain number of knots, the specimens were cut sufficiently far from these 
defects. All specimens were conditioned to 12% moisture content according to the ASTM 
standard D143-14 in a conditioning chamber and were tested at the laboratory temperature of 
22±3 °C. The average density of the wooden specimens after conditioning was 443.3 kg/m3. 

3.2.2 Specimen description 

Specimens of different lengths were fabricated for the purpose of this study. In order to exclude 
variations in the properties in the cross-sectional plane, the nominal cross section of the 
specimens had to be as small as possible and yet it had to be possible to fabricate them well 
using a CNC machine. Due to these requirements, a new specimen geometry for longitudinal 
tensile tests on timber was designed. This geometry is shown in Fig. 3.1. The gradual change 
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in the dimensions of the cross-sectional area, from the gripping part to the middle part, via two 
connected curves, provides an appropriate smooth stress distribution. Moreover, this specimen 
is easy to fabricate since it has an extruded geometry. 

 
Fig. 3.1: Specimen geometry designed for tensile tests. The straight arrow shows the longitudinal timber 

direction. 

 

The specimen’s geometrical configuration is shown in Fig. 3.2a. The cross section of the middle 
part is a square of 2×2 mm2. In Fig. 3.2a, L denotes the length of the middle zone of the 
specimen with the values of 2, 8, 32 and 128 mm. Sample specimens are shown in Fig. 3.2b. 
Specimen edges were carefully treated with very soft sandpaper, P240, to remove the cutting 
residual. 

 
Fig. 3.2: a) Dimensions of specimen used for longitudinal tensile test, in millimeters b) Fabricated specimens 

of different lengths. 

 

The following system is used to refer to the specimens in this study: LT-abc-4-de where ‘LT’ 
refers to longitudinal tensile, ‘abc’ is the specimen length in mm, 4 is the cross-sectional area 
in mm2 and ‘de’ is the specimen number within a group of specimens with the same geometry. 
In the next sections, it is seen that the strengths of the four specimen sets with different lengths, 
although cut from different boards, show approximately the same level of scatter. This 

(a) (b) 
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demonstrates that a sufficient number of specimens in each group have been considered to 
capture the randomness of the properties of the material used. 

3.2.3 Experimental set-up and instrumentation 

All experiments were carried out on a 25-kN MTS Landmark servo-hydraulic testing machine 
with a built-in load cell calibrated to 20% of the full capacity. Quasi-static tensile tests were 
performed under displacement-control mode. Different stroke rates for different lengths were 
selected on the basis of the pre-testing of additional specimens so that the final failure occurred 
within 180 ± 60 s during the whole testing program. A constant stroke rate among different 
groups was not used because the specimen sizes were different. Due to the scatter in the strength 
and stiffness, the failure time varied for specimens with the same geometry. 

A video extensometry system composed of a 10-bit Sony XCLU1000 CCD connected to a 
Fujinon HF35SA-1 lens, with a focal length of 35-mm and an aperture, f 1.4-22, able to provide 
an accuracy of ±0.005 mm, was used during the tests to measure the axial deformation. Prior to 
the tests, small black target dots of 1.3-mm in diameter were applied on the specimens’ surfaces 
as shown in Fig. 3.3 for a specimen of 32 mm-length. The distance between each two 
consecutive dots was 4 mm for all groups of specimens, except for specimens with a nominal 
length of 2 mm, where the distance between the two dots was 2 mm. The axial coordinates of 
the dots were recorded at a frequency of 5 Hz by the camera throughout loading. Using these 
data, the strain between each two consecutive dots was calculated. The axial stresses were also 
calculated using the load level and the initial cross-sectional area. 

 

 
Fig. 3.3: Specimen of 32-mm nominal length with applied dots inside machine grips. 
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3.3 Timber mesostructure and local mechanical properties 

The mesostructure of clear spruce wood is mainly characterized by the earlywood-latewood 
patterns which affect the local mechanical properties. This is the origin of random spatial 
variability in the properties. Some of these mesostructural features observed in the specimens 
are shown in Fig. 3.4. The darker parts of the growth rings are latewood that has higher 
mechanical properties, referred to as strips of latewood. Although all the specimens were cut in 
the nominal longitudinal direction of the board, the fiber direction along the specimen length is 
often not parallel to the specimen axial direction. Figure 3.4a illustrates the fiber misalignment 
with respect to the nominal longitudinal direction of the board. This misalignment can reduce 
the local longitudinal elastic modulus. Another consequence is that at some points along the 
length of a specimen a new strip of latewood or an existing strip may cross the specimen border. 
This is the main cause of sudden changes in the local elastic modulus. Figure 3.4b exhibits 
another feature that can affect the local elastic modulus. The distance between two consecutive 
strips of latewood, or growth ring thickness, is smaller in Fig. 3.4b than that in Fig. 3.4a. The 
decrease in thickness increases the local density which, in turn, can increase the local elastic 
modulus, and vice versa. In the current study, it may also lead to an increase in the number of 
latewood strips in the same cross section. Finally, Fig. 3.4c shows the fiber waviness that tends 
to reduce the value of the local elastic modulus. 

 
Fig. 3.4: Mesostructural features of spruce wood: a) fiber misalignment b) uneven growth ring thickness c) 

fiber waviness. 
 

Typical examples of the correlation between the local elastic modulus and the local 
mesostructure of spruce wood are given in Fig. 3.5, considering two specimens of 128-mm 
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length. In specimen LT-128-4-06, it can be seen that, initially, there is an obvious fiber 
misalignment that gradually diminishes so that the fiber becomes parallel to the nominal axis 
of the specimen. Subsequently, the fiber starts to deviate from the nominal axis again. 
Correspondingly, the local elastic modulus generally first increases and then decreases. In 
specimen LT-128-4-07, there is an obvious fiber waviness over the first few millimeters of the 
length, which is why the local elastic modulus suddenly increases from 8.0 GPa to 13.0 GPa. 

 

 
Fig. 3.5: Correspondence between mesostructure of spruce and variability of local elastic modulus. 

 

The spatial variability of the elastic modulus along the length is examined here for specimens 
of 128-mm length. This involves 40 sets of 32 data points, each set being collected from a single 
specimen. The values of the local elastic modulus are shown in Fig. 3.6. The three solid 
horizontal lines show the range of values 11.0±1.4GPa (mean±SD). Also, the spatial variability 
of three indicative specimens are highlighted via the thicker lines. It can be seen that the 
variability in some specimens is lower along their lengths and the local elastic modulus 
oscillates around the effective elastic modulus of the specimen; see for example the dashed and 
dotted lines corresponding to specimens LT-128-4-05 and LT-128-4-09. On the other hand, 
some specimens exhibit more significant changes in their local modulus, e.g. from 15 GPa to 7 
GPa, approximately, shown by the thick solid line corresponding to specimen LT-128-4-04. 
Also, Fig. 3.6 shows that the measured value of the local elastic modulus was 21.1 GPa at one 
point in specimen LT-128-4-20. This was because in that region of the specimen, two strips of 
latewood happened to be almost parallel to the nominal axis of the specimen. The corresponding 
segment of the specimen is shown by a yellow circle in Fig. 3.7. The local modulus of the 
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segment on the right has a lower value of 18.6 GPa, which is because some of the latewood 
crosses the specimen border in this segment. 

In some parts of some specimens, as in specimen LT-128-4-05, consecutive decrease and 
increase occurred in the value of the local elastic modulus. However, in some other parts, as in 
the same specimen between 74 mm and 98 mm, there was no consecutive decrease and increase. 

 
Fig. 3.6: Variation of local elastic modulus along length of 128-mm specimens. 

 

 
Fig. 3.7: Segment with highest measured local elastic modulus (indicated by a circle). 

 

Specimen failures can be roughly categorized into two different forms, schematically shown in 
Fig. 3.8a and b. The first form is a failure that exhibits a sharp angle between each face of the 
fracture zone and the nominal axis of the specimen. In the second form, however, the angle is 
more open, and the fracture faces are frequently more uneven than in the first case. Generally, 
the specimens with a failure form of the first category had higher strength values. For example, 
eight out of 10 specimens, of 128-mm length, with the highest strength values fell into the first 
category. On the other hand, seven out of 10 specimens with the lowest strength values fell into 
the second category. Examples of these two forms are shown in Fig. 3.8c and d. There was 
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always some degree of misalignment in the specimens, and the fracture path did not cross the 
latewood in most cases. As a result, in cases with less misalignment, the fracture surface was 
larger, which naturally required higher forces for fracture initiation. The observation that higher 
and lower strengths were not always associated with first and second failure forms, respectively, 
is attributed to the fact that microdefects may also influence specimen strength. 

  
Fig. 3.8: a and b) Schematic illustration of two failure modes; c and d) Typical specimen failures. 

 

3.4 Mechanical behavior of specimens 

Typical tensile stress-strain curves are shown in Fig. 3.9. These curves have been obtained 
directly using the axial displacements of the two end dots. Therefore, the slope of each curve 
indicates the elasticity of the whole nominal length of the corresponding specimen, referred to 
as the effective elastic modulus in the current study. The term ‘effective’ is used to distinguish 
it from local elastic modulus. It is seen that the mechanical behavior is linear up to failure. The 
high scatter in the strength and the effective elastic modulus of the specimens can be clearly 
seen in this figure. The elasticity of a specimen segment between two consecutive dots is the 
local elastic modulus which is attributed to the center of the segment.  

Each specimen can be considered as a set of series of springs, with each segment, between two 
consecutive dots, corresponding to a spring. The measured values for the local elastic moduli 
were used to calculate the value of the effective elastic modulus of the specimen, based on the 
concept of the series of springs, using the following formula: 
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Fig. 3.9: Typical longitudinal tensile stress-strain curves of spruce wood. 

 

1 2
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 (3.1) 

in which effE  is the effective elastic modulus of the specimen and ( 1,2,..., )iE i n  are the local 

elastic moduli. The value of effE , computed using Eq. (3.1), was compared to that obtained by  

using the end-dot displacements. The difference was less than 0.1% in all specimens, which 
confirmed the accurate measurement of the local elastic moduli, since any significant error in 
the measured values for the local moduli would result in a significant error in the value for the 
effective elastic modulus, calculated based on the concept of series of springs. Also, it can be 
mathematically proven that effE  from Eq. (3.1) is always smaller than the arithmetic average 

of 'siE  (
1

/
n

i
i

E n ).  

The mechanical properties of each specimen including the effective elastic modulus, the 
strength and the strain to failure, as well as their density, are given in Table 3.1. The density 
was obtained by dividing the weight of each specimen by its volume, after conditioning as 
mentioned earlier. Certain sections of the table contain dashes because some specimens did not 
fail in the middle part with constant cross section, or, in some cases, there were problems in 
recording the deformation during the tensile experiments. 
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Table 3.1: Effective elastic modulus, strength, strain to failure and density for all tested specimens. 

Specimen 

length (mm) 

Specimen code Effective elastic 

modulus (GPa) 

Strength 

(MPa) 

Strain to 

failure (%) 

Density 

(kg/m3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2mm 

 

 

 

 

 

LT-002-4-01 9.93 136.7 1.38 449.9 

LT-002-4-02 14.96 118.0 0.79 446.1 

LT-002-4-03 10.67 122.9 1.15 427.3 

LT-002-4-04 6.25 89.4 1.43 417.8 

LT-002-4-05 8.77 95.6 1.09 436.3 

LT-002-4-06 - 83.2 - 419.9 

LT-002-4-07 7.77 96.5 1.24 421.6 

LT-002-4-08 11.40 114.8 1.01 421.7 

LT-002-4-09 10.55 124.1 1.18 446.0 

LT-002-4-10 8.07 103.8 1.29 442.5 

LT-002-4-11 7.19 87.7 1.22 421.7 

LT-002-4-12 8.56 109.0 1.27 436.7 

LT-002-4-13 - 84.4 - 422.0 

LT-002-4-14 12.56 126.4 1.01 485.9 

LT-002-4-15 12.40 122.5 0.99 437.1 

LT-002-4-16 10.62 124.4 1.17 424.6 

LT-002-4-17 9.82 103.0 1.05 443.6 

LT-002-4-18 12.02 131.1 1.09 470.5 

LT-002-4-19 11.42 121.9 1.07 457.9 

LT-002-4-20 9.74 118.8 1.22 453.7 

LT-002-4-21 12.13 118.5 0.98 439.3 

LT-002-4-22 10.86 93.5 0.86 437.1 

LT-002-4-23 11.07 105.8 0.96 437.8 

LT-002-4-24 8.85 104.9 1.19 440.9 

LT-002-4-25 8.69 109.1 1.26 446.6 

LT-002-4-26 6.62 108.1 1.63 450.9 

LT-002-4-27 10.99 117.8 1.07 446.9 

LT-002-4-28 14.05 132.0 0.94 475.9 

LT-002-4-29 11.53 139.1 1.21 443.3 
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LT-002-4-30 11.48 117.7 1.03 453.3 

LT-002-4-31 7.46 101.5 1.36 430.1 

LT-002-4-32 10.35 117.7 1.14 443.1 

LT-002-4-33 11.45 129.9 1.13 462.5 

LT-002-4-34 8.70 111.4 1.28 429.8 

LT-002-4-35 12.79 143.4 1.12 469.4 

LT-002-4-36 10.29 87.5 0.85 451.9 

LT-008-4-37 10.37 124.5 1.20 424.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8mm 

LT-008-4-01 11.10 110.1 0.99 429.0 

LT-008-4-02 8.17 105.0 1.29 423.8 

LT-008-4-03 11.91 103.6 0.87 455.8 

LT-008-4-04 9.19 110.6 1.20 439.2 

LT-008-4-05 9.53 115.0 1.21 455.7 

LT-008-4-06 12.23 135.0 1.10 459.4 

LT-008-4-07 9.28 91.9 0.99 411.8 

LT-008-4-08 12.13 124.2 1.02 482.1 

LT-008-4-09 9.07 100.2 1.11 438.5 

LT-008-4-10 9.77 106.9 1.09 428.1 

LT-008-4-11 9.89 103.8 1.05 433.0 

LT-008-4-12 12.39 138.3 1.12 455.8 

LT-008-4-13 8.94 118.3 1.32 426.1 

LT-008-4-14 12.06 112.4 0.93 463.8 

LT-008-4-15 11.80 128.7 1.09 443.2 

LT-008-4-16 12.08 120.3 1.00 461.5 

LT-008-4-17 14.71 138.4 0.94 462.2 

LT-008-4-18 8.86 115.4 1.30 453.6 

LT-008-4-19 8.75 99.3 1.14 436.9 

LT-008-4-20 8.76 98.6 1.13 448.1 

LT-008-4-21 9.74 101.2 1.04 463.0 

LT-008-4-22 8.13 113.4 1.39 445.6 

LT-008-4-23 7.81 85.2 1.09 431.8 

LT-008-4-24 6.94 91.2 1.31 447.1 

LT-008-4-25 10.38 120.8 1.16 440.3 
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LT-008-4-26 7.11 101.0 1.42 417.8 

LT-008-4-27 11.43 144.5 1.26 453.6 

LT-008-4-28 8.97 86.5 0.96 434.8 

LT-008-4-29 8.36 103.8 1.24 439.0 

LT-008-4-30 7.51 83.1 1.11 421.9 

LT-008-4-31 8.84 123.4 1.40 445.5 

LT-008-4-32 10.36 115.5 1.11 470.6 

LT-008-4-33 10.20 123.5 1.21 463.8 

LT-008-4-34 9.38 92.7 0.99 435.3 

LT-008-4-35 9.51 87.3 0.92 433.2 

LT-008-4-36 13.21 137.6 1.04 461.5 

LT-008-4-37 9.82 119.3 1.21 453.8 

LT-008-4-38 8.80 106.6 1.21 450.6 

LT-008-4-39 10.65 117.2 1.10 434.4 

LT-008-4-40 13.03 147.3 1.13 478.1 

LT-008-4-41 13.39 131.5 0.98 458.4 

LT-008-4-42 11.57 120.6 1.04 452.8 

LT-008-4-43 16.16 126.2 0.78 489.5 

LT-008-4-44 11.82 125.7 1.06 470.1 

LT-008-4-45 8.26 105.7 1.28 417.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

LT-032-4-01 6.34 83.4 1.32 428.1 

LT-032-4-02 8.22 82.4 1.00 468.0 

LT-032-4-03 9.95 116.2 1.17 448.0 

LT-032-4-04 12.47 134.5 1.08 448.0 

LT-032-4-05 13.32 - - 445.4 

LT-032-4-06 7.16 97.4 1.36 424.3 

LT-032-4-07 11.59 108.4 0.94 444.0 

LT-032-4-08 8.38 102.4 1.22 439.7 

LT-032-4-09 11.90 111.6 0.94 450.0 

LT-032-4-10 10.44 98.4 0.94 446.2 

LT-032-4-11 11.02 124.3 1.13 453.8 

LT-032-4-12 11.37 116.8 1.03 431.0 

LT-032-4-13 12.45 128.0 1.03 461.5 
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32mm 

LT-032-4-14 7.98 74.7 0.94 435.0 

LT-032-4-15 12.63 150.0 1.19 488.2 

LT-032-4-16 - - - - 

LT-032-4-17 7.81 85.9 1.10 467.4 

LT-032-4-18 - - - - 

LT-032-4-19 9.98 103.1 1.03 446.1 

LT-032-4-20 13.79 - - 474.5 

LT-032-4-21 10.81 102.4 0.95 439.7 

LT-032-4-22 11.55 - - 448.1 

LT-032-4-23 10.78 129.6 1.20 453.8 

LT-032-4-24 13.29 146.4 1.10 460.0 

LT-032-4-25 12.64 125.7 0.99 449.6 

LT-032-4-26 8.84 87.7 0.99 436.7 

LT-032-4-27 12.52 137.4 1.10 452.7 

LT-032-4-28 12.80 126.3 0.99 463.5 

LT-032-4-29 11.79 110.0 0.93 453.9 

LT-032-4-30 - - - - 

LT-032-4-31 - - - - 

LT-032-4-32 10.07 113.4 1.13 456.0 

LT-032-4-33 8.16 100.0 1.23 424.3 

LT-032-4-34 11.65 106.8 0.92 476.1 

LT-032-4-35 9.55 94.4 0.99 452.7 

LT-032-4-36 - - - - 

LT-032-4-37 9.46 110.8 1.17 429.8 

LT-032-4-38 9.63 124.0 1.29 439.7 

LT-032-4-39 10.36 120.8 1.17 437.8 

LT-032-4-40 11.37 119.3 1.05 453.2 

 

 

 

 

 

 

LT-128-4-01 - 105 - 441.4 

LT-128-4-02 - 87.6 - 458.4 

LT-128-4-03 - - - 462.7 

LT-128-4-04 11.26 97.2 0.86 460.6 

LT-128-4-05 13.48 136.0 1.01 457.4 

LT-128-4-06 12.25 72.9 0.60 449.6 
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128mm 

LT-128-4-07 11.88 110.7 0.93 440.8 

LT-128-4-08 12.22 136.3 1.12 469.6 

LT-128-4-09 8.31 90.9 1.09 439.1 

LT-128-4-10 12.16 113.5 0.93 460.7 

LT-128-4-11 12.93 101.6 0.79 424.6 

LT-128-4-12 10.94 108.7 0.99 445.0 

LT-128-4-13 10.24 104.7 1.02 456.2 

LT-128-4-14 13.78 110.8 0.80 453.7 

LT-128-4-15 11.96 121.0 1.01 465.0 

LT-128-4-16 8.62 101.1 1.17 409.2 

LT-128-4-17 11.28 104.8 0.93 465.1 

LT-128-4-18 9.03 87.0 0.96 404.3 

LT-128-4-19 10.38 113.4 1.09 462.6 

LT-128-4-20 11.59 65.2 0.56 460.6 

LT-128-4-21 10.97 100.2 0.91 428.9 

LT-128-4-22 10.62 97.9 0.92 455.0 

LT-128-4-23 10.29 105.8 1.03 436.0 

LT-128-4-24 10.45 118.4 1.13 460.7 

LT-128-4-25 10.41 117.2 1.13 435.5 

LT-128-4-26 12.01 120.4 1.00 455.3 

LT-128-4-27 10.06 110.9 1.10 429.4 

LT-128-4-28 9.92 88.6 0.89 435.0 

LT-128-4-29 9.16 77.7 0.85 419.5 

LT-128-4-30 11.57 - - 446.0 

LT-128-4-31 11.91 110.6 0.93 442.3 

LT-128-4-32 8.11 73.8 0.91 415.3 

LT-128-4-33 12.41 113.2 0.91 446.8 

LT-128-4-34 9.63 91.1 0.95 421.1 

LT-128-4-35 10.79 105.6 0.98 454.3 

LT-128-4-36 12.69 - - 444.7 

LT-128-4-37 10.40 105.1 1.01 441.4 

LT-128-4-38 13.41 117.8 0.88 467.9 

LT-128-4-39 9.88 99.8 1.01 424.0 
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LT-128-4-40 11.07 101.3 0.92 436.7 

LT-128-4-41 12.29 123.2 1.00 473.0 

LT-128-4-42 11.06 112.4 1.02 454.2 

LT-128-4-43 9.87 93.7 0.95 451.9 
 

 

As a typical laboratory testing program, several factors could affect the measured values and 
introduce uncertainty with different levels of relative importance. These includes the person 
conducting the tests that fixes the specimen in the testing machine, slight change in the 
environmental conditions during the tests, the accuracy of the read value from the machine, 
accuracy of the measured specimen dimensions, the accuracy of the video-extensometer and 
the accuracy of the enriching process of putting black target dots at their places on the 
specimens. Nevertheless, it is believed that the error/uncertainty that these factors introduce in 
the measured values are quite small compared to the random uncertainty in the measured values 
for the mechanical properties at mesoscale. The random uncertainty in the local elastic moduli 
at mesoscale is particularly high compared to that of timber pieces with the larger dimensions, 
such as dimensions of structural lumbers, because at mesoscale the effect of local fiber 
misalignment and waviness are not averaged over a larger volume. 

 

3.5 Statistics concerning elastic modulus, strength and strain to failure 

3.5.1 Statistics concerning elastic modulus 

The statistics concerning the effective elastic modulus for the four groups of specimens are 
shown in Table 3.2. It can be seen that the mean value does not change significantly with 
increasing length and is in agreement with the reported value of 11.0 GPa in the literature [1] 
for the longitudinal elastic modulus of spruce wood. The mean values and the corresponding 
standard deviations are plotted in Fig. 3.10. The mean effective elastic moduli of specimens of 
longer lengths have slightly higher values. The difference between the mean values of the 
shortest and longest specimens is 6.4%. The standard deviation (SD) significantly decreases 
from the shortest to the longest specimens. The coefficient of variation (COV) is almost the 
same for 2-mm and 8-mm specimens. With increasing length, the COV starts to diminish, 
decreasing from a value of 19.6% for 2mm specimens to 12.7% for 128-mm specimens. Fig. 
3.11 shows the COV of the effective elastic modulus vs. the specimen length in a logarithmic 
scale. It can be seen that the COV approaches a constant value for very small lengths, which 
can be considered as an upper bound for the COV of the longitudinal tensile modulus in the 
length range examined. This is attributed to the spatial correlation in the elastic modulus field. 
In other words, from a length of 2mm to 8mm, the spatial correlation remains at a high level, 
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with the modulus statistics remaining the same. The reduction of the variability in the effective 
elastic modulus with increasing length can be explained by considering each larger specimen 
as a series of smaller specimens. Naturally, the variability in the effective elastic modulus is 
reduced for the longer specimen, because the elasticity of each smaller specimen contributes to 
the elasticity of the larger specimen. 

The COV variation presented in Fig. 3.11 is mainly intended for the range presented in the 
figure. Extrapolations are possible as long as new influencing factors do not emerge. For the 
range under 1 mm the microstructural effects might become important. On the right side, the 
extrapolation can be justifiable as long as there are no new influencing factors such as knots. 
Practically, however, the application is limited to lengths of not more than a few hundred 
millimeters, since defects such as knots are commonly influential for higher lengths. 
Theoretically, the COV for specimens of infinite length (sufficiently long) would approach 
zero, since the effective elastic modulus of any of such specimens would include the effect of 
sufficient variations of the local elastic modulus along its length, so that all specimens would 
have the same effective elastic modulus. 

The presence of scatter in the mechanical properties of timber leads to uncertainty regarding 
the response of timber structures. For probabilistic modeling of timber structures, it is necessary 
to know the statistical distribution governing the mechanical properties. The three most 
commonly used statistical distributions for mechanical properties, i.e. normal, lognormal and 
Weibull, were fitted to the experimental data for the four groups of specimens. The results of 
the goodness-of-fit tests, Anderson-Darling (AD) and Kolmogorov-Smirnov (KS), at a 
significance level of 0.05 are given in Table 3.3. A ‘zero’ denotes that sampled data are taken 
from the corresponding distribution, while ‘one’ rejects the presumed distribution. 

 

Table 3.2: Statistics of effective elastic modulus for four groups of specimens. 
 

Length (mm) Mean (GPa) SD (GPa) COV (%) 

2 10.3 2.02 19.6 

8 10.3 2.03 19.8 

32 10.6 1.91 18.0 

128 11.0 1.40 12.7 
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Fig. 3.10: Mean value of effective elastic modulus for specimens of different lengths. Error bars indicate 

standard deviation for each length. 

 

 
Fig. 3.11: COV of effective elastic modulus as function of specimen length. 

It can be seen that the tests support these statistical distributions for all four groups of 
specimens, except for the AD test in the case of the Weibull distribution. Therefore, both normal 
and lognormal distributions can represent the statistical variability of the elastic modulus in 
stochastic simulations of timber structures. From a computational point of view, using the 
normal distribution is preferable as it is simpler to implement. However, the normal distribution, 
when used in stochastic simulations, can be problematic by generating negative values for the 
elastic modulus which is a by definition a positive quantity. For example, Stefanou and 
Papadrakakis [16] have shown that adopting normal distribution might in some cases lead to 
erroneous results due to the possible negative values for the elastic modulus in Monte Carlo 
simulations. Nevertheless, they tried to solve the issue through discarding the negative values. 
Lognormal and Weibull distributions do not cause such a problem due to being defined over 
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the positive part of the real numbers set. They are, however, computationally more demanding, 
especially for generating realizations of non-Gaussian random fields, as shown in Chapter 2. 

 

Table 3.3: Results of goodness-of-fit tests for effective elastic modulus of spruce. 

Specimen 

length (mm) 

Normal Lognormal Weibull 

AD KS AD KS AD KS 

2 0 0 0 0 0 0 

8 0 0 0 0 1 0 

32 0 0 0 0 0 0 

128 0 0 0 0 0 0 
 

 

The mean value, SD and COV of the collected data points for the local elastic modulus 
(corresponding to a total of 1280 segments with 4-mm length) are compared to those of the 
effective modulus of the 128-mm specimens in Table 3.4. The mean value of the local moduli, 
11.2 GPa, is slightly higher than the mean value of the effective moduli, 11.0 GPa. This is 
because the effective modulus of each specimen is calculated using the values of the local 
modulus based on the concept of series of springs, shown in Eq. (3.1). The COV of the local 
modulus, 16.4%, is also higher than that of the effective modulus, 12.7%, due to the averaging 
that occurs during calculation of the effective modulus, which tends to reduce the scatter. 

 

Table 3.4: Statistics of local and effective elastic moduli of 128-mm specimens. 

 

 Number of data points Mean (GPa) SD (GPa) COV (%) 

Local modulus 1280 11.2 1.84 16.4 

Effective modulus 40 11.0 1.40 12.7 

 

Further, from Fig. 3.11, a COV of 19.8% for the elastic modulus of the specimens of 4-mm 
lengths can be obtained using the fitted curve. This value is larger than the COV of the local 
moduli, 16.4% (see Table 3.4) obtained from 4-mm segments. This difference in the COV is 
attributed to the fact that the data in Fig. 3.11 are obtained from independent specimens; 
however, the COV for the 4-mm segments of 128-mm specimens is obtained based on the data 
points that are not totally independent. There is a spatial correlation within each set of 32 values 
for the local elastic modulus obtained from a single specimen. This spatial correlation leads to 
a reduction of scatter when the 40 sets of 32 data points are considered collectively. 
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Two types of variability contribute to the ensemble COV of 16.4% for the mentioned 1280 data 
points, taken from the 4-mm segments of the 128-mm specimens. The first, designated within-
specimen variability, is the COV of the 32 data points for the local elastic moduli in a single 
specimen of 128-mm length. The mean value of these 40 COVs, corresponding to 40 specimens 
of 128-mm length, is equal to 9.7%, which represents the average variability of the local elastic 
modulus in each specimen. The second, designated between-specimen variability, is the COV 
of the 40 values for the effective elastic moduli of the 40 specimen of 128-mm lengths. The 
value of the between-specimen variability is 12.7%, as given in Table 3.2. Therefore, the 
contribution of the between-specimen variability to ensemble variability is more than that of 
the within-specimen variability for the considered specimen length. 

3.5.2 Statistics concerning longitudinal tensile strength 

The statistical characteristics for the longitudinal tensile strength of spruce wood are given in 
Table 3.5 for the four groups of specimens. It can be seen that, as the length increases from 
2mm to 8mm, the change in the mean value of the strength is negligible. As the length increases 
further, the mean strength starts decreasing. This decrease is more significant between the 32-
mm and 128-mm specimens. The COV of the strength does not change significantly as the 
specimen length increases. In Table 3.5, from a length of 2 mm to a length of 32 mm, the COV 
increases a little and then decreases a little for 128-mm specimens. Therefore, an average value 
of 15.1% is considered as representing the scatter in the longitudinal tensile strength of spruce 
wood, which is independent of specimen length. Such a difference in the COVs for specimens 
of different sizes was observed in a previous study [9] for two different volumes of spruce 
wood. 

Table 3.5: Statistics of longitudinal tensile strength of spruce wood for specimens of different lengths. 
 

Specimen length (mm) Mean (MPa) SD (MPa) COV (%) 

2 112.9 15.9 14.1 

8 113.0 16.3 14.5 

32 111.6 18.6 16.7 

128 103.8 15.7 15.1 

 

In Figs. 3.12 and 3.13, the mean values and COVs for the strengths of the four specimen groups 
have been plotted against their lengths in the logarithmic scales, respectively. The solid blue 
line is a fitting curve based on the size effect model of Chapter 2, Eq. (2.14). Comparing this 
curve with that in Fig. 3.11, it can be seen that the COV of the stiffness and the mean value of 
the strength vary in more or less the same way as the length increases. This might suggest that 
both of these properties may be modeled using the same theory, such as the theory of stochastic 
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processes [20]. The difference is that as the size increases the previously mentioned averaging 
for the elastic modulus tends to decrease its COV, while its mean value remains almost 
unchanged, whereas the weakest link concept, which governs the fracture of brittle materials, 
tends to decrease the mean value of the strength, while the COV remains almost unchanged. 

The fitting of the size effect model leads to values of 128.6 mm and 121.4 MPa for the 
longitudinal correlation length and the marginal Weibull shape factor. The marginal mean value 
was obtained to be 114.2 MPa. 

 

  
Fig. 3.12: Mean value for longitudinal tensile strength vs. specimen length for spruce wood. Error bars 

indicate standard deviation for each length. 

 

 
Fig. 3.13: COV of strength for specimens of different lengths. 
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In the reliability analysis of timber structures, based on ultimate limit states, accurate 
representation of the variability in strength via a statistical distribution is critical. Commonly 
used statistical distributions for mechanical properties in the literature, i.e. Weibull, normal and 
lognormal, were fitted to the experimental data for the longitudinal strength. The results of AD 
and KS tests are given in Table 3.6. Both tests support Weibull and normal distributions, but 
the AD test rejects lognormal distribution for 128-mm specimens. However, it is generally 
accepted that the Weibull distribution is the best one for representing variability in the strength 
of brittle materials where it also has a physical meaning.  
 

Table 3.6: Results of goodness-of-fit tests for longitudinal tensile strength of spruce. 

Specimen 

length (mm) 

Weibull Normal Lognormal 

AD KS AD KS AD KS 

2 0 0 0 0 0 0 

8 0 0 0 0 0 0 

32 0 0 0 0 0 0 

128 0 0 0 0 1 0 
 

 

3.5.2.1 Comparison of experimental results with CWSEL prediction 

According to the CWSEL for the failure of brittle materials, which is still widely used [5, 6, 9-
15, 19, 21], as the volume of the material decreases, the mean strength increases following a 
straight line with a constant slope in logarithmic scales. Therefore, when the volume approaches 
zero, an unbounded value is predicted for the strength. However, the experimental results in the 
current study show that as the volume decreases, the mean value approaches a constant value 
of 113.0 MPa, which is the upper bound value for the mean strength of spruce wood used in 
this study. 

In order to quantitatively examine the error involved in the prediction of the CWSEL, the 
following formula was used [12]:  

1/
1 2

2 1

m
V
V

 (2) 

where m  is the shape factor of the Weibull distribution. This formula is a straight line with a 
slop of -1/m in logarithmic scales. The average value of 15.1% for the COV of the strength 
leads to a value of 7.85 for the Weibull shape factor. A shape factor of 8.3 was reported in [9] 
for specimens of nominal dimensions 2×6×35 mm3. As shown in Fig. 3.12, depending on the 
one data point that is chosen to fully determine the CWSEL line, this line can change its 
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position. For example, considering the nominal volume of a specimen of 128-mm length as 
reference volume, the predicted mean values are 11.0%, 30.8% and 56.2% higher for specimens 
of 32-mm, 8-mm and 2-mm lengths, respectively, than the experimental results. These 
calculations show that the CWSEL overestimates the effect of size on strength, although the 
statistical variability of the strength within each group of specimens can be described well via 
the Weibull distribution with the same shape factor. 

3.5.3 Statistics concerning strain to failure 

The statistical variability in the strain to failure for the four groups of specimens is examined 
here. Table 3.7 shows the statistics for the mean value, SD and COV of the tensile strain to 
failure of spruce wood in the longitudinal direction. The mean value is slightly reduced as the 
length increases, from 1.14% for 2-mm length to 0.96% for 128-mm length. This reduction is 
attributed to the fact that longer specimens have a lower mean strength while exhibiting a 
similar mean effective elastic modulus. The reduction of the SD is more significant with 
increasing length leading to a reduction in the COV of the strain to failure, except between 32-
mm and 128-mm lengths. This may be because the statistics for both elastic modulus and 
strength affect the statistics for the strain to failure, leading to a trend change in the COV of the 
strain to failure. 
 

 

Table 3.7: Statistics of strain to failure for spruce specimens under longitudinal tensile loading. 
 

Specimen length (mm) Mean (%) SD (%) COV (%) 

2 1.14 0.17 15.2 

8 1.12 0.14 12.9 

32 1.08 0.12 11.4 

128 0.96 0.13 13.3 

 

Some stochastic problems are better formulated in terms of strain to failure rather than strength 
[22]. In these cases, the type of distribution representing the statistical variability of the strain 
to failure is important. Table 3.8 shows results of the goodness-of-fit tests for the strain to 
failure. The AD and KS tests support the normal and lognormal distributions as being 
representative of the statistical variability of the strain to failure. The Weibull distribution is 
rejected by the AD test for 32-mm specimens.  
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Table 3.8: Results of goodness-of-fit tests for strain to failure of spruce. 

Specimen 

length (mm) 

Lognormal Normal Weibull 

AD KS AD KS AD KS 

2 0 0 0 0 0 0 

8 0 0 0 0 0 0 

32 0 0 0 0 1 0 

128 0 0 0 0 0 0 
 

 

3.6 Correlations  

Figure 3.14 shows the tensile strength of each specimen vs. the corresponding local elastic 
modulus measured at the failure zone. In this figure, the data from each of the four specimen 
groups are indicated by a different symbol. Also, the centroid of each group is indicated via a 
larger symbol of the same type, and the average regression line (solid line) is shown. No 
significant difference between the scatter in the results of the four groups can be observed, 
except for 128-mm specimens, which have a lower mean value for the strength. The linear 
correlation coefficient was found to be 0.686. This is an important parameter for modeling the 
variability of the mechanical properties in timber structures. For example, when in a finite 
element model, a value is randomly assigned to the elastic modulus, the variability of the 
distribution, based on which a value is randomly assigned to the strength at that material point, 
is reduced. This reduction of variability depends on the level of the correlation; e.g., when the 
correlation coefficient is 1, there remains no variability for the second parameter. 

 

 
Fig. 3.14: Correlation between local elastic modulus and tensile strength in parallel-to-grain direction. 
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Figures 3.15 and 3.16 show the effective elastic moduli and the strengths versus the densities, 
respectively, for the four specimen groups based on which correlation coefficients of 0.696 and 
0.580 were obtained. The larger symbols indicate the centroids of the specimen groups, while 
the average regression line is also given. The mean values of the densities for specimens of 
different lengths are approximately the same. The mean value, SD and COV of the density of 
the spruce are 443.3 kg/m3, 39.0 kg/m3 and 8.8%, respectively. The correlations between the 
density and the mechanical properties are used in seismic and acoustic applications where 
dynamic forces are present. 

 

Fig. 3.15: Correlation between density and effective elastic modulus. 

 

 
Fig. 3.16: Correlation between density and strength. 

 



Stochastic analysis of clear timber as a structural material  
 

87 
 

3.7 Conclusions 

In this chapter, an experimental campaign consisting of the longitudinal tensile tests on the four 
groups of specimens composed of spruce wood was conducted. The total number of specimens 
was 165. The nominal length of specimens varied from 2 mm to 128 mm in order to investigate 
the effect of length on the elasticity and strength. The cross-sectional area was the same for all 
specimens and sufficiently small as to exclude the effect of the variability of properties in the 
transverse plane and to find the upper bound values for the investigated properties. The 
following main conclusions were drawn: 

 The new specimens with the extruded geometry proposed for tensile tests on timber are 
simple and efficient because they are easy to fabricate, and the failure in almost all 
specimens occurred in the middle part with a constant cross-sectional area.  

 The main reason for the spatial variability of the local elastic modulus is irregular 
changes in the mesostructure of the wood including fiber misalignment, fiber waviness 
and growth ring thickness. 

 Specimens with higher strength levels tend to fail in such a way that the fracture surfaces 
form a sharper angle to the axial direction than those of specimens with lower strength 
levels, which is attributed to the latewood pattern around the failure zone. The failure 
was brittle for all specimens.  

 Considerable spatial variability in the local elastic modulus was observed along 
specimen lengths. The contribution of the between-specimen variability to the ensemble 
variability is greater than that of the within-specimen variability for the examined 
specimen length. 

 The COV of the effective elastic modulus in the parallel-to-grain direction has an upper 
bound of ca. 20% when the length is very small due to spatial correlation in the elastic 
modulus field and decreases to 12.7% for a length of 128 mm. The mean value does not 
change significantly. 

 An upper bound value of 113.0 MPa was obtained for the mean value of the longitudinal 
tensile strength when the length is very small. The existence of the upper bound is again 
due to the spatial correlation of the strength field. The mean value decreased to 103.8 
MPa for a length of 128 mm. The change in the COV of the tensile strength with 
specimen length was negligible, with an average value of 15.1%. The variation of the 
mean strength with specimen size cannot be appropriately modeled by the CWSEL.  

With recent progress in computational power, more advanced stochastic analyses of timber 
structures are feasible. As has been shown, the mechanical properties of timber are spatially 
variable in a random manner. The random field approach can take the random spatial variability 
of material properties into account. Therefore, using this approach leads to more realistic 
models of timber structures. 
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The case of short term static loading of clear timber was studied in this chapter. In practical 
applications, the loading duration also affects the response of timber pieces/structures. Beside 
the initial instantaneous elastic deformation, the creep deformation occurs over time. The 
duration of load also affects the strength/capacity of timber pieces/structures. For example, the 
maximum bending strength decreases nearly linearly in logarithm scales with period of loading 
[1]. 
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4   Transverse mechanical properties of clear 
timber: Uncertainty and size effects 
 

 

 

4.1 Introduction 

The existence of variability in the mechanical properties of timber has long been recognized 
[1]. This variability is related to the age, original position of the timber within the tree, structural 
complexity and imperfections, load history during tree growth etc. [2]. As a consequence of 
this variability, the statistics of the mechanical properties of timber can change with specimen 
size [3].  

The longitudinal mechanical properties of timber have been more intensively investigated 
compared to the transverse properties. This is primarily because of the common applications of 
timber for beams and truss elements where mainly longitudinal stresses develop. On the other 
hand, in some applications such as mechanical and adhesively-bonded timber joints, transverse 
properties, such as the transverse tensile strength of clear timber which is only a few percent of 
its longitudinal tensile strength [4], are of critical importance.  

The mean strength of timber, in its brittle failure modes such as those under longitudinal and 
transverse tensile loadings, decreases as its volume increases, since the probability of the 
occurrence of a weakest material point with a lower strength value increases. This phenomenon 
is referred to as the size effect on strength. Several experimental works have been devoted to 
the effect of size on the transverse strength of clear timber [1, 5-9], mainly focusing on glued-
laminated material. The classical Weibull size effect law (CWSEL) [10] is commonly used in 
the literature for modeling this effect [5,6,9]. Very few works in the literature have adopted 
other approaches to investigate the size effect in timber, especially in the transverse direction. 
In the case of transverse strength, Pedersen et al. [8] and Astrup et al. [9] conducted transverse 
tensile tests on bulk specimens with a double symmetry and observed a large size effect in the 
results. They developed a deterministic model for the size effect observed from experiments. 
This model was based on the consideration of stress inhomogeneity caused by the anisotropic 
nature of timber.  

The density and mechanical properties of timber are naturally correlated [2] and therefore 
correlation coefficients between these properties are necessary parameters to accurately 
perform probabilistic simulations [11]. Nevertheless, very few studies have been conducted on 
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the correlation between density and transverse properties. Xavier et al. [12] found a reasonably 
good correlation between the radial variability of transverse and shear components of the 
stiffness matrix of maritime pine wood, based on mechanical tests on unnotched Iosipescu 
specimens. Recently, Xavier [13] and Pereira et al. [14] measured the density and elastic moduli 
of cubic specimens cut from different radial positions and heights on the Pinus pinaster tree and 
concluded that “none of the studied density parameters showed a stable correlation pattern for 
any of the elastic properties.”  

Previous experiments were mostly carried out on bulk cubic or glulam specimens in order to 
comply with the EN standard [15], which recommends a glued laminated timber composed of 
solid timber blocks as the testing specimen, while the size effect on the transverse strength of 
small clear specimens has not been investigated. Also, it is reported in [3] that no conclusive 
evidence has yet been found concerning the accuracy of probabilistic strength size effect 
theories, like the CWSEL. Compared to the uncertainty regarding strength, the effect of the 
high scatter in the timber elastic properties [16] on the response of timber structures has received 
less attention [3,4,17]. However, a spatially variable elastic field can lead to a different stress 
field, compared to the case of a uniform elastic modulus. This stress field results in a different 
failure probability when used with a failure function, compared to the case when the spatial 
variability is not included. The relevant literature also provides insufficient information 
regarding the correlation between the density and transverse mechanical properties. Moreover, 
to the best of the authors’ knowledge, there is no data in the literature about the correlation 
between the transverse strength and the transverse elastic modulus at the scale of a few 
millimeters, which can be important when considering the local variability in elastic modulus 
and strength fields in stochastic simulations. 

This chapter addresses the aforementioned shortcomings in the literature by performing quasi-
static experiments on specimens cut in the transverse direction with different lengths and 
thoroughly analyzing their mechanical behavior and failure types. In addition to the global 
displacement monitoring, the local deformations along the length of each specimen were 
measured. The mechanical behavior of specimens of different lengths cut in regular and random 
manners from different boards was studied. The statistics of the elastic modulus, strength and 
strain to failure as well as the effect of size on these properties were examined. The accuracy 
of CWSEL for the transverse tensile strength of small clear specimens was also evaluated, and 
the correlations between the mechanical properties and between the mechanical properties and 
the material’s density were investigated. 
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4.2 Experimental program 

4.2.1 Material used and conditioning 

Norway spruce wood was used for the specimen preparation in this study. All specimens were 
conditioned to 12% moisture content according to the ASTM standard D143-14 and tested at 
the laboratory temperature of 22±3 C°. The average density of the specimens after conditioning 
was 441.2±14.4 kg/m3. The density was obtained by dividing the weight of each specimen by 
its volume, after conditioning. 

4.2.2 Spruce boards 

Ten boards were cut from the same batch of spruce lumbers in the radial-longitudinal plane. 
Seven boards were used for cutting regularly positioned specimens of a specific length, and 
henceforth referred to as regular boards (REBs). The remaining three boards were used for 
cutting randomly positioned specimens of different lengths and are designated random boards 
(RABs). The boards can have different average strengths, affecting the size effect investigation. 
Therefore randomly positioned specimens of different sizes, cut from each of the RABs, are 
used to eliminate this effect.  

Figure 4.1a-c shows REBs used for cutting specimens of different lengths. Two boards for 
specimens of 8-mm length, two boards for specimens of 32-mm length and three boards for 
specimens of 120-mm length were used. Specimens of 8-mm and 32-mm lengths were cut in 
two rows from each board, and specimens of 120-mm length were cut in one row, taking into 
account the geometries of the specimens and boards. In Fig. 4.2, one RAB is shown. 

 

a)  

b)  
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c) 
Fig. 4.1: Boards with regular arrangement of specimens. a) 8-mm specimens. b) 32-mm specimens. c) 120-

mm specimens. 

 

 
Fig. 4.2: Typical arrangement used for cutting randomly positioned specimens of different lengths. 

 

4.2.3 Specimen description 

Specimens with different lengths were fabricated by using a CNC machine. A cross-sectional 
area of 4×4 mm2 was considered for all investigated specimens. Representative specimens are 
shown in Fig. 4.3. The length of the middle zone (nominal length) can be 8, 32 and 120 mm. 
After conducting a number of preliminary experiments, 226 specimens were tested during the 
main program and the results are reported in this chapter. 

 

 
Fig. 4.3: Fabricated specimens of different lengths. Dimensions in mm. 
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The following system is used to refer to the specimens in this study: TT-abc-16-de-fghi where 
TT refers to transverse tensile, ‘abc’ is the specimen length in mm (008, 032, 120), 16 is the 
cross-sectional area in mm2, the same for all specimens, and ‘de’ denotes the specimen ID 
number in each group of specimens with the same length. Finally, ‘fghi’ indicates the specific 
board. 

4.2.4 Experimental set-up and instrumentation 

All experiments were carried out on a 5 kN electromechanical Walter+Bai testing machine. 
Quasi-static tensile tests were performed in displacement-control mode. Stroke rates of 1 
mm/min for specimens with nominal lengths of 8 and 32 mm and a stroke rate of 2 mm/min for 
specimens with a nominal length of 120 mm were used on the basis of previous preliminary 
experiments so that the final failure occurred within 180±60 s throughout the whole testing 
program.  

A video extensometry system composed of a 10-bit Sony XCLU1000 CCD connected to a 
Fujinon HF35SA-1, 35-mm f 1.4-22 lens with an accuracy of ±0.005 mm was used during the 
experiments to measure the axial deformation. Prior to the tests, black target dots of 1.1-mm 
diameter were applied on the specimens’ surfaces. The distance between each two consecutive 
dots was 4 mm for all groups of specimens. A typical specimen of 32-mm length mounted in 
the testing rig is shown in Fig. 4.4. The axial coordinates of the dots were recorded at a 
frequency of 5 Hz by the video extensometer throughout loading. Using these data, the 
engineering strain between each two consecutive dots was calculated, designated as the local 
strain. These data were used for calculation of the local elastic modulus, locE . Also, using the 

displacements of the first and last dots on each specimen, an overall strain for each nominal 
length was obtained. These data were used for calculating the effective elastic modulus, effE , 

for each specimen. Nominal axial stresses were calculated by using the load measurements and 
the initial cross-sectional areas. 

 
Fig. 4.4: Specimen of 32-mm nominal length with applied dots inside machine grips. 
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4.3 Experimental results  

Tensile stress-strain curves of the 8-mm, 32-mm and 120-mm-length specimens, cut from the 
REBs, are shown in Figs. 4.5-4.11. In the cases of boards with two rows of specimens, the 
curves in each row are indicated by a different color. Maximum and minimum strengths and 
strain to failure are indicated by vertical and horizontal dashed lines in each figure. The overall 
strains are used for plotting these curves; the average slope of each curve indicates the effective 
elastic modulus.  

 

 
Fig. 4.5: Transverse tensile stress-strain curves of spruce wood for 8-mm specimens cut from REB1. 

 

 
Fig. 4.6: Transverse tensile stress-strain curves of spruce wood for 8-mm specimens cut from REB2. 
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Fig. 4.7: Transverse tensile stress-strain curves of spruce wood for 32-mm specimens cut from REB1. 

 

 
Fig. 4.8: Transverse tensile stress-strain curves of spruce wood for 32-mm specimens cut from REB2. 

 

 
Fig. 4.9: Transverse tensile stress-strain curves of spruce wood for 120-mm specimens cut from REB1. 
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Fig. 4.10: Transverse tensile stress-strain curves of spruce wood for 120-mm specimens cut from REB2. 

 

 
Fig. 4.11: Transverse tensile stress-strain curves of spruce wood for 120-mm specimens cut from REB3. 

 

An almost linear stress-strain behavior is observed for most of the specimens. There is a high 
scatter in the effective elastic modulus, strength and strain to failure (overall strain) for each 
length. In a few cases, the maximum/minimum values of strength are associated with the 
maximum/minimum values of strain to failure, especially when the minimum strength in a 
board is relatively low. 

Considering the specimens of 8-mm length, the results of the two rows from each board are not 
significantly different. The range of variation of strength and strain to failure is wider in the 
first board. The specimens from the first board have slightly higher strengths. 

In the first board for specimens of 32-mm length, the specimens in the upper row exhibit higher 
moduli and strengths and lower strains to failure. However, the specimen behaviors in the two 
rows of the second board are not significantly different. As a result, the scatter in the mechanical 
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properties is higher in the first board. Also, the first board is less stiff than the second board and 
exhibits lower strengths but higher strains to failure. In the specimens from the first board, 
higher moduli values are associated with higher strengths, which is not the case for the 
specimens from the second board. The range of variation in the strength is wider in the first 
board, mainly because of one specimen that happened to have a relatively low strength. 

Regarding the specimens of 120-mm length, the specimens from the first board have lower 
moduli and strengths. The scatter in the effective elastic modulus and strain to failure is higher 
in the first board. However, the second board shows higher scatter in the strength. The strength 
is higher for the specimens from the third board than those from the second board, and higher 
for the specimens from the second board than those from the first board. 

Specimens of 8-mm length exhibit a lower variability in their mechanical properties, since they 
represent mainly the variability of the transverse modulus in the longitudinal direction. The 
variability of the transverse modulus in the transverse direction of the boards can be better taken 
into account when specimens are longer. However, a size effect is still present with shorter 
specimens exhibiting higher strengths.  

The experimental results for the mechanical properties of specimens of different lengths in the 
RABs are shown in Figs. 4.12-4.14. The mechanical behavior is almost linear, similar to the 
REBs. The strength consistently decreases with increasing specimen length. A detailed 
discussion regarding the size effect is provided in Section 4.4. 

 

 
Fig. 4.12: Transverse tensile stress-strain curves of spruce wood for 8-mm specimens cut from RABs. 

 

The mechanical properties of each specimen including the effective elastic modulus, the 
strength and the strain to failure as well as their maximum and minimum values in each board, 
along with density and failure type, are given in Tables 4.1-4.3. 
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Fig. 4.13: Transverse tensile stress-strain curves of spruce wood for 32-mm specimens cut from RABs. 

 

 
Fig. 4.14: Transverse tensile stress-strain curves of spruce wood for 120-mm specimens cut from RABs. 

 

The failure types are discussed in Section 4.5. Those few specimen densities affected by a 
nearby knot (mainly in the tab of the specimen) are indicated by * in the tables and are excluded 
when examining the correlation between density and mechanical properties. 

 

Table 4.1: Effective elastic modulus, strength, strain to failure, density and failure type for 8-mm specimens. 

Specimen code Effective 

E (MPa) 

Strength 

(MPa) 

Strain to 
failure (%) 

Density 

(kg/m3) 

Failure 

type 

Maxima and minima

TT-008-16-01-REB1 735.8 9.97 1.35 442.4 3 Max(E)=1184.3 MPa 

Min(E)=643.3 MPa 

Max(S)=10.59 MPa 

Min(S)=7.01 MPa 

TT-008-16-02-REB1 655.1 10.2 1.56 452.4 3 

TT-008-16-03-REB1 643.3 9.61 1.49 464.3 1 

TT-008-16-04-REB1 918.0 7.01 0.76 458.4 1 
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TT-008-16-05-REB1 837.8 10.40 1.24 452.5 1  

 

 
 

TT-008-16-06-REB1 664.4 9.82 1.48 441.4 3 

TT-008-16-07-REB1 970.8 9.77 1.01 459.0 1 

TT-008-16-08-REB1 667.6 9.073 1.36 453.4 3 

TT-008-16-09-REB1 723.5 9.52 1.32 465.6 1 

TT-008-16-10-REB1 676.1 9.80 1.45 472.7 1 

TT-008-16-11-REB1 681.6 10.06 1.46 462.4 1 

TT-008-16-12-REB1 868.7 10.19 1.17 466.5 1 

TT-008-16-13-REB1 722.4 10.59 1.47 465.8 1 

TT-008-16-14-REB1 676.8 10.09 1.49 461.3 1 

TT-008-16-15-REB1 818.7 9.84 1.20 409.3 1 

TT-008-16-16-REB1 672.9 9.52 1.41 409.7 1 

TT-008-16-17-REB1 737.7 9.50 1.29 418.0 1 

TT-008-16-18-REB1 759.7 9.20 1.21 405.3 2 

TT-008-16-19-REB1 893.9 9.17 1.03 402.6 2 

TT-008-16-20-REB1 881.6 9.64 1.09 426.4 1 

TT-008-16-21-REB1 868.7 9.31 1.07 421.2 1 

TT-008-16-22-REB1 712.1 9.61 1.35 417.0 1 

TT-008-16-23-REB1 655.5 9.43 1.44 423.1 1 

TT-008-16-24-REB1 677.7 9.09 1.34 421.2 2 

TT-008-16-25-REB1 720.4 9.67 1.34 415.4 1 

TT-008-16-26-REB1 798.3 9.84 1.23 417.5 1 

TT-008-16-27-REB1 1184.3 8.90 0.75 424.2 1 

TT-008-16-28-REB2 597.7 8.90 1.49 458.9 1 Max(E)=1121.4 MPa 

Min(E)=575.2 MPa 

Max(S)=10.75 MPa 

Min(S)=8.07 MPa 

 

 

 

TT-008-16-29-REB2 754.9 10.75 1.42 455.1 1 

TT-008-16-30-REB2 748.4 10.60 1.42 459.5 1 

TT-008-16-31-REB2 755.2 9.02 1.19 455.1 1 

TT-008-16-32-REB2 642.3 9.40 1.46 453.2 1 

TT-008-16-33-REB2 707.7 8.62 1.22 458.4 1 

TT-008-16-34-REB2 917.5 9.62 1.05 459.6 1 

TT-008-16-35-REB2 1121.4 10.69 0.95 454.3 1 

TT-008-16-36-REB2 - 10.37 - 544.1* 1 

TT-008-16-37-REB2 1003.8 8.74 0.87 449.8 1 

TT-008-16-38-REB2 803.9 8.47 1.05 449.5 1 

TT-008-16-39-REB2 827.1 9.66 1.17 446.1 1 

TT-008-16-40-REB2 899.9 9.26 1.03 441.9 1 

TT-008-16-41-REB2 869.8 9.34 1.07 446.5 1 

TT-008-16-42-REB2 911.3 9.27 1.02 430.8 1 

TT-008-16-43-REB2 906.7 8.54 0.94 437.8 1 
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TT-008-16-44-REB2 850.3 8.50 1.00 441.9 1 

TT-008-16-45-REB2 763.0 8.27 1.08 430.9 1 

TT-008-16-46-REB2 838.4 8.53 1.02 430.1 1 

TT-008-16-47-REB2 673.2 8.07 1.20 429.0 1 

TT-008-16-48-REB2 575.2 8.14 1.42 430.1 1 

TT-008-16-49-RAB1 559.0 9.70 1.74 458.4 1 Max(E)=773.5 MPa 

Min(E)=251.9 MPa 

Max(S)=10.91 MPa 

Min(S)=8.10 MPa 

 

 

TT-008-16-50-RAB1 598.3 9.68 1.62 453.5 1 

TT-008-16-51-RAB1 773.5 10.91 1.41 446.4 1 

TT-008-16-52-RAB1 358.9 8.71 2.43 457.3 1 

TT-008-16-53-RAB1 595.4 9.86 1.66 454.6 1 

TT-008-16-54-RAB1 482.8 8.10 1.68 451.5 2 

TT-008-16-55-RAB1 251.9 8.72 3.46 462.7 1 

TT-008-16-56-RAB1 279.2 8.19 2.93 443.7 4 

TT-008-16-57-RAB1 329.5 8.15 2.47 424.5 3 

TT-008-16-58-RAB2 839.8 10.00 1.19 407.1 1 Max(E)=773.5 MPa 

Min(E)=251.9 MPa 

Max(S)=11.53 MPa 

Min(S)=9.60 MPa 

 

 

TT-008-16-59-RAB2 746.1 10.51 1.41 442.8 1 

TT-008-16-60-RAB2 438.0 9.60 2.19 439.7 1 

TT-008-16-61-RAB2 940.0 11.53 1.23 455.1 1 

TT-008-16-62-RAB2 645.5 9.67 1.50 439.9 1 

TT-008-16-63-RAB2 892.7 11.05 1.24 446.1 1 

TT-008-16-64-RAB2 793.5 10.91 1.37 454.6 2 

TT-008-16-65-RAB2 765.4 11.46 1.50 547.0* 1 

TT-008-16-66-RAB3 733.8 9.73 1.33 473.7 3 Max(E)=734.5 MPa 

Min(E)=312.7 MPa 

Max(S)=11.17 MPa 

Min(S)=8.03 MPa 

 

 

TT-008-16-67-RAB3 393.9 8.03 2.04 424.3 1 

TT-008-16-68-RAB3 719.6 9.44 1.31 455.6 1 

TT-008-16-69-RAB3 734.5 9.72 1.32 446.9 3 

TT-008-16-70-RAB3 418.1 8.46 2.02 459.5 3 

TT-008-16-71-RAB3 312.7 9.05 2.89 455.0 1 

TT-008-16-72-RAB3 380.0 9.57 2.52 461.3 1 

TT-008-16-73-RAB3 458.2 9.56 2.09 455.5 1 

TT-008-16-74-RAB3 426.1 11.17 2.62 462.4 1 

TT-008-16-75-RAB3 649.6 10.61 1.63 446.5 1 
 

 

Table 4.2: Effective elastic modulus, strength, strain to failure, density and failure type for 32-mm specimens. 

Specimen code Effective 

E (MPa) 

Strength 

(MPa) 

Strain to 
failure (%) 

Density 

(kg/m3) 

Failure 

type 

Maxima and Minima 

TT-032-16-01-REB1 597.6 8.97 1.50 438.2 1 Max(E)=674.8 MPa 

Min(E)=104.3 MPa 

Max(S)=9.60 MPa 

TT-032-16-02-REB1 538.2 2.48 0.46 455.0 4 

TT-032-16-03-REB1 674.8 8.81 1.31 450.5 1 



Stochastic analysis of clear timber as a structural material  
 

103 
 

TT-032-16-04-REB1 441.3 8.58 1.94 446.9 1 Min(S)=2.48 MPa 

 

 

 

TT-032-16-05-REB1 406.6 8.03 1.97 445.1 1 

TT-032-16-06-REB1 408.7 8.49 2.08 444.4 1 

TT-032-16-07-REB1 362.6 8.44 2.33 448.3 4 

TT-032-16-08-REB1 385.1 9.60 2.49 490.2 1 

TT-032-16-09-REB1 477.5 8.07 1.69 450.0 1 

TT-032-16-10-REB1 168.7 6.26 3.71 435.9 1 

TT-032-16-11-REB1 154.5 6.48 4.20 443.5 4 

TT-032-16-12-REB1 130.7 5.99 4.58 447.2 1 

TT-032-16-13-REB1 105.9 5.08 4.80 448.3 1 

TT-032-16-14-REB1 104.3 5.65 5.42 435.7 3 

TT-032-16-15-REB1 126.0 5.58 4.43 431.1 4 

TT-032-16-16-REB1 144.6 5.82 4.02 442.1 4 

TT-032-16-17-REB1 162.3 6.72 4.14 436.5 1 

TT-032-16-18-REB1 181.2 6.82 3.76 419.4 1 

TT-032-16-19-REB1 248.4 6.58 2.65 443.6 3 

TT-032-16-20-REB1 323.0 7.71 2.39 439.9 1 

TT-032-16-21-REB2 295.5 8.31 2.81 447.8 1 Max(E)=923.7 MPa 

Min(E)=295.5 MPa 

Max(S)=9.98 MPa 

Min(S)=6.46 MPa 

 

 

 

TT-032-16-22-REB2 407.8 6.46 1.58 453.1 2 

TT-032-16-23-REB2 443.5 7.68 1.73 435.5 3 

TT-032-16-24-REB2 448.4 8.06 1.80 436.1 1 

TT-032-16-25-REB2 422.9 7.37 1.74 436.5 3 

TT-032-16-26-REB2 462.4 8.08 1.75 431.2 1 

TT-032-16-27-REB2 536.4 7.50 1.40 438.9 3 

TT-032-16-28-REB2 710.8 7.66 1.08 441.4 3 

TT-032-16-29-REB2 778.5 6.66 0.86 405.8 2 

TT-032-16-30-REB2 667.0 8.15 1.22 433.1 1 

TT-032-16-31-REB2 824.3 8.54 1.04 436.7 3 

TT-032-16-32-REB2 923.7 8.84 0.96 439.2 1 

TT-032-16-33-REB2 304.3 6.98 2.29 451.5 1 

TT-032-16-34-REB2 344.2 7.60 2.21 443.5 1 

TT-032-16-35-REB2 348.9 8.02 2.30 469.1 1 

TT-032-16-36-REB2 472.5 8.20 1.74 442.1 1 

TT-032-16-37-REB2 491.2 8.17 1.66 434.1 1 

TT-032-16-38-REB2 595.1 8.09 1.36 429.3 1 

TT-032-16-39-REB2 653.9 8.02 1.23 430.8 1 

TT-032-16-40-REB2 743.9 8.50 1.14 429.6 1 

TT-032-16-41-REB2 795.1 8.21 1.03 432.0 1 

TT-032-16-42-REB2 805.5 8.32 1.03 424.4 1 
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TT-032-16-43-REB2 669.6 8.57 1.28 443.9 1 

TT-032-16-44-REB2 813.5 9.98 1.23 468.4 1 

TT-032-16-45-REB2 792.9 8.52 1.07 442.8 1 

TT-032-16-46-RAB1 928.9 9.04 0.97 434.4 1 Max(E)=928.9 MPa 

Min(E)=321.4 MPa 

Max(S)=9.96 MPa 

Min(S)=4.88 MPa 

 

 

TT-032-16-47-RAB1 867.1 9.96 1.15 438.7 1 

TT-032-16-48-RAB1 537.9 9.50 1.77 451.5 3 

TT-032-16-49-RAB1 428.8 8.22 1.92 449.4 3 

TT-032-16-50-RAB1 519.4 9.69 1.87 438.7 1 

TT-032-16-51-RAB1 451.0 7.92 1.76 448.0 3 

TT-032-16-52-RAB1 492.3 9.52 1.93 438.3 3 

TT-032-16-53-RAB1 321.4 8.38 2.61 439.3 3 

TT-032-16-54-RAB1 353.9 4.88 1.38 430.8 2 

TT-032-16-55-RAB2 549.0 9.93 1.81 454.6 1 Max(E)=861.5 MPa 

Min(E)=499.1 MPa 

Max(S)=10.23 MPa 

Min(S)=7.44 MPa 

 

 

TT-032-16-56-RAB2 666.3 10.07 1.51 447.5 1 

TT-032-16-57-RAB2 861.5 8.65 1.00 432.2 1 

TT-032-16-58-RAB2 499.1 9.20 1.84 430.2 1 

TT-032-16-59-RAB2 758.6 9.23 1.22 431.0 1 

TT-032-16-60-RAB2 747.0 9.03 1.21 423.7 1 

TT-032-16-61-RAB2 811.0 9.15 1.13 442.1 1 

TT-032-16-62-RAB2 839.0 9.51 1.13 445.6 1 

TT-032-16-63-RAB2 637.5 7.86 1.23 425.1 1 

TT-032-16-64-RAB2 662.2 8.38 1.27 404.6 2 

TT-032-16-65-RAB2 666.0 8.41 1.26 438.4 1 

TT-032-16-66-RAB2 760.0 7.44 0.98 439.3 3 

TT-032-16-67-RAB2 755.7 10.23 1.35 458.6 1 

TT-032-16-68-RAB2 816.2 9.33 1.14 435.9 1 

TT-032-16-69-RAB3 867.5 9.28 1.07 445.1 1 Max(E)=926.4 MPa 

Min(E)=414.0 MPa 

Max(S)=10.26 MPa 

Min(S)=5.39 MPa 

 

 

TT-032-16-70-RAB3 586.8 8.10 1.38 445.5 1 

TT-032-16-71-RAB3 854.0 5.39 0.63 448.1 3 

TT-032-16-72-RAB3 643.5 7.89 1.23 452.2 1 

TT-032-16-73-RAB3 916.5 8.35 0.91 465.6 3 

TT-032-16-74-RAB3 926.4 9.07 0.98 449.1 1 

TT-032-16-75-RAB3 376.9 7.88 2.09 448.1 1 

TT-032-16-76-RAB3 378.6 8.01 2.12 452.3 1 

TT-032-16-77-RAB3 847.0 9.59 1.13 439.2 1 

TT-032-16-78-RAB3 829.5 10.26 1.24 438.8 1 

TT-032-16-79-RAB3 433.4 8.09 1.87 478.2 1 

TT-032-16-80-RAB3 740.4 8.36 1.13 446.9 3 

TT-032-16-81-RAB3 414.0 7.71 1.86 526.6* 3 
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TT-032-16-82-RAB3 523.0 9.65 1.85 574.1* 1 
  

 

Table 4.3: Effective elastic modulus, strength, strain to failure, density and failure type for 120-mm specimens. 

Specimen code Effective 

E (MPa) 

Strength 
(MPa) 

Strain to 

failure (%) 

Density 

(kg/m3) 

Failure 

type 

Maxima and minima 

TT-120-16-01-REB1 143.3 5.44 3.80 443.2 4 Max(E)=392.0 MPa 

Min(E)=143.3 MPa 

Max(S)=5.84 MPa 

Min(S)=4.45 MPa 

 

 

 

TT-120-16-02-REB1 177.2 4.87 2.75 449.7 4 

TT-120-16-03-REB1 155.5 4.98 3.20 447.4 4 

TT-120-16-04-REB1 183.8 5.25 2.86 456.0 4 

TT-120-16-05-REB1 230.0 4.90 2.13 529.7* 3 

TT-120-16-06-REB1 187.5 4.45 2.37 451.1 3 

TT-120-16-07-REB1 187.2 4.59 2.45 436.3 4 

TT-120-16-08-REB1 198.4 5.07 2.56 441.7 4 

TT-120-16-09-REB1 229.06 4.86 2.12 445.6 3 

TT-120-16-10-REB1 246.8 5.01 2.03 448.4 3 

TT-120-16-11-REB1 278.4 4.70 1.69 447.9 2 

TT-120-16-12-REB1 288.5 5.45 1.89 452.2 2 

TT-120-16-13-REB1 336.7 5.64 1.68 449.5 2 

TT-120-16-14-REB1 360.8 4.85 1.34 450.0 2 

TT-120-16-15-REB1 392.0 4.53 1.16 453.1 2 

TT-120-16-16-REB1 375.1 5.78 1.54 446.9 2 

TT-120-16-17-REB1 341.2 5.69 1.67 442.5 2 

TT-120-16-18-REB1 318.7 5.84 1.83 444.7 4 

TT-120-16-19-REB1 348.7 5.48 1.57 446.6 2 

TT-120-16-20-REB1 352.8 5.25 1.49 450.3 3 

TT-120-16-21-REB1 338.7 5.59 1.65 442.3 1 

TT-120-16-22-REB2 655.2 4.40 0.67 411.3 2 Max(E)=802.6 MPa 

Min(E)=493.8 MPa 

Max(S)=7.56 MPa 

Min(S)=2.01 MPa 

 

 

 

TT-120-16-23-REB2 580.8 3.66 0.63 421.1 2 

TT-120-16-24-REB2 556.1 2.01 0.36 420.2 4 

TT-120-16-25-REB2 570.1 6.40 1.12 416.7 1 

TT-120-16-26-REB2 513.8 4.95 0.96 429.7 3 

TT-120-16-27-REB2 493.8 5.06 1.02 437.1 2 

TT-120-16-28-REB2 533.1 7.06 1.32 429.5 3 

TT-120-16-29-REB2 510.0 4.57 0.90 429.9 2 

TT-120-16-30-REB2 530.2 5.39 1.02 426.5 2 

TT-120-16-31-REB2 547.2 6.12 1.12 429.0 3 

TT-120-16-32-REB2 603.7 7.17 1.19 452.0 2 

TT-120-16-33-REB2 606.9 6.72 1.11 430.8 3 
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TT-120-16-34-REB2 696.8 5.93 0.85 431.2 2 

TT-120-16-35-REB2 743.5 6.69 0.90 437.0 1 

TT-120-16-36-REB2 744.7 4.81 0.65 427.6 1 

TT-120-16-37-REB2 802.6 7.56 0.94 430.5 1 

TT-120-16-38-REB2 793.8 5.87 0.74 427.6 1 

TT-120-16-39-REB2 768.2 3.95 0.51 428.3 2 

TT-120-16-40-REB3 652.0 7.16 1.10 426.0 3 Max(E)=848.5 MPa 

Min(E)=641.2 MPa 

Max(S)=7.16 MPa 

Min(S)=5.73 MPa 

 

 

 

TT-120-16-41-REB3 654.5 6.59 1.01 431.2 mixed 

TT-120-16-42-REB3 641.2 6.56 1.02 439.4 mixed 

TT-120-16-43-REB3 695.6 6.07 0.87 431.5 mixed 

TT-120-16-44-REB3 680.3 6.47 0.95 428.1 1 

TT-120-16-45-REB3 783.4 7.13 0.91 435.3 2 

TT-120-16-46-REB3 784.0 6.69 0.85 429.0 2 

TT-120-16-47-REB3 799.4 5.73 0.72 426.3 3 

TT-120-16-48-REB3 801.6 5.97 0.74 431.6 2 

TT-120-16-49-REB3 848.5 6.73 0.79 439.0 2 

TT-120-16-50-REB3 800.4 7.10 0.89 425.7 2 

TT-120-16-51-REB3 815.3 6.99 0.86 424.0 1 

TT-120-16-52-REB3 842.7 6.79 0.81 433.6 2 

TT-120-16-53-RAB1 579.9 7.45 1.28 440.7 4 Max(E)=585.8 MPa 

Min(E)=362.0 MPa 

Max(S)=8.63 MPa 

Min(S)=6.28 MPa 

 

 

TT-120-16-54-RAB1 585.8 8.63 1.47 454.4 1 

TT-120-16-55-RAB1 584.7 7.31 1.25 449.8 2 

TT-120-16-56-RAB1 438.4 6.28 1.43 446.1 3 

TT-120-16-57-RAB1 408.2 7.08 1.73 444.0 3 

TT-120-16-58-RAB1 362.0 7.05 1.95 441.6 3 

TT-120-16-59-RAB2 1214.7 8.84 0.73 577.2* 1 Max(E)=1214.7 MPa 

Min(E)=663.5 MPa 

Max(S)=8.99 MPa 

Min(S)=6.84 MPa 

 

 

TT-120-16-60-RAB2 740.7 8.82 1.19 433.6 1 

TT-120-16-61-RAB2 759.4 7.90 1.04 424.2 1 

TT-120-16-62-RAB2 694.5 8.21 1.18 424.8 1 

TT-120-16-63-RAB2 663.5 8.99 1.35 425.0 1 

TT-120-16-64-RAB2 717.2 6.84 0.95 428.5 3 

TT-120-16-65-RAB3 666.0 7.82 1.17 434.5 3 Max(E)=666.0 MPa 

Min(E)=501.5 MPa 

Max(S)=9.03 MPa 

Min(S)=7.43 MPa 

 

 

TT-120-16-66-RAB3 517.1 7.43 1.44 441.0 3 

TT-120-16-67-RAB3 547.2 8.29 1.51 434.9 1 

TT-120-16-68-RAB3 501.5 9.03 1.80 438.2 1 

TT-120-16-69-RAB3 542.0 7.45 1.37 460.2 1 
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4.4 Statistics of mechanical properties and size effects 

4.4.1 Statistics of effective elastic modulus 

The statistics of the effective elastic modulus for the three specimen lengths, cut from the REBs 
and RABs, are given in Table 4.4. First, test results for specimens cut from the REBs are 
considered. It can be seen that the mean value for specimens of 8-mm length is considerably 
higher than those for 32-mm- and 120-mm-length specimens; however, the standard deviation 
(SD) is lower. Consequently, the coefficient of variation (COV) for the 8-mm-length specimens 
is also much lower. This is because the elastic moduli values of the 8-mm-length specimens 
mainly represent the scatter in the transverse elastic modulus along the longitudinal paths from 
which they were cut. This is also true for the mean value of the modulus for the 8-mm-length 
specimens from the REBs. However, in the case of the 32-mm- and 120-mm-length specimens, 
a wider range in the transverse direction is covered and therefore the variability of the transverse 
elastic modulus in the transverse direction can be appropriately investigated. 

 

Table 4.4: Statistics of the transverse mechanical properties for specimens of different sizes. 

Property Length 

(mm) 

Mean REB 

(MPa) 

Mean RAB 

(MPa) 

COV REB 

(%) 

COV RAB 

(%) 

Effective 

elastic 

modulus  

8 787.0 574.7 14.65 35.24 

32 464.3 655.9 49.90 28.54 

120 513.8 581.8 44.06 20.53 

Strength 8 9.41 9.71 8.18 10.88 

32 7.57 8.68 17.57 13.43 

120 5.63 7.79 19.01 10.49 

Strain to 

failure 

8 1.23 1.88 15.54 32.78 

32 2.16 1.43 55.26 30.21 

120 1.39 1.38 52.52 19.63 
 

 

Considering the RABs, the mean value of the modulus slightly increases from 8-mm to 32- 
mm-length specimens and then decreases for 120-mm-length specimens, indicating that the 
mean value does not change significantly as size changes. On the other hand, the COV decreases 
consistently as specimen lengths increase. 

4.4.2 Statistics of longitudinal tensile strength 

The statistics of strength are also given in Table 4.4 for specimens cut from both the random 
and the regular boards. The mean strength decreases with increasing length in all cases. 
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Concerning the variability in the REBs, the COV of the 8-mm-length specimens is considerably 
lower than the other COVs. Similar to the case of the elastic modulus, this is because the COV 
of the 8-mm-length specimens from the REBs mainly represents the variability of the transverse 
tensile strength in the longitudinal direction. Considering the specimens of each length from 
the RABs, the COVs are similar, as shown in Table 4.4. However a sound conclusion cannot 
be drawn for the specimens cut from the REBs, since each specimen group (different lengths) 
comes from a different board and the COV is therefore increased as it includes the variability 
resulting from different boards.  

According to the classical Weibull size effect law (CWSEL), the strength changes linearly with 
specimen size on the logarithmic scale. The slope of this line depends only on the shape factor 
of the corresponding Weibull distribution. In turn, this shape factor is only a function of COV.  
Therefore, using each three COVs from the RABs, the COVs of the strength data for specimens 
of 8-, 32- and 120-mm lengths were calculated and used to obtain an average value for the line 
slope. This slope, equal to -0.095, was used to fit a line to the experimental data, labeled as 
CWSEL in Fig. 4.15. The variability between the different boards is also shown in this figure 
as the mean values of strength obtained for each one of the RABs per specimen length is also 
indicated by solid symbols. This figure shows the experimental data on the logarithmic scale. 
It is seen that this line can well describe the size effect on the transverse strength of clear timber. 
The R-squared value for the fitting line is 0.972. This result is in contrast to the case of the 
longitudinal tensile strength, studied in Chapter 3.  

 
Fig. 4.15: Evaluation of accuracy of CWSEL against experimental data. Each hollow circle shows mean 

strength values for specimens of specific lengths cut from RABs. Solid circles show strength mean values in 

individual boards for specimens of specific lengths. 

 

It should be noted that the above analysis is not carried out for specimens from the REBs since 
specimens of different sizes are cut from different boards and, as shown in Fig. 4.15, variability 
between boards can affect the resulting average strengths.
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4.4.3 Statistics of strain to failure 

The statistics of the strain to failure are given in Table 4.4, for the REBs and RABs. Both mean 
value and COV decrease with increasing length in the RABs, because the mean elastic modulus 
does not change significantly, but the strength significantly decreases with length. When 
examining the specimens from the REBs, however, the COV of the 8-mm-length specimens is 
considerably lower than those of specimens with different lengths, similar to the case of the 
elastic modulus and strength. 

4.4.4 Statistical distributions for transverse modulus and strength 

For stochastic simulations of timber structures/components, it is necessary to know the 
statistical distributions governing the mechanical properties. The three most commonly used 
statistical distributions for mechanical properties, i.e. normal, lognormal and Weibull, were 
fitted to the experimental data for the transverse modulus and strength. The results of the 
goodness-of-fit tests, Anderson-Darling (AD) and Kolmogorov-Smirnov (KS), at a significance 
level of 0.05 are given in Table 4.5. A ‘zero’ denotes that sampled data are taken from the 
corresponding distribution, while ‘one’ rejects the presumed distribution. KS test support the 
three statistical distributions for all the specimen lengths in REBs and RABs. However, the AD 
test rejects the statistical distributions in some cases. 

 

Table 4.5: Results of goodness-of-fit tests for the transverse modulus and strength. 
Property REB/RAB Specimen 

length (mm) 

Normal Lognormal Weibull 

AD KS AD KS AD KS 

Transverse 

elastic 

modulus 

 

REB 8 1 0 0 0 1 0 

32 0 0 1 0 0 0 

120 1 0 1 0 1 0 

RAB 8 0 0 0 0 0 0 

32 1 0 1 0 1 0 

120 0 0 0 0 0 0 

Transverse 

strength 

 

REB 8 0 0 0 0 0 0 

32 1 0 1 0 1 0 

120 0 0 1 0 0 0 

RAB 8 0 0 0 0 0 0 

32 0 0 0 0 0 0 

120 0 0 0 0 0 0 
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4.5 Specimen failures  

Here the term ‘grain angle’ is defined as the angle between latewood and the axis perpendicular 
to the load direction. Four types of fracture were observed in the specimens, as shown in Fig. 
4.16 where characteristic failure photos of full cross sections are presented: 1) Earlywood 2) 
Earlywood-border 3) Growth ring border 4) Crossing growth rings. In the first type, failure 
occurs mostly in the radial direction of the earlywood and the failure plane is approximately 
perpendicular to the loading direction. The second failure type occurs in both earlywood and 
growth ring borders. The failure plane is often not perpendicular to the loading direction. The 
failure path is mostly along radial bonds. In the third type, failure occurs in the ring border 
between earlywood and latewood, and the failure plane is not perpendicular to the loading 
direction. In the fourth type, the failure plane is approximately perpendicular to the loading 
direction and the fracture path crosses the ring border. 

 

a)    

     TT-120-16-37-REB2 
b)  

     TT-120-16-28-REB2 
c)  

     TT-120-16-12-REB1 
d)  

      TT-120-16-02-REB1 
Fig. 4.16: Different failure types observed in specimens: a) Earlywood failure b) Earlywood-border failure c) 

Growth ring border failure d) Crossing growth ring failure. Vertical dimension is 4mm (specimen width). Load 

is applied in horizontal direction. 

 

The grain angle increases from the first type to the fourth, and the mean strength decreases 
accordingly, since timber is stronger in the radial direction than in the tangential direction. The 
statistics of strength of all specimens from the REBs and the RABs, grouped according to their 
failure types, are given in Table 4.6.  

 

Table 4.6: Statistics of strength for all specimens when grouped according to failure types and 

statistics of local elastic modulus at failure zone. 
 

Failure type Number of specimens Mean strength (MPa) Mean local elastic 

modulus (MPa) 

1 134 8.85±1.26 634.1±246.1

2 42 7.42±1.58 614.1±284.9

3 32 6.34±1.71 546.2±308.6

4 15 5.50±1.77 179.0±119.0
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In order to investigate whether or not the above classification also implies a significant 
difference between the mean strengths of the four groups, an analysis of variance (ANOVA), 
at a significance level of 5%, was performed. The null hypothesis states that samples in different 
data sets are taken from the same population. In this procedure, the variability of the means of 
data sets around the grand mean (between-set), which is the mean of all the raw data, is 
compared to the variability of the raw data around their respective means (within-set). By 
dividing the “between-set” variability by the “within-set” variability, an F-value is obtained 
which, along with the number of data sets and sample sizes, can be used for the estimation of 
the p-value from the F-distribution. The lower the p-value, the lower the probability that the 
raw data in the data sets are taken from the same population. Information regarding the 
calculation of the p-value is given in [18, 19]. A p-value of 1.11e-16, which is far less than 0.05, 
was obtained for the examined pool of data sets, suggesting that one or more data sets were 
significantly different from the others. To identify the sets with significantly different mean 
values, the Scheffe’s test [20] was used. The results of this test are given in Table 4.7. Any 
comparison whose associated p-value is less than 0.05 indicates a significant difference 
between the related data set mean values. All the estimated p-values, except the p-value of the 
pair 3 and 4, which is 3.21e-1, are less than 0.05. All comparisons, except that between the third 
and the fourth groups, show that specimen groups with different failure types have statistically 
significantly different mean strengths. Although the difference between the mean strength 
values of the third and fourth groups is similar to the differences between the first and second, 
or second and third groups, the limited fourth group sample size may have masked the 
significant statistical difference between these groups.  

 

Table 4.7: Results of Scheffe’s test for two-by-two comparisons between failure types. 

Pair 1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 

p-value 1.51e-6 1.13e-14 8.67e-14 1.71e-2 2.56e-4 3.21e-1 
 

 

4.6 Correlations  

The correlations between the local elastic modulus and strength, the effective modulus and 
density and between the strength and density were examined. Fig. 4.17 shows the tensile 
strength of each specimen vs the corresponding local elastic modulus measured at the failure 
zone. The data from each of the specimen groups are indicated by a different symbol. Also, the 
centroid of each group is indicated by a larger symbol of the same type. Since here the 
correlation between local properties is considered, all specimen strengths and their 
corresponding local modulus can be used for estimation of a single correlation coefficient. It 
can be seen that both mean local elastic moduli and mean strengths decrease as length increases. 
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The linear correlation coefficient was found to be 0.610. For example, when a value is randomly 
assigned to the local elastic modulus or strength at a material point, the uncertainty of the other 
property value at that material point is decreased due to this correlation between them. If a low 
value were randomly assigned to the first parameter, due to the correlation between them, it 
would be more probable that a low value would also be assigned to the second parameter at that 
material point. From a mechanical point of view, lower elastic moduli are associated with higher 
grain angles, because timber is stiffer in the radial direction than in the tangential direction [8]. 
This can also be seen in Table 4.5 in which the mean values of the local moduli at the failure 
zones, corresponding to specimen sets with different failure types, are given. The mean value 
decreases from the first set to the fourth set. The decrease from the third set to the fourth set is 
more obvious, but this can be attributed to the low sample size of the fourth set.  Similarly, as 
the grain angle increases, the failure type changes and strength decreases. This explains the 
reason for the correlation between the modulus and the strength. For example, in the case of the 
first failure type, “Earlywood”, the grain angle has the lowest values and the strength has the 
highest of all examined cases.  

 
Fig. 4.17: Correlation between local elastic modulus and tensile transverse strength. 

 

In Fig. 4.18, the scatter plot of the effective elastic modulus of specimens versus their densities 
is given. There is no significant correlation in this case. One reason for this is that the variability 
of the effective elastic modulus is very high, mainly due to the change in the grain angle, much 
larger than that due to the density. Therefore, the variability in the effective elastic modulus 
caused by density variability cannot be easily quantified. A detailed study measuring the local 
densities could possibly provide a more comprehensive result. These results are compatible 
with observations revealed in [13] where no consistent correlation between density and 
transverse elastic parameters was reported.  
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Fig. 4.18: Correlation between density and effective elastic modulus. 

 

The scatter plot of the specimens’ strengths versus their densities is given in Fig. 4.19 showing 
a relatively weak correlation in this case. The correlation coefficient is 0.21, when all the data 
points in the figure are taken into account. The reason for the correlation being higher compared 
to the previous case is that the variability of the strength is much less than the variability of the 
effective elastic modulus, and therefore the effect of the density change on the strength is more 
obvious, although the change in the grain angle has a still larger effect. 

 
Fig. 4.19: Correlation between density and tensile transverse strength. 

 

4.7 Conclusions 

In this chapter, an experimental campaign consisted of transverse tensile quasi-static 
experiments on specimens of different lengths made of spruce wood was conducted. A total 
number of 226 valid experimental results were obtained. The cross-sectional area was the same 
for all specimens and reasonably small, so as to exclude the effect of the variability of the 
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properties in the cross section. The nominal length of specimens varied from 8 mm to 120 mm 
in order to investigate the size effect on the mechanical properties. The following main 
conclusions were drawn: 

 A cutting plan with regularly positioned specimens can lead to underestimation of the 
randomness in the mechanical properties, as especially shown in the case of the 8-mm-
length specimens from the REBs.  

 A significant variability was observed in the effective transverse elastic modulus of clear 
spruce wood. This variability decreases as length increases. 

 Four types of failure were observed in the specimens. The strengths were higher when 
the grain angle was lower.  

 The CWSEL is sufficiently accurate for modeling the size effect on the transverse tensile 
strength of clear timber. This is in contrast to the case of longitudinal tensile strength, 
studied in Chapter 3.  

 A significant correlation was found between the local elastic modulus and the strength. 
The correlation between the specimen density and the strength was less significant, and 
the correlation between the specimen density and effective elastic modulus was 
negligible. 

With recent progress in computational power, stochastic analyses of timber structures are 
receiving more attention. The results presented in this chapter can be used for taking into 
account the statistical variability of the transverse mechanical properties and their correlation, 
especially when local mechanical properties are concerned. This is of paramount importance in 
applications such as adhesively-bonded timber joints, where the transverse mechanical 
properties play a critical role in determining the load-bearing capacity of the structure. 
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5   Spatial variability in transverse mechanical 
properties of clear timber 
 

 

 

5.1 Introduction 

Timber as a natural composite is highly variable in terms of its mechanical properties [1]. Some 
of the influencing factors are the age of the tree, the original position of timber within the tree, 
the structural complexity and imperfections, the load history etc. This random and spatial 
variability is also observed in other materials such as synthetic composites and is usually called 
the “random spatial variability” [2-3]. 

The transverse tensile strength of clear timber is low compared to the longitudinal tensile 
strength [4]. Therefore, consideration of the transverse strength can be important even in a stress 
field with small transverse stress components. Moreover, in some applications such as 
adhesively bonded timber joints, normally made up of clear wood, the transverse stress is very 
important concerning the failure [5,6], and the contribution of the transverse strength in the 
determination of the load-bearing capacity of the structure is more significant than the 
longitudinal strength. 

The statistical variability in the mechanical properties of timber has been examined in many 
works. In the case of transverse properties, a range of 10% to 30% for the coefficient of variation 
of the transverse elastic modulus and the tensile transverse strength has been reported [5-8]. On 
the other hand, a few experimental works have been devoted to the characterization of the 
spatial variability in the transverse mechanical properties of timber and timber products. 
Regarding the clear timber, Xavier et al. [9] used the unnotched Iosipescu test for the study of 
the radial variability of stiffness parameters of maritime pine wood. Pereira et al. [10] conducted 
tensile tests on cubic specimens cut in different radial positions and heights of Pinus pinaster 
tree. The results show that the radial transverse modulus and the shear transverse modulus 
decrease from tree center outwards. Also, Brandner and Schickhofer [7] used EN standard-type 
specimen (cubic bulk material) to investigate the spatial correlation in the transverse tensile 
strength and elastic modulus along the tree stem.  

The mesostructure of clear wood is mainly characterized by earlywood-latewood arrangements. 
Concerning the transverse plane, the mechanical properties are superior in the radial direction 
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[11]. Therefore, when the latewoods are locally perpendicular to the nominal axis of a 
specimen, which is cut in the transverse plane, the local mechanical properties are higher. 

The characterization of spatial variability in the transverse local strength and local elastic 
modulus at mesoscale (a few millimeters) has not been studied in detail in the literature. 
Consequently, the spatial variability is frequently neglected in the probabilistic simulations of 
timber structures [12-14]. The knowledge of the random spatial variability in elastic parameters 
can lead to predicting more accurate stress fields within the material. This along with data for 
the spatial variability of strength parameters can improve structural designs with a required 
reliability levels. Also, in this chapter, attempt has been made to find a reasonable qualitative 
correlation between timber mesostructural patterns and local variations of the transverse elastic 
modulus. This can be an aid for visually evaluating the local elastic modulus.  

In this chapter, the RSV in the transverse mechanical properties of clear timber is investigated 
based on the results of the mechanical tests explained in the previous chapter. The spatial 
variability in the transverse elastic modulus, transverse strength and transverse strain to failure 
in both longitudinal and transverse directions was characterized. Also, the effect of the 
mesostructure of the clear timber on the local elastic modulus was studied. Finally, the effect 
of some defects on the timber properties were examined. 

 

5.2 Clear timber mesostructure 

The mesostructure of the clear spruce wood is mainly characterized by the earlywood-latewood 
patterns. The main local mesostructural characteristics are shown in Fig. 5.1. The darker parts 
of the growth rings are latewood that have superior mechanical properties, hereafter called 
‘strips of latewood’. Although the boards were cut in the radial-tangential, in terms of the 
common terminology of timber production, not all the specimens were exactly in the radial 
direction due to the positioning of specimens along each board’s thicknesses. This along with 
the natural variability of the timber structure cause the variability in the timber local 
mesostructure. Figure 5.1a illustrates the change in the angle between the tangential direction 
and the axis perpendicular to the nominal axis of the specimen. The local mechanical properties 
are higher when the angle is closer to 0°. It is seen in Fig. 5.1b that in some growth rings, the 
latewood thickness is higher than the others which also influences the local mechanical 
properties. Finally, Fig. 5.1c shows the change in the growth ring thickness. These local 
microstructural changes are the main origin of random spatial variability in the mechanical 
properties.  
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a)  

b)  

c)
Fig. 5.1: Mesostructural characteristics of spruce wood in the transverse plane: a) Change in the angle 

between the tangential direction and the transverse axis of the specimen b) Latewood thickness change c) 

Growth ring thickness change. 

 

5.3 Spatial variability in the mechanical properties 

5.3.1 Transverse elastic modulus 

The spatial variability of the transverse elastic modulus along the transverse and the 
longitudinal axes of the boards are examined here. Specimens of 120 mm length in REBs are 
best suited for this purpose. Fig. 5.2 shows the variability of the modulus in the transverse 
direction in the three used REBs. The average variability of the modulus in these boards has 
also been provided in Fig. 5.3 for a better comparison between boards. The three boards are 
different in terms of local elastic modulus variations. On average, the third board is stiffer than 
the second board and the second board is stiffer than the first board. In most specimens cut from 
these boards, the local modulus value gradually increases from the one side, reaches a maximum 
value somewhere in the middle, and then decreases. Also, the scatter in the results is more 
significant in the second board compared to the other two boards.  

 
Fig. 5.2: Spatial variability of the transverse elastic modulus in the transverse direction for specimens of 120 

mm length in REBs. 
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Fig. 5.3: Average Spatial variability of the transverse elastic modulus in the transverse direction in REBs for 

120 mm specimens. 

 

There are major changes in the trend of the modulus variability in the first board in a few 
specimens compared to the others, such as the highlighted dashed and dotted curves (TT-120-
16-05-REB1 and TT-120-16-19-REB1) in Fig. 5.2. These are discussed in Section 5.4.2 with 
regard to the mesostructure of the wood. 

Although the statistical aspects of the results of the current experimental campaign have been 
studied in the previous chapter, here a discussion is made on the contributions of the variability 
of the local elastic modulus due to changing the spatial position within individual specimens 
(within-specimen variability or WSV) and the variability of the local elastic modulus due to 
switching between specimens (between-specimen variability or BSV) to the total variability of 
the local elastic modulus. Results of specimens of 120 mm in REBs are used again, as they are 
more suitable for examining the spatial variability of the local elastic modulus.  In Table 5.1, 
the COVs are given. It is seen that the contribution of the WSV is higher than that of the BSV. 
Also, the effective moduli of specimens of 120 mm in REBs and the corresponding COVs have 
been shown in Figs. 5.4 and 5.5, respectively. In Fig. 5.4, it is seen that the BSV becomes more 
influential when specimens from different boards are considered together, compared to the case 
of individual boards. The sudden changes in the effective elastic moduli between boards is 
obvious. The three boards have also different behaviors in terms of the variation of the COVs 
of local moduli. The odd COV of the specimen 5 is due to the surprisingly high value of the 
local elastic modulus at the first few segments of this specimen, as mentioned above. The REB2 
has the highest variation in COV of its specimens, among the three boards, from 15.6 % to 73.3 
%. 
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Table 5.1: Statistics of local and effective elastic moduli of 120mm-specimens cut from REBs. 

 

 Data set size COV (%) 

Local modulus (total variability) 1560 60.65 

Local modulus of individual specimens (WSV) 30 (each specimen) 48.02 (average) 

Effective modulus (BSV) 52 44.06 

 

 
Fig. 5.4: Variation of the effective elastic modulus in the REBs for 120 mm specimens. 

 

 
Fig. 5.5: Variation of the COV in the REBs for 120 mm specimens. 

 

Variability of the transverse modulus in the longitudinal direction in the three REBs is plotted 
in Figs. 5.6-5.8. Four curves have been highlighted in each figure in order to show how the 
longitudinal variability of the transverse modulus differs from lower paths to upper paths. The 
average longitudinal variations in the three boards have been provided in Fig. 5.9. On average, 
the longitudinal variability is higher in the first board. 
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Fig. 5.6: Spatial variability of the transverse elastic modulus in the longitudinal direction in REB1 used for 

120 mm specimens. 
 

 
Fig. 5.7: Spatial variability of the transverse elastic modulus in the longitudinal direction in REB2 used for 

120 mm specimens. 

 

As a general trend in REB1 (Fig. 5.6), the upper paths have higher values of the modulus 
compared to the lower paths. The paths are closer to each other in the left half length (lower 
scatter) of the board compared to the right half length (higher scatter). The unusual increase in 
the value of the transverse modulus, in the first few path, at the longitudinal position of 90 mm, 
is explained in Section 5.4.2. Excluding this unusual variation at 90 mm position, the variability 
within individual paths ranges from 183.4 MPa to 1340.5 MPa, , with a mean value of 581.3 
MPa. The corresponding values for the transverse paths in this board are 208.9, 1372.8 and 
869.0 MPa. The mean variability in the longitudinal direction is considerably lower than in the 
transverse direction. This becomes even more critical when noting that the length of the 
transverse path is only 24.2% (120/495) of the length of the longitudinal path. 
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Fig. 5.8: Spatial variability of the transverse elastic modulus in the longitudinal direction in REB3 used for 

120 mm specimens. 
 

 
Fig. 5.9: Average spatial variability of the transverse elastic modulus in the longitudinal direction in three 

REBs used for 120 mm specimens. 
 

In the second board, the upper paths have again higher values. The difference between paths 
after the position of 320 mm from the left side is considerably lower than before that position. 
The minimum and maximum variability in the individual paths are 394.1 MPa and 1650.8 MPa, 
with a mean value of 686.4 MPa. These values for transverse paths are 484.0 MPa, 2075.5 MPa 
and 1064.5 MPa, respectively. Again, the mean variability in the transverse direction is higher 
than in the longitudinal direction. In this case, the longitudinal path is longer by a factor of 3.56.  

In the third board, the longitudinal variability of the transverse elastic modulus is more 
uniformly distributed, although the scatter is slightly reduced from left to right. Generally, 
middle paths are stiffer. In this case, the minimum, the maximum and the mean variability in 
individual paths are 167.0 MPa, 1216.1 MPa and 421.9 MPa, respectively, which are 
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considerably lower than the corresponding values for the transverse paths, namely 733.6 MPa, 
1918.5 MPa and 1205.4 MPa. Similar to previous cases, the mean variability in the transverse 
direction is significantly higher than in the longitudinal direction, although the transverse 
distance is only 44.44% of the longitudinal distance. 

The spatial variation of the transverse elastic modulus in the three boards are shown in Fig. 5.10 
as 2D contours. The same range for the colorbar has been used for all contours. In order to 
compare the degree of the variability in the boards, three coefficients are defined for each board. 
The first is the ratio between the mean variability in the transverse direction and the transverse 
distance, the second is the ratio between the mean variability in the longitudinal direction and 
the longitudinal distance and the third is the ratio of these two coefficients, designated as 
anisotropy ratio, in the sense of different levels of variability in different directions. These 
values are provided in Table 5.2. It can be seen that the longitudinal variability coefficients are 
much lower than the transverse variability coefficient. The longitudinal variability coefficient 
is higher in the second board followed by the third board. However, the transverse variability 
coefficient is higher in the third board followed by the second board. Compared to these two 
coefficients, the difference between the anisotropy ratios of the boards is less significant, with 
the third board being the most anisotropic followed by the first board. 
 

 
Fig. 5.10: 2D contours of the spatial variability of the transverse elastic modulus in the three board. 

 

Table 5.2: Longitudinal variability coefficient, transverse variability coefficient and anisotropy ratio for the 

three REBs with 120 mm-specimens. 

Board number Longitudinal variability 

coefficient (MPa/mm) 

Transverse variability 

coefficient (MPa/mm) 

Anisotropy ratio 

1 1.17 7.24 6.19 

2 1.61 8.87 5.51 

3 1.56 10.0 6.41 
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5.3.2 Transverse strength 

The variability of the transverse tensile strength in the longitudinal direction is shown in Figs. 
5.11a and b. These are based on the results of the 8 mm-specimens cut from REBs, since the 
failures for these specimens occurred approximately at the same transverse positions for 
specimens at the same row.  The distance between the two rows was 75 mm in each board. It 
can be seen that variability of the transverse strength in the longitudinal direction is far less 
significant than that of the transverse elastic modulus. The difference between minimum and 
maximum values along each path and their longitudinal variability coefficients are given in 
Table 5.3. The definition of these coefficients is similar to that of the elastic modulus. The 
longitudinal variability coefficients of the two rows in each board are very different. 

 

a)         b)  
Fig. 5.11: Spatial variability of the transverse strength in the longitudinal direction from results of the 8 mm-

specimens cut from REBs. 

 

Table 5.3: Transverse Strength variability in the longitudinal direction. 

Board Path Maximum difference in 

the path (MPa) 

Longitudinal variability 

coefficient (MPa/mm) 

1 Upper 3.58 6.26e-3 

Lower 0.95 1.80e-3 

2 Upper 2.13 5.38e-3 

Lower 0.40 9.09e-4 
 

 

In order to examine the variability of the transverse strength in the transverse direction, the test 
results from RAB1 and RAB2 were used. In these boards, specimen failures at different 
transverse positions can be found, however, with different longitudinal positions. The strength 
values at different transverse positions in a limited longitudinal range would give an idea of the 
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variability of the transverse strength in the transverse direction, approximately. Two such 
transverse paths for the transverse strength are shown in Fig. 5.12. The longitudinal range is 
276 mm for the path in the first board and 253 mm for the path in the third board. Maximum 
variabilities and transverse variability coefficients for these paths are given in Table 5.4. 
Compared to the longitudinal variability coefficient, transverse variability coefficients are 
higher.  

 

 
Fig. 5.12: Spatial variability of the transverse strength in the transverse direction in first and third random 

boards. 

 

Table 5.4: Transverse Strength variability in the transverse direction. 

Board Maximum difference 

in the path (MPa) 

Transverse variability 

coefficient (MPa/mm) 

1 3.58 1.42e-2 

3 4.34 1.57e-2 
 

 

5.3.3 Transverse strain to failure 

Longitudinal variability of the transverse strain to failure is shown in Figs. 5.13a and b. Once 
again, the results from 8 mm specimens are used for this purpose. Maximum variabilities and 
longitudinal variability coefficients are given in Table 5.5. The coefficients are closer to each 
other compared to the cases of the strength and the modulus. 
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a)         b)   
Fig. 5.13: Spatial variability of the transverse strain to failure in the longitudinal direction from results of the 8 

mm-specimens cut from REB1 and REB2. 
 

Table 5.5: Strain to failure variability in the longitudinal direction. 

Board Path Maximum difference 

in the path (%) 

Longitudinal variability 

coefficient (%/mm) 

1 Upper 0.80 1.40e-3 

Lower 0.69 1.25e-3 

2 Upper 0.62 1.48e-3 

Lower 0.48 1.09e-3 
 

 

The transverse variability of the transverse strain to failure is shown in Fig. 5.14. Transverse 
variability coefficients have also been provided in Table 5.6. The transverse variability is much 
more significant the longitudinal variability. 

 
Fig. 5.14: Spatial variability of the transverse strength in the transverse direction in first and third random 

boards. 
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Table 5.6: Transverse Strength variability in the transverse direction. 

Board Maximum difference 

in the path (%) 

Transverse variability 

coefficient (%/mm) 

1 2.49 2.34e-2 

3 1.57 1.50e-2 
 

 

5.3.4 Failure paths 

Failure paths for specimens of 120 mm length in REBs are shown in Fig. 5.15. These paths 
show how the position of the weakest cross-section changes from one specimen to the next. 
The dotted lines in Fig 5.15a indicate the alternative failure path. This is because in a few 
specimens of 120 mm length, the failure happened at two different cross-section at the same 
time, which indicates close strengths values at those sections. The failure position in each board 
changes in a rather random manner, except for the middle part of the RAB1.  

 

 
Fig. 5.15: Failure paths in REB1 (a), REB2 (b) and REB3 (c) for specimens of 120 mm length. 

 

5.4 Effect of timber mesostructure on mechanical properties 

5.4.1 Local elastic modulus 

Typical examples of the correspondence between the local elastic modulus and the local 
mesostructure of spruce wood are given in Fig. 5.16, considering three specimens of 120mm 
length. In specimen the TT-120-16-11-REB1 starting from the left, the angle between the 
tangential direction and the transverse axis of the specimen decreases up to 70 mm of the length. 
This is associated by a gradual increase in the local elastic modulus. The angle increases from 
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70 mm to 95 mm and after that decreases again, causing the local modulus to decrease and then 
increase, as a general trend. The maximum value happened to be at end of the specimen, where 
the angle between the tangential direction and the transverse axis of the specimen has its lowest 
value. There is also a localized decrease in the value of the elastic modulus in the part of the 
specimen between 110 mm and 115 mm which is attributed to a decrease in the thickness of the 
latewood strips in this zone. 

 

 
Fig. 5.16: Correspondence between mesostructure of spruce and local transverse elastic modulus.  

 

In specimen the TT-120-16-36-REB2, over the first 10 mm of the specimen length, there is a 
decrease in the angle between the tangential direction and the transverse axis of the specimen, 
then from 10 mm to about 60 mm the angle increases and after that the angle decreases. 
Correspondingly, the value of the elastic modulus first increases, then decreases and finally 
increases again, as a general trend. The effect of the angle between the tangential direction and 
the transverse axis of the specimen on the local elastic modulus is even clear at the last 20 mm 
of the specimen length. In this segment of the specimen, the angle first increases a little and 
then decreases a little and, accordingly, there is a localized minimum in the value of the local 
elastic modulus in the middle of this segment. Also, a local maximum for the local modulus has 
happened in about 80 mm from the left end of the specimen. The angle between the tangential 
direction and the transverse axis of the specimen has a local minimum in this position of the 
specimen length.  

The local elastic modulus in specimen TT-120-16-47-REB3 has generally higher values 
compared the other two discussed specimens. The main reason is that, in this specimen, the 
angle between the tangential direction and the transverse axis of the specimen has generally 
lower values. Only, in the first 30 mm and last 20 mm of the specimen length where the angle 
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has higher values, the value of the modulus of this specimen is less than those of the other 
specimens. Also, in this specimen, latewood strips are thicker. 

The presence of higher volume fractions of latewood tends to increase the value of the local 
elastic modulus. This can either happen by presence of a higher number of latewood strips or 
thicker latewood strips. For example, in both specimens TT-120-16-11-REB1 and TT-120-16-
47-REB3 in the segment from 60 mm to 80 mm the number of latewood strips are higher than 
in the rest of segments in the corresponding specimens. Consequently, the transverse elastic 
modulus has a local peak in those segments. 

5.4.2 Effects of defects  

Although this chapter is focused on the RSV of the clear timber mechanical properties, a few 
cases of the effects of the structural imperfections on the properties are examined in this section. 
Figure 5.17a and b show the initial part of specimen TT-120-16-05-REB1 where the first four 
4 mm-segments have been affected by the presence of a knot. The curve showing the spatial 
variability of the local elastic modulus in this specimen has been highlighted as a dashed line 
in Fig. 5.2. It can be seen that the first part of this curve is obviously different from those of the 
other specimens in the first board. The value of the local modulus at the first segment is 1946.4 
MPa in the specimen, but the maximum value at this transverse position for other specimens in 
the board is 300.5 MPa. The effect of this change of behavior is also obvious in the first few 
longitudinal paths shown in Fig. 5.4. Also, there was a crack near the first black dot; however, 
the failure occurred somewhere in the middle of the specimen. This indicates the higher strength 
values in the area affected by the knot.  

 

a)  

b)  
Fig. 5.17: A part of the specimen TT-120-16-05-REB1. a) Front view b) Top view. 

 

The second case is related to the highlighted dotted line in Fig. 5.2. This curve, which belongs 
to specimen 19, and a few other curves have obviously different trends compared to the rest of 
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the specimens in the board, when the range between 70 mm to 120 mm is considered. This is 
because of the presence of a small knot in the board between the specimens 15 and 16, which 
changed the mesostructure of the specimens 16 to 21 at that range, compared to specimens with 
a lower number. The mesostructure of the TT-120-16-14-REB1, TT-120-16-15-REB1 and TT-
120-16-16-REB1 are compared with each other in Fig. 5.18. The difference in the mesostructure 
of the specimen TT-120-16-16-REB1 and the two other specimens, between 70 mm and 120 
mm, is easily noticed. The angle between the tangential direction and the transverse axis of the 
specimen is lower in the specimen 16, hence increasing the local elastic modulus in that range. 

 

 
Fig. 5.18: Mesostructure of specimens TT-120-16-14-REB1 (top), TT-120-16-15-REB1 (middle) and TT-120-

16-16-REB1 (bottom). 

 

In Fig. 5.19, specimen TT-120-16-59-REB2 is shown which has several knots along its length. 
The effective elastic modulus and the density of this specimen were 1214.7 MPa and 577.2 
kg/m3 which were considerably higher than average values of the other five specimens of 120 
mm length in the same board, i.e. 715.1 MPa and 427.2 kg/m3. These values were not used in 
the statistical analyses of Chapter 3.  

 

   
Fig. 5.19: Specimen TT-120-16-59-RAB2.

 

A specimen with a resin check (TT-032-16-02-REB1) is shown in Fig. 5.20, after testing. The 
strength of this specimen was excluded from statistical analyses. The cross section of this 
specimen in the position of the check has been also provided. The strength of this specimen was 
very low, 2.48 MPa, compared to the average of the strengths of the two neighboring specimens, 
8.89 MPa. Therefore, the crack caused by the resin check reduced the strength by approximately 
72.1%. This specimen was not considered in the analyses of Chapter 3. 
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Fig. 5.20: Specimen TT-032-16-02-REB1 with a resin check. 

 

5.5 Conclusions 

The spatial variability in the mechanical properties of clear timber was studied in this chapter. 
The following main conclusions were drawn: 

 A highly significant spatial variability was observed in the transverse tensile elastic 
modulus of clear spruce wood. A difference of more than 1000% for the local elastic 
modulus was observed within some specimens. 

 Variability of the transverse mechanical properties is higher in the transverse direction 
than its variability in the longitudinal direction. 

 Spatial variability in the transverse strength and the transverse strain to failure is lower 
than it is in the local elastic modulus. 

 Transverse position of the failure section changes randomly in the each board. 
 Main reason for the spatial variability of the local elastic modulus is irregular changes 

in the mesostructure of the wood. The change in the angle between the tangential 
direction and the transverse axis of the specimen is the most important factor influencing 
the local elastic modulus. 

 Knots can substantially change the mechanical properties of the clear wood around 
them. 

Due to the low transverse mechanical properties of timber, in-depth research on the naturally 
existing random spatial variability is of particular importance, especially for those applications 
where the transverse stress component is relatively high such as timber joints. The results of 
this study can be considered as part of establishing advanced stochastic models capable of 
handling different kind of variability in the solid timber properties. 
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6   A non-intrusive stochastic finite element 
framework: Application to bonded timber 
joints  

 

 

6.1 Introduction 

Behavior of engineering systems is significantly affected by the presence of uncertainties [1]. 
Concerning engineering structures, uncertainties mainly exist in external loading, 
environmental conditions, geometry, and material properties. When structures made of 
composite and timber are concerned, the quantification of uncertainty in the material properties 
and evaluation of its effect on the structural response has received more attention by researchers 
[1-8]. This is because the level of uncertainty in the properties of these materials is so high that 
it usually acts as the main factor causing the uncertainty in the structural response. The material 
properties are random in a spatial manner and this is referred to as the random spatial variability 
(RSV). 

By taking advantage of the recent fast growing computational power, more realistic numerical 
models, capable of evaluating the uncertainty in the structural response, are developing. One of 
the most powerful tools for this purpose is the stochastic finite element (SFE) method, which is 
the combination of the traditional finite element method and stochastic analyses [4]. Recently, 
it has been shown that consideration of the spatial variability in probabilistic analysis of 
structures has a major impact on the final stochastic structural response [6,9-10]. In these 
studies, it is noted that taking into account the spatial variability effect can lead to a more 
efficient use of materials and reliability estimations with higher accuracy. A recent 
comprehensive review on different aspects of SFEM can be found in [4]. 

The main drawback of this method is that it is computationally highly expensive. This becomes 
more critical noting that in the majority of the previous works in this field, the developed SFE 
framework is intrusive, meaning that the core procedures of the traditional finite element 
method needs to be modified [11]. For examples, new terms should be added to the global 
stiffness matrix of the problem. This can also lead to the dependency of the random field 
discretization to the finite element discretization, which can increase the time needed for the 
generation of realizations. This is especially true when a coarser mesh suffices for accurately 
discretizing the random field. For these reasons, the intrusive approach makes it very difficult 
to take advantage of the fast finite element algorithms developed in the powerful third party 
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finite element packages, such as ABAQUS, to examine the effect of RSV on the behavior of 
structural systems. 

A very limited amount of previous works have implemented the SFE to study the stochastic 
response of the timber structures [12,13]. However, no previous study in the literature has been 
devoted to investigate the effect of the RSV on the stochastic response of clear solid timber 
structures. A very recent review on the stochastic finite element approaches for wood-based 
products can be found in [14].  

In this chapter, the efficient spectral representation method was used in connection with the 
commercial finite element software ABAQUS to evaluate the stochastic response of the 
structures with spatially random material properties. Also, for the first time, an SFE framework 
was used to model the behavior of a clear solid timber component with random spatial 
variability. The realizations of the material properties, taking into account the correlations 
between the elastic and strength parameters as well as size effects, were generated in MATLAB, 
based on the spectral representation scheme. These realizations were imported into ABAQUS 
via UEL subroutine, specifying the material properties at each element integration point. 
Adhesively bonded double-lap timber joints with different overlap lengths were selected to 
demonstrate the potential of the established framework for solving real world stochastic 
problems. The Monte Carlo method was used to determine the stochastic elastic response of the 
structure. The Norris criterion was used to obtain the failure index at each element Gauss point. 
The maximum failure index in each sample joint was used to calculate the failure load of that 
sample. With sufficient number of sample joints, the statistics of the load-bearing capacity of 
the joint was estimated. This estimation was compared to the available experimental data from 
the literature. 

 

6.2 Modeling procedure 

The detailed procedure of the developed SFE framework is presented in this section. The 
procedure is illustrated in the flowchart shown in Fig. 6.1. The stochastic data and random field 
discretization data are needed to start the modeling. The stochastic data include statistical 
distributions for elastic and strength parameters, linear correlation coefficients between elastic 
and strength parameters and random field correlation lengths and correlation functions. The 
discretization data is a set of coordinates of points at which the values of the random field are 
needed, for example the element integration points in a finite element model. However, 
depending on the correlation length/lengths, a smaller set of coordinates may also be chosen, 
without reducing the accuracy of discretization.  
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Fig. 6.1: Flowchart of developed stochastic finite element framework. 
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The spectral representation scheme is used for modeling the material properties as 2D random 
fields which is the most accurate and efficient method for generating realizations of random 
fields [15]. The detailed procedure of generating realizations of multivariate stochastic fields 
can be found in [16] for Gaussian fields and in [17] for non-Gaussian fields. In the present 
study, the realizations represent the values of material parameters at element in integration 
points. Each integration point, in turn, represents a part of the corresponding element 
surrounding the point. The experimental input data for the statistics of strength parameters are 
normally from mechanical tests on specimens with specific sizes. The specimens’ sizes are 
usually different from the size of the material surrounding the integration points. Therefore, a 
size effect adjustment should be applied to these statistics before generating the realizations. 
The 2D version of size effect model proposed in Chapter 2 is used for this purpose. In this size 
effect model, the mean value is changed considering the related sizes, while the COV remains 
constant. To keep COV constant, the standard deviation should also be modified. These 
modifications were considered in this study. 

For cross-correlated/multivariate random fields, for example longitudinal modulus and 
longitudinal tensile strength of timber which are normally correlated, a cross-spectral density 
matrix, containing power spectral density functions, has to be constructed. Since, in the current 
study, only pair-wise correlations between each elastic modulus and its related strength were 
considered, the matrix dimensions were 2×2. These matrices were decomposed following the 
Chelosky method [16] and, along with random numbers generated by ‘rand()’ function in 
MATLAB, used to generate the realizations. The total number of realizations depend on the 
total number of simulations for the chosen finite element model and the number of parameters 
involved. For the case study of this chapter, six realizations, corresponding to elastic and 
strength parameters of clear timber, for each simulation were generated. 

A python script was written and used in ABAQUS to conduct the Monte Carlo simulations for 
the finite element model that receives information from ABAQUS input file and ABAQUS 
user-defined element subroutine (UEL) . For each simulation, the input file defines the 
geometry, element type, finite element meshing and boundary conditions for the finite element 
model. Also, the UEL subroutine was written for a 4-node quadrilateral element in a plane stress 
state that reads the values for the material parameters for each element integration point from 
the generated realizations. The python script sends these information to the ABAQUS finite 
element solver.  

The results of each finite element simulation are stored in a .msg file for stresses, strains and 
displacements and in a .dat file for boundary reaction forces. A python script was also written 
in ABAQUS for the visualization of the results which can also be used to visualize the 
realizations. The rest of the post processing shown in Fig. 6.1 is focused on the case study of 
Section 6.3. The necessary explanations are given in that section. 
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6.3 Case study on an adhesively-bonded timber joint: Geometry and 

properties 

As a real world structure, a double-lap adhesively-bonded timber joint was chosen to illustrate 
the capability of the developed SFE framework. The behavior of the joint was investigated 
under tensile loading. The parameters used for the joint dimensions and also boundary 
conditions are shown in Fig. 6.2 which is not the scale. To be able to compare the simulation 
results to the available experimental results in the literature, the tested joints in [18] were 

selected. The dimensions are as follows: 38mma , 19 mmb , 10mmc , 1mmd . Three 

values for the overlap length L  were considered: 80 mm, 160 mm and 320 mm. A small fillet 
of 0.5 mm radius was also considered for the adhesive at the corners. Tensile displacement 
boundary conditions were applied to the two ends. A uniform element size of 0.5×0.5 mm2 was 
considered for meshing the joint. Preliminary finite element modeling showed that this mesh is 
sufficiently fine for the high stress gradient near the joint corners.  

 

 
Fig. 6.2: Nomenclature and boundary conditions of bonded joint. 

 

The joint is made of clear beech adherends connected by epoxy adhesive with elastic modulus 
4.56GPaepE  and Poisson ratio 0.37ep . The statistics of the material parameter of beech 

as an orthotropic material, needed for modeling the joint are given in Table 6.1 [18,19]. Sx and 
Sy are tensile strengths. A linear correlation coefficient of 0.7 was also considered for each pair 
of elastic modulus and its corresponding strength parameter. Since no information regarding 
the type of the statistical distributions for the material parameters were available, the normal 
distribution was used. 

 

Table 6.1: Statistics of material parameters for clear beech. 

 Ex (GPa) Ey (GPa) vxy Gxy (GPa) Sx (MPa) Sy (MPa) Sxy (MPa) 

Mean 14.5 0.79 0.37 1.3 95.9 13.76 15.8

COV 12.0 10.0 - 10.0 21.5 10.0 10.0 
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Since there are no values available in the literature for the correlation lengths of beech material 
parameters, as random fields, it was assumed that all the parameters have the same correlation 
length, independent of the fiber direction. An approach similar to that of Chapter 2 was used 
for estimation of the correlation length. By extensive numerical experimentation on joint with 
160 mm overlap length, assuming different values for the correlation length, i.e. trial and error 
approach, the appropriate value was found to be 16.0 mm. This value was also used for 
modeling joints with other overlap lengths. Using this value, a fairly good agreement between 
the simulation results for the joint capacity and the experimental data was obtained, as discussed 
in Section 6.4. For higher correlation lengths, the agreement was lower. For the lower 
correlation lengths, however, often occurred non-realistically extremely high failure indices at 
one or more element integration points. The reason was that, due to the high COV of Sx, there 
were often extremely low values for Sx in each realization. Using the written Python script, a 
realization of the longitudinal tensile elastic modulus for the bonded joint is visualized in Fig. 
6.3. 

 

 
Fig. 6.3: A realization of longitudinal elastic modulus for bonded joint of 160 mm overlap length. 

 

In the process of obtaining the joint capacity in each simulation, first the 2D Norris criterion, 
given in Eq. (6.1), was used to calculate the failure index, FI, in all the element integration 
points. It was found that the maximum FI always occurs in the joint corners. The square root 
of the maximum FI was used for the normalization of the applied tensile loading, noting that 
there is a linear relationship between the applied loading and the square root of the maximum 
FI. In simpler words, the failure tensile load was determined by setting the square root of the 
maximum FI to 1.0. 
 

2 2 22 2

max ; ;x y y xy yx x

x x y y xy x y
FI

S S S S S S S
 (6.1)
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6.4 Results and discussions 

Two hundred simulations were conducted to estimate the statistics of the bonded joint capacity 
under tensile loading for each overlap length. In two of the simulations for the case of 160 mm 
overlap length, extremely high failure indices were found inside the inner adherends due to very 
low values of longitudinal tensile strength, Sx, at a few element integration points. This was 
because the variability of Sx is higher than the other strength parameters, as given in Table 6.1. 
Therefore, the probability of occurrence of lower values was higher for this parameter which 
lead to extremely high failure indices in two of the simulations. In two other simulations, 
maximum failure indices in the joint were obviously separate from the rest of the population of 
maximum failure indices and were deleted as outliers. Therefore, the results of the remaining 
196 simulations are presented in this section. The failure locations as well as the total number 
of failures at each location are shown in Fig. 6.4. The failure always occurred at the corners: In 
154 simulations, at the outer corners and in 42 simulations at the inner corners. In [18], it is 
reported that in the experiments, the joints almost always failed at the outer corners. This might 
be due to limited number of tests performed (21 in total for different overlap lengths). In 
simulations, it was observed that the stresses at the inner corners were slightly lower than outer 
corners; therefore, due to the random spatial variations of the mechanical properties, failure 
occurred at the inner corners in almost 20% of simulations. In cases of 80 mm and 240 mm 
overlap lengths, there were 2 and 5 outliers in the simulations, respectively, that were discarded. 

 

 
Fig. 6.4: Failure locations for bonded joint of 160 mm overlap length under tensile loading and 

number of failures occurred at each location. 

 

The joint stiffness is defined as the applied force per unit change of joint total length. Figure 
6.5 shows the histograms for the stiffness of the bonded joint of 160 mm overlap length from 
numerical simulations along with fitted probability density functions (PDFs). The PDFs of three 
common statistical distributions, normal, lognormal and Weibull, have been fitted to the 
simulation results. The difference between the PDFs of normal and lognormal distributions is 
negligible and both are better fitted than the PDF of Weibull distribution. A mean value of 98.44 
kN/mm and a COV of 1.96 % was obtained for the joint stiffness. It is seen that the ca. 10% 
COV of the elastic moduli of the clear beech lead to ca. 2% COV for the joint stiffness. This is 
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due to the fact that in each sample joint, the elastic moduli at all the integration points contribute 
to the joint stiffness, reducing its COV. However, the type of the statistical distribution for the 
joint stiffness remained the same as that of the elastic moduli. 

 
Fig. 6.5: Probability density functions fitted to simulation results for joint stiffness. 

 

Mean joint stiffnesses for different overlap lengths are shown in Fig. 6.6. Error bars indicate 
standard deviations. The stiffness is reduced significantly as overlap length increases. This is 
simply because a longer joint will deform more than a shorter joint under the same loading. 
Figure 6.7 shows the force need to impose 1% strain in the joints. It is seen that, in this way of 
representing joint elastic resistance, the required force increases and gradually levels off.  

 

 
Fig. 6.6: Joint stiffness versus overlap length. 
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Fig. 6.7: Tensile force required for imposing 1% tensile strain in joints for different overlap lengths. 

 

The bonded joint capacity from numerical simulations are shown in Fig. 6.8 for overlap length 
of 160 mm. The same type of statistical distributions were also fitted to the joint capacity results. 
Interestingly, the Weibull distribution was found to be the best fitted statistical distribution in 
this case, in spite the assumption of normal distribution for the input parameters. This can be 
due to the brittle failure considered for the joint. 

 

 
Fig. 6.8: Probability density functions fitted to the simulation results for the capacity of joint with 

160 mm overlap length. 

 

The joint capacity from the numerical simulations for different overlap lengths are presented in 
Fig. 6.9. The error bars indicate the standard deviations. The numerical and experimental results 
from [18] are also shown for comparison purposes. The statistics of the current simulations and 
the experiments from [18] are given in Table 6.2. It is seen that there is a fairly good agreement 
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between the experimental results in [18] and current simulations. In the current simulations, 
there is a significant increase in the joint capacity from 80 mm to 160 mm overlap length. From 
160 mm to 240 mm, there is a slight increase in the joint capacity and the capacity levels off. 
The same trend exists in the finite element results from [18], but with a large bias in the results. 
The average error in the current simulations compared to the experiments is 18.9 %. This is a 
major improvement in modelling accuracy compared to the modeling results reported in [18] 
for the same joint, where the average prediction error for the mean value of the joint capacity 
was 73 %. 

 
Fig. 6.9: Joints capacities versus overlap lengths for conducted simulations and comparison with 

experimental and numerical results from [18]. 

 

Table 6.2: Statistics of bonded joint capacity for different overlap lengths from current simulations 

and experiments in [18]. 

Overlap 

length 

Mean value from 

simulations (kN) 

COV from 

simulations 

(%)

Mean value from 

experiments (kN) 

[18]

COV from 

experiments (%) 

[18]

80 31.8 7.58 34.8 9 

160 42.8 11.2 53.2 4 

240 44.6 10.3 62.5 9 
 

 

The joint stiffness and capacity results from simulations were further examined for the 
possibility of a correlation. The scatter plot for the joint capacity versus joint stiffness is shown 
in Fig. 6.10, for overlap length of 160 mm. A linear correlation coefficient of 0.38 was obtained 
between the joint stiffness and joint load-bearing capacity, indicating a relatively weak linear 
relationship between the two parameters. 
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Fig. 6.10: Correlation between capacity and stiffness of joint with 160 mm overlap length. 

 

6.5 Conclusions 

A stochastic finite element framework for structural analysis was developed that, for the first 
time, combines the efficient spectral representation scheme, for generating realizations, with 
the powerful commercial finite element software ABAQUS in a non-intrusive manner. Also, 
for the first time, the effect of RSV in clear timber on the structural response of solid clear 
timber structures was studied in this chapter. The case study was performed for an adhesively-
bonded double-lap timber joint under tensile loading. The main conclusions drawn from this 
chapter are summarized as follows: 

 The developed SFE framework facilitates the transferring of the realizations of the 
material properties to the element integration points due to its non-intrusive feature. 

 The case study of the bonded timber joint based on the Monte Carlo method 
demonstrated the applicability of the SFE framework to real world structural problems. 
The mean value of the joint capacity predicted in this work was in fairy good agreement 
with experimental results. It was also a major improvement compared to the existing 
model used for analyzing the same joint in the literature. The Weibull distribution was 
fitted very well to the simulation results for the joint capacity. 

 The mean joint stiffness decreased with increase in the overlap length. The predicted 
COV of the modelled joint stiffness were significantly lower than the COV of the elastic 
moduli of the clear timber. A weak correlation of 0.38 was obtained between the joint 
stiffness and capacity. 

The development of accurate stochastic modeling frameworks, as in this thesis, can 
significantly reduce the cost of conducting a large number of experiments on new 
structures/components exhibiting significant randomness in their response under external 
loadings. Application of the developed framework in ABAQUS to other real 
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structures/components will help the development of SFE simulations into industrial design 
analyses. 
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7.1 Conclusions 

A stochastic analysis of the variability of the mechanical properties of clear timber and the 
associated variability in the response of clear timber joints was performed in this thesis. The 
random spatial variability in the longitudinal and transverse tensile properties and the 
correlations between elastic and strength parameters were experimentally investigated at the 
mesoscale. Size effects were also experimentally studied. A random field-based size effect 
model for clear timber strength was developed. A stochastic finite element framework was 
established for the stochastic analysis of clear timber structures. This stochastic finite element 
framework was used together with the size effect model to simulate the behavior of a double-
lap adhesively-bonded timber joint, and a comparison was made with the experimental data 
available in the literature. The main conclusions drawn from the experimental and theoretical 
results are summarized in this section.  

7.1.1 Experimental investigations 

 A new, simple specimen geometry was proposed for longitudinal tensile tests on clear 
timber and used for the characterization of the random spatial variability of the 
longitudinal mechanical properties. Using this geometry, the failure in almost all 
specimens occurred in their middle part that had a constant cross-sectional area. For the 
characterization of spatial variability in the longitudinal elastic modulus, the longest 
specimens, i.e. 128 mm, were used, since they better represented the spatial variability 
of the modulus. A change in the longitudinal local elastic modulus of more than 100% 
was observed along the length of certain specimens. The contribution of the between-
specimen variability to the total/ensemble variability was greater than that of the within-
specimen variability. The main reason for this spatial variability of the longitudinal local 
elastic modulus was found to be irregular changes in the mesostructure of the wood, 
including fiber misalignment, fiber waviness and variable growth ring thickness. 

 The coefficient of variation of the effective elastic modulus in the longitudinal direction 
was also thoroughly investigated. The coefficient of variation reached values as high as 
12.7% for the longer specimens of 128-mm length, while it attained the maximum value 
of ca. 20% for the short specimens. The mean value of the modulus does not change 
significantly with specimen length. Also, a maximum value of 113.0 MPa was obtained 
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for the mean value of the longitudinal tensile strength for very small specimen nominal 
lengths. The mean value decreased to 103.8 MPa for a length of 128 mm. The change 
in the coefficient of variation of the tensile strength with specimen length was 
negligible, with an average value of 15.1%. The variation of the mean strength with 
specimen size cannot be appropriately modeled by the classical Weibull size effect law. 

 Timber boards with regularly positioned and randomly positioned specimens were used 
for the probabilistic characterization of transverse mechanical properties. The statistical 
analyses revealed that a cutting plan with regularly positioned specimens could lead to 
an underestimation of the coefficient of variation of the mechanical properties. This was 
particularly shown in the case of 8-mm-long specimens with a regular arrangement in 
the respective boards. A difference of more than 1000% was observed in the effective 
transverse elastic moduli of clear spruce wood specimens. The coefficient of variation 
of the effective transverse elastic modulus decreases as length increases. 

 The classical Weibull size effect law was sufficiently accurate for describing the size 
effect observed in results for the transverse tensile strength of clear timber specimens of 
different lengths. This was in contrast to the case of the longitudinal tensile strength. 
Four types of failure were observed in the specimens cut in the transverse direction, 
exhibiting different mean transverse strengths. The strengths were higher when the grain 
angle was lower. The analysis of variance confirmed that the differences were 
statistically significant. Also, the transverse position of the failure section changed 
randomly in each board. 

 The spatial variability of the transverse mechanical properties is higher in the transverse 
direction than in the longitudinal direction. The spatial variability in the transverse 
strength and transverse strain to failure is lower than in the local elastic modulus. The 
change in the grain angle is the most important factor for creating the random spatial 
variability in the case of the local elastic modulus. It was also shown, in a few cases, 
that knots can substantially change the mechanical properties of the clear wood 
surrounding them. 

7.1.2 Theoretical investigations 

 The application of the classical Weibull size effect law to the experimental data for the 
longitudinal tensile strength in the literature showed a very high level of error. A random 
field-based numerical size effect model was proposed and used to predict the effect of 
size on the longitudinal tensile strength. Good agreement with the experimental data 
was obtained. An analytical formula for the size effect on the strength was also proposed 
that closely approximates the numerical results and facilitates the application of the 
current model. 
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 The proposed size effect model for clear timber strength predicts an upper bound for the 
timber strength as specimen dimensions approach zero. On the other hand, when the 
dimensions are sufficiently large compared to the correlation length of the strength field 
of the timber, the result obtained by the current model approaches that of the classical 
Weibull size effect law. Using experimental data from the literature, values of 62 mm 
and 225 mm for the correlation lengths of the strength fields of spruce and Japanese 
larch were obtained. These values can be used in the stochastic simulation of timber 
structures under different loading conditions such as bending. Also, this indicates that 
the correlation length of the strength field in timber can vary significantly between 
different species. 

 The developed stochastic finite element framework takes advantage of the fast 
algorithms of the spectral representation scheme for generating realizations. It also 
allows independent meshing for finite element and random field discretization, which 
is easier to handle. It can also lead to less CPU time for generating each realization, if a 
coarser mesh suffices for random field discretization. Another advantage is that it 
enables the use of powerful third party finite element codes, such as ABAQUS. 

 The stochastic finite element framework was used for modelling double-lap adhesively-
bonded timber joints with different overlap lengths. The model response for the load-
bearing capacity of the joint agreed fairly well with the available experimental data and 
was a major improvement compared to the model used in the literature to predict the 
capacity of the same joints. A linear correlation coefficient of 0.38 was obtained 
between the joint stiffness and joint load-bearing capacity, showing a relatively weak 
linear relationship between the two parameters. The development of accurate stochastic 
modelling frameworks, as in this thesis, can significantly reduce the cost of conducting 
a large number of experiments on timber structures/components exhibiting considerable 
randomness in their response under external loadings. In traditional designs, safety 
factors are applied to the characteristic values of strength parameters to obtain the design 
values. Sufficiently high safety factors are normally chosen to guarantee the safety of 
structures in different working conditions. However, this safety factor is a rough value 
and can be too conservative, or it can even significantly overestimate structure 
reliability. The accurate determination of the spatial variability effect on the stochastic 
response of timber structures can result in more reliable timber designs for different 
structures and loading conditions.  

 

7.2 Original contributions 

The original contributions of the thesis to the topic and the respective research field are listed 
below: 



Conclusions and future research  
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 A random field-based model was proposed to investigate the size effect on the strength 
of clear timber and validated. It was shown that this model is much more accurate than 
the classical Weibull size effect law when small clear specimens are concerned. A new 
reversed approach, based on the experimental size effect results, was used for estimation 
of the correlation length of the strength field. 

 The random spatial variability of the longitudinal elastic modulus of clear timber was 
experimentally characterized. The size effect was also investigated. It was 
experimentally proved that there is an upper bound for the longitudinal mean strength 
when the specimen length diminishes. The correlation between the longitudinal 
modulus and strength at mesoscale was also obtained. 

 The random spatial variability of the transverse mechanical properties of clear timber 
was experimentally characterized. The experimental data relating to the size effect on 
the clear timber strength for small volumes of material were provided. Experimental 
data concerning the correlation between the transverse strength and transverse elastic 
modulus at the mesoscale were provided. 

 A stochastic finite element framework was developed for clear timber components. The 
framework was used to model the behavior of adhesively-bonded timber joints under 
tensile loading and the applicability of the model was demonstrated. 

 

7.3 Recommendations for future research 

Although a major experimental campaign was conducted in this work, several aspects of the 
topic still need to be addressed by further experimental research. The developed numerical 
models can also be enhanced/extended. The recommendations for further research to continue 
the current study are discussed below. 

 In the current study, the experimental characterization of the random spatial variability 
of the mechanical properties of clear timber was performed under longitudinal and 
transverse tensile quasi-static loading. More experiments are needed to characterize the 
random spatial variability of the shear modulus and strength. The random spatial 
variability of the compressive mechanical properties is also important in cases with 
dominant compressive loadings. 

 In addition to quasi-static behavior, the plastic behavior, creep behavior and fatigue 
behavior of timber structures can be important for practical applications. In these cases, 
the random spatial variability of the respective material parameters is required in order 
to evaluate the effect of the random spatial variability on the stochastic structural 
response. 
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 The random spatial variability in spruce wood, which is widely used for construction 
purposes, was investigated in this thesis. The characterization of the random spatial 
variability for other species could also form the subject of further research. 

 With further analyzing the experimental data regarding the random spatial variability in 
the current study, the correlation lengths of the longitudinal and transverse elastic 
moduli of spruce wood can directly be obtained. 

 In modelling the random spatial variability, the same correlation length in the 
longitudinal and transverse directions was assumed for the material properties as a 
simplification. In practice, the correlation length is likely to be different for different 
directions and further investigation is needed. Research is also necessary to determine 
which correlation function can best characterize the correlation in the material property 
fields of clear timber. 

 The commonly used transversely isotropic behavior was adopted for modelling timber 
in this thesis. With the extension of the stochastic finite element framework to three 
dimensions, it is possible to consider the difference in timber behavior in the radial and 
tangential directions and thus improve the accuracy of the model. 

 The established stochastic finite element framework is applicable to clear timber 
structures or structures in which knots have no effect on failure initiation. This 
framework can be used as a basis and extended for modelling timber structures in which 
knots play an important role in the determination of the load-bearing capacity of the 
structure, such as frames made of industrial lumbers in which bending loads are present.  

 More investigations are required to examine the efficiency of the stochastic finite 
element framework in modelling timber structures other than adhesively-bonded timber 
joints. Also, to facilitate the use of the model for non-experts, the entire modeling 
procedure, as explained in Chapter 6, can be included in software. The inputs and 
outputs would also be the same as for the case examined in Chapter 6. 
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