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Abstract: This work generalizeshe onestep model previously developed on fce bcc martensitic
transformatiors to the largerfamily of phase transitims in the fcc-bcehep system The anguladistortive
matricesare calcubted for thebcc fcc, lce hep and fce- hep transitions and for fce- fcc mechanich
twinning. Theanalytical expressions of theontinuousatomic displacementslattice distortionand lattice
correspondence matriceesult directly from the orientation relationshig the unique assumption is that
the atoms are hardi LIKSNBX & G KI (i Oeaghther Rhydis@adiidRayistoimistions &cur in
one-step by the change of the unique parameter whighthe angleof distortion, without any defined
intermediate phaseor lattice shearing.The matrices of complete distortion form an algebra over the
number fieldQ(/g). The habit planes are predictedn the simplecriterion that they areuntilted by the
distortion; the results arecompared to experimentabbservationspublished inliterature. Shuffle is
required for bcc hcp and fce hep transitionsbecausethe hcp primitive Bravais latticecontains two
atomsinstead ofone forthe fcc and bcphases the analytical expressions of thghuffle trajectories are
determined Different crystallographic aspects are discuss€te steric barrierson dense planes are
calculated and compared for fcdcc mechanical twining and fedocc martensitic transformatianA
distinction between the orientatioal and distortional variantsis introduced with an examplegiven forthe
fcc hcp transformation. Some crystallographicoperties that could helpthe understanding b the
transformationreversibilityare alsodetailed. Thispproachis directlyapplicableto mechanical twining in
bce and hep crystaland probablyto diffusionlimited displacivetransformatiors. This work gives a unified
approach of the crystallography of displaciphase transformationsand mechanical twinningn hard
sphere packd metallic alloys.

Keywords: Displacivetransformations,twinning, angular distortive matrices, hargphere packinghabit
plane

1. Introduction

We have showrrecentlythat it is possibleto describe thefcc- bcc(facecentered cubic to bodgentered
cubic)martensitictransformationin steels and other iron alloysy a 3x3 matrix composed of terms that
only dependon the angle ofthe lattice distortion[1][2]. In ref. [1], the matrix of complete distortion
associatedwith the Pitch orientation relationship (ORyas calculatedand in ref. [2] the analytical
expressions othe continuousdistortion paths describing were given in the cases of Bain, Pitsch and
KurdjumovSachgKS) OR®\ particular attention was paid to the distortiomatrix associatedvith the KS
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ORbecause it has two eigenvalues equal tddt is not an invariant plain strain and is not diagonalizable
It was shown thaKsS distortiormatrix expressed in the reciprocal spalas two uttilted planes: he low
index p11), and the highindex (¢25), planes. Recentinvestigationshave shown that associating variants
by twin paisallows changing the untilted;25), plane into a fully invariangtrainplane[3]. The {225¢habit
planes(HPs)are widely observed in many steels atatgelyreported in literature.The fact thathey result
from a direct calculationcontrarily to the previous works implying complex double shear combinations
made us optimistic on the potentiality of theodel Sincethe hypothesesare reduced to assume the final
OR and consider the atoms as hagheres, it is legitimate to ask whether the approach cagdreralize

to hexagonal clospacked (hcp) and mechanical twinninithis question is important because it would
allow us to build a uniéd crystallographienodel forthe transitiors and mechanical twinning the wide
family of phase transitions between haigphere packed phases, i.e. between fcc, bcc and hcp phases, as
those that occur irvarious metallic alloys sh asFe, Ti, Zr, Cetc.

Thelink betweenof the phase transitionsn the fcehcpbecc systemwas foreseerin 1934 when Burgers
could determine the OR related to the bhcp phase transitiofd]. Indeed,Burgersnoticed that thebcc
hcp ORhe could observein zirconium was in fulhgreement with theKS OReported for the fce bcc
transformations in steels andith the OR reportedor the fcc hcp transformations in coba{Fig. &). This
led him to propose dypothesis in which the beacp transformation occurs in two stepgpcc fcc step
followed bya fcc hcp step. However,. dZNBSNE ¢l & y2 G ¥ dzZ WhetheDid yedityy OS R
transformation of bcc into a hcpirconium occurs via an intermediate fcc structure remains dogbtful
History is facetioubecausea similarhypothesismplyingan intermediate phasevas raised by uew years
ago [5] (ignoring at that time the details off K S . dzNA SitHofthelftic LI&Ndnsformation in
martensitic steels, and thaypotheticalintermediate phase was hcp. Tlseppositionof an intermediate
hexagonal phase in steels was alstade more recently from transmission electron microscopy
observations ofextra spots in selecte area diffraction patrns [6], but they actually comefrom twins
artifacts [7]. Essentiallyall the & ( @121 Svddelsin the fcehcpbec Burgers trianglérying to explaina
transformationx- zas asequenceof the two other transformationsin the triangle x- z=x- y- z with x,

y and z being distinct phases in the set {f¢wp, hcp}, seensto be condemned to go in circlewve should
say ¢in trianglet). However, such attempts come from a glimpse or from an intimate conviction that a
strong structural linkshould existoetween allthe transitionsimplyingthe fcc, hcp andccphases. If one
excludesthe closedcircuit models implying the intermediate phases, such a link remains fou®l. The
aim of the present paper is tproposea solutionby generaliing the work performed for the fcc bec
transition and the use of the angular distortive matricéswill be shown that 3x3 angular distortive
matrix can be associatest eacharrow (phase tranion) in the Burgers triangle. The method can be also
applied tothe circular arrowsat the three corner of the Burgers triangliee. to twinning in eaclcc, bcc or
hcp phase.

All the possiblégransitionsand twinning mode® I y Qi 6S RSGIFIAf SR KSNBX | yR (K
calculationsonly for the fcc- fcc twinning and for fcc- hep, bce fcc and bee hep transformations The
method can be appliedo the twinning in the bcc and hcp systenor to the hep bcc and hep fec
transitions,but these cases will not be detailed here becatise bcc and hcgwin modesare numerous



and the two transitions aréesscommon Before presenting the calculationgt lus give a brief literature
review of the existing models.

Fce fcc twinning encompasses different mechanisrisat should be distinguishedAnnealing twins are
ONBIGSR Fd KAIK GSYLISNI idzNBa RdzNAy3 NBONRaGET AT
I OOARSY (¢ RdzZNAY3I (GKS ydzOf SI (A 2 3 twinybRundarke® wavieklow2 ¥y S
energy. Generally, all the foug3 variants are formed, and the process can repeat itself which generates

S3" twins [8][9]. At medium and roomtemperatures, narrow twinned bands, called microtwins, can also

form under strains. It is usually assumed that these microtwins are the consequence of regular creations
and synchronized displacements of Shockley phrtlislocations on the cloggacked {111} planes
transforming the ABCABC stacking into an ACBACB twinned stacking. This scenario seems in agreement
with in-situ Transmission Electron Microscopy (TEM) observations, but the exact mechanism at the origin
of the twinning dislocations is not yet fully understood. It is believed to occur via a pole mechanism, initially
proposed by Cottrell and Bilby for twinning in bcc crysfaly: a screw dislocation spirals around a pole

and allows a layeby-layer shearing on adjacent parallel planidd]. However, to our knowledge, no
spiralirg dislocations in microtwins could have been evidenced, and recent TEM observations in €u hano
alloys show that grain boundaries could be actually the sources of the Shockley partial dislod&#tjons
Microtwinning is an important mode of deformation in the Twinning Induced Plasticity (TWIP) and
Transformation Induced Plasticity (TRIP) st§E¥{14]. At very low temperatures, large mechanical twins
canalsoappear massively under strains by bursts producing load instability. Thegsetmias propagates

Fd alLISSRa Of2asS (2 (GKS &LISSR 2F a2dzyRT 6KAOK 3TAGE
by Blewittet al [15] in Cu8%Al single crystal deformed at 4.2K (their study is also report§tbin It is

difficult to understand how a pole mechanism could be in agreement with such high speeds. Actually, it is
probable that the mechanical twins result fromcallective motion ofthe atomssimilarly as forfcc-bcc
martensitic transformationIn that assumption, the ams would move cooperatively in one stefll the

classical approaches of the latticestbrtion by displacive transformatiomsmacrotwinning and martensitic
transformation are based on shealk7]-[21]; but, the crystallographic link between thehear distortion

and the pole mechanismgas not clearly establishetoreover,simpleshearisincompatible with the size

of the atoms in a hardphere model (Supplementary Materfal). Thisis one of the reasons that led us to
introduce the angular distortive matricesd use them to describe in orstep the fcebcc trarsformatiors

[2]. It will be shownin section3 that it is possible to define fecfcc mechanical macrotwinninigy using

angular distortive matrices exactly as it was done for fbcc martenstic transformationg2]. Although

fcc fcc macrotwinning is not very important in metallurgy because it occurs at very low temperatures, the
comparison with fce bcc martensitic transformations is worth being expkd; moreover, the results will

be used to help the calculatioffigr the other transitions

Fce hcp transformaions occur incobalt alloys at temperatures which depends strongly on the alloy
composition[21]-[23], and alsoin some FeCrNi stainless steelguenchedat low temperatureq24][25],
and in someMn-rich steelswith shape memory propertie26]. The crystallographic explations of the
transformation givenin metallurgy rely on arguments very similar tihose used forfcc microtwinning:
regular arrays of [®ckley partial dislocations gliding dhe {111}, planes change the ABCABC stacking
order of the fccphase into the ABABAB order of the hcp phadawvever, to our knowledgethere isno



consensus on the exact sequenckcreation, dissociation andlide of dislocations at the origin of the
nucleation and growth of the hcp phag21][22]. A completely different model was proposed by the
physicists P. Toledaret al. [27]. In their model, both the fcc and hcp structures in cobalt refudin a
dreconstructivé ordering mechanisnmof a disorderedlatent polytypic structure (for physicistte term
GNBO2yaildNHzOGABSE Aa v, xée sectiony.2)yTe YR paint o iew, indhd @ Thdza A &S
explanations areotally satisfactory.The nodels based on coordinat@ creation and displacements of
partial dislocations are not compatible with the high speeds of maitensansformations; andhe model
based on théntermediatelatent lattice does not take into account the atom size to explain hbgadtoms
could move during the fechcp reordering procesds for fce bcc displacive transformation and as for
mechanical twinning, it will be shown in sectighthat it is possible to define becfcc displacive
transformatiors without coordinated motions of dislocationand without latent lattice, butby using
angular distortive matdes

Bce fcc transformationsis the reverse transformation of the fcdocc martendic transformation in
steels it can beobtained by heating martensitic stedls producereverse austenit¢28][29]. It canalsobe
encounteredby coolingFeCrNi duplex steels in whicl ferrite decomposes into lath and spearhead
isolated austenite[30], or in Widmansttien austenite at thed grain boundaries[31]. Bce fcc
transformations are also widely studied in-Znbrass and othelCuAl, CuSn alloys. The bcc phase orsler
itself during cooling andiransforms into a B2 structure. The B2 phase undergoes a martensitic
transformation by cooling below room temperature to form a monoclinic 9R structure which can be seen
as aslightly distorted form of a polytype dhe fcc (3R) phasg82]-[34]. In all these caseshe parent bcc

and daughter fcc phasarein KS OR. Most often in literature the fcc or 9R daughter phase are created by
thermal decompositionduring an homogenisation tahigh temperature in the bcc domain (8@0D0°C)
followed by a thermal treatment at mediuntemperature (306500°C)[35]-[37]. The bce fcc or bce 9R
transformation also occurs under strain and is at the origin of shape memory ef82i[383][37]. To our
knowledge, there is no aly in which pure martensc fcc phase is formed under coolinglowever,the

ideal case where the atoms would move collectively from a bcc to a fcc strwetiliee considered and the
corresponding angular distortion matrices will be calculated in se&idrhe validity of such an approach
will be discussed in sectiagh6.

Bce hcptransformations occur ifialloysand Zralloys; the former are widely used in aerospace, medical
and sport industrie$38], and the latter for fuel claddg in nuclear reactorf89]. The crystallography of the
bce hep transformation in zirconium has been investigated by Burgers in 1€B4nd his model is an
important reference in metallurgy, such as the Bain mdde] for fcc bcctransformations As mentioned

at the beginning of this introduction, Burgers was not convinced by the-step bcc fcc hcp
hypothesis, so he proposetihe famous. dzNH S NEHat cofrbiReS & shear parallel to a {132plane in

a <1113.directionwith a shuffle and a homogeneous contraction of the lattice. This lattice distocaon
be obtained by considering an orthorhombic superlattice close to the hcp and bcc lattibesy isused by
Bowles and Mackenzie in the PTMC calculations to predicHffe41], and later by other researchers
[42][43]. Another approach based on the edfgeedge matchindE2EM)model has also been proposed by
Zhanget al.[44]® Ly (KS . odeNEnhiyhd®eutthedatdmi Ndrrespondence between theitial
and final stateshowever, it is possible to improve the model by introducing the fact that the atams a



hard-spheres and by merging the discontinuous steps into a continuous mechattismill be shown in
section6 that an angular distortion mati can be usedo modelthe bcc hcp transformationn onestep,
avoiding combining series of mechanismas shear, dilatation, or usg superstructures such as the
orthorhombic latticeintroduced in PTMC (equivalent to the Bain lattice)

The paper isthus built as follows:the sectiors 3 to 6 are dedicated tofcc- fcc twinning and fce hcp,
bce fcc and bee hep transformations, respeetely. Eachsectionobeysthe same scheme: a) the matrix
of complete transformation is calculated from the OR, then b)ahalytical expression of theontinuously
distortedlatticesand atomic diplacements are determined; shuffledalculated when requéd, andc) the
HPsare calculatedwithout any free parameteand briefly compared to experimental literature. The style is
voluntarily repettive in order to point out thesimilarities of the transformationg hesections3 to 6 can be
read separately depending on the reader intere$he sectios devoted to the calculdns of the
continuous intermediate states can be skipped at the first readiiig main ideas of the model anideir
consequences in term of qualitative understandangd quantitative predictabilityare discussed isection

7.

2. Notations and elementary formulae

Let us callA =(H,"H, "H) with'H = [100}, "H = [010], "H = [001}, the reference basis of thgphase.The
distortion matrix can be calculated by findingpamitive basisof the parent phaseand by following how

this basisis transformedduring the transformationLet us calB‘F’) this starting primitive basis and B% its

image by distortion When the transformation is complete, thizasisbecomes a basisf the daughter
phase a. The initial and distorted bases are expressed by the matricd3; :[Bg - Bg] and

BY = [Bg - B%], respectively. The distortiomatrix expressedn the initial primitive basis ighen given
by DY ° =[Bf’3 - B%]=[B% - BY|[BY- B%]=(B%)'lB%. In the reference basisof the parent
phase it is

Dg “ =[Bg - B4JDs *[BY - BE|=BY(ERS)" @

Formula (1) will be used to calculate the distortion matnxhenthe images of the vectos of the primitive
lattice are known in the reference basi$ the parent phaself these imagesare knownonly in the

referencebasisof the daughterphaseB? , it is possible to convert them into the initial system by writing
BY =T¢ “B? 2

where TJ ?is the matrix of change ofcoordinates which gives the coordinates of the vectors of the

referencebasisBj of the a crystalin the referencebasisB of the gcrystal

T¢ 2 =[BY- BZ] (3)



Thismatrix can be determined from th®Rby using an orthonormal basis common to the parent and
daughter crystalsas explained for example nef. [1] and detailed latter Equatiors (1) and (2) will be used

to determine the distortion matrix of the contgte transformation. For the intermediate states, the
calculations are similar but the size of the atowill be taken into account to avoid tlireinterpenetration.

In this paper, the fcc phase will be noted the bcc phasa, and the hcp phase, i.e. fec =g, bcc =a and
hcp =g, asit is usually done for steglThus, we will not respect the usuabtation used forbrases (bcc =
b, fcc =a), and fortitanium and zirconiun{bcc =b, hcp =a). Thedirections and planes of thiecp phase
will be written with threeindex notation As already assumadd ref. [1] and[2] for steels the metalatoms
are considered adard spheres of same diameterttme three phases, whiclimplies that

J2a,=+3a, =2a,=./@3/2) c, (4)

The ORsthat will be used for the feticp-bce transformationsare the ORs corresponding to the Burgers
triangle of Fig. B, they are the most commonly reported in literature. They are usually named by the
initials of thediscoverersKurdjumovSachs (K$35] for fcc bcc(actually discovered by Youfp] in iron
meteorites few years before Kurdjumov and SacBsirgers[4] for bcec hcp, and 3igji-Nishiyama (SN)
[47] for fcc hcp.These ORs respect the parallelism of tlissepacked directiongFig. b). Theyare

1 KS: [110]y =[111], and(p1l),// (p10) (5)
9 Burgers:[111], = [100] and (p10), // (001),
1 SN: [110], = [100} and (p11),// (001).

Other symmetrically equivalent planes and directions could have been chosen, for eXpfifle=[p11].
and(111),// (110), for KS, but the ORS®) have been chosen to be coherent with our earlier wdis A
coordinate change between the ORgisposed in the end note 1.

It is possible tdbuild a uniqueorthonormal basisB, common to the fcc, bcc and hcp crystaldhe first
vector of this basisis the common closgacked direction;and the third vector is the normab the
common closeacked plane. The second vector is normalhtese twovectorsand its direction is chosen
such that the basiB; is righthand. ThebasisB. in each reference basis

pi i  pjVip  pjVio
T A°A  —pjlic pilip pjilio
T GV  pjlio
pjVio pjVip  pjVig

T A9 A —pjVic pillp pjlg
piVic ¢l m (6)
p pl Vo Tt

T AO A — T ¢Wo m

T T a Y



These matricesand the theoretical ratics of the lattice parameters given in equatiof@) allow the

calculation of the cordinate transformatiormatrices between thdcc, bcc and hcprystals. For example,
[e]

1] =A O A AC A A O A AO A A O A . Ther values are reported in
Table 11t can bechecked that the circular producisequalto the identity matrix. For example

o n 0 an

IR It R (7)
wherel is the identity matrix.

The coordinate transformation makrif ° can be used to writdn the reference basiB; of the a

daughter phasehe imagesof the directionsH = [100}, "H = [010}, "H = [001}, distorted byA ° . The set
of imagedormsthe & O 2 NNEB & LI2 v Ridgd®S ¢, giveh iy NX E

[e] [e] o [e]

CRR T S T ®)

For example, in the case of the fcbce distortion A ° given in ref[2], the correspondence matrix
fcc bceBain matrix

P (9)
T

Y

o

‘A

47° A

Y
Tt
p

The correspondence matri ° is used to calculate the images of the directions by distortion expressed
in daughter reference basig.he images of the planes expressed in daughter reference basis are given by

z . o)

the correspondence matrigxpressed in the reciprocal space. A ° A

Let us recall briefly how the matrices should be used. A vectar thie direct space expressed in the
reference basiB/as"l is written in the reference basi8Z by "I N ° " . It should be understood

that in this case the vector u does not change; it is just its coordinates that are recalculated. In order to
obtain the coordinates of the image by distortion of the vector u expressedsisof the parent phas& [,

one must use the distortion matrix‘l a A ° "I . This image can be expressed in the reference basis of
the daughter phas8;: "l e A% 1. We point out that the index 0 means the reference basis, but
this basisis by default B; for I , and BZ for "I . When required the basis will be specified by

unambiguously writingly to specify that the vectou of the phasea is expressed in the basi. The

same equalities hold for the vectogs2 ¥ G KS NBOALINROIf aLJ OS AF 2yS NE
i.e. the inverse of the transpose.

TheHPswill be calculated from the same criterion ag2h. They correspond tthe planesg untilted by the
distortion matrixD. The amplitude othe tilt is given by the parDg. of the displacemenbg perpendicular
to g, with Dg=gQg, and gQ D9, whereD isthe distortion matrix expressed in the reciprocal spétés
the inverse of the transpose @). The untiltedplaneis thus given by



=0, or equivalentlygis aneigenvector oD’ (10)

[Bg-

The amplitudes obg. can beplotted in 2D asa function of thespherical coordinate ofg, and the untilted
planes are given by the zero values numerically deduced from the 2D [glapgrhe exact values gfcan
be determined by calculatinghe eigenvectors oD. For examplethe exact values of theq25), HP

obtained from D’ corresponding tahe KS OR is actuallyl(6),. Both numerical 2D graphsf |Dg. || and
exact calculations will bergsentedin the paper.

The calculatedHPswill be compared with the experimental onesported in literature The equivalent
symmetries of the parent and daughter phases magke this comparison difficult. Therefore, in order to
keep the coherency of notation in the whole papehen possiblethe ORs and corresponding HPs
reported in literature will be written according to the choice of equat{bi

3. FCC- FCC mechanical twinning

3.1. Matrix of complete lattice distortion

As for fce bcc transformatios [1][2], we choose§11)4to be theuntilted plane. For twinning, this plane is

actually fullyinvariant. The reference frame anlde positiors of the atoms in the initial fcc state are shown

in Fig. 2 andFig. D® ¢KS GNRFYy3IfS thY A& dzy OKWwhath&pPensiirethel 6 A Yy
fcc bece transformation. The atom in M, initially such tii¥1 = [100],, moves andpasses ovethe two

atoms in O and kand, after twinning, in its final position, M is located such that the tetrahedron POKM is
regular.The completelattice distortioncan be determind by considering that the vectoss= PO=2[110},

andy = PK=2[101] 4 are invariant, andhat the vector z = PM = 1/3 [211} + 1/3 [Ipp], = [100}, is
transformed into the vectot a £1/6 [211],+1/3 [1pp] 4= 1/6 [4op] o This means that

al/2 1/2 1g é,1_/2 1/2 4/6g )
Bi’):gLIZ 0 OgandB%:gNz 0 _1/63,andthusbyusmgformulz@l),
60 1/2 0y g0 1/2 -1/6y
lé4 2 2g (11)
U g 1_1lg u
D¢ 7 =B¢(BY) =6l 7 1
é1l 1 7p

The twinning correspondence mati ° can be calculated thanks to equati¢®) and to the coordinate
transformation matrix

é 2 2g (12)
T>°==% 1 -
3€é u

& -2 1qg



9 2 20 (13)
Cyo=T¢ D=9 1 -u

26 u

e -1 1g

It can be checketby usingT, °that the vector p11], in the parent crystal is at the place of thepHl,
vector in thereferencebasis of thewinned crystalwhich does not mean that the distortion preserves this
vector. Indeed, it can be chesitby usingA ° that the vector p11],is actuallytransformed into “44pp].

It can also be checked by usin{p ° 7 that the (p11),planeoncedistorted becomesthe (ppp)yplane of
the twinned crystal

3.2. Matrix of continuous lattice distortion

The matrix(11) gives the completéwinning distortion of the fcc lattice. It is possible to determine all the
continuousintermediate states by considering that the atoms are hartdJK S NS & (i Kadiothér. NB f f ¢
[ SG dza Ol f(dH IV, id) tkeSangle pevieén theplL1), and (111) planes. For fcc twinning the

deformation occurs such that 0 * - VO C’Qwhered is theatom diameter thusv 0 0 O g . ®.

Since the triangle PJM remains isoscelesyfi@i (G KS RAAG2NIA2Y X =HK&erelthg It S
anglegshould notbe confused with the fcgphase)as represented ifrig.  andFig. ®.

During the displacement d@he atomisa = (G KS gl WA S & aEd$@/Y)=700 pl'c  {lakos(1/3)T
=180%70.5°= 109.5?1t is important to notice thathisis obtained by the same displacement of the atom
in M asfor the fcc- bcc transformatiori2] exceptnow that the angleé remains fked at 60y which means
that the atom in M has t@assoverthe two atoms in CandK such that the distanc@K remains constant
and equal tod, whereas m the fcc- bcc martensite tragformation this distance in@aseshby the opening
of the angle(PQ PK) from 60° to 70.5°Therefore equation (21) of ref. [2] of fcc bcctransformation can
be modified in order to gets equivalent for fce fcc twinning. lbecomes

gl cosp) cos@)zcos{%)gj (14)
B.- B,@]=9 sinb) cosplzisin®)!

€@ 0 |z|sin@)  u

é a

wA (0 K 60P, I anchar£the norm of the vectorz = [100], = PM. Equation(14) gives theevolution of
the values of the basiB, of the primitive lattice formed by the vectorBQ PKand PM during thedistortion
in reference toa fixed orthonormal basisB; formed from the vectorsPQ PKand PM in the initial fcc
crystal

Equation (14) can be written as function of the angteonly, by noticing thatthe part A | Om&is the
projection of PM on the linePJ andthusis equalto 0 % AT O, andthat OEfd A& 0 OEH, as

illustrated inFig. Z. Therefore equation(14)becomes



& Y 4—\35(1%05@[))’3 (15)
é u

B.- B,@]=% Y3, £(1+cosa»3

: J3 u

g ° 220

Thelattice distortion matrix in the reference basi;, (70.5°)is

8\ (0]

D% “(h) = [B,(705)- B,(M]=[B,(705)- B.][B.- B,(*)]
with [B(705)- BJ =[B;- B,(705)]"also gven by equatio(15)6 A G K '. ' Tn®pc

The coordinate transformation matrix frotA to B, = (PQ PK PM) in the initial fcc reference basis is:

&a/v2 1/V2 1 (16)
u

[Be- B,(705)]=@/v2 0 0

g0 1/¥2 of

It is now possible to calculatbe twinninglattice distortion in the reference basi®& by usingformula(1):

Dg “(n)=[Bg - B,(705)] D “(n[BS - B,(705)]" (17)

1@2+2Y+f2\/1- Y2 2-2Y-+J2V1-Y?2 2-2Y-J2V1-Y?®@
e u
=L é14Y- V2V1- Y2 3-Y+V2V1- Y2 - 1- Y +V2V1- Y3

gl+Y- V241- Y2 - 1- Y +42V1- Y2 3-Y+42V1- Y2 H

with Y = cos().

It can be checked that for the initial statgince' =70.55Y=02 a91/3pDJ ?(h =70.59 is the identity
matrix, and that he omplete distortionobtained for' =180270.5°,Y=0 2 & ©-1/3) leads tothe matrix
given inequation(11). This is the same expression as it could be found siynpleshear of amplitudes =
1/& on a p11), plane on the-[211], direction [53]. The interesting point here is that all the continuous
intermediatestatesare calculated from equatiofl7), whereasa continuoussimpleshear isunrealisticdue

to the interpenetration of the atoms, i.ethe atomM displaced by shearingould collide withthe atoms
inOand K

All the atomaM of the crystaimoveduring the fce fcctwinning transformation exactly as the lattice:
PMCE DZ 9(h) PM (18)

Therefore, a for fce bccmartensitictransformation, mechanical twning does not require shuffl@he
similarities and differences between these two types of transformation are visible by comparing the
schemes ofFig. & andFig. ®, respectively.



3.3. Habit plane
The matrixDJ ¢ givesthe imageu'; in the initial fcc basi®¢ of the directionu by twinning:
u’s=D§ °uf (19)

The inverse of its transpose gives iimagesof theplanegy :

=0 #) o7 . with (20)
02 7} <loz 3)-T_1282 1 11,3 (21)
S _géz 51 _5L:j

e - g

It can be checked thathe vector ¢ = (p11), is the eigenvector vector of(Df;‘ °)* associated to the

eigenvalue 1. Aismeans that the plang® is globallyinvariant, i.e. itis not tilted and its normifterplanar
spacing) is not changedhis condition is necessary but not sufficient to imjpigt that this planeis fully
invariant. In order to check the fuihvariarce condition one has to check that two ngparallel directions
belonging to this planare also invariant. It is the case here, buslibuld be noticed that it isot the case
of the (p11), plane distorted by the fec bcc martensitic transformations intie (p10), plane[2].

4. FCC- HCP transformation

4.1. Matrix of complete lattice distortion

In order to calculatehte lattice distortion matrixan intermediate primitivebasis Bf)z &, Y, 2g should be
found. Clearly, since the vectoP©= %2 [110Jand PK= %2 [101]are invariant, they can be choséor the x
andy axes respectively, as for twinningdowever, he vectorPM cannot be takerfor the z axis ofthe
intermediate basist’) because thebasis(x, y, 2); and the distortion would beexactlythe same as for
twinning. It will be shown that the displacement of the atomgasition M is actuallya shuffle Insteadof

choosing the atom M locatedn the 11)4 planeat the levell =1 (Fig. &), we choose the atom in N
located at theupper level | =2, i.e, such thatPN = % [Dp], We point out here that contrarily to the

primitive basis used for fecbcc transformations, the lsas Bf’) of this section contains not one, but two

atoms.The vectorO=*2[110], and PK=%2[101], of invariant plane11), are invariant, and the vector
PN =% [2p] o= 1/6[211]4+ 2/3 [1pp]yis transformed into the vectdPNC= 2/3[1pp] ¢ This means that

@1/2 1/2 1 2 @1/2 1/2 2/3g )
BY = 21/2 0o -1/ 23 and BY = guz 0 - 2/33, and thus by using formuld#1),
g0 1/2 -1/2j g0 1/2 -2/3)



(80 2 29 (22)
Dy ©=B¢(B?) = =%1 13 1!
12¢€ u
é1 1 13

The correspondence matriA°  is calculated thanks to equatio(8) and the coordinate transformation
matrix reported inTable 11t is

2 2 20 (23)
Co /=Ty gD-g'e:ngl -1 34
e -1 -1

It can be checked by usinﬁ;' F(Table 1) thathe vector p11]yin the parent crystal is at the place of the
3/2 [00] vector in the reference basis of the hcp crystal, which does not mean that the distortion
preserves the parallelism of this direction. Indeed, it can be kbl using‘AO that the vector p11],is

actually transformed into Y¥2po],. It can also behecked by using‘Ao " that the 2/3 (ppp)gplane once
distorted becomeshe (11 m)plane of thehcpcrystal.

4.2. Matrix of continuous lattice distortion

The matrix(22)gives the complete distortion of the fcc lattiddere again,tiis possible to determine all the
intermediate states of the transformation by considering that the atoms are kptieres thath NR £ £ ¢ 2y
each otherDuring the fce hcp transformatbn the points P, O, K, | andr fixed(Fig. B andFig. ). The

atom N hasto jump abovethe two atoms locatedn the p11) plane belowThee are two possibilities for

the atomlocated inM: it canjump above the atoms located in O angdf#llowing the same trajectorgsfor

the atom N but relatively to the(pl1) plane belowor it can remain in the same positidfithe atom in M

moves, fis trajectory can be deduced from the calculatioperformedfor twinning in the previous section.

In the B bass, the vectorJM = ¥{2pp],is transformedexactly ador twinning; it becomeshe vectorWa Q
= D () IMwith Dg 9(#) the matrix given in equatiofl7). The vectorN follow the same changas
the vector JM, and thusL b=QDJ 9(/7)IN. The vectorPNis thus changed intd b ©P1+ L b=(PI +
DJ 9(h)IN. Theefore, the primitive basisB, formed by the vector = PO= %[110];, y = PK= %2 [10]
andz=PN= PI + INwith Pl= 1/4[2pp],, takes the formof a matrix &, y, z) that can be expressed directly
in the BJ basisby:

u

[B(o)' Bp(q)]zg}é 0 '%+%(Y-\/§«/1- Y2)§
S 1 70

20 ¥ - %ﬁZ(Y- J2v1- Y )E

g}é Y %+%(2Y+\/§\/1-Y2)g (24)

with Y = cos().

Thecontinuouslattice distortion matrixis deduced from formuldl); itis



Dg °(m) =[BS- B,(70.59] [B, () - BEJ" (25)
26+2Y+\E\/1- Y2 2-2Y-241-Y% 2-2Y- J241- ng

:%é1+Y-«E\/1- Y2 T7-Y4+/241- Y2 - 1- Y +4/241- Y2
gl+Y- V241- Y2 -1- Y 4+241- Y2 7- Y +4/241- YZH

It can be checked that for the initial state, sirice 70.55 Y=02 &1/3)D] %d=70.59 is the identity

matrix, and that he complete transformation matrix obtained for=180°- 70.5°= 109.52 Y=0 2 5=61/30
is thematrix (22).

4.3. Schuffle

All the atomsof type N= (U, v, w) locatedsimilarlyas N in the planep{l1) of even layes, i.e., such thatl =
(-u+v+w)is even, have a trajectory thdirectlyfollows the lattice distortion:

t b=0D? °(h) PN (26)

All the other atom=f type M = (U, v, w) locatedsimilarlyas M in the plangpl11) of odd layes, i.e, such
that | = (-u+v+w)is odd, have a trajectory that does not follow the lattice distortion, but that can be
deduced of it.There are two equivalent shuffles tife M atoms; theycan be determined bgonsidering
the trajectoriesof M in its localunit cell. Ether M does not moveor it moves as it would do faatwinning
distortion. The origin P of the unit cell in whiclthe atomM islocated is deduced from M by the translation
vectort =[010], Theefore, the trajectories of the atomsM that do not move irtheir unit cells obey the
equation:

Shuffle SO:t a ©DY °(#) (PMt) +t , with t =[010], (27)

And the trajectoresof the atomsM that moveby a local twinning displacemeint their unit cellsas shown
in Fig. &, obeythe equation:

Shuffle & t a DY °(A) (PM+) +DZ 9(A)t, with t =[010], (28)

Thesetwo trajectories fioted SO and S2)Jo not havethe same expressioas for the other atoms of the
lattice given by(26), they are shufflesTheneed of shuffe comes from thefact thatthe primitive unit cell
of the hcp structurecontains two atomsthis also explainsvhy we could not choos@M asz axisin the
primitive basisB, and thus justifies our choicef basisat the beginning othe section.

4.4. Habit plane
The matrixDJ ©gives the images of the directiar{ in the initial fcc basisBg by thefcc- hcp distortion

The inverse of its transpose gives image of the plang .

2=(ot ot v @

0=



* eld 1 1g (30)
(o5 V=5 V" =58 2 11 -1
62 -1 11g

It can be checked thathe (reciprocal) vectorg? = (p11),is invariant b)(Dg‘ li’)* , Which means that this

plane is globally invariant. It can be checkedDyy Uand by choosing two neparallel directions irfp11),

that this plane is actually fully invarianthdrefore, the (p11), planeappearsasthe natural HPfor fcc- hcp
transformation

The continuous analytical expressions of the angular distortive matrices -ofbfoc transformatios -
equation (31) of ref. [2]-, of fc fcc macrotwinning-equation (17), and of fcc- hcp transformations
equation(25)with equation(27)for the shuffle, have been introduced into a computer program written in
VPytlon that allows represeitg the crystals m three dimensions. Simulation moviekthe distortion of a
fcc cube constituted bgx6x6 unit cellstransformed into bcc, fetwinned and hep structures are given in
Supplementary Mterials S2, S3 and S4, respeely. The initial, intermediate and final states are
represented in blueyellow and red colorfor fc bcc, fce fcc and fce hcp transformations, ifrig. 4, b
and c, respectively. The intermediate state is arbitrarily chosen at mnpith of the complete
transformation.

5. BCC- FCC transformation

5.1. Matrix of complete lattice distortion

The OR between the bcc parent and fcc daughter phases are the KS OR of e(fi)alibe distortion
matrix can be determined by considering tithe vectorsx =PQ, =% [111] andy = PK, =%2 [1]]. of the
bcc phase become by lattice distortitime vectorsPQ =%z [110] and PK; =%z [101] of the fcc phaseKig. 5
andFig. &), and thatthe vectorPM, = [010}, is transformed into the vectaz =PMy= [100}, Itimplies that
the primitive basis

el/2 1/2 Og
=g[/2 1/2 13 has for image inthe basis of the product phaseBY, the basis

g/2 -1/2 og

/2 1/2 1g

BY —gL/z 0 oy

g0 1/2 0Of

This image can be calculated in the reference basis of the parent cfg§taly using thecoordinate

transformation matrix T “given in Table 1 It follows that B =Tg" 9BY and thus

p/go

DI 9=T2 B2

-1 .
o/ g (B";',) becomes after calculations
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Another way to find this result is to use the complete distortion matrix of the-fdacc transformation
A ° reported in equatior82 of ref. [2], and notice that

(e} o

A Ao A° R/ ° (32)

The correspondence matri ° “can be calculated fronequation (31) thanks to equation(8) and the
coordinate transformation matrix reported ifiable 11t is

L 2 0o (33)
p O L0 moo _1g O
A R A -Zg 0 1@

e 0 -1y

It can be checked by usin'[q)":P "(Table 1) thathe vector p10], in the parent crystal is at the place of the
2/3 [1pp], vector in the reference basis of the farystal, which does not mean that the distortion
preserves the parallelism of this direction. Indeed, it can be aubbl usingA °  that the vector p10L. is

actually transformed into *2pp],. It can also be checked by usin"g0 " that the (p10), plane once
distorted becomeshe (1pp), plane of thefcccrystal.

5.2. Matrix of continuous lattice distortion

The continuous matrix of the bce fcc transformation can be calculated from the -fcbcc matrix
Dg “(b) giveninref.[2]. Let us recall thaDg “(b) is a function of the distortion anglewhich varies
from 60° to 70.5°during the fcc to bec distortion. DJ (60 )is the identity matrix; it lets theBJ
unchanged.Dg ?(70.5) is thecomplete transformation matrixt transforms B into B a basis of the
bec structure expressddto BY ; it is important to notice thatB is not BZ . ActuallyB is constitutedof
the vedors [001], , [110], and [p10],. Therefore the bce  fec distortion matrixDg™ 9 (b) is not simply the
inverse of the fce bec distortion matrixDg “ (6) ; one has also to calcukit in the reference basis of
Bj . For that aim, ét ussplit thefcc- bcepathinto two successivpaths:the first onefrom B to B (1),

andthe next one fromBJ (i ) to BY . This decompositiorexpressed irB¢ , takes the form

D *(705) =[Bf - BLL)[BI(L)- BY(705)]=DF *(6) (DF *(b))* (34)



Thelast path igndeedthe invease of the path from the basig' , which is a bcbasis to the intermediate
basis both expressed inBJ ; thus,it is the inverse of the becfcc distortion matrix expresseBJ . Since
tKkS G SNX¥Y d&né taavoidyagylconfusiah i theraf&ehnce basighe matricesBY or B , we
wrote D7 ,?(b) in order to specifythat the bce fec distortion matrix D77 (b) in equation (34) is

written in B . From equatior{34), it follows that
Df,,%(6)= (D5 *) "D, (b) (35)

The two termsat the right of this equatiorare knownfrom ref.[2]. They are the inverse of the matrix of
complete transformation and the matrix of transformation at intermediate state given by the angle

Eventually, the bec fce transformation matrixD7,? (6) canbe expressedn the reference basi8j by

using thecoordinate transformatiomatrix TS~ ¢ = [Bg' - Bg] given inTable 1 It becomes
DG 7(b) =Dj50’(0) =T5" 7 Die’ (D) T * (36)

The symbolic calculations, performed with Mathematica, leathe componentsdif' 9(b) of the matrix

D™ 9(b) expressed asuhction ofX= cos():

(37)
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This matrix is a function of the distortion anglevhich varies from =70.5° K= 1/3) toi =60° (=1/2)
during the bcc tofcc distortion. One an check thatDg™ 9(70.5) is the identity matrix and thatthe

complete transformationD{” ¢ =D{™ 9(60) is the matrix given in equatio31).

All the atoms Mof the crystalare displaced during the becfcc transformation exactly athose ofthe
lattice:

PMQ= D2 9(b) PM (38)
The bce fcctransformation does not require shudl
5.3. Prediction of the habit plane

The complete transformation matrRS™ ¢ in equation (31) gives the image of the directionsby the

bce fcc distortionin the reference basiBj . The images of the planes are given by the inverse of its

transpose:

vy Vg Vi p Vg (39)

1 P l|_J p L|J_ o (p_.’.

2 5 11 Y Y e
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11 O ‘p_ lIJ o P_lp o ‘(p_l’l

p Ve p Vo p Wi

Ug w 0 w o oV

The two matrice$A ° and A ° givein the initial bagsB] the images of the directions and planes
respectively. These imagesire directly expressedh the final baseB§ by using the correspondence

matrices CJ “ of equation(33)and(Cg Yy, respectively The results btained on the lowindex directions

and planes areeported in Table 2 This table can be compared with the one given for the fbcc
transformation (Bble 1 ofref. [2]). It can be noticedhat the results are identical if the directions and
planes are exchanged.

Asin ref. [2], the HPis determinedas the planeg untilted by the distortion The rotation amplitude o&
plane g (normalized reciprocal vector) givenin Fig. 7asa function of the spherical coordinate y 3t S &
I v Rof g. As for fce bcc transformatiorj2], four solutions are foundthey can be grouped i two pairs
RdzS (2 GKS TI OG0 dnd | IN&SS S 24 @ik X Swal ¢ ifRbecausdoiite 2 0 G |
OSYiNR&aBYYS(HNRO* P dzApy BiuS Yhe& ardvd on-equivalent solutions, one at

— p® X c& L @which corresponds to thepl0), plane, and the other one at— p& ¢ o



¢® p @which corresponds to the plane T& phufi xhuzcy T p. The exact value, calculated from the
eigenvectors othe reciprocal distortion matrix A ° is X cMehg cWghu planewhichis at
1.3° of the rational plane (32),. It can be checkedhat it is exactlythe image of theHP predicted
analyticallyfor the fce bcc transformation. Actually, the fact that thdéPof the bce fcc transformation is
the same ador the bce fcc transformation isa logical consequence dfie criterion (10} since in our
analysis, the HP is assumed to dreuntilted plane; this plane is the same for both direct and inverse
transformatiors.

There are few experimeal studies on theHPsin pure bcc  fcctransformations Ohmoriet al. [31] report
that the Widmanstédten austeniteg laths arein KS ®with the ferritic d matrix and exhibit a weldefined
(P10)// (p11)y HPwith the growth directionparallel to[111]4// [110]4 Which is completely coherent with
the first solutionfound for — p® XM ¢& L @ The same OR artle sameHPwere obsered forthe
bce fce transformationobtained by heating martensitic steels producereverse austenitd28][29]. In
CuZn brass,Srinivasan and Hbevorth [35] investigatedthe HPsby Laue diffraction and reported two
possibledifferent HPsndexed in the parena bcc phase(2, 11, 12) and (138), with a largescatter of the
resultsdepending on tle alloy compositionbut interestingly the scatter is not random and actuaiig HF
are aligned in the pole figure on a segmenhtaining the <11l>dense direction andbcatedbetween the
two extreme (2, 11, 12)and (123) planes(Fig. 3 of ref[35]). Wnhfortunately, the authorsdid not precise
the corresponding ORwithout the ambigiities of the parent symmetrieswhich impedesa direct
comparisonwith our calculations We can just notice here that th@ ¢ 11, 2) plane is at 7.4° from the
calculated(p10), HP, the(c21), HP is at 4.3° from the calculatéa32), HP, and the common <11l>dense
direction is in good agreement with the neutral line chosendor calculations It could be worth studying
more in details the HPs i€uZn alloys to get more precise and statistical experimental results for
comparison.lt should be also acknowlgédd that the assumptions takein our calculations are probably
too rudimentary: the atoms in Gdn alloysdo not have the same size, which means that the hgptere
model with a unique size is not appropriate, and the daughter phasetiperfectly fccput orthorhombic
or monoclinicAR.

6. BCC- HCP transformations

6.1. Matrix of complete lattice distortion

As for fce hcp transformationsincethe primitive unit cell othe hcp phaseontains two atomsit is not
possible to find a homogenous distortion that transformisca crystal into a hcp crystal, atfilis a shuffle

is requiredfor half of the atoms in the latticeBy considerindrig. 5and Fig. ®, it appears that the vectors
PO=% [111] and PN = [p10], remain invariant during the transformation, and that only vacPK=Y
[11p], is rotated such that the anglé*QPK which is initially 70.5° decreases to 60°. The natural choice of
the primitive basis B is thereforex = PO=%: [111] , y = PK=% [1P], and z = PN = [p10],. They are

transformed into the vector®0O= [100]., PK=[110} andPN=[001] respectivelyas illustrated irFig. 5.
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This means thatBi =21/2 1/2 13 expressedin the basisBj, has for imagein the basis of the
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This image can be calculated in the reference basis of the parent dBgskgl using the cordinate

transformation matrix 14 ¢ A0 A given in Table 1 It follows that BU —Tu UBﬁ/wand then

Dy V=12 YBY (Bp) , which becomes after calculations
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The correspondence matri¥A° 2 is then calculated thanks to equatior(8) and the coordinate
transformation matrix reported iTable 11t is

82 2 0Oy (41)
A° Re e =1€1 1 - ou

2¢€ u

gl 1 0y

It can be checked by usin'lj;;‘ L"(Table 1) thathe vector p10], in the parent crystal is at the place of the
[001] vector in the reference basis of the hcp crystiilcan be cheadd by using/A°  that the vector

[p10]. is dsotransformed into[001] , andby using A° * that the (p10), plane once distorted becomes
the (002). plane of thehcpcrystal.

6.2. Matrix of continuous transformation

The distortion matrix othe bcec hcp transformation can be taulated with the methodused for the
fcc bcctransformation[2]. Let us consider theon-orthogonal frameB‘; constituted by the normalized
axesx = (1/08)[111],, y = (1/38)[11p]., andz = (1/C2)[p10]. , as illustrated irFig. 5 The[111], and [110].
directions define thed10), planethat is transformed into théasal(001), plane by the distortion. Now, let
us associate the orthmrmal basisB2 = s, s, z) with the basisBi =, y, 2) asin ref. [2] and asusually
done for the structural tensori.e.,xs // X, ysl' (x, y) andys™ X, zs™ X,z y and z points in the same
direction asz. The coordinates of the, y andz vectors in the basi8: givethe coordinate transformation

matrix from B{ to B, which is function of the angle



&l cos@) Og (42)
B:- Biv)]=% sinw) o
O 0 1y
The distortion matrix can be expressed in the bﬁ‘[)s by
Dy “(b) = [B3(705) - B(0)]=[B;(705)- BI][BI- B (L)) (43)
This matrix can be expressed in the reference BSiby

D “(b)=[B3 - B;(705)] Dy “(v)[BS - B(TOS]’ )

which becomes after calculations
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One can checkhat for the initial state, sincé  70.5° (X= 1/3), D3 ¢(70.5) is the dentity matrix, and
that the completetransformation2 6 G I A y SR #=2/Risthe niatrbxd4@)c 6 -

6.3. Schuffle

All the atoms of type N =u(v, w) located as N in the plan@X0), of even layes, i.e. such thatl =
(-u+\V) is even, have a trajectory that follows directly the lattice distortion:

t b=0DZ" °(b) PN (46)

All the other atoms of typéV = (, v, w) located as M in the plang@10), of odd layes, i.e, such
that | =(-u+V) is odd, have a trajectory that does not follow directly the lattice distortion, but t
can be deduced of itfThey describelocally in their cells the same trajectory as for the bcdcc

transformationD;” (), as illustrated inFig. & and Fig. ®. Two shuffle directions are possibl

one in which Mmoves towards P, and one in which it moveshe ppposite direction towards |
(Fig. ®). Theorigin P of the unit cell in whicthe atom M is located is deducedrom M by the
translation vectoit =[010],. Thus the two possible shuffleof M, noted S1 and-$, aregiven by

Shuffle S1:t a 9D °(b) (PMt) + D2 9(b)t, with t = % 010], (47)
Shuffle Sl: t a ©DZ °(b) (PMt)- D2 7(b)t, witht = 2 010], (48)

Therefore, contrarily to théocc fcc transformation but as for the fcc hep transformation the



bcc hep transformation requires a shuffle of half of the atommshe lattice The two equivalent
shuffles were already noticed by Burgers in dasly work[4], even if not analytically expressed
here. They are at therigin of the stacking faults in the hcp laths observed by TEM in titanium a
[38].

6.4. Habit plane

The matrix (40) gives the images of the directions by the bducp distortion in the reference basBj .

The images of the planes are given by the inverse of its transpose:

. . pu Vg o Vo ¢ ol (49)
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The two matricesA °€and A ° €’ givein the initial bass B the images of the directions anulanes,

respectively.These images can be calculated in the final bB§eby using thecorrespondence matrices

"A° given by equatiorf4l)and "A° *, respectively Theimagesof the low-index directions ad planes
are given irrable 3

As inprevious sectiongsit is also possible to determine thi¢Pas the plane utilted by the distortion.The

rotation amplitude is given aa function of the spherical coordinate y 3 f ISR ‘ Fig. & Here six
solutions are foundTheycan be grouped to two tripletsRdzS G2 GKS FF OO0 (pREréi GKS
equivalent to those obtainetl G ¢pk H 6 SOl dz&S 2F GKS OSY(UNRA&YYSINRO
., 1B). Thus, there aréhree unequivalent solutionsThe exacvalues calculated by the eigenvectors of the
reciprocal distortion matribare (pp2)s, (p10), and Vigh Wl ,. Thislast plane is at 0.5° of the rational

plane (Lu4), ; and it is transformed intovip phchit © (340) by the distortion. Actually thesolutions

(p10), and  weh Mghc , are associated with the sanmeigenvaluel, which means that they form 2D

vector spacgand any linear combination of these two vectaisould bealso an eigenvector. Howevdor

a reason that is not completely clear to us, any approximation on any of nine irratiomgdonentof the
distortion matrix makes the 2D space condensateto the two vectors 10), and Vgh Voh ,.
Contrarily to all the phase transformations described in the previous sectibasplane of the third

solution wgh Weh; , does not contain the neutral line.

There are a lot of scatter in thedPsreported in titaniumand zirconium alloy, but many studies reptne
{443}, HP(it is recalled again that is the bcc phase in our studylthougha direct comparison is difficult
because of the symmetries of the parent bcc phaisean be noticedhat the calculated u4), plane isat
1.5° from the(t113), HP. However, such goodnatching could be a coincidencdeed, other HPs have
been reported for which the agreement is not as goloda recent paperQiuet al.[48] deeplyinvestigated
by TEMhe martensitic plates in a Icr alloy andhey indexedunambiguoushall their diffraction patterns
according gparticular Burgers ORhosenamongthe equivalent ones. ThElPof | K S #Miptéithey
investigated, written with our choice of Burgers ORTiH{, // (130).. Our calculated @u4), // (340). HPis
at the 12°far from their reported (t115), // (130). HP. This agreement is qualitativetyuite good because



both calculated and reported HPs gperpendicular to the hcp basal planeut not quantitatively sufficient
for the moment to compete with the PTM{2][43] or E2EM [44][48] models. The quantitative
discrepang could be due to the fact thaih real alloys the hardphere approximations not sufficiently
accurate anymoréecause of thalifference of size of the Ti atoms in the bcc and hep phabe real ¢/a.
ratio different from the ideal ongand becausethe transformation occurs in an alloy and not in a meno
atomic phase.

The continuous analytical expressions of the angular distortive matrices of foccand bcc hcp
transformationshave been repesented with+ t @ i K2y ® {AYdzZ | GA2Y AY&@DSa¢ 2
constituted by 6x6x@init cells transformed into fcandhcp structureare givan in Supplementary lskerials

S5 and S6, respectiveljhe initial, intermediate and final states arepresented in blue, yellow and red

colors, respectivelyin Fig. @andb.

7. Discussion

7.1. Vocabulary and associated concepts

Before starting the discussiomnd in orcr to avoid any misunderstanding that could be source of
controversy,we thinkit is important to precise the concept behindomewords. The terma G N> YA A G A 2 Y
usedmore generally byhysicistsF YR GG NI yaF2N¥YIF A2y ¢ o6& YSOlff dNAA
phase change with no or only shegnge orderrearrangementsof the atoms, whereas the latter also

includes long range diffusion and therefore precipitatidmeld S NY & RA & liditidilyCaktriB8ed to g | a
transformatiors involvingcollectivedisplacemens of atoms, whichis inevitably correlated tthe distortion

2T OGKS f1FG0A0Se® Ly (GKS LI LISNE 6S dzaS SlidaAa gt Syifte
transformatio/ ¢ ¢6KS G SNY¥Y aNBO2y a i NHzOUG A @S ¢ may 848l Ré importaht NA F A O
confusions as already noticed b®tsuka and Ren in their review paper or\Tishape memory alloyg9].

In crystallographyéreconstruch @S¢ YSIFya GKFaG a2yS 2F (GKS G2YAO0 o
andnew bounds ardormed in the daughter phassome symmetry elements of the parent phase are lost
andySg 2y Sa (NEROGHNBO2VYE (R LK 3K $NIAANREZS 6§ KS G SNY
deyzyevYzdz ,af thisiRdudeSamGrdngeDdering or precipitatiomechanisms, ant often

used inoppad A GA2Yy (2 {KS AlitgNdhcpddR fraadidinatbis@estéddin the present
paperareOf F A3 AFASR a4 020K aNBO2yaildNHOUG A BSHER AlayLR | 6ORAZSL
metallurgy.In the rest of the discussion thé S NI & NB O il heliuNddidtii its @@stallographic

meaning

In metallurgy the formation of a relief at a polished surface adten associatedwith displacive
transformations but not exclusively; and thias splithe communityof metallurgistsinto two groups the
GAKSIFNRAGAE |y B0 Bief R ASFAEYUYA AN A s siike $at & SukaBe rélidfa G & ¢
can be created only bya displacivemechanism[52][53] 4 K S NB I R A 1 K &a thirik yhatanisante

alloys it is created by diffusionwith the formation 2 ¥ &G G SNNJ 0Sa 2F 3INRgOK S
correspondence at the parent/daughter interfad®7][58]. Both groups have developed their own
crystallographic tools to predict the orientation relationshignd habit plans; i.e, the PTMC fo the



former, and the E2EMor equivalent for the latter [51]. ¢ KS G RAFTFdzAA2yAalGae 27
GLINBOALIKGI GAZ2YEé Ay (KSaioinihg fidhdpBci sydtem HowkevierkKhe g LI | G
G LINSOA LI GI G A 2 Y énthg présént pagein O&ny atdciaiBdRuchasit is in aluminum
alloys[59]. Some atoms of specie that are in solid solution in a matrix constituted of atoms of specie X,
diffuse and migrate due ttheir chemical driving force first, they make small clustewhich then grow

slowly each time a new atom Y joins the cluster. Ttoena Y associated or nowith the @oms X orto

other speciesform a newcrystallographic structurevhich is inORwith the matrixin orderto minimize the
interfacial misfits. Sometimes a reordering of the atoms in the precipitate structure during¢a#pijtation

growth occurs due toa size effect{60]. During their growth the precipitates become seaaiherent and
incoherent at microrscale. Since the atoms coen from all around the surrounding cluster, the
precipitation mechanism is isotropiand theprecipitateshape is only a consequence of the symmetries of

the precipitate and matriyhasegseesection7.3). The precipitates are generallymetastableand dissolve

during thermal treatmerd at high temperatures and theY speciesre-precipitate to form newstable

phases, such as Mgpi in 6xxx alloydt is clear that he approach and equations described in the present
paperdo not apply to precipitation.

The termda { dikgyhasvery broad meaninghat comes fromthe earlyFriedef) &ork on mineralogy; he

statesy A twin is a complex edifice built up of two or more hosrmpus portions of the same crystal

species in contact (juxtaposition) and oriented with respect to each other according ‘efiretid lavé

[61](see also ref[62]). It means that in a polycrystalline material any misorientation found with a
frequency higher thait couldbe expeced from a randm distribution of isotopic orientations & | a G gAY
Thisdefinition includes annealing twins, mechanical dri and macre) twins, andit also comprisesthe

specific misorientations that exist between the variants after a phase transformatien the
transformation twins However,to our point of view,annealing and mechanical twaare slightly different

from transformation twirs. In the former case a crystaJ2 ¥  LJKd trarSformed into another crystal

of same phase, whereas in the latter case, a parent crys&l¥ LIKI &S A dmary Nidtint F 2 NIy ¢
variants a; of phasea, and the misorientation between two variants can be understoodonly by
considering their parent crystaln the first versions of PTM[54][55] the lattice irvariant sheas were
mechanical twingor dislocations) whereas in its advancedsiens[56]A i Ay Of dzZRSa GKS al g
between pairs of (seliccommodating) variantsAnnealing and mechanical twins should also be
distinguished: the forrar results from a diffusion process, as precipitation, whereas the latter results from

a lattice distortion induced by stress.y (G KS NBad 2F (GKS RAaA0OdzaaAizys GKS
apply to mechanical twinning.

7.2. Angular distortive matrices for the transitions in the fcc-hcp-bcc Burgers triangle

The repetitive style of the paper was chosen on purpose. The aim was to show that the approach and
mathematics are very similar for all the displacive transformations and mechanical twinningfoc-thes

hcp system.Any transition or mechanical twinnirgan be represented bgn angular distortive matriwith

a unique order parameter whicis the angle of distortionlt can be noted thathe nine components of all

the matricesof complete transitios between the three hareésphere packed phasese a sum ofa rational



numberand rationalnumbertimesVig; i.e. these matrices areuilt on an extension of the field of rational
numbersQby Vig: theyform analgebra over the fiel@Vg).

For mechanical twinning, the calculations have been performed only fdcd¢dut there is no obstacle to
perform them for twinning in hcp or bcc metals. For example, we have calculated the distortion matrix
associated with theecently reportedd | y 2 ¥z&B{£0@} mechanical twinning in magnesi|68], andare

able to explain thiz formation despitetheir apparent negative Schmidt factor§he details will be
presented in a next papef64].

Thedistortion matricescan be used to determinthe HPsnumerically and analytically assuming that they
correspond to untiltedplanes, i.e. they are amonipe eigenvectors of theeciprocaldistortion matrix
Thus, in general,the maximum number ofpossible HPs for one distortion matris three. The only
exception occurs when two eigenvalues are equdlich means that their assiatedeigenvectors form a

2D vector spacéf they are not parallél. This is the case for the becdicp transition; however it was also
noticed that the vector space is very instable, i.e. any approximation on the irrational values of the
distortion matrik makes the 2D space disappear and replaced bydisiinct and discretevectors.In the

case of three solutions,n@ can raise the question: what is th#Pamong then? For transitions in which

the untilted plane $ fully invariant, such as fdecp transiton or fcefce twinning, theHPis the invariant
plane. However, for the other transitions, tla@sweris less trivialWe noticed thatin these casethe HPis

often the irrational (high index) plan@ne reason could be that the volume change is loadlineide the
angular distortion of the low index plane, such as tfpd1), - (p10), distortion of the fce bcc
martensitic transformationwhich means that the deformation in this plar@ y Qi 6S | 002 YYz
whereas the untiltedrrational plane can be transformed into a fully invariant plane by variant grouping, as
we have shown for the {225HPsof martensitic steels[3]. However, suchconsiderations still lack
generality anddrther work is required to establish a rigorous law that determinesdbeectHPin the set

of the eigenvectors of reciprocal distortion matrix.

In addition to thedeterminationof the HPs the distortion matries calculated in the paper could be useful

to estimatethe strain field in the surrounding matriXheycould pave the way fora new mechanicsof
deformation by phase transformation or mechanical twinniagmechanics that would not invohahear

but tensor products between the stress and distortion matricesK S LISNBR LISOGA @Sa | NB O
be detailed hereWe will just introduce theoncept ofdistortional varianthat will be of primeimportance

for these researcheandneedsto be clarifed and explained.

7.3. Orientational and distortional variants

The orientatioml variants are the distinct orientations of the daughter crystals formed by a phase
transformation. The orientatioal variants depend only on the symmetries of the parent and daeght
phases and on the OR; they do not depend on the transformation mechanism. The oriegtatidants

can be the orierdtions of martensite laths irmartensitic steed (displacive transformation) or the

orientation of precipitates in aluminim alloys (diffusive transformation)Let uscall G’ and G* the point
groups of the parent and daughtghases, respectivelfthe point groups are noted by capital bold letters



in Algerian fontn the paper They are sets afymmetry3x3matrices. Let us call alsby" ¢ the coordinate
transformationmatrix deduced fromthe ORas shown irequation (3). The matrix Ty “ results from the
choice ofequivalent planes and directions chosen to write this OR. It is calculated for one variant,
arbitrarily chosen to be the variant &;. ThusTS V=T % For example the point grou@’is the set of
matrices expressed in the bad#s simply notedg? . The symmetries of the daughter crystal expressed in
the basiSA are given by theet ofmatrices T G? (T2 Y)™. The intersection groujs the groupof the

symmetries that are common to both the parent crystal and the daughter crastdt is
H= G*ETS *G(TZ *)* (50)

The setH’is a subgroup o€’ i.e.H® ¢ G The distinct orientatioal variantsa; are defined by the cosets
| "QH’and their orientations by

TCY="A0 A QR ° withQn| (51)

One must understand™Q N | € &s"Q arbitrarily chosen in the coset . By convention;Q is the identity
matrix. The number of orientatioal variantsN? is the number of coseten H®: i.e. the cardinalof GY H°
and isgiven bythe Lagrangeformula: N* = ¥G%/¥H%., For precipitates (diffusive transformation), the
symmetries of the shape arealsogiven byH®. More details on the orientatical variants can be found in
[65] [66].

Contrarily to precipitates, the shape tfie martensite products (needle, lath, plates, lenti@ulshapep
does not depend onH?, but on the symmetries of the parent phatieat are preserved byhe distortion

mechanism.Let us consider a parent crystal of shape with symmetries giveG%yThe crystalafter
complete distortion, i.e.a crystal ofdaughter phase has a shape with symmeds given by matrices

expressed in the basid by DY “ G’ (D7 ¢ )*. The intersection groups the groupof the symmetries

that are common to both the crystalefore and after distortionit is
K= G*£DY G (DY #)* (52)

with K9 ¢ G% The distinct distortioal variantsd; are defined by the cosetQ "QK?. Their number of
variants M is the number of cosets d€? it is the cardinabf G¥ K®and is given by the Lagrange formula:
M? =vGH] YKY,

The distortion matrix of the variarf is expressed locally in the bass by the matrix D;” “ =D§ °.

Thus, the distortion matrix of a variadtexpressed in the basia is

D=0 A A° AO0A QA° Q withQrQ (53)



The distortion matges D Y will be of prime importance to calculate the mean distortion generated by

pair and set of variants. They will be used to shbat it is possible to make the untilted {22F}anesfully
invariant[3].

Equationg(50) and (52) showthe difference between orientatiosl and distortioral variants.Generally K°

¢ H° (the demonstration not reported here, is based on equatioi8)), which means that the number of
distortional variants is higher thathe number oforientational variants: M® 2 N?. Let us illustrate this

differencein the case of thecc hcp transformationgFig. 10. The intersection group of orientatiord®
contains 12 symmetries elementhus N = 4 There are four orientatioal variants. Moreover the shape of

hcp precipitates in a fcc matrix has sytries given byH’. The 3fold axisnormal to the common dense

plane(p11),// (001). of the hcp precipitatess an element oH’, which explains why the precipitatbsve a
triangular shape. Ithe case of martensitic transformationnly one of the three equivalent <112wector
isi KS & vet@ hthE originof the transformation or equivalently in our approach, only one of the

three equivalentz = PN should be chosen to be transformed into the [004kis(Fig. &), and thusH’ is
broken byli KA &  dirfokazsub@&IEK® < H°, andK? contairs 4 elements. The hcp variantsrmed by

distortion have a shapesymmetriesK® and not H’, and thus are not triangular anymore. Actually, if
YIENGSyaAaidsS Aa ONBFIGSR o6& 022fAy3dr (GKS GKNBS aakS!
around 50 nm to accommodate the distortion straii6§]. However if the transformation is triggered by
imposing a sheaf68], only onevariantwill be actvated so that the distortion strain accomodatesthe

imposed shearln the case ofcc- bccmartensitictransformation with KS ORjnceH® only containsthe

identity and inversion elementéP O y Qi 06 S adiNtBrjos, yind thaK® € HE A brief smmary of
the algebraic formula used to calculate theientational and distortional variants for direct and inverse
transformations is given imable 4

7.4. Orientation gradients induced by distortion

The main idea imur approach is that th@atoms move during the transformatiaas if they rollcollectively
on each otherand it is these movements which generate the lattice distortion. Meehanism operates
whatever theplastic deformationrmodesof the parent matrix inwhich the daughter martensite forms\
good image is the solidification of water in a rigid bottiethe undercoolingis sufficiently high,the
dilatation induced by the phase changeeaks he bottle whatever its constituent materighctually, if the
bottle can withstand internal pressuséiigher than 220 MPaa new phase of ice denser than water will
form). This concept is very basic but has many implicatiorour model ofdisplacivetransformations. For
example, all the distortion matricdsave beercalculated indepenelntly of the exactplasticbehavior ofthe
matrix, contrarily to the PTMGapproacheswhich includes the shear relaxation modésthe core of the
theory. As already schematized iief. [2], wethink that the globalaccommodatiorin the matrixgenerated
by arrays ofaccommodatingdislocationsis a direct consequence of ¢hlattice distortion and nof in first
approximation,of the details of theaccommodation modesOf course the exact nature of the dislocations
(screw, edge, partial etc.) depends on the structure of the pangmase but probably the global
mesoscopiorientation gradients donot. An experimental observation thaupports this point of view is



the factthat inthe fcc-bcc systemthe continuouseaturesobserved in theElectron BackScatter Diffraction
(EBSDpole figures of the variants belonging to the same parent graimsvery similar for direct and
inversetransformatiors, whatever the plastic deformation mode of thparent phase, fcc or bgd.e. gliding
on the {111} planes for fcc or on the {110} and {112} planes for bccThis is illustratedn Fig. 11which
shows thatthe features ofthe bcc laths generated in a martensitic steels by the fbcc transformation
(Fig. 1R) are similar to those of thécc Widmanstatten lghs generated in a brass by thecc fcc
transformation Fig. 1b, from[36]), or to those of thefcc plates generated iduplex steed (Fig 11c, from
[69]). These featuregould be simulated by two continuous rotations with angles varyiogtinuously
between 0 and 5.269nearound [110}// [111], calledA, and the other onearound p11},// [ p10], called

B [1]. TheA and B rotations are sipposed to be the trace of the plastic accommodatminthe paent
phase and are at theorigin of our researches on thmechanismsf martensitictransformations[5][70].
For the fcc bcc transformation, w have shown that the distortion matrixcontaing these two
continuousrotations [1][2]: it deforms the surroundingparent environmentor creates a specific back
stress field which,when the transfomation continues to propagatemakes the variants deviate
progressively from their initiadtrict OR with the parent grain.r&dients of ORdinkingthe Pitsch KS and
NW ORsappearinside each martensitic variaff7l]. Since the concept of distortion matrices can be
enlarged to all the phase transitions in the -focp-bce system our model predicts the existence similar
continuous features in the pole figureseated bydisplacive transformation (fechcp, hcp- bccetc. and
alsomechanical twinning in fcc, hcp or bee crystal$leoretical and experimentalorks arein progressto
check the validity of this prediction.

7.5. The intermediate states and the steric barriers

Sincethe HPsare calculated with thenatrices of complete transformationthe interest of calculatig the
intermediate states can be questioneflwoanswerscan be givenFirst the analytical calculationgivethe
displacementof all the atoms during the trangtion, and not onlyafter the transition as it is the cases in
the other theories Secondlythe matricescan be used to find an energy criterion slari to Patel and
Coherf2 @ne [72] to predict variant selection and texture inheritance effecie interaction energy given
by the tensor product of the distortiomatrix by the applied stress matganbe usedForthe moment, as
example, it can be noticed thatdilatation normal to the utilted planeappeas during the transformation
in the intermediate statesandthen come back to zero in the final stateortrarily to the invariant plane
strain used in PTMC)This means that there is asteric energy barrierrequired G 2 & I Otheh @ G S ¢
intermediate state. This situation is illustrated iRig. 12n the case of D twinning Althoughthe applied
stress is a simple shear, theli 2 Y& O y Q énd a dlataiidodSshonlddecuperpendicularly to the
shear plane Thedeformation isnot a simple shear but is angukdlistortive, whichalso means that daito
the hardsphere assumptionthe crystallographic straistress correlation is not lineaf.he calculation of
the energy larrier is difficult to performbecause it depends on the mieanical properties of the parent
matrix and daughter variants; but the amplitude of the steric bariean be calculatetrom the distortion

matrix. In the case of fcc fcc twinning treated in section3, it can be checked thabj ‘in equation(17)
lets invariant the two directionslfL0}, and [101} and thusany linear combination of themandD, (' {ets

invariant the (p11), plane the crystallographic distortion associatedth twinning is an invariant plane
strain. Howeverthe continuous pathis not asimpleshearbecause therds a lattice dilatation due to the



fact that the atom located in M must climbetween the atoms O and Kig. 1®); it is given byd =
MH/(CB/3), whichalsocorresnds to the variation of the distance betwe¢he planegy = (p11), or more
explicitly:

- Af—HEHE ,withg= (11), (54)

The valuef the dilatationd have been calculatedlong the distortion paththey areshown inFig. 1.
Themaximum value isha= (36/4)/(1/B) = /4 © 1.06, which means that there is a dilatation406 %
LISNLISYRAOdzE F NI &8 G2 GKS GoAyyAy3I Lied af Sodstamt yoluel K S NJ
althoughthe initial and fnal states have the same voluménere is astericbarrier between the two states

due to the 6% of volume change of the intermediate staféor fce bcc transformatios the maximum

value isdnax= 1.015(Fig. 13&); this islower than with twinning because of the atoms O and K do not remain

in contact during the climb of the atom Mlue to the 60° 70.5° opening angl€OPK)In real iron alloys,

the hardsphere packingrule is not strictly respecteq and the theoretical expansionof +1.5 %
perpendicular to the 11), planein the intermediate states actually compensated by the fact that the
diameter of iron atomss ~3%smaller in the final bcc phase than in the initial fcc parent phésgure
investigations are required to check if these calculations coeggpond to the gquestionwhy metastable
austenite insome steels can be deformed by fcbcc martensitic transfonation (TRIReffect), and why

other steelsare deformed by fce hcp orfcc fcc twinning (TWIP effect), depending on their chemical
composition? Up to now, the arguments in literature involve the concept of stacking fault energy (SFE), but

it is probabé that SFElepends orthe steric barrierd (and not only on chemistryyvhichitself depends on

the mean diameter of the atoms in the alloy.

7.6. Does the model apply to i s | otmarsformations?

Thee aretransformations thatssharemany characteristicwith martensitic transformations but that do not
occursuddenlfz YR (KS&aS aaft e dbeen NijegiédR@dNMOVeisds Pefiven the
GAKSENRAGAaE |y Modh dibe débRids Edhckzn th@lRsand tiiededief formed at polished
surfa@s Here,we would like to discusanother experimentatesult Astold in section7.4, we believe that
the orientation gradientsthat can be observeéh the parentphase(the continuous features in the pole
figureg are the plastic traceof the transformations mechanisnSince the features formeth the bcc
martensiticsteelsare similar to those formed irslowlycooled CeZn brassduplex steelsbcc bainiticsteek
and iron meteorites i{n which the cooling rates are few hundreds degrees by million yeag, must
concludel & G KS @thaKtBe médhanisra & intrinsicaltynartensitic whatever the speed of the
transformations However as pointed out bythe (R A F T dza the yakhskoimatiorsin these alloysis
limited by the diffusion. Indeed, the chemical composition of ineductlaths is slightly different from the
parent phase for examplein a duplex steelthe glaths formed inside thel ferritic matrix are depleted in
chromium and enriched in nickgBO][31]. Thus,we adopt the current consensl opinion that the
transformationsin these alloys arediffusionlimited¢ displacivetransformations The plausible scenario of
phase transformation during cooling can described as folldga)sn the parent phase at high tempdtae,
sincethe stable daughter phase is chemically different from the parent phasethe atomsdiffuse and
migrate during coolingdriven by the difference of chemical potentiddstweenthe parent and daughter



phase, (b) they form a region which has the equilibrium chemical composititine daughter phaséut
still has the crystallographic structure of the parent phasad then, suddenlyc) the regon is displacively
transformedinto the daughter phaseas shematically illustrated iffig. 140 ¢ KS G NJ yaF2 NX | G A 2
progressivelywhile each atom arrives at the interfad®cause a critical size is requirtat the displacive
transformationto go over the energ¥parrier required to create the interface and the strdield, similarly
as for classical nucleatigi@3]. Another possiblecauseof the limited speed of transformation the kinetics
of displacements of the dislocations generated by the lattice distoiticihe matrix Thesetransformation
dislocatiors induce a backstress field localized in front of the daughtkath or plate, which makes the
transformation more difficulto propagate At high temperatures, it is possiblbat the dislocations glide
progressively far from the lath tip and then relax the local stress feid, thisallows the continuation of
the phase transformatiorand lath growth In steels, the kinetics afisplacementof the transformation
dislocatiors depends on the carbon contentlue to aCottrel atmosphere around themit is possible that
such an effectoccursin bainitic steels From these considerations, it is believetiat the calculations
presented in this papedo not apply only to pure martensitic transformations but alsdiffusionlimited
martensitictransformations such aghosein brass, duplex steelgron-nickel meteoritesand to bainitic
transformations in steelsand more generallyo ¢kinematially limited¢ displacivetransformations The
YI'AY RATFTSNEBY OSschbdlappkoach Kt ashedt 8 hoN®quifed andoes not take part
to the intrinsic mechanismfahe lattice change

If one accepts the idea that fechcp transformations and fecfcc microtwinning aredkinematically
limitedé martensitic transformations, then some experimental observations in these systamsbe
interpreted with another point of view. For example, it is widely admitted tirasome low stacking fault

iron alloysthe hcp plates ofcc twins are formed by a wetirganized synchronized collective motion of
Shockley partial dislocations created by a polechanisn, but there is noexperimental proofof the
existence ofdislocatiors spiralingaround poles (section3). There is atually asimple wayto interpret the
observatons instead of considering that the dislocations are tfaiseof the transformations and that the
product phase is created by the passage of the dislocstiome caractuallyconsider that the dislocations

are the consequenceof the transformation and tat they are created only to accommodate the
transformation. With this point of view, even in the case of microtwinning induced by shear, Shockley
partial dislocations would not be generated directly by the shear stress, but would be the consequence of
the creation ofthe fcc twin which is thermodynamically more stable than thegdacentcrystal because of

its favoredorientation in the stress field.

7.7. Reversibility: crystallography, morphology and dislocations

In this par, only the fcencp-bcc systems studied becauset isthe only system in which the haigphere
rules can be applied with good approximation. Trensformations in this systerare crystallographically
irreversible. We mean thatf only crystallographic arguments are consideriee reversetransformation
should give backnore orientations than the initial oneMore explicitly, let us imagine that a single crystal
@ is transformed by ther a transformation into R equivalenta; variantsi | [1, N°], the variantsa; will
generate by he a- ginverse transformatio more orientations than thenitial one g,. This is due to the
absence of a groupubgroup relationshifn crystallographially reconstructive transformationf6][74]. A
mathematical demonstrationvas given in ref[66]: The number R of orientatioral variantsa; formed by



the transformationg- a is given by equatio(60) N* =|G%/ |[HY where |[HY is theorder of the intersection
group. The number Rof orientatioral variantsg formed by the inverse transformation- gis N =|G?|/

[H%|. SinceH’ andH* are isomorph their orders (number of elements) are equal,,i|ef| = |H). In the case

of a groupsubgroup relationG* =H* ¢ G% and then R = 1, which means that only the orientation of the
initial parent crystal can be generated the inversetransformation Since this condition is not satisfied in
the fcchep-bee sysem, thetransformationsshould not be reversible. That is why the first papers reporting
an important shape memory effect in the Rdn-Si steeld75] were a real srprise, as mentioned in the
end-note of paper[76]. The reason iqot yet fully clarified, but is probabliinked to the particular
configurationof transformation dislocations. ltihe case ofcc hcptransformation the accommodatioris
obtained by the creation of arrays d@dhockley partial dislocations that all glide parallel {111}, planes
(contrarily to fce bcctransformations which imposeghe creation ofat leasttwo sets of dislocations at
the origin of the orientation gradientand continuous rotation#\ and B, section7.4). If the dislocations
coud glidefar from the daughter hcp plateand be stored in the retained austenitic matrix, it is plausible
that the samedislocations could move backwatd inducethe reversetransformationand then generate
the same fcc orientatioof the parent crystallftheRA at 2 OF G A2y a OFyQi Y2@0S | yR
the fcechep transformationmust continuein the plastic zones containing teedislocations which creates
gradiens of orientationsthat are inherited back during the inverseahsformation. Such phenomenon of
inheritance of internal gradiestof orientations induced by martensitic transformation cycleaswsed
recently by Omoret al.to promote abnormalgrain growth and elaborate shape memory materials with
millimetric graind37].

There is another factor that can favor the reversibility in crystallographically reconstructive
transformations; it is the morphological reversibility. &edl, we have assumed ief. [2] and in the
present pape that the HP is a plane utiited by the distortion. This means thatif for the g a
transformationbetween a parent crysta andone of its varianta; , the HPis (hkil),// (hk,)a , then the HP

for the reversea- g transformationbetween the crystak; and its variantg should bethe same plane
(hikil)a /' (hkil)g In other wordsthe reversdransformation does not requiréhe creation of newHPsf the
transformation is obtainedbetween the same parent/daughter crystals. That morphological effect, in
addition to thestorage of transformation dislocatiencould possiblyexplainthe partial reversibility of the
transformationsobservedin the fcc-hcp-beccsystem

8. Conclusions

This paperis a generalization of our previous pap@] which wasdedicated to fce bcc martensitic
transformation. Itgives for the first timehe analytical expressions of the at@mdisplacements and lattice
distortions during the fcc fcc twinnng and duringfce hcp, bce fcc and bcec hep displacive
transformations The resulting equations are summarized able 5The main ideas are:

1 The distortion matiges of complete transformations ca be determineddirectly from the
orientation relationship and an appropriate lattice corresponderideey form an algebra over the



number field QWg). The analyticakalculatiors of the continuous distortiormatrices are more
tedious and rgf on the hardsphere packing assumption.

f The distortios OF Yy Qi A Y LI} & betausé Liff weuld anfake |t atoms interpenetrate
themselves.

9 Shuffle is required for transformationsplyingthe bcc hcp andfcc hep phase becaughe hep
phase contains two atoms its Bravais lattice.

1 The habit planes aréletermined numericallyand analyticallyon the assumption that they are
untilted by the lattice distortion.They are in the list of the eigenvectors of the distortion matrix
expressed in the reciprocal spadley comparequite well with the experimental results reported
in literature, taking into consideration that there is free parameté&urther work is requed to
establish a criterion of choice among the eigenvectors.

1 The mathematical formalism is the same for thdisplacivephase transformatios as for the
mechanical twinning. There is no fundamental crystallographic difference between these two
families d phenomenaAll imply a lattice angular distortion without shear or intermediate phase.

1 Thecontinuous distortion matrices allow calculating the steric barriers involved by the distortions.
BEven the simple case of fecfcc mechanicatwinning produced by simple shear stresgquires to
cross the steric effect (+6 %) imposed by the atoms on the parallel layers of the dense ptanes
the fcc bccmartensitic transformation, the steric barrier on these planes is lower (+1.5%).

1 According to the model,he dslocationsshould be imagineds the consequence of the lattice
distortion, and not the cause. This is the classical point of viewtlierfcc- bcc martensitic
transformation but for the fcc hcp transformationand fcc- fcc microtwinningit was generally
believedthat it is the periodic glide ofhockley partial dislocationgroduced by a pole mechanism
that generateghe hcpphaseor fccmicrotwins.

9 The surrounding parent phase accommodatse the distortion whatever its deformation mode
(glide and twinpairing. In the case of fecbcc and bce fcc transformatiors, the plastic
accommodationis retainedand appears under the form of the continuous rotatioAsand B. The
model predicts that similafeaturesshould exist in hcp martensitend inmechanically twinned
fce, beeor hep metals. A large EBSD study in titanium, zirconium, cobalt, brass, TWIP steels etc. is
going onin order to check this prediction.

1 A distinction is done between thdistortional variants with symmetries given b and the
orientational variantswith symmetriesdH because thalistortion can induce a additionalsymmetry
breaking not contained m the sole information given bythe orientation relationship K is a
subgroup ofH, and both K and H are subgroup of the parent point groupG. In the case of

fce- bcc transformation with KS OK, = H, and in the case dftc hcp transformationK < H.
These notions are of prime importance to calculate the macroscopic distortion matrices generated
by pairs o setsof variants. They will be used in martensitic steels to show that the untilted {225}
planes can be made fully invariant by variant paifBig

1 Theapproachprobablyapplies to the diffusiodimited displacive and bainitic transformations.

This model gives a good qualitativeand unifying approach to treatdisplacive transformations and
mechanical twinningOf courseit is limited by itsbasicad & dzY LJG A 2 y & | ytRnsOrimstiondin G NS I {



which the atom size changes significantly between the parent and daughter ploaseslloysconstituted

by atoms of different size§winningin bcc or hcp materialbave not been treated hern detailbecause
the numerous twinning systems would have made the study ned@us but the approachs sufficiently
general to treat these casesithout problem For examplejt will be shown thatthe angular distortive
matrices calculated for the{10p2} twinningvariantsin hcp crystalsexplainthe apparentabnormality of

negative Schmidt factofé4].

Note 1:

All the distortion matrices presented in the pageave been calculatefitom the ORY5). One could prefer
using ORs in which the negative sigmristhe indices of the directionto keep the indices of the planes
positive

1 KS: [p10]y =[p11], and(111),// (110),
1 Burgers:[pll], = [100].and(110), // (001),
1 SN: POl = [100} and(111),// (001).

The distortion matrice®, corresponding to this alternative choice of OR can be deduced from the matrices
D presented in tlis paper by using the coordinateansformationmatrix

, and then D,=P'DP.

m
4° A

p
I
I

© 44

Note 2:

We take the opportunity of this paper to signal a typo error in the fbcc distortion matrixeported in
Table 1of ref. [2] forthe KS OR. The matrixasrrectly writtenin Equation (32) of ref. [2].
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Table 1 Coordinate transformatiomatrices between the fcg){bcc @) and hcp €) phases for KS, Burgers and NS
ORs.
Images of directions
3 <1003 1<100% 2<110%
6 <1103 4<211% 2 <100%
4<1113 4 <110%
12 <1123 8 <123% 4 <210%
Images of planes
3 {100}, 1{100}, 2 {110},
6 {110}, 4 {111}, 2 {100},
4 {111}, 4 {210},
12 {112}, 8 {113}44 {110},
Table 2 Images of lowindex directions and planes by the bdtc transformation with KS OR.




Images of directions

3 <1003 2<211% 1<100%
6 <110> 2<211> 2<230% 1<210% 1<001x
4<111% 2 <100% 2 <101%
Images of planes
3 {100}, 2{102}, 1{120},
6 {110}, 2 {101}, 2{210} 1{100}. 1{001},
4 {111}, 2 {1-24}¢ 1 {3-20} 1 {120},

Table 3  Images of lowindex directions and planes by the bducp transformation with Burgers OR.



Transformation g a a- g

Point group of the parent phase G’ G?

Orientation al variants

Coordinatetransformatiormatrix T @ Ta 9 = (TS @)?
(Orientation Relationship) 0 0 0
Intersection group H=GAETI G (TZ %) | H=G AT 96T 9yt K¢
Orientatioral variants a TS %, al GYH gTZ 9, gi GYH
Number of orientatioal variants N® = |GY/ HY N9 = |G?|/ |H|

Link betweerthe numbers of
orientatioral variants for

a |Rar = N9 |9
direct/inverse transformations N* |G| =N° |G]

Distortional variants

[¢)

Distorsion matrix A 7 ° R A° j °
Intersection group K=G'AEnr° G (A° )? K= G EAr° G (A° )?
Distortioral variants d? DY ?, d?i GY/K® d? D 9, dfi GY/K®
Number ofdistortioral variants M2 =|GY/ |KY M9 = |G|/ K|
Link between the habit planésr (hikil)g /1 (hkil;)a

direct/inverse transformations

Table 4  Crystallographicdefinition properties oforientation and distortion shape variants flirect and inverse
transformationsDifferent distortion matricetead to different distorted shapes loan lead to the same orientation of
the daughter crystalsas it is the case for fechcp transformation (sectionl), thatis why, for suchransformations
the orientatioral anddistortionalvariants should be distinguishe@enerally K% is a subgroup of the intersection group

H®, K9¢ HC For fce hcp transformation&® < H? . For fcebcctransformationd® = H.



Transition OR Complete Continuous Shuffle Predicted HPs Observed HRs | Difference
distortion matrix  |distortion matrix . . .
(rationalized) (reported in
literature)
fcc- beec  |KS Equ. (31) of ref. |Equ. (32) of ref. |No pp P PP P 0°
[2] [2] 05°
¢C v cCu :
fcc- fcc  |Twin Equ.(11) Equ.(17) No pp P PP P 0°
fcc- hep  |NS Equ.(22) Equ.(25) Equ. (27) pp P pp P 0°
+(28)
bce- fec  [KS Equ.(31) Equ.(37) No pp T p &p fx 7.4°
Uo ¢ og p 4.3°
bce hcp |Burgers |[Equ.(40) Equ.(45) Equ.(47) pp T - -
+(48)
PPC - -
LUt 110 1.5
TTU 12°

Table5 Summary of theequationsobtained in the papelhe details of the KS, NS and Burg&@®fsare given in
the equationgb). It is recalled thag= FCC,a = BCC and- = HCP.Only the rationalized values of the predicted habit
planes are noteith the tablein order to simplify the table. The estarrational values of the HREe pplig ¢q L

for the fce bcc transition, x chght gy uo ¢ for the e fcc transition and  vgh Mgfg vut | for the

[
bce  hep transition.



FIGURE CAPTIONS

Fig. 1.Phase transformations in the fbcp-bce system. (a) As represented by Burgers in 1434b)
Planar representation of the fcc, bcc and hep lattices with the orientation relationship conventions used in

the paper. The positions | = 1 and | = 2 represent the level of the atom in tkingtaf the dense planes
(p11),// (p10), /7 (001

Fig. 2.Fcc- fcc twinning on thei(ll)g plane. The planeia.l)g is marked by the POK triangle, before
twinning, withP0= % [110 ,, PK=%[101, , PM =[100,, OK = % [011],, PJ = % [211] , andIM =

Ya [Zii]g. The point J is in the middle of OK and the point H is the projection of M on the PJ line. The
triangl e POK i s unc hgcomgrarity tofcg bdc weansfonmatiog. The Btom=in M, 0
initially such thatPM = [100, , moves and passes over the atoms in O and K, and goes to its final
twinning position, located such that the tetrahedron POKM is regular. During this displacement, the angle
dqd = 292 varies from darcos(143) =1808 7057 =310957d) 3D5vidw df the faf =
cube, (b) part of this cube indicating the intermediate basis used in the calculatier®(, y = PK, z=

PM). (c) 2D section of (b) on the PIJM plane

Fig. 3.Views on the((il)g and (lii)g plane of thetransformation of a fcc crystal into (a) bcc , (b)
mechanically twinned fcc, or (c) hcp crystal, with KS, twin or SN OR, respectively. The purple arrows
correspond to the atomic displacements that follow the lattistortion, and the green arrow in (c)
represents the shuffle of the atom M. In (c), M moves in the position previously occupied by N, while N
moves to the position above the atom P at level |=2. Another possibility of shuffle is that M stays locally at

the same place in its unit cell

Fig. 4.3D representations of (a) fec bcc martensitic transformation, (b) fccfcc mechanical twinning,

and (c) fce hcp martensitic transformation, with, in blue, the initial parent fcc cube witi@8§

facets, in red, the mailting transformed daughter crystals, and in yellow, the intermediate states stopped at
medium path (half of the maximum distortion angle). The black arrow represents the invariant neutral line
[110,, and the white arrow thelP1] ,direction (also invaiant for the fce hcp and fce fcc

transformation}

Fig. 5.Lattice used for the bec fcc and bce hcp transformations. (a) The triangle POK corresponds to
the same triangle as used for the-fcbcc transformation. The directions PO and PK are the efimeked

directionsPOzl/z[llJ]aandPKzl/z[lli]a. (b) The angle b between thes
b = 70.5A (bcc) to b = 60A (fcc). In the final st



such thaPM = [ 010 .. Theprojection of M on the plane POK £10), is J such that in the bcc structure
JM = %[110],. (c) During the bce fcc transformation, the atom of the bce phase initially in position

M? shuffles to the position f&f the fcc phase. The shortening of the distance OK is not visible in (c)

because it is perpendicular to PJ. Two equivalent shuffles in opposite directions aregpossibl

Fig. 6. Views on theQ01), and (110), planes of thetransformation of a bcc crystal into (a) fcc or (b) hep
crystal, with KS or SN OR, respectively. The purple arrows correspond to the atomic displacements that
follow the lattice distortion, and the green arrow in (b) is a shuffle. Only one oivthpdssible shuffles is
represented in (b). The atom in M could also have moved in the opposite direction, mssRigwsc.

Fig. 7.Determination of theintilted planesof the bce fcc transformations. (aBraphical representations

of LI,. given in %. (a) 2D representation ackordin

[0,4 a ' d0,2d. (b) Enlargement of the region around the two local minirﬁa% and x c¢Wgh
¢ ¢Ughu vo ¢ .

Fig. 8.Determination of theintilted planesof the bce hcp transformation(a) Graphical representation

of 4. given in %. (a) 2D representation ackordin
[0,4 ad @24 The local minima{10),, (112),and Vigh Wghc Ut

Fig. 9.3D representations of (a) bec fcc and (b) bce hcp transformations, with, in blue, the initial
parent bcc crystal cube with it4@G, facets, in red, the resulting transformed daughter crystals, and in
yellow, the intermediate states stopped at medium (et of the distortion angle). The black arrow
represents the invariant neutral lind11], , and the white arrow thelfll], direction (rotated by both

transformationg

Fig. 10.Difference of fce hcp transformation mechanism between (apticipitation and (b,d)
martensitic transformation. The schematic representations are orienteebadgieng [[11] ¢in (a,b), and
on the side alongl1d, in (b,d). The point group of the shape of the precipitat¢# iEhe point grap of

the shape of the martensitic variant#sit is a subgroup of.

Fig. 11.Similarities of the continuous features observed in the EBSD pole figures of (alife,s
directions formed by thenartensitic laths in a parerftc grain of a martensitic steefEM10, thermally

treated), (b) the €10>¢, directions formed by the laths of a Widmanstéatten colony in a phoegrain

of a brass alloy (fronj36]), and (c) the 410> directions formed by the martensitic austenite laths in a
parent d bcc grain, in a duplex steel (frgj®9]). The threef ol d Af |l owkolbd andr d UG

identified by the large and mediwizecircles.




Fig. 12.Schematic 2D representation of the intermediate states and steric barriers. (a;,baeb@sic
vectors of the lattie 1 are transformed by twinning into th&,,) basic vector of the lattice 2 by the
application of a shear stress (b) Due to the hardphere packing the resulting deformation is not a
simple shear strain but an angular distortion, and a slight dilatatomponen@/naturally appears during

the transformation; it is maximum in the intermediate state in red

Fig. 13.Comparison between (a) martensitic transformation and (b) twinmiitg,a 3D representation of
the hardsphere atoms. The letters P, O, K, M atdghe centres of the atoms, as in ref. [2]. The curves at
the right side represent the variation of the spacing of pié&)( plane during the transformation, i.e. when
the angular order parameter changes fréns 60° to 70.5° for martensite, and from= 70.5° to 109.5°

for twinning

Fig. 14.Schematic representation of a diffusiomited displacive transformation. First, the chemical
composition of the daughter phase is obtained by a slow process of atomic diffusion, but the
crystallographic structure is stilthe parent phase one, and then, when the critical size is reached, the
transformation suddenly (and displacively) occurs. The distortion introduces dislocations in the
surrounding parent matrix. The kinetics of the displacements of these dislocatioles aethe tip of the

plate can also influence the kinetics of transformation
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Fig. 1.Phasetransformations in the febhcp-bcc system(a) As represented by Byers in 19344] . (b)
Planar representatiorf the fcc, bcc and hep latticesth the orientation relationship conventions used in

the paper. The positiert = 1 and | = 2 represent the level of the atom in the stacking of the dense planes
(p11),// (p10), // (00D, .




Fig. 2. Fcc- fcc twinning on thei(ll)g plane. The pIanei(Ll)g is marked by the POK triangle, before
twinning, withP0= % [110 ,, PK=%[101], , PM =[100,, OK = % [011] ,, PJ = ¥ [211] , andIM

=Y [211]9 The point J is in the middle of OK and the point H is the projection of M on the PTHme.
triangl e POK i s umré0)acongarilg to fre/ bed tramsformationgThe abom in M,

initially such thatPM =[100 ,, moves anghasses ovethe atoms in O and K, and goes to its final

twinning position, located such that the tetrahedron POKM is regular. During this displacement, the angle
d=22 varieaschs¢m/ @) = acs(B3\= 180 705° =109.5°(a) 3D view of thedc

cube, (b) part of this cube indicating the intermediate baséxl in the calculationsx = PO,y = PK, z=

PM). (c) 2D section of (b) on the PJM plane.
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Fig. 3. Views on the@l1), and (L11), plane of theransformation of a fcc crystal into (a) bec , (b)
mechanically twinned fcc, or (c) hcp crystal, with KS, SN OR, respectivelihe purple arrows
correspond to the atomic displacements that follow the lattice distpaiahthe green arrow in (c)
represents the shuffle of the atom M. In (c), M moves in the position previously occupied by N, while N
moves to the position above thiem P at level |=2. Another possibility of shuffle is thastislys locally at

the same place in its unit cell.




Fig. 4.3D representations of (a) fec bcc martensitic transformation, (b) fccfcc mechanical twinning,
and (c) fce hcpmartensitic transformation, with, in blue, the initial parent fcc cube stf10G},
facets, in red, the resulting transformed daughter crystals, and in yellow, the intermediatstsiateshat
mediumpath (half of the maximunfistortion angl¢. Theblack arrow represents the invariant neutral line
[110,, and the white arrow thelP1] ,direction (also invariant for the fec hcp and fce fcc

transformations).
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Fig. 5.Lattice used for the bec fcc and lec-  hep transformatios (a) The triangle POK corrgmnds to
the same triangle as used for the-fcbcc transformation. The directions PO and PK are the efmmeked
directionsPO =% [111] ,andPK =% [111] .. () Theangl e b bet ween t hese t wo
b = 70. %A 60° (o). }he fina state (fcc), the atoms O and K are in confHoe atom M is
such thatPM = [ 010 .. The prgection of M on the plane POK &10), is J such that in the bcc structure
JM =% [110] .. (c) During thebcc- fcctransformationthe atom of théccphase initially in position
M?# shuffles to the positioM? of thefcc phase. fie shorteningof the distance OK is not visihile (c)

because it is perpendicular to PIwo equivalent shuffles opposite directions are possible.
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Fig. 6. Views on theQOi)a and (ilO)a planes of thetransformationof a bcc crystal into (a) fcor (b) hcp
crystal with KSor SN OR, respectively. The purple arrows correspond to the atomic displacements that
follow the lattice distortion, and the green arrow in (b) is a shuffle. Only one of the two possible shuffles is

represented in (b). The atom in M could also have movdekinfposite direction, as shownHig. 5c.




